This file is indexed.

/usr/share/systemtap/tapset/linux/task.stp is in systemtap-common 3.1-3ubuntu0.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
// task information tapset
// Copyright (C) 2006 Intel Corporation.
// Copyright (C) 2010-2014 Red Hat Inc.
//
// This file is part of systemtap, and is free software.  You can
// redistribute it and/or modify it under the terms of the GNU General
// Public License (GPL); either version 2, or (at your option) any
// later version.

%{
#include <linux/version.h>
#include <linux/file.h>
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,25)
#include <linux/fdtable.h>
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,9,0)
#include <linux/sched/rt.h>
#endif
#ifndef STAPCONF_TASK_UID
#include <linux/cred.h>
#endif
#include <linux/fs_struct.h>
#include <linux/mm.h>
%}

/**
 * sfunction task_current - The current task_struct of the current task
 *
 * Description: This function returns the task_struct representing the current process.
 * This address can be passed to the various task_*() functions to extract
 * more task-specific data.
 */
function task_current:long () {
    return & @task(%{ /* pure */ (unsigned long)current %})
}

@__private30 function _task_rlimit_cur:long (task:long, nd_limit:long)
{
    if (nd_limit < 0 || nd_limit >= @const("RLIM_NLIMITS")) {
        return -1;
    }
    sig = @task(task)->signal;
    return sig->rlim[nd_limit]->rlim_cur;
}

/* sfunction task_rlimit - The current resource limit of the task
 *
 * @task: task_struct pointer
 * @lim_str: String representing limit.
 *
 * Description: Little bit slower way how ger resource limits of
 * process.
 * There is need translate string into number for each call.
 */
function task_rlimit:long (task:long, lim_str:string)
{
    lim = rlimit_from_str(lim_str);
    if (lim == -1) { return -1; }
    return _task_rlimit_cur(task, lim);
}

/* Fast and "safe" way how to do it. */

function task_rlimit_cpu:long (task:long)
{
    return _task_rlimit_cur(task, @const("RLIMIT_CPU") );
}

function task_rlimit_fsize:long (task:long)
{
    return _task_rlimit_cur(task, @const("RLIMIT_FSIZE"));
}

function task_rlimit_data:long (task:long)
{
    return _task_rlimit_cur(task, @const("RLIMIT_DATA"));
}

function task_rlimit_stack:long (task:long)
{
    return _task_rlimit_cur(task, @const("RLIMIT_STACK"));
}

function task_rlimit_core:long (task:long)
{
    return _task_rlimit_cur(task, @const("RLIMIT_CORE"));
}

function task_rlimit_rss:long (task:long)
{
    return _task_rlimit_cur(task, @const("RLIMIT_RSS"));
}

function task_rlimit_nproc:long (task:long)
{
    return _task_rlimit_cur(task, @const("RLIMIT_NPROC"));
}

function task_rlimit_nofile:long(task:long)
{
    return _task_rlimit_cur(task, @const("RLIMIT_NOFILE"));
}

function task_rlimit_memlock:long(task:long)
{
    return _task_rlimit_cur(task, @const("RLIMIT_MEMLOCK"));
}

function task_rlimit_as:long(task:long)
{
    return _task_rlimit_cur(task, @const("RLIMIT_AS"));
}

function task_rlimit_locks:long(task:long)
{
    return _task_rlimit_cur(task, @const("RLIMIT_LOCKS"));
}

function task_rlimit_sigpending:long(task:long)
{
    %( kernel_v >= "2.6.8" %?
        return _task_rlimit_cur(task, @const("RLIMIT_SIGPENDING"));
    %:
        return -1
    %)
}

function task_rlimit_msgqueue:long(task:long)
{
    %( kernel_v >= "2.6.8" %?
        return _task_rlimit_cur(task, @const("RLIMIT_MSGQUEUE"));
    %:
        return -1
    %)
}

function task_rlimit_nice:long(task:long)
{
    %( kernel_v >= "2.6.12" %?
        return _task_rlimit_cur(task, @const("RLIMIT_NICE"));
    %:
        return -1
    %)
}

function task_rlimit_rtprio:long(task:long)
{
    %( kernel_v >= "2.6.12" %?
        return _task_rlimit_cur(task, @const("RLIMIT_RTPRIO"));
    %:
        return -1
    %)
}

function task_rlimit_rttime:long(task:long)
{
    %( kernel_v >= "2.6.25" %?
        return _task_rlimit_cur(task, @const("RLIMIT_RTTIME"));
    %:
        return -1
    %)
}

