This file is indexed.

/usr/share/SuperCollider/HelpSource/Reference/ServerPluginAPI.schelp is in supercollider-common 1:3.8.0~repack-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
title:: Server Plugin API
summary:: Reference for writing unit generators
categories:: Internals
related:: Guides/WritingUGens

section:: Input rates

These four constants identify the calculation rates of inputs in SuperCollider.

definitionlist::
## code::calc_ScalarRate::
|| Initial rate. Conventionally known in the language as ".ir".

## code::calc_BufRate::
|| Control rate. Conventionally known in the language as ".kr".

## code::calc_FullRate::
|| Audio rate. Conventionally known in the language as ".ar".

## code::calc_DemandRate::
|| Demand rate.
::

section:: UGen basics

These helper macros assume that there is a ugen object called code::unit:: in the local scope.

definitionlist::
## code::IN(index)::
|| A single block of audio-rate input as a float* at the given index. Index 0 is the first input to the ugen, index 1 the second input, and so forth.

## code::IN0(index)::
|| A single sample of control-rate input as a float, at the given index.

## code::OUT(index)::
|| A single block of audio-rate output as a float* at the given index.

## code::OUT0(index)::
|| A single sample of control-rate input as a float, at the given index.

## code::INRATE(index)::
|| Get the rate of a given input index. This will be one of the four rates.

## code::INBUFLENGTH(index)::
|| Get the block size of a given input index.

## code::SAMPLERATE::
|| Sample rate of the server in Hertz.

## code::SAMPLEDUR::
|| Sample period of the server in seconds.

## code::BUFLENGTH::
|| Length in samples of an audio buffer (that is, the number of samples in a control period).

## code::BUFRATE::
|| Control rate of the server in Hertz.

## code::BUFDUR::
|| Control period of the server in seconds.

## code::FULLRATE::
||

## code::FULLBUFLENGTH::
||
::

section:: Buffers

definitionlist::
## code::GET_BUF::
|| The recommended way to retrieve a buffer. Take the first input of this UGen and use it as a buffer number. This dumps
a number of variables into the local scope:

list::
## code::buf:: - a pointer to the code::SndBuf:: instance
## code::bufData:: - the raw float data from the buffer
## code::bufChannels:: - the number of channels in the buffer
## code::bufSamples:: - the number of samples in the buffer
## code::bufFrames:: - the number of frames in the buffer
::

The buffer is locked using the code::LOCK_SNDBUF:: macro. Buffer lock operations are specific to supernova, and don't
do anything in vanilla scsynth.

## code::GET_BUF_SHARED::
|| Like code::GET_BUF::, but the buffer is locked using code::LOCK_SNDBUF_SHARED::.

## code::SIMPLE_GET_BUF::
|| Like code::GET_BUF::, but only creates the code::buf:: variable and does not lock the buffer.

## code::SIMPLE_GET_BUF_EXCLUSIVE::
|| Like code::SIMPLE_GET_BUF::, but locks the buffer with code::LOCK_SNDBUF::.

## code::SIMPLE_GET_BUF_SHARED::
|| Like code::SIMPLE_GET_BUF::, but locks the buffer with code::LOCK_SNDBUF_SHARED::.
::

The following macros are for use in supernova. They still exist in scsynth, but will have no effect.

code::
ACQUIRE_BUS_AUDIO(index)
ACQUIRE_BUS_AUDIO_SHARED(index)
RELEASE_BUS_AUDIO(index)
RELEASE_BUS_AUDIO_SHARED(index)
LOCK_SNDBUF(buf)
LOCK_SNDBUF_SHARED(buf)
LOCK_SNDBUF2(buf1, buf2)
LOCK_SNDBUF2_SHARED(buf1, buf2)
LOCK_SNDBUF2_EXCLUSIVE_SHARED(buf1, buf2)
LOCK_SNDBUF2_SHARED_EXCLUSIVE(buf1, buf2)
ACQUIRE_SNDBUF(buf)
ACQUIRE_SNDBUF_SHARED(buf)
RELEASE_SNDBUF(buf)
RELEASE_SNDBUF_SHARED(buf)
ACQUIRE_BUS_CONTROL(index)
RELEASE_BUS_CONTROL(index)
::

section:: RGen

RGen is a pseudorandom number generator API. Most ugen developers are not interested in seeding their own RGens and
would prefer to draw from a global RGen instance supplied by SuperCollider. This can be retrieved with the code:

code::
RGen& rgen = *unit->mParent->mRGen;
::

definitionlist::
## code::uint32 RGen\::trand()::
|| Return a uniformly distributed random 32-bit integer.

