/usr/share/doc/swig3.0-doc/Manual/Java.html is in swig3.0-doc 3.0.12-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>SWIG and Java</title>
<link rel="stylesheet" type="text/css" href="style.css">
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body bgcolor="#FFFFFF">
<H1><a name="Java">25 SWIG and Java</a></H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#Java_overview">Overview</a>
<li><a href="#Java_preliminaries">Preliminaries</a>
<ul>
<li><a href="#Java_running_swig">Running SWIG</a>
<li><a href="#Java_commandline">Additional Commandline Options</a>
<li><a href="#Java_getting_right_headers">Getting the right header files</a>
<li><a href="#Java_compiling_dynamic">Compiling a dynamic module</a>
<li><a href="#Java_using_module">Using your module</a>
<li><a href="#Java_dynamic_linking_problems">Dynamic linking problems</a>
<li><a href="#Java_compilation_problems_cpp">Compilation problems and compiling with C++</a>
<li><a href="#Java_building_windows">Building on Windows</a>
<ul>
<li><a href="#Java_visual_studio">Running SWIG from Visual Studio</a>
<li><a href="#Java_nmake">Using NMAKE</a>
</ul>
</ul>
<li><a href="#Java_basic_tour">A tour of basic C/C++ wrapping</a>
<ul>
<li><a href="#Java_module_packages_classes">Modules, packages and generated Java classes</a>
<li><a href="#Java_functions">Functions</a>
<li><a href="#Java_global_variables">Global variables</a>
<li><a href="#Java_constants">Constants</a>
<li><a href="#Java_enumerations">Enumerations</a>
<ul>
<li><a href="#Java_anonymous_enums">Anonymous enums</a>
<li><a href="#Java_typesafe_enums">Typesafe enums</a>
<li><a href="#Java_proper_enums">Proper Java enums</a>
<li><a href="#Java_typeunsafe_enums">Type unsafe enums</a>
<li><a href="#Java_simple_enums">Simple enums</a>
</ul>
<li><a href="#Java_pointers">Pointers</a>
<li><a href="#Java_structures">Structures</a>
<li><a href="#Java_classes">C++ classes</a>
<li><a href="#Java_inheritance">C++ inheritance</a>
<li><a href="#Java_pointers_refs_arrays">Pointers, references, arrays and pass by value</a>
<ul>
<li><a href="#Java_null_pointers">Null pointers</a>
</ul>
<li><a href="#Java_overloaded_functions">C++ overloaded functions</a>
<li><a href="#Java_default_arguments">C++ default arguments</a>
<li><a href="#Java_namespaces">C++ namespaces</a>
<li><a href="#Java_templates">C++ templates</a>
<li><a href="#Java_smart_pointers">C++ Smart Pointers</a>
<ul>
<li><a href="#Java_smart_pointers_shared_ptr">The shared_ptr Smart Pointer</a>
<li><a href="#Java_smart_pointers_generic">Generic Smart Pointers</a>
</ul>
</ul>
<li><a href="#Java_further_details">Further details on the generated Java classes</a>
<ul>
<li><a href="#Java_imclass">The intermediary JNI class</a>
<ul>
<li><a href="#Java_imclass_pragmas">The intermediary JNI class pragmas</a>
</ul>
<li><a href="#Java_module_class">The Java module class</a>
<ul>
<li><a href="#Java_module_class_pragmas">The Java module class pragmas</a>
</ul>
<li><a href="#Java_proxy_classes">Java proxy classes</a>
<ul>
<li><a href="#Java_memory_management">Memory management</a>
<li><a href="#Java_inheritance_mirroring">Inheritance</a>
<li><a href="#Java_proxy_classes_gc">Proxy classes and garbage collection</a>
<li><a href="#Java_pgcpp">The premature garbage collection prevention parameter for proxy class marshalling</a>
<li><a href="#Java_multithread_libraries">Single threaded applications and thread safety</a>
</ul>
<li><a href="#Java_type_wrapper_classes">Type wrapper classes</a>
<li><a href="#Java_enum_classes">Enum classes</a>
<ul>
<li><a href="#Java_typesafe_enums_classes">Typesafe enum classes</a>
<li><a href="#Java_proper_enums_classes">Proper Java enum classes</a>
<li><a href="#Java_typeunsafe_enums_classes">Type unsafe enum classes</a>
</ul>
<li><a href="#Java_interfaces">Interfaces</a>
</ul>
<li><a href="#Java_directors">Cross language polymorphism using directors</a>
<ul>
<li><a href="#Java_enabling_directors">Enabling directors</a>
<li><a href="#Java_directors_classes">Director classes</a>
<li><a href="#Java_directors_overhead">Overhead and code bloat</a>
<li><a href="#Java_directors_example">Simple directors example</a>
<li><a href="#Java_directors_threading">Director threading issues</a>
<li><a href="#Java_directors_performance">Director performance tuning</a>
<li><a href="#Java_exceptions_from_directors">Java exceptions from directors</a>
</ul>
<li><a href="#Java_allprotected">Accessing protected members</a>
<li><a href="#Java_common_customization">Common customization features</a>
<ul>
<li><a href="#Java_helper_functions">C/C++ helper functions</a>
<li><a href="#Java_class_extension">Class extension with %extend</a>
<li><a href="#Java_proxycode">Class extension with %proxycode</a>
<li><a href="#Java_exception_handling">Exception handling with %exception and %javaexception</a>
<li><a href="#Java_method_access">Method access with %javamethodmodifiers</a>
</ul>
<li><a href="#Java_tips_techniques">Tips and techniques</a>
<ul>
<li><a href="#Java_input_output_parameters">Input and output parameters using primitive pointers and references</a>
<li><a href="#Java_simple_pointers">Simple pointers</a>
<li><a href="#Java_c_arrays">Wrapping C arrays with Java arrays</a>
<li><a href="#Java_unbounded_c_arrays">Unbounded C Arrays</a>
<li><a href="#Java_binary_char">Binary data vs Strings</a>
<li><a href="#Java_heap_allocations">Overriding new and delete to allocate from Java heap</a>
</ul>
<li><a href="#Java_typemaps">Java typemaps</a>
<ul>
<li><a href="#Java_default_primitive_type_mappings">Default primitive type mappings</a>
<li><a href="#Java_default_non_primitive_typemaps">Default typemaps for non-primitive types</a>
<li><a href="#Java_jvm64">Sixty four bit JVMs</a>
<li><a href="#Java_what_is_typemap">What is a typemap?</a>
<li><a href="#Java_typemaps_c_to_java_types">Typemaps for mapping C/C++ types to Java types</a>
<li><a href="#Java_typemap_attributes">Java typemap attributes</a>
<li><a href="#Java_special_variables">Java special variables</a>
<li><a href="#Java_typemaps_for_c_and_cpp">Typemaps for both C and C++ compilation</a>
<li><a href="#Java_code_typemaps">Java code typemaps</a>
<li><a href="#Java_directors_typemaps">Director specific typemaps</a>
</ul>
<li><a href="#Java_typemap_examples">Typemap Examples</a>
<ul>
<li><a href="#Java_simpler_enum_classes">Simpler Java enums for enums without initializers</a>
<li><a href="#Java_exception_typemap">Handling C++ exception specifications as Java exceptions</a>
<li><a href="#Java_nan_exception_typemap">NaN Exception - exception handling for a particular type</a>
<li><a href="#Java_converting_java_string_arrays">Converting Java String arrays to char ** </a>
<li><a href="#Java_expanding_java_object">Expanding a Java object to multiple arguments</a>
<li><a href="#Java_using_typemaps_return_arguments">Using typemaps to return arguments</a>
<li><a href="#Java_adding_downcasts">Adding Java downcasts to polymorphic return types</a>
<li><a href="#Java_adding_equals_method">Adding an equals method to the Java classes</a>
<li><a href="#Java_void_pointers">Void pointers and a common Java base class</a>
<li><a href="#Java_struct_pointer_pointer">Struct pointer to pointer</a>
<li><a href="#Java_memory_management_member_variables">Memory management when returning references to member variables</a>
<li><a href="#Java_memory_management_objects">Memory management for objects passed to the C++ layer</a>
<li><a href="#Java_date_marshalling">Date marshalling using the javain typemap and associated attributes</a>
</ul>
<li><a href="#Java_directors_faq">Living with Java Directors</a>
<li><a href="#Java_odds_ends">Odds and ends</a>
<ul>
<li><a href="#Java_javadoc_comments">JavaDoc comments</a>
<li><a href="#Java_functional_interface">Functional interface without proxy classes</a>
<li><a href="#Java_using_own_jni_functions">Using your own JNI functions</a>
<li><a href="#Java_performance">Performance concerns and hints</a>
<li><a href="#Java_debugging">Debugging</a>
</ul>
<li><a href="#Java_examples">Java Examples</a>
</ul>
</div>
<!-- INDEX -->
<p>
This chapter describes SWIG's support of Java.
It covers most SWIG features, but certain low-level details are covered in less depth than in earlier chapters.
</p>
<H2><a name="Java_overview">25.1 Overview</a></H2>
<p>
The 100% Pure Java effort is a commendable concept, however in the real world programmers often either need to re-use their existing code or in some situations
want to take advantage of Java but are forced into using some native (C/C++) code.
The Java extension to SWIG makes it very easy to plumb in existing C/C++ code for access from Java, as SWIG writes the Java Native Interface (JNI) code for you.
It is different to using the 'javah' tool as SWIG will wrap existing C/C++ code, whereas javah takes 'native' Java function declarations and creates C/C++ function prototypes.
SWIG wraps C/C++ code using Java proxy classes and is very useful if you want to have access to large amounts of C/C++ code from Java.
If only one or two JNI functions are needed then using SWIG may be overkill.
SWIG enables a Java program to easily call into C/C++ code from Java.
Historically, SWIG was not able to generate any code to call into Java code from C++.
However, SWIG now supports full cross language polymorphism and code is generated to call up from C++ to Java when wrapping C++ virtual methods via the director feature.
</p>
<p>
Java is one of the few non-scripting language modules in SWIG.
As SWIG utilizes the type safety that the Java language offers, it takes a somewhat different approach to that used for scripting languages.
In particular runtime type checking and the runtime library are not used by Java.
This should be borne in mind when reading the rest of the SWIG documentation.
This chapter on Java is relatively self contained and will provide you with nearly everything you need for using SWIG and Java.
However, the "<a href="SWIG.html#SWIG">SWIG Basics</a>" chapter will be a useful read in conjunction with this one.
</p>
<p>
This chapter starts with a few practicalities on running SWIG and compiling the generated code.
If you are looking for the minimum amount to read, have a look at the sections up to and including the
<a href="#Java_basic_tour">tour of basic C/C++ wrapping</a> section which explains how to call the various C/C++ code constructs from Java.
Following this section are details of the C/C++ code and Java classes that SWIG generates.
Due to the complexities of C and C++ there are different ways in which C/C++ code could be wrapped and called from Java.
SWIG is a powerful tool and the rest of the chapter details how the default code wrapping can be tailored.
Various customisation tips and techniques using SWIG directives are covered.
The latter sections cover the advanced techniques of using typemaps for complete control of the wrapping process.
</p>
<H2><a name="Java_preliminaries">25.2 Preliminaries</a></H2>
<p>
SWIG 1.1 works with JDKs from JDK 1.1 to JDK1.4 (Java 2 SDK1.4) and should also work with any later versions.
Given the choice, you should probably use the latest version of Sun's JDK.
The SWIG Java module is known to work using Sun's JVM on Solaris, Linux and the various flavours of Microsoft Windows including Cygwin.
The Kaffe JVM is known to give a few problems and at the time of writing was not a fully fledged JVM with full JNI support.
The generated code is also known to work on vxWorks using WindRiver's PJava 3.1.
The best way to determine whether your combination of operating system and JDK will work is to test the examples and test-suite that comes with SWIG.
Run <tt>make -k check</tt> from the SWIG root directory after installing SWIG on Unix systems. </p>
<p>
The Java module requires your system to support shared libraries and dynamic loading.
This is the commonly used method to load JNI code so your system will more than likely support this.</p>
<p>
Android uses Java JNI and also works with SWIG. Please read the <a href="Android.html#Android">Android chapter</a> in conjunction with this one if you are targeting Android.
</p>
<H3><a name="Java_running_swig">25.2.1 Running SWIG</a></H3>
<p>
Suppose that you defined a SWIG module such as the following:
</p>
<div class="code">
<pre>
/* File: example.i */
%module test
%{
#include "stuff.h"
%}
int fact(int n);
</pre>
</div>
<p>
To build a Java module, run SWIG using the <tt>-java</tt> option :</p>
<div class="code"><pre>
%swig -java example.i
</pre></div>
<p>
If building C++, add the <tt>-c++</tt> option:
</p>
<div class="code"><pre>
$ swig -c++ -java example.i
</pre></div>
<p>
This creates two different files; a C/C++ source file <tt>example_wrap.c</tt> or
<tt>example_wrap.cxx</tt> and numerous Java files. The generated
C/C++ source file contains the JNI wrapper code that needs to be compiled and linked with the
rest of your C/C++ application.
</p>
<p>
The name of the wrapper file is derived from the name of the input file. For example, if the
input file is <tt>example.i</tt>, the name of the wrapper file is <tt>example_wrap.c</tt>.
To change this, you can use the <tt>-o</tt> option.
It is also possible to change the <a href="SWIG.html#SWIG_output">output directory </a> that the Java files are generated into using <tt>-outdir</tt>.
</p>
<p>
The module name, specified with <tt>%module</tt>, determines the name of various generated classes as discussed <a href="#Java_module_packages_classes">later</a>.
Note that the module name does not define a Java package and by default, the generated Java classes do not have a Java package.
The <tt>-package</tt> option described below can specify a Java package name to use.
</p>
<p>
The following sections have further practical examples and details on how you might go about
compiling and using the generated files.
</p>
<H3><a name="Java_commandline">25.2.2 Additional Commandline Options</a></H3>
<p>
The following table lists the additional commandline options available for the Java module. They can also be seen by using:
</p>
<div class="code"><pre>
swig -java -help
</pre></div>
<table summary="Java specific options">
<tr>
<th>Java specific options</th>
</tr>
<tr>
<td>-nopgcpp</td>
<td>suppress the premature garbage collection prevention parameter</td>
</tr>
<tr>
<td>-noproxy</td>
<td>generate the low-level functional interface instead of proxy classes </td>
</tr>
<tr>
<td>-package <name></td>
<td>set name of the Java package to <name></td>
</tr>
</table>
<p>
Their use will become clearer by the time you have finished reading this section on SWIG and Java.
</p>
<H3><a name="Java_getting_right_headers">25.2.3 Getting the right header files</a></H3>
<p>
In order to compile the C/C++ wrappers, the compiler needs the <tt>jni.h</tt> and <tt>jni_md.h</tt> header files which are part of the JDK.
They are usually in directories like this:</p>
<div class="code"><pre>
/usr/java/include
/usr/java/include/<operating_system>
</pre></div>
<p>
The exact location may vary on your machine, but the above locations are typical. </p>
<H3><a name="Java_compiling_dynamic">25.2.4 Compiling a dynamic module</a></H3>
<p>
The JNI code exists in a dynamic module or shared library (DLL on Windows) and gets loaded by the JVM.
Assuming you have code you need to link to in a file called <tt>example.c</tt>, in order to build a shared library file, you need to compile your module in a manner similar to the following (shown for Solaris):</p>
<div class="code"><pre>
$ swig -java example.i
$ gcc -fPIC -c example_wrap.c -I/usr/java/include -I/usr/java/include/solaris
$ gcc -fPIC -c example.c
$ ld -G example_wrap.o example.o -o libexample.so
</pre></div>
<p>
The exact commands for doing this vary from platform to platform.
However, SWIG tries to guess the right options when it is installed. Therefore,
you may want to start with one of the examples in the <tt>Examples/java</tt>
directory. If that doesn't work, you will need to read the man-pages for
your compiler and linker to get the right set of options. You might also
check the <a href="https://github.com/swig/swig/wiki">SWIG Wiki</a> for
additional information.
</p>
<p>
<b>Important</b> <br>
If you are going to use optimisations turned on with gcc (for example -O2), ensure you also compile with -fno-strict-aliasing. The GCC optimisations have become
more aggressive from gcc-4.0 onwards and will result in code that fails with strict aliasing optimisations turned on. See the <a href="#Java_typemaps_c_to_java_types">C/C++ to Java typemaps</a> section for more details.
</p>
<p>
The name of the shared library output file is important.
If the name of your SWIG module is "<tt>example</tt>", the name of the corresponding shared library file should be "<tt>libexample.so</tt>" (or equivalent depending on your machine, see <a href="#Java_dynamic_linking_problems">Dynamic linking problems</a> for more information).
The name of the module is specified using the <tt>%module</tt> directive or <tt>-module</tt> command line option.</p>
<H3><a name="Java_using_module">25.2.5 Using your module</a></H3>
<p>
To load your shared native library module in Java, simply use Java's <tt>System.loadLibrary</tt> method in a Java class:</p>
<div class="code"><pre>
// runme.java
public class runme {
static {
System.loadLibrary("example");
}
public static void main(String argv[]) {
System.out.println(example.fact(4));
}
}
</pre></div>
<p>
Compile all the Java files and run:
</p>
<div class="code"><pre>
$ javac *.java
$ java runme
24
$
</pre></div>
<p>
If it doesn't work have a look at the following section which discusses problems loading the shared library.
</p>
<H3><a name="Java_dynamic_linking_problems">25.2.6 Dynamic linking problems</a></H3>
<p>
As shown in the previous section the code to load a native library (shared library) is <tt>System.loadLibrary("name")</tt>.
This can fail with an UnsatisfiedLinkError exception and can be due to a number of reasons.
</p>
<p>
You may get an exception similar to this:
</p>
<div class="code"><pre>
$ java runme
Exception in thread "main" java.lang.UnsatisfiedLinkError: no example in java.library.path
at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1312)
at java.lang.Runtime.loadLibrary0(Runtime.java:749)
at java.lang.System.loadLibrary(System.java:820)
at runme.<clinit>(runme.java:5)
</pre></div>
<p>
The most common cause for this is an incorrect naming of the native library for the name passed to the <tt>loadLibrary</tt> function.
The string passed to the <tt>loadLibrary</tt> function must not include the file extension name in the string, that is <i>.dll</i> or <i>.so</i>.
The string must be <i>name</i> and not <i>libname</i> for all platforms.
On Windows the native library must then be called <i>name.dll</i> and on most Unix systems it must be called <i>libname.so</i>.
</p>
<p>
Another common reason for the native library not loading is because it is not in your path.
On Windows make sure the <i>path</i> environment variable contains the path to the native library.
On Unix make sure that your <i>LD_LIBRARY_PATH</i> contains the path to the native library.
Adding paths to <i>LD_LIBRARY_PATH</i> can slow down other programs on your system so you may want to consider alternative approaches.
For example you could recompile your native library with extra path information using <tt>-rpath</tt> if you're using GNU, see the GNU linker documentation (<tt>ld</tt> man page).
You could use a command such as <tt>ldconfig</tt> (Linux) or
<tt>crle</tt> (Solaris) to add additional search paths to the default
system configuration (this requires root access and you will need to read the man pages).
</p>
<p>
The native library will also not load if there are any unresolved symbols in the compiled C/C++ code.
The following exception is indicative of this:
</p>
<div class="code"><pre>
$ java runme
Exception in thread "main" java.lang.UnsatisfiedLinkError: libexample.so: undefined
symbol: fact
at java.lang.ClassLoader$NativeLibrary.load(Native Method)
at java.lang.ClassLoader.loadLibrary0(ClassLoader.java, Compiled Code)
at java.lang.ClassLoader.loadLibrary(ClassLoader.java, Compiled Code)
at java.lang.Runtime.loadLibrary0(Runtime.java, Compiled Code)
at java.lang.System.loadLibrary(System.java, Compiled Code)
at runme.<clinit>(runme.java:5)
$
</pre></div>
<p>
This error usually indicates that you forgot to include some object files or libraries in the linking of the native library file.
Make sure you compile both the SWIG wrapper file and the code you are wrapping into the native library file.
If you forget to compile and link in the SWIG wrapper file into your native library file, you will get a message similar to the following:
</p>
<div class="code"><pre>
$ java runme
Exception in thread "main" java.lang.UnsatisfiedLinkError: exampleJNI.gcd(II)I
at exampleJNI.gcd(Native Method)
at example.gcd(example.java:12)
at runme.main(runme.java:18)
</pre></div>
<p>
where <tt>gcd</tt> is the missing JNI function that SWIG generated into the wrapper file.
Also make sure you pass all of the required libraries to the linker.
The <tt>java -verbose:jni</tt> commandline switch is also a great way to get more information on unresolved symbols.
One last piece of advice is to beware of the common faux pas of having more than one native library version in your path.
</p>
<p>
In summary, ensure that you are using the correct C/C++ compiler and linker combination and options for successful native library loading.
If you are using the examples that ship with SWIG, then the Examples/Makefile must have these set up correctly for your system.
The SWIG installation package makes a best attempt at getting these correct but does not get it right 100% of the time.
The <a href="https://github.com/swig/swig/wiki">SWIG Wiki</a> also has some settings for commonly used compiler and operating system combinations.
The following section also contains some C++ specific linking problems and solutions.
</p>
<H3><a name="Java_compilation_problems_cpp">25.2.7 Compilation problems and compiling with C++</a></H3>
<p>
On most machines, shared library files should be linked using the C++
compiler. For example:
</p>
<div class="code"><pre>
% swig -c++ -java example.i
% g++ -c -fpic example.cxx
% g++ -c -fpic example_wrap.cxx -I/usr/java/j2sdk1.4.1/include -I/usr/java/j2sdk1.4.1/include/linux
% g++ -shared example.o example_wrap.o -o libexample.so
</pre></div>
<p>
In addition to this, you may need to include additional library
files to make it work. For example, if you are using the Sun C++ compiler on
Solaris, you often need to add an extra library <tt>-lCrun</tt> like this:
</p>
<div class="code"><pre>
% swig -c++ -java example.i
% CC -c example.cxx
% CC -c example_wrap.cxx -I/usr/java/include -I/usr/java/include/solaris
% CC -G example.o example_wrap.o -L/opt/SUNWspro/lib -o libexample.so -lCrun
</pre></div>
<p>
If you aren't entirely sure about the linking for C++, you
might look at an existing C++ program. On many Unix machines, the
<tt>ldd</tt> command will list library dependencies. This should give
you some clues about what you might have to include when you link your
shared library. For example:
</p>
<div class="code">
<pre>
$ ldd swig
libstdc++-libc6.1-1.so.2 => /usr/lib/libstdc++-libc6.1-1.so.2 (0x40019000)
libm.so.6 => /lib/libm.so.6 (0x4005b000)
libc.so.6 => /lib/libc.so.6 (0x40077000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
$
</pre>
</div>
<p>
Finally make sure the version of JDK header files matches the version of Java that you are running as incompatibilities could lead to compilation problems or unpredictable behaviour.
</p>
<H3><a name="Java_building_windows">25.2.8 Building on Windows</a></H3>
<p>
Building on Windows is roughly similar to the process used with Unix.
You will want to produce a DLL that can be loaded by the Java Virtual Machine.
This section covers the process of using SWIG with Microsoft Visual C++ 6 although the procedure may be similar with other compilers.
In order for everything to work, you will need to have a JDK installed on your machine in order to read the JNI header files.</p>
<H4><a name="Java_visual_studio">25.2.8.1 Running SWIG from Visual Studio</a></H4>
<p>
If you are developing your application within Microsoft Visual studio, SWIG can be invoked as a custom build option.
The Examples\java directory has a few <a href="Windows.html#Windows_examples">Windows Examples</a> containing Visual Studio project (.dsp) files.
The process to re-create the project files for a C project are roughly:</p>
<ul>
<li>Open up a new workspace and use the AppWizard to select a DLL project.
<li>Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be created by SWIG (ie. <tt>example_wrap.c</tt>).
Don't worry if the wrapper file doesn't exist yet--Visual Studio will keep a reference to it.
<li>Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.
<li>Enter "SWIG" in the description field.
<li>Enter "<tt>swig -java -o $(ProjDir)\$(InputName)_wrap.c $(InputPath)</tt>" in the "Build command(s) field"
<li>Enter "<tt>$(ProjDir)\$(InputName)_wrap.c</tt>" in the "Output files(s) field".
<li>Next, select the settings for the entire project and go to C/C++ tab and select the Preprocessor category. Add the include directories to the JNI header files under "Additional include directories", eg "C:\jdk1.3\include, C:\jdk1.3\include\win32".
<li>Next, select the settings for the entire project and go to Link tab and select the General category. Set the name of the output file to match the name of your Java module (ie. example.dll).
<li>Next, select the example.c and example_wrap.c files and go to the C/C++ tab and select the Precompiled Headers tab in the project settings. Disabling precompiled headers for these files will overcome any precompiled header errors while building.
<li>Finally, add the java compilation as a post build rule in the Post-build step tab in project settings, eg, "c:\jdk1.3\bin\javac *.java"
<li>Build your project.
</ul>
<p>
Note: If using C++, choose a C++ suffix for the wrapper file, for example <tt>example_wrap.cxx</tt>.
Use <tt>_wrap.cxx</tt> instead of <tt>_wrap.c</tt> in the instructions above and add -c++ when invoking swig.
</p>
<p>
Now, assuming all went well, SWIG will be automatically invoked when you build your project.
When doing a build, any changes made to the interface file will result in SWIG being automatically invoked to produce a new version of the wrapper file.
</p>
<p>
The Java classes that SWIG output should also be compiled into .class files.
To run the native code in the DLL (example.dll), make sure that it is in your path then run your Java program which uses it, as described in the previous section.
If the library fails to load have a look at <a href="#Java_dynamic_linking_problems">Dynamic linking problems</a>.
</p>
<H4><a name="Java_nmake">25.2.8.2 Using NMAKE</a></H4>
<p>
Alternatively, a Makefile for use by NMAKE can be written.
Make sure the environment variables for MSVC++ are available and the MSVC++ tools are in your path.
Now, just write a short Makefile like this :</p>
<div class="code"><pre>
# Makefile for using SWIG and Java for C code
SRCS = example.c
IFILE = example
INTERFACE = $(IFILE).i
WRAPFILE = $(IFILE)_wrap.c
# Location of the Visual C++ tools (32 bit assumed)
TOOLS = c:\msdev
TARGET = example.dll
CC = $(TOOLS)\bin\cl.exe
LINK = $(TOOLS)\bin\link.exe
INCLUDE32 = -I$(TOOLS)\include
MACHINE = IX86
# C Library needed to build a DLL
DLLIBC = msvcrt.lib oldnames.lib
# Windows libraries that are apparently needed
WINLIB = kernel32.lib advapi32.lib user32.lib gdi32.lib comdlg32.lib winspool.lib
# Libraries common to all DLLs
LIBS = $(DLLIBC) $(WINLIB)
# Linker options
LOPT = -debug:full -debugtype:cv /NODEFAULTLIB /RELEASE /NOLOGO \
/MACHINE:$(MACHINE) -entry:_DllMainCRTStartup@12 -dll
# C compiler flags
CFLAGS = /Z7 /Od /c /nologo
JAVA_INCLUDE = -ID:\jdk1.3\include -ID:\jdk1.3\include\win32
java::
swig -java -o $(WRAPFILE) $(INTERFACE)
$(CC) $(CFLAGS) $(JAVA_INCLUDE) $(SRCS) $(WRAPFILE)
set LIB=$(TOOLS)\lib
$(LINK) $(LOPT) -out:example.dll $(LIBS) example.obj example_wrap.obj
javac *.java
</pre></div>
<p>
To build the DLL and compile the java code, run NMAKE (you may need to run <tt>vcvars32</tt> first).
This is a pretty simplistic Makefile, but hopefully its enough to get you started.
Of course you may want to make changes for it to work for C++ by adding in the -c++ command line switch for swig and replacing .c with .cxx.
</p>
<H2><a name="Java_basic_tour">25.3 A tour of basic C/C++ wrapping</a></H2>
<p>
By default, SWIG attempts to build a natural Java interface
to your C/C++ code. Functions are wrapped as functions, classes are wrapped as classes,
variables are wrapped with JavaBean type getters and setters and so forth.
This section briefly covers the essential aspects of this wrapping.
</p>
<H3><a name="Java_module_packages_classes">25.3.1 Modules, packages and generated Java classes</a></H3>
<p>
The SWIG <tt>%module</tt> directive specifies the name of the Java
module. When you specify `<tt>%module example</tt>', the <i>module name</i>
determines the name of some of the generated files in the module.
The generated code consists of a <i>module class</i> file <tt>example.java</tt>, an
<i>intermediary JNI class</i> file, <tt>exampleJNI.java</tt> as well as numerous other Java <i>proxy class</i> files.
Each proxy class is named after the structs, unions and classes you are wrapping.
You may also get a <i>constants interface</i> file if you are wrapping any unnamed enumerations or constants, for example <tt>exampleConstants.java</tt>.
When choosing a module name, make sure you don't use the same name as one of the generated
proxy class files nor a Java keyword. Sometimes a C/C++ type cannot be wrapped by a proxy class, for
example a pointer to a primitive type. In these situations a <i>type wrapper class</i> is generated.
Wrapping an enum generates an <i>enum class</i>, either a proper Java enum or a Java class that simulates the enums pattern.
Details of all these generated classes will unfold as you read this section.
</p>
<p>
The JNI (C/C++) code is generated into a file which also contains the module name, for example <tt>example_wrap.cxx</tt>
or <tt>example_wrap.c</tt>. These C or C++ files complete the contents of the module.
</p>
<p>
The generated Java classes can be placed into a Java package by using the <tt>-package</tt> commandline option.
This is often combined with the <tt>-outdir</tt> to specify a package directory for generating the Java files.
</p>
<div class="code"><pre>
swig -java -package com.bloggs.swig -outdir com/bloggs/swig example.i
</pre></div>
<p>
SWIG won't create the directory, so make sure it exists beforehand.
</p>
<H3><a name="Java_functions">25.3.2 Functions</a></H3>
<p>
There is no such thing as a global Java function so global C functions are wrapped as static methods in
the module class. For example,
</p>
<div class="code"><pre>
%module example
int fact(int n);
</pre></div>
<p>
creates a static function that works exactly like you think it might:</p>
<div class="code"><pre>
public class example {
public static int fact(int n) {
// makes call using JNI to the C function
}
}
</pre></div>
<p>
The Java class <tt>example</tt> is the <i>module class</i>. The function can be used as follows from Java:</p>
<div class="code"><pre>
System.out.println(example.fact(4));
</pre></div>
<H3><a name="Java_global_variables">25.3.3 Global variables</a></H3>
<p>
C/C++ global variables are fully supported by SWIG.
Java does not allow the overriding of the dot operator so all variables are accessed through getters and setters.
Again because there is no such thing as a
Java global variable, access to C/C++ global variables is done through static getter and setter functions in the module class.
</p>
<div class="code"><pre>
// SWIG interface file with global variables
%module example
...
%inline %{
extern int My_variable;
extern double density;
%}
...
</pre></div>
<p>
Now in Java :</p>
<div class="code"><pre>
// Print out value of a C global variable
System.out.println("My_variable = " + example.getMy_variable());
// Set the value of a C global variable
example.setDensity(0.8442);
</pre></div>
<p>
The value returned by the getter will always be up to date even if the value is changed in C.
Note that the getters and setters produced follow the JavaBean property design pattern.
That is the first letter of the variable name is capitalized and preceded with set or get.
If you have the misfortune of wrapping two variables that differ only in the capitalization of their first letters,
use %rename to change one of the variable names. For example:
</p>
<div class="code"><pre>
%rename Clash RenamedClash;
float Clash;
int clash;
</pre></div>
<p>
If a variable is declared as <tt>const</tt>, it is wrapped as a read-only variable.
That is only a getter is produced.
</p>
<p>
To make ordinary variables read-only, you can use the <tt>%immutable</tt> directive. For example:
</p>
<div class="code">
<pre>
%{
extern char *path;
%}
%immutable;
extern char *path;
%mutable;
</pre>
</div>
<p>
The <tt>%immutable</tt> directive stays in effect until it is explicitly disabled or cleared using
<tt>%mutable</tt>.
See the <a href="SWIG.html#SWIG_readonly_variables">Creating read-only variables</a> section for further details.
</p>
<p>
If you just want to make a specific variable immutable, supply a declaration name. For example:
</p>
<div class="code">
<pre>
%{
extern char *path;
%}
%immutable path;
...
extern char *path; // Read-only (due to %immutable)
</pre>
</div>
<H3><a name="Java_constants">25.3.4 Constants</a></H3>
<p>
C/C++ constants are wrapped as Java static final variables.
To create a constant, use <tt>#define</tt> or the
<tt>%constant</tt> directive. For example:
</p>
<div class="code">
<pre>
#define PI 3.14159
#define VERSION "1.0"
%constant int FOO = 42;
%constant const char *path = "/usr/local";
</pre>
</div>
<p>
By default the generated static final variables are initialized by making a JNI call to get their value.
The constants are generated into the constants interface and look like this:
</p>
<div class="code"><pre>
public interface exampleConstants {
public final static double PI = exampleJNI.PI_get();
public final static String VERSION = exampleJNI.VERSION_get();
public final static int FOO = exampleJNI.FOO_get();
public final static String path = exampleJNI.path_get();
}
</pre></div>
<p>
Note that SWIG has inferred the C type and used an appropriate Java type that will fit the range of all possible values for the C type.
By default SWIG generates <b>runtime constants</b>. They are not <b>compiler constants</b> that can, for example, be used
in a switch statement. This can be changed by using the <tt>%javaconst(flag)</tt> directive. It works like all
the other <a href="Customization.html#Customization_features">%feature directives</a>. The default is <tt>%javaconst(0)</tt>.
It is possible to initialize all wrapped constants from pure Java code by placing a <tt>%javaconst(1)</tt> <b>before</b> SWIG parses the constants.
Putting it at the top of your interface file would ensure this.
