This file is indexed.

/usr/share/VTKData/Data/Infovis/eg2.isi is in vtkdata 5.8.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
31928
31929
31930
31931
31932
31933
31934
31935
31936
31937
31938
31939
31940
31941
31942
31943
31944
31945
31946
31947
31948
31949
31950
31951
31952
31953
31954
31955
31956
31957
31958
31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991
31992
31993
31994
31995
31996
31997
31998
31999
32000
32001
32002
32003
32004
32005
32006
32007
32008
32009
32010
32011
32012
32013
32014
32015
32016
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060
32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090
32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
32147
32148
32149
32150
32151
32152
32153
32154
32155
32156
32157
32158
32159
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
32210
32211
32212
32213
32214
32215
32216
32217
32218
32219
32220
32221
32222
32223
32224
32225
32226
32227
32228
32229
32230
32231
32232
32233
32234
32235
32236
32237
32238
32239
32240
32241
32242
32243
32244
32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
32255
32256
32257
32258
32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
32284
32285
32286
32287
32288
32289
32290
32291
32292
32293
32294
32295
32296
32297
32298
32299
32300
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
32340
32341
32342
32343
32344
32345
32346
32347
32348
32349
32350
32351
32352
32353
32354
32355
32356
32357
32358
32359
32360
32361
32362
32363
32364
32365
32366
32367
32368
32369
32370
32371
32372
32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401
32402
32403
32404
32405
32406
32407
32408
32409
32410
32411
32412
32413
32414
32415
32416
32417
32418
32419
32420
32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
32448
32449
32450
32451
32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
32464
32465
32466
32467
32468
32469
32470
32471
32472
32473
32474
32475
32476
32477
32478
32479
32480
32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
32497
32498
32499
32500
32501
32502
32503
32504
32505
32506
32507
32508
32509
32510
32511
32512
32513
32514
32515
32516
32517
32518
32519
32520
32521
32522
32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
32538
32539
32540
32541
32542
32543
32544
32545
32546
32547
32548
32549
32550
32551
32552
32553
32554
32555
32556
32557
32558
32559
32560
32561
32562
32563
32564
32565
32566
32567
32568
32569
32570
32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643
32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658
32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
32669
32670
32671
32672
32673
32674
32675
32676
32677
32678
32679
32680
32681
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
32697
32698
32699
32700
32701
32702
32703
32704
32705
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716
32717
32718
32719
32720
32721
32722
32723
32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
32752
32753
32754
32755
32756
32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803
32804
32805
32806
32807
32808
32809
32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
32903
32904
32905
32906
32907
32908
32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
33064
33065
33066
33067
33068
33069
33070
33071
33072
33073
33074
33075
33076
33077
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
33093
33094
33095
33096
33097
33098
33099
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
33139
33140
33141
33142
33143
33144
33145
33146
33147
33148
33149
33150
33151
33152
33153
33154
33155
33156
33157
33158
33159
33160
33161
33162
33163
33164
33165
33166
33167
33168
33169
33170
33171
33172
33173
33174
33175
33176
33177
33178
33179
33180
33181
33182
33183
33184
33185
33186
33187
33188
33189
33190
33191
33192
33193
33194
33195
33196
33197
33198
33199
33200
33201
33202
33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294
33295
33296
33297
33298
33299
33300
33301
33302
33303
33304
33305
33306
33307
33308
33309
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
33340
33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
33367
33368
33369
33370
33371
33372
33373
33374
33375
33376
33377
33378
33379
33380
33381
33382
33383
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
33400
33401
33402
33403
33404
33405
33406
33407
33408
33409
33410
33411
33412
33413
33414
33415
33416
33417
33418
33419
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
33436
33437
33438
33439
33440
33441
33442
33443
33444
33445
33446
33447
33448
33449
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
33471
33472
33473
33474
33475
33476
33477
33478
33479
33480
33481
33482
33483
33484
33485
33486
33487
33488
33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
33600
33601
33602
33603
33604
33605
33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
33708
33709
33710
33711
33712
33713
33714
33715
33716
33717
33718
33719
33720
33721
33722
33723
33724
33725
33726
33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
33762
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
33778
33779
33780
33781
33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796
33797
33798
33799
33800
33801
33802
33803
33804
33805
33806
33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824
33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
33841
33842
33843
33844
33845
33846
33847
33848
33849
33850
33851
33852
33853
33854
33855
33856
33857
33858
33859
33860
33861
33862
33863
33864
33865
33866
33867
33868
33869
33870
33871
33872
33873
33874
33875
33876
33877
33878
33879
33880
33881
33882
33883
33884
33885
33886
33887
33888
33889
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
33905
33906
33907
33908
33909
33910
33911
33912
33913
33914
33915
33916
33917
33918
33919
33920
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960
33961
33962
33963
33964
33965
33966
33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
33998
33999
34000
34001
34002
34003
34004
34005
34006
34007
34008
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
34024
34025
34026
34027
34028
34029
34030
34031
34032
34033
34034
34035
34036
34037
34038
34039
34040
34041
34042
34043
34044
34045
34046
34047
34048
34049
34050
34051
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
34072
34073
34074
34075
34076
34077
34078
34079
34080
34081
34082
34083
34084
34085
34086
34087
34088
34089
34090
34091
34092
34093
34094
34095
34096
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111
34112
34113
34114
34115
34116
34117
34118
34119
34120
34121
34122
34123
34124
34125
34126
34127
34128
34129
34130
34131
34132
34133
34134
34135
34136
34137
34138
34139
34140
34141
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
34168
34169
34170
34171
34172
34173
34174
34175
34176
34177
34178
34179
34180
34181
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
34246
34247
34248
34249
34250
34251
34252
34253
34254
34255
34256
34257
34258
34259
34260
34261
34262
34263
34264
34265
34266
34267
34268
34269
34270
34271
34272
34273
34274
34275
34276
34277
34278
34279
34280
34281
34282
34283
34284
34285
34286
34287
34288
34289
34290
34291
34292
34293
34294
34295
34296
34297
34298
34299
34300
34301
34302
34303
34304
34305
34306
34307
34308
34309
34310
34311
34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
34327
34328
34329
34330
34331
34332
34333
34334
34335
34336
34337
34338
34339
34340
34341
34342
34343
34344
34345
34346
34347
34348
34349
34350
34351
34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366
34367
34368
34369
34370
34371
34372
34373
34374
34375
34376
34377
34378
34379
34380
34381
34382
34383
34384
34385
34386
34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
34412
34413
34414
34415
34416
34417
34418
34419
34420
34421
34422
34423
34424
34425
34426
34427
34428
34429
34430
34431
34432
34433
34434
34435
34436
34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
34457
34458
34459
34460
34461
34462
34463
34464
34465
34466
34467
34468
34469
34470
34471
34472
34473
34474
34475
34476
34477
34478
34479
34480
34481
34482
34483
34484
34485
34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
34501
34502
34503
34504
34505
34506
34507
34508
34509
34510
34511
34512
34513
34514
34515
34516
34517
34518
34519
34520
34521
34522
34523
34524
34525
34526
34527
34528
34529
34530
34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
34561
34562
34563
34564
34565
34566
34567
34568
34569
34570
34571
34572
34573
34574
34575
34576
34577
34578
34579
34580
34581
34582
34583
34584
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
34637
34638
34639
34640
34641
34642
34643
34644
34645
34646
34647
34648
34649
34650
34651
34652
34653
34654
34655
34656
34657
34658
34659
34660
34661
34662
34663
34664
34665
34666
34667
34668
34669
34670
34671
34672
34673
34674
34675
34676
34677
34678
34679
34680
34681
34682
34683
34684
34685
34686
34687
34688
34689
34690
34691
34692
34693
34694
34695
34696
34697
34698
34699
34700
34701
34702
34703
34704
34705
34706
34707
34708
34709
34710
34711
34712
34713
34714
34715
34716
34717
34718
34719
34720
34721
34722
34723
34724
34725
34726
34727
34728
34729
34730
34731
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
34754
34755
34756
34757
34758
34759
34760
34761
34762
34763
34764
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
34790
34791
34792
34793
34794
34795
34796
34797
34798
34799
34800
34801
34802
34803
34804
34805
34806
34807
34808
34809
34810
34811
34812
34813
34814
34815
34816
34817
34818
34819
34820
34821
34822
34823
34824
34825
34826
34827
34828
34829
34830
34831
34832
34833
34834
34835
34836
34837
34838
34839
34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
34892
34893
34894
34895
34896
34897
34898
34899
34900
34901
34902
34903
34904
34905
34906
34907
34908
34909
34910
34911
34912
34913
34914
34915
34916
34917
34918
34919
34920
34921
34922
34923
34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939
34940
34941
34942
34943
34944
34945
34946
34947
34948
34949
34950
34951
34952
34953
34954
34955
34956
34957
34958
34959
34960
34961
34962
34963
34964
34965
34966
34967
34968
34969
34970
34971
34972
34973
34974
34975
34976
34977
34978
34979
34980
34981
34982
34983
34984
34985
34986
34987
34988
34989
34990
34991
34992
34993
34994
34995
34996
34997
34998
34999
35000
35001
35002
35003
35004
35005
35006
35007
35008
35009
35010
35011
35012
35013
35014
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
35030
35031
35032
35033
35034
35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
35062
35063
35064
35065
35066
35067
35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
35093
35094
35095
35096
35097
35098
35099
35100
35101
35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
35184
35185
35186
35187
35188
35189
35190
35191
35192
35193
35194
35195
35196
35197
35198
35199
35200
35201
35202
35203
35204
35205
35206
35207
35208
35209
35210
35211
35212
35213
35214
35215
35216
35217
35218
35219
35220
35221
35222
35223
35224
35225
35226
35227
35228
35229
35230
35231
35232
35233
35234
35235
35236
35237
35238
35239
35240
35241
35242
35243
35244
35245
35246
35247
35248
35249
35250
35251
35252
35253
35254
35255
35256
35257
35258
35259
35260
35261
35262
35263
35264
35265
35266
35267
35268
35269
35270
35271
35272
35273
35274
35275
35276
35277
35278
35279
35280
35281
35282
35283
35284
35285
35286
35287
35288
35289
35290
35291
35292
35293
35294
35295
35296
35297
35298
35299
35300
35301
35302
35303
35304
35305
35306
35307
35308
35309
35310
35311
35312
35313
35314
35315
35316
35317
35318
35319
35320
35321
35322
35323
35324
35325
35326
35327
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
35343
35344
35345
35346
35347
35348
35349
35350
35351
35352
35353
35354
35355
35356
35357
35358
35359
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
35375
35376
35377
35378
35379
35380
35381
35382
35383
35384
35385
35386
35387
35388
35389
35390
35391
35392
35393
35394
35395
35396
35397
35398
35399
35400
35401
35402
35403
35404
35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418
35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
35481
35482
35483
35484
35485
35486
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
35513
35514
35515
35516
35517
35518
35519
35520
35521
35522
35523
35524
35525
35526
35527
35528
35529
35530
35531
35532
35533
35534
35535
35536
35537
35538
35539
35540
35541
35542
35543
35544
35545
35546
35547
35548
35549
35550
35551
35552
35553
35554
35555
35556
35557
35558
35559
35560
35561
35562
35563
35564
35565
35566
35567
35568
35569
35570
35571
35572
35573
35574
35575
35576
35577
35578
35579
35580
35581
35582
35583
35584
35585
35586
35587
35588
35589
35590
35591
35592
35593
35594
35595
35596
35597
35598
35599
35600
35601
35602
35603
35604
35605
35606
35607
35608
35609
35610
35611
35612
35613
35614
35615
35616
35617
35618
35619
35620
35621
35622
35623
35624
35625
35626
35627
35628
35629
35630
35631
35632
35633
35634
35635
35636
35637
35638
35639
35640
35641
35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657
35658
35659
35660
35661
35662
35663
35664
35665
35666
35667
35668
35669
35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680
35681
35682
35683
35684
35685
35686
35687
35688
35689
35690
35691
35692
35693
35694
35695
35696
35697
35698
35699
35700
35701
35702
35703
35704
35705
35706
35707
35708
35709
35710
35711
35712
35713
35714
35715
35716
35717
35718
35719
35720
35721
35722
35723
35724
35725
35726
35727
35728
35729
35730
35731
35732
35733
35734
35735
35736
35737
35738
35739
35740
35741
35742
35743
35744
35745
35746
35747
35748
35749
35750
35751
35752
35753
35754
35755
35756
35757
35758
35759
35760
35761
35762
35763
35764
35765
35766
35767
35768
35769
35770
35771
35772
35773
35774
35775
35776
35777
35778
35779
35780
35781
35782
35783
35784
35785
35786
35787
35788
35789
35790
35791
35792
35793
35794
35795
35796
35797
35798
35799
35800
35801
35802
35803
35804
35805
35806
35807
35808
35809
35810
35811
35812
35813
35814
35815
35816
35817
35818
35819
35820
35821
35822
35823
35824
35825
35826
35827
35828
35829
35830
35831
35832
35833
35834
35835
35836
35837
35838
35839
35840
35841
35842
35843
35844
35845
35846
35847
35848
35849
35850
35851
35852
35853
35854
35855
35856
35857
35858
35859
35860
35861
35862
35863
35864
35865
35866
35867
35868
35869
35870
35871
35872
35873
35874
35875
35876
35877
35878
35879
35880
35881
35882
35883
35884
35885
35886
35887
35888
35889
35890
35891
35892
35893
35894
35895
35896
35897
35898
35899
35900
35901
35902
35903
35904
35905
35906
35907
35908
35909
35910
35911
35912
35913
35914
35915
35916
35917
35918
35919
35920
35921
35922
35923
35924
35925
35926
35927
35928
35929
35930
35931
35932
35933
35934
35935
35936
35937
35938
35939
35940
35941
35942
35943
35944
35945
35946
35947
35948
35949
35950
35951
35952
35953
35954
35955
35956
35957
35958
35959
35960
35961
35962
35963
35964
35965
35966
35967
35968
35969
35970
35971
35972
35973
35974
35975
35976
35977
35978
35979
35980
35981
35982
35983
35984
35985
35986
35987
35988
35989
35990
35991
35992
35993
35994
35995
35996
35997
35998
35999
36000
36001
36002
36003
36004
36005
36006
36007
36008
36009
36010
36011
36012
36013
36014
36015
36016
36017
36018
36019
36020
36021
36022
36023
36024
36025
36026
36027
36028
36029
36030
36031
36032
36033
36034
36035
36036
36037
36038
36039
36040
36041
36042
36043
36044
36045
36046
36047
36048
36049
36050
36051
36052
36053
36054
36055
36056
36057
36058
36059
36060
36061
36062
36063
36064
36065
36066
36067
36068
36069
36070
36071
36072
36073
36074
36075
36076
36077
36078
36079
36080
36081
36082
36083
36084
36085
36086
36087
36088
36089
36090
36091
36092
36093
36094
36095
36096
36097
36098
36099
36100
36101
36102
36103
36104
36105
36106
36107
36108
36109
36110
36111
36112
36113
36114
36115
36116
36117
36118
36119
36120
36121
36122
36123
36124
36125
36126
36127
36128
36129
36130
36131
36132
36133
36134
36135
36136
36137
36138
36139
36140
36141
36142
36143
36144
36145
36146
36147
36148
36149
36150
36151
36152
36153
36154
36155
36156
36157
36158
36159
36160
36161
36162
36163
36164
36165
36166
36167
36168
36169
36170
36171
36172
36173
36174
36175
36176
36177
36178
36179
36180
36181
36182
36183
36184
36185
36186
36187
36188
36189
36190
36191
36192
36193
36194
36195
36196
36197
36198
36199
36200
36201
36202
36203
36204
36205
36206
36207
36208
36209
36210
36211
36212
36213
36214
36215
36216
36217
36218
36219
36220
36221
36222
36223
36224
36225
36226
36227
36228
36229
36230
36231
36232
36233
36234
36235
36236
36237
36238
36239
36240
36241
36242
36243
36244
36245
36246
36247
36248
36249
36250
36251
36252
36253
36254
36255
36256
36257
36258
36259
36260
36261
36262
36263
36264
36265
36266
36267
36268
36269
36270
36271
36272
36273
36274
36275
36276
36277
36278
36279
36280
36281
36282
36283
36284
36285
36286
36287
36288
36289
36290
36291
36292
36293
36294
36295
36296
36297
36298
36299
36300
36301
36302
36303
36304
36305
36306
36307
36308
36309
36310
36311
36312
36313
36314
36315
36316
36317
36318
36319
36320
36321
36322
36323
36324
36325
36326
36327
36328
36329
36330
36331
36332
36333
36334
36335
36336
36337
36338
36339
36340
36341
36342
36343
36344
36345
36346
36347
36348
36349
36350
36351
36352
36353
36354
36355
36356
36357
36358
36359
36360
36361
36362
36363
36364
36365
36366
36367
36368
36369
36370
36371
36372
36373
36374
36375
36376
36377
36378
36379
36380
36381
36382
36383
36384
36385
36386
36387
36388
36389
36390
36391
36392
36393
36394
36395
36396
36397
36398
36399
36400
36401
36402
36403
36404
36405
36406
36407
36408
36409
36410
36411
36412
36413
36414
36415
36416
36417
36418
36419
36420
36421
36422
36423
36424
36425
36426
36427
36428
36429
36430
36431
36432
36433
36434
36435
36436
36437
36438
36439
36440
36441
36442
36443
36444
36445
36446
36447
36448
36449
36450
36451
36452
36453
36454
36455
36456
36457
36458
36459
36460
36461
36462
36463
36464
36465
36466
36467
36468
36469
36470
36471
36472
36473
36474
36475
36476
36477
36478
36479
36480
36481
36482
36483
36484
36485
36486
36487
36488
36489
36490
36491
36492
36493
36494
36495
36496
36497
36498
36499
36500
36501
36502
36503
36504
36505
36506
36507
36508
36509
36510
36511
36512
36513
36514
36515
36516
36517
36518
36519
36520
36521
36522
36523
36524
36525
36526
36527
36528
36529
36530
36531
36532
36533
36534
36535
36536
36537
36538
36539
36540
36541
36542
36543
36544
36545
36546
36547
36548
36549
36550
36551
36552
36553
36554
36555
36556
36557
36558
36559
36560
36561
36562
36563
36564
36565
36566
36567
36568
36569
36570
36571
36572
36573
36574
36575
36576
36577
36578
36579
36580
36581
36582
36583
36584
36585
36586
36587
36588
36589
36590
36591
36592
36593
36594
36595
36596
36597
36598
36599
36600
36601
36602
36603
36604
36605
36606
36607
36608
36609
36610
36611
36612
36613
36614
36615
36616
36617
36618
36619
36620
36621
36622
36623
36624
36625
36626
36627
36628
36629
36630
36631
36632
36633
36634
36635
36636
36637
36638
36639
36640
36641
36642
36643
36644
36645
36646
36647
36648
36649
36650
36651
36652
36653
36654
36655
36656
36657
36658
36659
36660
36661
36662
36663
36664
36665
36666
36667
36668
36669
36670
36671
36672
36673
36674
36675
36676
36677
36678
36679
36680
36681
36682
36683
36684
36685
36686
36687
36688
36689
36690
36691
36692
36693
36694
36695
36696
36697
36698
36699
36700
36701
36702
36703
36704
36705
36706
36707
36708
36709
36710
36711
36712
36713
36714
36715
36716
36717
36718
36719
36720
36721
36722
36723
36724
36725
36726
36727
36728
36729
36730
36731
36732
36733
36734
36735
36736
36737
36738
36739
36740
36741
36742
36743
36744
36745
36746
36747
36748
36749
36750
36751
36752
36753
36754
36755
36756
36757
36758
36759
36760
36761
36762
36763
36764
36765
36766
36767
36768
36769
36770
36771
36772
36773
36774
36775
36776
36777
36778
36779
36780
36781
36782
36783
36784
36785
36786
36787
36788
36789
36790
36791
36792
36793
36794
36795
36796
36797
36798
36799
36800
36801
36802
36803
36804
36805
36806
36807
36808
36809
36810
36811
36812
36813
36814
36815
36816
36817
36818
36819
36820
36821
36822
36823
36824
36825
36826
36827
36828
36829
36830
36831
36832
36833
36834
36835
36836
36837
36838
36839
36840
36841
36842
36843
36844
36845
36846
36847
36848
36849
36850
36851
36852
36853
36854
36855
36856
36857
36858
36859
36860
36861
36862
36863
36864
36865
36866
36867
36868
36869
36870
36871
36872
36873
36874
36875
36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
36892
36893
36894
36895
36896
36897
36898
36899
36900
36901
36902
36903
36904
36905
36906
36907
36908
36909
36910
36911
36912
36913
36914
36915
36916
36917
36918
36919
36920
36921
36922
36923
36924
36925
36926
36927
36928
36929
36930
36931
36932
36933
36934
36935
36936
36937
36938
36939
36940
36941
36942
36943
36944
36945
36946
36947
36948
36949
36950
36951
36952
36953
36954
36955
36956
36957
36958
36959
36960
36961
36962
36963
36964
36965
36966
36967
36968
36969
36970
36971
36972
36973
36974
36975
36976
36977
36978
36979
36980
36981
36982
36983
36984
36985
36986
36987
36988
36989
36990
36991
36992
36993
36994
36995
36996
36997
36998
36999
37000
37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
37023
37024
37025
37026
37027
37028
37029
37030
37031
37032
37033
37034
37035
37036
37037
37038
37039
37040
37041
37042
37043
37044
37045
37046
37047
37048
37049
37050
37051
37052
37053
37054
37055
37056
37057
37058
37059
37060
37061
37062
37063
37064
37065
37066
37067
37068
37069
37070
37071
37072
37073
37074
37075
37076
37077
37078
37079
37080
37081
37082
37083
37084
37085
37086
37087
37088
37089
37090
37091
37092
37093
37094
37095
37096
37097
37098
37099
37100
37101
37102
37103
37104
37105
37106
37107
37108
37109
37110
37111
37112
37113
37114
37115
37116
37117
37118
37119
37120
37121
37122
37123
37124
37125
37126
37127
37128
37129
37130
37131
37132
37133
37134
37135
37136
37137
37138
37139
37140
37141
37142
37143
37144
37145
37146
37147
37148
37149
37150
37151
37152
37153
37154
37155
37156
37157
37158
37159
37160
37161
37162
37163
37164
37165
37166
37167
37168
37169
37170
37171
37172
37173
37174
37175
37176
37177
37178
37179
37180
37181
37182
37183
37184
37185
37186
37187
37188
37189
37190
37191
37192
37193
37194
37195
37196
37197
37198
37199
37200
37201
37202
37203
37204
37205
37206
37207
37208
37209
37210
37211
37212
37213
37214
37215
37216
37217
37218
37219
37220
37221
37222
37223
37224
37225
37226
37227
37228
37229
37230
37231
37232
37233
37234
37235
37236
37237
37238
37239
37240
37241
37242
37243
37244
37245
37246
37247
37248
37249
37250
37251
37252
37253
37254
37255
37256
37257
37258
37259
37260
37261
37262
37263
37264
37265
37266
37267
37268
37269
37270
37271
37272
37273
37274
37275
37276
37277
37278
37279
37280
37281
37282
37283
37284
37285
37286
37287
37288
37289
37290
37291
37292
37293
37294
37295
37296
37297
37298
37299
37300
37301
37302
37303
37304
37305
37306
37307
37308
37309
37310
37311
37312
37313
37314
37315
37316
37317
37318
37319
37320
37321
37322
37323
37324
37325
37326
37327
37328
37329
37330
37331
37332
37333
37334
37335
37336
37337
37338
37339
37340
37341
37342
37343
37344
37345
37346
37347
37348
37349
37350
37351
37352
37353
37354
37355
37356
37357
37358
37359
37360
37361
37362
37363
37364
37365
37366
37367
37368
37369
37370
37371
37372
37373
37374
37375
37376
37377
37378
37379
37380
37381
37382
37383
37384
37385
37386
37387
37388
37389
37390
37391
37392
37393
37394
37395
37396
37397
37398
37399
37400
37401
37402
37403
37404
37405
37406
37407
37408
37409
37410
37411
37412
37413
37414
37415
37416
37417
37418
37419
37420
37421
37422
37423
37424
37425
37426
37427
37428
37429
37430
37431
37432
37433
37434
37435
37436
37437
37438
37439
37440
37441
37442
37443
37444
37445
37446
37447
37448
37449
37450
37451
37452
37453
37454
37455
37456
37457
37458
37459
37460
37461
37462
37463
37464
37465
37466
37467
37468
37469
37470
37471
37472
37473
37474
37475
37476
37477
37478
37479
37480
37481
37482
37483
37484
37485
37486
37487
37488
37489
37490
37491
37492
37493
37494
37495
37496
37497
37498
37499
37500
37501
37502
37503
37504
37505
37506
37507
37508
37509
37510
37511
37512
37513
37514
37515
37516
37517
37518
37519
37520
37521
37522
37523
37524
37525
37526
37527
37528
37529
37530
37531
37532
37533
37534
37535
37536
37537
37538
37539
37540
37541
37542
37543
37544
37545
37546
37547
37548
37549
37550
37551
37552
37553
37554
37555
37556
37557
37558
37559
37560
37561
37562
37563
37564
37565
37566
37567
37568
37569
37570
37571
37572
37573
37574
37575
37576
37577
37578
37579
37580
37581
37582
37583
37584
37585
37586
37587
37588
37589
37590
37591
37592
37593
37594
37595
37596
37597
37598
37599
37600
37601
37602
37603
37604
37605
37606
37607
37608
37609
37610
37611
37612
37613
37614
37615
37616
37617
37618
37619
37620
37621
37622
37623
37624
37625
37626
37627
37628
37629
37630
37631
37632
37633
37634
37635
37636
37637
37638
37639
37640
37641
37642
37643
37644
37645
37646
37647
37648
37649
37650
37651
37652
37653
37654
37655
37656
37657
37658
37659
37660
37661
37662
37663
37664
37665
37666
37667
37668
37669
37670
37671
37672
37673
37674
37675
37676
37677
37678
37679
37680
37681
37682
37683
37684
37685
37686
37687
37688
37689
37690
37691
37692
37693
37694
37695
37696
37697
37698
37699
37700
37701
37702
37703
37704
37705
37706
37707
37708
37709
37710
37711
37712
37713
37714
37715
37716
37717
37718
37719
37720
37721
37722
37723
37724
37725
37726
37727
37728
37729
37730
37731
37732
37733
37734
37735
37736
37737
37738
37739
37740
37741
37742
37743
37744
37745
37746
37747
37748
37749
37750
37751
37752
37753
37754
37755
37756
37757
37758
37759
37760
37761
37762
37763
37764
37765
37766
37767
37768
37769
37770
37771
37772
37773
37774
37775
37776
37777
37778
37779
37780
37781
37782
37783
37784
37785
37786
37787
37788
37789
37790
37791
37792
37793
37794
37795
37796
37797
37798
37799
37800
37801
37802
37803
37804
37805
37806
37807
37808
37809
37810
37811
37812
37813
37814
37815
37816
37817
37818
37819
37820
37821
37822
37823
37824
37825
37826
37827
37828
37829
37830
37831
37832
37833
37834
37835
37836
37837
37838
37839
37840
37841
37842
37843
37844
37845
37846
37847
37848
37849
37850
37851
37852
37853
37854
37855
37856
37857
37858
37859
37860
37861
37862
37863
37864
37865
37866
37867
37868
37869
37870
37871
37872
37873
37874
37875
37876
37877
37878
37879
37880
37881
37882
37883
37884
37885
37886
37887
37888
37889
37890
37891
37892
37893
37894
37895
37896
37897
37898
37899
37900
37901
37902
37903
37904
37905
37906
37907
37908
37909
37910
37911
37912
37913
37914
37915
37916
37917
37918
37919
37920
37921
37922
37923
37924
37925
37926
37927
37928
37929
37930
37931
37932
37933
37934
37935
37936
37937
37938
37939
37940
37941
37942
37943
37944
37945
37946
37947
37948
37949
37950
37951
37952
37953
37954
37955
37956
37957
37958
37959
37960
37961
37962
37963
37964
37965
37966
37967
37968
37969
37970
37971
37972
37973
37974
37975
37976
37977
37978
37979
37980
37981
37982
37983
37984
37985
37986
37987
37988
37989
37990
37991
37992
37993
37994
37995
37996
37997
37998
37999
38000
38001
38002
38003
38004
38005
38006
38007
38008
38009
38010
38011
38012
38013
38014
38015
38016
38017
38018
38019
38020
38021
38022
38023
38024
38025
38026
38027
38028
38029
38030
38031
38032
38033
38034
38035
38036
38037
38038
38039
38040
38041
38042
38043
38044
38045
38046
38047
38048
38049
38050
38051
38052
38053
38054
38055
38056
38057
38058
38059
38060
38061
38062
38063
38064
38065
38066
38067
38068
38069
38070
38071
38072
38073
38074
38075
38076
38077
38078
38079
38080
38081
38082
38083
38084
38085
38086
38087
38088
38089
38090
38091
38092
38093
38094
38095
38096
38097
38098
38099
38100
38101
38102
38103
38104
38105
38106
38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
38121
38122
38123
38124
38125
38126
38127
38128
38129
38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
38147
38148
38149
38150
38151
38152
38153
38154
38155
38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
38167
38168
38169
38170
38171
38172
38173
38174
38175
38176
38177
38178
38179
38180
38181
38182
38183
38184
38185
38186
38187
38188
38189
38190
38191
38192
38193
38194
38195
38196
38197
38198
38199
38200
38201
38202
38203
38204
38205
38206
38207
38208
38209
38210
38211
38212
38213
38214
38215
38216
38217
38218
38219
38220
38221
38222
38223
38224
38225
38226
38227
38228
38229
38230
38231
38232
38233
38234
38235
38236
38237
38238
38239
38240
38241
38242
38243
38244
38245
38246
38247
38248
38249
38250
38251
38252
38253
38254
38255
38256
38257
38258
38259
38260
38261
38262
38263
38264
38265
38266
38267
38268
38269
38270
38271
38272
38273
38274
38275
38276
38277
38278
38279
38280
38281
38282
38283
38284
38285
38286
38287
38288
38289
38290
38291
38292
38293
38294
38295
38296
38297
38298
38299
38300
38301
38302
38303
38304
38305
38306
38307
38308
38309
38310
38311
38312
38313
38314
38315
38316
38317
38318
38319
38320
38321
38322
38323
38324
38325
38326
38327
38328
38329
38330
38331
38332
38333
38334
38335
38336
38337
38338
38339
38340
38341
38342
38343
38344
38345
38346
38347
38348
38349
38350
38351
38352
38353
38354
38355
38356
38357
38358
38359
38360
38361
38362
38363
38364
38365
38366
38367
38368
38369
38370
38371
38372
38373
38374
38375
38376
38377
38378
38379
38380
38381
38382
38383
38384
38385
38386
38387
38388
38389
38390
38391
38392
38393
38394
38395
38396
38397
38398
38399
38400
38401
38402
38403
38404
38405
38406
38407
38408
38409
38410
38411
38412
38413
38414
38415
38416
38417
38418
38419
38420
38421
38422
38423
38424
38425
38426
38427
38428
38429
38430
38431
38432
38433
38434
38435
38436
38437
38438
38439
38440
38441
38442
38443
38444
38445
38446
38447
38448
38449
38450
38451
38452
38453
38454
38455
38456
38457
38458
38459
38460
38461
38462
38463
38464
38465
38466
38467
38468
38469
38470
38471
38472
38473
38474
38475
38476
38477
38478
38479
38480
38481
38482
38483
38484
38485
38486
38487
38488
38489
38490
38491
38492
38493
38494
38495
38496
38497
38498
38499
38500
38501
38502
38503
38504
38505
38506
38507
38508
38509
38510
38511
38512
38513
38514
38515
38516
38517
38518
38519
38520
38521
38522
38523
38524
38525
38526
38527
38528
38529
38530
38531
38532
38533
38534
38535
38536
38537
38538
38539
38540
38541
38542
38543
38544
38545
38546
38547
38548
38549
38550
38551
38552
38553
38554
38555
38556
38557
38558
38559
38560
38561
38562
38563
38564
38565
38566
38567
38568
38569
38570
38571
38572
38573
38574
38575
38576
38577
38578
38579
38580
38581
38582
38583
38584
38585
38586
38587
38588
38589
38590
38591
38592
38593
38594
38595
38596
38597
38598
38599
38600
38601
38602
38603
38604
38605
38606
38607
38608
38609
38610
38611
38612
38613
38614
38615
38616
38617
38618
38619
38620
38621
38622
38623
38624
38625
38626
38627
38628
38629
38630
38631
38632
38633
38634
38635
38636
38637
38638
38639
38640
38641
38642
38643
38644
38645
38646
38647
38648
38649
38650
38651
38652
38653
38654
38655
38656
38657
38658
38659
38660
38661
38662
38663
38664
38665
38666
38667
38668
38669
38670
38671
38672
38673
38674
38675
38676
38677
38678
38679
38680
38681
38682
38683
38684
38685
38686
38687
38688
38689
38690
38691
38692
38693
38694
38695
38696
38697
38698
38699
38700
38701
38702
38703
38704
38705
38706
38707
38708
38709
38710
38711
38712
38713
38714
38715
38716
38717
38718
38719
38720
38721
38722
38723
38724
38725
38726
38727
38728
38729
38730
38731
38732
38733
38734
38735
38736
38737
38738
38739
38740
38741
38742
38743
38744
38745
38746
38747
38748
38749
38750
38751
38752
38753
38754
38755
38756
38757
38758
38759
38760
38761
38762
38763
38764
38765
38766
38767
38768
38769
38770
38771
38772
38773
38774
38775
38776
38777
38778
38779
38780
38781
38782
38783
38784
38785
38786
38787
38788
38789
38790
38791
38792
38793
38794
38795
38796
38797
38798
38799
38800
38801
38802
38803
38804
38805
38806
38807
38808
38809
38810
38811
38812
38813
38814
38815
38816
38817
38818
38819
38820
38821
38822
38823
38824
38825
38826
38827
38828
38829
38830
38831
38832
38833
38834
38835
38836
38837
38838
38839
38840
38841
38842
38843
38844
38845
38846
38847
38848
38849
38850
38851
38852
38853
38854
38855
38856
38857
38858
38859
38860
38861
38862
38863
38864
38865
38866
38867
38868
38869
38870
38871
38872
38873
38874
38875
38876
38877
38878
38879
38880
38881
38882
38883
38884
38885
38886
38887
38888
38889
38890
38891
38892
38893
38894
38895
38896
38897
38898
38899
38900
38901
38902
38903
38904
38905
38906
38907
38908
38909
38910
38911
38912
38913
38914
38915
38916
38917
38918
38919
38920
38921
38922
38923
38924
38925
38926
38927
38928
38929
38930
38931
38932
38933
38934
38935
38936
38937
38938
38939
38940
38941
38942
38943
38944
38945
38946
38947
38948
38949
38950
38951
38952
38953
38954
38955
38956
38957
38958
38959
38960
38961
38962
38963
38964
38965
38966
38967
38968
38969
38970
38971
38972
38973
38974
38975
38976
38977
38978
38979
38980
38981
38982
38983
38984
38985
38986
38987
38988
38989
38990
38991
38992
38993
38994
38995
38996
38997
38998
38999
39000
39001
39002
39003
39004
39005
39006
39007
39008
39009
39010
39011
39012
39013
39014
39015
39016
39017
39018
39019
39020
39021
39022
39023
39024
39025
39026
39027
39028
39029
39030
39031
39032
39033
39034
39035
39036
39037
39038
39039
39040
39041
39042
39043
39044
39045
39046
39047
39048
39049
39050
39051
39052
39053
39054
39055
39056
39057
39058
39059
39060
39061
39062
39063
39064
39065
39066
39067
39068
39069
39070
39071
39072
39073
39074
39075
39076
39077
39078
39079
39080
39081
39082
39083
39084
39085
39086
39087
39088
39089
39090
39091
39092
39093
39094
39095
39096
39097
39098
39099
39100
39101
39102
39103
39104
39105
39106
39107
39108
39109
39110
39111
39112
39113
39114
39115
39116
39117
39118
39119
39120
39121
39122
39123
39124
39125
39126
39127
39128
39129
39130
39131
39132
39133
39134
39135
39136
39137
39138
39139
39140
39141
39142
39143
39144
39145
39146
39147
39148
39149
39150
39151
39152
39153
39154
39155
39156
39157
39158
39159
39160
39161
39162
39163
39164
39165
39166
39167
39168
39169
39170
39171
39172
39173
39174
39175
39176
39177
39178
39179
39180
39181
39182
39183
39184
39185
39186
39187
39188
39189
39190
39191
39192
39193
39194
39195
39196
39197
39198
39199
39200
39201
39202
39203
39204
39205
39206
39207
39208
39209
39210
39211
39212
39213
39214
39215
39216
39217
39218
39219
39220
39221
39222
39223
39224
39225
39226
39227
39228
39229
39230
39231
39232
39233
39234
39235
39236
39237
39238
39239
39240
39241
39242
39243
39244
39245
39246
39247
39248
39249
39250
39251
39252
39253
39254
39255
39256
39257
39258
39259
39260
39261
39262
39263
39264
39265
39266
39267
39268
39269
39270
39271
39272
39273
39274
39275
39276
39277
39278
39279
39280
39281
39282
39283
39284
39285
39286
39287
39288
39289
39290
39291
39292
39293
39294
39295
39296
39297
39298
39299
39300
39301
39302
39303
39304
39305
39306
39307
39308
39309
39310
39311
39312
39313
39314
39315
39316
39317
39318
39319
39320
39321
39322
39323
39324
39325
39326
39327
39328
39329
39330
39331
39332
39333
39334
39335
39336
39337
39338
39339
39340
39341
39342
39343
39344
39345
39346
39347
39348
39349
39350
39351
39352
39353
39354
39355
39356
39357
39358
39359
39360
39361
39362
39363
39364
39365
39366
39367
39368
39369
39370
39371
39372
39373
39374
39375
39376
39377
39378
39379
39380
39381
39382
39383
39384
39385
39386
39387
39388
39389
39390
39391
39392
39393
39394
39395
39396
39397
39398
39399
39400
39401
39402
39403
39404
39405
39406
39407
39408
39409
39410
39411
39412
39413
39414
39415
39416
39417
39418
39419
39420
39421
39422
39423
39424
39425
39426
39427
39428
39429
39430
39431
39432
39433
39434
39435
39436
39437
39438
39439
39440
39441
39442
39443
39444
39445
39446
39447
39448
39449
39450
39451
39452
39453
39454
39455
39456
39457
39458
39459
39460
39461
39462
39463
39464
39465
39466
39467
39468
39469
39470
39471
39472
39473
39474
39475
39476
39477
39478
39479
39480
39481
39482
39483
39484
39485
39486
39487
39488
39489
39490
39491
39492
39493
39494
39495
39496
39497
39498
39499
39500
39501
39502
39503
39504
39505
39506
39507
39508
39509
39510
39511
39512
39513
39514
39515
39516
39517
39518
39519
39520
39521
39522
39523
39524
39525
39526
39527
39528
39529
39530
39531
39532
39533
39534
39535
39536
39537
39538
39539
39540
39541
39542
39543
39544
39545
39546
39547
39548
39549
39550
39551
39552
39553
39554
39555
39556
39557
39558
39559
39560
39561
39562
39563
39564
39565
39566
39567
39568
39569
39570
39571
39572
39573
39574
39575
39576
39577
39578
39579
39580
39581
39582
39583
39584
39585
39586
39587
39588
39589
39590
39591
39592
39593
39594
39595
39596
39597
39598
39599
39600
39601
39602
39603
39604
39605
39606
39607
39608
39609
39610
39611
39612
39613
39614
39615
39616
39617
39618
39619
39620
39621
39622
39623
39624
39625
39626
39627
39628
39629
39630
39631
39632
39633
39634
39635
39636
39637
39638
39639
39640
39641
39642
39643
39644
39645
39646
39647
39648
39649
39650
39651
39652
39653
39654
39655
39656
39657
39658
39659
39660
39661
39662
39663
39664
39665
39666
39667
39668
39669
39670
39671
39672
39673
39674
39675
39676
39677
39678
39679
39680
39681
39682
39683
39684
39685
39686
39687
39688
39689
39690
39691
39692
39693
39694
39695
39696
39697
39698
39699
39700
39701
39702
39703
39704
39705
39706
39707
39708
39709
39710
39711
39712
39713
39714
39715
39716
39717
39718
39719
39720
39721
39722
39723
39724
39725
39726
39727
39728
39729
39730
39731
39732
39733
39734
39735
39736
39737
39738
39739
39740
39741
39742
39743
39744
39745
39746
39747
39748
39749
39750
39751
39752
39753
39754
39755
39756
39757
39758
39759
39760
39761
39762
39763
39764
39765
39766
39767
39768
39769
39770
39771
39772
39773
39774
39775
39776
39777
39778
39779
39780
39781
39782
39783
39784
39785
39786
39787
39788
39789
39790
39791
39792
39793
39794
39795
39796
39797
39798
39799
39800
39801
39802
39803
39804
39805
39806
39807
39808
39809
39810
39811
39812
39813
39814
39815
39816
39817
39818
39819
39820
39821
39822
39823
39824
39825
39826
39827
39828
39829
39830
39831
39832
39833
39834
39835
39836
39837
39838
39839
39840
39841
39842
39843
39844
39845
39846
39847
39848
39849
39850
39851
39852
39853
39854
39855
39856
39857
39858
39859
39860
39861
39862
39863
39864
39865
39866
39867
39868
39869
39870
39871
39872
39873
39874
39875
39876
39877
39878
39879
39880
39881
39882
39883
39884
39885
39886
39887
39888
39889
39890
39891
39892
39893
39894
39895
39896
39897
39898
39899
39900
39901
39902
39903
39904
39905
39906
39907
39908
39909
39910
39911
39912
39913
39914
39915
39916
39917
39918
39919
39920
39921
39922
39923
39924
39925
39926
39927
39928
39929
39930
39931
39932
39933
39934
39935
39936
39937
39938
39939
39940
39941
39942
39943
39944
39945
39946
39947
39948
39949
39950
39951
39952
39953
39954
39955
39956
39957
39958
39959
39960
39961
39962
39963
39964
39965
39966
39967
39968
39969
39970
39971
39972
39973
39974
39975
39976
39977
39978
39979
39980
39981
39982
39983
39984
39985
39986
39987
39988
39989
39990
39991
39992
39993
39994
39995
39996
39997
39998
39999
40000
40001
40002
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
40015
40016
40017
40018
40019
40020
40021
40022
40023
40024
40025
40026
40027
40028
40029
40030
40031
40032
40033
40034
40035
40036
40037
40038
40039
40040
40041
40042
40043
40044
40045
40046
40047
40048
40049
40050
40051
40052
40053
40054
40055
40056
40057
40058
40059
40060
40061
40062
40063
40064
40065
40066
40067
40068
40069
40070
40071
40072
40073
40074
40075
40076
40077
40078
40079
40080
40081
40082
40083
40084
40085
40086
40087
40088
40089
40090
40091
40092
40093
40094
40095
40096
40097
40098
40099
40100
40101
40102
40103
40104
40105
40106
40107
40108
40109
40110
40111
40112
40113
40114
40115
40116
40117
40118
40119
40120
40121
40122
40123
40124
40125
40126
40127
40128
40129
40130
40131
40132
40133
40134
40135
40136
40137
40138
40139
40140
40141
40142
40143
40144
40145
40146
40147
40148
40149
40150
40151
40152
40153
40154
40155
40156
40157
40158
40159
40160
40161
40162
40163
40164
40165
40166
40167
40168
40169
40170
40171
40172
40173
40174
40175
40176
40177
40178
40179
40180
40181
40182
40183
40184
40185
40186
40187
40188
40189
40190
40191
40192
40193
40194
40195
40196
40197
40198
40199
40200
40201
40202
40203
40204
40205
40206
40207
40208
40209
40210
40211
40212
40213
40214
40215
40216
40217
40218
40219
40220
40221
40222
40223
40224
40225
40226
40227
40228
40229
40230
40231
40232
40233
40234
40235
40236
40237
40238
40239
40240
40241
40242
40243
40244
40245
40246
40247
40248
40249
40250
40251
40252
40253
40254
40255
40256
40257
40258
40259
40260
40261
40262
40263
40264
40265
40266
40267
40268
40269
40270
40271
40272
40273
40274
40275
40276
40277
40278
40279
40280
40281
40282
40283
40284
40285
40286
40287
40288
40289
40290
40291
40292
40293
40294
40295
40296
40297
40298
40299
40300
40301
40302
40303
40304
40305
40306
40307
40308
40309
40310
40311
40312
40313
40314
40315
40316
40317
40318
40319
40320
40321
40322
40323
40324
40325
40326
40327
40328
40329
40330
40331
40332
40333
40334
40335
40336
40337
40338
40339
40340
40341
40342
40343
40344
40345
40346
40347
40348
40349
40350
40351
40352
40353
40354
40355
40356
40357
40358
40359
40360
40361
40362
40363
40364
40365
40366
40367
40368
40369
40370
40371
40372
40373
40374
40375
40376
40377
40378
40379
40380
40381
40382
40383
40384
