/usr/src/sysdig-0.19.1/ppm_events.c is in sysdig-dkms 0.19.1-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 | /*
Copyright (C) 2013-2014 Draios inc.
This file is part of sysdig.
sysdig is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
sysdig is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with sysdig. If not, see <http://www.gnu.org/licenses/>.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/compat.h>
#include <linux/kobject.h>
#include <linux/cdev.h>
#include <net/sock.h>
#include <net/af_unix.h>
#include <net/compat.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/file.h>
#include <linux/futex.h>
#include <linux/fs_struct.h>
#include <linux/uaccess.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <asm/mman.h>
#include <linux/in.h>
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 20)
#include <linux/mount.h>
#include "ppm_syscall.h"
#else
#include <asm/syscall.h>
#endif
#include "ppm_ringbuffer.h"
#include "ppm_events_public.h"
#include "ppm_events.h"
#include "ppm.h"
/*
* The kernel patched with grsecurity makes the default access_ok trigger a
* might_sleep(), so if present we use the one defined by them
*/
#ifdef access_ok_noprefault
#define ppm_access_ok access_ok_noprefault
#else
#define ppm_access_ok access_ok
#endif
extern bool g_tracers_enabled;
static void memory_dump(char *p, size_t size)
{
unsigned int j;
for (j = 0; j < size; j += 8)
pr_info("%*ph\n", 8, &p[j]);
}
/*
* Globals
*/
u32 g_http_options_intval;
u32 g_http_get_intval;
u32 g_http_head_intval;
u32 g_http_post_intval;
u32 g_http_put_intval;
u32 g_http_delete_intval;
u32 g_http_trace_intval;
u32 g_http_connect_intval;
u32 g_http_resp_intval;
/*
* What this function does is basically a special memcpy
* so that, if the page fault handler detects the address is invalid,
* won't kill the process but will return a positive number
* Plus, this doesn't sleep.
* The risk is that if the buffer is partially paged out, we get an error.
* Returns the number of bytes NOT read.
*/
unsigned long ppm_copy_from_user(void *to, const void __user *from, unsigned long n)
{
unsigned long res = n;
pagefault_disable();
if (likely(ppm_access_ok(VERIFY_READ, from, n)))
res = __copy_from_user_inatomic(to, from, n);
pagefault_enable();
return res;
}
/*
* On some kernels (e.g. 2.6.39), even with preemption disabled, the strncpy_from_user,
* instead of returning -1 after a page fault, schedules the process, so we drop events
* because of the preemption. This function reads the user buffer in atomic chunks, and
* returns when there's an error or the terminator is found
*/
long ppm_strncpy_from_user(char *to, const char __user *from, unsigned long n)
{
long string_length = 0;
long res = -1;
unsigned long bytes_to_read = 4;
int j;
pagefault_disable();
while (n) {
/*
* Read bytes_to_read bytes at a time, and look for the terminator. Should be fast
* since the copy_from_user is optimized for the processor
*/
if (n < bytes_to_read)
bytes_to_read = n;
if (!ppm_access_ok(VERIFY_READ, from, bytes_to_read)) {
res = -1;
goto strncpy_end;
}
if (__copy_from_user_inatomic(to, from, bytes_to_read)) {
/*
* Page fault
*/
res = -1;
goto strncpy_end;
}
n -= bytes_to_read;
from += bytes_to_read;
for (j = 0; j < bytes_to_read; ++j) {
++string_length;
if (!*to) {
res = string_length;
goto strncpy_end;
}
++to;
}
}
strncpy_end:
pagefault_enable();
return res;
}
int32_t dpi_lookahead_init(void)
{
g_http_options_intval = (*(u32 *)HTTP_OPTIONS_STR);
g_http_get_intval = (*(u32 *)HTTP_GET_STR);
g_http_head_intval = (*(u32 *)HTTP_HEAD_STR);
g_http_post_intval = (*(u32 *)HTTP_POST_STR);
g_http_put_intval = (*(u32 *)HTTP_PUT_STR);
g_http_delete_intval = (*(u32 *)HTTP_DELETE_STR);
g_http_trace_intval = (*(u32 *)HTTP_TRACE_STR);
g_http_connect_intval = (*(u32 *)HTTP_CONNECT_STR);
g_http_resp_intval = (*(u32 *)HTTP_RESP_STR);
return PPM_SUCCESS;
}
inline u32 compute_snaplen(struct event_filler_arguments *args, char *buf, u32 lookahead_size)
{
u32 res = args->consumer->snaplen;
int err;
struct socket *sock;
sa_family_t family;
struct sockaddr_storage sock_address;
struct sockaddr_storage peer_address;
int sock_address_len;
int peer_address_len;
u16 sport, dport;
if (g_tracers_enabled && args->event_type == PPME_SYSCALL_WRITE_X) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)
struct fd f = fdget(args->fd);
if (f.file && f.file->f_inode) {
if (f.file->f_inode->i_rdev == PPM_NULL_RDEV) {
res = RW_SNAPLEN_EVENT;
fdput(f);
return res;
}
fdput(f);
}
#else
struct file* file = fget(args->fd);
/* Use cached f_inode only on kernel versions that have it
* https://github.com/torvalds/linux/commit/dd37978c50bc8b354e5c4633f69387f16572fdac
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0)
if (file && file->f_inode) {
if (file->f_inode->i_rdev == PPM_NULL_RDEV) {
// Use f_dentry for older kernel versions
#elif LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,20)