Here is an example:
</p>
<div class="code"><pre>
%javaconst(1);
%javaconst(0) BIG;
%javaconst(0) LARGE;
#define EXPRESSION (0x100+5)
#define BIG 1000LL
#define LARGE 2000ULL
</pre></div>
<p>
generates:
</p>
<div class="code"><pre>
public interface exampleConstants {
public final static int EXPRESSION = (0x100+5);
public final static long BIG = exampleJNI.BIG_get();
public final static java.math.BigInteger LARGE = exampleJNI.LARGE_get();
}
</pre></div>
<p>
Note that SWIG has inferred the C <tt>long long</tt> type from <tt>BIG</tt> and used an appropriate Java type (<tt>long</tt>) as
a Java <tt>long</tt> is the smallest sized Java type that will take all possible values for a C <tt>long long</tt>.
Similarly for <tt>LARGE</tt>.
</p>
<p>
Be careful using the <tt>%javaconst(1)</tt> directive as not all C code will compile as Java code. For example neither the
<tt>1000LL</tt> value for <tt>BIG</tt> nor <tt>2000ULL</tt> for <tt>LARGE</tt> above would generate valid Java code.
The example demonstrates how you can target particular constants (<tt>BIG</tt> and <tt>LARGE</tt>) with <tt>%javaconst</tt>.
SWIG doesn't use <tt>%javaconst(1)</tt> as the default as it tries to generate code that will always compile.
However, using a <tt>%javaconst(1)</tt> at the top of your interface file is strongly recommended as the preferred compile time constants
will be generated and most C constants will compile as Java code and in any case the odd constant that doesn't can be fixed using <tt>%javaconst(0)</tt>.
</p>
<p>
There is an alternative directive which can be used for these rare constant values that won't compile as Java code.
This is the <tt>%javaconstvalue(value)</tt> directive, where <tt>value</tt> is a Java code replacement for the C constant and can be either a string or a number.
This is useful if you do not want to use either the parsed C value nor a JNI call,
such as when the C parsed value will not compile as Java code and a compile time constant is required.
The same example demonstrates this:
</p>
<div class="code"><pre>
%javaconst(1);
%javaconstvalue("new java.math.BigInteger(\"2000\")") LARGE;
%javaconstvalue(1000) BIG;
#define EXPRESSION (0x100+5)
#define BIG 1000LL
#define LARGE 2000ULL
</pre></div>
<p>
Note the string quotes for <tt>"2000"</tt> are escaped. The following is then generated:
</p>
<div class="code"><pre>
public interface exampleConstants {
public final static int EXPRESSION = (0x100+5);
public final static long BIG = 1000;
public final static java.math.BigInteger LARGE = new java.math.BigInteger("2000");
}
</pre></div>
<p>
Note: declarations declared as <tt>const</tt> are wrapped as read-only variables and
will be accessed using a getter as described in the previous section. They
are not wrapped as constants.
The exception to this rule are static const integral values defined within a class/struct, where they are wrapped as constants, eg:.
</p>
<div class="code"><pre>
struct Maths {
static const int FIVE = 5;
};
</pre></div>
<p>
<b>Compatibility Note:</b> In SWIG-1.3.19 and earlier releases, the constants were generated into the module class and the constants interface didn't exist.
Backwards compatibility is maintained as the module class implements the constants interface (even though some consider this type of interface implementation to be bad practice):
</p>
<div class="code"><pre>
public class example implements exampleConstants {
}
</pre></div>
<p>
You thus have the choice of accessing these constants from either the module class or the constants interface, for example,
<tt>example.EXPRESSION</tt> or <tt>exampleConstants.EXPRESSION</tt>.
Or if you decide this practice isn't so bad and your own class implements <tt>exampleConstants</tt>, you can of course just use <tt>EXPRESSION</tt>.
</p>
<H3><a name="Java_enumerations">25.3.5 Enumerations</a></H3>
<p>
SWIG handles both named and unnamed (anonymous) enumerations.
There is a choice of approaches to wrapping named C/C++ enums.
This is due to historical reasons as SWIG's initial support for enums was limited and Java did not originally have support for enums.
Each approach has advantages and disadvantages and it is important for the user to decide which is the most appropriate solution.
There are four approaches of which the first is the default approach based on the so called Java typesafe enum pattern.
The second generates proper Java enums.
The final two approaches use simple integers for each enum item.
Before looking at the various approaches for wrapping named C/C++ enums, anonymous enums are considered.
</p>
<H4><a name="Java_anonymous_enums">25.3.5.1 Anonymous enums</a></H4>
<p>
There is no name for anonymous enums and so they are handled like constants. For example:
</p>
<div class="code">
<pre>
enum { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };
</pre>
</div>
<p>
is wrapped into the constants interface, in a similar manner as constants (see previous section):
</p>
<div class="code"><pre>
public interface exampleConstants {
public final static int ALE = exampleJNI.ALE_get();
public final static int LAGER = exampleJNI.LAGER_get();
public final static int STOUT = exampleJNI.STOUT_get();
public final static int PILSNER = exampleJNI.PILSNER_get();
public final static int PILZ = exampleJNI.PILZ_get();
}
</pre></div>
<p>
The <tt>%javaconst(flag)</tt> and <tt>%javaconstvalue(value)</tt> directive introduced in the previous section on constants can also be used with enums.
As is the case for constants, the default is <tt>%javaconst(0)</tt> as not all C values will compile as Java code.
However, it is strongly recommended to add in a <tt>%javaconst(1)</tt> directive at the top of your
interface file as it is only on very rare occasions that this will produce code that won't compile under Java.
Using <tt>%javaconst(1)</tt> will ensure compile time constants are generated, thereby allowing the enum values to be used in Java switch statements.
Example usage:
</p>
<div class="code">
<pre>
%javaconst(1);
%javaconst(0) PILSNER;
enum { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };
</pre>
</div>
<p>
generates:
</p>
<div class="code"><pre>
public interface exampleConstants {
public final static int ALE = 0;
public final static int LAGER = 10;
public final static int STOUT = LAGER + 1;
public final static int PILSNER = exampleJNI.PILSNER_get();
public final static int PILZ = PILSNER;
}
</pre></div>
<p>
As in the case of constants, you can access them through either the module class or the constants interface, for example, <tt>example.ALE</tt> or <tt>exampleConstants.ALE</tt>.
</p>
<H4><a name="Java_typesafe_enums">25.3.5.2 Typesafe enums</a></H4>
<p>
This is the default approach to wrapping named enums.
The typesafe enum pattern is a relatively well known construct to work around the lack of enums in versions of Java prior to JDK 1.5.
It basically defines a class for the enumeration and permits a limited number of final static instances of the class.
Each instance equates to an enum item within the enumeration.
The implementation is in the "enumtypesafe.swg" file.
Let's look at an example:
</p>
<div class="code">
<pre>
%include "enumtypesafe.swg" // optional as typesafe enums are the default
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };
</pre>
</div>
<p>will generate:</p>
<div class="code">
<pre>
public final class Beverage {
public final static Beverage ALE = new Beverage("ALE");
public final static Beverage LAGER = new Beverage("LAGER", exampleJNI.LAGER_get());
public final static Beverage STOUT = new Beverage("STOUT");
public final static Beverage PILSNER = new Beverage("PILSNER");
public final static Beverage PILZ = new Beverage("PILZ", exampleJNI.PILZ_get());
[... additional support methods omitted for brevity ...]
}
</pre>
</div>
<p>
See <a href="#Java_typesafe_enums_classes">Typesafe enum classes</a> to see the omitted support methods.
Note that the enum item with an initializer (LAGER) is initialized with the enum value obtained via a JNI call.
However, as with anonymous enums and constants, use of the <tt>%javaconst</tt> directive is strongly recommended to change this behaviour:
</p>
<div class="code">
<pre>
%include "enumtypesafe.swg" // optional as typesafe enums are the default
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };
</pre>
</div>
<p>
will generate:
</p>
<div class="code">
<pre>
public final class Beverage {
public final static Beverage ALE = new Beverage("ALE");
public final static Beverage LAGER = new Beverage("LAGER", 10);
public final static Beverage STOUT = new Beverage("STOUT");
public final static Beverage PILSNER = new Beverage("PILSNER");
public final static Beverage PILZ = new Beverage("PILZ", PILSNER);
[... additional support methods omitted for brevity ...]
}
</pre>
</div>
<p>
The generated code is easier to read and more efficient as a true constant is used instead of a JNI call.
As is the case for constants, the default is <tt>%javaconst(0)</tt> as not all C values will compile as Java code.
However, it is recommended to add in a <tt>%javaconst(1)</tt> directive at the top of your
interface file as it is only on very rare occasions that this will produce code that won't compile under Java.
The <tt>%javaconstvalue(value)</tt> directive can also be used for typesafe enums.
Note that global enums are generated into a Java class within whatever package you are using.
C++ enums defined within a C++ class are generated into a static final inner Java class within the Java proxy class.
</p>
<p>
Typesafe enums have their advantages over using plain integers in that they can be used in a typesafe manner.
However, there are limitations. For example, they cannot be used in switch statements and serialization is an issue.
Please look at the following references for further information:
http://java.sun.com/developer/Books/shiftintojava/page1.html#replaceenums
<a href="http://java.sun.com/developer/Books/shiftintojava/page1.html#replaceenums">Replace Enums with Classes</a> in <i>Effective Java Programming</i> on the Sun website,
<a href="http://www.javaworld.com/javaworld/jw-07-1997/jw-07-enumerated.html">Create enumerated constants in Java</a> JavaWorld article,
<a href="http://www.javaworld.com/javaworld/javatips/jw-javatip133.html">Java Tip 133: More on typesafe enums</a> and
<a href="http://www.javaworld.com/javaworld/javatips/jw-javatip122.html">Java Tip 122: Beware of Java typesafe enumerations</a> JavaWorld tips.
</p>
<p>
Note that the syntax required for using typesafe enums is the same as that for proper Java enums.
This is useful during the period that a project has to support legacy versions of Java.
When upgrading to JDK 1.5 or later, proper Java enums could be used instead, without users having to change their code.
The following section details proper Java enum generation.
</p>
<H4><a name="Java_proper_enums">25.3.5.3 Proper Java enums</a></H4>
<p>
Proper Java enums were only introduced in JDK 1.5 so this approach is only compatible with more recent versions of Java.
Java enums have been designed to overcome all the limitations of both typesafe and type unsafe enums
and should be the choice solution, provided older versions of Java do not have to be supported.
In this approach, each named C/C++ enum is wrapped by a Java enum.
Java enums, by default, do not support enums with initializers.
Java enums are in many respects similar to Java classes in that they can be customised with additional methods.
SWIG takes advantage of this feature to facilitate wrapping C/C++ enums that have initializers.
In order to wrap all possible C/C++ enums using proper Java enums, the "enums.swg" file must be used.
Let's take a look at an example.
</p>
<div class="code">
<pre>
%include "enums.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };
</pre>
</div>
<p>
will generate:
</p>
<div class="code">
<pre>
public enum Beverage {
ALE,
LAGER(10),
STOUT,
PILSNER,
PILZ(PILSNER);
[... additional support methods omitted for brevity ...]
}
</pre>
</div>
<p>
See <a href="#Java_proper_enums_classes">Proper Java enum classes</a> to see the omitted support methods.
The generated Java enum has numerous additional methods to support enums with initializers, such as <tt>LAGER</tt> above.
Note that as with the typesafe enum pattern, enum items with initializers are by default initialized with the enum value obtained via a JNI call.
However, this is not the case above as we have used the recommended <tt>%javaconst(1)</tt> to avoid the JNI call.
The <tt>%javaconstvalue(value)</tt> directive covered in the <a href="#Java_constants">Constants</a> section can also be used for proper Java enums.
</p>
<p>
The additional support methods need not be generated if none of the enum items have initializers and this is covered later in the
<a href="#Java_simpler_enum_classes">Simpler Java enums for enums without initializers</a> section.
</p>
<H4><a name="Java_typeunsafe_enums">25.3.5.4 Type unsafe enums</a></H4>
<p>
In this approach each enum item in a named enumeration is wrapped as a static final integer in a class named after the C/C++ enum name.
This is a commonly used pattern in Java to simulate C/C++ enums, but it is not typesafe.
However, the main advantage over the typesafe enum pattern is enum items can be used in switch statements.
In order to use this approach, the "enumtypeunsafe.swg" file must be used.
Let's take a look at an example.
</p>
<div class="code">
<pre>
%include "enumtypeunsafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };
</pre>
</div>
<p>
will generate:
</p>
<div class="code">
<pre>
public final class Beverage {
public final static int ALE = 0;
public final static int LAGER = 10;
public final static int STOUT = LAGER + 1;
public final static int PILSNER = STOUT + 1;
public final static int PILZ = PILSNER;
}
</pre>
</div>
<p>
As is the case previously, the default is <tt>%javaconst(0)</tt> as not all C/C++ values will compile as Java code.
However, again it is recommended to add in a <tt>%javaconst(1)</tt> directive.
and the <tt>%javaconstvalue(value)</tt> directive covered in the <a href="#Java_constants">Constants</a> section can also be used for type unsafe enums.
Note that global enums are generated into a Java class within whatever package you are using.
C++ enums defined within a C++ class are generated into a static final inner Java class within the Java proxy class.
</p>
<p>
Note that unlike typesafe enums, this approach requires users to mostly use different syntax compared with proper Java enums.
Thus the upgrade path to proper enums provided in JDK 1.5 is more painful.
</p>
<H4><a name="Java_simple_enums">25.3.5.5 Simple enums</a></H4>
<p>
This approach is similar to the type unsafe approach.
Each enum item is also wrapped as a static final integer.
However, these integers are not generated into a class named after the C/C++ enum.
Instead, global enums are generated into the constants interface.
Also, enums defined in a C++ class have their enum items generated directly into the Java proxy class rather than an inner class within the Java proxy class.
In fact, this approach is effectively wrapping the enums as if they were anonymous enums and the resulting code is as per <a href="#Java_anonymous_enums">anonymous enums</a>.
The implementation is in the "enumsimple.swg" file.
</p>
<p>
<b>Compatibility Note:</b>
SWIG-1.3.21 and earlier versions wrapped all enums using this approach.
The type unsafe approach is preferable to this one and this simple approach is only included for backwards compatibility with these earlier versions of SWIG.
</p>
<H3><a name="Java_pointers">25.3.6 Pointers</a></H3>
<p>
C/C++ pointers are fully supported by SWIG. Furthermore, SWIG has no problem working with
incomplete type information. Here is a rather simple interface:
</p>
<div class="code">
<pre>
%module example
FILE *fopen(const char *filename, const char *mode);
int fputs(const char *, FILE *);
int fclose(FILE *);
</pre>
</div>
<p>
When wrapped, you will be able to use the functions in a natural way from Java. For example:
</p>
<div class="code">
<pre>
SWIGTYPE_p_FILE f = example.fopen("junk", "w");
example.fputs("Hello World\n", f);
example.fclose(f);
</pre>
</div>
<p>
C pointers in the Java module are stored in a Java <tt>long</tt> and cross the JNI boundary held within this 64 bit number.
Many other SWIG language modules use an encoding of the pointer in a string.
These scripting languages use the SWIG runtime type checker for dynamic type checking as they do not support static type checking by a compiler.
In order to implement static type checking of pointers within Java, they are wrapped by a simple Java class.
In the example above the <tt>FILE *</tt> pointer is wrapped with a <i>type wrapper class </i>
called <tt>SWIGTYPE_p_FILE</tt>.
</p>
<p>
Once obtained, a type wrapper object can be freely passed around to different C functions that
expect to receive an object of that type. The only thing you can't do is
dereference the pointer from Java. Of course, that isn't much of a concern in this example.
</p>
<p>
As much as you might be inclined to modify a pointer value directly
from Java, don't. The value is not necessarily the
same as the logical memory address of the underlying object. The value will
vary depending on the native byte-ordering of the platform (i.e.,
big-endian vs. little-endian).
Most JVMs are 32 bit applications so any JNI code must also be compiled as 32 bit.
The net result is pointers in JNI code are also 32 bits and
are stored in the high order 4 bytes on big-endian machines and in the low order 4 bytes on little-endian machines.
By design it is also not possible to manually cast
a pointer to a new type by using Java casts as it is particularly dangerous especially when
casting C++ objects. If you need to cast a pointer or
change its value, consider writing some helper functions instead. For
example:
</p>
<div class="code">
<pre>
%inline %{
/* C-style cast */
Bar *FooToBar(Foo *f) {
return (Bar *) f;
}
/* C++-style cast */
Foo *BarToFoo(Bar *b) {
return dynamic_cast<Foo*>(b);
}
Foo *IncrFoo(Foo *f, int i) {
return f+i;
}
%}
</pre>
</div>
<p>
Also, if working with C++, you should always try
to use the new C++ style casts. For example, in the above code, the
C-style cast may return a bogus result whereas as the C++-style cast will return
a NULL pointer if the conversion can't be performed.
</p>
<H3><a name="Java_structures">25.3.7 Structures</a></H3>
<p>
If you wrap a C structure, it is wrapped by a Java class with getters and setters for access to the
member variables. For example,
</p>
<div class="code"><pre>
struct Vector {
double x, y, z;
};
</pre></div>
<p>
is used as follows:
</p>
<div class="code"><pre>
Vector v = new Vector();
v.setX(3.5);
v.setY(7.2);
double x = v.getX();
double y = v.getY();
</pre></div>
<p>
The variable setters and getters are also based on the JavaBean design pattern already covered under the Global variables section.
Similar access is provided for unions and the public data members of C++ classes.</p>
<p>
This object is actually an instance of a Java class that has been wrapped around a pointer to the C structure.
This instance doesn't actually do anything--it just serves as a proxy.
The pointer to the C object is held in the Java proxy class in much the same way as pointers are held by type wrapper classes.
Further details about Java proxy classes are covered a little later.
</p>
<p>
<tt>const</tt> members of a structure are read-only. Data members
can also be forced to be read-only using the <tt>%immutable</tt> directive. For example:
</p>
<div class="code">
<pre>
struct Foo {
...
%immutable;
int x; /* Read-only members */
char *name;
%mutable;
...
};
</pre>
</div>
<p>
When <tt>char *</tt> members of a structure are wrapped, the contents are assumed to be
dynamically allocated using <tt>malloc</tt> or <tt>new</tt> (depending on whether or not
SWIG is run with the -c++ option). When the structure member is set, the old contents will be
released and a new value created. If this is not the behavior you want, you will have to use
a typemap (described later).
</p>
<p>
If a structure contains arrays, access to those arrays is managed through pointers. For
example, consider this:
</p>
<div class="code">
<pre>
struct Bar {
int x[16];
};
</pre>
</div>
<p>
If accessed in Java, you will see behavior like this:
</p>
<div class="code">
<pre>
Bar b = new Bar();
SWIGTYPE_p_int x = b.getX();
</pre>
</div>
<p>
This pointer can be passed around to functions that expect to receive
an <tt>int *</tt> (just like C). You can also set the value of an array member using
another pointer. For example:
</p>
<div class="code">
<pre>
Bar b = new Bar();
SWIGTYPE_p_int x = b.getX();
Bar c = new Bar();
c.setX(x); // Copy contents of b.x to c.x
</pre>
</div>
<p>
For array assignment (setters not getters), SWIG copies the entire contents of the array starting with the data pointed
to by <tt>b.x</tt>. In this example, 16 integers would be copied. Like C, SWIG makes
no assumptions about bounds checking---if you pass a bad pointer, you may get a segmentation
fault or access violation.
The default wrapping makes it hard to set or get just one element of the array and so array access from Java is somewhat limited.
This can be changed easily though by using the approach outlined later in the <a href="#Java_c_arrays">Wrapping C arrays with Java arrays</a> and
<a href="#Java_unbounded_c_arrays">Unbounded C Arrays</a> sections.
</p>
<p>
When a member of a structure is itself a structure, it is handled as a
pointer. For example, suppose you have two structures like this:
</p>
<div class="code">
<pre>
struct Foo {
int a;
};
struct Bar {
Foo f;
};
</pre>
</div>
<p>
Now, suppose that you access the <tt>f</tt> member of <tt>Bar</tt> like this:
</p>
<div class="code">
<pre>
Bar b = new Bar();
Foo x = b.getF();
</pre>
</div>
<p>
In this case, <tt>x</tt> is a pointer that points to the <tt>Foo</tt> that is inside <tt>b</tt>.
This is the same value as generated by this C code:
</p>
<div class="code">
<pre>
Bar b;
Foo *x = &b->f; /* Points inside b */
</pre>
</div>
<p>
Because the pointer points inside the structure, you can modify the contents and
everything works just like you would expect. For example:
</p>
<div class="code">
<pre>
Bar b = new Bar();
b.getF().setA(3); // Modify b.f.a
Foo x = b.getF();
x.setA(3); // Modify x.a - this is the same as b.f.a
</pre>
</div>
<H3><a name="Java_classes">25.3.8 C++ classes</a></H3>
<p>
C++ classes are wrapped by Java classes as well. For example, if you have this class,
</p>
<div class="code"><pre>
class List {
public:
List();
~List();
int search(char *item);
void insert(char *item);
void remove(char *item);
char *get(int n);
int length;
};
</pre></div>
<p>
you can use it in Java like this:
</p>
<div class="code"><pre>
List l = new List();
l.insert("Ale");
l.insert("Stout");
l.insert("Lager");
String item = l.get(2);
int length = l.getLength();
</pre></div>
<p>
Class data members are accessed in the same manner as C structures.
</p>
<p>
Static class members are unsurprisingly wrapped as static members of the Java class:
</p>
<div class="code">
<pre>
class Spam {
public:
static void foo();
static int bar;
};
</pre>
</div>
<p>
The static members work like any other Java static member:
</p>
<div class="code">
<pre>
Spam.foo();
int bar = Spam.getBar();
</pre>
</div>
<H3><a name="Java_inheritance">25.3.9 C++ inheritance</a></H3>
<p>
SWIG is fully aware of issues related to C++ inheritance. Therefore, if you have
classes like this
</p>
<div class="code">
<pre>
class Foo {
...
};
class Bar : public Foo {
...
};
</pre>
</div>
<p>
those classes are wrapped into a hierarchy of Java classes that reflect the same inheritance
structure:
</p>
<div class="code">
<pre>
Bar b = new Bar();
Class c = b.getClass();
System.out.println(c.getSuperclass().getName());
</pre>
</div>
<p>
will of course display:
</p>
<div class="code"><pre>
Foo
</pre></div>
<p>
Furthermore, if you have functions like this
</p>
<div class="code">
<pre>
void spam(Foo *f);
</pre>
</div>
<p>
then the Java function <tt>spam()</tt> accepts instances of <tt>Foo</tt> or instances of any other proxy classes derived from <tt>Foo</tt>.
</p>
<p>
Note that Java does not support multiple inheritance so any multiple inheritance in the C++ code is not going to work.
A warning is given when multiple inheritance is detected and only the first base class is used.
</p>
<H3><a name="Java_pointers_refs_arrays">25.3.10 Pointers, references, arrays and pass by value</a></H3>
<p>
In C++, there are many different ways a function might receive
and manipulate objects. For example:
</p>
<div class="code">
<pre>
void spam1(Foo *x); // Pass by pointer
void spam2(Foo &x); // Pass by reference
void spam3(Foo x); // Pass by value
void spam4(Foo x[]); // Array of objects
</pre>
</div>
<p>
In Java, there is no detailed distinction like this--specifically,
there are only instances of classes. There are no pointers nor references.
Because of this, SWIG unifies all of these types
together in the wrapper code. For instance, if you actually had the
above functions, it is perfectly legal to do this from Java:
</p>
<div class="code">
<pre>
Foo f = new Foo(); // Create a Foo
example.spam1(f); // Ok. Pointer
example.spam2(f); // Ok. Reference
example.spam3(f); // Ok. Value.
example.spam4(f); // Ok. Array (1 element)
</pre>
</div>
<p>
Similar behavior occurs for return values. For example, if you had
functions like this,
</p>
<div class="code">
<pre>
Foo *spam5();
Foo &spam6();
Foo spam7();
</pre>
</div>
<p>
then all three functions will return a pointer to some <tt>Foo</tt> object.
Since the third function (spam7) returns a value, newly allocated memory is used
to hold the result and a pointer is returned (Java will release this memory
when the returned object's finalizer is run by the garbage collector).
</p>
<H4><a name="Java_null_pointers">25.3.10.1 Null pointers</a></H4>
<p>
Working with null pointers is easy.
A Java <tt>null</tt> can be used whenever a method expects a proxy class or typewrapper class.
However, it is not possible to pass null to C/C++ functions that take parameters by value or by reference.
If you try you will get a NullPointerException.
</p>
<div class="code">
<pre>
example.spam1(null); // Pointer - ok
example.spam2(null); // Reference - NullPointerException
example.spam3(null); // Value - NullPointerException
example.spam4(null); // Array - ok
</pre>
</div>
<p>
For <tt>spam1</tt> and <tt>spam4</tt> above the Java <tt>null</tt> gets translated into a NULL pointer for passing to the C/C++ function.
The converse also occurs, that is, NULL pointers are translated into <tt>null</tt> Java objects when returned from a C/C++ function.
</p>
<H3><a name="Java_overloaded_functions">25.3.11 C++ overloaded functions</a></H3>
<p>
C++ overloaded functions, methods, and constructors are mostly supported by SWIG. For example,
if you have two functions like this:
</p>
<div class="code">
<pre>
%module example
void foo(int);
void foo(char *c);
</pre>
</div>
<p>
You can use them in Java in a straightforward manner:
</p>
<div class="code">
<pre>
example.foo(3); // foo(int)
example.foo("Hello"); // foo(char *c)
</pre>
</div>
<p>
Similarly, if you have a class like this,
</p>
<div class="code">
<pre>
class Foo {
public:
Foo();
Foo(const Foo &);
...
};
</pre>
</div>
<p>
you can write Java code like this:
</p>
<div class="code">
<pre>
Foo f = new Foo(); // Create a Foo
Foo g = new Foo(f); // Copy f
</pre>
</div>
<p>
Overloading support is not quite as flexible as in C++. Sometimes there are methods that SWIG
cannot disambiguate as there can be more than one C++ type mapping onto a single Java type. For example:
</p>
<div class="code">
<pre>
void spam(int);
void spam(unsigned short);
</pre>
</div>
<p>
Here both int and unsigned short map onto a Java int.
Here is another example:
</p>
<div class="code">
<pre>
void foo(Bar *b);
void foo(Bar &b);
</pre>
</div>
<p>
If declarations such as these appear, you will get a warning message like this:
</p>
<div class="code">
<pre>
example.i:12: Warning 515: Overloaded method spam(unsigned short) ignored.
Method spam(int) at example.i:11 used.
</pre>
</div>
<p>
To fix this, you either need to either <a href="SWIG.html#SWIG_rename_ignore">rename or ignore</a> one of the methods. For example:
</p>
<div class="code">
<pre>
%rename(spam_ushort) spam(unsigned short);
...
void spam(int);
void spam(unsigned short); // Now renamed to spam_ushort
</pre>
</div>
<p>
or
</p>
<div class="code">
<pre>
%ignore spam(unsigned short);
...
void spam(int);
void spam(unsigned short); // Ignored
</pre>
</div>
<H3><a name="Java_default_arguments">25.3.12 C++ default arguments</a></H3>
<p>
Any function with a default argument is wrapped by generating an additional function for each argument that is defaulted.
For example, if we have the following C++:
</p>
<div class="code">
<pre>
%module example
void defaults(double d=10.0, int i=0);
</pre>
</div>
<p>
The following methods are generated in the Java module class:
</p>
<div class="code">
<pre>
public class example {
public static void defaults(double d, int i) { ... }
public static void defaults(double d) { ... }
public static void defaults() { ... }
}
</pre>
</div>
<p>
It is as if SWIG had parsed three separate overloaded methods.
The same approach is taken for static methods, constructors and member methods.
</p>
<p>
<b>Compatibility note:</b> Versions of SWIG prior to SWIG-1.3.23 wrapped these with a
single wrapper method and so the default values could not be taken advantage of from Java.
Further details on default arguments and how to restore this approach are given in the more general
<a href="SWIGPlus.html#SWIGPlus_default_args">Default arguments</a> section.
</p>
<H3><a name="Java_namespaces">25.3.13 C++ namespaces</a></H3>
<p>
SWIG is aware of named C++ namespaces and they can be mapped to Java packages, however,
the default wrapping flattens the namespaces, effectively ignoring them.
So by default, the namespace names do not appear in
the module nor do namespaces result in a module that is broken up into
submodules or packages. For example, if you have a file like this,
</p>
<div class="code">
<pre>
%module example
namespace foo {
int fact(int n);
struct Vector {
double x, y, z;
};
};
</pre>
</div>
<p>
it works in Java as follows:
</p>
<div class="code">
<pre>
int f = example.fact(3);
Vector v = new Vector();
v.setX(3.4);
double y = v.getY();
</pre>
</div>
<p>
If your program has more than one namespace, name conflicts (if any) can be resolved using <tt>%rename</tt>
For example:
</p>
<div class="code">
<pre>
%rename(Bar_spam) Bar::spam;
namespace Foo {
int spam();
}
namespace Bar {
int spam();
}
</pre>
</div>
<p>
If you have more than one namespace and you want to keep their
symbols separate, consider wrapping them as separate SWIG modules.
Each SWIG module can be placed into a separate package.
</p>
<p>
The default behaviour described above can be improved via the <a href="SWIGPlus.html#SWIGPlus_nspace">nspace feature</a>.
Note that it only works for classes, structs, unions and enums declared within a named C++ namespace.
When the nspace feature is used, the C++ namespaces are converted into Java packages of the same name.
Proxy classes are thus declared within a package and this proxy makes numerous calls to the JNI intermediary class which is declared in the unnamed package by default.
As Java does not support types declared in a named package accessing types declared in an unnamed package, the <tt>-package</tt> commandline option described earlier generally should be used to provide a parent package.
So if SWIG is run using the <tt>-package com.myco</tt> option, a wrapped class, <tt>MyWorld::Material::Color</tt>, can then be accessed as <tt>com.myco.MyWorld.Material.Color</tt>.
If you don't specify a package, you will get the following warning:
</p>
<div class="shell">
<pre>
example.i:16: Warning 826: The nspace feature is used on 'MyWorld::Material::Color' without -package. The generated code
may not compile as Java does not support types declared in a named package accessing types declared in an unnamed package.
</pre>
</div>
<p>
If it is undesirable to have a single top level package, the nspace feature may be used without the <tt>-package</tt> commandline option
(and the resulting warning ignored) if all of the types exposed using SWIG are placed in a package using the nspace feature and the
'jniclasspackage' pragma is used to specify a package for the JNI intermediary class.
</p>
<p>
If the resulting use of the nspace feature and hence packages results in a proxy class in one package deriving or using a proxy class from another package,
you will need to open up the visibility for the pointer constructor and <tt>getCPtr</tt> method from the default 'protected' to 'public' with the <tt>SWIG_JAVABODY_PROXY</tt> macro. See <a href="#Java_code_typemaps">Java code typemaps</a>.
</p>
<H3><a name="Java_templates">25.3.14 C++ templates</a></H3>
<p>
C++ templates don't present a huge problem for SWIG. However, in order
to create wrappers, you have to tell SWIG to create wrappers for a particular
template instantiation. To do this, you use the <tt>%template</tt> directive.
For example:
</p>
<div class="code">
<pre>
%module example
%{
#include <utility>
%}
template<class T1, class T2>
struct pair {
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair();
pair(const T1&, const T2&);
~pair();
};
%template(pairii) pair<int, int>;
</pre>
</div>
<p>
In Java:
</p>
<div class="code">
<pre>
pairii p = new pairii(3, 4);
int first = p.getFirst();
int second = p.getSecond();
</pre>
</div>
<p>
Obviously, there is more to template wrapping than shown in this example.
More details can be found in the <a href="SWIGPlus.html#SWIGPlus">SWIG and C++</a> chapter.
</p>
<H3><a name="Java_smart_pointers">25.3.15 C++ Smart Pointers</a></H3>
<H4><a name="Java_smart_pointers_shared_ptr">25.3.15.1 The shared_ptr Smart Pointer</a></H4>
<p>
The C++11 standard provides <tt>std::shared_ptr</tt> which was derived from the Boost
implementation, <tt>boost::shared_ptr</tt>.
Both of these are available for Java in the SWIG library and usage is outlined
in the <a href="Library.html#Library_std_shared_ptr">shared_ptr smart pointer</a> library section.
</p>
<H4><a name="Java_smart_pointers_generic">25.3.15.2 Generic Smart Pointers</a></H4>
<p>
In certain C++ programs, it is common to use classes that have been wrapped by
so-called "smart pointers." Generally, this involves the use of a template class
that implements <tt>operator->()</tt> like this:
</p>
<div class="code">
<pre>
template<class T> class SmartPtr {
...
T *operator->();
...
}
</pre>
</div>
<p>
Then, if you have a class like this,
</p>
<div class="code">
<pre>
class Foo {
public:
int x;
int bar();
};
</pre>
</div>
<p>
A smart pointer would be used in C++ as follows:
</p>
<div class="code">
<pre>
SmartPtr<Foo> p = CreateFoo(); // Created somehow (not shown)
...
p->x = 3; // Foo::x
int y = p->bar(); // Foo::bar
</pre>
</div>
<p>
To wrap this in Java, simply tell SWIG about the <tt>SmartPtr</tt> class and the low-level
<tt>Foo</tt> object. Make sure you instantiate <tt>SmartPtr</tt> using <tt>%template</tt> if necessary.
For example:
</p>
<div class="code">
<pre>
%module example
...
%template(SmartPtrFoo) SmartPtr<Foo>;
...