/**
 * sfunction task_parent - The task_struct of the parent task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the parent task_struct of
 * the given task. This address can be passed to the various 
 * task_*() functions to extract more task-specific data.
 */
function task_parent:long(task:long)
{
    return @choose_defined(@task(task)->real_parent, @task(task)->parent)
}

/**
 * sfunction task_state - The state of the task
 *
 * @task: task_struct pointer
 *
 * Description: Return the state of the given task, one of:
 * TASK_RUNNING (0), TASK_INTERRUPTIBLE (1), TASK_UNINTERRUPTIBLE (2),
 * TASK_STOPPED (4), TASK_TRACED (8), EXIT_ZOMBIE (16), or EXIT_DEAD (32).
 */
function task_state:long (task:long)
{
    return @task(task)->state
}

/**
 * sfunction task_execname - The name of the task
 *
 * @task: task_struct pointer
 *
 * Description: Return the name of the given task.
 */
function task_execname:string (task:long)
{
    return kernel_string(@task(task)->comm)
}

/**
 * sfunction task_pid - The process identifier of the task
 *
 * @task: task_struct pointer
 *
 * Description: This fucntion returns the process id of the given task.
 */
function task_pid:long (task:long)
{
    return @task(task)->tgid
}

/**
 * sfunction task_ns_pid - The process identifier of the task
 *
 * @task: task_struct pointer
 *
 * Description: This fucntion returns the process id of the given task based on
 * the specified pid namespace..
 */
function task_ns_pid:long (task:long) %{ /* pure */ /* guru */
  struct task_struct *t = (struct task_struct *)(long)STAP_ARG_task;
  int64_t rc;

  /* Before using the task_struct pointer, make sure it is valid to
   * read. */
  (void)kderef_buffer(NULL, t, sizeof(struct task_struct));

  rc = from_target_pid_ns(t, PID);
  if (rc < 0)
    STAP_ERROR ("cannot resolve id in namespace");
  else
    STAP_RETURN (rc);
  CATCH_DEREF_FAULT();
%}

/**
 * sfunction pid2task - The task_struct of the given process identifier
 *
 * @pid: process identifier
 *
 * Description: Return the task struct of the given process id.
 */
function pid2task:long (pid:long) {
    return & @task(%{ /* pure */ ({
        struct task_struct *t = NULL;
        pid_t t_pid  = (pid_t)(long)STAP_ARG_pid;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,31)
        struct pid *p_pid = find_get_pid(t_pid);
        rcu_read_lock();
        t = pid_task(p_pid, PIDTYPE_PID);
        put_pid(p_pid);
#else
        rcu_read_lock();
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,24)
        t = find_task_by_vpid (t_pid);
#else
        t = find_task_by_pid (t_pid);
#endif /* 2.6.24 */
#endif /* 2.6.31 */
        rcu_read_unlock();
        (unsigned long)t;
    }) %})
}

/**
 * sfunction pid2execname - The name of the given process identifier
 *
 * @pid: process identifier
 *
 * Description: Return the name of the given process id.
 */
function pid2execname:string (pid:long) { 
    tsk = pid2task(pid)
    if (tsk)
	return task_execname(tsk)
    return ""
}

/**
 * sfunction task_tid - The thread identifier of the task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the thread id of the given task.
 */
function task_tid:long (task:long)
{
    return @task(task)->pid
}

/**
 * sfunction task_ns_tid - The thread identifier of the task as seen in a namespace
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the thread id of the given task as seen 
 * in the pid namespace.
 */
function task_ns_tid:long (task:long)%{ /* pure */ /* guru */
  struct task_struct *t = (struct task_struct *)(long)STAP_ARG_task;
  int64_t rc;