if (file && file->f_dentry && file->f_dentry->d_inode) {
if (file->f_dentry->d_inode->i_rdev == PPM_NULL_RDEV) {
#else
if (file && file->f_path.dentry && file->f_path.dentry->d_inode) {
if (file->f_path.dentry->d_inode->i_rdev == PPM_NULL_RDEV) {
#endif
res = RW_SNAPLEN_EVENT;
fput(file);
return res;
}
fput(file);
}
#endif
}
if (!args->consumer->do_dynamic_snaplen)
return res;
sock = sockfd_lookup(args->fd, &err);
if (sock) {
if (sock->sk) {
err = sock->ops->getname(sock, (struct sockaddr *)&sock_address, &sock_address_len, 0);
if (err == 0) {
if(args->event_type == PPME_SOCKET_SENDTO_X)
{
unsigned long val;
struct sockaddr __user * usrsockaddr;
/*
* Get the address
*/
if (!args->is_socketcall)
syscall_get_arguments(current, args->regs, 4, 1, &val);
else
val = args->socketcall_args[4];
usrsockaddr = (struct sockaddr __user *)val;
if(usrsockaddr == NULL) {
/*
* Suppose is a connected socket, fall back to fd
*/
err = sock->ops->getname(sock, (struct sockaddr *)&peer_address, &peer_address_len, 1);
} else {
/*
* Get the address len
*/
if (!args->is_socketcall)
syscall_get_arguments(current, args->regs, 5, 1, &val);
else
val = args->socketcall_args[5];
if (val != 0) {
peer_address_len = val;
/*
* Copy the address
*/
err = addr_to_kernel(usrsockaddr, val, (struct sockaddr *)&peer_address);
} else {
/*
* This case should be very rare, fallback again to sock
*/
err = sock->ops->getname(sock, (struct sockaddr *)&peer_address, &peer_address_len, 1);
}
}
} else if (args->event_type == PPME_SOCKET_SENDMSG_X) {
unsigned long val;
struct sockaddr __user * usrsockaddr;
int addrlen;
#ifdef CONFIG_COMPAT
struct compat_msghdr compat_mh;
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0)
struct user_msghdr mh;
#else
struct msghdr mh;
#endif
if (!args->is_socketcall)
syscall_get_arguments(current, args->regs, 1, 1, &val);
else
val = args->socketcall_args[1];
#ifdef CONFIG_COMPAT
if (!args->compat) {
#endif
if (unlikely(ppm_copy_from_user(&mh, (const void __user *)val, sizeof(mh)))) {
usrsockaddr = NULL;
addrlen = 0;
} else {
usrsockaddr = (struct sockaddr __user *)mh.msg_name;
addrlen = mh.msg_namelen;
}
#ifdef CONFIG_COMPAT
} else {
if (unlikely(ppm_copy_from_user(&compat_mh, (const void __user *)compat_ptr(val), sizeof(compat_mh)))) {
usrsockaddr = NULL;
addrlen = 0;
} else {
usrsockaddr = (struct sockaddr __user *)compat_ptr(compat_mh.msg_name);
addrlen = compat_mh.msg_namelen;
}
}
#endif
if (usrsockaddr != NULL && addrlen != 0) {
peer_address_len = addrlen;
/*
* Copy the address
*/
err = addr_to_kernel(usrsockaddr, peer_address_len, (struct sockaddr *)&peer_address);
} else
/*
* Suppose it is a connected socket, fall back to fd
*/
err = sock->ops->getname(sock, (struct sockaddr *)&peer_address, &peer_address_len, 1);
} else
err = sock->ops->getname(sock, (struct sockaddr *)&peer_address, &peer_address_len, 1);
if (err == 0) {
family = sock->sk->sk_family;
if (family == AF_INET) {
sport = ntohs(((struct sockaddr_in *) &sock_address)->sin_port);
dport = ntohs(((struct sockaddr_in *) &peer_address)->sin_port);
} else if (family == AF_INET6) {
sport = ntohs(((struct sockaddr_in6 *) &sock_address)->sin6_port);
dport = ntohs(((struct sockaddr_in6 *) &peer_address)->sin6_port);
} else {
sport = 0;
dport = 0;
}
if (sport == PPM_PORT_MYSQL || dport == PPM_PORT_MYSQL) {
if (lookahead_size >= 5) {
if (buf[0] == 3 || buf[1] == 3 || buf[2] == 3 || buf[3] == 3 || buf[4] == 3) {
sockfd_put(sock);
return 2000;
} else if (buf[2] == 0 && buf[3] == 0) {
sockfd_put(sock);
return 2000;
}
}
} else if (sport == PPM_PORT_POSTGRES || dport == PPM_PORT_POSTGRES) {
if (lookahead_size >= 2) {
if ((buf[0] == 'Q' && buf[1] == 0) || /* SimpleQuery command */
(buf[0] == 'P' && buf[1] == 0) || /* Prepare statement commmand */
(buf[4] == 0 && buf[5] == 3 && buf[6] == 0) || /* startup command */
(buf[0] == 'E' && buf[1] == 0) /* error or execute command */
) {
sockfd_put(sock);
return 2000;
}
}
} else if ((lookahead_size >= 4 && buf[1] == 0 && buf[2] == 0 && buf[2] == 0) || /* matches command */
(lookahead_size >= 16 && (*(int32_t *)(buf+12) == 1 || /* matches header */
*(int32_t *)(buf+12) == 2001 ||
*(int32_t *)(buf+12) == 2002 ||
*(int32_t *)(buf+12) == 2003 ||
*(int32_t *)(buf+12) == 2004 ||
*(int32_t *)(buf+12) == 2005 ||
*(int32_t *)(buf+12) == 2006 ||
*(int32_t *)(buf+12) == 2007)
)
) {
sockfd_put(sock);
return 2000;
} else if (dport == PPM_PORT_STATSD) {
sockfd_put(sock);
return 2000;
} else {
if (lookahead_size >= 5) {
if (*(u32 *)buf == g_http_get_intval ||
*(u32 *)buf == g_http_post_intval ||
*(u32 *)buf == g_http_put_intval ||
*(u32 *)buf == g_http_delete_intval ||
*(u32 *)buf == g_http_trace_intval ||
*(u32 *)buf == g_http_connect_intval ||
*(u32 *)buf == g_http_options_intval ||
((*(u32 *)buf == g_http_resp_intval) && (buf[4] == '/'))
) {
sockfd_put(sock);
return 2000;
}
}
}
}
}
}
sockfd_put(sock);
}
return res;
}
/*
* NOTES:
* - val_len is ignored for everything other than PT_BYTEBUF.