</pre>
</div>
<p>
Now, in Java, everything should just "work":
</p>
<div class="code">
<pre>
SmartPtrFoo p = example.CreateFoo(); // Create a smart-pointer somehow
p.setX(3); // Foo::x
int y = p.bar(); // Foo::bar
</pre>
</div>
<p>
If you ever need to access the underlying pointer returned by <tt>operator->()</tt> itself,
simply use the <tt>__deref__()</tt> method. For example:
</p>
<div class="code">
<pre>
Foo f = p.__deref__(); // Returns underlying Foo *
</pre>
</div>
<H2><a name="Java_further_details">25.4 Further details on the generated Java classes</a></H2>
<p>
In the previous section, a high-level view of Java wrapping was
presented. A key component of this wrapping is that structures and
classes are wrapped by Java proxy classes and type wrapper classes are used
in situations where no proxies are generated. This provides a very
natural, type safe Java interface to the C/C++ code and fits in with the Java programming paradigm.
However, a number of low-level details were omitted. This section provides a brief overview
of how the proxy classes work and then covers the type wrapper classes.
Finally enum classes are covered.
First, the crucial intermediary JNI class is considered.
</p>
<H3><a name="Java_imclass">25.4.1 The intermediary JNI class</a></H3>
<p>
In the <a href="SWIG.html#SWIG">"SWIG basics"</a> and <a href="SWIGPlus.html#SWIGPlus">"SWIG and C++"</a> chapters,
details of low-level structure and class wrapping are described. To summarize those chapters, if you
have a global function and class like this
</p>
<div class="code">
<pre>
class Foo {
public:
int x;
int spam(int num, Foo* foo);
};
void egg(Foo* chips);
</pre>
</div>
<p>
then SWIG transforms the class into a set of low-level procedural wrappers.
These procedural wrappers essentially perform the equivalent of this C++ code:
</p>
<div class="code">
<pre>
Foo *new_Foo() {
return new Foo();
}
void delete_Foo(Foo *f) {
delete f;
}
int Foo_x_get(Foo *f) {
return f->x;
}
void Foo_x_set(Foo *f, int value) {
f->x = value;
}
int Foo_spam(Foo *f, int num, Foo* foo) {
return f->spam(num, foo);
}
</pre>
</div>
<p>
These procedural function names don't actually exist, but their functionality appears inside the generated
JNI functions. The JNI functions have to follow a particular naming convention so the function names are actually:
</p>
<div class="code">
<pre>
SWIGEXPORT jlong JNICALL Java_exampleJNI_new_1Foo(JNIEnv *jenv, jclass jcls);
SWIGEXPORT void JNICALL Java_exampleJNI_delete_1Foo(JNIEnv *jenv, jclass jcls,
jlong jarg1);
SWIGEXPORT void JNICALL Java_exampleJNI_Foo_1x_1set(JNIEnv *jenv, jclass jcls,
jlong jarg1, jobject jarg1_, jint jarg2);
SWIGEXPORT jint JNICALL Java_exampleJNI_Foo_1x_1get(JNIEnv *jenv, jclass jcls,
jlong jarg1, jobject jarg1_);
SWIGEXPORT jint JNICALL Java_exampleJNI_Foo_1spam(JNIEnv *jenv, jclass jcls,
jlong jarg1, jobject jarg1_, jint jarg2,
jlong jarg3, jobject jarg3_);
SWIGEXPORT void JNICALL Java_exampleJNI_egg(JNIEnv *jenv, jclass jcls,
jlong jarg1, jobject jarg1_);
</pre>
</div>
<p>
For every JNI C function there has to be a static native Java function. These appear in the intermediary JNI class:
</p>
<div class="code">
<pre>
class exampleJNI {
public final static native long new_Foo();
public final static native void delete_Foo(long jarg1);
public final static native void Foo_x_set(long jarg1, Foo jarg1_, int jarg2);
public final static native int Foo_x_get(long jarg1, Foo jarg1_);
public final static native int Foo_spam(long jarg1, Foo jarg1_, int jarg2,
long jarg3, Foo jarg3_);
public final static native void egg(long jarg1, Foo jarg1_);
}
</pre>
</div>
<p>
This class contains the complete Java - C/C++ interface so all function calls go via this class.
As this class acts as a go-between for all JNI calls to C/C++ code from the Java <a href="#Java_proxy_classes">proxy classes</a>, <a href="#Java_type_wrapper_classes">type wrapper classes</a> and <a href="#Java_module_class">module class</a>, it is known as the intermediary JNI class.
</p>
<p>
You may notice that SWIG uses a Java long wherever a pointer or class object needs to be marshalled across the Java-C/C++ boundary.
This approach leads to minimal JNI code which makes for better performance as JNI code involves a lot of string manipulation.
SWIG favours generating Java code over JNI code as Java code is compiled into byte code and avoids the costly string operations needed in JNI code.
This approach has a downside though as the proxy class might get collected before the native method has completed.
You might notice above that there is an additional parameters with a underscore postfix, eg <tt>jarg1_</tt>.
These are added in order to prevent <a href="#Java_pgcpp">premature garbage collection when marshalling proxy classes</a>.
</p>
<p>
The functions in the intermediary JNI class cannot be accessed outside of its package. Access to them is gained through the module class for globals otherwise the appropriate proxy class.
</p>
<a name="Java_module_directive"></a>
<p>
The name of the intermediary JNI class can be changed from its default, that is, the module name with JNI appended after it.
The module directive attribute <tt>jniclassname</tt> is used to achieve this:
</p>
<div class="code">
<pre>
%module (jniclassname="name") modulename
</pre>
</div>
<p>
If <tt>name</tt> is the same as <tt>modulename</tt> then the module class name gets changed
from <tt>modulename</tt> to <tt>modulenameModule</tt>.
</p>
<H4><a name="Java_imclass_pragmas">25.4.1.1 The intermediary JNI class pragmas</a></H4>
<p>
The intermediary JNI class can be tailored through the use of pragmas, but is not commonly done. The pragmas for this class are:
</p>
<table BORDER summary="Intermediary JNI class pragmas">
<tr VALIGN=TOP>
<td><b>Pragma</b></td>
<td><b>Description</b></td>
</tr>
<tr>
<td>jniclassbase </td> <td>Base class for the intermediary JNI class</td>
</tr>
<tr>
<td>jniclasspackage </td> <td>Package in which to place the intermediary JNI class</td>
</tr>
<tr>
<td>jniclassclassmodifiers </td> <td>Class modifiers and class type for the intermediary JNI class</td>
</tr>
<tr>
<td>jniclasscode </td> <td>Java code is copied verbatim into the intermediary JNI class</td>
</tr>
<tr>
<td>jniclassimports </td> <td>Java code, usually one or more import statements, placed before the intermediary JNI class definition</td>
</tr>
<tr>
<td>jniclassinterfaces </td> <td>Comma separated interface classes for the intermediary JNI class</td>
</tr>
</table>
<p>
The pragma code appears in the generated intermediary JNI class where you would expect:
</p>
<div class="code">
<pre>
[ jniclassimports pragma ]
[ jniclassclassmodifiers pragma ] jniclassname extends [ jniclassbase pragma ]
implements [ jniclassinterfaces pragma ] {
[ jniclasscode pragma ]
... SWIG generated native methods ...
}
</pre>
</div>
<p>
The <tt>jniclasscode</tt> pragma is quite useful for adding in a static block for loading the shared library / dynamic link library and demonstrates how pragmas work:
</p>
<div class="code">
<pre>
%pragma(java) jniclasscode=%{
static {
try {
System.loadLibrary("example");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load. \n" + e);
System.exit(1);
}
}
%}
</pre>
</div>
<p>
Pragmas will take either <tt>""</tt> or <tt>%{ %}</tt> as delimiters.
For example, let's change the intermediary JNI class access to just the default package-private access.
</p>
<div class="code">
<pre>
%pragma(java) jniclassclassmodifiers="class"
</pre>
</div>
<p>
All the methods in the intermediary JNI class will then not be callable outside of the package as the method modifiers have been changed from public access to default access. This is useful if you want to prevent users calling these low level functions.
</p>
<H3><a name="Java_module_class">25.4.2 The Java module class</a></H3>
<p>
All global functions and variable getters/setters appear in the module class. For our example, there is just one function:
</p>
<div class="code">
<pre>
public class example {
public static void egg(Foo chips) {
exampleJNI.egg(Foo.getCPtr(chips), chips);
}
}
</pre>
</div>
<p>
The module class is necessary as there is no such thing as a global in Java so all the C globals are put into this class. They are generated as static functions and so must be accessed as such by using the module name in the static function call:
</p>
<div class="code">
<pre>
example.egg(new Foo());
</pre>
</div>
<p>
The primary reason for having the module class wrapping the calls in the intermediary JNI class is to implement static type checking. In this case only a <tt>Foo</tt> can be passed to the <tt>egg</tt> function, whereas any <tt>long</tt> can be passed to the <tt>egg</tt> function in the intermediary JNI class.
</p>
<H4><a name="Java_module_class_pragmas">25.4.2.1 The Java module class pragmas</a></H4>
<p>
The module class can be tailored through the use of pragmas, in the same manner as the intermediary JNI class. The pragmas are similarly named and are used in the same way. The complete list follows:
</p>
<table BORDER summary="Java module class pragmas">
<tr VALIGN=TOP>
<td><b>Pragma</b></td>
<td><b>Description</b></td>
</tr>
<tr>
<td>modulebase </td> <td>Base class for the module class</td>
</tr>
<tr>
<td>moduleclassmodifiers </td> <td>Class modifiers and class type for the module class</td>
</tr>
<tr>
<td>modulecode </td> <td>Java code is copied verbatim into the module class</td>
</tr>
<tr>
<td>moduleimports </td> <td>Java code, usually one or more import statements, placed before the module class definition</td>
</tr>
<tr>
<td>moduleinterfaces </td> <td>Comma separated interface classes for the module class</td>
</tr>
</table>
<p>
The pragma code appears in the generated module class like this:
</p>
<div class="code">
<pre>
[ moduleimports pragma ]
[ modulemodifiers pragma ] modulename extends [ modulebase pragma ]
implements [ moduleinterfaces pragma ] {
[ modulecode pragma ]
... SWIG generated wrapper functions ...
}
</pre>
</div>
<p>
See <a href="#Java_imclass_pragmas">The intermediary JNI class pragmas</a> section for further details on using pragmas.
</p>
<H3><a name="Java_proxy_classes">25.4.3 Java proxy classes</a></H3>
<p>
A Java proxy class is generated for each structure, union or C++ class that is wrapped.
Proxy classes have also been called <a href="http://java.sun.com/docs/books/jni/html/stubs.html">peer classes</a>.
The default proxy class for our previous example looks like this:
</p>
<div class="code">
<pre>
public class Foo {
private transient long swigCPtr;
protected transient boolean swigCMemOwn;
protected Foo(long cPtr, boolean cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = cPtr;
}
protected static long getCPtr(Foo obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}
protected void finalize() {
delete();
}
public synchronized void delete() {
if(swigCPtr != 0 && swigCMemOwn) {
swigCMemOwn = false;
exampleJNI.delete_Foo(swigCPtr);
}
swigCPtr = 0;
}
public void setX(int value) {
exampleJNI.Foo_x_set(swigCPtr, this, value);
}
public int getX() {
return exampleJNI.Foo_x_get(swigCPtr, this);
}
public int spam(int num, Foo foo) {
return exampleJNI.Foo_spam(swigCPtr, this, num, Foo.getCPtr(foo), foo);
}
public Foo() {
this(exampleJNI.new_Foo(), true);
}
}
</pre>
</div>
<p>
This class merely holds a pointer to the underlying C++ object (<tt>swigCPtr</tt>).
It also contains all the methods in the C++ class it is proxying plus getters and setters for public
member variables. These functions call the native methods in the intermediary JNI class.
The advantage of having this extra layer is the type safety that the proxy class functions offer.
It adds static type checking which leads to fewer surprises at runtime.
For example, you can see that if you attempt to use the <tt>spam()</tt>
function it will only compile when the parameters passed are an <tt>int</tt> and a <tt>Foo</tt>.
From a user's point of view, it makes the class work as if it were a Java class:
</p>
<div class="code">
<pre>
Foo f = new Foo();
f.setX(3);
int y = f.spam(5, new Foo());
</pre>
</div>
<H4><a name="Java_memory_management">25.4.3.1 Memory management</a></H4>
<p>
Each proxy class has an ownership flag <tt>swigCMemOwn</tt>. The value of this
flag determines who is responsible for deleting the underlying C++ object. If set to <tt>true</tt>,
the proxy class's finalizer will destroy the C++ object when the proxy class is
garbage collected. If set to false, then the destruction of the proxy class has no effect on the C++ object.
</p>
<p>
When an object is created by a constructor or returned by value, Java automatically takes
ownership of the result.
On the other hand, when pointers or references are returned to Java, there is often no way to know where
they came from. Therefore, the ownership is set to false. For example:
</p>
<div class="code">
<pre>
class Foo {
public:
Foo();
Foo bar1();
Foo &bar2();
Foo *bar2();
};
</pre>
</div>
<p>
In Java:
</p>
<div class="code">
<pre>
Foo f = new Foo(); // f.swigCMemOwn = true
Foo f1 = f.bar1(); // f1.swigCMemOwn = true
Foo f2 = f.bar2(); // f2.swigCMemOwn = false
Foo f3 = f.bar3(); // f3.swigCMemOwn = false
</pre>
</div>
<p>
This behavior for pointers and references is especially important for classes that act as containers.
For example, if a method returns a pointer to an object
that is contained inside another object, you definitely don't want
Java to assume ownership and destroy it!
</p>
<p>
For the most part, memory management issues remain hidden. However,
there are situations where you might have to manually
change the ownership of an object. For instance, consider code like this:
</p>
<div class="code">
<pre>
class Obj {};
class Node {
Obj *value;
public:
void set_value(Obj *v) { value = v; }
};
</pre>
</div>
<p>
Now, consider the following Java code:
</p>
<div class="code">
<pre>
Node n = new Node(); // Create a node
{
Obj o = new Obj(); // Create an object
n.set_value(o); // Set value
} // o goes out of scope
</pre>
</div>
<p>
In this case, the Node <tt>n</tt> is holding a reference to
<tt>o</tt> internally. However, SWIG has no way to know that this
has occurred. The Java proxy class still thinks that it has ownership of
<tt>o</tt>. As <tt>o</tt> has gone out of scope, it could be garbage collected in which case the C++ destructor
will be invoked and <tt>n</tt> will then be holding a stale-pointer to <tt>o</tt>. If
you're lucky, you will only get a segmentation fault.
</p>
<p>
To work around this, the ownership flag of <tt>o</tt> needs changing to <tt>false</tt>.
The ownership flag is a private member variable of the proxy class so this is not possible without some customization of the proxy class.
This can be achieved by using a typemap to customise the proxy class with pure Java code as detailed later in the section on
<a href="#Java_typemaps">Java typemaps</a>.
</p>
<p>
Sometimes a function will create memory and return a pointer to a newly allocated object.
SWIG has no way of knowing this so by default the proxy class does not manage the returned object.
However, you can tell the proxy class to manage the memory if you specify the <tt>%newobject</tt> directive. Consider:
</p>
<div class="code">
<pre>
class Obj {...};
class Factory {
public:
static Obj *createObj() { return new Obj(); }
};
</pre>
</div>
<p>
If we call the factory function, then we have to manually delete the memory:
</p>
<div class="code">
<pre>
Obj obj = Factory.createObj(); // obj.swigCMemOwn = false
...
obj.delete();
</pre>
</div>
<p>
Now add in the %newobject directive:
</p>
<div class="code">
<pre>
%newobject Factory::createObj();
class Obj {...};
class Factory {
public:
static Obj *createObj() { return new Obj(); }
};
</pre>
</div>
<p>
A call to <tt>delete()</tt> is no longer necessary as the garbage collector will make the C++ destructor call because <tt>swigCMemOwn</tt> is now true.
</p>
<div class="code">
<pre>
Obj obj = Factory.createObj(); // obj.swigCMemOwn = true;
...
</pre>
</div>
<p>
Some memory management issues are quite tricky to fix and may only be noticeable after using for a long time.
One such issue is premature garbage collection of an object created from Java and resultant usage from C++ code.
The section on typemap examples cover two such scenarios,
<a href="#Java_memory_management_objects">Memory management for objects passed to the C++ layer</a>
and
<a href="#Java_memory_management_member_variables">Memory management when returning references to member variables</a>
</p>
<H4><a name="Java_inheritance_mirroring">25.4.3.2 Inheritance</a></H4>
<p>
Java proxy classes will mirror C++ inheritance chains. For example, given the base class <tt>Base</tt> and its derived class <tt>Derived</tt>:
</p>
<div class="code"><pre>
class Base {
public:
virtual double foo();
};
class Derived : public Base {
public:
virtual double foo();
};
</pre></div>
<p>
The base class is generated much like any other proxy class seen so far:
</p>
<div class="code"><pre>
public class Base {
private transient long swigCPtr;
protected transient boolean swigCMemOwn;
protected Base(long cPtr, boolean cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = cPtr;
}
protected static long getCPtr(Base obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}
protected void finalize() {
delete();
}
public synchronized void delete() {
if(swigCPtr != 0 && swigCMemOwn) {
swigCMemOwn = false;
exampleJNI.delete_Base(swigCPtr);
}
swigCPtr = 0;
}
public double foo() {
return exampleJNI.Base_foo(swigCPtr, this);
}
public Base() {
this(exampleJNI.new_Base(), true);
}
}
</pre></div>
<p>
The <tt>Derived</tt> class extends <tt>Base</tt> mirroring the C++ class inheritance hierarchy.
</p>
<div class="code"><pre>
public class Derived extends Base {
private transient long swigCPtr;
protected Derived(long cPtr, boolean cMemoryOwn) {
super(exampleJNI.SWIGDerivedUpcast(cPtr), cMemoryOwn);
swigCPtr = cPtr;
}
protected static long getCPtr(Derived obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}
protected void finalize() {
delete();
}
public synchronized void delete() {
if(swigCPtr != 0 && swigCMemOwn) {
swigCMemOwn = false;
exampleJNI.delete_Derived(swigCPtr);
}
swigCPtr = 0;
super.delete();
}
public double foo() {
return exampleJNI.Derived_foo(swigCPtr, this);
}
public Derived() {
this(exampleJNI.new_Derived(), true);
}
}
</pre></div>
<p>
Note the memory ownership is controlled by the base class.
However each class in the inheritance hierarchy has its own pointer value which is obtained during construction.
The <tt>SWIGDerivedUpcast()</tt> call converts the pointer from a <tt>Derived *</tt> to a <tt>Base *</tt>.
This is a necessity as C++ compilers are free to implement pointers in the inheritance hierarchy with different values.
</p>
<p>
It is of course possible to extend <tt>Base</tt> using your own Java classes.
If <tt>Derived</tt> is provided by the C++ code, you could for example add in a pure Java class <tt>Extended</tt> derived from <tt>Base</tt>.
There is a caveat and that is any C++ code will not know about your pure Java class <tt>Extended</tt> so this type of derivation is restricted.
However, true cross language polymorphism can be achieved using the <a href="#Java_directors">directors</a> feature.
</p>
<H4><a name="Java_proxy_classes_gc">25.4.3.3 Proxy classes and garbage collection</a></H4>
<p>
By default each proxy class has a <tt>delete()</tt> and a <tt>finalize()</tt> method.
The <tt>finalize()</tt> method calls <tt>delete()</tt> which frees any malloc'd memory for wrapped C structs or calls the C++ class destructors.
The idea is for <tt>delete()</tt> to be called when you have finished with the C/C++ object.
Ideally you need not call <tt>delete()</tt>, but rather leave it to the garbage collector to call it from the finalizer.
When a program exits, the garbage collector does not guarantee to call all finalizers.
An insight into the reasoning behind this can be obtained from <a href="http://www.hpl.hp.com/techreports/2002/HPL-2002-335.html">Hans Boehm's Destructors, Finalizers, and Synchronization</a> paper.
Depending on what the finalizers do and which operating system you use, this may or may not be a problem.
</p>
<p>
If the <tt>delete()</tt> call into JNI code is just for memory handling, there is not a problem when run on most operating systems, for example Windows and Unix.
Say your JNI code creates memory on the heap which your finalizers should clean up, the finalizers may or may not be called before the program exits.
In Windows and Unix all memory that a process uses is returned to the system on exit, so this isn't a problem.
This is not the case in some operating systems like vxWorks.
If however, your finalizer calls into JNI code invoking the C++ destructor which in turn releases a TCP/IP socket for example, there is no guarantee that it will be released.
Note that with long running programs the garbage collector will eventually run, thereby calling any unreferenced object's finalizers.
</p>
<p>
Some not so ideal solutions are:
</p>
<ol>
<li><p>
Call the <tt>System.runFinalizersOnExit(true)</tt> or <tt>Runtime.getRuntime().runFinalizersOnExit(true)</tt> to ensure the finalizers are called before the program exits. The catch is that this is a deprecated function call as the documentation says: </p>
<div class="code"><i>
This method is inherently unsafe. It may result in finalizers being called on live objects while other threads are concurrently manipulating those objects, resulting in erratic behavior or deadlock.
</i></div>
<p>In many cases you will be lucky and find that it works, but it is not to be advocated.
Have a look at <a href="http://www.oracle.com/technetwork/java/index.html">Java web site</a> and search for <tt>runFinalizersOnExit</tt>.
</p></li>
<li><p>
From jdk1.3 onwards a new function, <tt>addShutdownHook()</tt>, was introduced which is guaranteed to be called when your program exits.
You can encourage the garbage collector to call the finalizers, for example, add this static block to the class that has the <tt>main()</tt> function: </p>
<div class="code"><pre>
static {
Runtime.getRuntime().addShutdownHook(
new Thread() {
public void run() { System.gc(); System.runFinalization(); }
}
);
}
</pre></div>
<p>Although this usually works, the documentation doesn't guarantee that <tt>runFinalization()</tt> will actually call the finalizers.
As the shutdown hook is guaranteed you could also make a JNI call to clean up any resources that are being tracked by the C/C++ code.</p>
</li>
<li>
<p>Call the <tt>delete()</tt> function manually which will immediately invoke the C++ destructor.
As a suggestion it may be a good idea to set the object to null so that should the object be inadvertently used again a Java null pointer exception is thrown, the alternative would crash the JVM by using a null C pointer.
For example given a SWIG generated class A:</p>
<div class="code"><pre>
A myA = new A();
// use myA ...
myA.delete();
// any use of myA here would crash the JVM
myA=null;
// any use of myA here would cause a Java null pointer exception to be thrown
</pre></div>
<p>
The SWIG generated code ensures that the memory is not deleted twice, in the event the finalizers get called in addition to the manual <tt>delete()</tt> call.
</p>
</li>
<li>
<p>
Write your own object manager in Java.
You could derive all SWIG classes from a single base class which could track which objects have had their finalizers run, then call the rest of them on program termination.
The section on <a href="#Java_typemaps">Java typemaps</a> details how to specify a pure Java base class.
</p>
</li>
</ol>
<p>
See the <a href="http://www.devx.com/Java/Article/30192">How to Handle Java Finalization's Memory-Retention Issues</a> article for alternative approaches to managing memory by avoiding finalizers altogether.
</p>
<H4><a name="Java_pgcpp">25.4.3.4 The premature garbage collection prevention parameter for proxy class marshalling</a></H4>
<p>
As covered earlier, the C/C++ struct/class pointer is stored in the proxy class as a Java long and when needed is passed
into the native method where it is cast into the appropriate type.
This approach provides very fast marshalling but could be susceptible to premature garbage collection.
Consider the following C++ code:
</p>
<div class="code"><pre>
class Wibble {
};
void wobble(Wibble &w);
</pre></div>
<p>
The module class contains the Java wrapper for the global <tt>wobble</tt> method:
</p>
<div class="code"><pre>
public class example {
...
public static void wobble(Wibble w) {
exampleJNI.wobble(Wibble.getCPtr(w), w);
}
}
</pre></div>
<p>
where <tt>example</tt> is the name of the module.
All native methods go through the intermediary class which has the native method declared as such:
</p>
<div class="code"><pre>
public class exampleJNI {
...
public final static native void wobble(long jarg1, Wibble jarg1_);
}
</pre></div>
<p>
The second parameter, <tt>jarg1_</tt>, is the premature garbage collection prevention parameter and is added to the native method parameter list whenever a C/C++ struct or class is marshalled as a Java long.
In order to understand why, consider the alternative where the intermediary class method is declared without the additional parameter:
</p>
<div class="code"><pre>
public class exampleJNI {
...
public final static native void wobble(long jarg1);
}
</pre></div>
<p>
and the following simple call to <tt>wobble</tt>:
</p>
<div class="code"><pre>
{
Wibble w = new Wibble();
example.wobble(w);
}
</pre></div>
<p>
The hotspot compiler effectively sees something like:
</p>
<div class="code"><pre>
{
Wibble w = new Wibble();
long w_ptr = Wibble.getCPtr(w);
// w is no longer reachable
exampleJNI.wobble(w_ptr);
}
</pre></div>
<p>
The <tt>Wibble</tt> object is no longer reachable after the point shown as in this bit of code, the <tt>Wibble</tt> object is not referenced again after this point.
This means that it is a candidate for garbage collection.
Should <tt>wobble</tt> be a long running method, it is quite likely that the finalizer for the <tt>Wibble</tt> instance will be called.
This in turn will call its underlying C++ destructor which
is obviously disastrous while the method <tt>wobble</tt> is running using this object.
Even if <tt>wobble</tt> is not a long running method, it is possible for the <tt>Wibble</tt> instance to be finalized.
By passing the <tt>Wibble</tt> instance into the native method, it will not be finalized as the JVM guarantees not to
finalize any objects until the native method returns.
Effectively, the code then becomes
</p>
<div class="code"><pre>
{
Wibble w = new Wibble();
long w_ptr = Wibble.getCPtr(w);
exampleJNI.wobble(w_ptr, w);
// w is no longer reachable
}
</pre></div>
<p>
and therefore there is no possibility of premature garbage collection. In practice, this premature garbage collection was only ever observed in Sun's server JVM from jdk-1.3 onwards and in Sun's client JVM from jdk-1.6 onwards.
</p>
<p>
The premature garbage collection prevention parameter for proxy classes is generated by default whenever proxy classes are passed by value, reference or with a pointer.
The implementation for this extra parameter generation requires the "jtype" typemap to contain <tt>long</tt> and the "jstype" typemap to contain the name of a proxy class.
</p>
<p>
The additional parameter does impose a slight performance overhead and the parameter generation can be suppressed globally with the <tt>-nopgcpp</tt> commandline option.
More selective suppression is possible with the 'nopgcpp' attribute in the "jtype" <a href="#Java_typemaps">Java typemap</a>.
The attribute is a flag and so should be set to "1" to enable the suppression, or it can be omitted or set to "0" to disable.
For example:
</p>
<div class="code"><pre>
%typemap(jtype, nopgcpp="1") Wibble & "long"
</pre></div>
<p>
<b>Compatibility note:</b> The generation of this additional parameter did not occur in versions prior to SWIG-1.3.30.
</p>
<H4><a name="Java_multithread_libraries">25.4.3.5 Single threaded applications and thread safety</a></H4>
<p>
Single threaded Java applications using JNI need to consider thread safety.
The same applies for the C# module where the .NET wrappers use PInvoke.
Consider the C++ class:
</p>
<div class="code"><pre>
class Test {
string str;
public:
Test() : str("initial") {}
};
</pre></div>
<p>
and the Java proxy class generated by SWIG:
</p>
<div class="code"><pre>
public class Test {
private transient long swigCPtr;
protected transient boolean swigCMemOwn;
protected Test(long cPtr, boolean cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = cPtr;
}
protected static long getCPtr(Test obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}
protected void finalize() {
delete();
}
// Call C++ destructor
public synchronized void delete() {
if(swigCPtr != 0 && swigCMemOwn) {
swigCMemOwn = false;
exampleJNI.delete_Test(swigCPtr);
}
swigCPtr = 0;
}
// Call C++ constructor
public Test() {
this(exampleJNI.new_Test(), true);
}
}
</pre></div>
<p>
It has two methods that call JNI methods, namely, <tt>exampleJNI.new_Test()</tt> for the C++ constructor and <tt>exampleJNI.delete_Test()</tt> for the C++ destructor.
If the garbage collector collects an instance of this class, ie <tt>delete()</tt> is not explicitly called, then the C++ destructor will be run in a different thread to the main thread.
This is because when an object is marked for garbage collection, any objects with finalizers are added to a finalization queue
and the objects in the finalization queue have their <tt>finalize()</tt> methods run in a separate finalization thread.
Therefore, if the C memory allocator is not thread safe, then the heap will get corrupted sooner or later, when a concurrent C++ delete and new are executed.
It is thus essential, even in single threaded usage, to link to the C multi-thread runtime libraries,
for example, use the /MD option for Visual C++ on Windows.
Alternatively, lock all access to C++ functions that have heap allocation/deallocation.
</p>
<p>
Note that some of the STL in Visual C++ 6 is not thread safe, so although code might be linked to the multithread runtime libraries, undefined behaviour might still occur in a single threaded Java program.
Similarly some older versions of Sun Studio have bugs in the multi-threaded implementation of the std::string class and so will lead to undefined behaviour in these supposedly single threaded Java applications.
</p>
<p>
The following innocuous Java usage of Test is an example that will crash very quickly on a multiprocessor machine if the JNI compiled code is linked against the single thread C runtime libraries.
</p>
<div class="code"><pre>
for (int i=0; i<100000; i++) {
System.out.println("Iteration " + i);
for (int k=0; k<10; k++) {
Test test = new Test();
}
System.gc();
}
</pre></div>
<H3><a name="Java_type_wrapper_classes">25.4.4 Type wrapper classes</a></H3>
<p>
The generated type wrapper class, for say an <tt>int *</tt>, looks like this:
</p>
<div class="code"><pre>
public class SWIGTYPE_p_int {
private transient long swigCPtr;
protected SWIGTYPE_p_int(long cPtr, boolean bFutureUse) {
swigCPtr = cPtr;
}
protected SWIGTYPE_p_int() {
swigCPtr = 0;
}
protected static long getCPtr(SWIGTYPE_p_int obj) {
return obj.swigCPtr;
}
}
</pre></div>
<p>
The methods do not have public access, so by default it is impossible to do anything with objects of this class other than
pass them around. The methods in the class are part of the inner workings of SWIG.
If you need to mess around with pointers you will have to use some typemaps specific to the Java module to achieve this.
The section on <a href="#Java_typemaps">Java typemaps</a> details how to modify the generated code.
</p>
<p>
Note that if you use a pointer or reference to a proxy class in a function then no type wrapper class is generated because the proxy class can be used
as the function parameter. If however, you need anything more complicated like a pointer to a pointer to a proxy class then a typewrapper class
is generated for your use.
</p>
<p>
Note that SWIG generates a type wrapper class and not a proxy class when it has not parsed the definition of a type that gets used.
For example, say SWIG has not parsed the definition of <tt>class Snazzy</tt> because it is in a header file that you may have forgotten to use the <tt>%include</tt> directive on.
Should SWIG parse <tt>Snazzy *</tt> being used in a function parameter, it will then generates a type wrapper class around a <tt>Snazzy</tt> pointer.
Also recall from earlier that SWIG will use a pointer when a class is passed by value or by reference:
</p>
<div class="code">
<pre>
void spam(Snazzy *x, Snazzy &y, Snazzy z);
</pre>
</div>
<p>
Should SWIG not know anything about <tt>Snazzy</tt> then a <tt>SWIGTYPE_p_Snazzy</tt> must be used for all 3 parameters in the <tt>spam</tt> function.
The Java function generated is:
</p>
<div class="code">
<pre>
public static void spam(SWIGTYPE_p_Snazzy x, SWIGTYPE_p_Snazzy y, SWIGTYPE_p_Snazzy z) {
...
}
</pre>
</div>
<p>
Note that typedefs are tracked by SWIG and the typedef name is used to construct the type wrapper class name. For example, consider the case where <tt>Snazzy</tt> is a typedef to an <tt>int</tt> which SWIG does parse:
</p>
<div class="code">
<pre>
typedef int Snazzy;
void spam(Snazzy *x, Snazzy &y, Snazzy z);
</pre>
</div>
<p>
Because the typedefs have been tracked the Java function generated is:
</p>
<div class="code">
<pre>
public static void spam(SWIGTYPE_p_int x, SWIGTYPE_p_int y, int z) { ... }
</pre>
</div>
<H3><a name="Java_enum_classes">25.4.5 Enum classes</a></H3>
<p>
SWIG can generate three types of enum classes.
The <a href="#Java_enumerations">Enumerations</a> section discussed these but omitted all the details.
The following sub-sections detail the various types of enum classes that can be generated.
</p>
<H4><a name="Java_typesafe_enums_classes">25.4.5.1 Typesafe enum classes</a></H4>
<p>
The following example demonstrates the typesafe enum classes which SWIG generates:
</p>
<div class="code">
<pre>
%include "enumtypesafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };
</pre>
</div>
<p>
The following is the code that SWIG generates:
</p>
<div class="code">
<pre>
public final class Beverage {
public final static Beverage ALE = new Beverage("ALE");
public final static Beverage LAGER = new Beverage("LAGER", 10);
public final static Beverage STOUT = new Beverage("STOUT");
public final static Beverage PILSNER = new Beverage("PILSNER");
public final static Beverage PILZ = new Beverage("PILZ", PILSNER);
public final int swigValue() {
return swigValue;
}
public String toString() {
return swigName;
}
public static Beverage swigToEnum(int swigValue) {
if (swigValue < swigValues.length && swigValue >= 0 &&
swigValues[swigValue].swigValue == swigValue)
return swigValues[swigValue];
for (int i = 0; i < swigValues.length; i++)
if (swigValues[i].swigValue == swigValue)
return swigValues[i];
throw new IllegalArgumentException("No enum " + Beverage.class + " with value " +
swigValue);
}
private Beverage(String swigName) {
this.swigName = swigName;
this.swigValue = swigNext++;
}
private Beverage(String swigName, int swigValue) {
this.swigName = swigName;
this.swigValue = swigValue;
swigNext = swigValue+1;
}
private Beverage(String swigName, Beverage swigEnum) {
this.swigName = swigName;
this.swigValue = swigEnum.swigValue;
swigNext = this.swigValue+1;
}
private static Beverage[] swigValues = { ALE, LAGER, STOUT, PILSNER, PILZ };
private static int swigNext = 0;
private final int swigValue;
private final String swigName;
}
</pre>
</div>
<p>
As can be seen, there are a fair number of support methods for the typesafe enum pattern.