40385
40386
40387
40388
40389
40390
40391
40392
40393
40394
40395
40396
40397
40398
40399
40400
40401
40402
40403
40404
40405
40406
40407
40408
40409
40410
40411
40412
40413
40414
40415
40416
40417
40418
40419
40420
40421
40422
40423
40424
40425
40426
40427
40428
40429
40430
40431
40432
40433
40434
40435
40436
40437
40438
40439
40440
40441
40442
40443
40444
40445
40446
40447
40448
40449
40450
40451
40452
40453
40454
40455
40456
40457
40458
40459
40460
40461
40462
40463
40464
40465
40466
40467
40468
40469
40470
40471
40472
40473
40474
40475
40476
40477
40478
40479
40480
40481
40482
40483
40484
40485
40486
40487
40488
40489
40490
40491
40492
40493
40494
40495
40496
40497
40498
40499
40500
40501
40502
40503
40504
40505
40506
40507
40508
40509
40510
40511
40512
40513
40514
40515
40516
40517
40518
40519
40520
40521
40522
40523
40524
40525
40526
40527
40528
40529
40530
40531
40532
40533
40534
40535
40536
40537
40538
40539
40540
40541
40542
40543
40544
40545
40546
40547
40548
40549
40550
40551
40552
40553
40554
40555
40556
40557
40558
40559
40560
40561
40562
40563
40564
40565
40566
40567
40568
40569
40570
40571
40572
40573
40574
40575
40576
40577
40578
40579
40580
40581
40582
40583
40584
40585
40586
40587
40588
40589
40590
40591
40592
40593
40594
40595
40596
40597
40598
40599
40600
40601
40602
40603
40604
40605
40606
40607
40608
40609
40610
40611
40612
40613
40614
40615
40616
40617
40618
40619
40620
40621
40622
40623
40624
40625
40626
40627
40628
40629
40630
40631
40632
40633
40634
40635
40636
40637
40638
40639
40640
40641
40642
40643
40644
40645
40646
40647
40648
40649
40650
40651
40652
40653
40654
40655
40656
40657
40658
40659
40660
40661
40662
40663
40664
40665
40666
40667
40668
40669
40670
40671
40672
40673
40674
40675
40676
40677
40678
40679
40680
40681
40682
40683
40684
40685
40686
40687
40688
40689
40690
40691
40692
40693
40694
40695
40696
40697
40698
40699
40700
40701
40702
40703
40704
40705
40706
40707
40708
40709
40710
40711
40712
40713
40714
40715
40716
40717
40718
40719
40720
40721
40722
40723
40724
40725
40726
40727
40728
40729
40730
40731
40732
40733
40734
40735
40736
40737
40738
40739
40740
40741
40742
40743
40744
40745
40746
40747
40748
40749
40750
40751
40752
40753
40754
40755
40756
40757
40758
40759
40760
40761
40762
40763
40764
40765
40766
40767
40768
40769
40770
40771
40772
40773
40774
40775
40776
40777
40778
40779
40780
40781
40782
40783
40784
40785
40786
40787
40788
40789
40790
40791
40792
40793
40794
40795
40796
40797
40798
40799
40800
40801
40802
40803
40804
40805
40806
40807
40808
40809
40810
40811
40812
40813
40814
40815
40816
40817
40818
40819
40820
40821
40822
40823
40824
40825
40826
40827
40828
40829
40830
40831
40832
40833
40834
40835
40836
40837
40838
40839
40840
40841
40842
40843
40844
40845
40846
40847
40848
40849
40850
40851
40852
40853
40854
40855
40856
40857
40858
40859
40860
40861
40862
40863
40864
40865
40866
40867
40868
40869
40870
40871
40872
40873
40874
40875
40876
40877
40878
40879
40880
40881
40882
40883
40884
40885
40886
40887
40888
40889
40890
40891
40892
40893
40894
40895
40896
40897
40898
40899
40900
40901
40902
40903
40904
40905
40906
40907
40908
40909
40910
40911
40912
40913
40914
40915
40916
40917
40918
40919
40920
40921
40922
40923
40924
40925
40926
40927
40928
40929
40930
40931
40932
40933
40934
40935
40936
40937
40938
40939
40940
40941
40942
40943
40944
40945
40946
40947
40948
40949
40950
40951
40952
40953
40954
40955
40956
40957
40958
40959
40960
40961
40962
40963
40964
40965
40966
40967
40968
40969
40970
40971
40972
40973
40974
40975
40976
40977
40978
40979
40980
40981
40982
40983
40984
40985
40986
40987
40988
40989
40990
40991
40992
40993
40994
40995
40996
40997
40998
40999
41000
41001
41002
41003
41004
41005
41006
41007
41008
41009
41010
41011
41012
41013
41014
41015
41016
41017
41018
41019
41020
41021
41022
41023
41024
41025
41026
41027
41028
41029
41030
41031
41032
41033
41034
41035
41036
41037
41038
41039
41040
41041
41042
41043
41044
41045
41046
41047
41048
41049
41050
41051
41052
41053
41054
41055
41056
41057
41058
41059
41060
41061
41062
41063
41064
41065
41066
41067
41068
41069
41070
41071
41072
41073
41074
41075
41076
41077
41078
41079
41080
41081
41082
41083
41084
41085
41086
41087
41088
41089
41090
41091
41092
41093
41094
41095
41096
41097
41098
41099
41100
41101
41102
41103
41104
41105
41106
41107
41108
41109
41110
41111
41112
41113
41114
41115
41116
41117
41118
41119
41120
41121
41122
41123
41124
41125
41126
41127
41128
41129
41130
41131
41132
41133
41134
41135
41136
41137
41138
41139
41140
41141
41142
41143
41144
41145
41146
41147
41148
41149
41150
41151
41152
41153
41154
41155
41156
41157
41158
41159
41160
41161
41162
41163
41164
41165
41166
41167
41168
41169
41170
41171
41172
41173
41174
41175
41176
41177
41178
41179
41180
41181
41182
41183
41184
41185
41186
41187
41188
41189
41190
41191
41192
41193
41194
41195
41196
41197
41198
41199
41200
41201
41202
41203
41204
41205
41206
41207
41208
41209
41210
41211
41212
41213
41214
41215
41216
41217
41218
41219
41220
41221
41222
41223
41224
41225
41226
41227
41228
41229
41230
41231
41232
41233
41234
41235
41236
41237
41238
41239
41240
41241
41242
41243
41244
41245
41246
41247
41248
41249
41250
41251
41252
41253
41254
41255
41256
41257
41258
41259
41260
41261
41262
41263
41264
41265
41266
41267
41268
41269
41270
41271
41272
41273
41274
41275
41276
41277
41278
41279
41280
41281
41282
41283
41284
41285
41286
41287
41288
41289
41290
41291
41292
41293
41294
41295
41296
41297
41298
41299
41300
41301
41302
41303
41304
41305
41306
41307
41308
41309
41310
41311
41312
41313
41314
41315
41316
41317
41318
41319
41320
41321
41322
41323
41324
41325
41326
41327
41328
41329
41330
41331
41332
41333
41334
41335
41336
41337
41338
41339
41340
41341
41342
41343
41344
41345
41346
41347
41348
41349
41350
41351
41352
41353
41354
41355
41356
41357
41358
41359
41360
41361
41362
41363
41364
41365
41366
41367
41368
41369
41370
41371
41372
41373
41374
41375
41376
41377
41378
41379
41380
41381
41382
41383
41384
41385
41386
41387
41388
41389
41390
41391
41392
41393
41394
41395
41396
41397
41398
41399
41400
41401
41402
41403
41404
41405
41406
41407
41408
41409
41410
41411
41412
41413
41414
41415
41416
41417
41418
41419
41420
41421
41422
41423
41424
41425
41426
41427
41428
41429
41430
41431
41432
41433
41434
41435
41436
41437
41438
41439
41440
41441
41442
41443
41444
41445
41446
41447
41448
41449
41450
41451
41452
41453
41454
41455
41456
41457
41458
41459
41460
41461
41462
41463
41464
41465
41466
41467
41468
41469
41470
41471
41472
41473
41474
41475
41476
41477
41478
41479
41480
41481
41482
41483
41484
41485
41486
41487
41488
41489
41490
41491
41492
41493
41494
41495
41496
41497
41498
41499
41500
41501
41502
41503
41504
41505
41506
41507
41508
41509
41510
41511
41512
41513
41514
41515
41516
41517
41518
41519
41520
41521
41522
41523
41524
41525
41526
41527
41528
41529
41530
41531
41532
41533
41534
41535
41536
41537
41538
41539
41540
41541
41542
41543
41544
41545
41546
41547
41548
41549
41550
41551
41552
41553
41554
41555
41556
41557
41558
41559
41560
41561
41562
41563
41564
41565
41566
41567
41568
41569
41570
41571
41572
41573
41574
41575
41576
41577
41578
41579
41580
41581
41582
41583
41584
41585
41586
41587
41588
41589
41590
41591
41592
41593
41594
41595
41596
41597
41598
41599
41600
41601
41602
41603
41604
41605
41606
41607
41608
41609
41610
41611
41612
41613
41614
41615
41616
41617
41618
41619
41620
41621
41622
41623
41624
41625
41626
41627
41628
41629
41630
41631
41632
41633
41634
41635
41636
41637
41638
41639
41640
41641
41642
41643
41644
41645
41646
41647
41648
41649
41650
41651
41652
41653
41654
41655
41656
41657
41658
41659
41660
41661
41662
41663
41664
41665
41666
41667
41668
41669
41670
41671
41672
41673
41674
41675
41676
41677
41678
41679
41680
41681
41682
41683
41684
41685
41686
41687
41688
41689
41690
41691
41692
41693
41694
41695
41696
41697
41698
41699
41700
41701
41702
41703
41704
41705
41706
41707
41708
41709
41710
41711
41712
41713
41714
41715
41716
41717
41718
41719
41720
41721
41722
41723
41724
41725
41726
41727
41728
41729
41730
41731
41732
41733
41734
41735
41736
41737
41738
41739
41740
41741
41742
41743
41744
41745
41746
41747
41748
41749
41750
41751
41752
41753
41754
41755
41756
41757
41758
41759
41760
41761
41762
41763
41764
41765
41766
41767
41768
41769
41770
41771
41772
41773
41774
41775
41776
41777
41778
41779
41780
41781
41782
41783
41784
41785
41786
41787
41788
41789
41790
41791
41792
41793
41794
41795
41796
41797
41798
41799
41800
41801
41802
41803
41804
41805
41806
41807
41808
41809
41810
41811
41812
41813
41814
41815
41816
41817
41818
41819
41820
41821
41822
41823
41824
41825
41826
41827
41828
41829
41830
41831
41832
41833
41834
41835
41836
41837
41838
41839
41840
41841
41842
41843
41844
41845
41846
41847
41848
41849
41850
41851
41852
41853
41854
41855
41856
41857
41858
41859
41860
41861
41862
41863
41864
41865
41866
41867
41868
41869
41870
41871
41872
41873
41874
41875
41876
41877
41878
41879
41880
41881
41882
41883
41884
41885
41886
41887
41888
41889
41890
41891
41892
41893
41894
41895
41896
41897
41898
41899
41900
41901
41902
41903
41904
41905
41906
41907
41908
41909
41910
41911
41912
41913
41914
41915
41916
41917
41918
41919
41920
41921
41922
41923
41924
41925
41926
41927
41928
41929
41930
41931
41932
41933
41934
41935
41936
41937
41938
41939
41940
41941
41942
41943
41944
41945
41946
41947
41948
41949
41950
41951
41952
41953
41954
41955
41956
41957
41958
41959
41960
41961
41962
41963
41964
41965
41966
41967
41968
41969
41970
41971
41972
41973
41974
41975
41976
41977
41978
41979
41980
41981
41982
41983
41984
41985
41986
41987
41988
41989
41990
41991
41992
41993
41994
41995
41996
41997
41998
41999
42000
42001
42002
42003
42004
42005
42006
42007
42008
42009
42010
42011
42012
42013
42014
42015
42016
42017
42018
42019
42020
42021
42022
42023
42024
42025
42026
42027
42028
42029
42030
42031
42032
42033
42034
42035
42036
42037
42038
42039
42040
42041
42042
42043
42044
42045
42046
42047
42048
42049
42050
42051
42052
42053
42054
42055
42056
42057
42058
42059
42060
42061
42062
42063
42064
42065
42066
42067
42068
42069
42070
42071
42072
42073
42074
42075
42076
42077
42078
42079
42080
42081
42082
42083
42084
42085
42086
42087
42088
42089
42090
42091
42092
42093
42094
42095
42096
42097
42098
42099
42100
42101
42102
42103
42104
42105
42106
42107
42108
42109
42110
42111
42112
42113
42114
42115
42116
42117
42118
42119
42120
42121
42122
42123
42124
42125
42126
42127
42128
42129
42130
42131
42132
42133
42134
42135
42136
42137
42138
42139
42140
42141
42142
42143
42144
42145
42146
42147
42148
42149
42150
42151
42152
42153
42154
42155
42156
42157
42158
42159
42160
42161
42162
42163
42164
42165
42166
42167
42168
42169
42170
42171
42172
42173
42174
42175
42176
42177
42178
42179
42180
42181
42182
42183
42184
42185
42186
42187
42188
42189
42190
42191
42192
42193
42194
42195
42196
42197
42198
42199
42200
42201
42202
42203
42204
42205
42206
42207
42208
42209
42210
42211
42212
42213
42214
42215
42216
42217
42218
42219
42220
42221
42222
42223
42224
42225
42226
42227
42228
42229
42230
42231
42232
42233
42234
42235
42236
42237
42238
42239
42240
42241
42242
42243
42244
42245
42246
42247
42248
42249
42250
42251
42252
42253
42254
42255
42256
42257
42258
42259
42260
42261
42262
42263
42264
42265
42266
42267
42268
42269
42270
42271
42272
42273
42274
42275
42276
42277
42278
42279
42280
42281
42282
42283
42284
42285
42286
42287
42288
42289
42290
42291
42292
42293
42294
42295
42296
42297
42298
42299
42300
42301
42302
42303
42304
42305
42306
42307
42308
42309
42310
42311
42312
42313
42314
42315
42316
42317
42318
42319
42320
42321
42322
42323
42324
42325
42326
42327
42328
42329
42330
42331
42332
42333
42334
42335
42336
42337
42338
42339
42340
42341
42342
42343
42344
42345
42346
42347
42348
42349
42350
42351
42352
42353
42354
42355
42356
42357
42358
42359
42360
42361
42362
42363
42364
42365
42366
42367
42368
42369
42370
42371
42372
42373
42374
42375
42376
42377
42378
42379
42380
42381
42382
42383
42384
42385
42386
42387
42388
42389
42390
42391
42392
42393
42394
42395
42396
42397
42398
42399
42400
42401
42402
42403
42404
42405
42406
42407
42408
42409
42410
42411
42412
42413
42414
42415
42416
42417
42418
42419
42420
42421
42422
42423
42424
42425
42426
42427
42428
42429
42430
42431
42432
42433
42434
42435
42436
42437
42438
42439
42440
42441
42442
42443
42444
42445
42446
42447
42448
42449
42450
42451
42452
42453
42454
42455
42456
42457
42458
42459
42460
42461
42462
42463
42464
42465
42466
42467
42468
42469
42470
42471
42472
42473
42474
42475
42476
42477
42478
42479
42480
42481
42482
42483
42484
42485
42486
42487
42488
42489
42490
42491
42492
42493
42494
42495
42496
42497
42498
42499
42500
42501
42502
42503
42504
42505
42506
42507
42508
42509
42510
42511
42512
42513
42514
42515
42516
42517
42518
42519
42520
42521
42522
42523
42524
42525
42526
42527
42528
42529
42530
42531
42532
42533
42534
42535
42536
42537
42538
42539
42540
42541
42542
42543
42544
42545
42546
42547
42548
42549
42550
42551
42552
42553
42554
42555
42556
42557
42558
42559
42560
42561
42562
42563
42564
42565
42566
42567
42568
42569
42570
42571
42572
42573
42574
42575
42576
42577
42578
42579
42580
42581
42582
42583
42584
42585
42586
42587
42588
42589
42590
42591
42592
42593
42594
42595
42596
42597
42598
42599
42600
42601
42602
42603
42604
42605
42606
42607
42608
42609
42610
42611
42612
42613
42614
42615
42616
42617
42618
42619
42620
42621
42622
42623
42624
42625
42626
42627
42628
42629
42630
42631
42632
42633
42634
42635
42636
42637
42638
42639
42640
42641
42642
42643
42644
42645
42646
42647
42648
42649
42650
42651
42652
42653
42654
42655
42656
42657
42658
42659
42660
42661
42662
42663
42664
42665
42666
42667
42668
42669
42670
42671
42672
42673
42674
42675
42676
42677
42678
42679
42680
42681
42682
42683
42684
42685
42686
42687
42688
42689
42690
42691
42692
42693
42694
42695
42696
42697
42698
42699
42700
42701
42702
42703
42704
42705
42706
42707
42708
42709
42710
42711
42712
42713
42714
42715
42716
42717
42718
42719
42720
42721
42722
42723
42724
42725
42726
42727
42728
42729
42730
42731
42732
42733
42734
42735
42736
42737
42738
42739
42740
42741
42742
42743
42744
42745
42746
42747
42748
42749
42750
42751
42752
42753
42754
42755
42756
42757
42758
42759
42760
42761
42762
42763
42764
42765
42766
42767
42768
42769
42770
42771
42772
42773
42774
42775
42776
42777
42778
42779
42780
42781
42782
42783
42784
42785
42786
42787
42788
42789
42790
42791
42792
42793
42794
42795
42796
42797
42798
42799
42800
42801
42802
42803
42804
42805
42806
42807
42808
42809
42810
42811
42812
42813
42814
42815
42816
42817
42818
42819
42820
42821
42822
42823
42824
42825
42826
42827
42828
42829
42830
42831
42832
42833
42834
42835
42836
42837
42838
42839
42840
42841
42842
42843
42844
42845
42846
42847
42848
42849
42850
42851
42852
42853
42854
42855
42856
42857
42858
42859
42860
42861
42862
42863
42864
42865
42866
42867
42868
42869
42870
42871
42872
42873
42874
42875
42876
42877
42878
42879
42880
42881
42882
42883
42884
42885
42886
42887
42888
42889
42890
42891
42892
42893
42894
42895
42896
42897
42898
42899
42900
42901
42902
42903
42904
42905
42906
42907
42908
42909
42910
42911
42912
42913
42914
42915
42916
42917
42918
42919
42920
42921
42922
42923
42924
42925
42926
42927
42928
42929
42930
42931
42932
42933
42934
42935
42936
42937
42938
42939
42940
42941
42942
42943
42944
42945
42946
42947
42948
42949
42950
42951
42952
42953
42954
42955
42956
42957
42958
42959
42960
42961
42962
42963
42964
42965
42966
42967
42968
42969
42970
42971
42972
42973
42974
42975
42976
42977
42978
42979
42980
42981
42982
42983
42984
42985
42986
42987
42988
42989
42990
42991
42992
42993
42994
42995
42996
42997
42998
42999
43000
43001
43002
43003
43004
43005
43006
43007
43008
43009
43010
43011
43012
43013
43014
43015
43016
43017
43018
43019
43020
43021
43022
43023
43024
43025
43026
43027
43028
43029
43030
43031
43032
43033
43034
43035
43036
43037
43038
43039
43040
43041
43042
43043
43044
43045
43046
43047
43048
43049
43050
43051
43052
43053
43054
43055
43056
43057
43058
43059
43060
43061
43062
43063
43064
43065
43066
43067
43068
43069
43070
43071
43072
43073
43074
43075
43076
43077
43078
43079
43080
43081
43082
43083
43084
43085
43086
43087
43088
43089
43090
43091
43092
43093
43094
43095
43096
43097
43098
43099
43100
43101
43102
43103
43104
43105
43106
43107
43108
43109
43110
43111
43112
43113
43114
43115
43116
43117
43118
43119
43120
43121
43122
43123
43124
43125
43126
43127
43128
43129
43130
43131
43132
43133
43134
43135
43136
43137
43138
43139
43140
43141
43142
43143
43144
43145
43146
43147
43148
43149
43150
43151
43152
43153
43154
43155
43156
43157
43158
43159
43160
43161
43162
43163
43164
43165
43166
43167
43168
43169
43170
43171
43172
43173
43174
43175
43176
43177
43178
43179
43180
43181
43182
43183
43184
43185
43186
43187
43188
43189
43190
43191
43192
43193
43194
43195
43196
43197
43198
43199
43200
43201
43202
43203
43204
43205
43206
43207
43208
43209
43210
43211
43212
43213
43214
43215
43216
43217
43218
43219
43220
43221
43222
43223
43224
43225
43226
43227
43228
43229
43230
43231
43232
43233
43234
43235
43236
43237
43238
43239
43240
43241
43242
43243
43244
43245
43246
43247
43248
43249
43250
43251
43252
43253
43254
43255
43256
43257
43258
43259
43260
43261
43262
43263
43264
43265
43266
43267
43268
43269
43270
43271
43272
43273
43274
43275
43276
43277
43278
43279
43280
43281
43282
43283
43284
43285
43286
43287
43288
43289
43290
43291
43292
43293
43294
43295
43296
43297
43298
43299
43300
43301
43302
43303
43304
43305
43306
43307
43308
43309
43310
43311
43312
43313
43314
43315
43316
43317
43318
43319
43320
43321
43322
43323
43324
43325
43326
43327
43328
43329
43330
43331
43332
43333
43334
43335
43336
43337
43338
43339
43340
43341
43342
43343
43344
43345
43346
43347
43348
43349
43350
43351
43352
43353
43354
43355
43356
43357
43358
43359
43360
43361
43362
43363
43364
43365
43366
43367
43368
43369
43370
43371
43372
43373
43374
43375
43376
43377
43378
43379
43380
43381
43382
43383
43384
43385
43386
43387
43388
43389
43390
43391
43392
43393
43394
43395
43396
43397
43398
43399
43400
43401
43402
43403
43404
43405
43406
43407
43408
43409
43410
43411
43412
43413
43414
43415
43416
43417
43418
43419
43420
43421
43422
43423
43424
43425
43426
43427
43428
43429
43430
43431
43432
43433
43434
43435
43436
43437
43438
43439
43440
43441
43442
43443
43444
43445
43446
43447
43448
43449
43450
43451
43452
43453
43454
43455
43456
43457
43458
43459
43460
43461
43462
43463
43464
43465
43466
43467
43468
43469
43470
43471
43472
43473
43474
43475
43476
43477
43478
43479
43480
43481
43482
43483
43484
43485
43486
43487
43488
43489
43490
43491
43492
43493
43494
43495
43496
43497
43498
43499
43500
43501
43502
43503
43504
43505
43506
43507
43508
43509
43510
43511
43512
43513
43514
43515
43516
43517
43518
43519
43520
43521
43522
43523
43524
43525
43526
43527
43528
43529
43530
43531
43532
43533
43534
43535
43536
43537
43538
43539
43540
43541
43542
43543
43544
43545
43546
43547
43548
43549
43550
43551
43552
43553
43554
43555
43556
43557
43558
43559
43560
43561
43562
43563
43564
43565
43566
43567
43568
43569
43570
43571
43572
43573
43574
43575
43576
43577
43578
43579
43580
43581
43582
43583
43584
43585
43586
43587
43588
43589
43590
43591
43592
43593
43594
43595
43596
43597
43598
43599
43600
43601
43602
43603
43604
43605
43606
43607
43608
43609
43610
43611
43612
43613
43614
43615
43616
43617
43618
43619
43620
43621
43622
43623
43624
43625
43626
43627
43628
43629
43630
43631
43632
43633
43634
43635
43636
43637
43638
43639
43640
43641
43642
43643
43644
43645
43646
43647
43648
43649
43650
43651
43652
43653
43654
43655
43656
43657
43658
43659
43660
43661
43662
43663
43664
43665
43666
43667
43668
43669
43670
43671
43672
43673
43674
43675
43676
43677
43678
43679
43680
43681
43682
43683
43684
43685
43686
43687
43688
43689
43690
43691
43692
43693
43694
43695
43696
43697
43698
43699
43700
43701
43702
43703
43704
43705
43706
43707
43708
43709
43710
43711
43712
43713
43714
43715
43716
43717
43718
43719
43720
43721
43722
43723
43724
43725
43726
43727
43728
43729
43730
43731
43732
43733
43734
43735
43736
43737
43738
43739
43740
43741
43742
43743
43744
43745
43746
43747
43748
43749
43750
43751
43752
43753
43754
43755
43756
43757
43758
43759
43760
43761
43762
43763
43764
43765
43766
43767
43768
43769
43770
43771
43772
43773
43774
43775
43776
43777
43778
43779
43780
43781
43782
43783
43784
43785
43786
43787
43788
43789
43790
43791
43792
43793
43794
43795
43796
43797
43798
43799
43800
43801
43802
43803
43804
43805
43806
43807
43808
43809
43810
43811
43812
43813
43814
43815
43816
43817
43818
43819
43820
43821
43822
43823
43824
43825
43826
43827
43828
43829
43830
43831
43832
43833
43834
43835
43836
43837
43838
43839
43840
43841
43842
43843
43844
43845
43846
43847
43848
43849
43850
43851
43852
43853
43854
43855
43856
43857
43858
43859
43860
43861
43862
43863
43864
43865
43866
43867
43868
43869
43870
43871
43872
43873
43874
43875
43876
43877
43878
43879
43880
43881
43882
43883
43884
43885
43886
43887
43888
43889
43890
43891
43892
43893
43894
43895
43896
43897
43898
43899
43900
43901
43902
43903
43904
43905
43906
43907
43908
43909
43910
43911
43912
43913
43914
43915
43916
43917
43918
43919
43920
43921
43922
43923
43924
43925
43926
43927
43928
43929
43930
43931
43932
43933
43934
43935
43936
43937
43938
43939
43940
43941
43942
43943
43944
43945
43946
43947
43948
43949
43950
43951
43952
43953
43954
43955
43956
43957
43958
43959
43960
43961
43962
43963
43964
43965
43966
43967
43968
43969
43970
43971
43972
43973
43974
43975
43976
43977
43978
43979
43980
43981
43982
43983
43984
43985
43986
43987
43988
43989
43990
43991
43992
43993
43994
43995
43996
43997
43998
43999
44000
44001
44002
44003
44004
44005
44006
44007
44008
44009
44010
44011
44012
44013
44014
44015
44016
44017
44018
44019
44020
44021
44022
44023
44024
44025
44026
44027
44028
44029
44030
44031
44032
44033
44034
44035
44036
44037
44038
44039
44040
44041
44042
44043
44044
44045
44046
44047
44048
44049
44050
44051
44052
44053
44054
44055
44056
44057
44058
44059
44060
44061
44062
44063
44064
44065
44066
44067
44068
44069
44070
44071
44072
44073
44074
44075
44076
44077
44078
44079
44080
44081
44082
44083
44084
44085
44086
44087
44088
44089
44090
44091
44092
44093
44094
44095
44096
44097
44098
44099
44100
44101
44102
44103
44104
44105
44106
44107
44108
44109
44110
44111
44112
44113
44114
44115
44116
44117
44118
44119
44120
44121
44122
44123
44124
44125
44126
44127
44128
44129
44130
44131
44132
44133
44134
44135
44136
44137
44138
44139
44140
44141
44142
44143
44144
44145
44146
44147
44148
44149
44150
44151
44152
44153
44154
44155
44156
44157
44158
44159
44160
44161
44162
44163
44164
44165
44166
44167
44168
44169
44170
44171
44172
44173
44174
44175
44176
44177
44178
44179
44180
44181
44182
44183
44184
44185
44186
44187
44188
44189
44190
44191
44192
44193
44194
44195
44196
44197
44198
44199
44200
44201
44202
44203
44204
44205
44206
44207
44208
44209
44210
44211
44212
44213
44214
44215
44216
44217
44218
44219
44220
44221
44222
44223
44224
44225
44226
44227
44228
44229
44230
44231
44232
44233
44234
44235
44236
44237
44238
44239
44240
44241
44242
44243
44244
44245
44246
44247
44248
44249
44250
44251
44252
44253
44254
44255
44256
44257
44258
44259
44260
44261
44262
44263
44264
44265
44266
44267
44268
44269
44270
44271
44272
44273
44274
44275
44276
44277
44278
44279
44280
44281
44282
44283
44284
44285
44286
44287
44288
44289
44290
44291
44292
44293
44294
44295
44296
44297
44298
44299
44300
44301
44302
44303
44304
44305
44306
44307
44308
44309
44310
44311
44312
44313
44314
44315
44316
44317
44318
44319
44320
44321
44322
44323
44324
44325
44326
44327
44328
44329
44330
44331
44332
44333
44334
44335
44336
44337
44338
44339
44340
44341
44342
44343
44344
44345
44346
44347
44348
44349
44350
44351
44352
44353
44354
44355
44356
44357
44358
44359
44360
44361
44362
44363
44364
44365
44366
44367
44368
44369
44370
44371
44372
44373
44374
44375
44376
44377
44378
44379
44380
44381
44382
44383
44384
44385
44386
44387
44388
44389
44390
44391
44392
44393
44394
44395
44396
44397
44398
44399
44400
44401
44402
44403
44404
44405
44406
44407
44408
44409
44410
44411
44412
44413
44414
44415
44416
44417
44418
44419
44420
44421
44422
44423
44424
44425
44426
44427
44428
44429
44430
44431
44432
44433
44434
44435
44436
44437
44438
44439
44440
44441
44442
44443
44444
44445
44446
44447
44448
44449
44450
44451
44452
44453
44454
44455
44456
44457
44458
44459
44460
44461
44462
44463
44464
44465
44466
44467
44468
44469
44470
44471
44472
44473
44474
44475
44476
44477
44478
44479
44480
44481
44482
44483
44484
44485
44486
44487
44488
44489
44490
44491
44492
44493
44494
44495
44496
44497
44498
44499
44500
44501
44502
44503
44504
44505
44506
44507
44508
44509
44510
44511
44512
44513
44514
44515
44516
44517
44518
44519
44520
44521
44522
44523
44524
44525
44526
44527
44528
44529
44530
44531
44532
44533
44534
44535
44536
44537
44538
44539
44540
44541
44542
44543
44544
44545
44546
44547
44548
44549
44550
44551
44552
44553
44554
44555
44556
44557
44558
44559
44560
44561
44562
44563
44564
44565
44566
44567
44568
44569
44570
44571
44572
44573
44574
44575
44576
44577
44578
44579
44580
44581
44582
44583
44584
44585
44586
44587
44588
44589
44590
44591
44592
44593
44594
44595
44596
44597
44598
44599
44600
44601
44602
44603
44604
44605
44606
44607
44608
44609
44610
44611
44612
44613
44614
44615
44616
44617
44618
44619
44620
44621
44622
44623
44624
44625
44626
44627
44628
44629
44630
44631
44632
44633
44634
44635
44636
44637
44638
44639
44640
44641
44642
44643
44644
44645
44646
44647
44648
44649
44650
44651
44652
44653
44654
44655
44656
44657
44658
44659
44660
44661
44662
44663
44664
44665
44666
44667
44668
44669
44670
44671
44672
44673
44674
44675
44676
44677
44678
44679
44680
44681
44682
44683
44684
44685
44686
44687
44688
44689
44690
44691
44692
44693
44694
44695
44696
44697
44698
44699
44700
44701
44702
44703
44704
44705
44706
44707
44708
44709
44710
44711
44712
44713
44714
44715
44716
44717
44718
44719
44720
44721
44722
44723
44724
44725
44726
44727
44728
44729
44730
44731
44732
44733
44734
44735
44736
44737
44738
44739
44740
44741
44742
44743
44744
44745
44746
44747
44748
44749
44750
44751
44752
44753
44754
44755
44756
44757
44758
44759
44760
44761
44762
44763
44764
44765
44766
44767
44768
44769
44770
44771
44772
44773
44774
44775
44776
44777
44778
44779
44780
44781
44782
44783
44784
44785
44786
44787
44788
44789
44790
44791
44792
44793
44794
44795
44796
44797
44798
44799
44800
44801
44802
44803
44804
44805
44806
44807
44808
44809
44810
44811
44812
44813
44814
44815
44816
44817
44818
44819
44820
44821
44822
44823
44824
44825
44826
44827
44828
44829
44830
44831
44832
44833
44834
44835
44836
44837
44838
44839
44840
44841
44842
44843
44844
44845
44846
44847
44848
44849
44850
44851
44852
44853
44854
44855
44856
44857
44858
44859
44860
44861
44862
44863
44864
44865
44866
44867
44868
44869
44870
44871
44872
44873
44874
44875
44876
44877
44878
44879
44880
44881
44882
44883
44884
44885
44886
44887
44888
44889
44890
44891
44892
44893
44894
44895
44896
44897
44898
44899
44900
44901
44902
44903
44904
44905
44906
44907
44908
44909
44910
44911
44912
44913
44914
44915
44916
44917
44918
44919
44920
44921
44922
44923
44924
44925
44926
44927
44928
44929
44930
44931
44932
44933
44934
44935
44936
44937
44938
44939
44940
44941
44942
44943
44944
44945
44946
44947
44948
44949
44950
44951
44952
44953
44954
44955
44956
44957
44958
44959
44960
44961
44962
44963
44964
44965
44966
44967
44968
44969
44970
44971
44972
44973
44974
44975
44976
44977
44978
44979
44980
44981
44982
44983
44984
44985
44986
44987
44988
44989
44990
44991
44992
44993
44994
44995
44996
44997
44998
44999
45000
45001
45002
45003
45004
45005
45006
45007
45008
45009
45010
45011
45012
45013
45014
45015
45016
45017
45018
45019
45020
45021
45022
45023
45024
45025
45026
45027
45028
45029
45030
45031
45032
45033
45034
45035
45036
45037
45038
45039
45040
45041
45042
45043
45044
45045
45046
45047
45048
45049
45050
45051
45052
45053
45054
45055
45056
45057
45058
45059
45060
45061
45062
45063
45064
45065
45066
45067
45068
45069
45070
45071
45072
45073
45074
45075
45076
45077
45078
45079
45080
45081
45082
45083
45084
45085
45086
45087
45088
45089
45090
45091
45092
45093
45094
45095
45096
45097
45098
45099
45100
45101
45102
45103
45104
45105
45106
45107
45108
45109
45110
45111
45112
45113
45114
45115
45116
45117
45118
45119
45120
45121
45122
45123
45124
45125
45126
45127
45128
45129
45130
45131
45132
45133
45134
45135
45136
45137
45138
45139
45140
45141
45142
45143
45144
45145
45146
45147
45148
45149
45150
45151
45152
45153
45154
45155
45156
45157
45158
45159
45160
45161
45162
45163
45164
45165
45166
45167
45168
45169
45170
45171
45172
45173
45174
45175
45176
45177
45178
45179
45180
45181
45182
45183
45184
45185
45186
45187
45188
45189
45190
45191
45192
45193
45194
45195
45196
45197
45198
45199
45200
45201
45202
45203
45204
45205
45206
45207
45208
45209
45210
45211
45212
45213
45214
45215
45216
45217
45218
45219
45220
45221
45222
45223
45224
45225
45226
45227
45228
45229
45230
45231
45232
45233
45234
45235
45236
45237
45238
45239
45240
45241
45242
45243
45244
45245
45246
45247
45248
45249
45250
45251
45252
45253
45254
45255
45256
45257
45258
45259
45260
45261
45262
45263
45264
45265
45266
45267
45268
45269
45270
45271
45272
45273
45274
45275
45276
45277
45278
45279
45280
45281
45282
45283
45284
45285
45286
45287
45288
45289
45290
45291
45292
45293
45294
45295
45296
45297
45298
45299
45300
45301
45302
45303
45304
45305
45306
45307
45308
45309
45310
45311
45312
45313
45314
45315
45316
45317
45318
45319
45320
45321
45322
45323
45324
45325
45326
45327
45328
45329
45330
45331
45332
45333
45334
45335
45336
45337
45338
45339
45340
45341
45342
45343
45344
45345
45346
45347
45348
45349
45350
45351
45352
45353
45354
45355
45356
45357
45358
45359
45360
45361
45362
45363
45364
45365
45366
45367
45368
45369
45370
45371
45372
45373
45374
45375
45376
45377
45378
45379
45380
45381
45382
45383
45384
45385
45386
45387
45388
45389
45390
45391
45392
45393
45394
45395
45396
45397
45398
45399
45400
45401
45402
45403
45404
45405
45406
45407
45408
45409
45410
45411
45412
45413
45414
45415
45416
45417
45418
45419
45420
45421
45422
45423
45424
45425
45426
45427
45428
45429
45430
45431
45432
45433
45434
45435
45436
45437
45438
45439
45440
45441
45442
45443
45444
45445
45446
45447
45448
45449
45450
45451
45452
45453
45454
45455
45456
45457
45458
45459
45460
45461
45462
45463
45464
45465
45466
45467
45468
45469
45470
45471
45472
45473
45474
45475
45476
45477
45478
45479
45480
45481
45482
45483
45484
45485
45486
45487
45488
45489
45490
45491
45492
45493
45494
45495
45496
45497
45498
45499
45500
45501
45502
45503
45504
45505
45506
45507
45508
45509
45510
45511
45512
45513
45514
45515
45516
45517
45518
45519
45520
45521
45522
45523
45524
45525
45526
45527
45528
45529
45530
45531
45532
45533
45534
45535
45536
45537
45538
45539
45540
45541
45542
45543
45544
45545
45546
45547
45548
45549
45550
45551
45552
45553
45554
45555
45556
45557
45558
45559
45560
45561
45562
45563
45564
45565
45566
45567
45568
45569
45570
45571
45572
45573
45574
45575
45576
45577
45578
45579
45580
45581
45582
45583
45584
45585
45586
45587
45588
45589
45590
45591
45592
45593
45594
45595
45596
45597
45598
45599
45600
45601
45602
45603
45604
45605
45606
45607
45608
45609
45610
45611
45612
45613
45614
45615
45616
45617
45618
45619
45620
45621
45622
45623
45624
45625
45626
45627
45628
45629
45630
45631
45632
45633
45634
45635
45636
45637
45638
45639
45640
45641
45642
45643
45644
45645
45646
45647
45648
45649
45650
45651
45652
45653
45654
45655
45656
45657
45658
45659
45660
45661
45662
45663
45664
45665
45666
45667
45668
45669
45670
45671
45672
45673
45674
45675
45676
45677
45678
45679
45680
45681
45682
45683
45684
45685
45686
45687
45688
45689
45690
45691
45692
45693
45694
45695
45696
45697
45698
45699
45700
45701
45702
45703
45704
45705
45706
45707
45708
45709
45710
45711
45712
45713
45714
45715
45716
45717
45718
45719
45720
45721
45722
45723
45724
45725
45726
45727
45728
45729
45730
45731
45732
45733
45734
45735
45736
45737
45738
45739
45740
45741
45742
45743
45744
45745
45746
45747
45748
45749
45750
45751
45752
45753
45754
45755
45756
45757
45758
45759
45760
45761
45762
45763
45764
45765
45766
45767
45768
45769
45770
45771
45772
45773
45774
45775
45776
45777
45778
45779
45780
45781
45782
45783
45784
45785
45786
45787
45788
45789
45790
45791
45792
45793
45794
45795
45796
45797
45798
45799
45800
45801
45802
45803
45804
45805
45806
45807
45808
45809
45810
45811
45812
45813
45814
45815
45816
45817
45818
45819
45820
45821
45822
45823
45824
45825
45826
45827
45828
45829
45830
45831
45832
45833
45834
45835
45836
45837
45838
45839
45840
45841
45842
45843
45844
45845
45846
45847
45848
45849
45850
45851
45852
45853
45854
45855
45856
45857
45858
45859
45860
45861
45862
45863
45864
45865
45866
45867
45868
45869
45870
45871
45872
45873
45874
45875
45876
45877
45878
45879
45880
45881
45882
45883
45884
45885
45886
45887
45888
45889
45890
45891
45892
45893
45894
45895
45896
45897
45898
45899
45900
45901
45902
45903
45904
45905
45906
45907
45908
45909
45910
45911
45912
45913
45914
45915
45916
45917
45918
45919
45920
45921
45922
45923
45924
45925
45926
45927
45928
45929
45930
45931
45932
45933
45934
45935
45936
45937
45938
45939
45940
45941
45942
45943
45944
45945
45946
45947
45948
45949
45950
45951
45952
45953
45954
45955
45956
45957
45958
45959
45960
45961
45962
45963
45964
45965
45966
45967
45968
45969
45970
45971
45972
45973
45974
45975
45976
45977
45978
45979
45980
45981
45982
45983
45984
45985
45986
45987
45988
45989
45990
45991
45992
45993
45994
45995
45996
45997
45998
45999
46000
46001
46002
46003
46004
46005
46006
46007
46008
46009
46010
46011
46012
46013
46014
46015
46016
46017
46018
46019
46020
46021
46022
46023
46024
46025
46026
46027
46028
46029
46030
46031
46032
46033
46034
46035
46036
46037
46038
46039
46040
46041
46042
46043
46044
46045
46046
46047
46048
46049
46050
46051
46052
46053
46054
46055
46056
46057
46058
46059
46060
46061
46062
46063
46064
46065
46066
46067
46068
46069
46070
46071
46072
46073
46074
46075
46076
46077
46078
46079
46080
46081
46082
46083
46084
46085
46086
46087
46088
46089
46090
46091
46092
46093
46094
46095
46096
46097
46098
46099
46100
46101
46102
46103
46104
46105
46106
46107
46108
46109
46110
46111
46112
46113
46114
46115
46116
46117
46118
46119
46120
46121
46122
46123
46124
46125
46126
46127
46128
46129
46130
46131
46132
46133
46134
46135
46136
46137
46138
46139
46140
46141
46142
46143
46144
46145
46146
46147
46148
46149
46150
46151
46152
46153
46154
46155
46156
46157
46158
46159
46160
46161
46162
46163
46164
46165
46166
46167
46168
46169
46170
46171
46172
46173
46174
46175
46176
46177
46178
46179
46180
46181
46182
46183
46184
46185
46186
46187
46188
46189
46190
46191
46192
46193
46194
46195
46196
46197
46198
46199
46200
46201
46202
46203
46204
46205
46206
46207
46208
46209
46210
46211
46212
46213
46214
46215
46216
46217
46218
46219
46220
46221
46222
46223
46224
46225
46226
46227
46228
46229
46230
46231
46232
46233
46234
46235
46236
46237
46238
46239
46240
46241
46242
46243
46244
46245
46246
46247
46248
46249
46250
46251
46252
46253
46254
46255
46256
46257
46258
46259
46260
46261
46262
46263
46264
46265
46266
46267
46268
46269
46270
46271
46272
46273
46274
46275
46276
46277
46278
46279
46280
46281
46282
46283
46284
46285
46286
46287
46288
46289
46290
46291
46292
46293
46294
46295
46296
46297
46298
46299
46300
46301
46302
46303
46304
46305
46306
46307
46308
46309
46310
46311
46312
46313
46314
46315
46316
46317
46318
46319
46320
46321
46322
46323
46324
46325
46326
46327
46328
46329
46330
46331
FN ISI Export Format
VR 1.0
PT J
AU Arantes, GM
   Chaimovich, H
TI Thiolysis and alcoholysis of phosphate tri- and monoesters with alkyl
   and aryl leaving groups. An ab initio study in the gas phase
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID QUANTUM-MECHANICAL CALCULATIONS; MOLECULAR-ORBITAL METHODS;
   GAUSSIAN-BASIS SETS; TRIMETHYL PHOSPHATE; PHOTOELECTRON-SPECTROSCOPY;
   AQUEOUS-SOLUTION; INFRARED-SPECTROSCOPY; PROTEIN PHOSPHATASES;
   CHEMICAL-REACTIONS; ESTER HYDROLYSIS
AB Phosphate esters are important compounds in living systems. Their
   biological reactions with alcohol and thiol nucleophiles are catalyzed
   by a large superfamily,if phosphatase enzymes. However, very little is
   known about the intrinsic reactivity of these nucleophiles with
   phosphorus centers. We have performed ab initio calculations on the
   thiolysis and alcoholysis at phosphorus of trimethyl phosphate,
   dimethyl phenyl phosphate, methyl phosphate, and phenyl phosphate.
   Results in the gas phase are a reference for the study of the intrinsic
   reactivity of these compounds. Thiolysis of triesters was much slower
   and less favorable than the corresponding alcoholysis. Triesters
   reacted through an associative mechanism. Monoesters can react by both
   associative and dissociative mechanisms. The basicity of the attacking
   and leaving groups and the possibility of proton transfers can modulate
   the reaction mechanisms. Intermediates formed along associative
   reactions did not follow empirically proposed rules for ligand
   positioning. Our calculations also allow re-interpretation of some
   experimental results, and new experiments are proposed to trace
   reactions that are normally not observed, both in the gas phase and in
   solution.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Arantes, GM, Univ Sao Paulo, Inst Quim, Av Lineu Prestes 748,
   BR-05508900 Sao Paulo, Brazil.
EM gma@dinamicas.art.br
CR AHLRICHS R, 1989, CHEM PHYS LETT, V162, P165
   AQVIST J, 1999, CHEM BIOL, V6, P71
   ARANTES GM, 2004, THESIS U SAO PAULO
   ASUBIOJO OI, 1977, J AM CHEM SOC, V99, P7707
   AYALA PY, 1998, J CHEM PHYS, V108, P2314
   BALLARD RE, 1987, CHEM PHYS LETT, V137, P125
   BARFORD D, 1998, ANNU REV BIOPH BIOM, V27, P133
   BIANCIOTTO M, 2002, J AM CHEM SOC, V124, P7573
   BOLDYREV AI, 1996, ACCOUNTS CHEM RES, V29, P497
   BUNTON CA, 1967, J AM CHEM SOC, V89, P1221
   BUNTON CA, 1970, ACCOUNTS CHEM RES, V3, P257
   CHANG NY, 1997, J PHYS CHEM A, V101, P8706
   CHANG NY, 1998, J AM CHEM SOC, V120, P2156
   CLELAND WW, 1995, FASEB J, V9, P1585
   COLEMAN JE, 1992, ANNU REV BIOPH BIOM, V21, P441
   COX JR, 1964, CHEM REV, V64, P317
   CURTISS LA, 1996, J CHEM PHYS, V104, P5148
   DANTZMAN CL, 1996, J AM CHEM SOC, V118, P11715
   DEJAEGERE A, 1994, J CHEM SOC FARADAY T, V90, P1763
   DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
   DUBOURG A, 1982, J CHEM RES S, V7, P180
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   FLORIAN J, 1998, J AM CHEM SOC, V120, P11524
   FLORIAN J, 1998, J PHYS CHEM B, V102, P719
   FRIEDMAN JM, 1988, J AM CHEM SOC, V110, P1268
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
   GEORGE L, 1994, APPL SPECTROSC, V48, P7
   GOLDSTEIN BJ, 1998, TYROSINE PHOSPOPROTE
   GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
   GRYZYSKA P, 2002, J ORG CHEM, V67, P1214
   GUNION RF, 1992, INT J MASS SPECTROM, V117, P601
   GUTHRIE RD, 1989, ACCOUNTS CHEM RES, V22, P343
   HARMONY MD, 1979, J PHYS CHEM REF DATA, V8, P619
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HELGAKER T, 2000, MOL ELECT STRUCTURE
   HIRSCHFELDER JO, 1967, ADV CHEM PHYS, V12, P3
   HODGES RV, 1980, J AM CHEM SOC, V102, P935
   HOFF RH, 1998, J ORG CHEM, V63, P6680
   HU CH, 1999, J PHYS CHEM A, V103, P5379
   JACKSON MD, 2001, CHEM REV, V101, P2313
   KHAN SA, 1970, J CHEM SOC B, P1172
   KIRBY A, 1968, J AM CHEM SOC, V89, P415
   KRISHNAN R, 1980, J CHEM PHYS, V72, P650
   LENDVAY G, 1998, CHEM PHYS LETT, V297, P365
   LESS RM, 1968, J CHEM PHYS, V48, P5299
   LIAS SG, 1988, J PHYS CHEM REF D S1, V17, P1
   LUM RC, 1992, J AM CHEM SOC, V114, P8619
   MCCOMB RB, 1979, ALKALINE PHOSPHATES
   MCQUARRIE DA, 1976, STAT MECH
   MENEGON G, 2002, J PHYS CHEM A, V106, P9078
   MERCERO JM, 2000, J COMPUT CHEM, V21, P43
   MILLER B, 1962, J AM CHEM SOC, V84, P403
   MOLLER C, 1934, PHYS REV, V46, P618
   NELSON RD, 1967, NATL STD REF DATA SE, V10, P1
   OCHTERSKI JW, 1999, WHITE PAPER VIBRATIO
   OSBORN DL, 1998, CHEM PHYS LETT, V292, P651
   PARR RG, 1996, DENSITY FUNCTIONAL T
   PULAY P, 1988, J CHEM PHYS, V88, P4926
   ROBIN MB, 1972, J ELECTRON SPECTROSC, V1, P13
   SANTORO E, 1973, ORG MASS SPECTROM, V7, P589
   SCHAFER A, 1992, J CHEM PHYS, V97, P2571
   SCHLEGEL HB, 1987, ADV CHEM PHYS, V67, P249
   SCHWARTZ RL, 2000, J ELECTRON SPECTROSC, V108, P163
   SZABO A, 1989, MODERN QUANTUM CHEM
   TAYLOR PR, 1992, LECT NOTES QUANTUM C, V1
   THATCHER GRJ, 1989, ADV PHYS ORG CHEM, V25, P99
   VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
   VIDYA V, 1996, CHEM PHYS LETT, V258, P113
   WESTHEIMER FH, 1968, ACCOUNTS CHEM RES, V1, P70
   WESTHEIMER FH, 1987, SCIENCE, V235, P1173
   WILSON EB, 1980, MOL VIBRATIONS THEOR
NR 72
TC 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUN 30
PY 2005
VL 109
IS 25
BP 5625
EP 5635
PG 11
SC Chemistry, Physical
GA 940CZ
UT ISI:000230122600013
ER