  /* Before using the task_struct pointer, make sure it is valid to
   * read. */
  (void)kderef_buffer(NULL, t, sizeof(struct task_struct));

  rc = from_target_pid_ns(t, TID);
  if (rc < 0)
    STAP_ERROR ("cannot resolve id in namespace");
  else
    STAP_RETURN (rc);
  CATCH_DEREF_FAULT();
%}

/**
 * sfunction task_gid - The group identifier of the task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the group id of the given task.
 */
function task_gid:long (task:long) %{ /* pure */
    struct task_struct *t = (struct task_struct *)(long)STAP_ARG_task;
#ifdef STAPCONF_TASK_UID
    STAP_RETVALUE = kread(&(t->gid));
#else
#ifdef STAPCONF_FROM_KUID_MUNGED
    struct user_namespace *user_ns;
#endif

    /* We can't easily kread the task_struct's rcu-protected
     * credential fields. So, let's just make sure the entire
     * task_struct is valid to read. */
    (void)kderef_buffer(NULL, t, sizeof(struct task_struct));

    /* If task_gid() isn't defined, make our own. */
#if !defined(task_gid) && defined(task_cred_xxx)
#define task_gid(task)		(task_cred_xxx((task), gid))
#endif

#ifdef STAPCONF_FROM_KUID_MUNGED
    /* We also need to validate the namespace structure. */
    user_ns = task_cred_xxx(t, user_ns);
    (void)kderef_buffer(NULL, user_ns, sizeof(struct user_namespace));
    STAP_RETVALUE = from_kgid_munged(user_ns, task_gid(t));
#else
    STAP_RETVALUE = task_gid (t);
#endif
#endif
    CATCH_DEREF_FAULT();
%}

/**
 * sfunction task_ns_gid - The group identifier of the task as seen in a namespace
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the group id of the given task as seen in
 * in the given user namespace.
*/
function task_ns_gid:long (task:long) %{ /* pure */ /* guru */
  struct task_struct *t = (struct task_struct *)(long)STAP_ARG_task;
  int64_t rc;

  /* Before using the task_struct pointer, make sure it is valid to
   * read. */
  (void)kderef_buffer(NULL, t, sizeof(struct task_struct));

  rc = from_target_user_ns(t, GID);
  if (rc < 0)
    STAP_ERROR ("cannot resolve id in namespace");
  else
    STAP_RETURN (rc);
  CATCH_DEREF_FAULT();
%}

/**
 * sfunction task_egid - The effective group identifier of the task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the effective group id of the given task.
 */
function task_egid:long (task:long) %{ /* pure */
    struct task_struct *t = (struct task_struct *)(long)STAP_ARG_task;
#ifdef STAPCONF_TASK_UID
    STAP_RETVALUE = kread(&(t->egid));
#else
#ifdef STAPCONF_FROM_KUID_MUNGED
    struct user_namespace *user_ns;
#endif

    /* We can't easily kread the task_struct's rcu-protected
     * credential fields. So, let's just make sure the entire
     * task_struct is valid to read. */
    (void)kderef_buffer(NULL, t, sizeof(struct task_struct));

    /* If task_egid() isn't defined, make our own. */
#if !defined(task_egid) && defined(task_cred_xxx)
#define task_egid(task)		(task_cred_xxx((task), egid))
#endif

#ifdef STAPCONF_FROM_KUID_MUNGED
    /* We also need to validate the namespace structure. */
    user_ns = task_cred_xxx(t, user_ns);
    (void)kderef_buffer(NULL, user_ns, sizeof(struct user_namespace));
    STAP_RETVALUE = from_kgid_munged(user_ns, task_egid(t));
#else
    STAP_RETVALUE = task_egid (t);
#endif
#endif
    CATCH_DEREF_FAULT();
%}

/**
 * sfunction task_ns_egid - The effective group identifier of the task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the effective group id of the given task.
 */
function task_ns_egid:long (task:long) %{ /* pure */ /* guru */
  struct task_struct *t = (struct task_struct *)(long)STAP_ARG_task;
  int64_t rc;