The typesafe enum pattern involves creating a fixed number of static instances of the enum class.
The constructors are private to enforce this.
Three constructors are available - two for C/C++ enums with an initializer and one for those without an initializer.
Note that the two enums with initializers, <tt>LAGER</tt> and <tt>PILZ</tt>, each call one the two different initializer constructors.
In order to use one of these typesafe enums, the <tt>swigToEnum</tt> static method must be called to return a reference to one of the static instances.
The JNI layer returns the enum value from the C/C++ world as an integer and this method is used to find the appropriate Java enum static instance.
The <tt>swigValue</tt> method is used for marshalling in the other direction.
The <tt>toString</tt> method is overridden so that the enum name is available.
</p>
<H4><a name="Java_proper_enums_classes">25.4.5.2 Proper Java enum classes</a></H4>
<p>
The following example demonstrates the Java enums approach:
</p>
<div class="code">
<pre>
%include "enums.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };
</pre>
</div>
<p>
SWIG will generate the following Java enum:
</p>
<div class="code">
<pre>
public enum Beverage {
ALE,
LAGER(10),
STOUT,
PILSNER,
PILZ(PILSNER);
public final int swigValue() {
return swigValue;
}
public static Beverage swigToEnum(int swigValue) {
Beverage[] swigValues = Beverage.class.getEnumConstants();
if (swigValue < swigValues.length && swigValue >= 0 &&
swigValues[swigValue].swigValue == swigValue)
return swigValues[swigValue];
for (Beverage swigEnum : swigValues)
if (swigEnum.swigValue == swigValue)
return swigEnum;
throw new IllegalArgumentException("No enum " + Beverage.class +
" with value " + swigValue);
}
private Beverage() {
this.swigValue = SwigNext.next++;
}
private Beverage(int swigValue) {
this.swigValue = swigValue;
SwigNext.next = swigValue+1;
}
private Beverage(Beverage swigEnum) {
this.swigValue = swigEnum.swigValue;
SwigNext.next = this.swigValue+1;
}
private final int swigValue;
private static class SwigNext {
private static int next = 0;
}
}
</pre>
</div>
<p>
The enum items appear first.
Like the typesafe enum pattern, the constructors are private.
The constructors are required to handle C/C++ enums with initializers.
The <tt>next</tt> variable is in the <tt>SwigNext</tt> inner class rather than in the enum class as static primitive variables cannot be modified from within enum constructors.
Marshalling between Java enums and the C/C++ enum integer value is handled via the <tt>swigToEnum</tt> and <tt>swigValue</tt> methods.
All the constructors and methods in the Java enum are required just to handle C/C++ enums with initializers.
These needn't be generated if the enum being wrapped does not have any initializers and the
<a href="#Java_simpler_enum_classes">Simpler Java enums for enums without initializers</a> section describes how typemaps can be used to achieve this.
</p>
<H4><a name="Java_typeunsafe_enums_classes">25.4.5.3 Type unsafe enum classes</a></H4>
<p>
The following example demonstrates type unsafe enums:
</p>
<div class="code">
<pre>
%include "enumtypeunsafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER, PILZ=PILSNER };
</pre>
</div>
<p>
SWIG will generate the following simple class:
</p>
<div class="code">
<pre>
public final class Beverage {
public final static int ALE = 0;
public final static int LAGER = 10;
public final static int STOUT = LAGER + 1;
public final static int PILSNER = STOUT + 1;
public final static int PILZ = PILSNER;
}
</pre>
</div>
<H3><a name="Java_interfaces">25.4.6 Interfaces</a></H3>
<p>
By default SWIG wraps all C++ classes as Java classes.
As Java only supports derivation from a single base class, SWIG has to ignore all
bases except the first when a C++ class inherits from more than one base class.
However, there is a family of SWIG macros that change the default wrapping and allows a C++ class
to be wrapped as a Java interface instead of a Java class.
These macros provide a way to support some sort of multiple inheritance as there is no limit to
the number of interfaces that a Java class can inherit from.
</p>
<p>
When a C++ class is wrapped as a Java interface, a Java proxy class is still needed.
The <tt>swiginterface.i</tt> library file provides three macros for marking a C++ class to be
wrapped as a Java interface.
There is more than one macro in order to provide a choice for choosing the Java interface and Java proxy names.
</p>
<table BORDER summary="Java interface macros">
<tr VALIGN=TOP>
<td><b>Interface Macro Name</b></td>
<td><b>Description</b></td>
</tr>
<tr>
<td><tt>%interface(CTYPE)</tt></td>
<td>For C++ class <tt>CTYPE</tt>, proxy class name is unchanged without any suffix added, interface name has <tt>SwigInterface</tt> added as a suffix.</td>
</tr>
<tr>
<td><tt>%interface_impl(CTYPE)</tt></td>
<td>For C++ class <tt>CTYPE</tt>, proxy class name has <tt>SwigImpl</tt> added as a suffix, interface name has no added suffix.</td>
</tr>
<tr>
<td><tt>%interface_custom("PROXY", "INTERFACE", CTYPE)</tt></td>
<td>For C++ class <tt>CTYPE</tt>, proxy class name is given by the string <tt>PROXY</tt>, interface name is given by the string <tt>INTERFACE</tt>. The <tt>PROXY</tt> and <tt>INTERFACE</tt> names can use the <a href="SWIG.html#SWIG_advanced_renaming">string formatting functions</a> used in <tt>%rename</tt>.</td>
</tr>
</table>
<p>
The table below has a few examples showing the resulting proxy and interface names for a C++ class called <tt>Base</tt>.
</p>
<table BORDER summary="Java interface macro examples">
<tr VALIGN=TOP>
<td><b>Example Usage</b></td>
<td><b>Proxy Class Name</b></td>
<td><b>Interface Class Name</b></td>
</tr>
<tr>
<td><tt>%interface(Base)</tt></td>
<td><tt>Base</tt></td>
<td><tt>BaseSwigInterface</tt></td>
</tr>
<tr>
<td><tt>%interface_impl(Base)</tt></td>
<td><tt>BaseSwigImpl</tt></td>
<td><tt>Base</tt></td>
</tr>
<tr>
<td><tt>%interface_custom("BaseProxy", "IBase", Base)</tt></td>
<td><tt>BaseProxy</tt></td>
<td><tt>IBase</tt></td>
</tr>
<tr>
<td><tt>%interface_custom("%sProxy", "IBase", Base)</tt></td>
<td><tt>BaseProxy</tt></td>
<td><tt>IBase</tt></td>
</tr>
<tr>
<td><tt>%interface_custom("%sProxy", "%sInterface", Base)</tt></td>
<td><tt>BaseProxy</tt></td>
<td><tt>BaseProxyInterface</tt></td>
</tr>
<tr>
<td><tt>%interface_custom("%sProxy", "%(rstrip:[Proxy])sInterface", Base)</tt></td>
<td><tt>BaseProxy</tt></td>
<td><tt>BaseInterface</tt></td>
</tr>
</table>
<p>
The 2nd last example shows the names used in the string formatting functions.
The input for <tt>PROXY</tt> that <tt>"%s"</tt> expands to is the proxy name, that is, Base.
The input for <tt>INTERFACE</tt> that <tt>"%s"</tt> expands to is the proxy name, that is, <tt>BaseProxy</tt>.
</p>
<p>
The last example shows <tt>rstrip</tt> and in this case strips the <tt>Proxy</tt> suffix and then adds on <tt>Interface</tt>.
</p>
<p>
Consider the following C++ code:
</p>
<div class="code">
<pre>
namespace Space {
struct Base1 {
virtual void Method1();
};
struct Base2 {
virtual void Method2();
};
struct Derived : Base1, Base2 {
};
void UseBases(const Base1 &b1, const Base2 &b2);
}
</pre>
</div>
<p>
By default all classes are wrapped and are available in Java, but, <tt>Derived</tt>
has all bases ignored except the first.
SWIG generates a warning for the above code:
</p>
<div class="shell">
<pre>
example.i:10: Warning 813: Warning for Derived, base Base2 ignored.
Multiple inheritance is not supported in Java.
</pre>
</div>
<p>
If we decide to wrap the two base classes as interfaces and add the following before SWIG parses the above example code:
</p>
<div class="code">
<pre>
%include <swiginterface.i>
%interface_impl(Space::Base1);
%interface_impl(Space::Base2);
</pre>
</div>
<p>
then two interface files are generated, Base1.java and Base2.java in addition to proxy class files, Base1SwigImpl.java and Base2SwigImpl.java.
The contents of interface file Base1.java for <tt>Base1</tt> is shown below:
</p>
<div class="code">
<pre>
public interface Base1 {
long Base1_GetInterfaceCPtr();
void Method1();
}
</pre>
</div>
<p>
The proxy class in Base1SwigImpl.java for Base1 is as it would have been if <tt>%interface</tt> was not used,
except the name has changed to <tt>Base1SwigImpl</tt> and it implements the appropriate base:
</p>
<div class="code">
<pre>
public class Base1SwigImpl implements Base1 {
...
public long Base1_GetInterfaceCPtr() {
return exampleJNI.Base1SwigImpl_Base1_GetInterfaceCPtr(swigCPtr);
}
public void Method1() {
exampleJNI.Base1SwigImpl_Method1(swigCPtr, this);
}
...
}
</pre>
</div>
<p>
In fact any class deriving from <tt>Base</tt> will now implement the interface instead of
deriving from it (or ignoring the base in the case of multiple base classes).
Hence the <tt>Derived</tt> proxy class will now implement both bases:
</p>
<div class="code">
<pre>
public class Derived implements Base1, Base2 {
...
public long Base1_GetInterfaceCPtr() {
return exampleJNI.Derived_Base1_GetInterfaceCPtr(swigCPtr);
}
public long Base2_GetInterfaceCPtr() {
return exampleJNI.Derived_Base2_GetInterfaceCPtr(swigCPtr);
}
public void Method1() {
exampleJNI.Derived_Method1(swigCPtr, this);
}
public void Method2() {
exampleJNI.Derived_Method2(swigCPtr, this);
}
...
}
</pre>
</div>
<p>
Wherever a class marked as an interface is used, such as the <tt>UseBases</tt> method in the example,
the interface name is used as the type in the Java layer:
</p>
<div class="code">
<pre>
public static void UseBases(Base1 b1, Base2 b2) {
exampleJNI.UseBases(b1.Base1_GetInterfaceCPtr(), b1, b2.Base2_GetInterfaceCPtr(), b2);
}
</pre>
</div>
<p>
Note that each Java interface has a method added to obtain the correct C++ pointer for passing to the native function -
<tt>Base1_GetInterfaceCPtr</tt> for <tt>Base1</tt>.
This method is similar to the <tt>getCPtr</tt> method in the proxy classes.
In fact, as shown above in the <tt>Derived</tt> class, the proxy classes implement
this generated interface by calling a native method (<tt>Derived_Base1_GetInterfaceCPtr</tt>)
which calls an appropriate C++ cast of the pointer up the inheritance chain.
</p>
<p>
The interface macros are implemented using the <tt>interface</tt> feature and typemaps.
For example:
</p>
<div class="code">
<pre>
%define %interface(CTYPE...)
%feature("interface", name="%sSwigInterface") CTYPE;
INTERFACE_TYPEMAPS(CTYPE)
%enddef
</pre>
</div>
<p>
The feature accepts one attribute called <tt>name</tt>, which is the name of the Java interface mentioned earlier.
The <tt>INTERFACE_TYPEMAPS</tt> macro implements the typemaps and can be viewed in the
<tt>swiginterface.i</tt> file and contain
the usual Java typemaps for generating code plus the <tt>javainterfacecode</tt>
typemap which is only used when a class is marked with the <tt>interface</tt> feature.
See <a href="Java.html#Java_code_typemaps">Java code typemaps</a> for details.
</p>
<H2><a name="Java_directors">25.5 Cross language polymorphism using directors</a></H2>
<p>
Proxy classes provide a natural, object-oriented way to wrap C++ classes.
as described earlier, each proxy instance has an associated C++ instance, and method calls from Java to the proxy are passed to the C++ instance transparently via C wrapper functions.
</p>
<p>
This arrangement is asymmetric in the sense that no corresponding mechanism exists to pass method calls down the inheritance chain from C++ to Java.
In particular, if a C++ class has been extended in Java (by deriving from the proxy class), these classes will not be visible from C++ code.
Virtual method calls from C++ are thus not able to access the lowest implementation in the inheritance chain.
</p>
<p>
SWIG can address this problem and make the relationship between C++ classes and proxy classes more symmetric.
To achieve this goal, new classes called directors are introduced at the bottom of the C++ inheritance chain.
The job of the directors is to route method calls correctly, either to C++ implementations higher in the inheritance chain or to Java implementations lower in the inheritance chain.
The upshot is that C++ classes can be extended in Java and from C++ these extensions look exactly like native C++ classes.
Neither C++ code nor Java code needs to know where a particular method is implemented: the combination of proxy classes, director classes, and C wrapper functions transparently takes care of all the cross-language method routing.
</p>
<H3><a name="Java_enabling_directors">25.5.1 Enabling directors</a></H3>
<p>
The director feature is disabled by default.
To use directors you must make two changes to the interface file.
First, add the "directors" option to the %module directive, like this:
</p>
<div class="code">
<pre>
%module(directors="1") modulename
</pre>
</div>
<p>
Without this option no director code will be generated.
Second, you must use the %feature("director") directive to tell SWIG which classes and methods should get directors.
The %feature directive can be applied globally, to specific classes, and to specific methods, like this:
</p>
<div class="code">
<pre>
// generate directors for all classes that have virtual methods
%feature("director");
// generate directors for all virtual methods in class Foo
%feature("director") Foo;
</pre>
</div>
<p>
You can use the %feature("nodirector") directive to turn off directors for specific classes or methods.
So for example,
</p>
<div class="code">
<pre>
%feature("director") Foo;
%feature("nodirector") Foo::bar;
</pre>
</div>
<p>
will generate directors for all virtual methods of class Foo except bar().
</p>
<p>
Directors can also be generated implicitly through inheritance.
In the following, class Bar will get a director class that handles the methods one() and two() (but not three()):
</p>
<div class="code">
<pre>
%feature("director") Foo;
class Foo {
public:
virtual void one();
virtual void two();
};
class Bar: public Foo {
public:
virtual void three();
};
</pre>
</div>
<H3><a name="Java_directors_classes">25.5.2 Director classes</a></H3>
<p>
For each class that has directors enabled, SWIG generates a new class that derives from both the class in question and a special <tt>Swig::Director</tt> class.
These new classes, referred to as director classes, can be loosely thought of as the C++ equivalent of the Java proxy classes.
The director classes store a pointer to their underlying Java proxy classes.
</p>
<p>
For simplicity let's ignore the <tt>Swig::Director</tt> class and refer to the original C++ class as the director's base class.
By default, a director class extends all virtual methods in the inheritance chain of its base class (see the preceding section for how to modify this behavior).
Thus all virtual method calls, whether they originate in C++ or in Java via proxy classes, eventually end up in at the implementation in the director class.
The job of the director methods is to route these method calls to the appropriate place in the inheritance chain.
By "appropriate place" we mean the method that would have been called if the C++ base class and its Java derived classes were seamlessly integrated.
That seamless integration is exactly what the director classes provide, transparently skipping over all the messy JNI glue code that binds the two languages together.
</p>
<p>
In reality, the "appropriate place" is one of only two possibilities: C++ or Java.
Once this decision is made, the rest is fairly easy.
If the correct implementation is in C++, then the lowest implementation of the method in the C++ inheritance chain is called explicitly.
If the correct implementation is in Java, the Java API is used to call the method of the underlying Java object
(after which the usual virtual method resolution in Java automatically finds the right implementation).
</p>
<H3><a name="Java_directors_overhead">25.5.3 Overhead and code bloat</a></H3>
<p>
Enabling directors for a class will generate a new director method for every virtual method in the class' inheritance chain.
This alone can generate a lot of code bloat for large hierarchies.
Method arguments that require complex conversions to and from Java types can result in large director methods.
For this reason it is recommended that directors are selectively enabled only for specific classes that are likely to be extended in Java and used in C++.
</p>
<p>
Although directors make it natural to mix native C++ objects with Java objects (as director objects),
one should be aware of the obvious fact that method calls to Java objects from C++ will be much slower than calls to C++ objects.
Additionally, compared to classes that do not use directors, the call routing in the director methods adds a small overhead.
This situation can be optimized by selectively enabling director methods (using the %feature directive) for only those methods that are likely to be extended in Java.
</p>
<H3><a name="Java_directors_example">25.5.4 Simple directors example</a></H3>
<p>
Consider the following SWIG interface file:
</p>
<div class="code">
<pre>
%module(directors="1") example;
%feature("director") DirectorBase;
class DirectorBase {
public:
virtual ~DirectorBase() {}
virtual void upcall_method() {}
};
void callup(DirectorBase *director) {
director->upcall_method();
}
</pre>
</div>
<p>
The following <code>DirectorDerived</code> Java class is derived from the Java proxy class <code>DirectorBase</code> and overrides <code>upcall_method()</code>.
When C++ code invokes <code>upcall_method()</code>, the SWIG-generated C++ code redirects the call via JNI to the Java <code>DirectorDerived</code> subclass.
Naturally, the SWIG generated C++ code and the generated Java intermediary class marshal and convert arguments between C++ and Java when needed.
</p>
<div class="code">
<pre>
public class DirectorDerived extends DirectorBase {
public DirectorDerived() {
}
public void upcall_method() {
System.out.println("DirectorDerived::upcall_method() invoked.");
}
}
</pre>
</div>
<p>
Running the following Java code
</p>
<div class="code">
<pre>
DirectorDerived director = new DirectorDerived();
example.callup(director);
</pre>
</div>
<p>
will result in the following being output:
</p>
<div class="code">
<pre>
DirectorDerived::upcall_method() invoked.
</pre>
</div>
<H3><a name="Java_directors_threading">25.5.5 Director threading issues</a></H3>
<p>
Depending on your operating system and version of Java and how you are using threads, you might find the JVM hangs on exit.
There are a couple of solutions to try out. The preferred solution requires jdk-1.4 and later and uses <tt>AttachCurrentThreadAsDaemon</tt> instead of <tt>AttachCurrentThread</tt> whenever a call into the JVM is required. This can be enabled by defining the SWIG_JAVA_ATTACH_CURRENT_THREAD_AS_DAEMON macro when compiling the C++ wrapper code. For older JVMs define SWIG_JAVA_NO_DETACH_CURRENT_THREAD instead, to avoid the <tt>DetachCurrentThread</tt> call but this will result in a memory leak instead. For further details inspect the source code in the java/director.swg library file.
</p>
<p>
Macros can be defined on the commandline when compiling your C++ code, or alternatively added to the C++ wrapper file as shown below:
</p>
<div class="code">
<pre>
%insert("runtime") %{
#define SWIG_JAVA_NO_DETACH_CURRENT_THREAD
%}
</pre>
</div>
<H3><a name="Java_directors_performance">25.5.6 Director performance tuning</a></H3>
<p>
When a new instance of a director (or subclass) is created in Java, the C++ side of the director performs a runtime check per director method to determine if that particular method is overridden in Java or if it should invoke the C++ base implementation directly. Although this makes initialization slightly more expensive, it is generally a good overall tradeoff.
</p>
<p>
However, if all director methods are expected to usually be overridden by Java subclasses, then initialization can be made faster by avoiding these checks via the <tt>assumeoverride</tt> attribute. For example:
</p>
<div class="code">
<pre>
%feature("director", assumeoverride=1) Foo;
</pre>
</div>
<p>
The disadvantage is that invocation of director methods from C++ when Java doesn't actually override the method will require an additional call up into Java and back to C++. As such, this option is only useful when overrides are extremely common and instantiation is frequent enough that its performance is critical.
</p>
<H3><a name="Java_exceptions_from_directors">25.5.7 Java exceptions from directors</a></H3>
<p>
With directors routing method calls to Java, and proxies routing them
to C++, the handling of exceptions is an important concern.
The default behavior from SWIG 3.0
onwards is to convert the thrown Java exception into a SWIG defined
<code>DirectorException</code> C++ exception.
SWIG 2.0 and earlier versions didn't provide any mechanism to handle the Java director method exceptions in C++.
</p>
<p>
Converting Java exceptions into C++ exceptions can be done in two different ways using
the <code>director:except</code> <a href="Customization.html#Customization_features">feature</a>.
In the simplest approach, a code block is attached to each director method to
handle the mapping of Java exceptions into C++ exceptions.
</p>
<div class="code">
<pre>
%feature("director:except") MyClass::method(int x) {
jthrowable $error = jenv->ExceptionOccurred();
if ($error) {
jenv->ExceptionClear();
if (Swig::ExceptionMatches(jenv, $error, "java/lang/IndexOutOfBoundsException"))
throw std::out_of_range(Swig::JavaExceptionMessage(jenv, $error).message());
if (Swig::ExceptionMatches(jenv, $error, "$packagepath/MyJavaException"))
throw MyCppException(Swig::JavaExceptionMessage(jenv, $error).message());
throw std::runtime_error("Unexpected exception thrown in MyClass::method");
}
}
class MyClass {
/** Throws either a std::out_of_range or MyCppException on error */
void method(int x);
}
</pre>
</div>
<p>
This approach allows a flexible mapping of Java exceptions thrown by director methods into
C++ exceptions expected by a C++ caller. There
need not be any C++ <em>exception specifications</em> on the C++ method. The
utility function <code>Swig::ExceptionMatches</code>
and class <code>Swig::JavaExceptionMessage</code> are provided to simplify
writing code for wrappers that use the <code>director:except</code> feature. The
function <code>Swig::ExceptionMatches</code> matches the type of the
<code>jthrowable</code> thrown against a <b>fully qualified</b> JNI style class
name, such as <code>"java/lang/IOError"</code>. If the throwable class is the same
type, or derives from the given type, <code>Swig::ExceptionMatches</code> will return true. Care must be taken to
provide the correct fully qualified name, since for wrapped exceptions the
generated proxy class will have additional package qualification, depending on
the '-package' argument and use of the <a href="#Java_namespaces">nspace
feature</a>. The special variable <code>$error</code> is expanded by SWIG into a unique variable name and
should be used for the
assignment of the exception that occurred. The special variable <code>$packagepath</code> is
replaced by the outer package provided for SWIG generation by the -package
option. The utility class <code>Swig::JavaExceptionMessage</code> is a holder
providing access to the message from the thrown Java exception.
The <code>message()</code> method returns the exception message as a <code>const char *</code>,
which is only valid during the lifetime of the holder. Any code using this message
needs to copy it, for example into a std::string or a newly constructed C++ exception.
</p>
<p>
Using the above approach to
write handlers for a large number of methods will require
repetitive duplication of the <code>director:except</code> feature code.
To mitigate this, an alternative approach is provided via typemaps in a
fashion analagous to
the <a href="Typemaps.html#throws_typemap">"throws" typemap.</a> The
"throws" typemap provides an approach to automatically map all the C++
exceptions listed in a method's defined exceptions (either from
a C++ <em>exception specification</em> or a <code>%catches</code>
feature) into Java exceptions.
The "directorthrows" typemap provides the inverse mapping and should contain
code to convert a suitably matching Java exception into a C++ exception.
The example below converts a Java <code>java.lang.IndexOutOfBoundsException</code> exception
to the typemap's type, that is <code>std::out_of_range</code>:
<div class="code">
<pre>
%typemap(directorthrows) std::out_of_range %{
if (Swig::ExceptionMatches(jenv, $error, "java/lang/IndexOutOfBoundsException")) {
throw std::out_of_range(Swig::JavaExceptionMessage(jenv, $error).message());
}
%}
</pre>
</div>
<p>
The "directorthrows" typemap is then used in conjunction with the
<code>director:except</code> feature if the <code>$directorthrowshandlers</code> special variable
is used in the feature code. Consider the following, which also happens to be the default:
</p>
<div class="code">
<pre>
%feature("director:except") %{
jthrowable $error = jenv->ExceptionOccurred();
if ($error) {
jenv->ExceptionClear();
$directorthrowshandlers
throw Swig::DirectorException(jenv, $error);
}
%}
</pre>
</div>
<p>The code generated using the <code>director:except</code> feature
replaces the <code>$directorthrowshandlers</code> special variable with the code in
the "directorthrows" typemaps, for each and every exception defined for the method.
The possible exceptions can be defined either with a C++ exception
specification or <code>%catches</code> as described for the
<a href="Typemaps.html#throws_typemap">"throws" typemap</a>.
</p>
<p>
Consider the following director method:
</p>
<div class="code">
<pre>
...
virtual void doSomething(int index) throw (std::out_of_range);
...
</pre>
</div>
<p>
When combined with the default <code>director:except</code> feature and the "directorthrows" typemap above,
the resulting code generated in the director method after calling up to Java will be:
</p>
<div class="code">
<pre>
jthrowable swigerror = jenv->ExceptionOccurred();
if (swigerror) {
jenv->ExceptionClear();
if (Swig::ExceptionMatches(jenv, swigerror, "java/lang/IndexOutOfBoundsException")) {
throw std::out_of_range(Swig::JavaExceptionMessage(jenv, swigerror).message());
}
throw Swig::DirectorException(jenv, swigerror);
}
</pre>
</div>
<p><em>
Note: Beware of using exception specifications as the SWIG director methods
will be generated with the same exception specifications and if the
director method throws an exception that is not specified it is likely
to terminate your program. See the C++ standard for more details.
Using the %catches feature instead to define the handled exceptions does not suffer
this potential fate.
</em></p>
<p>Because the default code generation maps any unhandled Java exceptions to
<code>Swig::DirectorException</code>, any director methods that have exception
specifications may cause program termination. To simply ignore
unexpected exceptions, the default handling can be changed with:
</p>
<div class="code">
<pre>
%feature("director:except") %{
jthrowable $error = jenv->ExceptionOccurred();
if ($error) {
jenv->ExceptionClear();
$directorthrowshandlers
return $null; // exception is ignored
}
%}
</pre>
</div>
<p>Alternatively an exception compatible with the existing director
method exception specifications can be thrown. Assuming that all
methods allow std::runtime_error to be thrown,
the <code>return $null;</code> could be changed to:
</p>
<div class="code">
<pre>
throw std::runtime_error(Swig::JavaExceptionMessage(jenv, $error).message());
</pre>
</div>
<p>In more complex situations, a separate <code>director:except</code> feature
may need to be attached to specific methods.
</p>
<p>Below is a complete example demonstrating the use
of the "directorthrows" typemaps. In this example, a
generic "directorthrows" typemap is appropriate for all three exceptions - all
take single string constructors. If the exceptions had different constructors,
it would be necessary to have separate typemaps for each exception type.
<!-- All the DEFINE_ and DECLARE_EXCEPTIONS CAN BE OMITTED to make
this more succinct. They are included to make this a complete
example interface that could be generated and built. -->
<div class="code">
<pre>
%module(directors="1") example
%{
#include <string>
#include <stdexcept>
%}
// Define exceptions in header section using std::runtime_error
%define DEFINE_EXCEPTION(NAME)
%{
namespace MyNS {
struct NAME : public std::runtime_error { NAME(const std::string &what) : runtime_error(what) {} };
}
%}
%enddef
// Expose C++ exceptions as Java Exceptions by changing the Java base class and providing a getMessage()
%define DECLARE_EXCEPTION(NAME)
%typemap(javabase) MyNS::NAME "java.lang.Exception";
%rename(getMessage) MyNS::NAME::what;
namespace MyNS {
struct NAME {
NAME(const std::string& what);
const char * what();
};
}
%enddef
DEFINE_EXCEPTION(ExceptionA)
DEFINE_EXCEPTION(ExceptionB)
DEFINE_EXCEPTION(Unexpected)
// Mark three methods to map director thrown exceptions.
%feature("director:except") MyClass::meth1(int);
%feature("director:except") MyClass::meth2;
%feature("director:except") meth3;
%typemap(directorthrows) MyNS::ExceptionA, MyNS::ExceptionB, MyNS::Unexpected %{
if (Swig::ExceptionMatches(jenv, $error, "$packagepath/$javaclassname"))
throw $1_type(Swig::JavaExceptionMessage(jenv, $error).message());
%}
DECLARE_EXCEPTION(ExceptionA)
DECLARE_EXCEPTION(ExceptionB)
DECLARE_EXCEPTION(Unexpected)
%catches(MyNS::ExceptionA, MyNS::ExceptionB, MyNS::Unexpected) MyClass::meth2();
%inline {
class MyClass {
public:
virtual void meth1(int x) throw(MyNS::ExceptionA, MyNS::ExceptionB) = 0;
virtual void meth2() = 0; /* throws MyNS::ExceptionA, MyNS::ExceptionB, MyNS::Unexpected */
virtual void meth3(float x) throw(MyNS::Unexpected) = 0;
virtual ~MyClass() {}
};
}
</pre>
</div>
<p>
In this case the three different "directorthrows" typemaps will be used
to generate the three different exception handlers for
<code>meth1</code>, <code>meth2</code> and <code>meth3</code>. The generated
handlers will have "if" blocks for each exception type specified, in
the exception specification or <code>%catches</code> feature.
</p>
<p>Note that the "directorthrows" typemaps are important
only if it is important for the the exceptions passed through the C++
layer to be mapped to distinct C++ exceptions. If director methods
are being called by C++ code that is itself wrapped in a
SWIG generated Java wrapper and access is always through this wrapper,
the default <code>Swig::DirectorException</code> class provides enough information
to reconstruct the original exception. In this case removing the
<code>$directorthrowshandlers</code> special variable from the
default <code>director:except</code> feature and simply always
throwing a <code>Swig::DirectorException</code> will achieve the desired result.
Along with this a generic exception feature is added to convert any
caught <code>Swig::DirectorException</code>s back into the underlying
Java exceptions via the <code>Swig::DirectorException::raiseJavaException</code> method,
as demonstrated with <code>%javaexception</code> below:
</p>
<div class="code">
<pre>
%javaexception("Exception") MyClass::myMethod %{
try {
$action
} catch (Swig::DirectorException &e) {
// raise/throw the Java exception that originally caused the DirectorException
e.raiseJavaException(jenv);
return $null;
}
%}
</pre>
</div>
<p>
See the <a href="#Java_exception_handling">Exception handling with %exception and %javaexception</a>
section for more on converting C++ exceptions to Java exceptions.
</p>
<H2><a name="Java_allprotected">25.6 Accessing protected members</a></H2>
<p>
When using directors, the protected virtual methods are also wrapped.
These methods are wrapped with a protected Java proxy method, so the only way that Java code can access these is from within a Java class derived from the director class.
</p>
<p>
Members which are protected and non-virtual can also be accessed when using the 'allprotected' mode.
The allprotected mode requires directors and is turned on by setting the <tt>allprotected</tt> option in addition to the <tt>directors</tt> option in the %module directive, like this:
</p>
<div class="code">
<pre>
%module(directors="1", allprotected="1") modulename
</pre>
</div>
<p>
Protected member variables and methods (both static and non-static) will then be wrapped with protected access in the Java proxy class.
</p>
<p>
<b>Note:</b> Neither the directors option nor the allprotected mode support types defined with protected scope.
This includes any enums or typedefs declared in the protected section of the C++ class.
</p>
<p>
The following simple example is a class with numerous protected members, including the constructor and destructor:
</p>
<div class="code">
<pre>
%module(directors="1", allprotected="1") example
%feature("director") ProtectedBase;
// Ignore use of unsupported types (those defined in the protected section)
%ignore ProtectedBase::typedefs;
%inline %{
class ProtectedBase {
protected:
ProtectedBase() {}
virtual ~ProtectedBase() {}
virtual void virtualMethod() const {}
void nonStaticMethod(double d) const {}
static void staticMethod(int i) {}
int instanceMemberVariable;
static int staticMemberVariable;
// unsupported: types defined with protected access and the methods/variables which use them
typedef int IntegerType;
IntegerType typedefs(IntegerType it) { return it; }
};
int ProtectedBase::staticMemberVariable = 10;
%}
</pre>
</div>
<p>
Note that the <tt>IntegerType</tt> has protected scope and the members which use this type must be ignored as they cannot be wrapped.
</p>
<p>
The proxy methods are protected, so the only way the protected members can be accessed is within a class that derives from the director class, such as the following:
</p>
<div class="code">
<pre>
class MyProtectedBase extends ProtectedBase
{
public MyProtectedBase() {
}
public void accessProtected() {
virtualMethod();
nonStaticMethod(1.2);
staticMethod(99);
setInstanceMemberVariable(5);
int i = getInstanceMemberVariable();
setStaticMemberVariable(10);
i = getStaticMemberVariable();
}
}
</pre>
</div>
<H2><a name="Java_common_customization">25.7 Common customization features</a></H2>
<p>
An earlier section presented the absolute basics of C/C++ wrapping. If you do nothing
but feed SWIG a header file, you will get an interface that mimics the behavior
described. However, sometimes this isn't enough to produce a nice module. Certain
types of functionality might be missing or the interface to certain functions might
be awkward. This section describes some common SWIG features that are used
to improve the interface to existing C/C++ code.
</p>
<H3><a name="Java_helper_functions">25.7.1 C/C++ helper functions</a></H3>
<p>
Sometimes when you create a module, it is missing certain bits of functionality. For
example, if you had a function like this
</p>
<div class="code">
<pre>
typedef struct Image {...};
void set_transform(Image *im, double m[4][4]);
</pre>
</div>
<p>
it would be accessible from Java, but there may be no easy way to call it.