PT J
AU Rego, LGC
   Abuabara, SG
   Batista, VS
TI Model study of coherent quantum dynamics of hole states in
   functionalized semiconductor nanostructures
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID HETEROGENEOUS ELECTRON-TRANSFER; CHARGE-TRANSFER; FEMTOSECOND
   SPECTROSCOPY; MOLECULAR-DYNAMICS; SOLAR-CELLS; TIO2; SYSTEMS;
   DECOHERENCE; ENVIRONMENT; NANOPARTICLES
AB Functionalization of semiconductor nanocrystals can be achieved by
   anchoring organic ligands to the surface dangling bonds. The resulting
   surface complexes often introduce electronic states in the
   semiconductor band gap. These interband states sensitize the host
   material for photoabsorption at frequencies characteristic of the
   molecular adsorbates, leading to the well-known process of
   photoexcitation and subsequent femtosecond interfacial electron
   transfer. This paper investigates the relaxation dynamics of hole
   states, energetically localized deep in the semiconductor band gap,
   after the ultrafast electron-hole pair separation due to interfacial
   electron transfer. Mixed quantum-classical methods, based on mean-field
   nuclear dynamics approximated by ab initio density functional theory
   molecular dynamics simulations, reveal superexchange hole tunneling
   between adjacent adsorbate molecules in a model study of functionalized
   TiO2-anatase nanostructures. It is shown that electronic coherences can
   persist for hundreds of picoseconds under cryogenic and vacuum
   conditions, despite the partial intrinsic decoherence induced by
   thermal ionic motion, providing results of broad theoretical and
   experimental interest. (c) 2005 American Institute of Physics.
C1 Univ Fed Santa Catarina, Dept Phys, BR-88040900 Florianopolis, SC, Brazil.
   Yale Univ, Dept Chem, New Haven, CT 06520 USA.
RP Rego, LGC, Univ Fed Santa Catarina, Dept Phys, BR-88040900
   Florianopolis, SC, Brazil.
CR ASBURY JB, 2001, J PHYS CHEM B, V105, P4545
   AXT VM, 2004, REP PROG PHYS, V67, P433
   BATISTA VS, 2002, PHYS REV LETT, V89
   BAUER C, 2002, J PHYS CHEM B, V106, P12693
   BENT SF, 2002, SURF SCI, V500, P879
   BITTNER ER, 1995, J CHEM PHYS, V103, P8130
   CERDA J, 2000, PHYS REV B, V61, P7965
   FLORES SC, 2004, J PHYS CHEM B, V108, P6745
   GERHARDS M, 1996, J CHEM PHYS, V104, P972
   GLYNN S, 1972, INTRO APPL QUANTUM C
   GONZALEZ RJ, 1997, PHYS REV B, V55, P7014
   HAGFELDT A, 1995, CHEM REV, V95, P49
   HAGFELDT A, 2000, ACCOUNTS CHEM RES, V33, P269
   HOFFMANN R, 1988, REV MOD PHYS, V60, P601
   HOHENESTER U, 2000, APPL PHYS LETT, V77, P1864
   JACOBSON K, 1976, IMAGING SYSTEMS
   JOOS E, 1985, Z PHYS B CON MAT, V59, P223
   JOOS E, 1996, DECOHERENCE APPEARAN
   KAMAT P, 1997, SEMICONDUCTOR NANOCL
   KORMAN DBC, 1998, J PHYS CHEM-US, V92, P5196
   KRESSE G, 1996, PHYS REV B, V54, P11169
   LAASONEN K, 1993, PHYS REV B, V47, P10142
   LIU Y, 1999, J PHYS CHEM B, V103, P2480
   MILLER R, 1995, SURFACE ELECT TRANSF
   MONCH W, 1993, SEMICONDUCTOR SURFAC
   NOZIK AJ, 1996, J PHYS CHEM-US, V100, P13061
   PECHUKAS P, 1969, PHYS REV, V181, P166
   PERDEW J, 1991, ELECT STRUCTURE SOLI
   PESIKA NS, 2002, J PHYS CHEM B, V106, P6985
   PREZHDO OV, 1998, PHYS REV LETT, V81, P5294
   RAMAKRISHNA G, 2004, J PHYS CHEM B, V108, P1701
   RAMAKRISHNA S, 2003, J PHYS CHEM B, V107, P607
   REGO LGC, UNPUB J AM CHEM SOC
   REGO LGC, UNPUB QUANTUM INFORM
   REGO LGC, 2003, J AM CHEM SOC, V125, P7989
   RICE CR, 2000, NEW J CHEM, V24, P651
   SCHNADT J, 2002, NATURE, V418, P620
   SCHNADT J, 2003, J CHEM PHYS, V119, P12462
   SCHOONMAN J, 2000, SOLID STATE IONICS, V135, P5
   SHIOKAWA K, 2002, J CHEM PHYS, V117, P7852
   SMITH BB, 1996, J CHEM PHYS, V205, P47
   SMITH BB, 1999, J PHYS CHEM B, V103, P9915
   STIER W, 2002, J PHYS CHEM B, V106, P8047
   STIER W, 2003, J MOL STRUC-THEOCHEM, V630, P33
   THOSS M, 2004, CHEM PHYS, V304, P169
   VITTADINI A, 2000, J PHYS CHEM B, V104, P1300
   VYDIANATHAN K, 2001, J MATER RES, V16, P1838
   WANG ZL, 2004, J PHYS-CONDENS MAT, V16, R829
   WHEELER DE, 1999, J PHYS CHEM A, V103, P4101
   ZANARDI P, 1997, MOD PHYS LETT B, V11, P1085
   ZUREK WH, 1981, PHYS REV D, V24, P1516
   ZUREK WH, 1982, PHYS REV D, V26, P1862
   ZUREK WH, 1993, PHYS REV LETT, V70, P1187
NR 53
TC 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD APR 15
PY 2005
VL 122
IS 15
AR 154709
DI ARTN 154709
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 927HQ
UT ISI:000229185400044
ER