  /* Before using the task_struct pointer, make sure it is valid to
   * read. */
  (void)kderef_buffer(NULL, t, sizeof(struct task_struct));

  rc = from_target_user_ns(current, EGID);
  if (rc < 0)
    STAP_ERROR ("cannot resolve id in namespace");
  else
    STAP_RETURN (rc);
  CATCH_DEREF_FAULT();
%}

/**
 * sfunction task_uid - The user identifier of the task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the user id of the given task.
 */
function task_uid:long (task:long) %{ /* pure */
    struct task_struct *t = (struct task_struct *)(long)STAP_ARG_task;
#ifdef STAPCONF_TASK_UID
    STAP_RETVALUE = kread(&(t->uid));
#else
#ifdef STAPCONF_FROM_KUID_MUNGED
    struct user_namespace *user_ns;
#endif

    /* We can't easily kread the task_struct's rcu-protected
     * credential fields. So, let's just make sure the entire
     * task_struct is valid to read. */
    (void)kderef_buffer(NULL, t, sizeof(struct task_struct));

#ifdef STAPCONF_FROM_KUID_MUNGED
    /* We also need to validate the namespace structure. */
    user_ns = task_cred_xxx(t, user_ns);
    (void)kderef_buffer(NULL, user_ns, sizeof(struct user_namespace));
    STAP_RETVALUE = from_kuid_munged(user_ns, task_uid(t));
#else
    STAP_RETVALUE = task_uid (t);
#endif
#endif
    CATCH_DEREF_FAULT();
%}

/**
 * sfunction task_ns_uid - The user identifier of the task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the user id of the given task.
 */
function task_ns_uid:long (task:long) %{ /* pure */ /* guru */
  struct task_struct *t = (struct task_struct *)(long)STAP_ARG_task;
  int64_t rc;

  /* Before using the task_struct pointer, make sure it is valid to
   * read. */
  (void)kderef_buffer(NULL, t, sizeof(struct task_struct));

  rc = from_target_user_ns(current, UID);
  if (rc < 0)
    STAP_ERROR ("cannot resolve id in namespace");
  else
    STAP_RETURN (rc);
  CATCH_DEREF_FAULT();
%}

/**
 * sfunction task_euid - The effective user identifier of the task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the effective user id of the given task.
 */
function task_euid:long (task:long) %{ /* pure */
    struct task_struct *t = (struct task_struct *)(long)STAP_ARG_task;
#ifdef STAPCONF_TASK_UID
    STAP_RETVALUE = kread(&(t->euid));
#else
#ifdef STAPCONF_FROM_KUID_MUNGED
    struct user_namespace *user_ns;
#endif

    /* We can't easily kread the task_struct's rcu-protected
     * credential fields. So, let's just make sure the entire
     * task_struct is valid to read. */
    (void)kderef_buffer(NULL, t, sizeof(struct task_struct));

#ifdef STAPCONF_FROM_KUID_MUNGED
    /* We also need to validate the namespace structure. */
    user_ns = task_cred_xxx(t, user_ns);
    (void)kderef_buffer(NULL, user_ns, sizeof(struct user_namespace));
    STAP_RETVALUE = from_kuid_munged(user_ns, task_euid(t));
#else
    STAP_RETVALUE = task_euid (t);
#endif
#endif
    CATCH_DEREF_FAULT();
%}

/**
 * sfunction task_ns_euid - The effective user identifier of the task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the effective user id of the given task.
 */
function task_ns_euid:long (task:long) %{ /* pure */ /* guru */
  struct task_struct *t = (struct task_struct *)(long)STAP_ARG_task;
  int64_t rc;

  /* Before using the task_struct pointer, make sure it is valid to
   * read. */
  (void)kderef_buffer(NULL, t, sizeof(struct task_struct));

  rc = from_target_user_ns(current, EUID);
  if (rc < 0)
    STAP_ERROR ("cannot resolve id in namespace");
  else
    STAP_RETURN (rc);
  CATCH_DEREF_FAULT();
%}