## code::double RGen\::drand()::
|| Return a uniformly distributed random double in [0,1).

## code::float RGen\::frand()::
|| Random float in [0,1).

## code::float RGen\::frand0()::
|| Random float in [1,2).

## code::float RGen\::frand2()::
|| Random float in [-1,1).

## code::float RGen\::frand8()::
|| Random float in [-0.125,0.125).

## code::float RGen\::fcoin()::
|| Either -1 or +1.

## code::float RGen\::flinrand()::
|| Linearly distributed random float in [0,1), with a bias towards the 0 end.

## code::float RGen\::fbilinrand()::
|| Bilinearly distributed random float in (-1,1), with a bias towards 0.

## code::float RGen\::fsum3rand()::
|| A crude but fast approximation to a Gaussian distribution. Results are always in the range (-1,1). The variance is
1/6 and the standard deviation is 0.41. footnote:: The formula is code::(rand() + rand() + rand() - 1.5) * 2/3::,
technically a shifted and stretched order-3 Irwin-Hall distribution. ::

## code::int32 RGen\::irand(int32 scale)::
|| Random int in [0,scale).

## code::int32 RGen\::irand2(int32 scale)::
|| Random int in [-scale,+scale].

## code::int32 RGen\::ilinrand(int32 scale)::
|| Linearly distributed random int in [0,scale), with a bias towards the 0 end.

## code::int32 RGen\::ibilinrand(int32 scale)::
|| Bilinearly distributed random int in (-scale,scale), with a bias towards the 0.

## code::double RGen\::linrand()::
|| Linearly distributed random double in [0,1), with a bias towards the 0 end.

## code::double RGen\::bilinrand()::
|| Bilinearly distributed random double in (-1,1), with a bias towards 0.

## code::double RGen\::exprandrng(double lo, double hi)::
|| Exponentially distributed random double in [lo,hi).

## code::double RGen\::exprand(double scale)::
||

## code::double RGen\::biexprand(double scale)::
||

## code::double RGen\::exprand(double scale)::
||

## code::double RGen\::sum3rand(double scale)::
|| Double version of code::RGen\::fsum3rand::.
::

section:: Unary operators

definitionlist::
## code::bool sc_isnan(float/double x)::
|| Checks whether code::x:: is NaN. This is a legacy function, use code::std\::isnan:: instead.

## code::bool sc_isfinite(float/double x)::
|| Checks whether code::x:: is finite. This is a legacy function, use code::std\::isfinite:: instead.

## code::int32 sc_grayCode(int32 x)::
|| Convert binary to Gray code.
::

The following unary functions are available for both float32 and float64, and are the same as in sclang (minus the "sc_"
prefixes):

list::
## code::sc_midicps::
## code::sc_cpsmidi::
## code::sc_midiratio::
## code::sc_ratiomidi::
## code::sc_octcps::
## code::sc_cpsoct::
## code::sc_ampdb::
## code::sc_dbamp::
## code::sc_cubed::
## code::sc_sqrt::
## code::sc_hanwindow::
## code::sc_welwindow::
## code::sc_triwindow::
## code::sc_rectwindow::
## code::sc_scurve::
## code::sc_ramp::
## code::sc_sign::
## code::sc_distort::
## code::sc_softclip::
## code::sc_ceil::
## code::sc_floor::
## code::sc_reciprocal::
## code::sc_frac::
## code::sc_log2:: (legacy -- use code::std\::log2(std\::abs(x))::)
## code::sc_log10:: (legacy -- use code::std\::log10(std\::abs(x))::)
## code::sc_trunc:: (legacy -- use code::std\::trunc::)
::

The following unary functions are available for both float32 and float64, but have no sclang equivalent:

definitionlist::
## code::zapgremlins(x)::
|| Replaces NaNs, infinities, very large and very small numbers (including denormals) with zero. This is useful in ugen
feedback to safeguard from pathological behavior. (Note lack of sc_ prefix.)

## code::sc_bitriwindow(x)::
|| Alternative to code::sc_triwindow:: using absolute value.

## code::sc_scurve0(x)::
|| Same as code::sc_scurve::, but assumes that code::x:: is in the interval [0, 1].

## code::sc_distortneg(x)::
|| A one-sided distortion function. Same as code::distort:: for code::x > 0::, and the identity function for code::x <= 0::.

## code::taylorsin(x)::
|| Taylor series approximation of code::sin(x):: out to code::x**9 / 9!::. (Note lack of sc_ prefix.)

## code::sc_lg3interp(x1, a, b, c, d)::
|| Cubic Lagrange interpolator.

## code::sc_CalcFeedback(delaytime, decaytime)::
|| Determines the feedback coefficient for a feedback comb filter with the given delay and decay times.