The problem here is that a type wrapper class is generated for the two dimensional array parameter so
there is no easy way to construct and manipulate a suitable
<tt>double [4][4]</tt> value. To fix this, you can write some extra C helper
functions. Just use the <tt>%inline</tt> directive. For example:
</p>
<div class="code">
<pre>
%inline %{
/* Note: double[4][4] is equivalent to a pointer to an array double (*)[4] */
double (*new_mat44())[4] {
return (double (*)[4]) malloc(16*sizeof(double));
}
void free_mat44(double (*x)[4]) {
free(x);
}
void mat44_set(double x[4][4], int i, int j, double v) {
x[i][j] = v;
}
double mat44_get(double x[4][4], int i, int j) {
return x[i][j];
}
%}
</pre>
</div>
<p>
From Java, you could then write code like this:
</p>
<div class="code">
<pre>
Image im = new Image();
SWIGTYPE_p_a_4__double a = example.new_mat44();
example.mat44_set(a, 0, 0, 1.0);
example.mat44_set(a, 1, 1, 1.0);
example.mat44_set(a, 2, 2, 1.0);
...
example.set_transform(im, a);
example.free_mat44(a);
</pre>
</div>
<p>
Admittedly, this is not the most elegant looking approach. However, it works and it wasn't too
hard to implement. It is possible to improve on this using Java code, typemaps, and other
customization features as covered in later sections, but sometimes helper functions are a quick and easy solution to difficult cases.
</p>
<H3><a name="Java_class_extension">25.7.2 Class extension with %extend</a></H3>
<p>
One of the more interesting features of SWIG is that it can extend
structures and classes with new methods or constructors.
Here is a simple example:
</p>
<div class="code">
<pre>
%module example
%{
#include "someheader.h"
%}
struct Vector {
double x, y, z;
};
%extend Vector {
char *toString() {
static char tmp[1024];
sprintf(tmp, "Vector(%g, %g, %g)", $self->x, $self->y, $self->z);
return tmp;
}
Vector(double x, double y, double z) {
Vector *v = (Vector *) malloc(sizeof(Vector));
v->x = x;
v->y = y;
v->z = z;
return v;
}
};
</pre>
</div>
<p>
Now, in Java
</p>
<div class="code">
<pre>
Vector v = new Vector(2, 3, 4);
System.out.println(v);
</pre>
</div>
<p>
will display
</p>
<div class="code">
<pre>
Vector(2, 3, 4)
</pre>
</div>
<p>
<tt>%extend</tt> works with both C and C++ code. It does not modify the underlying object
in any way---the extensions only show up in the Java interface.
</p>
<H3><a name="Java_proxycode">25.7.3 Class extension with %proxycode</a></H3>
<p>
The previous section described how to extend a wrapped class with C or C++ code.
This section describes how to extend a wrapped class with Java code instead of C/C++ code.
The <tt>%proxycode</tt> directive is used and is just a macro for <tt>%insert("proxycode")</tt>.
The <a href="SWIG.html#SWIG_nn42">Code insertion block</a> section describes the <tt>%insert</tt> directive.
The section of code for insertion is "proxycode", that is, the Java proxy class.
This directive must hence only be used within the scope of a class, otherwise it is silently ignored.
There are two common ways to get the scope correct.
</p>
<p>
The first is to use <tt>%proxycode</tt> inside a class that SWIG parses, for example a <tt>toString()</tt> method can be added to a C++ class using pure Java code.
A C++ header file can mix C++ and Java code inside the C++ class as follows:
</p>
<div class="code">
<pre>
// flag.h header file
class Flag {
bool flag;
public:
Flag(bool flag) : flag(flag) {}
bool FetchFlag() { return flag; }
#if defined(SWIG)
%proxycode %{
public String toString() {
boolean flag = FetchFlag();
return Boolean.toString(flag);
}
%}
#endif
};
</pre>
</div>
<p>
and wrapped using:
</p>
<div class="code">
<pre>
%{
#include "flag.h"
%}
%include "flag.h"
</pre>
</div>
<p>
The second is to use <tt>%proxycode</tt> within <tt>%extend</tt> as everything within a <tt>%extend</tt> block is effectively within the scope of the class, for example:
</p>
<div class="code">
<pre>
// flag.h header file
class Flag {
bool flag;
public:
Flag(bool flag) : flag(flag) {}
bool FetchFlag() { return flag; }
};
</pre>
</div>
<p>
and wrapped using:
</p>
<div class="code">
<pre>
%{
#include "flag.h"
%}
%include "flag.h"
%extend Flag {
#if defined(SWIG)
%proxycode %{
public String toString() {
boolean flag = FetchFlag();
return Boolean.toString(flag);
}
%}
#endif
}
</pre>
</div>
<p>
There is some very limited support of typemaps within a <tt>%proxycode</tt> block.
A useful trick is to obtain the Java type for a given C/C++ type using the <a href="Typemaps.html#Typemaps_special_macro_typemap">$typemap</a> special macro.
The following C++ template demonstrates this:
</p>
<div class="code">
<pre>
%inline %{
template<typename T> struct Value {
T value;
Value(const T& val) : value(val) {}
};
%}
%extend Value {
%proxycode %{
public String toString() {
// Note template type expansion is supported, so T is expanded to 'unsigned int' in this example
// and $typemap(jstype, unsigned int) in turn is expanded to 'long'
$typemap(jstype, T) val = getValue();
return "$javaclassname value: " + val + " Java type: $typemap(jstype, T) JNI type: $typemap(jni, T)";
}
%}
}
%template(ValueUnsignedInt) Value<unsigned int>;
</pre>
</div>
<p>
The generated Java contains the expanded special variable and macro resulting in Java proxy code:
</p>
<div class="code">
<pre>
public class ValueUnsignedInt {
...
public String toString() {
long val = getValue();
return "ValueUnsignedInt value: " + val + " Java type: long JNI type: jlong";
}
}
</pre>
</div>
<H3><a name="Java_exception_handling">25.7.4 Exception handling with %exception and %javaexception</a></H3>
<p>
If a C or C++ function throws an error, you may want to convert that error into a Java
exception. To do this, you can use the <tt>%exception</tt> directive. The <tt>%exception</tt> directive
simply lets you rewrite part of the generated wrapper code to include an error check.
It is detailed in full in the <a href="Customization.html#Customization_exception">Exception handling with %exception</a> section.
</p>
<p>
In C, a function often indicates an error by returning a status code (a negative number
or a NULL pointer perhaps). Here is a simple example of how you might handle that:
</p>
<div class="code">
<pre>
%exception malloc {
$action
if (!result) {
jclass clazz = (*jenv)->FindClass(jenv, "java/lang/OutOfMemoryError");
(*jenv)->ThrowNew(jenv, clazz, "Not enough memory");
return $null;
}
}
void *malloc(size_t nbytes);
</pre>
</div>
<p>
In Java,
</p>
<div class="code">
<pre>
SWIGTYPE_p_void a = example.malloc(2000000000);
</pre>
</div>
<p>
will produce a familiar looking Java exception:
</p>
<div class="code">
<pre>
Exception in thread "main" java.lang.OutOfMemoryError: Not enough memory
at exampleJNI.malloc(Native Method)
at example.malloc(example.java:16)
at runme.main(runme.java:112)
</pre>
</div>
<p>
If a library provides some kind of general error handling framework, you can also use
that. For example:
</p>
<div class="code">
<pre>
%exception malloc {
$action
if (err_occurred()) {
jclass clazz = (*jenv)->FindClass(jenv, "java/lang/OutOfMemoryError");
(*jenv)->ThrowNew(jenv, clazz, "Not enough memory");
return $null;
}
}
void *malloc(size_t nbytes);
</pre>
</div>
<p>
If no declaration name is given to <tt>%exception</tt>, it is applied to all wrapper functions.
The <tt>$action</tt> is a SWIG special variable and is replaced by the C/C++ function call being wrapped.
The <tt>return $null;</tt> handles all native method return types, namely those that have a void return and those that do not.
This is useful for typemaps that will be used in native method returning all return types.
See the section on
<a href="#Java_special_variables">Java special variables</a> for further explanation.
</p>
<p>
C++ exceptions are also easy to handle.
We can catch the C++ exception and rethrow it as a Java exception like this:</p>
<div class="code">
<pre>
%exception getitem {
try {
$action
} catch (std::out_of_range &e) {
jclass clazz = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(clazz, "Range error");
return $null;
}
}
class FooClass {
public:
FooClass *getitem(int index); // Might throw std::out_of_range exception
...
};
</pre>
</div>
<p>
In the example above, <tt>java.lang.Exception</tt> is a checked exception class and so ought to be declared in the throws clause of <tt>getitem</tt>.
Classes can be specified for adding to the throws clause using <tt>%javaexception(classes)</tt> instead of <tt>%exception</tt>,
where <tt>classes</tt> is a string containing one or more comma separated Java classes.
The <tt>%clearjavaexception</tt> feature is the equivalent to <tt>%clearexception</tt> and clears previously declared exception handlers.
The <tt>%nojavaexception</tt> feature is the equivalent to <tt>%noexception</tt> and disables the exception handler.
See <a href="Customization.html#Customization_clearing_features">Clearing features</a> for the difference on disabling and clearing features.
</p>
<div class="code">
<pre>
%javaexception("java.lang.Exception") getitem {
try {
$action
} catch (std::out_of_range &e) {
jclass clazz = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(clazz, "Range error");
return $null;
}
}
class FooClass {
public:
FooClass *getitem(int index); // Might throw std::out_of_range exception
...
};
</pre>
</div>
<p>
The generated proxy method now generates a throws clause containing <tt>java.lang.Exception</tt>:
</p>
<div class="code">
<pre>
public class FooClass {
...
public FooClass getitem(int index) throws java.lang.Exception { ... }
...
}
</pre>
</div>
<p>
The examples above first use the C JNI calling syntax then the C++ JNI calling syntax. The C++ calling syntax will not compile as C and also vice versa.
It is however possible to write JNI calls which will compile under both C and C++ and is covered in the <a href="#Java_typemaps_for_c_and_cpp">Typemaps for both C and C++ compilation</a> section.
</p>
<p>
The language-independent <tt>exception.i</tt> library file can also be used
to raise exceptions. See the <a href="Library.html#Library">SWIG Library</a> chapter.
The typemap example <a href="#Java_exception_typemap">Handling C++ exception specifications as Java exceptions</a> provides further exception handling capabilities.
</p>
<H3><a name="Java_method_access">25.7.5 Method access with %javamethodmodifiers</a></H3>
<p>
A Java feature called <tt>%javamethodmodifiers</tt> can be used to change the method modifiers from the default <tt>public</tt>. It applies to both module class methods and proxy class methods. For example:
</p>
<div class="code">
<pre>
%javamethodmodifiers protect_me() "protected";
void protect_me();
</pre>
</div>
<p>
Will produce the method in the module class with protected access.
</p>
<div class="code">
<pre>
protected static void protect_me() {
exampleJNI.protect_me();
}
</pre>
</div>
<H2><a name="Java_tips_techniques">25.8 Tips and techniques</a></H2>
<p>
Although SWIG is largely automatic, there are certain types of wrapping problems that
require additional user input. Examples include dealing with output parameters,
strings and arrays. This chapter discusses the common techniques for
solving these problems.
</p>
<H3><a name="Java_input_output_parameters">25.8.1 Input and output parameters using primitive pointers and references</a></H3>
<p>
A common problem in some C programs is handling parameters passed as simple pointers or references. For
example:
</p>
<div class="code">
<pre>
void add(int x, int y, int *result) {
*result = x + y;
}
</pre>
</div>
<p>
or perhaps
</p>
<div class="code">
<pre>
int sub(int *x, int *y) {
return *x-*y;
}
</pre>
</div>
<p>
The <tt>typemaps.i</tt> library file will help in these situations. For example:
</p>
<div class="code">
<pre>
%module example
%include "typemaps.i"
void add(int, int, int *OUTPUT);
int sub(int *INPUT, int *INPUT);
</pre>
</div>
<p>
In Java, this allows you to pass simple values. For example:
</p>
<div class="code">
<pre>
int result = example.sub(7, 4);
System.out.println("7 - 4 = " + result);
int[] sum = {0};
example.add(3, 4, sum);
System.out.println("3 + 4 = " + sum[0]);
</pre>
</div>
<p>
Which will display:
</p>
<div class="code"> <pre>
7 - 4 = 3
3 + 4 = 7
</pre></div>
<p>
Notice how the <tt>INPUT</tt> parameters allow integer values to be passed instead of pointers
and how the <tt>OUTPUT</tt> parameter will return the result in the first element of the integer array.
</p>
<p>
If you don't want to use the names <tt>INPUT</tt> or <tt>OUTPUT</tt>, use the <tt>%apply</tt>
directive. For example:
</p>
<div class="code">
<pre>
%module example
%include "typemaps.i"
%apply int *OUTPUT { int *result };
%apply int *INPUT { int *x, int *y};
void add(int x, int y, int *result);
int sub(int *x, int *y);
</pre>
</div>
<p>
If a function mutates one of its parameters like this,
</p>
<div class="code">
<pre>
void negate(int *x) {
*x = -(*x);
}
</pre>
</div>
<p>
you can use <tt>INOUT</tt> like this:
</p>
<div class="code">
<pre>
%include "typemaps.i"
...
void negate(int *INOUT);
</pre>
</div>
<p>
In Java, the input parameter is the first element in a 1 element array and is replaced by the output of the function. For example:
</p>
<div class="code">
<pre>
int[] neg = {3};
example.negate(neg);
System.out.println("Negative of 3 = " + neg[0]);
</pre>
</div>
<p>
And no prizes for guessing the output:
</p>
<div class="code"><pre>
Negative of 3 = -3
</pre></div>
<p>
These typemaps can also be applied to C++ references.
The above examples would work the same if they had been defined using references instead of pointers.
For example, the Java code to use the <tt>negate</tt> function would be the same if it were defined either as it is above:
</p>
<div class="code">
<pre>
void negate(int *INOUT);
</pre>
</div>
<p>
or using a reference:
</p>
<div class="code">
<pre>
void negate(int &INOUT);
</pre>
</div>
<p>
Note: Since most Java primitive types are immutable and are passed by value, it is not possible to
perform in-place modification of a type passed as a parameter.
</p>
<p>
Be aware that the primary purpose of the <tt>typemaps.i</tt> file is to support primitive datatypes.
Writing a function like this
</p>
<div class="code">
<pre>
void foo(Bar *OUTPUT);
</pre>
</div>
<p>
will not have the intended effect since <tt>typemaps.i</tt> does not define an OUTPUT rule for <tt>Bar</tt>.
</p>
<H3><a name="Java_simple_pointers">25.8.2 Simple pointers</a></H3>
<p>
If you must work with simple pointers such as <tt>int *</tt> or <tt>double *</tt> another approach to using
<tt>typemaps.i</tt> is to use the <tt>cpointer.i</tt> pointer library file. For example:
</p>
<div class="code">
<pre>
%module example
%include "cpointer.i"
%inline %{
extern void add(int x, int y, int *result);
%}
%pointer_functions(int, intp);
</pre>
</div>
<p>
The <tt>%pointer_functions(type, name)</tt> macro generates five helper functions that can be used to create,
destroy, copy, assign, and dereference a pointer. In this case, the functions are as follows:
</p>
<div class="code">
<pre>
int *new_intp();
int *copy_intp(int *x);
void delete_intp(int *x);
void intp_assign(int *x, int value);
int intp_value(int *x);
</pre>
</div>
<p>
In Java, you would use the functions like this:
</p>
<div class="code">
<pre>
SWIGTYPE_p_int intPtr = example.new_intp();
example.add(3, 4, intPtr);
int result = example.intp_value(intPtr);
System.out.println("3 + 4 = " + result);
</pre>
</div>
<p>
If you replace <tt>%pointer_functions(int, intp)</tt> by <tt>%pointer_class(int, intp)</tt>, the interface is more class-like.
</p>
<div class="code">
<pre>
intp intPtr = new intp();
example.add(3, 4, intPtr.cast());
int result = intPtr.value();
System.out.println("3 + 4 = " + result);
</pre>
</div>
<p>
See the <a href="Library.html#Library">SWIG Library</a> chapter for further details.
</p>
<H3><a name="Java_c_arrays">25.8.3 Wrapping C arrays with Java arrays</a></H3>
<p>
SWIG can wrap arrays in a more natural Java manner than the default by using the <tt>arrays_java.i</tt> library file.
Let's consider an example:
</p>
<div class="code">
<pre>
%include "arrays_java.i";
int array[4];
void populate(int x[]) {
int i;
for (i=0; i<4; i++)
x[i] = 100 + i;
}
</pre>
</div>
<p>
These one dimensional arrays can then be used as if they were Java arrays:
</p>
<div class="code">
<pre>
int[] array = new int[4];
example.populate(array);
System.out.print("array: ");
for (int i=0; i<array.length; i++)
System.out.print(array[i] + " ");
example.setArray(array);
int[] global_array = example.getArray();
System.out.print("\nglobal_array: ");
for (int i=0; i<array.length; i++)
System.out.print(global_array[i] + " ");
</pre>
</div>
<p>
Java arrays are always passed by reference, so any changes a function makes to the array will be seen by the calling function.
Here is the output after running this code:
</p>
<div class="code">
<pre>
array: 100 101 102 103
global_array: 100 101 102 103
</pre>
</div>
<p>
Note that for assigning array variables the length of the C variable is used, so it is possible to use a Java array that is bigger than the C code will cope with.
Only the number of elements in the C array will be used.
However, if the Java array is not large enough then you are likely to get a segmentation fault or access violation, just like you would in C.
When arrays are used in functions like <tt>populate</tt>, the size of the C array passed to the function is determined by the size of the Java array.
</p>
<p>
Please be aware that the typemaps in this library are not efficient as all the elements are copied from the Java array to a C array whenever the array is passed to and from JNI code.
There is an alternative approach using the SWIG array library and this is covered in the next section.
</p>
<H3><a name="Java_unbounded_c_arrays">25.8.4 Unbounded C Arrays</a></H3>
<p>
Sometimes a C function expects an array to be passed as a pointer. For example,
</p>
<div class="code">
<pre>
int sumitems(int *first, int nitems) {
int i, sum = 0;
for (i = 0; i < nitems; i++) {
sum += first[i];
}
return sum;
}
</pre>
</div>
<p>
One of the ways to wrap this is to apply the Java array typemaps that come in the <tt>arrays_java.i</tt> library file:
</p>
<div class="code">
<pre>
%include "arrays_java.i"
%apply int[] {int *};
</pre>
</div>
<p>
The <tt>ANY</tt> size will ensure the typemap is applied to arrays of all sizes.
You could narrow the typemap matching rules by specifying a particular array size.
Now you can use a pure Java array and pass it to the C code:
</p>
<div class="code">
<pre>
int[] array = new int[10000000]; // Array of 10-million integers
for (int i=0; i<array.length; i++) { // Set some values
array[i] = i;
}
int sum = example.sumitems(array, 10000);
System.out.println("Sum = " + sum);
</pre>
</div>
<p>
and the sum would be displayed:
</p>
<div class="code">
<pre>
Sum = 49995000
</pre>
</div>
<p>
This approach is probably the most natural way to use arrays.
However, it suffers from performance problems when using large arrays as a lot of copying
of the elements occurs in transferring the array from the Java world to the C++ world.
An alternative approach to using Java arrays for C arrays is to use an alternative SWIG library file <tt>carrays.i</tt>.
This approach can be more efficient for large arrays as the array is accessed one element at a time.
For example:
</p>
<div class="code">
<pre>
%include "carrays.i"
%array_functions(int, intArray);
</pre>
</div>
<p>
The <tt>%array_functions(type, name)</tt> macro generates four helper functions that can be used to create and
destroy arrays and operate on elements. In this case, the functions are as follows:
</p>
<div class="code">
<pre>
int *new_intArray(int nelements);
void delete_intArray(int *x);
int intArray_getitem(int *x, int index);
void intArray_setitem(int *x, int index, int value);
</pre>
</div>
<p>
In Java, you would use the functions like this:
</p>
<div class="code">
<pre>
SWIGTYPE_p_int array = example.new_intArray(10000000); // Array of 10-million integers
for (int i=0; i<10000; i++) { // Set some values
example.intArray_setitem(array, i, i);
}
int sum = example.sumitems(array, 10000);
System.out.println("Sum = " + sum);
</pre>
</div>
<p>
If you replace <tt>%array_functions(int, intp)</tt> by <tt>%array_class(int, intp)</tt>, the interface is more class-like
and a couple more helper functions are available for casting between the array and the type wrapper class.
</p>
<div class="code">
<pre>
%include "carrays.i"
%array_class(int, intArray);
</pre>
</div>
<p>
The <tt>%array_class(type, name)</tt> macro creates wrappers for an unbounded array object that
can be passed around as a simple pointer like <tt>int *</tt> or <tt>double *</tt>.
For instance, you will be able to do this in Java:
</p>
<div class="code">
<pre>
intArray array = new intArray(10000000); // Array of 10-million integers
for (int i=0; i<10000; i++) { // Set some values
array.setitem(i, i);
}
int sum = example.sumitems(array.cast(), 10000);
System.out.println("Sum = " + sum);
</pre>
</div>
<p>
The array "object" created by <tt>%array_class()</tt> does not
encapsulate pointers inside a special array object. In fact, there is
no bounds checking or safety of any kind (just like in C). Because of
this, the arrays created by this library are extremely low-level
indeed. You can't iterate over them nor can you even query their
length. In fact, any valid memory address can be accessed if you want
(negative indices, indices beyond the end of the array, etc.).
Needless to say, this approach is not going to suit all applications.
On the other hand, this low-level approach is extremely efficient and
well suited for applications in which you need to create buffers,
package binary data, etc.
</p>
<H3><a name="Java_binary_char">25.8.5 Binary data vs Strings</a></H3>
<p>
By default SWIG handles <tt>char *</tt> as a string but there is a handy multi-argument typemap available as mentioned in <a href="Library.html#Library_nn10">Passing binary data</a>.
The following simple example demonstrates using a byte array instead of passing the default string type and length to the wrapped function.
</p>
<div class="code">
<pre>
%apply (char *STRING, size_t LENGTH) { (const char data[], size_t len) }
%inline %{
void binaryChar1(const char data[], size_t len) {
printf("len: %d data: ", len);
for (size_t i=0; i<len; ++i)
printf("%x ", data[i]);
printf("\n");
}
%}
</pre>
</div>
<p>
Calling from Java requires just the byte array to be passed in as the multi-argument typemap being applied reduces the number of arguments in the target language to one, from the original two:
</p>
<div class="code">
<pre>
byte[] data = "hi\0jk".getBytes();
example.binaryChar1(data);
</pre>
</div>
<p>
resulting in the output
</p>
<div class="code"><pre>
$ java runme
len: 5 data: 68 69 0 6a 6b
</pre></div>
<H3><a name="Java_heap_allocations">25.8.6 Overriding new and delete to allocate from Java heap</a></H3>
<p>
Unlike some languages supported by SWIG, Java has a true garbage collection
subsystem. Other languages will free SWIG wrapped objects when their reference
count reaches zero. Java only schedules these objects for finalization, which
may not occur for some time. Because SWIG objects are allocated on the C
heap, Java users may find the JVM memory use
quickly exceeds the assigned limits, as memory fills with unfinalized proxy
objects. Forcing garbage collection is clearly an undesirable solution.
</p>
<p>
An elegant fix for C++ users is to override new and delete using the following
code (here shown included in a SWIG interface file)
</p>
<div class="code">
<pre>
/* File: java_heap.i */
%module test
%{
#include <stdexcept>
#include "jni.h"
/**
* A stash area embedded in each allocation to hold java handles
*/
struct Jalloc {
jbyteArray jba;
jobject ref;
};
static JavaVM *cached_jvm = 0;
JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM *jvm, void *reserved) {
cached_jvm = jvm;
return JNI_VERSION_1_2;
}
static JNIEnv * JNU_GetEnv() {
JNIEnv *env;
jint rc = cached_jvm->GetEnv((void **)&env, JNI_VERSION_1_2);
if (rc == JNI_EDETACHED)
throw std::runtime_error("current thread not attached");
if (rc == JNI_EVERSION)
throw std::runtime_error("jni version not supported");
return env;
}
void * operator new(size_t t) {
if (cached_jvm != 0) {
JNIEnv *env = JNU_GetEnv();
jbyteArray jba = env->NewByteArray((int) t + sizeof(Jalloc));
if (env->ExceptionOccurred())
throw bad_alloc();
void *jbuffer = static_cast<void *>(env->GetByteArrayElements(jba, 0));
if (env->ExceptionOccurred())
throw bad_alloc();
Jalloc *pJalloc = static_cast<Jalloc *>(jbuffer);
pJalloc->jba = jba;
/* Assign a global reference so byte array will persist until delete'ed */
pJalloc->ref = env->NewGlobalRef(jba);
if (env->ExceptionOccurred())
throw bad_alloc();
return static_cast<void *>(static_cast<char *>(jbuffer) + sizeof(Jalloc));
}
else { /* JNI_OnLoad not called, use malloc and mark as special */
Jalloc *pJalloc = static_cast<Jalloc *>(malloc((int) t + sizeof(Jalloc)));
if (!pJalloc)
throw bad_alloc();
pJalloc->ref = 0;
return static_cast<void *>(
static_cast<char *>(static_cast<void *>(pJalloc)) + sizeof(Jalloc));
}
}
void operator delete(void *v) {
if (v != 0) {
void *buffer = static_cast<void *>( static_cast<char *>(v) - sizeof(Jalloc));
Jalloc *pJalloc = static_cast<Jalloc *>(buffer);
if (pJalloc->ref) {
JNIEnv *env = JNU_GetEnv();
env->DeleteGlobalRef(pJalloc->ref);
env->ReleaseByteArrayElements(pJalloc->jba, static_cast<jbyte *>(buffer), 0);
}
else {
free(buffer);
}
}
}
%}
...
</pre>
</div>
<p>
This code caches the Java environment during initialization,
and when new is called, a Java ByteArray is allocated to provide the
SWIG objects with space in the Java heap. This has the combined
effect of re-asserting the Java virtual machine's limit on memory allocation,
and puts additional pressure on the garbage collection system to run more
frequently.
This code is made slightly more complicated because allowances must be made
if new is called before the JNI_OnLoad is executed. This can happen during
static class initialization, for example.
</p>
<p>
Unfortunately, because most Java implementations call malloc and free, this
solution will not work for C wrapped structures. However, you are free to
make functions that allocate and free memory from the Java heap using this
model and use these functions in place of malloc and free in your own
code.
</p>
<H2><a name="Java_typemaps">25.9 Java typemaps</a></H2>
<p>
This section describes how you can modify SWIG's default wrapping behavior
for various C/C++ datatypes using the <tt>%typemap</tt> directive.
You are advised to be familiar with the material in the "<a href="Typemaps.html#Typemaps">Typemaps</a>" chapter.
While not absolutely essential knowledge, this section assumes some familiarity with the Java Native Interface (JNI).
JNI documentation can be consulted either online at <a href="http://java.sun.com">Sun's Java web site</a> or from a good JNI book.
The following two books are recommended:</p>
<ul>
<li> Title: 'Essential JNI: Java Native Interface.' Author: Rob Gordon. Publisher: Prentice Hall. ISBN: 0-13-679895-0. </li>
<li> Title: 'The Java Native Interface: Programmer's Guide and Specification.' Author: Sheng Liang. Publisher: Addison-Wesley. ISBN: 0-201-32577-2. Also available <a href="http://java.sun.com/docs/books/jni">online</a> at the Sun Developer Network.</li>
</ul>
<p>
Before proceeding, it should be stressed that typemaps are not a required
part of using SWIG---the default wrapping behavior is enough in most cases.
Typemaps are only used if you want to change some aspect of the generated code.
<H3><a name="Java_default_primitive_type_mappings">25.9.1 Default primitive type mappings</a></H3>
<p>
The following table lists the default type mapping from Java to C/C++.</p>
<table BORDER summary="Default primitive type mappings">
<tr>
<td><b>C/C++ type</b></td>
<td><b>Java type</b></td>
<td><b>JNI type</b></td>
</tr>
<tr>
<td>bool<br> const bool & </td>
<td>boolean</td>
<td>jboolean</td>
</tr>
<tr>
<td>char<br>const char &</td>
<td>char</td>
<td>jchar</td>
</tr>
<tr>
<td>signed char<br>const signed char &</td>
<td>byte</td>
<td>jbyte</td>
</tr>
<tr>
<td>unsigned char<br>const unsigned char &</td>
<td>short</td>
<td>jshort</td>
</tr>
<tr>
<td>short<br>const short &</td>
<td>short</td>
<td>jshort</td>
</tr>
<tr>
<td>unsigned short<br> const unsigned short &</td>
<td>int</td>
<td>jint</td>
</tr>
<tr>
<td>int<br> const int &</td>
<td>int</td>
<td>jint</td>
</tr>
<tr>
<td>unsigned int<br> const unsigned int &</td>
<td>long</td>
<td>jlong</td>
</tr>
<tr>
<td>long<br>const long &</td>
<td>int</td>
<td>jint</td>
</tr>
<tr>
<td>unsigned long<br>const unsigned long &</td>
<td>long</td>
<td>jlong</td>
</tr>
<tr>
<td>long long<br> const long long &</td>
<td>long</td>
<td>jlong</td>
</tr>
<tr>
<td>unsigned long long<br>const unsigned long long &</td>
<td>java.math.BigInteger</td>
<td>jobject</td>
</tr>
<tr>
<td>float<br>const float &</td>
<td>float</td>
<td>jfloat</td>
</tr>
<tr>
<td>double<br> const double &</td>
<td>double</td>
<td>jdouble</td>
</tr>
<tr>
<td>char *<br>char []</td>
<td>String</td>
<td>jstring</td>
</tr>
</table>
<p>
Note that SWIG wraps the C <tt>char</tt> type as a character. Pointers and arrays of this type are wrapped as strings.
The <tt>signed char</tt> type can be used if you want to treat <tt>char</tt> as a signed number rather than a character.
Also note that all const references to primitive types are treated as if they are passed by value.
</p>
<p>
Given the following C function:
</p>
<div class="code"> <pre>
void func(unsigned short a, char *b, const long &c, unsigned long long d);
</pre> </div>
<p>
The module class method would be:
</p>
<div class="code"> <pre>
public static void func(int a, String b, int c, java.math.BigInteger d) {...}
</pre> </div>
<p>
The intermediary JNI class would use the same types:
</p>
<div class="code"> <pre>
public final static native void func(int jarg1, String jarg2, int jarg3,
java.math.BigInteger jarg4);
</pre> </div>
<p>
and the JNI function would look like this:
</p>
<div class="code"> <pre>
SWIGEXPORT void JNICALL Java_exampleJNI_func(JNIEnv *jenv, jclass jcls,
jint jarg1, jstring jarg2, jint jarg3, jobject jarg4) {...}
</pre> </div>
<p>
The mappings for C <tt>int</tt> and C <tt>long</tt> are appropriate for 32 bit applications which are used in the 32 bit JVMs.
There is no perfect mapping between Java and C as Java doesn't support all the unsigned C data types.
However, the mappings allow the full range of values for each C type from Java.
</p>
<H3><a name="Java_default_non_primitive_typemaps">25.9.2 Default typemaps for non-primitive types</a></H3>
<p>
The previous section covered the primitive type mappings.
Non-primitive types such as classes and structs are mapped using pointers on the C/C++ side and storing the pointer into a Java <tt>long</tt> variable which is held by
the proxy class or type wrapper class. This applies whether the type is marshalled as a pointer, by reference or by value.
It also applies for any unknown/incomplete types which use type wrapper classes.
</p>
<p>
So in summary, the C/C++ pointer to non-primitive types is cast into the 64 bit Java <tt>long</tt> type and therefore the JNI type is a <tt>jlong</tt>.
The Java type is either the proxy class or type wrapper class.
</p>
<H3><a name="Java_jvm64">25.9.3 Sixty four bit JVMs</a></H3>
<p>
If you are using a 64 bit JVM you may have to override the C long, but probably not C int default mappings.
Mappings will be system dependent, for example long will need remapping on Unix LP64 systems (long, pointer 64 bits, int 32 bits), but not on
Microsoft 64 bit Windows which will be using a P64 IL32 (pointer 64 bits and int, long 32 bits) model.
This may be automated in a future version of SWIG.
Note that the Java write once run anywhere philosophy holds true for all pure Java code when moving to a 64 bit JVM.
Unfortunately it won't of course hold true for JNI code.
</p>
<H3><a name="Java_what_is_typemap">25.9.4 What is a typemap?</a></H3>
<p>
A typemap is nothing more than a code generation rule that is attached to
a specific C datatype. For example, to convert integers from Java to C,
you might define a typemap like this:
</p>
<div class="code"><pre>
%module example
%typemap(in) int {
$1 = $input;
printf("Received an integer : %d\n", $1);
}
%inline %{
extern int fact(int nonnegative);
%}
</pre></div>
<p>
Typemaps are always associated with some specific aspect of code generation.
In this case, the "in" method refers to the conversion of input arguments
to C/C++. The datatype <tt>int</tt> is the datatype to which the typemap
will be applied. The supplied C code is used to convert values. In this
code a number of special variables prefaced by a <tt>$</tt> are used. The
<tt>$1</tt> variable is a placeholder for a local variable of type <tt>int</tt>.
The <tt>$input</tt> variable contains the Java data, the JNI <tt>jint</tt> in this case.
</p>
<p>
When this example is compiled into a Java module, it can be used as follows:
</p>
<div class="code"><pre>
System.out.println(example.fact(6));
</pre></div>
<p>
and the output will be:
</p>
<div class="code"><pre>
Received an integer : 6
720
</pre></div>
<p>
In this example, the typemap is applied to all occurrences of the <tt>int</tt> datatype.
You can refine this by supplying an optional parameter name. For example:
</p>
<div class="code"><pre>
%module example
%typemap(in) int nonnegative {
$1 = $input;
printf("Received an integer : %d\n", $1);
}
%inline %{
extern int fact(int nonnegative);
%}
</pre></div>
<p>
In this case, the typemap code is only attached to arguments that exactly match <tt>int nonnegative</tt>.