/**
 * sfunction task_prio - The priority value of the task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the priority value of the given task.
 */
function task_prio:long (task:long) %{ /* pure */
    struct task_struct *t = (struct task_struct *)(long)STAP_ARG_task;
    STAP_RETVALUE =  kread(&(t->prio)) - MAX_RT_PRIO;
    CATCH_DEREF_FAULT();
%}


/**
 * sfunction task_nice - The nice value of the task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the nice value of the given task.
 */
function task_nice:long (task:long) %{ /* pure */
    struct task_struct *t = (struct task_struct *)(long)STAP_ARG_task;
    STAP_RETVALUE = kread(&(t->static_prio)) - MAX_RT_PRIO - 20;
    CATCH_DEREF_FAULT();
%}

/**
 * sfunction task_cpu - The scheduled cpu of the task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the scheduled cpu for the given task.
 */
function task_cpu:long (task:long)
{
  if (@defined(@task(task)->cpu))
      return @task(task)->cpu
  else
      {
        ti = @choose_defined(@task(task)->stack, @task(task)->thread_info);
        return @cast(ti, "thread_info", "kernel<linux/sched.h>")->cpu
      }
}

/**
 * sfunction task_open_file_handles - The number of open files of the task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the number of open file handlers for the given task.
 */
function task_open_file_handles:long (task:long)
%{ /* pure */
    int locked = 0;
    unsigned int count=0, fd, max;
    struct task_struct *t;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15)
    /* Older kernels */
    struct files_struct *f;
#else
    struct files_struct *fs;
    struct fdtable *f;
#endif
    t = (struct task_struct *)(long)STAP_ARG_task;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15)
    /* Older kernels */
    f = kread(&(t->files));
#else
    fs = kread(&(t->files));
    f = kread(&(fs->fdt));
#endif
    rcu_read_lock();
    locked = 1;
    max = kread(&(f->max_fds));
    for (fd = 0; fd < max; fd++) {
                if ( kread(&(f->fd[fd])) != NULL)
                        count ++;
        }
    STAP_RETVALUE = count;
    CATCH_DEREF_FAULT();
    if (locked)
        rcu_read_unlock();
%}

/**
 * sfunction task_max_file_handles - The max number of open files for the task
 *
 * @task: task_struct pointer
 *
 * Description: This function returns the maximum number of file handlers for the given task.
 */
function task_max_file_handles:long (task:long)
%{ /* pure */
    int locked = 0;
    struct task_struct *t;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15)
    struct files_struct *f;
#else
    struct files_struct *fs;
    struct fdtable *f;
#endif
    t = (struct task_struct *)(long)STAP_ARG_task;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15)
    f = kread(&(t->files));
#else
    fs = kread (&(t->files));
    f = kread(&(fs->fdt));
#endif
    rcu_read_lock();
    locked = 1;
    STAP_RETVALUE = kread(&(f->max_fds));
    CATCH_DEREF_FAULT();
    if (locked)
        rcu_read_unlock();
%}

/**
 *   sfunction task_fd_lookup - get the file struct for a task's fd
 *
 *   @task: task_struct pointer.
 *   @fd: file descriptor number.
 *
 *   Description: Returns the file struct pointer for a task's file
 *   descriptor.
 */
function task_fd_lookup:long(task:long, fd:long)
%{ /* pure */
	struct task_struct *t = (struct task_struct *)(long)STAP_ARG_task;
	struct files_struct *files = NULL;
	unsigned int fd = (unsigned int)(unsigned long)STAP_ARG_fd;
	struct file *file = NULL;
    
	/* Before using the task_struct pointer, make sure it is valid
	 * to read.
	 *
	 * Note that originally we called
	 * get_task_struct()/put_task_struct() here. However, just
	 * because the task_struct memory is valid to read, doesn't
	 * mean it is valid to *write* to this memory, which
	 * get_task_struct() does. So, we won't bother with
	 * get_task_struct()/put_task_struct(). */
	(void)kderef_buffer(NULL, t, sizeof(struct task_struct));