* - fromuser is ignored for numeric types
* - dyn_idx is ignored for everything other than PT_DYN
*/
int val_to_ring(struct event_filler_arguments *args, uint64_t val, u16 val_len, bool fromuser, u8 dyn_idx)
{
const struct ppm_param_info *param_info;
int len = -1;
u16 *psize = (u16 *)(args->buffer + args->curarg * sizeof(u16));
if (unlikely(args->curarg >= args->nargs)) {
pr_err("(%u)val_to_ring: too many arguments for event #%u, type=%u, curarg=%u, nargs=%u tid:%u\n",
smp_processor_id(),
args->nevents,
(u32)args->event_type,
args->curarg,
args->nargs,
current->pid);
memory_dump(args->buffer - sizeof(struct ppm_evt_hdr), 32);
ASSERT(0);
return PPM_FAILURE_BUG;
}
if (unlikely(args->arg_data_size == 0))
return PPM_FAILURE_BUFFER_FULL;
param_info = &(g_event_info[args->event_type].params[args->curarg]);
if (param_info->type == PT_DYN && param_info->info != NULL) {
const struct ppm_param_info *dyn_params;
if (unlikely(dyn_idx >= param_info->ninfo)) {
ASSERT(0);
return PPM_FAILURE_BUG;
}
dyn_params = (const struct ppm_param_info *)param_info->info;
param_info = &dyn_params[dyn_idx];
if (likely(args->arg_data_size >= sizeof(u8))) {
*(u8 *)(args->buffer + args->arg_data_offset) = dyn_idx;
len = sizeof(u8);
} else {
return PPM_FAILURE_BUFFER_FULL;
}
args->arg_data_offset += len;
args->arg_data_size -= len;
*psize = (u16)len;
} else {
*psize = 0;
}
switch (param_info->type) {
case PT_CHARBUF:
case PT_FSPATH:
if (likely(val != 0)) {
if (fromuser) {
len = ppm_strncpy_from_user(args->buffer + args->arg_data_offset,
(const char __user *)(unsigned long)val, args->arg_data_size);
if (unlikely(len < 0))
return PPM_FAILURE_INVALID_USER_MEMORY;
} else {
len = strlcpy(args->buffer + args->arg_data_offset,
(const char *)(unsigned long)val,
args->arg_data_size);
if (++len > args->arg_data_size)
len = args->arg_data_size;
}
/*
* Make sure the string is null-terminated
*/
*(char *)(args->buffer + args->arg_data_offset + len) = 0;
} else {
/*
* Handle NULL pointers
*/
len = strlcpy(args->buffer + args->arg_data_offset,
"(NULL)",
args->arg_data_size);
if (++len > args->arg_data_size)
len = args->arg_data_size;
}
break;
case PT_BYTEBUF:
if (likely(val != 0)) {
if (fromuser) {
/*
* Copy the lookahead portion of the buffer that we will use DPI-based
* snaplen calculation
*/
u32 dpi_lookahead_size = DPI_LOOKAHED_SIZE;
if (dpi_lookahead_size > val_len)
dpi_lookahead_size = val_len;
if (unlikely(dpi_lookahead_size >= args->arg_data_size))
return PPM_FAILURE_BUFFER_FULL;
len = (int)ppm_copy_from_user(args->buffer + args->arg_data_offset,
(const void __user *)(unsigned long)val,
dpi_lookahead_size);
if (unlikely(len != 0))
return PPM_FAILURE_INVALID_USER_MEMORY;
/*
* Check if there's more to copy
*/
if (likely((dpi_lookahead_size != val_len))) {
/*
* Calculate the snaplen
*/
if (likely(args->enforce_snaplen)) {
u32 sl = args->consumer->snaplen;
sl = compute_snaplen(args, args->buffer + args->arg_data_offset, dpi_lookahead_size);
if (val_len > sl)
val_len = sl;
}
if (unlikely((val_len) >= args->arg_data_size))
val_len = args->arg_data_size;
if (val_len > dpi_lookahead_size) {
len = (int)ppm_copy_from_user(args->buffer + args->arg_data_offset + dpi_lookahead_size,
(const void __user *)(unsigned long)val + dpi_lookahead_size,
val_len - dpi_lookahead_size);
if (unlikely(len != 0))
return PPM_FAILURE_INVALID_USER_MEMORY;
}
}
len = val_len;
} else {
if (likely(args->enforce_snaplen)) {
u32 sl = compute_snaplen(args, (char *)(unsigned long)val, val_len);
if (val_len > sl)
val_len = sl;
}
if (unlikely(val_len >= args->arg_data_size))
return PPM_FAILURE_BUFFER_FULL;
memcpy(args->buffer + args->arg_data_offset,
(void *)(unsigned long)val, val_len);
len = val_len;
}
} else {
/*
* Handle NULL pointers
*/
len = 0;
}
break;
case PT_SOCKADDR:
case PT_SOCKTUPLE:
case PT_FDLIST:
if (likely(val != 0)) {
if (unlikely(val_len >= args->arg_data_size))
return PPM_FAILURE_BUFFER_FULL;
if (fromuser) {
len = (int)ppm_copy_from_user(args->buffer + args->arg_data_offset,
(const void __user *)(unsigned long)val,