PT J
AU Zhang, PH
   Capaz, RB
   Cohen, ML
   Louie, SG
TI Theory of sodium ordering in NaxCoO2
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRON-GAS; SYSTEMS; COO2
AB The ordering of Na ions in NaxCoO2 is investigated systematically by
   combining detailed density functional theory (DFT) studies with model
   calculations. Various ground state ordering patterns are identified,
   and they are in excellent agreement with available experimental
   results. Our results suggest that the primary driving force for the Na
   ordering is the screened Coulomb interaction among Na ions. Possible
   effects of the Na ordering on the electronic structure of the CoO2
   layer are discussed. We propose that the nonexistence of a charge
   ordered insulating state at x=2/3 is due to the lack of a commensurate
   Na ordering pattern, whereas an extremely stable Na ordering at x=0.5
   enhances the charge ordering tendency, resulting in an insulating state
   as observed experimentally.
C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
   Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA.
   Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil.
RP Zhang, PH, Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
CR BALSYS RJ, 1996, SOLID STATE IONICS, V93, P279
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   DEFONTAINE D, 1994, SOLID STATE PHYS, V47, P33
   DELMAS C, 1981, SOL STATE IONICS, V3, P165
   FOO ML, 2004, PHYS REV LETT, V92
   HOHENBERG P, 1964, PHYS REV, V136, B864
   HUANG Q, 2004, PHYS REV B, V70
   HUANG Q, 2004, PHYS REV B, V70
   KOHN W, 1965, PHYS REV, V140, A1133
   LEE KW, 2004, PHYS REV B, V70
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   MOTRUNICH OI, 2004, PHYS REV B, V69
   MUKHAMEDSHIN IR, 2004, PHYS REV LETT, V93
   ONO Y, 2002, J SOLID STATE CHEM, V166, P177
   ORDEJON P, 1996, PHYS REV B, V53
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   SHI YG, CONDMAT0306070
   SOLER JM, 2002, J PHYS-CONDENS MAT, V14, P2745
   SUGIYAMA J, 2004, PHYS REV B, V69
   TAKADA K, 2003, NATURE, V422, P53
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   VANDEWALLE A, 2002, J PHASE EQUILIB, V23, P248
   ZANDBERGEN HW, 2004, PHYS REV B, V70
   ZHANG PH, 2004, PHYS REV B, V70
NR 24
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD APR
PY 2005
VL 71
IS 15
AR 153102
DI ARTN 153102
PG 4
SC Physics, Condensed Matter
GA 921KJ
UT ISI:000228762900002
ER