</p>
<p>
The application of a typemap to specific datatypes and argument names involves
more than simple text-matching--typemaps are fully integrated into the
SWIG C++ type-system. When you define a typemap for <tt>int</tt>, that typemap
applies to <tt>int</tt> and qualified variations such as <tt>const int</tt>. In addition,
the typemap system follows <tt>typedef</tt> declarations. For example:
</p>
<div class="code">
<pre>
%typemap(in) int nonnegative {
$1 = $input;
printf("Received an integer : %d\n", $1);
}
%inline %{
typedef int Integer;
extern int fact(Integer nonnegative); // Above typemap is applied
%}
</pre>
</div>
<p>
However, the matching of <tt>typedef</tt> only occurs in one direction. If you
defined a typemap for <tt>Integer</tt>, it is not applied to arguments of
type <tt>int</tt>.
</p>
<p>
Typemaps can also be defined for groups of consecutive arguments. For example:
</p>
<div class="code">
<pre>
%typemap(in) (char *str, int len) {
...
};
int count(char c, char *str, int len);
</pre>
</div>
<p>
When a multi-argument typemap is defined, the arguments are always handled as a single
Java parameter. This allows the function to be used like this (notice how the length
parameter is omitted):
</p>
<div class="code">
<pre>
int c = example.count('e', "Hello World");
</pre>
</div>
<H3><a name="Java_typemaps_c_to_java_types">25.9.5 Typemaps for mapping C/C++ types to Java types</a></H3>
<p>
The typemaps available to the Java module include the common typemaps listed in the main typemaps section.
There are a number of additional typemaps which are necessary for using SWIG with Java.
The most important of these implement the mapping of C/C++ types to Java types:
</p>
<br>
<table BORDER summary="Typemap mappings for C/C++ types to Java types">
<tr>
<td><b>Typemap</b></td>
<td><b>Description</b></td>
</tr>
<tr>
<td>jni</td>
<td>JNI C types. These provide the default mapping of types from C/C++ to JNI for use in the JNI (C/C++) code.</td>
</tr>
<tr>
<td>jtype</td>
<td>Java intermediary types. These provide the default mapping of types from C/C++ to Java for use in the native functions in the intermediary JNI class. The type must be the equivalent Java type for the JNI C type specified in the "jni" typemap.</td>
</tr>
<tr>
<td>jstype</td>
<td>Java types. These provide the default mapping of types from C/C++ to Java for use in the Java module class, proxy classes and type wrapper classes.</td>
</tr>
<tr>
<td>javain</td>
<td>Conversion from jstype to jtype.
These are Java code typemaps which transform the type used in the Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap)
to the type used in the Java intermediary JNI class (as specified in the "jtype" typemap).
In other words the typemap provides the conversion to the native method call parameter types.</td>
</tr>
<tr>
<td>javaout</td>
<td>Conversion from jtype to jstype.
These are Java code typemaps which transform the type used in the Java intermediary JNI class (as specified in the "jtype" typemap) to
the Java type used in the Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap).
In other words the typemap provides the conversion from the native method call return type. </td>
</tr>
<tr>
<td>javadirectorin</td>
<td>Conversion from jtype to jstype for director methods.
These are Java code typemaps which transform the type used in the Java intermediary JNI class (as specified in the "jtype" typemap) to
the Java type used in the Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap).
This typemap provides the conversion for the parameters in the director methods when calling up from C++ to Java.
See <a href="#Java_directors_typemaps">Director typemaps</a>. </td>
</tr>
<tr>
<td>javadirectorout</td>
<td>Conversion from jstype to jtype for director methods.
These are Java code typemaps which transform the type used in the Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap)
to the type used in the Java intermediary JNI class (as specified in the "jtype" typemap).
This typemap provides the conversion for the return type in the director methods when returning from the C++ to Java upcall.
See <a href="#Java_directors_typemaps">Director typemaps</a>. </td>
</tr>
<tr>
<td>directorin</td>
<td>Conversion from C++ type to jni type for director methods.
These are C++ typemaps which convert the parameters used in the C++ director method to the appropriate JNI intermediary type.
The conversion is done in JNI code prior to calling the Java function from the JNI code.
See <a href="#Java_directors_typemaps">Director typemaps</a>. </td>
</tr>
<tr>
<td>directorout</td>
<td>Conversion from jni type to C++ type for director methods.
These are C++ typemaps which convert the JNI return type used in the C++ director method to the appropriate C++ return type.
The conversion is done in JNI code after calling the Java function from the JNI code.
See <a href="#Java_directors_typemaps">Director typemaps</a>. </td>
</tr>
</table>
<p>
If you are writing your own typemaps to handle a particular type, you will normally have to write a collection of them.
The default typemaps are in "<tt>java.swg</tt>" and so might be a good place for finding typemaps to base any new ones on.
</p>
<p>
The "jni", "jtype" and "jstype" typemaps are usually defined together to handle the Java to C/C++ type mapping.
An "in" typemap should be accompanied by a "javain" typemap and likewise an "out" typemap by a "javaout" typemap.
If an "in" typemap is written, a "freearg" and "argout" typemap may also need to be written
as some types have a default "freearg" and/or "argout" typemap which may need overriding.
The "freearg" typemap sometimes releases memory allocated by the "in" typemap.
The "argout" typemap sometimes sets values in function parameters which are passed by reference in Java.
</p>
<p>
Note that the "in" typemap marshals the JNI type held in the "jni" typemap to the real C/C++ type and for the opposite direction,
the "out" typemap marshals the real C/C++ type to the JNI type held in the "jni" typemap.
For <a href="#Java_default_non_primitive_typemaps">non-primitive types</a>
the "in" and "out" typemaps are responsible for casting between the C/C++ pointer and the 64 bit <tt>jlong</tt> type.
There is no portable way to cast a pointer into a 64 bit integer type and the approach taken by SWIG is mostly portable, but breaks C/C++ aliasing rules.
In summary, these rules state that a pointer to any type must never be dereferenced by a pointer to any other incompatible type.
The following code snippet might aid in understand aliasing rules better:
</p>
<div class="code"><pre>
short a;
short* pa = 0;
int i = 0x1234;
a = (short)i; /* okay */
a = *(short*)&i; /* breaks aliasing rules */
</pre></div>
<p>
An email posting, <a href="http://mail-index.netbsd.org/tech-kern/2003/08/11/0001.html">Aliasing, pointer casts and gcc 3.3</a> elaborates further on the subject.
In SWIG, the "in" and "out" typemaps for pointers are typically
</p>
<div class="code"><pre>
%typemap(in) struct Foo * %{
$1 = *(struct Foo **)&$input; /* cast jlong into C ptr */
%}
%typemap(out) struct Bar * %{
*(struct Bar **)&$result = $1; /* cast C ptr into jlong */
%}
struct Bar {...};
struct Foo {...};
struct Bar * FooBar(struct Foo *f);
</pre></div>
<p>
resulting in the following code which breaks the aliasing rules:
</p>
<div class="code"><pre>
SWIGEXPORT jlong JNICALL Java_exampleJNI_FooBar(JNIEnv *jenv, jclass jcls,
jlong jarg1, jobject jarg1_) {
jlong jresult = 0 ;
struct Foo *arg1 = (struct Foo *) 0 ;
struct Bar *result = 0 ;
(void)jenv;
(void)jcls;
(void)jarg1_;
arg1 = *(struct Foo **)&jarg1;
result = (struct Bar *)FooBar(arg1);
*(struct Bar **)&jresult = result;
return jresult;
}
</pre></div>
<p>
If you are using gcc as your C compiler, you might get a "dereferencing type-punned pointer will break strict-aliasing rules" warning about this.
Please see <a href="#Java_compiling_dynamic">Compiling a dynamic module</a> to avoid runtime problems with these strict aliasing rules.
</p>
<p>
The default code generated by SWIG for the Java module comes from the typemaps in the "<tt>java.swg</tt>" library file which implements the
<a href="#Java_default_primitive_type_mappings">Default primitive type mappings</a> and
<a href="#Java_default_non_primitive_typemaps">Default typemaps for non-primitive types</a> covered earlier.
There are other type mapping typemaps in the Java library.
These are listed below:
</p>
<br>
<table BORDER summary="Java library typemap mappings">
<tr VALIGN=TOP>
<td><b>C Type</b></td>
<td><b>Typemap</b></td>
<td><b>File</b></td>
<td><b>Kind</b></td>
<td><b>Java Type</b></td>
<td><b>Function</b></td>
</tr>
<tr>
<td>primitive pointers and references</td>
<td>INPUT</td>
<td>typemaps.i</td>
<td>input</td>
<td>Java basic types</td>
<td>Allows values to be used for C functions taking pointers for data input.
<tr>
<td>primitive pointers and references</td>
<td>OUTPUT</td>
<td>typemaps.i</td>
<td>output</td>
<td>Java basic type arrays</td>
<td>Allows values held within an array to be used for C functions taking pointers for data output.
<tr>
<td>primitive pointers and references</td>
<td>INOUT</td>
<td>typemaps.i</td>
<td>input<br>output</td>
<td>Java basic type arrays</td>
<td>Allows values held within an array to be used for C functions taking pointers for data input and output.
<tr>
<td>string <br>wstring</td>
<td>[unnamed]</td>
<td>std_string.i</td>
<td>input<br> output</td>
<td>String</td>
<td>Use for std::string mapping to Java String.</td>
</tr>
<tr>
<td>arrays of primitive types</td>
<td>[unnamed]</td>
<td>arrays_java.i</td>
<td>input<br> output</td>
<td>arrays of primitive Java types</td>
<td>Use for mapping C arrays to Java arrays.</td>
</tr>
<tr>
<td>arrays of classes/structs/unions</td>
<td>JAVA_ARRAYSOFCLASSES macro</td>
<td>arrays_java.i</td>
<td>input<br> output</td>
<td>arrays of proxy classes</td>
<td>Use for mapping C arrays to Java arrays.</td>
</tr>
<tr>
<td>arrays of enums</td>
<td>ARRAYSOFENUMS</td>
<td>arrays_java.i</td>
<td>input<br> output</td>
<td>int[]</td>
<td>Use for mapping C arrays to Java arrays (typeunsafe and simple enum wrapping approaches only).</td>
</tr>
<tr VALIGN=TOP>
<td>char *</td>
<td>BYTE</td>
<td>various.i</td>
<td>input</td>
<td>byte[]</td>
<td VALIGN=TOP>Java byte array is converted to char array</td>
</tr>
<tr>
<td>char **</td>
<td>STRING_ARRAY</td>
<td>various.i</td>
<td>input<br> output</td>
<td>String[]</td>
<td>Use for mapping NULL terminated arrays of C strings to Java String arrays</td>
</tr>
<tr>
<td>unsigned char *</td>
<td>NIOBUFFER</td>
<td>various.i</td>
<td>input<br> output</td>
<td>java.nio.Buffer</td>
<td>Use for mapping directly allocated buffers to c/c++. useful with directors and long lived memory objects</td>
</tr>
</table>
<H3><a name="Java_typemap_attributes">25.9.6 Java typemap attributes</a></H3>
<p>
There are a few additional typemap attributes that the Java module supports.
</p>
<p>
The first of these is the 'throws' attribute.
The throws attribute is optional and specified after the typemap name and contains one or more comma separated classes for adding to the throws clause for any methods that use that typemap.
It is analogous to the <a href="#Java_exception_handling">%javaexception</a> feature's throws attribute.
</p>
<div class="code">
<pre>
%typemap(typemapname, throws="ExceptionClass1, ExceptionClass2") type { ... }
</pre>
</div>
<p>
The attribute is necessary for supporting Java checked exceptions and can be added to just about any typemap.
The list of typemaps include all the C/C++ (JNI) typemaps in the "<a href="Typemaps.html#Typemaps">Typemaps</a>" chapter and the
Java specific typemaps listed in <a href="#Java_typemaps_c_to_java_types">the previous section</a>, barring
the "jni", "jtype" and "jstype" typemaps as they could never contain code to throw an exception.
</p>
<p>
The throws clause is generated for the proxy method as well as the JNI method in the JNI intermediary class.
If a method uses more than one typemap and each of those typemaps have classes specified in the throws clause,
the union of the exception classes is added to the throws clause ensuring there are no duplicate classes.
See the <a href="#Java_nan_exception_typemap">NaN exception example</a> for further usage.
</p>
<p>
The "jtype" typemap has the optional 'nopgcpp' attribute which can be used to suppress the generation of the <a href="#Java_pgcpp">premature garbage collection prevention parameter</a>.
</p>
<p>
The "javain" typemap has the optional 'pre', 'post' and 'pgcppname' attributes. These are used for generating code before and after the JNI call in the proxy class or module class. The 'pre' attribute contains code that is generated before the JNI call and the 'post' attribute contains code generated after the JNI call. The 'pgcppname' attribute is used to change the <a href="#Java_pgcpp">premature garbage collection prevention parameter</a> name passed to the JNI function. This is sometimes needed when the 'pre' typemap creates a temporary variable which is then passed to the JNI function.
</p>
<p>
<a name="Java_constructor_helper_function"></a>
Note that when the 'pre' or 'post' attributes are specified and the associated type is used in a constructor, a constructor helper function is generated. This is necessary as the Java proxy constructor wrapper makes a call to a support constructor using a <i>this</i> call. In Java the <i>this</i> call must be the first statement in the constructor body. The constructor body thus calls the helper function and the helper function instead makes the JNI call, ensuring the 'pre' code is called before the JNI call is made. There is a <a href="#Java_date_marshalling">Date marshalling</a> example showing 'pre', 'post' and 'pgcppname' attributes in action.
</p>
<H3><a name="Java_special_variables">25.9.7 Java special variables</a></H3>
<p>
The standard SWIG special variables are available for use within typemaps as described in the <a href="Typemaps.html#Typemaps">Typemaps documentation</a>, for example <tt>$1</tt>, <tt>$input</tt>, <tt>$result</tt> etc.
</p>
<p>
The Java module uses a few additional special variables:
</p>
<p>
<b><tt>$javaclassname</tt></b><br>
This special variable works like the other <a href="Typemaps.html#Typemaps_special_variables">special variables</a>
and <tt>$javaclassname</tt> is similar to <tt>$1_type</tt>. It expands to the class name for use in Java given a pointer.
SWIG wraps unions, structs and classes using pointers and in this case it expands to the Java proxy class name.
For example, <tt>$javaclassname</tt> is replaced by the proxy classname <tt>Foo</tt> when wrapping a <tt>Foo *</tt> and
<tt>$&javaclassname</tt> expands to the proxy classname when wrapping the C/C++ type <tt>Foo</tt> and <tt>$*javaclassname</tt>
expands to the proxy classname when wrapping <tt>Foo *&</tt>.
If the type does not have an associated proxy class, it expands to the type wrapper class name, for example,
<tt>SWIGTYPE_p_unsigned_short</tt> is generated when wrapping <tt>unsigned short *</tt>.
The class name is fully qualified with the package name when using the
<a href="SWIGPlus.html#SWIGPlus_nspace">nspace feature</a>.
</p>
<p>
<b><tt>$javaclazzname</tt></b><br>
This special variable works like <tt>$javaclassname</tt>, but expands the fully qualified C++ class into the package name,
if used by the <a href="SWIGPlus.html#SWIGPlus_nspace">nspace feature</a>, and the proxy class name, mangled for use as a function name.
For example, <tt>Namespace1::Namespace2::Klass</tt> is expanded into <tt>Namespace1_Namespace2_Klass_</tt>.
This special variable is usually used for making calls to a function in the intermediary JNI class, as they are mangled with this prefix.
</p>
<p>
<b><tt>$null</tt></b><br>
Used in input typemaps to return early from JNI functions that have either void or a non-void return type. Example:
</p>
<div class="code"><pre>
%typemap(check) int * %{
if (error) {
SWIG_JavaThrowException(jenv, SWIG_JavaIndexOutOfBoundsException, "Array element error");
return $null;
}
%}
</pre></div>
<p>
If the typemap gets put into a function with void as return, $null will expand to nothing:
</p>
<div class="code"><pre>
SWIGEXPORT void JNICALL Java_jnifn(...) {
if (error) {
SWIG_JavaThrowException(jenv, SWIG_JavaIndexOutOfBoundsException, "Array element error");
return ;
}
...
}
</pre></div>
<p>
otherwise $null expands to <i>NULL</i>
</p>
<div class="code"><pre>
SWIGEXPORT jobject JNICALL Java_jnifn(...) {
if (error) {
SWIG_JavaThrowException(jenv, SWIG_JavaIndexOutOfBoundsException, "Array element error");
return NULL;
}
...
}
</pre></div>
<p>
<b><tt>$javainput, $jnicall and $owner</tt></b><br>
The $javainput special variable is used in "javain" typemaps and $jnicall and $owner are used in "javaout" typemaps.
$jnicall is analogous to $action in %exception. It is replaced by the call to the native method in the intermediary JNI class.
$owner is replaced by either <tt>true</tt> if %newobject has been used, otherwise <tt>false</tt>.
$javainput is analogous to the $input special variable. It is replaced by the parameter name.
</p>
<p>
Here is an example:
</p>
<div class="code"><pre>
%typemap(javain) Class "Class.getCPtr($javainput)"
%typemap(javain) unsigned short "$javainput"
%typemap(javaout) Class * {
return new Class($jnicall, $owner);
}
%inline %{
class Class {...};
Class * bar(Class cls, unsigned short ush) { return new Class(); };
%}
</pre></div>
<p>
The generated proxy code is then:
</p>
<div class="code"><pre>
public static Class bar(Class cls, int ush) {
return new Class(exampleJNI.bar(Class.getCPtr(cls), cls, ush), false);
}
</pre></div>
<p>
Here $javainput has been replaced by <tt>cls</tt> and <tt>ush</tt>. $jnicall has been replaced by
the native method call, <tt>exampleJNI.bar(...)</tt> and $owner has been replaced by <tt>false</tt>.
If %newobject is used by adding the following at the beginning of our example:
</p>
<div class="code"><pre>
%newobject bar(Class cls, unsigned short ush);
</pre></div>
<p>
The generated code constructs the return type using <tt>true</tt> indicating the proxy class <tt>Class</tt> is responsible for destroying the C++ memory allocated for it in <tt>bar</tt>:
</p>
<div class="code"><pre>
public static Class bar(Class cls, int ush) {
return new Class(exampleJNI.bar(Class.getCPtr(cls), cls, ush), true);
}
</pre></div>
<p>
<b><tt>$static</tt></b><br>
This special variable expands to either <i>static</i> or nothing depending on whether the class is an inner Java class or not.
It is used in the "javaclassmodifiers" typemap so that global classes can be wrapped as Java proxy classes and nested C++ classes/enums
can be wrapped with the Java equivalent, that is, static inner proxy classes.
</p>
<p>
<b><tt>$error, $jniinput, $javacall and $packagepath</tt></b><br>
These special variables are used in the directors typemaps. See <a href="#Java_directors_typemaps">Director specific typemaps</a> for details.
</p>
<p>
<b><tt>$module</tt></b><br>
This special variable expands to the module name, as specified by <tt>%module</tt> or the <tt>-module</tt> commandline option.
</p>
<p>
<b><tt>$imclassname</tt></b><br>
This special variable expands to the intermediary class name. Usually this is the same as '$moduleJNI',
unless the jniclassname attribute is specified in the <a href="Java.html#Java_module_directive">%module directive</a>.
</p>
<p>
<b><tt>$javainterfacename</tt></b><br>
This special variable is only expanded when the <tt>interface</tt> feature is applied to a class.
It works much like <tt>$javaclassname</tt>, but instead of expanding to the proxy classname,
it expands to the value in the <tt>name</tt> attribute in the <tt>interface</tt> feature.
For example:
</p>
<div class="code"><pre>
%feature("interface", name="MyInterface") MyClass;
%typemap(jstype) MyClass "$&javainterfacename"
%typemap(jstype) MyClass * "$javainterfacename"
</pre></div>
<p>
will result in the <tt>jstype</tt> typemap expanding to <tt>MyInterface</tt> for both
<tt>MyClass</tt> and <tt>MyClass *</tt>.
The interface name is fully qualified with the package name when using the
<a href="SWIGPlus.html#SWIGPlus_nspace">nspace feature</a>.
</p>
<p>
<b><tt>$interfacename</tt></b><br>
This special variable is only expanded when the <tt>interface</tt> feature is applied to a class.
It expands to just the interface name and is thus different to <tt>$javainterfacename</tt>
in that it is not fully qualified with the package name when using the
<a href="SWIGPlus.html#SWIGPlus_nspace">nspace feature</a>.
</p>
<H3><a name="Java_typemaps_for_c_and_cpp">25.9.8 Typemaps for both C and C++ compilation</a></H3>
<p>
JNI calls must be written differently depending on whether the code is being compiled as C or C++.
For example C compilation requires the pointer to a function pointer struct member syntax like
</p>
<div class="code"><pre>
const jclass clazz = (*jenv)->FindClass(jenv, "java/lang/String");
</pre></div>
<p>
whereas C++ code compilation of the same function call is a member function call using a class pointer like
</p>
<div class="code"><pre>
const jclass clazz = jenv->FindClass("java/lang/String");
</pre></div>
<p>
To enable typemaps to be used for either C or C++ compilation, a set of JCALLx macros have been defined in Lib/java/javahead.swg,
where x is the number of arguments in the C++ version of the JNI call.
The above JNI calls would be written in a typemap like this
</p>
<div class="code"><pre>
const jclass clazz = JCALL1(FindClass, jenv, "java/lang/String");
</pre></div>
<p>
Note that the SWIG preprocessor expands these into the appropriate C or C++ JNI calling convention.
The C calling convention is emitted by default and the C++ calling convention is emitted when using the -c++ SWIG commandline option.
If you do not intend your code to be targeting both C and C++ then your typemaps can use the appropriate JNI calling convention and need not use the JCALLx macros.
</p>
<H3><a name="Java_code_typemaps">25.9.9 Java code typemaps</a></H3>
<p>
Most of SWIG's typemaps are used for the generation of C/C++ code.
The typemaps in this section are used solely for the generation of Java code.
Elements of proxy classes and type wrapper classes come from the following typemaps (the defaults).
</p>
<p><tt>%typemap(javabase)</tt></p>
<div class="indent">
base (extends) for Java class: empty default
<br>
Note that this typemap accepts a <tt>replace</tt> attribute as an optional flag. When set to "1", it will replace/override any C++ base classes
that might have been parsed. If this flag is not specified and there are C++ base classes, then a multiple inheritance warning
is issued and the code in the typemap is ignored.
The typemap also accepts a <tt>notderived</tt> attribute as an optional flag. When set to "1", it will not apply to classes that
are derived from a C++ base.
When used with the SWIGTYPE type, it is useful for giving a common base for all proxy classes, that is, providing a base class that sits in between all proxy classes and the Java base class <tt>Object</tt> for example: <tt>%typemap(javabase, notderived="1") SWIGTYPE "CommonBase"</tt>.
</div>
<p><tt>%typemap(javabody)</tt></p>
<div class="indent">
the essential support body for proxy classes (proxy base classes only), typewrapper classes and enum classes.
Default contains extra constructors, memory ownership control member variables (<tt>swigCMemOwn</tt>, <tt>swigCPtr</tt>), the <tt>getCPtr</tt> method etc.
</div>
<p><tt>%typemap(javabody_derived)</tt></p>
<div class="indent">
the essential support body for proxy classes (derived classes only).
Same as "javabody" typemap, but only used for proxy derived classes.
</div>
<p><tt>%typemap(javaclassmodifiers)</tt></p>
<div class="indent">
class modifiers for the Java class: default is "public class"
</div>
<p><tt>%typemap(javacode)</tt></p>
<div class="indent">
Java code is copied verbatim to the Java class: empty default
As there can only be one "javacode" typemap per class, also consider using the
<a href="Java.html#Java_proxycode">%proxycode</a> directive which can be used multiple times per class
and offers nearly identical functionality.
</div>
<p><tt>%typemap(javadestruct, methodname="delete", methodmodifiers="public synchronized")</tt> <br></p>
<div class="indent">
destructor wrapper - the <tt>delete()</tt> method (proxy classes only),
used for all proxy classes except those which have a base class
: default calls C++ destructor (or frees C memory) and resets <tt>swigCPtr</tt> and <tt>swigCMemOwn</tt> flags
<br>
<br>
Note that the <tt>delete()</tt> method name is configurable and is specified by the <tt>methodname</tt> attribute.
The method modifiers are also configurable via the <tt>methodmodifiers</tt> attribute.
</div>
<p><tt>%typemap(javadestruct_derived, methodname="delete", methodmodifiers="public synchronized")</tt></p>
<div class="indent">
destructor wrapper - the <tt>delete()</tt> method (proxy classes only),
same as "javadestruct" but only used for derived proxy classes
: default calls C++ destructor (or frees C memory) and resets <tt>swigCPtr</tt> and <tt>swigCMemOwn</tt> flags
<br>
<br>
Note that the <tt>delete()</tt> method name is configurable and is specified by the <tt>methodname</tt> attribute.
The method modifiers are also configurable via the <tt>methodmodifiers</tt> attribute.
</div>
<p><tt>%typemap(javaimports)</tt></p>
<div class="indent">
import statements for Java class: empty default
</div>
<p><tt>%typemap(javainterfaces)</tt></p>
<div class="indent">
interfaces (implements) for Java class: empty default
</div>
<p><tt>%typemap(javafinalize)</tt></p>
<div class="indent">
the <tt>finalize()</tt> method (proxy classes only): default calls the <tt>delete()</tt> method
<p>
Note that the default javafinalize typemap must contain the full implementation of the finalize method.
Any customization to this typemap must still declare a java finalize method with the correct signature.
Note also that the name of the generated "delete" method may be affected by <tt>javadestruct</tt> and <tt>javadestruct_derived</tt> typemaps.
Below shows an example modifying the finalizer, assuming the <tt>delete</tt> method has been renamed to <tt>swig_delete</tt>.
</p>
<div class="code"><pre>
%typemap(javafinalize) SWIGTYPE %{
protected void finalize() {
swig_delete(); // renamed to prevent conflict with existing delete method
}
]%
</pre></div>
</div>
<p><tt>%typemap(javainterfacecode, declaration="...", cptrmethod="...")</tt></p>
<div class="indent">
<p>
The code in this typemap is added to the body of a Java proxy class but only when a class is
marked with the <tt>interface</tt> feature.
The typemap is used in the proxy class marked with the interface feature as well as all proxy classes derived from the marked C++ class,
as they are all generated as implementing the Java interface.
The default typemap used in the <tt>%interface</tt> family of macros mentioned in
the <a href="Java.html#Java_interfaces">Java interfaces</a> section,
where <tt>CTYPE</tt> is the C++ class macro argument,
is as follows:
</p>
<div class="code"><pre>
%typemap(javainterfacecode,
declaration=" long $interfacename_GetInterfaceCPtr();\n",
cptrmethod="$interfacename_GetInterfaceCPtr") CTYPE %{
public long $interfacename_GetInterfaceCPtr() {
return $imclassname.$javaclazzname$interfacename_GetInterfaceCPtr(swigCPtr);
}
%}
</pre></div>
</div>
<p>
The special variable <tt>$interfacename</tt> is expanded into the
name specified in the <tt>interface</tt> feature.
</p>
<p>
<b>Compatibility Note:</b> In SWIG-1.3.21 and earlier releases, typemaps called "javagetcptr" and "javaptrconstructormodifiers" were available.
These are deprecated and the "javabody" typemap can be used instead.
The <tt>javainterfacecode</tt> typemap and interface feature was introduced in SWIG-3.0.9.
</p>
<p>
In summary the contents of the typemaps make up a proxy class like this:
</p>
<div class="code">
<pre>
[ javaimports typemap ]
[ javaclassmodifiers typemap ] javaclassname extends [ javabase typemap ]
implements [ javainterfaces typemap ] {
[ javabody or javabody_derived typemap ]
[ javafinalize typemap ]
public synchronized void <i>delete</i>() [ javadestruct OR javadestruct_derived typemap ]
[ javacode typemap ]
[ javainterfacecode typemap]
... proxy functions ...
}
</pre>
</div>
<p>
Note the <tt><i>delete</i>()</tt> methodname and method modifiers are configurable, see "javadestruct" and "javadestruct_derived" typemaps above.
</p>
<p>
The <tt>javainterfacecode</tt> typemap is only used when bases are marked by the <tt>interface</tt>
feature and the <tt>implements</tt> list will also then be expanded to include these Java interfaces.
</p>
<p>
The type wrapper class is similar in construction:
</p>
<div class="code">
<pre>
[ javaimports typemap ]
[ javaclassmodifiers typemap ] javaclassname extends [ javabase typemap ]
implements [ javainterfaces typemap ] {
[ javabody typemap ]
[ javacode typemap ]
}
</pre>
</div>
<p>The enum class is also similar in construction:</p>
<div class="code">
<pre>
[ javaimports typemap ]
[ javaclassmodifiers typemap ] javaclassname extends [ javabase typemap ]
implements [ javainterfaces typemap ] {
... Enum values ...
[ javabody typemap ]
[ javacode typemap ]
}
</pre>
</div>
<p>
The "javaimports" typemap is ignored if the enum class is wrapped by an inner Java class, that is when wrapping an enum declared within a C++ class.
</p>
<p>The Java interface turned on by the <tt>interface</tt> feature is fairly simple:</p>
<div class="code">
<pre>
[ javaimports typemap ]
public interface [ javainterfacename ] {
[ javainterfacecode:cptrmethod typemap attribute ]
... interface declarations ...
}
</pre>
</div>
<p>
where <tt>javainterfacename</tt> is the <tt>name</tt> attribute in the <a href="Java.html#Java_interfaces">interface feature</a>.
</p>
<p>
The defaults can be overridden to tailor the generated classes.
Here is an example which will change the <tt>getCPtr</tt> method and constructor from the default public access to protected access.
If the classes in one package are not using the classes in another package, then these methods need not be public and removing access to these low level implementation details, is a good thing.
If you are invoking SWIG more than once and generating the wrapped classes into different packages in each invocation, then you cannot do this as you will then have different packages.
</p>
<div class="code">
<pre>
%typemap(javabody) SWIGTYPE %{
private transient long swigCPtr;
protected transient boolean swigCMemOwn;
protected $javaclassname(long cPtr, boolean cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = cPtr;
}
protected static long getCPtr($javaclassname obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}
%}
</pre>
</div>
<p>
The typemap code is the same that is in "<tt>java.swg</tt>", barring the last two method modifiers.
Note that <tt>SWIGTYPE</tt> will target all proxy classes, but not the type wrapper classes.
Also the above typemap is only used for proxy classes that are potential base classes.
To target proxy classes that are derived from a wrapped class as well, the "javabody_derived" typemap should also be overridden.
</p>
<p>
For the typemap to be used in all type wrapper classes, all the different types that type wrapper classes could be used for should be targeted:
</p>
<div class="code">
<pre>
%typemap(javabody) SWIGTYPE *, SWIGTYPE &, SWIGTYPE [], SWIGTYPE (CLASS::*) %{
private transient long swigCPtr;
protected $javaclassname(long cPtr, boolean bFutureUse) {
swigCPtr = cPtr;
}
protected $javaclassname() {
swigCPtr = 0;
}
protected static long getCPtr($javaclassname obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}
%}
</pre>
</div>
<p>
Again this is the same that is in "<tt>java.swg</tt>", barring the method modifier for <tt>getCPtr</tt>.
</p>
<p>
When using <a href="Modules.html#Modules">multiple modules</a> or the <a href="#Java_namespaces">nspace feature</a> it is common to invoke SWIG with a different <tt>-package</tt>
command line option for each module.
However, by default the generated code may not compile if
generated classes in one package use generated classes in another package.
The visibility of the
<tt>getCPtr()</tt> and pointer constructor generated from the <tt>javabody</tt> typemaps needs changing.
The default visibility is <tt>protected</tt> but it needs to be <tt>public</tt> for access from a different package.
Just changing 'protected' to 'public' in the typemap achieves this.
Two macros are available in <tt>java.swg</tt> to make this easier and using them is the preferred approach
over simply copying the typemaps and modifying as this is forward compatible with any changes in
the <tt>javabody</tt> typemap in future versions of SWIG.
The macros are for the proxy and typewrapper classes and can respectively be used to
to make the method and constructor public:
</p>
<div class="code">
<pre>
SWIG_JAVABODY_PROXY(public, public, SWIGTYPE)
SWIG_JAVABODY_TYPEWRAPPER(public, public, public, SWIGTYPE)
</pre>
</div>
<H3><a name="Java_directors_typemaps">25.9.10 Director specific typemaps</a></H3>
<p>
The Java directors feature requires the "javadirectorin", "javadirectorout", "directorin" and the "directorout" typemaps in order to work properly.
The "javapackage" typemap is an optional typemap used to identify the Java package path for individual SWIG generated proxy classes used in director methods.
</p>
<p><tt>%typemap(directorin)</tt></p>
<div class="indent">
<p>
The "directorin" typemap is used for converting arguments in the C++ director class to the appropriate JNI type before the upcall to Java.
This typemap also specifies the JNI field descriptor for the type in the "descriptor" attribute.
For example, integers are converted as follows:
</p>
<div class="code">
<pre>
%typemap(directorin, descriptor="I") int "$input = (jint) $1;"
</pre>
</div>
<p>
<code>$input</code> is the SWIG name of the JNI temporary variable passed to Java in the upcall.
The <code>descriptor="I"</code> will put an <code>I</code> into the JNI field descriptor that identifies the Java method that will be called from C++.
For more about JNI field descriptors and their importance, refer to the <a href="#Java_typemaps">JNI documentation mentioned earlier</a>.
A typemap for C character strings is:
</p>
<div class="code">
<pre>
%typemap(directorin, descriptor="Ljava/lang/String;", noblock=1) char * {
$input = 0;
if ($1) {
$input = JCALL1(NewStringUTF, jenv, (const char *)$1);
if (!$input) return $null;
}
Swig::LocalRefGuard $1_refguard(jenv, $input);
}
</pre>
</div>
<p>
The <tt>Swig::LocalRefGuard</tt> class should be used in directorin typemaps for newly allocated objects.
It is used to control local reference counts ensuring the count is decremented after the call up into Java has completed.
Its destructor simply calls <tt>jenv->DeleteLocalRef(obj)</tt> on the <tt>obj</tt>
passed in during construction.