## code::sc_wrap1(x)::
|| Wrap code::x:: around ±1, wrapping only once.

## code::sc_fold1(x)::
|| Fold code::x:: around ±1, folding only once.
::

section:: Binary operators

definitionlist::
## code::sc_wrap(in, lo, hi [, range])::
||

## code::sc_fold(in, lo, hi [, range [, range2]])::
||

## code::sc_pow(a, b)::
|| Compute code::pow(a, b)::, retaining the sign of code::a::.

## code::sc_powi(x, unsigned int n)::
|| Compute code::x^n::, not necessarily retaining the sign of code::x::.

## code::sc_hypotx(x, y)::
|| Compute code::abs(x) + abs(y) - (min(abs(x), abs(y)) * (sqrt(2) - 1))::, the minimum distance one will have to travel
from the origin to (x,y) using only orthogonal and diagonal movements.
::

The following functions are the same as in sclang (minus the "sc_" prefixes):

list::
## code::sc_mod(in, hi):: (floats, doubles, ints)
## code::sc_round(x, quant):: (floats, doubles, ints)
## code::sc_roundUp(x, quant):: (floats, doubles, ints)
## code::sc_trunc(x, quant):: (floats, doubles, ints)
## code::sc_gcd(a, b):: (ints, longs, floats)
## code::sc_lcm(a, b):: (ints, longs, floats)
## code::sc_bitAnd(a, b):: (ints)
## code::sc_bitOr(a, b):: (ints)
## code::sc_leftShift(a, b):: (ints)
## code::sc_rightShift(a, b):: (ints)
## code::sc_unsignedRightShift(a, b):: (ints)
## code::sc_thresh(a, b)::
## code::sc_clip2(a, b)::
## code::sc_wrap2(a, b)::
## code::sc_fold2(a, b)::
## code::sc_excess(a, b)::
## code::sc_scaleneg(a, b)::
## code::sc_amclip(a, b)::
## code::sc_ring1(a, b)::
## code::sc_ring2(a, b)::
## code::sc_ring3(a, b)::
## code::sc_ring4(a, b)::
## code::sc_difsqr(a, b)::
## code::sc_sumsqr(a, b)::
## code::sc_sqrsum(a, b)::
## code::sc_sqrdif(a, b)::
## code::sc_atan2(a, b):: (legacy -- use code::std\::atan2::)
::

section:: Constants

The following constants are doubles:

list::
## code::pi::
## code::pi2:: = pi/2
## code::pi32:: = 3pi/2
## code::twopi:: = 2pi
## code::rtwopi:: (1/2pi)
## code::log001:: = log(0.001)
## code::log01:: = log(0.01)
## code::log1:: = log(0.1)
## code::rlog2:: = 1/log(2)
## code::sqrt2:: = sqrt(2)
## code::rsqrt2:: = 1/sqrt(2)
## code::truncDouble:: = 3 * 2^51 (used to truncate precision)
::

The following constants are floats:

list::
## code::pi_f::
## code::pi2_f::
## code::pi32_f::
## code::twopi_f::
## code::sqrt2_f::
## code::rsqrt2_f::
## code::truncFloat:: = 3 * 2^22 (used to truncate precision)
::

section:: Unroll macros

The macros in this section are legacy features. They are seen in many of SuperCollider's built-in ugens, and are
intended to provide more efficient alternatives to the standard code::for (int i = 0; i < inNumSamples; i++) { out[i]
= in[i] }:: loop. These efficiency savings are negligible on modern systems and use of these macros is not recommended,
especially since they make debugging difficult.

definitionlist::
## code::LOOP(length, stmt)::
|| Execute code code::stmt::, code::length:: times.

## code::LOOP1(length, stmt)::
|| A faster drop-in alternative to code::LOOP::, which assumes that code::length > 0:: so a branch instruction is saved.

## code::LooP(length) stmt::
|| An alternative to LOOP/LOOP1 that is more debugger-friendly. The body of the loop comes after the call to code::LooP::.

## code::ZIN(index)::
|| Similar to code::IN::, but subtracts 1 from the pointer to correct for off-by-one errors when using code::LOOP:: and code::ZXP::.

## code::ZOUT(index)::
|| Same as code::OUT::, but subtracts 1 from the pointer to correct for off-by-one errors when using code::LOOP:: and code::ZXP::.

## code::ZIN0(index)::
|| Alias for code::IN0::.

## code::ZOUT0(index)::
|| Alias for code::OUT0::.

## code::ZXP(z)::
|| Pre-increment and dereference code::z::.

## code::ZX(z)::
|| Dereference code::z::.

## code::PZ(z)::
|| Pre-increment code::z::.

## code::ZP(z)::
|| Does nothing.

## code::ZOFF::
|| Return 1.
::