PT J
AU Freire, RO
   Rocha, GB
   Simas, AM
TI Sparkle model for the calculation of lanthanide complexes: AM1
   parameters for Eu(III), Gd(III), and Tb(III)
SO INORGANIC CHEMISTRY
LA English
DT Article
ID CAMBRIDGE STRUCTURAL DATABASE; IMAGING CONTRAST AGENTS; SIMPLE OVERLAP
   MODEL; RARE-EARTH ELEMENTS; AB-INITIO; GADOLINIUM COMPLEXES;
   INTERMEDIATE NEGLECT; ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURES; LU
AB Our previously defined Sparkle model (Inorg. Chem. 2004, 43, 2346) has
   been reparameterized for Eu(III) as well as newly parameterized for
   Gd(III) and Tb(III). The parameterizations have been carried out in a
   much more extensive manner, aimed at producing a new, more accurate
   model called Sparkle/AM1, mainly for the vast majority of all Eu(III),
   Gd(I I), and Tb(III) complexes, which possess oxygen or nitrogen as
   coordinating atoms. All such complexes, which comprise 80% of all
   geometries present in the Cambridge Structural Database for each of the
   three ions, were classified into seven groups. These were regarded as a
   "basis" of chemical ambiance around a lanthanide, which could span the
   various types of ligand environments the lanthanide ion could be
   subjected to in any arbitrary complex where the lanthanide ion is
   coordinated to nitrogen or oxygen atoms. From these seven groups, 15
   complexes were selected, which were defined as the parameterization set
   and then were used with a numerical multidimensional nonlinear
   optimization to find the best parameter set for reproducing chemical
   properties. The new parametorizations yielded an unsigned mean error
   for all interatomic distances between the Eu(III) ion and the ligand
   atoms of the first sphere of coordination (for the 96 complexes
   considered in the present paper) of 0.09 angstrom, an improvement over
   the value of 0.28 angstrom for the previous model and the value of 0.68
   angstrom for the first model (Chem. Phys. Lett. 1994, 227, 349).
   Similar accuracies have been achieved for Gd(III) (0.07 angstrom, 70
   complexes) and Tb(III) (0.07 A, 42 complexes). Qualitative improvements
   have been obtained as well; nitrates now coordinate correctly as
   bidentate ligands. The results, therefore, indicate that Eu(Ill),
   Gd(III), and Tb(III) Sparkle/AM1 calculations possess geometry
   prediction accuracies for lanthanide complexes with oxygen or nitrogen
   atoms in the coordination polyhedron that are competitive with present
   day ab initio/effective core potential calculations, while being
   hundreds of times faster.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
RP Simas, AM, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540
   Recife, PE, Brazil.
EM simas@ufpe.br
CR ADAMO C, 1997, CHEM PHYS LETT, V268, P61
   ADDING LC, 2001, CARDIOVASC DRUG REV, V19, P41
   AIME S, 1998, CHEM SOC REV, V27, P19
   ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380
   ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P407
   ANIKIN NA, 2004, J CHEM PHYS, V121, P1266
   ATAR E, 2004, ISRAEL MED ASSOC J, V6, P412
   BINNEMANS K, 2002, CHEM REV, V102, P2303
   BRUNO IJ, 2002, ACTA CRYSTALLOGR B 3, V58, P389
   BUNZLI JCG, 2002, CHEM REV, V102, P1897
   CAO XY, 2002, J MOL STRUC-THEOCHEM, V581, P139
   CAO XY, 2003, MOL PHYS, V101, P2427
   CARAVAN P, 1999, CHEM REV, V99, P2293
   CORY MG, 1994, J CHEM PHYS, V100, P1353
   COSENTINO U, 1997, J MOL STRUC-THEOCHEM, V392, P75
   COSENTINO U, 1998, J PHYS CHEM A, V102, P4606
   COSENTINO U, 2002, J AM CHEM SOC, V24, P4901
   COSENTINO U, 2004, THEOR CHEM ACC, V111, P204
   CULBERSON JC, 1987, THEOR CHIM ACTA, V71, P21
   CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
   CUNDARI TR, 1995, J CHEM PHYS, V103, P7058
   DEANDRADE AVM, 1994, CHEM PHYS LETT, V227, P349
   DESA GF, 1998, OPT MATER, V11, P23
   DESA GF, 2000, COORDIN CHEM REV, V196, P165
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DOLG M, 1989, J CHEM PHYS, V90, P1730
   DOLG M, 1989, THEOR CHIM ACTA, V75, P173
   DOLG M, 1990, CHEM PHYS LETT, V174, P208
   DOLG M, 1992, J CHEM PHYS, V97, P1162
   DOLG M, 1995, CHEM PHYS, V195, P71
   DOLG M, 2000, NIC SERIES, V1, P479
   DORENBOS P, 2003, J SOLID STATE CHEM, V171, P133
   EISENSTEIN O, 2002, J ORGANOMET CHEM, V647, P190
   FAUSTINO WM, 2000, J MOL STRUC-THEOCHEM, V527, P245
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GAMEIRO CG, 1999, MATER SCI FORUM, V315, P249
   GAO JL, 1996, REV COMP CH, V7, P119
   HIROSAKI N, 2003, J ALLOY COMPD, V351, P31
   KAUPP M, 1992, J AM CHEM SOC, V114, P8202
   KIDO J, 2002, CHEM REV, V102, P2357
   KURITA N, 2003, CHEM PHYS LETT, V372, P583
   LANZA G, 1996, CHEM PHYS LETT, V255, P341
   LEHN JM, 1990, ANGEW CHEM INT EDIT, V29, P304
   LIDE DR, 2002, HDB CHEM PHYS
   LIU WJ, 1997, J CHEM PHYS, V107, P3584
   LIU WJ, 1998, INORG CHEM, V37, P1067
   MALTA OL, 1982, CHEM PHYS LETT, V87, P27
   MALTA OL, 1982, CHEM PHYS LETT, V88, P353
   MONDRY A, 2004, J ALLOY COMPD, V374, P27
   NAKAJIMA S, 2003, J PHYS CHEM B, V107, P2867
   OBRIEN TA, 2000, J ELECTROCHEM SOC, V147, P792
   OHNO K, 2001, CHEM PHYS LETT, V341, P387
   OHNO K, 2001, J AM CHEM SOC, V123, P8161
   PARKER D, 1998, J CHEM SOC PERK  OCT, P2129
   PERRIN L, 2003, ORGANOMETALLICS, V22, P5447
   PERRIN L, 2004, NEW J CHEM, V10, P1255
   REID MF, 1989, J LESS-COMMON MET, V148, P219
   ROCHA GB, 2004, INORG CHEM, V43, P2346
   RONDA CR, 1995, J ALLOY COMPD, V225, P534
   ROSS RB, 1994, J CHEM PHYS, V100, P8145
   SELVIN PR, 2002, ANNU REV BIOPH BIOM, V31, P275
   STEWART JJP, 1996, INT J QUANTUM CHEM, V58, P133
   THOMPSON LC, 1979, HDB PHYS CHEM RARE E
   THUNUS L, 1999, COORDIN CHEM REV, V184, P125
   TITMUSS SJ, 2000, CHEM PHYS LETT, V320, P169
   TSUCHIYA T, 1999, J MOL STRUC-THEOCHEM, V461, P203
   TSUCHIYA T, 2002, CHEM PHYS LETT, V361, P334
   TSUKUBE H, 2002, CHEM REV, V102, P2389
   VILLA A, 2000, J PHYS CHEM A, V104, P3421
NR 70
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD MAY 2
PY 2005
VL 44
IS 9
BP 3299
EP 3310
PG 12
SC Chemistry, Inorganic & Nuclear
GA 922CL
UT ISI:000228813400046
ER