val_len);
if (unlikely(len != 0))
return PPM_FAILURE_INVALID_USER_MEMORY;
len = val_len;
} else {
memcpy(args->buffer + args->arg_data_offset,
(void *)(unsigned long)val, val_len);
len = val_len;
}
} else {
/*
* Handle NULL pointers
*/
len = 0;
}
break;
case PT_FLAGS8:
case PT_UINT8:
case PT_SIGTYPE:
if (likely(args->arg_data_size >= sizeof(u8))) {
*(u8 *)(args->buffer + args->arg_data_offset) = (u8)val;
len = sizeof(u8);
} else {
return PPM_FAILURE_BUFFER_FULL;
}
break;
case PT_FLAGS16:
case PT_UINT16:
case PT_SYSCALLID:
if (likely(args->arg_data_size >= sizeof(u16))) {
*(u16 *)(args->buffer + args->arg_data_offset) = (u16)val;
len = sizeof(u16);
} else {
return PPM_FAILURE_BUFFER_FULL;
}
break;
case PT_FLAGS32:
case PT_UINT32:
case PT_UID:
case PT_GID:
case PT_SIGSET:
if (likely(args->arg_data_size >= sizeof(u32))) {
*(u32 *)(args->buffer + args->arg_data_offset) = (u32)val;
len = sizeof(u32);
} else {
return PPM_FAILURE_BUFFER_FULL;
}
break;
case PT_RELTIME:
case PT_ABSTIME:
case PT_UINT64:
if (likely(args->arg_data_size >= sizeof(u64))) {
*(u64 *)(args->buffer + args->arg_data_offset) = (u64)val;
len = sizeof(u64);
} else {
return PPM_FAILURE_BUFFER_FULL;
}
break;
case PT_INT8:
if (likely(args->arg_data_size >= sizeof(s8))) {
*(s8 *)(args->buffer + args->arg_data_offset) = (s8)(long)val;
len = sizeof(s8);
} else {
return PPM_FAILURE_BUFFER_FULL;
}
break;
case PT_INT16:
if (likely(args->arg_data_size >= sizeof(s16))) {
*(s16 *)(args->buffer + args->arg_data_offset) = (s16)(long)val;
len = sizeof(s16);
} else {
return PPM_FAILURE_BUFFER_FULL;
}
break;
case PT_INT32:
if (likely(args->arg_data_size >= sizeof(s32))) {
*(s32 *)(args->buffer + args->arg_data_offset) = (s32)(long)val;
len = sizeof(s32);
} else {
return PPM_FAILURE_BUFFER_FULL;
}
break;
case PT_INT64:
case PT_ERRNO:
case PT_FD:
case PT_PID:
if (likely(args->arg_data_size >= sizeof(s64))) {
*(s64 *)(args->buffer + args->arg_data_offset) = (s64)(long)val;
len = sizeof(s64);
} else {
return PPM_FAILURE_BUFFER_FULL;
}
break;
default:
ASSERT(0);
pr_err("val_to_ring: invalid argument type %d. Event %u (%s) might have less parameters than what has been declared in nparams\n",
(int)g_event_info[args->event_type].params[args->curarg].type,
(u32)args->event_type,
g_event_info[args->event_type].name);
return PPM_FAILURE_BUG;
}
ASSERT(len <= 65535);
ASSERT(len <= args->arg_data_size);
*psize += (u16)len;
args->curarg++;
args->arg_data_offset += len;
args->arg_data_size -= len;
return PPM_SUCCESS;
}
static inline u8 socket_family_to_scap(u8 family)
{
if (family == AF_INET)
return PPM_AF_INET;
else if (family == AF_INET6)
return PPM_AF_INET6;
else if (family == AF_UNIX)
return PPM_AF_UNIX;
else if (family == AF_NETLINK)
return PPM_AF_NETLINK;
else if (family == AF_PACKET)
return PPM_AF_PACKET;
else if (family == AF_UNSPEC)
return PPM_AF_UNSPEC;
else if (family == AF_AX25)
return PPM_AF_AX25;
else if (family == AF_IPX)
return PPM_AF_IPX;
else if (family == AF_APPLETALK)
return PPM_AF_APPLETALK;
else if (family == AF_NETROM)
return PPM_AF_NETROM;
else if (family == AF_BRIDGE)
return PPM_AF_BRIDGE;
else if (family == AF_ATMPVC)
return PPM_AF_ATMPVC;
else if (family == AF_X25)
return PPM_AF_X25;
else if (family == AF_ROSE)
return PPM_AF_ROSE;
else if (family == AF_DECnet)
return PPM_AF_DECnet;
else if (family == AF_NETBEUI)
return PPM_AF_NETBEUI;
else if (family == AF_SECURITY)
return PPM_AF_SECURITY;
else if (family == AF_KEY)
return PPM_AF_KEY;
else if (family == AF_ROUTE)
return PPM_AF_ROUTE;
else if (family == AF_ASH)
return PPM_AF_ASH;
else if (family == AF_ECONET)
return PPM_AF_ECONET;
else if (family == AF_ATMSVC)
return PPM_AF_ATMSVC;
#ifdef AF_RDS
else if (family == AF_RDS)
return PPM_AF_RDS;
#endif
else if (family == AF_SNA)
return PPM_AF_SNA;
else if (family == AF_IRDA)
return PPM_AF_IRDA;
else if (family == AF_PPPOX)
return PPM_AF_PPPOX;
else if (family == AF_WANPIPE)
return PPM_AF_WANPIPE;
else if (family == AF_LLC)
return PPM_AF_LLC;
#ifdef AF_CAN
else if (family == AF_CAN)
