/usr/src/sysdig-0.19.1/ppm_cputime.c is in sysdig-dkms 0.19.1-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | #include <linux/version.h>
// These function are taken from the linux kernel and are used only
// on versions that don't export task_cputime_adjusted()
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 4, 0))
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 37))
#include <asm/atomic.h>
#else
#include <linux/atomic.h>
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kdev_t.h>
#include <linux/delay.h>
#include <linux/proc_fs.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/wait.h>
#include <linux/tracepoint.h>
#include <net/sock.h>
#include <asm/unistd.h>
#include "ppm_ringbuffer.h"
#include "ppm_events_public.h"
#include "ppm_events.h"
#include "ppm.h"
#if (defined CONFIG_VIRT_CPU_ACCOUNTING_NATIVE) || (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 30))
void ppm_task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
*ut = p->utime;
*st = p->stime;
}
#else
#ifndef cmpxchg_cputime
#define cmpxchg_cputime(ptr, old, new) cmpxchg(ptr, old, new)
#endif
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
static unsigned long long vtime_delta(struct task_struct *tsk)
{
unsigned long long clock;
clock = local_clock();
if (clock < tsk->vtime_snap)
return 0;
return clock - tsk->vtime_snap;
}
static void
fetch_task_cputime(struct task_struct *t,
cputime_t *u_dst, cputime_t *s_dst,
cputime_t *u_src, cputime_t *s_src,
cputime_t *udelta, cputime_t *sdelta)
{
unsigned int seq;
unsigned long long delta;
do {
*udelta = 0;
*sdelta = 0;
seq = read_seqbegin(&t->vtime_seqlock);
if (u_dst)
*u_dst = *u_src;
if (s_dst)
*s_dst = *s_src;
/* Task is sleeping, nothing to add */
if (t->vtime_snap_whence == VTIME_SLEEPING ||
is_idle_task(t))
continue;
delta = vtime_delta(t);
/*
* Task runs either in user or kernel space, add pending nohz time to
* the right place.
*/
if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
*udelta = delta;
} else {
if (t->vtime_snap_whence == VTIME_SYS)
*sdelta = delta;
}
} while (read_seqretry(&t->vtime_seqlock, seq));
}
void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
{
cputime_t udelta, sdelta;
fetch_task_cputime(t, utime, stime, &t->utime,
&t->stime, &udelta, &sdelta);
if (utime)
*utime += udelta;
if (stime)
*stime += sdelta;
}
#elif LINUX_VERSION_CODE < KERNEL_VERSION(3, 9, 0)
static inline void task_cputime(struct task_struct *t,
cputime_t *utime, cputime_t *stime)
{
if (utime)
*utime = t->utime;
if (stime)
*stime = t->stime;
}
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
u64 nsecs_to_jiffies64(u64 n)
{
#if (NSEC_PER_SEC % HZ) == 0
/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
return div_u64(n, NSEC_PER_SEC / HZ);
#elif (HZ % 512) == 0
/* overflow after 292 years if HZ = 1024 */
return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
#else
/*
* Generic case - optimized for cases where HZ is a multiple of 3.
* overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
*/
return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
#endif
}
unsigned long nsecs_to_jiffies(u64 n)
{
return (unsigned long)nsecs_to_jiffies64(n);
}
#ifndef nsecs_to_cputime
#ifdef msecs_to_cputime
#define nsecs_to_cputime(__nsecs) \
msecs_to_cputime(div_u64((__nsecs), NSEC_PER_MSEC))
#else
#define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
#endif
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
/*
* Perform (stime * rtime) / total, but avoid multiplication overflow by
* loosing precision when the numbers are big.
*/
static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
{
u64 scaled;
for (;;) {
/* Make sure "rtime" is the bigger of stime/rtime */
if (stime > rtime)
swap(rtime, stime);
/* Make sure 'total' fits in 32 bits */
if (total >> 32)
goto drop_precision;
/* Does rtime (and thus stime) fit in 32 bits? */
if (!(rtime >> 32))
break;
/* Can we just balance rtime/stime rather than dropping bits? */
if (stime >> 31)
goto drop_precision;
/* We can grow stime and shrink rtime and try to make them both fit */
stime <<= 1;
rtime >>= 1;
continue;
drop_precision:
/* We drop from rtime, it has more bits than stime */
rtime >>= 1;
total >>= 1;
}
/*
* Make sure gcc understands that this is a 32x32->64 multiply,
* followed by a 64/32->64 divide.