PT J
AU Cabral, BJC
   Canuto, S
TI The enthalpy of the O-H bond hornolytic dissociation: Basis-set
   extrapolated density functional theory and coupled cluster calculations
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CORRELATION-ENERGY; GAS-PHASE; WAVE-FUNCTIONS; ENERGETICS; MOLECULES;
   EXCHANGE; PHENOL; CONVERGENCE; RESPECT
AB The O-H bond homolytic dissociation of water, hydrogen peroxide,
   methanol, phenol, and cathecol is investigated by density functional
   theory (DFT) and ab initio coupled cluster calculations. DFT results
   are based on several recently proposed functionals, including B98, PBE,
   VSXC, and HCTH. The dependence of DFT results on the basis-set size is
   discussed using correlation-consistent polarized (cc-pVXZ) basis-sets
   (X = 2-5). A scheme proposed by Truhlar is used to extrapolate CCSD
   energies. Basis-set extrapolated CCSD results for the O-H bond
   homolytic dissociation enthalpies of phenol and cathecol are in
   excellent agreement with experimental information. (c) 2005 Elsevier
   B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Lisbon, Dept Quim & Bioquim, P-1649003 Lisbon, Portugal.
   Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
EM canuto@if.usp.br
CR ANGEL LA, 2004, J PHYS CHEM A, V108, P8346
   BAKALBASSIS EG, 2003, J PHYS CHEM A, V107, P8594
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BLANKSBY SJ, 2003, ACCOUNTS CHEM RES, V36, P255
   BYRD EFC, 2001, J PHYS CHEM A, V105, P9736
   CIZEK J, 1969, ADV CHEM PHYS, V14, P35
   CORREIA CF, 2004, PHYS CHEM CHEM PHYS, V6, P2109
   DETURI VF, 1998, INT J MASS SPECTROM, V175, P123
   DILABIO GA, 1999, J PHYS CHEM A, V103, P1653
   DOSANTOS RMB, 1998, J PHYS CHEM REF DATA, V27, P707
   ESTACIO SG, 2004, J PHYS CHEM A, V108, P10834
   FELLER D, 2000, J CHEM PHYS, V113, P485
   FRISCH MJ, 2003, GAUSSIAN03 GUASSIAN
   GUEDES RC, 2000, J PHYS CHEM A, V104, P6062
   GUEDES RC, 2003, J PHYS CHEM B, V107, P4304
   HALKIER A, 1998, CHEM PHYS LETT, V286, P243
   HAMPRECHT FA, 1998, J CHEM PHYS, V109, P6264
   ITOH S, 2000, COORDIN CHEM REV, V198, P3
   KAGAN VE, 1998, ANN NY ACAD SCI, V854, P425
   KAHN K, 2004, THEOR CHEM ACC, V111, P18
   KENDALL RA, 1992, J CHEM PHYS, V96, P6796
   LEE C, 1988, PHYS REV B, V37, P785
   MARTIN JML, 1997, J CHEM PHYS, V106, P8620
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PERDEW JP, 1997, PHYS REV LETT, V78, P1396
   PETERSON KA, 1997, THEOR CHEM ACC, V97, P251
   RUSCIC, 2002, J PHYS CHEM A, V106, P2727
   SCHMIDER HL, 1998, J CHEM PHYS, V108, P9624
   TRUHLAR DG, 1998, CHEM PHYS LETT, V294, P45
   VANVOORHIS T, 1998, J CHEM PHYS, V109, P400
   VARANDAS AJC, 2000, J CHEM PHYS, V113, P8880
   WANG NX, 2004, J CHEM PHYS, V121, P7632
   WEAVER EC, 1968, ANNU REV PLANT PHYS, V19, P283
   WOON DE, 1993, J CHEM PHYS, V98, P1358
   YAO XQ, 2003, J PHYS CHEM A, V107, P9991
NR 35
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 2
PY 2005
VL 406
IS 4-6
BP 300
EP 305
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 920FY
UT ISI:000228676000004
ER

PT J
AU Ferretti, A
   Calzolari, A
   Di Felice, R
   Manghi, F
   Caldas, MJ
   Nardelli, MB
   Molinari, E
TI First-principles theory of correlated transport through nanojunctions
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID STATES; HOLE
AB We report the inclusion of electron-electron correlation in the
   calculation of transport properties within an ab initio scheme. A key
   step is the reformulation of Landauer's approach in terms of an
   effective transmittance for the interacting electron system. We apply
   this framework to analyze the effect of shortrange interactions on Pt
   atomic wires and discuss the coherent and incoherent correction to the
   mean-field approach.
C1 INFM, Natl Ctr NanoStruct & BioSyst Surfaces, I-41100 Modena, Italy.
   Univ Modena, Dipartimento Fis, I-41100 Modena, Italy.
   Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
   N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
   Oak Ridge Natl Lab, CCS, CSM, Oak Ridge, TN 37831 USA.
RP Ferretti, A, INFM, Natl Ctr NanoStruct & BioSyst Surfaces, I-41100
   Modena, Italy.
CR AGRAIT N, 2003, PHYS REP, V377, P81
   BRANDBYGE M, 2002, PHYS REV B, V65
   CALANDRA C, 1994, PHYS REV B, V50, P2061
   CALZOLARI A, 2004, PHYS REV B, V69
   CALZOLARI A, 2004, WANT CODE
   DATTA S, 1995, ELECT TRANSPORT MESO
   DELANEY P, 2004, PHYS REV LETT, V93
   DIVENTRA M, 2000, PHYS REV B, V61, P16207
   EVERS F, 2004, PHYS REV B, V69
   FERRETTI A, UNPUB
   HAUG H, 1996, QUANTUM KINETICS TRA
   JARILLOHERRERO P, 2004, NATURE, V429, P389
   KOSOV DS, 2003, J CHEM PHYS, V119, P1
   LIANG WJ, 2002, NATURE, V417, P725
   MAHAN GD, 1981, MANY PARTICLE PHYS
   MAITRA NT, 2003, PHYS REV B, V68
   MANGHI F, 1997, PHYS REV B, V56, P7149
   MARZARI N, 1997, PHYS REV B, V56, P12847
   MEIR Y, 1992, PHYS REV LETT, V68, P2512
   NARDELLI MB, 2001, PHYS REV B, V64
   NG TK, 1996, PHYS REV LETT, V76, P487
   ODOM TW, 2000, SCIENCE, V290, P1549
   PARK J, 2002, NATURE, V417, P722
   SERGUEEV N, 2002, PHYS REV B, V65
   SPRINGER M, 1998, PHYS REV B, V57, P4364
   TAYLOR J, 2001, PHYS REV B, V63
   XUE YQ, 2002, CHEM PHYS, V281, P151
NR 27
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 25
PY 2005
VL 94
IS 11
AR 116802
DI ARTN 116802
PG 4
SC Physics, Multidisciplinary
GA 910IA
UT ISI:000227923200049
ER

PT S
AU Fileti, EE
   Coutinho, K
   Canuto, S
TI Is there a favorite isomer for hydrogen-bonded methanol in water?
SO ADVANCES IN QUANTUM CHEMISTRY, VOL 47
SE ADVANCES IN QUANTUM CHEMISTRY
LA English
DT Review
ID CARLO-QUANTUM-MECHANICS; SEQUENTIAL MONTE-CARLO; AB-INITIO CALCULATION;
   THERMODYNAMIC PROPERTIES; AQUEOUS-SOLUTIONS; LIQUID WATER; MIXTURES;
   SIMULATIONS; TRANSITION; ENERGIES
AB Sequential Monte Carlo/quantum-mechanical calculations of the
   interaction energy of hydrogen-bonded methanol in liquid water give the
   same result for methanol acting either as the proton donor or the
   proton acceptor. For the complex-optintized cases, methanol acting as
   the proton acceptor, CH3HO center dot center dot center dot H2O, is
   more stable than the proton donor, CH3OH center dot center dot center
   dot OH2, by similar to 0.5 kcal/mol. In the case of methanol in liquid
   water, at room temperature, statistically converged results, using
   counterpoise corrected MP2/aug-cc-pVDZ calculations, lead to the same
   binding energy in both cases.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Mogi Das Cruzes, CIIB, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Fileti, EE, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
   BAKKAS N, 1993, J CHEM PHYS, V99, P3335
   BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
   BELL TW, 2002, J AM CHEM SOC, V124, P14092
   BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
   BOLIS G, 1983, J AM CHEM SOC, V105, P355
   BOYS SF, 1970, MOL PHYS, V19, P553
   CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
   COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
   COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
   COUTINHO K, 2000, DICE VERSION 2 8 GEN
   COUTINHO K, 2000, J CHEM PHYS, V112, P9874
   COUTINHO K, 2003, J MOL STRUC-THEOCHEM, V632, P235
   DELBENE JE, 1971, J CHEM PHYS, V55, P4633
   DIXIT S, 2002, NATURE, V416, P829
   FILETI EE, 2003, J PHYS B-AT MOL OPT, V36, P399
   FILETI EE, 2003, PHYS REV E, V67, P61504
   FINNEY JL, 2000, J PHYS-CONDENS MAT, V12, A123
   FRANKS F, 1966, Q REV CHEM SOC, V20, P1
   FRANKS F, 1985, WATER SCI REV, V1, P171
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GONZALEZ L, 1998, J CHEM PHYS, V109, P139
   GUO JH, 2003, PHYS REV LETT, V91
   HUISKEN F, 1991, CHEM PHYS LETT, V180, P332
   JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
   JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225
   KIM S, 1988, J PHYS CHEM-US, V92, P7216
   LAAKSONEN A, 1997, J PHYS CHEM A, V101, P5910
   MALASPINA T, 2002, J CHEM PHYS, V117, P1692
   MEZEI M, 1981, J CHEM PHYS, V74, P622
   PALINKAS G, 1991, CHEM PHYS, V158, P65
   ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
   SATO H, 1999, J CHEM PHYS, V111, P8545
   SOPER AK, 1993, PHYS REV LETT, V71, P4346
   STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
   STOCKMAN PA, 1997, J CHEM PHYS, V107, P3782
   TANAKA H, 1992, J CHEM PHYS, V97, P2626
   TSE YC, 1980, CHEM PHYS LETT, V75, P350
NR 38
TC 3
PU ELSEVIER ACADEMIC PRESS INC
PI SAN DIEGO
PA 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0065-3276
J9 ADVAN QUANTUM CHEM
PY 2004
VL 47
BP 51
EP 63
PG 13
GA BBV45
UT ISI:000228024400004
ER