</p>
<p>
User-defined types have the default "descriptor" attribute "<code>L$packagepath/$javaclassname;</code>" where <code>$packagepath</code>
is the package name passed from the SWIG command line and <code>$javaclassname</code> is the Java proxy class' name.
If the <tt>-package</tt> commandline option is not used to specify the package, then '$packagepath/' will be removed from the resulting output JNI field descriptor.
<b>Do not forget the terminating ';' for JNI field descriptors starting with 'L'.</b>
If the ';' is left out, Java will generate a "method not found" runtime error.
Note that the <code>$packagepath</code> substitution always uses the path separator '/' when expanded.
The <code>$javaclassname</code> expansion can be confusing as it is normally expanded using the '.' separator.
However, <code>$javaclassname</code> is expanded using the path separator '/' in typemap's "descriptor" attribute
as well as in the "directorthrows" typemap.
</p>
</div>
<p><tt>%typemap(directorout)</tt></p>
<div class="indent">
<p>
The "directorout" typemap is used for converting the JNI return type in the C++ director class to the appropriate C++ type after the upcall to Java.
For example, integers are converted as follows:
</p>
<div class="code">
<pre>
%typemap(directorout) int %{ $result = (int)$input; %}
</pre>
</div>
<p>
<code>$input</code> is the SWIG name of the JNI temporary variable returned from Java after the upcall.
<code>$result</code> is the resulting output.
A typemap for C character strings is:
</p>
<div class="code">
<pre>
%typemap(directorout) char * {
$1 = 0;
if ($input) {
$result = (char *)jenv->GetStringUTFChars($input, 0);
if (!$1) return $null;
}
}
</pre>
</div>
</div>
<p><tt>%typemap(javadirectorin)</tt></p>
<div class="indent">
<p>
Conversion from jtype to jstype for director methods.
These are Java code typemaps which transform the type used in the Java intermediary JNI class (as specified in the "jtype" typemap) to
the Java type used in the Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap).
This typemap provides the conversion for the parameters in the director methods when calling up from C++ to Java.
</p>
<p>
For primitive types, this typemap is usually specified as:
</p>
<div class="code">
<pre>
%typemap(javadirectorin) int "$jniinput"
</pre>
</div>
<p>
The <code>$jniinput</code> special variable is analogous to <code>$javainput</code> special variable.
It is replaced by the input parameter name.
</p>
</div>
<p><tt>%typemap(javadirectorout)</tt></p>
<div class="indent">
<p>
Conversion from jstype to jtype for director methods.
These are Java code typemaps which transform the type used in the Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap)
to the type used in the Java intermediary JNI class (as specified in the "jtype" typemap).
This typemap provides the conversion for the return type in the director methods when returning from the C++ to Java upcall.
</p>
<p>
For primitive types, this typemap is usually specified as:
</p>
<div class="code">
<pre>
%typemap(javadirectorout) int "$javacall"
</pre>
</div>
<p>
The <code>$javacall</code> special variable is analogous to the <code>$jnicall</code> special variable.
It is replaced by the call to the target Java method.
The target method is the method in the Java proxy class which overrides the virtual C++ method in the C++ base class.
</p>
</div>
<p><tt>%typemap(directorthrows)</tt></p>
<div class="indent">
<p>
Conversion of Java exceptions to C++ exceptions in director method's exception handling.
This typemap is expected to test the <tt>$error</tt> special variable for a matching Java exception
and if successful convert and throw it into a C++ exception given by the typemap's type.
The <code>$error</code> special variable is of type <code>jthrowable</code> and is
substituted with a unique variable name in the generated code.
</p>
<p>
The example below converts a Java <code>java.lang.IndexOutOfBoundsException</code> exception
to the typemap's type, that is <code>std::out_of_range</code>:
</p>
<div class="code">
<pre>
%typemap(directorthrows) std::out_of_range %{
if (Swig::ExceptionMatches(jenv, $error, "java/lang/IndexOutOfBoundsException")) {
throw std::out_of_range(Swig::JavaExceptionMessage(jenv, $error).message());
}
%}
</pre>
</div>
<p>
The utility function <code>Swig::ExceptionMatches</code>
and class <code>Swig::JavaExceptionMessage</code> are helpers available when using directors and are described
in the <a href="#Java_exceptions_from_directors">Java Exceptions from Directors</a> section.
</p>
</div>
<p><tt>%typemap(javapackage)</tt></p>
<div class="indent">
<p>
The "javapackage" typemap is optional; it serves to identify a class's Java package.
This typemap should be used in conjunction with classes that are defined outside of the current SWIG interface file.
The typemap is only used if the type is used in a director method, that is, in a virtual method in a director class.
For example:
</p>
<div class="code">
<pre>
// class Foo is handled in a different interface file:
%import "Foo.i"
%feature("director") Example;
%inline {
class Bar { };
class Example {
public:
virtual ~Example();
virtual void ping(Foo *arg1, Bar *arg2);
};
}
</pre>
</div>
<p>
Assume that the Foo class is part of the Java package <i>com.wombat.foo</i> but the above interface file is part of the Java package <i>com.wombat.example</i>.
Without the "javapackage" typemap, SWIG will assume that the Foo class belongs to <i>com.wombat.example</i> class.
The corrected interface file looks like:
</p>
<div class="code">
<pre>
// class Foo is handled in a different interface file:
%import "Foo.i"
%typemap("javapackage") Foo, Foo *, Foo & "com.wombat.foo";
%feature("director") Example;
%inline {
class Bar { };
class Example {
public:
virtual ~Example();
virtual void ping(Foo *arg1, Bar *arg2);
};
}
</pre>
</div>
<p>
SWIG looks up the package based on the <b>actual</b> type (plain Foo, Foo pointer and Foo reference), so it is important to associate all three types with the desired package.
Practically speaking, you should create a separate SWIG interface file, which is %import-ed into each SWIG interface file, when you have multiple Java packages.
Note the helper macros below, <code>OTHER_PACKAGE_SPEC</code> and <code>ANOTHER_PACKAGE_SPEC</code>, which reduce the amount of extra typing.
"<code>TYPE...</code>" is useful when passing templated types to the macro, since multiargument template types appear to the SWIG preprocessor as multiple macro arguments.
</p>
<div class="code">
<pre>
%typemap("javapackage") SWIGTYPE, SWIGTYPE *, SWIGTYPE &
"package.for.most.classes";
%define OTHER_PACKAGE_SPEC(TYPE...)
%typemap("javapackage") TYPE, TYPE *, TYPE & "package.for.other.classes";
%enddef
%define ANOTHER_PACKAGE_SPEC(TYPE...)
%typemap("javapackage") TYPE, TYPE *, TYPE & "package.for.another.set";
%enddef
OTHER_PACKAGE_SPEC(Package_2_class_one)
ANOTHER_PACKAGE_SPEC(Package_3_class_two)
/* etc */
</pre>
</div>
<p>
The basic strategy here is to provide a default package typemap for the majority of the classes, only providing "javapackage" typemaps for the exceptions.
</p>
</div>
<H2><a name="Java_typemap_examples">25.10 Typemap Examples</a></H2>
<p>
This section includes a few examples of typemaps. For more examples, you
might look at the files "<tt>java.swg</tt>" and "<tt>typemaps.i</tt>" in
the SWIG library.
</p>
<H3><a name="Java_simpler_enum_classes">25.10.1 Simpler Java enums for enums without initializers</a></H3>
<p>
The default <a href="#Java_proper_enums_classes">Proper Java enums</a> approach to wrapping enums is somewhat verbose.
This is to handle all possible C/C++ enums, in particular enums with initializers.
The generated code can be simplified if the enum being wrapped does not have any initializers.
</p>
<p>
The following shows how to remove the support methods that are generated by default and instead use the methods in the Java
enum base class <tt>java.lang.Enum</tt> and <tt>java.lang.Class</tt> for marshalling enums between C/C++ and Java.
The type used for the typemaps below is <tt>enum SWIGTYPE</tt> which is the default type used for all enums.
The "enums.swg" file should be examined in order to see the original overridden versions of the typemaps.
</p>
<div class="code">
<pre>
%include "enums.swg"
%typemap(javain) enum SWIGTYPE "$javainput.ordinal()"
%typemap(javaout) enum SWIGTYPE {
return $javaclassname.class.getEnumConstants()[$jnicall];
}
%typemap(javabody) enum SWIGTYPE ""
%inline %{
enum HairType { blonde, ginger, brunette };
void setHair(HairType h);
HairType getHair();
%}
</pre>
</div>
<p>
SWIG will generate the following Java enum, which is somewhat simpler than the default:
</p>
<div class="code">
<pre>
public enum HairType {
blonde,
ginger,
brunette;
}
</pre>
</div>
<p>
and the two Java proxy methods will be:
</p>
<div class="code">
<pre>
public static void setHair(HairType h) {
exampleJNI.setHair(h.ordinal());
}
public static HairType getHair() {
return HairType.class.getEnumConstants()[exampleJNI.getHair()];
}
</pre>
</div>
<p>
For marshalling Java enums to C/C++ enums, the <tt>ordinal</tt> method is used to convert the
Java enum into an integer value for passing to the JNI layer, see the "javain" typemap.
For marshalling C/C++ enums to Java enums, the C/C++ enum value is cast to an integer in the C/C++ typemaps (not shown).
This integer value is then used to index into the array of enum constants that the Java language provides.
See the <tt>getEnumConstants</tt> method in the "javaout" typemap.
</p>
<p>
These typemaps can often be used as the default for wrapping enums as in many cases there won't be any enum initializers.
In fact a good strategy is to always use these typemaps and to specifically handle enums with initializers using %apply.
This would be done by using the original versions of these typemaps in "enums.swg" under another typemap name for applying using %apply.
</p>
<H3><a name="Java_exception_typemap">25.10.2 Handling C++ exception specifications as Java exceptions</a></H3>
<p>
This example demonstrates various ways in which C++ exceptions can be tailored and converted into Java exceptions.
Let's consider a simple file class <tt>SimpleFile</tt> and an exception class <tt>FileException</tt> which it may throw on error:
</p>
<div class="code">
<pre>
%include "std_string.i" // for std::string typemaps
#include <string>
class FileException {
std::string message;
public:
FileException(const std::string& msg) : message(msg) {}
std::string what() {
return message;
}
};
class SimpleFile {
std::string filename;
public:
SimpleFile(const std::string& filename) : filename(filename) {}
void open() throw(FileException) {
...
}
};
</pre>
</div>
<p>
As the <tt>open</tt> method has a C++ exception specification, SWIG will parse this and know that the method can throw an exception.
The <a href="Typemaps.html#throws_typemap">"throws" typemap</a> is then used when SWIG encounters an exception specification.
The default generic "throws" typemap looks like this:
</p>
<div class="code">
<pre>
%typemap(throws) SWIGTYPE, SWIGTYPE &, SWIGTYPE *, SWIGTYPE [ANY] %{
SWIG_JavaThrowException(jenv, SWIG_JavaRuntimeException,
"C++ $1_type exception thrown");
return $null;
%}
</pre>
</div>
<p>
Basically SWIG will generate a C++ try catch block and the body of the "throws" typemap constitutes the catch block.
The above typemap calls a SWIG supplied method which throws a <tt>java.lang.RuntimeException</tt>.
This exception class is a runtime exception and therefore not a checked exception.
If, however, we wanted to throw a checked exception, say <tt>java.io.IOException</tt>, then we could use the following typemap:
</p>
<div class="code">
<pre>
%typemap(throws, throws="java.io.IOException") FileException {
jclass excep = jenv->FindClass("java/io/IOException");
if (excep)
jenv->ThrowNew(excep, $1.what().c_str());
return $null;
}
</pre>
</div>
<p>
Note that this typemap uses the 'throws' <a href="#Java_typemap_attributes">typemap attribute</a> to ensure a throws clause is generated.
The generated proxy method then specifies the checked exception by containing <tt>java.io.IOException</tt> in the throws clause:
</p>
<div class="code">
<pre>
public class SimpleFile {
...
public void open() throws java.io.IOException { ... }
}
</pre>
</div>
<p>
Lastly, if you don't want to map your C++ exception into one of the standard Java exceptions, the C++ class can be wrapped and turned into a custom Java exception class.
If we go back to our example, the first thing we must do is get SWIG to wrap <tt>FileException</tt> and ensure that it derives from <tt>java.lang.Exception</tt>.
Additionally, we might want to override the <tt>java.lang.Exception.getMessage()</tt> method.
The typemaps to use then are as follows:
</p>
<div class="code">
<pre>
%typemap(javabase) FileException "java.lang.Exception";
%typemap(javacode) FileException %{
public String getMessage() {
return what();
}
%}
</pre>
</div>
<p>
This generates:
</p>
<div class="code">
<pre>
public class FileException extends java.lang.Exception {
...
public String getMessage() {
return what();
}
public FileException(String msg) { ... }
public String what() {
return exampleJNI.FileException_what(swigCPtr, this);
}
}
</pre>
</div>
<p>
We could alternatively have used <tt>%rename</tt> to rename <tt>what()</tt> into <tt>getMessage()</tt>.
</p>
<H3><a name="Java_nan_exception_typemap">25.10.3 NaN Exception - exception handling for a particular type</a></H3>
<p>
A Java exception can be thrown from any Java or JNI code.
Therefore, as most typemaps contain either Java or JNI code, just about any typemap could throw an exception.
The following example demonstrates exception handling on a type by type basis by checking for 'Not a number' (NaN) whenever a parameter of type <tt>float</tt> is wrapped.
</p>
<p>
Consider the following C++ code:
</p>
<div class="code">
<pre>
bool calculate(float first, float second);
</pre>
</div>
<p>
To validate every <tt>float</tt> being passed to C++, we could precede the code being wrapped by the following typemap which throws a runtime exception whenever the <tt>float</tt> is 'Not a Number':
</p>
<div class="code">
<pre>
%module example
%typemap(javain) float "$module.CheckForNaN($javainput)"
%pragma(java) modulecode=%{
/** Simply returns the input value unless it is not a number,
whereupon an exception is thrown. */
static protected float CheckForNaN(float num) {
if (Float.isNaN(num))
throw new RuntimeException("Not a number");
return num;
}
%}
</pre>
</div>
<p>
Note that the <tt>CheckForNaN</tt> support method has been added to the module class using the <tt>modulecode</tt> pragma.
The following shows the generated code of interest:
</p>
<div class="code">
<pre>
public class example {
...
/** Simply returns the input value unless it is not a number,
whereupon an exception is thrown. */
static protected float CheckForNaN(float num) {
if (Float.isNaN(num))
throw new RuntimeException("Not a number");
return num;
}
public static boolean calculate(float first, float second) {
return exampleJNI.calculate(example.CheckForNaN(first), example.CheckForNaN(second));
}
}
</pre>
</div>
<p>
Note that the "javain" typemap is used for every occurrence of a <tt>float</tt> being used as an input.
Of course, we could have targeted the typemap at a particular parameter by using <tt>float first</tt>, say, instead of just <tt>float</tt>.
</p>
<p>
The exception checking could alternatively have been placed into the 'pre' attribute that the "javain" typemap supports.
The "javain" typemap above could be replaced with the following:
</p>
<div class="code">
<pre>
%typemap(javain, pre=" $module.CheckForNaN($javainput);") float "$javainput"
</pre>
</div>
<p>
which would modify the <tt>calculate</tt> function to instead be generated as:
</p>
<div class="code">
<pre>
public class example {
...
public static boolean calculate(float first, float second) {
example.CheckForNaN(first);
example.CheckForNaN(second);
{
return exampleJNI.calculate(first, second);
}
}
}
</pre>
</div>
<p>
See the <a href="#Java_date_marshalling">Date marshalling example</a> for an example using further "javain" typemap attributes.
</p>
<p>
If we decide that what we actually want is a checked exception instead of a runtime exception, we can change this easily enough.
The proxy method that uses <tt>float</tt> as an input, must then add the exception class to the throws clause.
SWIG can handle this as it supports the 'throws' <a href="#Java_typemap_attributes">typemap attribute</a> for specifying classes for the throws clause.
Thus we can modify the pragma and the typemap for the throws clause:
</p>
<div class="code">
<pre>
%typemap(javain, throws="java.lang.Exception") float "$module.CheckForNaN($javainput)"
%pragma(java) modulecode=%{
/** Simply returns the input value unless it is not a number,
whereupon an exception is thrown. */
static protected float CheckForNaN(float num) throws java.lang.Exception {
if (Float.isNaN(num))
throw new RuntimeException("Not a number");
return num;
}
%}
</pre>
</div>
<p>
The <tt>calculate</tt> method now has a throws clause and even though the typemap is used twice for both <tt>float first</tt> and <tt>float second</tt>,
the throws clause contains a single instance of <tt>java.lang.Exception</tt>:
</p>
<div class="code">
<pre>
public class example {
...
/** Simply returns the input value unless it is not a number,
whereupon an exception is thrown. */
static protected float CheckForNaN(float num) throws java.lang.Exception {
if (Float.isNaN(num))
throw new RuntimeException("Not a number");
return num;
}
public static boolean calculate(float first, float second) throws java.lang.Exception {
return exampleJNI.calculate(example.CheckForNaN(first), example.CheckForNaN(second));
}
}
</pre>
</div>
<p>
If we were a martyr to the JNI cause, we could replace the succinct code within the "javain" typemap with a few pages of JNI code.
If we had, we would have put it in the "in" typemap which, like all JNI and Java typemaps, also supports the 'throws' attribute.
</p>
<H3><a name="Java_converting_java_string_arrays">25.10.4 Converting Java String arrays to char ** </a></H3>
<p>
A common problem in many C programs is the processing of command line arguments, which are usually passed in an array of NULL terminated strings.
The following SWIG interface file allows a Java String array to be used as a <tt>char **</tt> object.
</p>
<div class="code"><pre>
%module example
/* This tells SWIG to treat char ** as a special case when used as a parameter
in a function call */
%typemap(in) char ** (jint size) {
int i = 0;
size = (*jenv)->GetArrayLength(jenv, $input);
$1 = (char **) malloc((size+1)*sizeof(char *));
/* make a copy of each string */
for (i = 0; i<size; i++) {
jstring j_string = (jstring)(*jenv)->GetObjectArrayElement(jenv, $input, i);
const char * c_string = (*jenv)->GetStringUTFChars(jenv, j_string, 0);
$1[i] = malloc((strlen(c_string)+1)*sizeof(char));
strcpy($1[i], c_string);
(*jenv)->ReleaseStringUTFChars(jenv, j_string, c_string);
(*jenv)->DeleteLocalRef(jenv, j_string);
}
$1[i] = 0;
}
/* This cleans up the memory we malloc'd before the function call */
%typemap(freearg) char ** {
int i;
for (i=0; i<size$argnum-1; i++)
free($1[i]);
free($1);
}
/* This allows a C function to return a char ** as a Java String array */
%typemap(out) char ** {
int i;
int len=0;
jstring temp_string;
const jclass clazz = (*jenv)->FindClass(jenv, "java/lang/String");
while ($1[len]) len++;
jresult = (*jenv)->NewObjectArray(jenv, len, clazz, NULL);
/* exception checking omitted */
for (i=0; i<len; i++) {
temp_string = (*jenv)->NewStringUTF(jenv, *result++);
(*jenv)->SetObjectArrayElement(jenv, jresult, i, temp_string);
(*jenv)->DeleteLocalRef(jenv, temp_string);
}
}
/* These 3 typemaps tell SWIG what JNI and Java types to use */
%typemap(jni) char ** "jobjectArray"
%typemap(jtype) char ** "String[]"
%typemap(jstype) char ** "String[]"
/* These 2 typemaps handle the conversion of the jtype to jstype typemap type
and vice versa */
%typemap(javain) char ** "$javainput"
%typemap(javaout) char ** {
return $jnicall;
}
/* Now a few test functions */
%inline %{
int print_args(char **argv) {
int i = 0;
while (argv[i]) {
printf("argv[%d] = %s\n", i, argv[i]);
i++;
}
return i;
}
char **get_args() {
static char *values[] = { "Dave", "Mike", "Susan", "John", "Michelle", 0};
return &values[0];
}
%}
</pre></div>
<p>
Note that the 'C' JNI calling convention is used.
Checking for any thrown exceptions after JNI function calls has been omitted.
When this module is compiled, our wrapped C functions can be used by the following Java program:
</p>
<div class="code"><pre>
// File runme.java
public class runme {
static {
try {
System.loadLibrary("example");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load. " + e);
System.exit(1);
}
}
public static void main(String argv[]) {
String animals[] = {"Cat", "Dog", "Cow", "Goat"};
example.print_args(animals);
String args[] = example.get_args();
for (int i=0; i<args.length; i++)
System.out.println(i + ":" + args[i]);
}
}
</pre></div>
<p>
When compiled and run we get:
</p>
<div class="code"><pre>
$ java runme
argv[0] = Cat
argv[1] = Dog
argv[2] = Cow
argv[3] = Goat
0:Dave
1:Mike
2:Susan
3:John
4:Michelle
</pre></div>
<p>
In the example, a few different typemaps are used. The "in" typemap is
used to receive an input argument and convert it to a C array. Since dynamic
memory allocation is used to allocate memory for the array, the
"freearg" typemap is used to later release this memory after the execution of
the C function. The "out" typemap is used for function return values.
Lastly the "jni", "jtype" and "jstype" typemaps are also required to specify
what Java types to use.
</p>
<H3><a name="Java_expanding_java_object">25.10.5 Expanding a Java object to multiple arguments</a></H3>
<p>
Suppose that you had a collection of C functions with arguments
such as the following:
</p>
<div class="code">
<pre>
int foo(int argc, char **argv);
</pre>
</div>
<p>
In the previous example, a typemap was written to pass a Java String array as the <tt>char **argv</tt>. This
allows the function to be used from Java as follows:
</p>
<div class="code">
<pre>
example.foo(4, new String[]{"red", "green", "blue", "white"});
</pre>
</div>
<p>
Although this works, it's a little awkward to specify the argument count. To fix this, a multi-argument
typemap can be defined. This is not very difficult--you only have to make slight modifications to the
previous example's typemaps:
</p>
<div class="code">
<pre>
%typemap(in) (int argc, char **argv) {
int i = 0;
$1 = (*jenv)->GetArrayLength(jenv, $input);
$2 = (char **) malloc(($1+1)*sizeof(char *));
/* make a copy of each string */
for (i = 0; i<$1; i++) {
jstring j_string = (jstring)(*jenv)->GetObjectArrayElement(jenv, $input, i);
const char * c_string = (*jenv)->GetStringUTFChars(jenv, j_string, 0);
$2[i] = malloc((strlen(c_string)+1)*sizeof(char));
strcpy($2[i], c_string);
(*jenv)->ReleaseStringUTFChars(jenv, j_string, c_string);
(*jenv)->DeleteLocalRef(jenv, j_string);
}
$2[i] = 0;
}
%typemap(freearg) (int argc, char **argv) {
int i;
for (i=0; i<$1-1; i++)
free($2[i]);
free($2);
}
%typemap(jni) (int argc, char **argv) "jobjectArray"
%typemap(jtype) (int argc, char **argv) "String[]"
%typemap(jstype) (int argc, char **argv) "String[]"
%typemap(javain) (int argc, char **argv) "$javainput"
</pre>
</div>
<p>
When writing a multiple-argument typemap, each of the types is referenced by a variable such
as <tt>$1</tt> or <tt>$2</tt>. The typemap code simply fills in the appropriate values from
the supplied Java parameter.
</p>
<p>
With the above typemap in place, you will find it no longer necessary
to supply the argument count. This is automatically set by the typemap code. For example:
</p>
<div class="code">
<pre>
example.foo(new String[]{"red", "green", "blue", "white"});
</pre>
</div>
<H3><a name="Java_using_typemaps_return_arguments">25.10.6 Using typemaps to return arguments</a></H3>
<p>
A common problem in some C programs is that values may be returned in function parameters rather than in the return value of a function.
The <tt>typemaps.i</tt> file defines INPUT, OUTPUT and INOUT typemaps which can be used to solve some instances of this problem.
This library file uses an array as a means of moving data to and from Java when wrapping a C function that takes non const pointers or non const references as parameters.
</p>
<p>
Now we are going to outline an alternative approach to using arrays for C pointers.
The INOUT typemap uses a <tt>double[]</tt> array for receiving and returning the <tt>double*</tt> parameters.
In this approach we are able to use a Java class <tt>myDouble</tt> instead of <tt>double[]</tt> arrays where the C pointer <tt>double*</tt> is required.
</p>
<p>
Here is our example function:
</p>
<div class="code"><pre>
/* Returns a status value and two values in out1 and out2 */
int spam(double a, double b, double *out1, double *out2);
</pre></div>
<p>
If we define a structure <tt>MyDouble</tt> containing a <tt>double</tt> member variable and use some typemaps we can solve this problem. For example we could put the following through SWIG:
</p>
<div class="code"><pre>
%module example
/* Define a new structure to use instead of double * */
%inline %{
typedef struct {
double value;
} MyDouble;
%}
%{
/* Returns a status value and two values in out1 and out2 */
int spam(double a, double b, double *out1, double *out2) {
int status = 1;
*out1 = a*10.0;
*out2 = b*100.0;
return status;
}
%}
/*
This typemap will make any double * function parameters with name <tt>OUTVALUE</tt> take an
argument of MyDouble instead of double *. This will
allow the calling function to read the double * value after returning from the function.
*/
%typemap(in) double *OUTVALUE {
jclass clazz = jenv->FindClass("MyDouble");
jfieldID fid = jenv->GetFieldID(clazz, "swigCPtr", "J");
jlong cPtr = jenv->GetLongField($input, fid);
MyDouble *pMyDouble = NULL;
*(MyDouble **)&pMyDouble = *(MyDouble **)&cPtr;
$1 = &pMyDouble->value;
}
%typemap(jtype) double *OUTVALUE "MyDouble"
%typemap(jstype) double *OUTVALUE "MyDouble"
%typemap(jni) double *OUTVALUE "jobject"
%typemap(javain) double *OUTVALUE "$javainput"
/* Now we apply the typemap to the named variables */
%apply double *OUTVALUE { double *out1, double *out2 };
int spam(double a, double b, double *out1, double *out2);
</pre></div>
<p>
Note that the C++ JNI calling convention has been used this time and so must be compiled as C++ and the -c++ commandline must be passed to SWIG.
JNI error checking has been omitted for clarity.
</p>
<p>
What the typemaps do are make the named <tt>double*</tt> function parameters use our new <tt>MyDouble</tt> wrapper structure.
The "in" typemap takes this structure, gets the C++ pointer to it, takes the <tt>double value</tt> member variable and passes it to the C++ <tt>spam</tt> function.
In Java, when the function returns, we use the SWIG created <tt>getValue()</tt> function to get the output value.
The following Java program demonstrates this:
</p>
<div class="code"><pre>
// File: runme.java
public class runme {
static {
try {
System.loadLibrary("example");
} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load. " + e);
System.exit(1);
}
}
public static void main(String argv[]) {
MyDouble out1 = new MyDouble();
MyDouble out2 = new MyDouble();
int ret = example.spam(1.2, 3.4, out1, out2);
System.out.println(ret + " " + out1.getValue() + " " + out2.getValue());
}
}
</pre></div>
<p>
When compiled and run we get:
</p>
<div class="code"><pre>
$ java runme
1 12.0 340.0
</pre></div>
<H3><a name="Java_adding_downcasts">25.10.7 Adding Java downcasts to polymorphic return types</a></H3>
<p>
SWIG support for polymorphism works in that the appropriate virtual function is called. However, the default generated code does not allow for downcasting.
Let's examine this with the following code:
</p>
<div class="code"><pre>
%include "std_string.i"
#include <iostream>
using namespace std;
class Vehicle {
public:
virtual void start() = 0;
...
};
class Ambulance : public Vehicle {
string vol;
public:
Ambulance(string volume) : vol(volume) {}
virtual void start() {
cout << "Ambulance started" << endl;
}
void sound_siren() {
cout << vol << " siren sounded!" << endl;
}
...
};
Vehicle *vehicle_factory() {
return new Ambulance("Very loud");
}
</pre></div>
<p>
If we execute the following Java code:
</p>
<div class="code"><pre>
Vehicle vehicle = example.vehicle_factory();
vehicle.start();
Ambulance ambulance = (Ambulance)vehicle;
ambulance.sound_siren();
</pre></div>
<p>
We get:
</p>
<div class="code"><pre>
Ambulance started
java.lang.ClassCastException
at runme.main(runme.java:16)
</pre></div>
<p>
Even though we know from examination of the C++ code that <tt>vehicle_factory</tt> returns an object of type <tt>Ambulance</tt>,
we are not able to use this knowledge to perform the downcast in Java.
This occurs because the runtime type information is not completely passed from C++ to Java when returning the type from <tt>vehicle_factory()</tt>.
Usually this is not a problem as virtual functions do work by default, such as in the case of <tt>start()</tt>.
There are a few solutions to getting downcasts to work.
</p>
<p>
The first is not to use a Java cast but a call to C++ to make the cast. Add this to your code:
</p>
<div class="code"><pre>
%exception Ambulance::dynamic_cast(Vehicle *vehicle) {
$action
if (!result) {
jclass excep = jenv->FindClass("java/lang/ClassCastException");
if (excep) {
jenv->ThrowNew(excep, "dynamic_cast exception");
}
}
}
%extend Ambulance {
static Ambulance *dynamic_cast(Vehicle *vehicle) {
return dynamic_cast<Ambulance *>(vehicle);
}
};
</pre></div>
<p>
It would then be used from Java like this
</p>
<div class="code"><pre>
Ambulance ambulance = Ambulance.dynamic_cast(vehicle);
ambulance.sound_siren();
</pre></div>
<p>
Should <tt>vehicle</tt> not be of type <tt>ambulance</tt> then a Java <tt>ClassCastException</tt> is thrown.
The next solution is a purer solution in that Java downcasts can be performed on the types.
Add the following before the definition of <tt>vehicle_factory</tt>:
</p>
<div class="code"><pre>
%typemap(out) Vehicle * {
Ambulance *downcast = dynamic_cast<Ambulance *>($1);
*(Ambulance **)&$result = downcast;
}
%typemap(javaout) Vehicle * {
return new Ambulance($jnicall, $owner);
}
</pre></div>
<p>
Here we are using our knowledge that <tt>vehicle_factory</tt> always returns type <tt>Ambulance</tt> so that the Java proxy is created as a type <tt>Ambulance</tt>.
If <tt>vehicle_factory</tt> can manufacture any type of <tt>Vehicle</tt> and we want to be able to downcast using Java casts for any of these types, then a different approach is needed.
Consider expanding our example with a new Vehicle type and a more flexible factory function:
</p>
<div class="code"><pre>
class FireEngine : public Vehicle {
public:
FireEngine() {}
virtual void start() {
cout << "FireEngine started" << endl;
}
void roll_out_hose() {
cout << "Hose rolled out" << endl;
}
...
};
Vehicle *vehicle_factory(int vehicle_number) {
if (vehicle_number == 0)
return new Ambulance("Very loud");
else
return new FireEngine();
}
</pre></div>
<p>
To be able to downcast with this sort of Java code:
</p>
<div class="code"><pre>
FireEngine fireengine = (FireEngine)example.vehicle_factory(1);
fireengine.roll_out_hose();
Ambulance ambulance = (Ambulance)example.vehicle_factory(0);
ambulance.sound_siren();
</pre></div>
<p>
the following typemaps targeted at the <tt>vehicle_factory</tt> function will achieve this.
Note that in this case, the Java class is constructed using JNI code rather than passing a pointer across the JNI boundary in a Java long for construction in Java code.
</p>
<div class="code"><pre>
%typemap(jni) Vehicle *vehicle_factory "jobject"
%typemap(jtype) Vehicle *vehicle_factory "Vehicle"
%typemap(jstype) Vehicle *vehicle_factory "Vehicle"
%typemap(javaout) Vehicle *vehicle_factory {
return $jnicall;
}
%typemap(out) Vehicle *vehicle_factory {
Ambulance *ambulance = dynamic_cast<Ambulance *>($1);
FireEngine *fireengine = dynamic_cast<FireEngine *>($1);
if (ambulance) {
// call the Ambulance(long cPtr, boolean cMemoryOwn) constructor
jclass clazz = jenv->FindClass("Ambulance");
if (clazz) {
jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");
if (mid) {
jlong cptr = 0;
*(Ambulance **)&cptr = ambulance;
$result = jenv->NewObject(clazz, mid, cptr, false);
}
}
} else if (fireengine) {
// call the FireEngine(long cPtr, boolean cMemoryOwn) constructor
jclass clazz = jenv->FindClass("FireEngine");
if (clazz) {
jmethodID mid = jenv->GetMethodID(clazz, "<init>", "(JZ)V");
if (mid) {
jlong cptr = 0;
*(FireEngine **)&cptr = fireengine;
$result = jenv->NewObject(clazz, mid, cptr, false);
}
}
}
else {
cout << "Unexpected type " << endl;
}
if (!$result)
cout << "Failed to create new java object" << endl;
}
</pre></div>
<p>
Better error handling would need to be added into this code.
There are other solutions to this problem, but this last example demonstrates some more involved JNI code.
SWIG usually generates code which constructs the proxy classes using Java code as it is easier to handle error conditions and is faster.
Note that the JNI code above uses a number of string lookups to call a constructor, whereas this would not occur using byte compiled Java code.
</p>
<H3><a name="Java_adding_equals_method">25.10.8 Adding an equals method to the Java classes</a></H3>
<p>
When a pointer is returned from a JNI function, it is wrapped using a new Java proxy class or type wrapper class.
Even when the pointers are the same, it will not be possible to know that the two Java classes containing those pointers are actually the same object.
It is common in Java to use the <tt>equals()</tt> method to check whether two objects are equivalent.
The <tt>equals()</tt> method is usually accompanied by a <tt>hashCode()</tt> method in order to fulfill
the requirement that the hash code is equal for equal objects.