*/
scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
return (__force cputime_t) scaled;
}
/*
* Atomically advance counter to the new value. Interrupts, vcpu
* scheduling, and scaling inaccuracies can cause cputime_advance
* to be occasionally called with a new value smaller than counter.
* Let's enforce atomicity.
*
* Normally a caller will only go through this loop once, or not
* at all in case a previous caller updated counter the same jiffy.
*/
static void cputime_advance(cputime_t *counter, cputime_t new)
{
cputime_t old;
while (new > (old = ACCESS_ONCE(*counter)))
cmpxchg_cputime(counter, old, new);
}
/*
* Adjust tick based cputime random precision against scheduler
* runtime accounting.
*/
static void cputime_adjust(struct task_cputime *curr,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 3, 0))
struct prev_cputime *prev,
#else
struct cputime *prev,
#endif
cputime_t *ut, cputime_t *st)
{
cputime_t rtime, stime, utime;
/*
* Tick based cputime accounting depend on random scheduling
* timeslices of a task to be interrupted or not by the timer.
* Depending on these circumstances, the number of these interrupts
* may be over or under-optimistic, matching the real user and system
* cputime with a variable precision.
*
* Fix this by scaling these tick based values against the total
* runtime accounted by the CFS scheduler.
*/
rtime = nsecs_to_cputime(curr->sum_exec_runtime);
/*
* Update userspace visible utime/stime values only if actual execution
* time is bigger than already exported. Note that can happen, that we
* provided bigger values due to scaling inaccuracy on big numbers.
*/
if (prev->stime + prev->utime >= rtime)
goto out;
stime = curr->stime;
utime = curr->utime;
if (utime == 0) {
stime = rtime;
} else if (stime == 0) {
utime = rtime;
} else {
cputime_t total = stime + utime;
stime = scale_stime((__force u64)stime,
(__force u64)rtime, (__force u64)total);
utime = rtime - stime;
}
cputime_advance(&prev->stime, stime);
cputime_advance(&prev->utime, utime);
out:
*ut = prev->utime;
*st = prev->stime;
}
void ppm_task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
struct task_cputime cputime = {
#ifdef CONFIG_SCHED_BFS
.sum_exec_runtime = tsk_seruntime(p),
#else
.sum_exec_runtime = p->se.sum_exec_runtime,
#endif
};
task_cputime(p, &cputime.utime, &cputime.stime);
cputime_adjust(&cputime, &p->prev_cputime, ut, st);
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(3, 8, 0) */
static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
{
u64 temp = (__force u64) rtime;
temp *= (__force u64) utime;
if (sizeof(cputime_t) == 4)
temp = div_u64(temp, (__force u32) total);
else
temp = div64_u64(temp, (__force u64) total);
return (__force cputime_t) temp;
}
// Taken from task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
void ppm_task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
{
cputime_t rtime, utime = p->utime, total = utime + p->stime;
/*
* Use CFS's precise accounting:
*/
rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
if (total)
utime = scale_utime(utime, rtime, total);
else
utime = rtime;
/*
* Compare with previous values, to keep monotonicity:
*/
p->prev_utime = max(p->prev_utime, utime);
p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
*ut = p->prev_utime;
*st = p->prev_stime;
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0)) */
#endif /* (defined CONFIG_VIRT_CPU_ACCOUNTING_NATIVE) || (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 30)) */
#endif /* (LINUX_VERSION_CODE < KERNEL_VERSION(4, 4, 0)) */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0))
#include <linux/time.h>
#include <linux/param.h>
/*
* Implementation copied from kernel/time/time.c in 4.11.0
*/
u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
return div_u64(x, NSEC_PER_SEC / USER_HZ);
#elif (USER_HZ % 512) == 0
return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
#else
/*
* max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
* overflow after 64.99 years
* exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
*/
return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
#endif
}
#endif /* (LINUX_VERSION_CODE < KERNEL_VERSION(4, 11, 0)) */
|