PT J
AU MacLeod, JM
   Miwa, RH
   Srivastava, GP
   McLean, AB
TI The electronic origin of contrast reversal in bias-dependent STM images
   of nanolines
SO SURFACE SCIENCE
LA English
DT Article
DE silicon; bismuth; density functional calculations; scanning tunneling
   microscopy; growth; low index single crystal surfaces; self-assembly;
   surface electronic phenomena
ID SCANNING-TUNNELING-MICROSCOPY; SURFACE-STRUCTURE; SI(100) SURFACE;
   AB-INITIO; BISMUTH; SI(001); LINES; NANOWIRE
AB Self-organized Bi lines that are only 1.5 nm wide can be grown without
   kinks or breaks on Si(001) surfaces to lengths of up to 500 nm.
   Constant-current topographical images of the lines, obtained with the
   scanning tunneling microscope, have a striking bias dependence.
   Although the lines appear darker than the Si terraces at biases below
   approximate to\1.2\ V, the contrast reverses at biases above
   approximate to\1.5\ V. Between these two ranges the lines and terraces
   are of comparable brightness. It has been suggested that this bias
   dependence may be due to the presence of a semiconductor-like energy
   gap within the line. Using ab initio calculations it is demonstrated
   that the energy gap is too small to explain the experimentally observed
   bias dependence. Consequently, at this time, there is no compelling
   explanation for this phenomenon. An alternative explanation is proposed
   that arises naturally from calculations of the tunneling current, using
   the Tersoff-Hamann approximation, and an examination of the electronic
   structure of the line. (C) 2004 Elsevier B.V. All rights reserved.
C1 Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada.
   Univ Fed Uberlandia, Fac Fis, BR-38400902 Uberlandia, MG, Brazil.
   Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP McLean, AB, Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada.
EM mclean@physics.queensu.ca
CR APPELBAUM JA, 1976, PHYS REV B, V14, P588
   BOWLER DR, 2000, PHYS REV B, V62, P7237
   GAY SCA, 1998, J PHYS-CONDENS MAT, V10, P7751
   GONZE X, 1991, PHYS REV B, V44, P8503
   MACLEOD JM, 2003, REV SCI INSTRUM, V74, P2429
   MACLEOD JM, 2004, MATER SCI TECH-LOND, V20, P951
   MACLEOD JM, 2004, PHYS REV B, V70
   MAGAUD L, 2002, PHYS REV B, V65
   MIKI K, 1999, I PHYS C SER, V164, P167
   MIKI K, 1999, PHYS REV B, V59, P14868
   MIWA RH, 2002, PHYS REV B, V66
   MIWA RH, 2002, SURF SCI, V507, P368
   NAITOH M, 1997, SURF SCI, V377, P899
   NAITOH M, 1999, APPL SURF SCI, V142, P38
   NAITOH M, 2000, JPN J APPL PHYS 1, V39, P2793
   NAITOH M, 2001, SURF SCI 2, V482, P1440
   NORTHRUP JE, 1993, PHYS REV B, V47, P10032
   OWEN JHG, 2002, PHYS REV LETT, V88
   OWEN JHG, 2002, SURF SCI, V499, L124
   OWEN JHG, 2003, SURF SCI, V527, L177
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   SAITO A, 2003, JPN J APPL PHYS 1, V42, P2408
   SHIMOMURA M, 2000, SURF SCI, V447, L169
   TERSOFF J, 1985, PHYS REV B, V31, P805
NR 24
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD FEB 10
PY 2005
VL 576
IS 1-3
BP 116
EP 122
PG 7
SC Chemistry, Physical
GA 895OL
UT ISI:000226872600016
ER

PT J
AU Ramalho, TC
   Buhl, M
TI Probing NMR parameters, structure and dynamics of 5-nitroimidazole
   derivatives. Density functional study of prototypical radiosensitizers
SO MAGNETIC RESONANCE IN CHEMISTRY
LA English
DT Article
DE NMR; N-15 NMR; radiosensitizers; molecular dynamics simulations;
   solvent effects; spin-spin coupling constants
ID POLARIZABLE CONTINUUM MODEL; VERTICAL ELECTRON-AFFINITY;
   CHEMICAL-SHIFTS; AB-INITIO; CORRELATION-ENERGY; SHIELDING TENSORS;
   DRUG-RESISTANCE; SPECTROSCOPY; SYSTEMS; DESIGN
AB The N-15 chemical shifts of metronidazole (1), secnidazole (2),
   nimorazole (3) and tinidazole (4), radiosensitizers based on the
   5-nitroimidazole motif, are reported. A detailed computational study of
   1 is presented, calling special attention to the performance of various
   theoretical methods in reproducing the C-13 and N-15 data observed in
   solution. The most sophisticated approach involves density
   functional-based Car-Parrinello molecular dynamics simulations (CPMD)
   of 1 in aqueous solution (BP86 level) and averaging chemical shifts
   over snapshots from the trajectory. In the NMR calculations for these
   snapshots (performed at the B3LYP level), a small number of discrete
   water molecules are retained, and the remaining bulk solution effects
   are included via a polarizable continuum model (PCM). A similarly good
   accord with experiment is obtained from much less involved, static
   geometry optimization and NMR computation of pristine 1 employing a PCM
   approach. Solvent effects on delta(N-15), which are of the order of up
   to 20 ppm, are not due to changes in geometric parameters upon
   solvation, but arise from the direct response of the electronic
   wavefunction to the presence of the solvent, which can be represented
   by discrete molecules and/or the dielectric bulk. Copyright (C) 2004
   John Wiley Sons, Ltd.
C1 Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany.
   Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, RJ, Brazil.
RP Buhl, M, Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470
   Mulheim, Germany.
EM buel@mpi-muelheim.mpg.de
CR ALLEN MP, 1987, COMPUTER SIMULATION
   AMES JR, 1987, LIFE SCI, V41, P1895
   ANDERSON CJ, 1999, CHEM REV, V99, P2219
   BARFIELD M, 1969, CHEM REV, V69, P757
   BARFIELD M, 2003, MAGN RESON CHEM, V41, P344
   BARONE V, 1996, RECENT ADV DENSITY 1, P287
   BARONE V, 1998, J COMPUT CHEM, V19, P404
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BROWN JM, 1991, J NATL CANCER I, V83, P178
   BROWN JM, 1999, CANCER RES, V59, P1391
   BUHL M, 1991, ANGEW CHEM INT EDIT, V30, P1160
   BUHL M, 1999, J COMPUT CHEM, V20, P91
   BUHL M, 2001, CHEM-EUR J, V7, P4487
   BUHL M, 2002, ANGEW CHEM INT EDIT, V4, P2312
   BUHL M, 2002, PHYS CHEM CHEM PHYS, V4, P5508
   BUHL M, 2002, THEOR CHEM ACC, V107, P336
   BUHL M, 2004, J AM CHEM SOC, V126, P3310
   CALVATEJADA N, 2002, J INORG BIOCHEM, V91, P339
   CANCES TM, 1997, J CHEM PHYS, V107, P3032
   CAR R, 1985, PHYS REV LETT, V55, P4487
   CHAPMAN JD, 1996, BRIT J CANCER S27, V74, S204
   CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
   CHEN BC, 1983, HELV CHIM ACTA, V66, P1537
   COSSI M, 1998, CHEM PHYS LETT, V286, P253
   COSSI M, 2002, J CHEM PHYS, V117, P43
   COSSI M, 2003, J CHEM PHYS, V118, P8863
   COSSI M, 2003, J CHEM PHYS, V19, P8863
   COSSI M, 2004, THEOR CHEM ACC, V111, P162
   CREMER D, 1993, ISRAEL J CHEM, V33, P369
   DACUNHA EFF, 2004, J THEOR COMPUT CHEM, V3, P1
   DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
   DITCHFIELD R, 1974, MOL PHYS, V27, P789
   ERNST RR, 1987, PRINCIPLES NUCL MAGN
   FRISCH MJ, 2003, GAUSSIAN 03
   GRANT DM, 1996, ENCY NUCL MAGNETIC R, V1
   HATHERILL JR, 1998, EAT BEAT CANC RES SC
   HELGAKER T, 1999, CHEM REV, V99, P293
   HELGAKER T, 2004, CALCULATION NMR EPR, P101
   HORI H, 1997, BIOORGAN MED CHEM, V5, P591
   HORIS H, 1994, ADV ENV SCI TECHNOLO, V28, P62
   HUTTER J, 1995, CPMD VERSION 3 1A
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   KASAI S, 2001, BIOORGAN MED CHEM, V9, P453
   KAUPP M, 2004, CALCULATIONS NMR ESR
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   KUTZELNIGG W, 1990, NMR BASIC PRINCIPLES, V23, P165
   LEE C, 1988, PHYS REV B, V37, P785
   MALKIN VG, 1996, CHEM-EUR J, V2, P452
   MARTIN GE, 1988, 2 DIMENSIONAL NMR ME
   MCCOY CL, 1996, BRIT J CANCER S27, V74, S226
   MCKILLOP A, 1983, TETRAHEDRON, V22, P3797
   MENNUCCI B, 2001, J PHYS CHEM A, V105, P7287
   MUNRONRANA ML, 2003, J AM CHEM SOC, V125, P3649
   OROZCO M, 2000, CHEM REV, V100, P4187
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PERDEW JP, 1986, PHYS REV B, V34, P7406
   PIVNENKO NS, 2002, MAGN RESON CHEM, V40, P566
   RAMALHO TC, 2003, MAGN RESON CHEM, V41, P981
   RAMALHO TC, 2004, BIOPHYS CHEM, V110, P267
   RAMALHO TC, 2004, J PHYS-CONDENS MAT, V16, P6159
   SCHWEGLER E, 2000, PHYS REV LETT, V84, P2429
   SEBASTIANI D, 2001, J PHYS CHEM A, V105, P1951
   SILVESTRI R, 2000, BIOORG MED CHEM LETT, V10, P253
   STILLINGER FH, 1974, J CHEM PHYS, V74, P3336
   TEICHER BA, 1994, CANCER METAST REV, V13, P139
   TOMIDA A, 1999, ANTI-CANCER DRUG DES, V14, P169
   TORRENT M, 2001, J PHYS CHEM A, V105, P4546
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   VIODE C, 1999, BIOCHEM PHARMACOL, V57, P549
   ZILM KW, 1993, NATO ASI SER C-MATH, V386, P315
NR 71
TC 3
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0749-1581
J9 MAGN RESON CHEM
JI Magn. Reson. Chem.
PD FEB
PY 2005
VL 43
IS 2
BP 139
EP 146
PG 8
SC Chemistry, Multidisciplinary; Chemistry, Physical; Spectroscopy
GA 892KR
UT ISI:000226650000005
ER

PT J
AU Ludwig, V
   Coutinho, K
   Canuto, S
TI Sequential classical-quantum description of the absorption spectrum of
   the hydrated electron
SO PHYSICAL REVIEW B
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATION; MONTE-CARLO; SOLVATED ELECTRON; EXCESS
   ELECTRON; INTEGRAL-EQUATION; WATER CLUSTERS; LIQUID WATER; AB-INITIO;
   TEMPERATURE; MECHANICS
AB A localized state of the electron in water is assumed to study the
   absorption spectrum of the hydrated electron. A classical Monte Carlo
   statistical mechanics simulation is used to generate the structure of
   water in the field of the hydrated electron. These structures are used
   in quantum mechanical calculations of the absorption spectrum using
   time-dependent density-functional theory. The statistically converged
   spectral distribution is in good agreement with experiment. The value
   obtained here for the maximum of the absorption profile is 1.70 eV with
   a half-width of 0.90 eV, in comparison with the corresponding
   experimental values of 1.725 and 0.84 eV.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Mogi das Cruzes, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
EM canuto@if.usp.br
CR ABRAMCZYK H, 1991, J PHYS CHEM-US, V95, P5749
   AYOTTE P, 1997, J CHEM PHYS, V106, P811
   BARKER JA, 1979, J CHEM PHYS, V70, P2914
   BARNETT RN, 1990, J CHEM PHYS, V93, P6226
   BARTCZAK WM, 2000, COMPUT CHEM, V24, P469
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
   BOERO M, 2003, PHYS REV LETT, V90
   CANUTO S, 1997, ADV QUANTUM CHEM, V28, P90
   CHANDLER D, 1981, J CHEM PHYS, V74, P4078
   CHUEV GN, 2001, PHYS REV E 1, V63
   CHUEV GN, 2003, J MOL LIQ, V105, P161
   COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
   COUTINHO K, 2000, J CHEM PHYS, V112, P9874
   COUTINHO K, 2002, COMPUTER CODE DICE V
   FEYNMAN RP, 1965, QUANTUM MECH PATH IN
   FILETI EE, 2003, PHYS REV E 1, V67
   FRISCH MJ, 1998, COMPUTER CODE GAUSSI
   HART AJ, 1963, J AM CHEM SOC, V84, P4090
   HART AJ, 1970, HYDRATED ELECT
   JOU FY, 1979, J PHYS CHEM-US, V83, P2383
   KEVAN L, 1981, J PHYS CHEM-US, V85, P1628
   KIM J, 1998, CHEM PHYS LETT, V297, P90
   KIM KS, 1996, PHYS REV LETT, V76, P956
   LEE C, 1988, PHYS REV B, V37, P785
   LEE HM, 2003, J CHEM PHYS, V118, P9981
   LUDWIG V, 2003, INT J QUANTUM CHEM, V95, P572
   MALASPINA T, 2002, J CHEM PHYS, V117, P1692
   MIURA S, 1994, J PHYS CHEM-US, V98, P9649
   MOSTAFAVI M, 2004, CHEM PHYS LETT, V384, P52
   MOTAKABBIR KA, 1992, J CHEM PHYS, V97, P2055
   MURPHREY TH, 1993, J CHEM PHYS, V99, P515
   NATORI M, 1966, J PHYS SOC JPN, V21, P1573
   ROMERO C, 1989, J CHEM PHYS, V90, P1877
   SCHLICK S, 1976, J CHEM PHYS, V64, P3153
   SCHNITKER J, 1987, J CHEM PHYS, V86, P3471
   SCHNITKER J, 1988, PHYS REV LETT, V60, P456
   SHKROB IA, 2002, J PHYS CHEM A, V106, P9120
   SOBOLEWSKI AL, 2003, PHYS CHEM CHEM PHYS, V5, P1130
   SPRIK M, 1986, J STAT PHYS, V43, P967
   STAIB A, 1995, J CHEM PHYS, V103, P2642
   WALLQVIST A, 1987, J CHEM PHYS, V86, P6404
   YANG CY, 2001, J CHEM PHYS, V114, P3598
   ZHAN CG, 2003, J PHYS CHEM B, V107, P4403
NR 44
TC 3
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD DEC
PY 2004
VL 70
IS 21
AR 214110
DI ARTN 214110
PG 4
SC Physics, Condensed Matter
GA 884UF
UT ISI:000226111400043
ER

PT J
AU Rossato, J
   Baierle, RJ
   Fazzio, A
   Mota, R
TI Vacancy formation process in carbon nanotubes: First-principles approach
SO NANO LETTERS
LA English
DT Article
ID ELECTRONIC-PROPERTIES; AB-INITIO; SYSTEMS; DEFORMATION; DEFECTS
AB The electronic and structural properties of a single-walled carbon
   nanotube (SWNT) under mechanical deformation are studied using
   first-principles calculations based on the density functional theory. A
   force is applied over one particular C-atom with enough strength to
   break the chemical bonds between the atom and its nearest neighbors,
   leading to a final configuration represented by one tube with a vacancy
   and an isolated C-atom inside the tube. Our investigation demonstrates
   that there is a tendency that the first bond to break is the one most
   parallel possible to the tube axis and, after, the remaining two other
   bonds are broken. The analysis of the electronic charge densities, just
   before and after the bonds breaking, helps to elucidate how the vacancy
   is formed on an atom-by-atom basis. In particular, for tubes with a
   diameter around 11 Angstrom, it is shown that the chemical bonds start
   to break only when the externally applied force is of the order of 14
   nN and it is independent of the chirality. The formation energies for
   the vacancies created using this process are almost independent of the
   chirality, otherwise the bonds broken and the reconstruction are
   dependent.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Baierle, RJ, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
   RS, Brazil.
EM rbaierle@smail.ufsm.br
CR AJAYAN PM, 1998, PHYS REV LETT, V81, P1437
   BAIERLE RJ, 2001, PHYS REV B, V64
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CHARLIER JC, 1996, PHYS REV B, V53, P11108
   DAI HJ, 2002, SURF SCI, V500, P218
   FAGAN SB, 2003, NANO LETT, V3, P289
   FAGAN SB, 2003, PHYS REV B, V67
   HANSSON A, 2000, PHYS REV B, V62, P7639
   KRASHENINNIKOV AV, 2001, PHYS REV B, V63
   KRASHENINNIKOVA AV, 2002, J VAC SCI TECHNOL B, V20, P728
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   ORDEJON P, 1996, PHYS REV B, V53
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   SANKEY OF, 1989, PHYS REV B, V40, P3979
   SAYMAN O, 2002, J REINF PLAST COMP, V21, P1205
   STONEHAM AM, 1998, APPL PHYS LETT, V72, P3142
   TOULLIER N, 1993, PHYS REV B, V43, P1991
   ZHU YF, 1999, APPL SURF SCI, V137, P83
NR 18
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JAN
PY 2005
VL 5
IS 1
BP 197
EP 200
PG 4
SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
GA 887TE
UT ISI:000226327600038
ER