return PPM_AF_CAN;
#endif
else if (family == AF_TIPC)
return PPM_AF_TIPC;
else if (family == AF_BLUETOOTH)
return PPM_AF_BLUETOOTH;
else if (family == AF_IUCV)
return PPM_AF_IUCV;
#ifdef AF_RXRPC
else if (family == AF_RXRPC)
return PPM_AF_RXRPC;
#endif
#ifdef AF_ISDN
else if (family == AF_ISDN)
return PPM_AF_ISDN;
#endif
#ifdef AF_PHONET
else if (family == AF_PHONET)
return PPM_AF_PHONET;
#endif
#ifdef AF_IEEE802154
else if (family == AF_IEEE802154)
return PPM_AF_IEEE802154;
#endif
#ifdef AF_CAIF
else if (family == AF_CAIF)
return PPM_AF_CAIF;
#endif
#ifdef AF_ALG
else if (family == AF_ALG)
return PPM_AF_ALG;
#endif
#ifdef AF_NFC
else if (family == AF_NFC)
return PPM_AF_NFC;
#endif
else {
ASSERT(false);
return PPM_AF_UNSPEC;
}
}
/*
static struct socket *ppm_sockfd_lookup_light(int fd, int *err, int *fput_needed)
{
struct file *file;
struct socket *sock;
*err = -EBADF;
file = fget_light(fd, fput_needed);
if (file) {
sock = sock_from_file(file, err);
if (sock)
return sock;
fput_light(file, *fput_needed);
}
return NULL;
}
*/
/*
* Convert a sockaddr into our address representation and copy it to
* targetbuf
*/
u16 pack_addr(struct sockaddr *usrsockaddr,
int ulen,
char *targetbuf,
u16 targetbufsize)
{
u32 ip;
u16 port;
sa_family_t family = usrsockaddr->sa_family;
struct sockaddr_in *usrsockaddr_in;
struct sockaddr_in6 *usrsockaddr_in6;
struct sockaddr_un *usrsockaddr_un;
u16 size;
char *dest;
switch (family) {
case AF_INET:
/*
* Map the user-provided address to a sockaddr_in
*/
usrsockaddr_in = (struct sockaddr_in *)usrsockaddr;
/*
* Retrieve the src address
*/
ip = usrsockaddr_in->sin_addr.s_addr;
port = ntohs(usrsockaddr_in->sin_port);
/*
* Pack the tuple info in the temporary buffer
*/
size = 1 + 4 + 2; /* family + ip + port */
*targetbuf = socket_family_to_scap(family);
*(u32 *)(targetbuf + 1) = ip;
*(u16 *)(targetbuf + 5) = port;
break;
case AF_INET6:
/*
* Map the user-provided address to a sockaddr_in
*/
usrsockaddr_in6 = (struct sockaddr_in6 *)usrsockaddr;
/*
* Retrieve the src address
*/
port = ntohs(usrsockaddr_in6->sin6_port);
/*
* Pack the tuple info in the temporary buffer
*/
size = 1 + 16 + 2; /* family + ip + port */
*targetbuf = socket_family_to_scap(family);
memcpy(targetbuf + 1,
usrsockaddr_in6->sin6_addr.s6_addr,
16);
*(u16 *)(targetbuf + 17) = port;
break;
case AF_UNIX:
/*
* Map the user-provided address to a sockaddr_in
*/
usrsockaddr_un = (struct sockaddr_un *)usrsockaddr;
/*
* Put a 0 at the end of struct sockaddr_un because
* the user might not have considered it in the length
*/
if (ulen == sizeof(struct sockaddr_storage))
*(((char *)usrsockaddr_un) + ulen - 1) = 0;
else
*(((char *)usrsockaddr_un) + ulen) = 0;
/*
* Pack the data into the target buffer
*/
size = 1;
*targetbuf = socket_family_to_scap(family);
dest = strncpy(targetbuf + 1,
usrsockaddr_un->sun_path,
UNIX_PATH_MAX); /* we assume this will be smaller than (targetbufsize - (1 + 8 + 8)) */
dest[UNIX_PATH_MAX - 1] = 0;
size += strlen(dest) + 1;
break;
default:
size = 0;
break;
}
return size;
}
/*
* Convert a connection tuple into our tuple representation and copy it to
* targetbuf
*/
u16 fd_to_socktuple(int fd,
struct sockaddr *usrsockaddr,
int ulen,
bool use_userdata,
bool is_inbound,
char *targetbuf,
u16 targetbufsize)
{
struct socket *sock;
int err = 0;
sa_family_t family;
struct unix_sock *us;
char *us_name;
struct sock *speer;
u32 sip;
u32 dip;
u8 *sip6;
u8 *dip6;
u16 sport;
u16 dport;
struct sockaddr_in *usrsockaddr_in;
struct sockaddr_in6 *usrsockaddr_in6;
struct sockaddr_un *usrsockaddr_un;
u16 size;
char *dest;
struct sockaddr_storage sock_address;
struct sockaddr_storage peer_address;
int sock_address_len;
int peer_address_len;
/*
* Get the socket from the fd
* NOTE: sockfd_lookup() locks the socket, so we don't need to worry when we dig in it
*/
sock = sockfd_lookup(fd, &err);
if (unlikely(!sock || !(sock->sk))) {
/*
* This usually happens if the call failed without being able to establish a connection,
* i.e. if it didn't return something like SE_EINPROGRESS.