Pure Java code methods like these can be easily added:
</p>
<div class="code">
<pre>
%typemap(javacode) SWIGTYPE %{
public boolean equals(Object obj) {
boolean equal = false;
if (obj instanceof $javaclassname)
equal = ((($javaclassname)obj).swigCPtr == this.swigCPtr);
return equal;
}
public int hashCode() {
return (int)getPointer();
}
%}
class Foo { };
Foo* returnFoo(Foo *foo) { return foo; }
</pre>
</div>
<p>
The following would display <tt>false</tt> without the <tt>javacode</tt> typemap above. With the typemap defining the <tt>equals</tt> method the result is <tt>true</tt>.
</p>
<div class="code">
<pre>
Foo foo1 = new Foo();
Foo foo2 = example.returnFoo(foo1);
System.out.println("foo1? " + foo1.equals(foo2));
</pre>
</div>
<H3><a name="Java_void_pointers">25.10.9 Void pointers and a common Java base class</a></H3>
<p>
One might wonder why the common code that SWIG emits for the proxy and type wrapper classes is not pushed into a base class.
The reason is that although <tt>swigCPtr</tt> could be put into a common base class for all classes
wrapping C structures, it would not work for C++ classes involved in an inheritance chain.
Each class derived from a base needs a separate <tt>swigCPtr</tt> because C++ compilers sometimes use a different pointer value when casting a derived class to a base.
Additionally as Java only supports single inheritance, it would not be possible to derive wrapped classes from your own pure Java classes if the base class has been 'used up' by SWIG.
However, you may want to move some of the common code into a base class.
Here is an example which uses a common base class for all proxy classes and type wrapper classes:
</p>
<div class="code">
<pre>
%typemap(javabase) SWIGTYPE, SWIGTYPE *, SWIGTYPE &, SWIGTYPE [],
SWIGTYPE (CLASS::*) "SWIG"
%typemap(javacode) SWIGTYPE, SWIGTYPE *, SWIGTYPE &, SWIGTYPE [],
SWIGTYPE (CLASS::*) %{
protected long getPointer() {
return swigCPtr;
}
%}
</pre>
</div>
<p>
Define new base class called SWIG:
</p>
<div class="code">
<pre>
public abstract class SWIG {
protected abstract long getPointer();
public boolean equals(Object obj) {
boolean equal = false;
if (obj instanceof SWIG)
equal = (((SWIG)obj).getPointer() == this.getPointer());
return equal;
}
SWIGTYPE_p_void getVoidPointer() {
return new SWIGTYPE_p_void(getPointer(), false);
}
}
</pre>
</div>
<p>
This example contains some useful functionality which you may want in your code.
</p>
<ul>
<li> It has an <tt>equals()</tt> method. Unlike the previous example, the method code isn't replicated in all classes.
<li> It also has a function which effectively implements a cast from the type of the proxy/type wrapper class to a void pointer. This is necessary for passing a proxy class or a type wrapper class to a function that takes a void pointer.
</ul>
<H3><a name="Java_struct_pointer_pointer">25.10.10 Struct pointer to pointer</a></H3>
<p>
Pointers to pointers are often used as output parameters in C factory type functions.
These are a bit more tricky to handle.
Consider the following situation where a <tt>Butler</tt> can be hired and fired:
</p>
<div class="code">
<pre>
typedef struct {
int hoursAvailable;
char *greeting;
} Butler;
// Note: HireButler will allocate the memory
// The caller must free the memory by calling FireButler()!!
extern int HireButler(Butler **ppButler);
extern void FireButler(Butler *pButler);
</pre>
</div>
<p>
C code implementation:
</p>
<div class="code">
<pre>
int HireButler(Butler **ppButler) {
Butler *pButler = (Butler *)malloc(sizeof(Butler));
pButler->hoursAvailable = 24;
pButler->greeting = (char *)malloc(32);
strcpy(pButler->greeting, "At your service Sir");
*ppButler = pButler;
return 1;
}
void FireButler(Butler *pButler) {
free(pButler->greeting);
free(pButler);
}
</pre>
</div>
<p>
Let's take two approaches to wrapping this code.
The first is to provide a functional interface, much like the original C interface.
The following Java code shows how we intend the code to be used:
</p>
<div class="code">
<pre>
Butler jeeves = new Butler();
example.HireButler(jeeves);
System.out.println("Greeting: " + jeeves.getGreeting());
System.out.println("Availability: " + jeeves.getHoursAvailable() + " hours per day");
example.FireButler(jeeves);
</pre>
</div>
<p>
Resulting in the following output when run:
</p>
<div class="shell">
<pre>
Greeting: At your service Sir
Availability: 24 hours per day
</pre>
</div>
<p>
Note the usage is very much like it would be used if we were writing C code, that is, explicit memory management is needed.
No C memory is allocated in the construction of the <tt>Butler</tt> proxy class and
the proxy class will not destroy the underlying C memory when it is collected.
A number of typemaps and features are needed to implement this approach.
The following interface file code should be placed before SWIG parses the above C code.
</p>
<div class="code">
<pre>
%module example
// Do not generate the default proxy constructor or destructor
%nodefaultctor Butler;
%nodefaultdtor Butler;
// Add in pure Java code proxy constructor
%typemap(javacode) Butler %{
/** This constructor creates the proxy which initially does not create nor own any C memory */
public Butler() {
this(0, false);
}
%}
// Type typemaps for marshalling Butler **
%typemap(jni) Butler ** "jobject"
%typemap(jtype) Butler ** "Butler"
%typemap(jstype) Butler ** "Butler"
// Typemaps for Butler ** as a parameter output type
%typemap(in) Butler ** (Butler *ppButler = 0) %{
$1 = &ppButler;
%}
%typemap(argout) Butler ** {
// Give Java proxy the C pointer (of newly created object)
jclass clazz = (*jenv)->FindClass(jenv, "Butler");
jfieldID fid = (*jenv)->GetFieldID(jenv, clazz, "swigCPtr", "J");
jlong cPtr = 0;
*(Butler **)&cPtr = *$1;
(*jenv)->SetLongField(jenv, $input, fid, cPtr);
}
%typemap(javain) Butler ** "$javainput"
</pre>
</div>
<p>
Note that the JNI code sets the proxy's <tt>swigCPtr</tt> member variable to point to the newly created object.
The <tt>swigCMemOwn</tt> remains unchanged (at false), so that the proxy does not own the memory.
</p>
<p>
Note: The old %nodefault directive disabled the default constructor
and destructor at the same time. This is unsafe in most of the cases,
and you can use the explicit %nodefaultctor and %nodefaultdtor
directives to achieve the same result if needed.
</p>
<p>
The second approach offers a more object oriented interface to the Java user.
We do this by making the Java proxy class's
constructor call the <tt>HireButler()</tt> method to create the underlying C object.
Additionally we get the proxy to take ownership of the memory so that the
finalizer will call the <tt>FireButler()</tt> function.
The proxy class will thus take ownership of the memory and clean it up when no longer needed.
We will also prevent the user from being able to explicitly call the <tt>HireButler()</tt> and <tt>FireButler()</tt> functions.
Usage from Java will simply be:
</p>
<div class="code">
<pre>
Butler jeeves = new Butler();
System.out.println("Greeting: " + jeeves.getGreeting());
System.out.println("Availability: " + jeeves.getHoursAvailable() + " hours per day");
</pre>
</div>
<p>
Note that the Butler class is used just like any other Java class and no extra coding by the user needs to be written to
clear up the underlying C memory as the finalizer will be called by the garbage collector which in turn will call the <tt>FireButler()</tt> function.
To implement this, we use the above interface file code but remove the <tt>javacode</tt> typemap and add the following:
</p>
<div class="code">
<pre>
// Don't expose the memory allocation/de-allocation functions
%ignore FireButler(Butler *pButler);
%ignore HireButler(Butler **ppButler);
// Add in a custom proxy constructor and destructor
%extend Butler {
Butler() {
Butler *pButler = 0;
HireButler(&pButler);
return pButler;
}
~Butler() {
FireButler($self);
}
}
</pre>
</div>
<p>
Note that the code in <tt>%extend</tt> is using a C++ type constructor and destructor, yet the generated code will still compile as C code,
see <a href="SWIG.html#SWIG_adding_member_functions">Adding member functions to C structures</a>.
The C functional interface has been completely morphed into an object-oriented interface and
the Butler class would behave much like any pure Java class and feel more natural to Java users.
</p>
<H3><a name="Java_memory_management_member_variables">25.10.11 Memory management when returning references to member variables</a></H3>
<p>
This example shows how to prevent premature garbage collection of objects when the underlying C++ class returns a pointer or reference to a member variable.
</p>
<p>
Consider the following C++ code:
</p>
<div class="code">
<pre>
struct Wheel {
int size;
Wheel(int sz) : size(sz) {}
};
class Bike {
Wheel wheel;
public:
Bike(int val) : wheel(val) {}
Wheel& getWheel() { return wheel; }
};
</pre>
</div>
<p>
and the following usage from Java after running the code through SWIG:
</p>
<div class="code">
<pre>
Wheel wheel = new Bike(10).getWheel();
System.out.println("wheel size: " + wheel.getSize());
// Simulate a garbage collection
System.gc();
System.runFinalization();
System.out.println("wheel size: " + wheel.getSize());
</pre>
</div>
<p>
Don't be surprised that if the resulting output gives strange results such as...
</p>
<div class="shell">
<pre>
wheel size: 10
wheel size: 135019664
</pre>
</div>
<p>
What has happened here is the garbage collector has collected the <tt>Bike</tt> instance as it doesn't think it is needed any more.
The proxy instance, <tt>wheel</tt>, contains a reference to memory that was deleted when the <tt>Bike</tt> instance was collected.
In order to prevent the garbage collector from collecting the <tt>Bike</tt> instance a reference to the <tt>Bike</tt> must
be added to the <tt>wheel</tt> instance. You can do this by adding the reference when the <tt>getWheel()</tt> method
is called using the following typemaps.
</p>
<div class="code">
<pre>
%typemap(javacode) Wheel %{
// Ensure that the GC doesn't collect any Bike instance set from Java
private Bike bikeReference;
protected void addReference(Bike bike) {
bikeReference = bike;
}
%}
// Add a Java reference to prevent premature garbage collection and resulting use
// of dangling C++ pointer. Intended for methods that return pointers or
// references to a member variable.
%typemap(javaout) Wheel& getWheel {
long cPtr = $jnicall;
$javaclassname ret = null;
if (cPtr != 0) {
ret = new $javaclassname(cPtr, $owner);
ret.addReference(this);
}
return ret;
}
</pre>
</div>
<p>
The code in the first typemap gets added to the <tt>Wheel</tt> proxy class.
The code in the second typemap constitutes the bulk of the code in the generated <tt>getWheel()</tt> function:
</p>
<div class="code">
<pre>
public class Wheel {
...
// Ensure that the GC doesn't collect any bike set from Java
private Bike bikeReference;
protected void addReference(Bike bike) {
bikeReference = bike;
}
}
public class Bike {
...
public Wheel getWheel() {
long cPtr = exampleJNI.Bike_getWheel(swigCPtr, this);
Wheel ret = null;
if (cPtr != 0) {
ret = new Wheel(cPtr, false);
ret.addReference(this);
}
return ret;
}
}
</pre>
</div>
<p>
Note the <tt>addReference</tt> call.
</p>
<H3><a name="Java_memory_management_objects">25.10.12 Memory management for objects passed to the C++ layer</a></H3>
<p>
Managing memory can be tricky when using C++ and Java proxy classes.
The previous example shows one such case and this example looks at memory management for a class passed to a C++ method which expects the object to remain in scope
after the function has returned. Consider the following two C++ classes:
</p>
<div class="code">
<pre>
struct Element {
int value;
Element(int val) : value(val) {}
};
class Container {
Element* element;
public:
Container() : element(0) {}
void setElement(Element* e) { element = e; }
Element* getElement() { return element; }
};
</pre>
</div>
<p>
and usage from C++
</p>
<div class="code">
<pre>
Container container;
Element element(20);
container.setElement(&element);
cout << "element.value: " << container.getElement()->value << endl;
</pre>
</div>
<p>
and more or less equivalent usage from Java
</p>
<div class="code">
<pre>
Container container = new Container();
container.setElement(new Element(20));
System.out.println("element value: " + container.getElement().getValue());
</pre>
</div>
<p>
The C++ code will always print out 20, but the value printed out may not be this in the Java equivalent code.
In order to understand why, consider a garbage collection occuring...
</p>
<div class="code">
<pre>
Container container = new Container();
container.setElement(new Element(20));
// Simulate a garbage collection
System.gc();
System.runFinalization();
System.out.println("element value: " + container.getElement().getValue());
</pre>
</div>
<p>
The temporary element created with <tt>new Element(20)</tt> could get garbage collected
which ultimately means the <tt>container</tt> variable is holding a dangling pointer, thereby printing out any old random value instead of the expected value of 20.
One solution is to add in the appropriate references in the Java layer...
</p>
<div class="code">
<pre>
public class Container {
...
// Ensure that the GC doesn't collect any Element set from Java
// as the underlying C++ class stores a shallow copy
private Element elementReference;
private long getCPtrAndAddReference(Element element) {
elementReference = element;
return Element.getCPtr(element);
}
public void setElement(Element e) {
exampleJNI.Container_setElement(swigCPtr, this, getCPtrAndAddReference(e), e);
}
}
</pre>
</div>
<p>
The following typemaps will generate the desired code.
The 'javain' typemap matches the input parameter type for the <tt>setElement</tt> method.
The 'javacode' typemap simply adds in the specified code into the Java proxy class.
</p>
<div class="code">
<pre>
%typemap(javain) Element *e "getCPtrAndAddReference($javainput)"
%typemap(javacode) Container %{
// Ensure that the GC doesn't collect any element set from Java
// as the underlying C++ class stores a shallow copy
private Element elementReference;
private long getCPtrAndAddReference(Element element) {
elementReference = element;
return Element.getCPtr(element);
}
%}
</pre>
</div>
<H3><a name="Java_date_marshalling">25.10.13 Date marshalling using the javain typemap and associated attributes</a></H3>
<p>
The <a href="#Java_nan_exception_typemap">NaN Exception example</a> is a simple example of the "javain" typemap and its 'pre' attribute.
This example demonstrates how a C++ date class, say <tt>CDate</tt>, can be mapped onto the standard Java date class,
<tt>java.util.GregorianCalendar</tt> by using the 'pre', 'post' and 'pgcppname' attributes of the "javain" typemap.
The idea is that the <tt>GregorianCalendar</tt> is used wherever the C++ API uses a <tt>CDate</tt>.
Let's assume the code being wrapped is as follows:
</p>
<div class="code">
<pre>
class CDate {
public:
CDate(int year, int month, int day);
int getYear();
int getMonth();
int getDay();
...
};
struct Action {
static int doSomething(const CDate &dateIn, CDate &dateOut);
Action(const CDate &date, CDate &dateOut);
};
</pre>
</div>
<p>
Note that <tt>dateIn</tt> is const and therefore read only and <tt>dateOut</tt> is a non-const output type.
</p>
<p>
First let's look at the code that is generated by default, where the Java proxy class <tt>CDate</tt> is used in the proxy interface:
</p>
<div class="code">
<pre>
public class Action {
...
public static int doSomething(CDate dateIn, CDate dateOut) {
return exampleJNI.Action_doSomething(CDate.getCPtr(dateIn), dateIn,
CDate.getCPtr(dateOut), dateOut);
}
public Action(CDate date, CDate dateOut) {
this(exampleJNI.new_Action(CDate.getCPtr(date), date,
CDate.getCPtr(dateOut), dateOut), true);
}
}
</pre>
</div>
<p>
The <tt>CDate &</tt> and <tt>const CDate &</tt> Java code is generated from the following two default typemaps:
</p>
<div class="code">
<pre>
%typemap(jstype) SWIGTYPE & "$javaclassname"
%typemap(javain) SWIGTYPE & "$javaclassname.getCPtr($javainput)"
</pre>
</div>
<p>
where '$javaclassname' is translated into the proxy class name, <tt>CDate</tt> and '$javainput' is translated into the name of the parameter, eg <tt>dateIn</tt>.
From Java, the intention is then to call into a modifed API with something like:
</p>
<div class="code">
<pre>
java.util.GregorianCalendar calendarIn =
new java.util.GregorianCalendar(2011, java.util.Calendar.APRIL, 13, 0, 0, 0);
java.util.GregorianCalendar calendarOut = new java.util.GregorianCalendar();
// Note in calls below, calendarIn remains unchanged and calendarOut
// is set to a new value by the C++ call
Action.doSomething(calendarIn, calendarOut);
Action action = new Action(calendarIn, calendarOut);
</pre>
</div>
<p>
To achieve this mapping, we need to alter the default code generation slightly so that at the Java layer,
a <tt>GregorianCalendar</tt> is converted into a <tt>CDate</tt>.
The JNI intermediary layer will still take a pointer to the underlying <tt>CDate</tt> class.
The typemaps to achieve this are shown below.
</p>
<div class="code">
<pre>
%typemap(jstype) const CDate& "java.util.GregorianCalendar"
%typemap(javain,
pre=" CDate temp$javainput = new CDate($javainput.get(java.util.Calendar.YEAR), "
"$javainput.get(java.util.Calendar.MONTH), $javainput.get(java.util.Calendar.DATE));",
pgcppname="temp$javainput") const CDate &
"$javaclassname.getCPtr(temp$javainput)"
%typemap(jstype) CDate& "java.util.Calendar"
%typemap(javain,
pre=" CDate temp$javainput = new CDate($javainput.get(java.util.Calendar.YEAR), "
"$javainput.get(java.util.Calendar.MONTH), $javainput.get(java.util.Calendar.DATE));",
post=" $javainput.set(temp$javainput.getYear(), temp$javainput.getMonth(), "
"temp$javainput.getDay(), 0, 0, 0);",
pgcppname="temp$javainput") CDate &
"$javaclassname.getCPtr(temp$javainput)"
</pre>
</div>
<p>
The resulting generated proxy code in the <tt>Action</tt> class follows:
</p>
<div class="code">
<pre>
public class Action {
...
public static int doSomething(java.util.GregorianCalendar dateIn,
java.util.Calendar dateOut) {
CDate tempdateIn = new CDate(dateIn.get(java.util.Calendar.YEAR),
dateIn.get(java.util.Calendar.MONTH),
dateIn.get(java.util.Calendar.DATE));
CDate tempdateOut = new CDate(dateOut.get(java.util.Calendar.YEAR),
dateOut.get(java.util.Calendar.MONTH),
dateOut.get(java.util.Calendar.DATE));
try {
return exampleJNI.Action_doSomething(CDate.getCPtr(tempdateIn), tempdateIn,
CDate.getCPtr(tempdateOut), tempdateOut);
} finally {
dateOut.set(tempdateOut.getYear(), tempdateOut.getMonth(), tempdateOut.getDay(), 0, 0, 0);
}
}
static private long SwigConstructAction(java.util.GregorianCalendar date,
java.util.Calendar dateOut) {
CDate tempdate = new CDate(date.get(java.util.Calendar.YEAR),
date.get(java.util.Calendar.MONTH),
date.get(java.util.Calendar.DATE));
CDate tempdateOut = new CDate(dateOut.get(java.util.Calendar.YEAR),
dateOut.get(java.util.Calendar.MONTH),
dateOut.get(java.util.Calendar.DATE));
try {
return exampleJNI.new_Action(CDate.getCPtr(tempdate), tempdate,
CDate.getCPtr(tempdateOut), tempdateOut);
} finally {
dateOut.set(tempdateOut.getYear(), tempdateOut.getMonth(), tempdateOut.getDay(), 0, 0, 0);
}
}
public Action(java.util.GregorianCalendar date, java.util.Calendar dateOut) {
this(Action.SwigConstructAction(date, dateOut), true);
}
}
</pre>
</div>
<p>
A few things to note:
</p>
<ul>
<li> The "javatype" typemap has changed the parameter type to <tt>java.util.GregorianCalendar</tt> or <tt>java.util.Calendar</tt> instead of the default generated <tt>CDate</tt> proxy.
<li> The code in the 'pre' attribute appears before the JNI call (<tt>exampleJNI.new_Action</tt> / <tt>exampleJNI.Action_doSomething</tt>).
<li> The code in the 'post' attribute appears after the JNI call.
<li> A try .. finally block is generated with the JNI call in the try block and 'post' code in the finally block.
The alternative of just using a temporary variable for the return value from the JNI call and the 'post' code being generated before the
return statement is not possible given that the JNI call is in one line and comes from the "javaout" typemap.
<li> The temporary variables in the "javain" typemaps are called <tt>temp$javain</tt>, where "$javain" is replaced with the parameter name.
"$javain" is used to mangle the variable name so that more than one <tt>CDate &</tt> type can be used as a parameter in a method, otherwise two or
more local variables with the same name would be generated.
<li> The use of the "javain" typemap causes a constructor helper function (<tt>SwigConstructAction</tt>) to be generated.
This allows Java code to be called before the JNI call and is required as the Java compiler won't compile code inserted before the 'this' call.
<li> The 'pgcppname' attribute is used to modify the object being passed as the <a href="#Java_pgcpp">premature garbage collection prevention parameter</a> (the 2nd and 4th parameters in the JNI calls).
</ul>
<H2><a name="Java_directors_faq">25.11 Living with Java Directors</a></H2>
<p>
This section is intended to address frequently asked questions and frequently encountered problems when using Java directors.
</p>
<ol>
<li><i>When my program starts up, it complains that </i>method_foo<i> cannot
be found in a Java method called </i>swig_module_init<i>. How do I fix
this?</i>
<p>
Open up the C++ wrapper source code file and look for <code>"method_foo"</code> (include the double quotes, they are important!)
Look at the JNI field descriptor and make sure that each class that occurs in the descriptor has the correct package name in front of it.
If the package name is incorrect, put a "javapackage" typemap in your SWIG interface file.
</p>
</li>
<li><i>I'm compiling my code and I'm using templates. I provided a
javapackage typemap, but SWIG doesn't generate the right JNI field
descriptor.</i>
<p>
Use the template's renamed name as the argument to the "javapackage" typemap:
</p>
<div class="code">
<pre>
%typemap(javapackage) std::vector<int> "your.package.here"
%template(VectorOfInt) std::vector<int>;
</pre>
</div>
</li>
<li><p><i>When I pass class pointers or references through a C++ upcall and I
try to type cast them, Java complains with a ClassCastException. What am I
doing wrong?</i></p>
<p>
Normally, a non-director generated Java proxy class creates temporary Java objects as follows:
</p>
<div class="code">
<pre>
public static void MyClass_method_upcall(MyClass self, long jarg1)
{
Foo darg1 = new Foo(jarg1, false);
self.method_upcall(darg1);
}
</pre>
</div>
<p>Unfortunately, this loses the Java type information that is part of the underlying Foo director proxy class's Java object pointer causing the type cast to fail.
The SWIG Java module's director code attempts to correct the problem, <b>but only for director-enabled classes</b>, since the director class retains a global reference to its Java object.
Thus, for director-enabled classes <b>and only for director-enabled classes</b>, the generated proxy Java code looks something like:
</p>
<div class="code">
<pre>
public static void MyClass_method_upcall(MyClass self, long jarg1,
Foo jarg1_object)
{
Foo darg1 = (jarg1_object != null ? jarg1_object : new Foo(jarg1, false));
self.method_upcall(darg1);
}
</pre>
</div>
<p>
When you import a SWIG interface file containing class definitions, the classes you want to be director-enabled must be have the <code>feature("director")</code> enabled for type symmetry to work.
This applies even when the class being wrapped isn't a director-enabled class but takes parameters that are director-enabled classes.
</p>
<p>
The current "type symmetry" design will work for simple C++ inheritance, but will most likely fail for anything more complicated such as tree or diamond C++ inheritance hierarchies.
Those who are interested in challenging problems are more than welcome to hack the <code>Java::Java_director_declaration</code> method in <code>Source/Modules/java.cxx</code>.
</p>
<p>
If all else fails, you can use the downcastXXXXX() method to attempt to recover the director class's Java object pointer.
For the Java Foo proxy class, the Foo director class's java object pointer can be accessed through the javaObjectFoo() method.
The generated method's signature is:
</p>
<div class="code">
<pre>
public static Foo javaObjectFoo(Foo obj);
</pre>
</div>
<p>
From your code, this method is invoked as follows:
</p>
<div class="code">
<pre>
public class MyClassDerived {
public void method_upcall(Foo foo_object)
{
FooDerived derived = (foo_object != null ?
(FooDerived) Foo.downcastFoo(foo_object) : null);
/* rest of your code here */
}
}
</pre>
</div>
<p>
An good approach for managing downcasting is placing a static method in each derived class that performs the downcast from the superclass, e.g.,
</p>
<div class="code">
<pre>
public class FooDerived extends Foo {
/* ... */
public static FooDerived downcastFooDerived(Foo foo_object)
{
try {
return foo_object != null ? (FooDerived) Foo.downcastFoo(foo_object);
}
catch (ClassCastException exc) {
// Wasn't a FooDerived object, some other subclass of Foo
return null;
}
}
}
</pre>
</div>
<p>
Then change the code in MyClassDerived as follows:
</p>
<div class="code">
<pre>
public class MyClassDerived extends MyClass {
/* ... */
public void method_upcall(Foo foo_object)
{
FooDerived derived = FooDerived.downcastFooDerived(foo_object);
/* rest of your code here */
}
}
</pre>
</div>
</li>
<li><p><i>Why isn't the proxy class declared abstract? Why aren't the director
upcall methods in the proxy class declared abstract?</i></p>
<p>
Declaring the proxy class and its methods abstract would break the JNI argument marshalling and SWIG's downcall functionality (going from Java to C++.)
Create an abstract Java subclass that inherits from the director-enabled class instead.
Using the previous Foo class example:
</p>
<div class="code">
<pre>
public abstract class UserVisibleFoo extends Foo {
/** Make sure user overrides this method, it's where the upcall
* happens.
*/
public abstract void method_upcall(Foo foo_object);
/// Downcast from Foo to UserVisibleFoo
public static UserVisibleFoo downcastUserVisibleFoo(Foo foo_object)
{
try {
return foo_object != null ? (FooDerived) Foo.downcastFoo(foo_object) : null;
} catch (ClassCastException exc) {
// Wasn't a FooDerived object, some other subclass of Foo
return null;
}
}
}
</pre>
</div>
<p>This doesn't prevent the user from creating subclasses derived from Foo, however, UserVisibleFoo provides the safety net that reminds the user to override the <code>method_upcall()</code> method.</p>
</li>
</ol>
<H2><a name="Java_odds_ends">25.12 Odds and ends</a></H2>
<H3><a name="Java_javadoc_comments">25.12.1 JavaDoc comments</a></H3>
<p>
The SWIG documentation system is currently deprecated.
When it is resurrected JavaDoc comments will be fully supported.
If you can't wait for the full documentation system a couple of workarounds are available.
The <tt>%javamethodmodifiers</tt> feature can be used for adding proxy class method comments and module class method comments.
The "javaimports" typemap can be hijacked for adding in proxy class JavaDoc comments.
The <tt>jniclassimports</tt> or <tt>jniclassclassmodifiers</tt> pragmas can also be used for adding intermediary JNI class comments and likewise the <tt>moduleimports</tt> or <tt>moduleclassmodifiers</tt> pragmas for the module class.
Here is an example adding in a proxy class and method comment:
</p>
<div class="code">
<pre>
%javamethodmodifiers Barmy::lose_marbles() "
/**
* Calling this method will make you mad.
* Use with <b>utmost</b> caution.
*/
public";
%typemap(javaimports) Barmy "
/** The crazy class. Use as a last resort. */"
class Barmy {
public:
void lose_marbles() {}
};
</pre>
</div>
<p>
Note the "public" added at the end of the <tt>%javamethodmodifiers</tt> as this is the default for this feature.
The generated proxy class with JavaDoc comments is then as follows:
</p>
<div class="code">
<pre>
/** The crazy class. Use as a last resort. */
public class Barmy {
...
/**
* Calling this method will make you mad.
* Use with <b>utmost</b> caution.
*/
public void lose_marbles() {
...
}
...
}
</pre>
</div>
<H3><a name="Java_functional_interface">25.12.2 Functional interface without proxy classes</a></H3>
<p>
It is possible to run SWIG in a mode that does not produce proxy classes by using the -noproxy commandline option.
The interface is rather primitive when wrapping structures or classes and is accessed through function calls to the module class.
All the functions in the module class are wrapped by functions with identical names as those in the intermediary JNI class.
</p>
<p>
Consider the example we looked at when examining proxy classes:
</p>
<div class="code">
<pre>
class Foo {
public:
int x;
int spam(int num, Foo* foo);
};
</pre>
</div>
<p>
When using <tt>-noproxy</tt>, type wrapper classes are generated instead of proxy classes.
Access to all the functions and variables is through a C like set of functions where the first parameter passed is the pointer to the class, that is an instance of a type wrapper class.
Here is what the module class looks like:
</p>
<div class="code">
<pre>
public class example {
public static void Foo_x_get(SWIGTYPE_p_Foo self, int x) {...}
public static int Foo_x_get(SWIGTYPE_p_Foo self) {...}
public static int Foo_spam(SWIGTYPE_p_Foo self, int num, SWIGTYPE_p_Foo foo) {...}
public static SWIGTYPE_p_Foo new_Foo() {...}
public static void delete_Foo(SWIGTYPE_p_Foo self) {...}
}
</pre>
</div>
<p>
This approach is not nearly as natural as using proxy classes as the functions need to be used like this:
</p>
<div class="code">
<pre>
SWIGTYPE_p_Foo foo = example.new_Foo();
example.Foo_x_set(foo, 10);
int var = example.Foo_x_get(foo);
example.Foo_spam(foo, 20, foo);
example.delete_Foo(foo);
</pre>
</div>
<p>
Unlike proxy classes, there is no attempt at tracking memory.
All destructors have to be called manually for example the <tt>delete_Foo(foo)</tt> call above.
</p>
<H3><a name="Java_using_own_jni_functions">25.12.3 Using your own JNI functions</a></H3>
<p>
You may have some hand written JNI functions that you want to use in addition to the SWIG generated JNI functions.
Adding these to your SWIG generated package is possible using the <tt>%native</tt> directive.
If you don't want SWIG to wrap your JNI function then of course you can simply use the <tt>%ignore</tt> directive.
However, if you want SWIG to generate just the Java code for a JNI function then use the <tt>%native</tt> directive.
The C types for the parameters and return type must be specified in place of the JNI types and the function name must be the native method name.
For example:
</p>
<div class="code"><pre>
%native (HandRolled) void HandRolled(int, char *);
%{
JNIEXPORT void JNICALL Java_packageName_moduleName_HandRolled(JNIEnv *, jclass,
jlong, jstring);
%}
</pre></div>
<p>
No C JNI function will be generated and the <tt>Java_packageName_moduleName_HandRolled</tt> function will be accessible using the SWIG generated Java native method call in the intermediary JNI class which will look like this:
</p>
<div class="code"><pre>
public final static native void HandRolled(int jarg1, String jarg2);
</pre></div>
<p>
and as usual this function is wrapped by another which for a global C function would appear in the module class:
</p>
<div class="code"><pre>
public static void HandRolled(int arg0, String arg1) {
exampleJNI.HandRolled(arg0, arg1);
}
</pre></div>
<p>
The <tt>packageName</tt> and <tt>moduleName</tt> must of course be correct else you will get linker errors when the JVM dynamically loads the JNI function.
You may have to add in some "jtype", "jstype", "javain" and "javaout" typemaps when wrapping some JNI types.
Here the default typemaps work for <tt>int</tt> and <tt>char *</tt>.
</p>
<p>
In summary the <tt>%native</tt> directive is telling SWIG to generate the Java code to access the JNI C code, but not the JNI C function itself.
This directive is only really useful if you want to mix your own hand crafted JNI code and the SWIG generated code into one Java class or package.
</p>
<H3><a name="Java_performance">25.12.4 Performance concerns and hints</a></H3>
<p>
If you're directly manipulating huge arrays of complex objects from Java, performance may suffer greatly when using the array functions in <tt>arrays_java.i</tt>.
Try and minimise the expensive JNI calls to C/C++ functions, perhaps by using temporary Java variables instead of accessing the information directly from the C/C++ object.
</p>
<p>
Java classes without any finalizers generally speed up code execution as there is less for the garbage collector to do. Finalizer generation can be stopped by using an empty <tt>javafinalize</tt> typemap:
</p>
<div class="code"><pre>
%typemap(javafinalize) SWIGTYPE ""
</pre></div>
<p>
However, you will have to be careful about memory management and make sure that you code in a call to the <tt>delete()</tt> member function.
This method normally calls the C++ destructor or <tt>free()</tt> for C code.
</p>
<H3><a name="Java_debugging">25.12.5 Debugging</a></H3>
<p>
The generated code can be debugged using both a Java debugger and a C++ debugger using the usual debugging techniques.
Breakpoints can be set in either Java or C++ code and so both can be debugged simultaneously.
Most debuggers do not understand both Java and C++, with one noteable exception of Sun Studio,
where it is possible to step from Java code into a JNI method within one environment.
</p>
<p>
Alternatively, debugging can involve placing debug printout statements in the JNI layer using the <tt>%exception</tt> directive.
See the <a href="Customization.html#Customization_exception_special_variables">special variables for %exception</a> section.
Many of the default typemaps can also be overridden and modified for adding in extra logging/debug display information.
</p>
<p>
The <tt>-Xcheck:jni</tt> and <tt>-Xcheck:nabounds</tt> Java executable options are useful for debugging to make sure the JNI code is behaving.
The -verbose:jni and -verbose:gc are also useful options for monitoring code behaviour.
</p>
<H2><a name="Java_examples">25.13 Java Examples</a></H2>
<p>
The directory Examples/java has a number of further examples.
Take a look at these if you want to see some of the techniques described in action.
The Examples/index.html file in the parent directory contains the SWIG Examples Documentation and is a useful starting point.
If your SWIG installation went well Unix users should be able to type <tt>make</tt> in each example directory, then <tt>java main</tt> to see them running.
For the benefit of Windows users, there are also Visual C++ project files in a couple of the <a href="Windows.html#Windows_examples">Windows Examples</a>.
There are also many regression tests in the Examples/test-suite directory.
Many of these have runtime tests in the java subdirectory.
</p>
</body>
</html>
|