	// We should be calling get_files_struct() here, but it isn't
	// exported. This means that we can't lock the
	// files_struct.
	files = t->files;
	if (files) {
		/* Before using the files_struct pointer, make sure it is
		 * valid to read. */
		(void)kderef_buffer(NULL, files, sizeof(struct files_struct));

		spin_lock(&files->file_lock);
		file = fcheck_files(files, fd);
		spin_unlock(&files->file_lock);
	}

	if (file) {
		// Note that we're returning a pointer which isn't
		// locked or has had its usage count increased. There
		// is nothing keeping this pointer valid until we use
		// it. So, before using it, it must be validated by
		// callers.
		STAP_RETURN((unsigned long)file);
	}
	else {
		STAP_ERROR ("cannot find file in task");
	}
	
	CATCH_DEREF_FAULT();
%}

/**
 *   sfunction task_cwd_path - get the path struct pointer for a task's current working directory
 *
 *   @task: task_struct pointer.
 */
function task_cwd_path:long(task:long)
%{ /* pure */
	struct task_struct *task
		= (struct task_struct *)(unsigned long)STAP_ARG_task;
	int put_task_struct_needed = 0;

	// Before using the task_struct pointer, make sure it is valid
	// to read.
	(void)kderef_buffer(NULL, task, sizeof(struct task_struct));

	// OK, we now know it is valid to read. But, is it really a
	// task struct?
	if (!_stp_task_struct_valid(task)) {
		STAP_ERROR ("invalid task struct pointer");
	}

	get_task_struct(task);
	put_task_struct_needed = 1;

	// The kernel calls get_fs_pwd() here, which is an inlined
	// function in include/linux/fs_struct.h. This function
	// doesn't return a path pointer, but assumes the caller has
	// allocated storage for the struct path. Instead, we're going
	// to return a pointer to task->fs->pwd.
	if (task->fs) {
		// Sigh. On kernels before 2.6.25, the task->fs->pwd
		// structure exists, but isn't a 'path'
		// structure. Instead it is a 'dentry' structure. The
		// 'pwd' and 'pwdmnt' (which is a 'vfsmount'
		// structure) variables would both be needed to get a
		// pathname. However, this function can't return 2
		// items or really declare a static 'path' structure
		// to put the 2 pointers in.
		//
		// So, on those RHEL5-era kernels, we'll just return
		// NULL here.
#ifdef STAPCONF_DPATH_PATH
		// Before using the task->fs pointer, let's be
		// paranoid and make sure it is valid to read.
		(void)kderef_buffer(NULL, task->fs, sizeof(struct fs_struct));
		if (put_task_struct_needed)
			put_task_struct(task);
		STAP_RETURN((unsigned long)&task->fs->pwd);
#endif
	}
	CATCH_DEREF_FAULT();
	if (put_task_struct_needed)
		put_task_struct(task);
%}

/**
 *   sfunction task_cwd_path - get the file struct pointer for a task's executable file
 *
 *   @task: task_struct pointer.
 */
function task_exe_file:long(task:long)
%{ /* pure */
	struct task_struct *task
		= (struct task_struct *)(unsigned long)STAP_ARG_task;
	struct mm_struct *mm = NULL;
	struct file *exe_file = NULL;

	// Before using the task_struct pointer, make sure it is valid
	// to read.
	(void)kderef_buffer(NULL, task, sizeof(struct task_struct));

	// OK, we now know it is valid to read. But, is it really a
	// task struct?
	if (!_stp_task_struct_valid(task)) {
		STAP_ERROR ("invalid task struct pointer");
	}

	// We'd like to call get_task_mm()/mmput() here, but they can
	// sleep. So, let's hope incrementing the task's usage (by
	// calling get_task_struct) is enough to keep the mm around.
	get_task_struct(task);
	mm = task->mm;
	if (mm)
		exe_file = stap_find_exe_file(mm);
	put_task_struct(task);

	if (exe_file) {
		STAP_RETURN((unsigned long)exe_file);
		fput(exe_file);
	}
	CATCH_DEREF_FAULT();
%}