*/
if (sock)
sockfd_put(sock);
return 0;
}
err = sock->ops->getname(sock, (struct sockaddr *)&sock_address, &sock_address_len, 0);
ASSERT(err == 0);
family = sock->sk->sk_family;
/*
* Extract and pack the info, based on the family
*/
switch (family) {
case AF_INET:
if (!use_userdata) {
err = sock->ops->getname(sock, (struct sockaddr *)&peer_address, &peer_address_len, 1);
if (err == 0) {
if (is_inbound) {
sip = ((struct sockaddr_in *) &peer_address)->sin_addr.s_addr;
sport = ntohs(((struct sockaddr_in *) &peer_address)->sin_port);
dip = ((struct sockaddr_in *) &sock_address)->sin_addr.s_addr;
dport = ntohs(((struct sockaddr_in *) &sock_address)->sin_port);
} else {
sip = ((struct sockaddr_in *) &sock_address)->sin_addr.s_addr;
sport = ntohs(((struct sockaddr_in *) &sock_address)->sin_port);
dip = ((struct sockaddr_in *) &peer_address)->sin_addr.s_addr;
dport = ntohs(((struct sockaddr_in *) &peer_address)->sin_port);
}
} else {
sip = 0;
sport = 0;
dip = 0;
dport = 0;
}
} else {
/*
* Map the user-provided address to a sockaddr_in
*/
usrsockaddr_in = (struct sockaddr_in *)usrsockaddr;
if (is_inbound) {
sip = usrsockaddr_in->sin_addr.s_addr;
sport = ntohs(usrsockaddr_in->sin_port);
dip = ((struct sockaddr_in *) &sock_address)->sin_addr.s_addr;
dport = ntohs(((struct sockaddr_in *) &sock_address)->sin_port);
} else {
sip = ((struct sockaddr_in *) &sock_address)->sin_addr.s_addr;
sport = ntohs(((struct sockaddr_in *) &sock_address)->sin_port);
dip = usrsockaddr_in->sin_addr.s_addr;
dport = ntohs(usrsockaddr_in->sin_port);
}
}
/*
* Pack the tuple info in the temporary buffer
*/
size = 1 + 4 + 4 + 2 + 2; /* family + sip + dip + sport + dport */
*targetbuf = socket_family_to_scap(family);
*(u32 *)(targetbuf + 1) = sip;
*(u16 *)(targetbuf + 5) = sport;
*(u32 *)(targetbuf + 7) = dip;
*(u16 *)(targetbuf + 11) = dport;
break;
case AF_INET6:
if (!use_userdata) {
err = sock->ops->getname(sock, (struct sockaddr *)&peer_address, &peer_address_len, 1);
ASSERT(err == 0);
if (is_inbound) {
sip6 = ((struct sockaddr_in6 *) &peer_address)->sin6_addr.s6_addr;
sport = ntohs(((struct sockaddr_in6 *) &peer_address)->sin6_port);
dip6 = ((struct sockaddr_in6 *) &sock_address)->sin6_addr.s6_addr;
dport = ntohs(((struct sockaddr_in6 *) &sock_address)->sin6_port);
} else {
sip6 = ((struct sockaddr_in6 *) &sock_address)->sin6_addr.s6_addr;
sport = ntohs(((struct sockaddr_in6 *) &sock_address)->sin6_port);
dip6 = ((struct sockaddr_in6 *) &peer_address)->sin6_addr.s6_addr;
dport = ntohs(((struct sockaddr_in6 *) &peer_address)->sin6_port);
}
} else {
/*
* Map the user-provided address to a sockaddr_in6
*/
usrsockaddr_in6 = (struct sockaddr_in6 *)usrsockaddr;
if (is_inbound) {
sip6 = usrsockaddr_in6->sin6_addr.s6_addr;
sport = ntohs(usrsockaddr_in6->sin6_port);
dip6 = ((struct sockaddr_in6 *) &sock_address)->sin6_addr.s6_addr;
dport = ntohs(((struct sockaddr_in6 *) &sock_address)->sin6_port);
} else {
sip6 = ((struct sockaddr_in6 *) &sock_address)->sin6_addr.s6_addr;
sport = ntohs(((struct sockaddr_in6 *) &sock_address)->sin6_port);
dip6 = usrsockaddr_in6->sin6_addr.s6_addr;
dport = ntohs(usrsockaddr_in6->sin6_port);
}
}
/*
* Pack the tuple info in the temporary buffer
*/
size = 1 + 16 + 16 + 2 + 2; /* family + sip + dip + sport + dport */
*targetbuf = socket_family_to_scap(family);
memcpy(targetbuf + 1,
sip6,
16);
*(u16 *)(targetbuf + 17) = sport;
memcpy(targetbuf + 19,
dip6,
16);
*(u16 *)(targetbuf + 35) = dport;
break;
case AF_UNIX:
/*
* Retrieve the addresses
*/
us = unix_sk(sock->sk);
speer = us->peer;
*targetbuf = socket_family_to_scap(family);
if (is_inbound) {
*(uint64_t *)(targetbuf + 1) = (uint64_t)(unsigned long)us;
*(uint64_t *)(targetbuf + 1 + 8) = (uint64_t)(unsigned long)speer;
} else {
*(uint64_t *)(targetbuf + 1) = (uint64_t)(unsigned long)speer;
*(uint64_t *)(targetbuf + 1 + 8) = (uint64_t)(unsigned long)us;
}
/*
* Pack the data into the target buffer
*/
size = 1 + 8 + 8;
if (!use_userdata) {
if (is_inbound) {
us_name = ((struct sockaddr_un *) &sock_address)->sun_path;
} else {
err = sock->ops->getname(sock, (struct sockaddr *)&peer_address, &peer_address_len, 1);
ASSERT(err == 0);
us_name = ((struct sockaddr_un *) &peer_address)->sun_path;
}
} else {
/*
* Map the user-provided address to a sockaddr_in
*/
usrsockaddr_un = (struct sockaddr_un *)usrsockaddr;
/*
* Put a 0 at the end of struct sockaddr_un because
* the user might not have considered it in the length
*/
if (ulen == sizeof(struct sockaddr_storage))
*(((char *)usrsockaddr_un) + ulen - 1) = 0;
else
*(((char *)usrsockaddr_un) + ulen) = 0;
if (is_inbound)
us_name = ((struct sockaddr_un *) &sock_address)->sun_path;
else
us_name = usrsockaddr_un->sun_path;
}
ASSERT(us_name);
dest = strncpy(targetbuf + 1 + 8 + 8,
(char *)us_name,
UNIX_PATH_MAX); /* we assume this will be smaller than (targetbufsize - (1 + 8 + 8)) */
dest[UNIX_PATH_MAX - 1] = 0;
size += strlen(dest) + 1;
break;
default:
size = 0;
break;
}
/*
* Digging finished. We can release the fd.
*/
sockfd_put(sock);
return size;
}
int addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
{
if (unlikely(ulen < 0 || ulen > sizeof(struct sockaddr_storage)))
return -EINVAL;
if (unlikely(ulen == 0))
return 0;
if (unlikely(ppm_copy_from_user(kaddr, uaddr, ulen)))
return -EFAULT;
return 0;
}
/*
* Parses the list of buffers of a xreadv or xwritev call, and pushes the size
* (and optionally the data) to the ring.
*/
int32_t parse_readv_writev_bufs(struct event_filler_arguments *args, const struct iovec __user *iovsrc, unsigned long iovcnt, int64_t retval, int flags)
{
int32_t res;
const struct iovec *iov;
u32 copylen;
u32 j;
u64 size = 0;
unsigned long bufsize;
char *targetbuf = args->str_storage;
u32 targetbuflen = STR_STORAGE_SIZE;
unsigned long val;
u32 notcopied_len;
size_t tocopy_len;
copylen = iovcnt * sizeof(struct iovec);
if (unlikely(copylen >= STR_STORAGE_SIZE))
return PPM_FAILURE_BUFFER_FULL;
if (unlikely(ppm_copy_from_user(args->str_storage, iovsrc, copylen)))
return PPM_FAILURE_INVALID_USER_MEMORY;
iov = (const struct iovec *)(args->str_storage);
targetbuf += copylen;
targetbuflen -= copylen;
/*
* Size
*/
if (flags & PRB_FLAG_PUSH_SIZE) {
for (j = 0; j < iovcnt; j++)
size += iov[j].iov_len;
/*
* Size is the total size of the buffers provided by the user. The number of
* received bytes can be smaller
*/
if ((flags & PRB_FLAG_IS_WRITE) == 0)
if (size > retval)
size = retval;
res = val_to_ring(args, size, 0, false, 0);
if (unlikely(res != PPM_SUCCESS))
return res;
}
/*
* data
*/
if (flags & PRB_FLAG_PUSH_DATA) {
if (retval > 0 && iovcnt > 0) {
/*
* Retrieve the FD. It will be used for dynamic snaplen calculation.
*/
if (!args->is_socketcall)
syscall_get_arguments(current, args->regs, 0, 1, &val);
else
val = args->socketcall_args[0];
args->fd = (int)val;
/*
* Merge the buffers
*/
bufsize = 0;
for (j = 0; j < iovcnt; j++) {
if ((flags & PRB_FLAG_IS_WRITE) == 0) {
if (bufsize >= retval) {
ASSERT(bufsize >= retval);
/*
* Copied all the data even if we haven't reached the
* end of the buffer.
* Copy must stop here.
*/
break;
}
tocopy_len = min(iov[j].iov_len, (size_t)retval - bufsize);
tocopy_len = min(tocopy_len, (size_t)targetbuflen - bufsize - 1);
} else {
tocopy_len = min(iov[j].iov_len, targetbuflen - bufsize - 1);
}
notcopied_len = (int)ppm_copy_from_user(targetbuf + bufsize,
iov[j].iov_base,
tocopy_len);
if (unlikely(notcopied_len != 0)) {
/*
* This means we had a page fault. Skip this event.
*/
return PPM_FAILURE_INVALID_USER_MEMORY;
}
bufsize += tocopy_len;
if (tocopy_len != iov[j].iov_len) {
/*
* No space left in the args->str_storage buffer.
* Copy must stop here.
*/
break;
}
}
args->enforce_snaplen = true;
res = val_to_ring(args,
(unsigned long)targetbuf,
bufsize,
false,
0);
if (unlikely(res != PPM_SUCCESS))
return res;
} else {
res = val_to_ring(args, 0, 0, false, 0);
if (unlikely(res != PPM_SUCCESS))
return res;
}
}
return PPM_SUCCESS;
}
#ifdef CONFIG_COMPAT
/*
* Parses the list of buffers of a xreadv or xwritev call, and pushes the size
* (and optionally the data) to the ring.
*/
int32_t compat_parse_readv_writev_bufs(struct event_filler_arguments *args, const struct compat_iovec __user *iovsrc, unsigned long iovcnt, int64_t retval, int flags)
{
int32_t res;
const struct compat_iovec *iov;
u32 copylen;
u32 j;
u64 size = 0;
unsigned long bufsize;
char *targetbuf = args->str_storage;
u32 targetbuflen = STR_STORAGE_SIZE;
unsigned long val;
u32 notcopied_len;
compat_size_t tocopy_len;
copylen = iovcnt * sizeof(struct compat_iovec);
if (unlikely(copylen >= STR_STORAGE_SIZE))
return PPM_FAILURE_BUFFER_FULL;
if (unlikely(ppm_copy_from_user(args->str_storage, iovsrc, copylen)))
return PPM_FAILURE_INVALID_USER_MEMORY;
iov = (const struct compat_iovec *)(args->str_storage);
targetbuf += copylen;
targetbuflen -= copylen;
/*
* Size
*/
if (flags & PRB_FLAG_PUSH_SIZE) {
for (j = 0; j < iovcnt; j++)
size += iov[j].iov_len;
/*
* Size is the total size of the buffers provided by the user. The number of
* received bytes can be smaller
*/
if ((flags & PRB_FLAG_IS_WRITE) == 0)
if (size > retval)
size = retval;
res = val_to_ring(args, size, 0, false, 0);
if (unlikely(res != PPM_SUCCESS))
return res;
}
/*
* data
*/
if (flags & PRB_FLAG_PUSH_DATA) {
if (retval > 0 && iovcnt > 0) {
/*
* Retrieve the FD. It will be used for dynamic snaplen calculation.
*/
if (!args->is_socketcall)
syscall_get_arguments(current, args->regs, 0, 1, &val);
else
val = args->socketcall_args[0];
args->fd = (int)val;
/*
* Merge the buffers
*/
bufsize = 0;
for (j = 0; j < iovcnt; j++) {
if ((flags & PRB_FLAG_IS_WRITE) == 0) {
if (bufsize >= retval) {
ASSERT(bufsize >= retval);
/*
* Copied all the data even if we haven't reached the
* end of the buffer.
* Copy must stop here.
*/
break;
}
tocopy_len = min(iov[j].iov_len, (compat_size_t)((size_t)retval - bufsize));
tocopy_len = min(tocopy_len, (compat_size_t)(targetbuflen - bufsize - 1));
} else {
tocopy_len = min(iov[j].iov_len, (compat_size_t)(targetbuflen - bufsize - 1));
}
notcopied_len = (int)ppm_copy_from_user(targetbuf + bufsize,
compat_ptr(iov[j].iov_base),
tocopy_len);
if (unlikely(notcopied_len != 0)) {
/*
* This means we had a page fault. Skip this event.
*/
return PPM_FAILURE_INVALID_USER_MEMORY;
}
bufsize += tocopy_len;
if (tocopy_len != iov[j].iov_len) {
/*
* No space left in the args->str_storage buffer.
* Copy must stop here.
*/
break;
}
}
args->enforce_snaplen = true;
res = val_to_ring(args,
(unsigned long)targetbuf,
bufsize,
false,
0);
if (unlikely(res != PPM_SUCCESS))
return res;
} else {
res = val_to_ring(args, 0, 0, false, 0);
if (unlikely(res != PPM_SUCCESS))
return res;
}
}
return PPM_SUCCESS;
}
#endif /* CONFIG_COMPAT */
/*
* STANDARD FILLERS
*/
/*
* AUTOFILLER
* In simple cases in which extracting an event is just a matter of moving the
* arguments to the buffer, this filler can be used instead of writing a
* filler function.
* The arguments to extract are be specified in g_ppm_events.
*/
int f_sys_autofill(struct event_filler_arguments *args, const struct ppm_event_entry *evinfo)
{
int res;
unsigned long val;
u32 j;
int64_t retval;
ASSERT(evinfo->n_autofill_args <= PPM_MAX_AUTOFILL_ARGS);
for (j = 0; j < evinfo->n_autofill_args; j++) {
if (evinfo->autofill_args[j].id >= 0) {
#ifdef _HAS_SOCKETCALL
if (args->is_socketcall && evinfo->paramtype == APT_SOCK) {
val = args->socketcall_args[evinfo->autofill_args[j].id];
} else
#endif
{
/*
* Regular argument
*/
syscall_get_arguments(current,
args->regs,
evinfo->autofill_args[j].id,
1,
&val);
}
res = val_to_ring(args, val, 0, true, 0);
if (unlikely(res != PPM_SUCCESS))
return res;
} else if (evinfo->autofill_args[j].id == AF_ID_RETVAL) {
/*
* Return value
*/
retval = (int64_t)(long)syscall_get_return_value(current, args->regs);
res = val_to_ring(args, retval, 0, false, 0);
if (unlikely(res != PPM_SUCCESS))
return res;
} else if (evinfo->autofill_args[j].id == AF_ID_USEDEFAULT) {
/*
* Default Value
*/
res = val_to_ring(args, evinfo->autofill_args[j].default_val, 0, false, 0);
if (unlikely(res != PPM_SUCCESS))
return res;
} else {
ASSERT(false);
}
}
return add_sentinel(args);
}
|