PT J
AU Freire, RO
   Rocha, GB
   Albuquerque, RQ
   Simas, AM
TI Efficacy of the semiempirical sparkle model as compared to ECP
   ab-initio calculations for the prediction of ligand field parameters of
   europium(III) complexes
SO JOURNAL OF LUMINESCENCE
LA English
DT Article
DE sparkle model; semiempirical methods; ab-initio methods; europium (III)
   complexes
ID CAMBRIDGE STRUCTURAL DATABASE; SIMPLE OVERLAP MODEL; LANTHANIDE
   COMPLEXES; SPECTROSCOPIC PROPERTIES; SUPRAMOLECULAR DEVICES; INTENSITY
   PARAMETERS; CRYSTAL-STRUCTURES; LUMINESCENCE; CHEMISTRY; MECHANISM
AB The second version of the sparkle model for the calculation of
   lanthanide complexes (SMLC II) as well as ab-initio calculations
   (HF/STO-3G and HF/3-21G) have been used to calculate the geometries of
   a series of europium (III) complexes with different coordination
   numbers (CN = 7, 8 and 9), ligating atoms (O and N) and ligands (mono,
   bi and polydentate). The so-called ligand field parameters, B-q(k)'s,
   have been calculated from both SMLC II and ab-initio optimized
   structures and compared to the ones calculated from crystallographic
   data. The results show that the SMLC II model represents a significant
   improvement over the previous version (SMLC) and has given good results
   when compared to ab-initio methods, which demand a much higher
   computational effort. Indeed, ab-initio methods take around a hundred
   times more computing time than SMLC. As such, our results indicate that
   our sparkle model can be a very useful and a fast tool when applied to
   the prediction of both ground state geometries and ligand field
   parameters of europium (III) complexes. (C) 2004 Elsevier B.V. All
   rights reserved.
C1 UFPE, Dept Quim Fundamental, CCEN, BR-50590470 Recife, PE, Brazil.
RP Simas, AM, UFPE, Dept Quim Fundamental, CCEN, BR-50590470 Recife, PE,
   Brazil.
EM simas@ufpe.br
CR ALBUQUERQUE RQ, 2000, CHEM PHYS LETT, V331, P519
   ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380
   ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P407
   ALPHA B, 1987, ANGEW CHEM INT EDIT, V26, P266
   ANIKIN NA, 2003, PHYSCHEM0304005 CPS
   AUZEL F, 1983, J PHYS-PARIS, V44, P201
   BAZIN H, 2003, J FLUORESC, V12, P245
   BRUNO IJ, 2002, ACTA CRYSTALLOGR B 3, V58, P389
   CONSENTINO U, 2002, J AM CHEM SOC, V124, P4901
   COSENTINO U, 1997, J MOL STRUC-THEOCHEM, V392, P75
   DACOSTA NB, 2001, J MOL STRUC-THEOCHEM, V545, P131
   DEANDRADE AVM, 1994, CHEM PHYS LETT, V349, P227
   DEMESQUITA ME, 2002, INORG CHEM COMMUN, V5, P292
   DEMESQUITA ME, 2003, J SOLID STATE CHEM, V171, P183
   DEMESQUITA ME, 2004, J ALLOY COMPD, V366, P124
   DEMESQUITA ME, 2004, J ALLOY COMPD, V374, P320
   DESA GF, 2000, COORDIN CHEM REV, V196, P165
   DOLG M, 1989, THEOR CHIM ACTA, V75, P173
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   HEMMILA I, 1991, APPL FLUORESCENCE IM
   HEMMILA I, 1995, J ALLOY COMPD, V225, P480
   KURITA N, 2003, CHEM PHYS LETT, V372, P583
   LEHN JM, 1990, ANGEW CHEM INT EDIT, V29, P1304
   MALTA OL, 1982, CHEM PHYS LETT, V87, P27
   MALTA OL, 1997, J LUMIN, V75, P255
   MUKKALA VM, 1992, HELV CHIM ACTA, V75, P1578
   NAKAJIMA S, 2003, J PHYS CHEM B, V107, P2867
   OHNO K, 2001, CHEM PHYS LETT, V341, P387
   OHNO K, 2001, J AM CHEM SOC, V123, P8161
   PICHIERRI F, 2000, CHEM PHYS LETT, V322, P536
   PIETRASZKIEWICZ M, 1993, PURE APPL CHEM, V65, P563
   PORCHER P, 1999, PCCP PHYS CHEM CH PH, V1, P397
   RABBE C, 2000, THEOR CHEM ACC, V104, P280
   REN L, 2001, BIOCHEMISTRY-US, V40, P13906
   ROCHA GB, 1999, MATER SCI FORUM, V315, P400
   ROCHA GB, 2002, THESIS U FEDERAL PER
   ROCHA GB, 2004, INORG CHEM, V43, P2346
   SABBATINI N, 1993, COORDIN CHEM REV, V123, P201
   STEWART JJP, 1993, MOPAC 93 00 MAN
   STEWART JJP, 1996, INT J QUANTUM CHEM, V58, P133
   TAYLOR DL, 1986, APPL FLUORESCENCE BI
   YANG W, 2003, J PHYS CHEM B, V107, P5986
NR 42
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2313
J9 J LUMINESC
JI J. Lumines.
PD JAN
PY 2005
VL 111
IS 1-2
BP 81
EP 87
PG 7
SC Optics
GA 885JQ
UT ISI:000226153300010
ER

PT J
AU Martins, JBL
   Longo, E
   Salmon, ODR
   Espinoza, VAA
   Taft, CA
TI The interaction of H-2, CO, CO2, H2O and NH3 on ZnO surfaces: an Oniom
   Study
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID LARGE CLUSTER-MODELS; ZINC-OXIDE SURFACES; PHOTOELECTRON-SPECTROSCOPY;
   AB-INITIO; COORDINATION CHEMISTRY; ELECTRONIC-STRUCTURES;
   CARBON-DIOXIDE; ADSORPTION; HYDROGEN; ZNO(10(1)OVER-BAR0)
AB We have used the Oniom method with three layers in order to study the
   interaction of CO, H-2, H2O, NH3 and CO2 molecules with the ZnO (10
   $(1) over bar $0) surfaces using a (ZnO)348 Cluster model. The layers
   are divided into the high layer at the CCSD level, the medium layer at
   the RHF level and the low level layer using the UFF force field method.
   The orbital and binding energies of the adsorbed molecules, Mulliken
   and ChelpG charges as well as geometrical parameters were analyzed and
   compared with the available experimental and theoretical data. (C) 2004
   Elsevier B.V. All rights reserved.
C1 DMF, Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
   Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
   Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Taft, CA, DMF, Ctr Brasileiro Pesquisas Fis, R Xavier Sigaud 150,
   BR-22290180 Rio De Janeiro, Brazil.
EM catff@terra.com.br
CR AU CT, 1988, SURF SCI, V199, P507
   BECKER T, 2001, SURF SCI, V486, L502
   BOLIS V, 1989, J CHEM SOC FARAD T 1, V85, P855
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   CASARIN M, 1994, SURF SCI, V303, P125
   CASARIN M, 1999, APPL SURF SCI, V142, P192
   CASARIN M, 1999, CHEM PHYS LETT, V300, P403
   DAPRICH S, 1999, J MOL STRUCT THEOCHE, V462, P1
   FRISCH MJ, 2003, GAUSSIAN 03
   FUBINI B, 1982, J CHEM SOC F1, V78, P153
   GAY RR, 1980, J AM CHEM SOC, V102, P6752
   HERZBERG G, 1966, ELECT SPECTRA POLYAT
   HOTAN W, 1979, SURF SCI, V83, P162
   LIN JY, 1991, J AM CHEM SOC, V113, P8312
   LIN JY, 1992, INORG CHEM, V31, P686
   MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
   MARTINS JBL, 1997, J MOL STRUC-THEOCHEM, V397, P147
   MARTINS JBL, 1997, J MOL STRUC-THEOCHEM, V398, P457
   MARTINS JBL, 2000, J MOL STRUC-THEOCHEM, V528, P161
   MORIMOTO T, 1976, J PHYS CHEM-US, V80, P1876
   NAGAO M, 1995, THERMOCHIM ACTA, V253, P221
   NAKAZAWA M, 1995, APPL SURF SCI, V84, P309
   OZAWA K, 2002, SURF REV LETT, V9, P717
   PORTMANN S, 2000, CHIMIA, V54, P766
   SCHAFTENAAR G, 2000, J COMPUT AID MOL DES, V14, P123
   SOLOMON EI, 1993, CHEM REV, V93, P2623
   TAFT CA, 2000, RECENT RES DEV QUANT, V1, P105
   WANDER A, 2001, J PHYS CHEM B, V105, P6191
NR 28
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD DEC 21
PY 2004
VL 400
IS 4-6
BP 481
EP 486
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 881YU
UT ISI:000225906300037
ER

PT J
AU Fileti, EE
   Chaudhuri, P
   Canuto, S
TI Relative strength of hydrogen bond interaction in alcohol-water
   complexes
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; AB-INITIO; INTERACTION ENERGIES; METHANOL
   COMPLEXES; ELECTRON CORRELATION; QUANTUM-CHEMISTRY; GAS-PHASE;
   CLUSTERS; TRIMERS; SPECTROSCOPY
AB Hydrogen binding energies are calculated for the different isomers of
   1:1 complexes of methanol, ethanol and water using ab initio methods
   from MP2 to CCSD(T). Zero-point energy vibration and counterpoise
   corrections are considered and electron correlation effects are
   analyzed. In methanol-water and ethanol-water the most stable
   heterodimer is the one where the water plays the role of proton donor.
   In methanol-ethanol the two isomers have essentially the same energy
   and no favorite heterodimer could be discerned. The interplay between
   the relative binding energy is briefly discussed in conjunction with
   the incomplete mixing of alcohol-water systems. (C) 2004 Elsevier B.V.
   All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Indian Assoc Cultivat Sci, Dept Theoret Phys, Calcutta 700032, W Bengal, India.
RP Canuto, S, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
   Sao Paulo, Brazil.
EM canuto@if.usp.br
CR BAKKAS N, 1993, J CHEM PHYS, V99, P3335
   BAKKAS N, 1995, CHEM PHYS LETT, V232, P90
   BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
   BOYS SF, 1970, MOL PHYS, V19, P553
   CLOUGH SA, 1973, J CHEM PHYS, V59
   CURTISS LA, 1988, CHEM REV, V88, P827
   DELBENE JE, 1971, J CHEM PHYS, V55, P4633
   DELBENE JE, 1997, MOL INTERACTIONS VAN, P157
   DIXIT S, 2002, NATURE, V416, P829
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   EHBRECHT M, 1997, J PHYS CHEM A, V101, P7768
   FILETI EE, 2004, ADV QUANTUM CHEM, V47, P51
   FRANKS F, 1966, Q REV CHEM SOC, V20, P1
   FRANKS F, 1985, WATER SCI REV, V1, P171
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GONZALEZ L, 1998, J CHEM PHYS, V109, P139
   GONZALEZ L, 1999, J CHEM PHYS, V111, P3855
   GUO JH, 2003, PHYS REV LETT, V91
   KIM S, 1988, J PHYS CHEM-US, V92, P7216
   KIRSCHNER KN, 2001, J PHYS CHEM A, V105, P4150
   LIDE DR, 1992, HDB CHEM PHYS
   MANDADO M, 2003, CHEM PHYS LETT, V381, P22
   MASELLA M, 1998, J CHEM PHYS, V108, P7141
   MASELLA M, 1998, MOL PHYS, V95, P97
   MO O, 1997, J CHEM PHYS, V107, P3592
   PROVENCAL RA, 2000, J PHYS CHEM A, V104, P1423
   RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
   RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
   SHAW RA, 1990, J AM CHEM SOC, V112, P5401
   SMITH BJ, 1990, J CHEM PHYS, V92, P1240
   STOCKMAN PA, 1997, J CHEM PHYS, V107, P3782
   SUM AK, 2000, J PHYS CHEM A, V104, P1121
   TSUZUKI S, 1999, J CHEM PHYS, V110, P11906
   TSUZUKI S, 2001, J CHEM PHYS, V114, P3949
   VANERP TS, 2001, CHEM PHYS LETT, V333, P290
NR 35
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD DEC 21
PY 2004
VL 400
IS 4-6
BP 494
EP 499
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 881YU
UT ISI:000225906300039
ER

PT J
AU da Silva, AJR
   Fazzio, A
   dos Santos, RR
   Oliveira, LE
TI First principles study of the ferromagnetism in Ga1-xMnxAs
   semiconductors
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID III-V SEMICONDUCTORS; ELECTRONIC-STRUCTURE; TRANSPORT-PROPERTIES; HOLE
   CONCENTRATION; GALLIUM-ARSENIDE; (GA,MN)AS; PSEUDOPOTENTIALS;
   ACCEPTORS; ORIGIN
AB We have performed ab initio calculations within the density-functional
   theory for Ga1-xMnxAs diluted semiconductors. Total energy results
   unambiguously show that a quasi-localized hole, with predominant p-like
   character, surrounds the fully polarized Mn up arrow d(5)-electrons.
   The calculations indicate that the holes form a relatively
   dispersionless impurity band, thus rendering effective-mass
   descriptions of hole states open to challenge. We obtain estimates both
   for the s = 1/2 hole and S = 5/2 Mn exchange coupling, and for the
   distance dependence of the effective Mn-Mn exchange interaction. The
   results demonstrate that the effective Mn-Mn coupling is always
   ferromagnetic, and thus non-RKKY, and is intermediated by the
   antiferromagnetic coupling of each Mn spin to the holes.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
   Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, RJ, Brazil.
   UNICAMP, Inst Fis, BR-13083970 Campinas, SP, Brazil.
RP da Silva, AJR, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
   Paulo, SP, Brazil.
CR ABOLFATH M, 2001, PHYS REV B, V63
   ASKLUND H, 2002, PHYS REV B, V66
   BOUZERAR G, 2003, PHYS REV B, V68
   CHAPMAN RA, 1967, PHYS REV LETT, V18, P443
   DASILVA AJR, 2003, PHYSICA B, V340, P874
   DIETL T, 1997, PHYS REV B, V55, P3347
   DIETL T, 2001, PHYS REV B, V63
   DOSSANTOS RR, 2002, J PHYS-CONDENS MAT, V14, P3751
   DOSSANTOS RR, 2003, J APPL PHYS, V93, P1845
   EDMONDS KW, 2002, APPL PHYS LETT, V81, P3010
   HAYASHI T, 2001, APPL PHYS LETT, V78, P1691
   KRESSE G, 1993, PHYS REV B, V47, P558
   KRESSE G, 1996, PHYS REV B, V54, P11169
   KRESSE G, 1999, PHYS REV B, V59, P1758
   LINNARSSON M, 1997, PHYS REV B, V55, P6938
   MATSUKURA F, 1998, PHYS REV B, V57, R2037
   MORIYA R, 2003, J APPL PHYS, V93, P4603
   OHNO H, 1992, PHYS REV LETT, V68, P2664
   OHNO H, 1996, APPL PHYS LETT, V69, P363
   OHNO H, 1999, J MAGN MAGN MATER, V200, P110
   OHNO H, 2001, SOLID STATE COMMUN, V117, P179
   OKABAYASHI J, 2001, PHYS REV B, V64
   POTASHNIK SJ, 2001, APPL PHYS LETT, V79, P1495
   POTASHNIK SJ, 2002, PHYS REV B, V66
   SANDRATSKII LM, 2002, PHYS REV B, V66
   SANVITO S, 2001, PHYS REV B, V63
   SANYAL B, 2003, PHYS REV B, V68
   SCHNEIDER J, 1987, PHYS REV LETT, V59, P240
   SEONG MJ, 2002, PHYS REV B, V66
   SINGLEY EJ, 2002, PHYS REV LETT, V89
   VANDERBILT D, 1990, PHYS REV B, V41, P7892
   VANESCH A, 1997, PHYS REV B, V56, P13103
   YU KM, 2002, APPL PHYS LETT, V81, P844
   YU KM, 2002, PHYS REV B, V65
   ZHAO YJ, 2003, PHYS REV LETT, V90
   ZHAO YJ, 2004, APPL PHYS LETT, V84, P3753
NR 36
TC 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD NOV 24
PY 2004
VL 16
IS 46
BP 8243
EP 8250
PG 8
SC Physics, Condensed Matter
GA 879HC
UT ISI:000225706000014
ER

PT J
AU Coutinho, K
   Cabral, BJC
   Canuto, S
TI Can larger dipoles solvate less? solute-solvent hydrogen bond and the
   differential solvation of phenol and phenoxy
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CARLO-QUANTUM-MECHANICS; SEQUENTIAL MONTE-CARLO; O-H BOND; AB-INITIO;
   WATER; DENSITY; ACETONITRILE; ENERGETICS; HYDRATION; LIQUIDS
AB Quantum mechanical calculations of the dipole moments and binding
   energies of phenol and phenoxy radical in liquid acetonitrile and water
   are made using hydrogen-bonded configurations extracted from Monte
   Carlo simulations. We contend that the preferential solvation of phenol
   (the lower dipole moment solute) over phenoxy derives from the
   hydrogen-bond shell. The reconciliation with the usual understanding,
   that larger dipole solvates better, is obtained if we consider not the
   dipole moment of the isolated solute but, instead, the average dipole
   moment in solution of the solute-solvent hydrogen-bonded solvation
   shell. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Mogi Cruzes, CIIB, BR-08701970 Mogi Das Cruzes, SP, Brazil.
   Univ Lisbon, Fac Ciencias, Dept Quim & Bioquim, P-1749016 Lisbon, Portugal.
   Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal.
RP Canuto, S, Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
EM canuto@if.usp.br
CR ALLEN MP, 1987, COMPUTER SIMULATION
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
   BESLER BH, 1990, J COMPUT CHEM, V11, P431
   BOHM HJ, 1983, MOL PHYS, V49, P347
   BOYS SF, 1970, MOL PHYS, V19, P553
   COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
   COUTINHO K, 2000, DICE GEN MONTE CARLO
   COUTINHO K, 2000, J CHEM PHYS, V113, P9132
   COUTINHO K, 2003, J MOL STRUC-THEOCHEM, V632, P235
   CRAMER CJ, 1999, CHEM REV, V99, P2161
   FILETI EE, 2003, PHYS REV E, V67, P61504
   FRISCH MJ, 1998, GAUSSIAN 98
   GUEDES RC, 2000, J PHYS CHEM A, V104, P6062
   GUEDES RC, 2003, J PHYS CHEM A, V107, P9197
   GUEDES RC, 2003, J PHYS CHEM B, V107, P4304
   ITOH S, 2000, COORDIN CHEM REV, V198, P3
   JORGENSEN WL, 1993, J COMPUT CHEM, V14, P195
   KRYACHKO ES, 2002, J PHYS CHEM A, V106, P731
   LEE C, 1988, PHYS REV B, V37, P785
   MALASPINA T, 2002, J CHEM PHYS, V117, P1692
   MEZEI M, 1981, J CHEM PHYS, V74, P622
   REICHARDT C, 1979, SOLVENT EFFECTS ORGA
   RIVAIL JL, 1976, CHEM PHYS, V18, P233
   SANTOS RMB, 1998, J PHYS CHEM REF DATA, V27, P707
   SANTOS RMB, 1999, J CHEM THERMODYN, V31, P1483
   SANTOS RMB, 2001, J AM CHEM SOC, V123, P12670
   STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
   TAPIA O, 1975, MOL PHYS, V29, P1653
   WEAVER EC, 1968, ANNU REV PLANT PHYS, V19, P283
NR 30
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD DEC 1
PY 2004
VL 399
IS 4-6
BP 534
EP 538
PG 5
SC Physics, Atomic, Molecular & Chemical
GA 874ZS
UT ISI:000225389800045
ER

PT J
AU Alvarez-Puebla, RA
   Dos Santos, DS
   Aroca, RF
TI Surface-enhanced Raman scattering for ultrasensitive chemical analysis
   of 1 and 2-naphthalenethiols
SO ANALYST
LA English
DT Article
ID SINGLE-MOLECULE DETECTION; SILVER ISLANDS; SERS; SPECTROSCOPY;
   COLLOIDS; SPECTRA; MONOLAYERS
AB The results of the search for the optimal experimental conditions for
   ultrasentitive chemical analysis of 1-naphthalenethiol (1-NAT) and
   2-naphthalenethiol (2-NAT) using surface-enhanced Raman scattering
   (SERS) are discussed. The report begins with a review of the
   vibrational spectra, including infrared and Raman spectra of the target
   molecules, and the interpretation of the observed frequencies aided by
   local density functional theory (DFT) calculations at the
   B3LYP/6-311G(d,p) level of theory. Several metal nanostructures were
   tested for SERS activity, including island films and colloids of
   silver, gold and copper. Correspondingly, the most effective laser line
   for excitation in the visible and near infrared region was sought. The
   achieved detection limit for 1-naphthalenethiol, and for
   2-naphthalenethiol, on silver nanostructures is in the zeptomole regime.
C1 Univ Windsor, Sch Phys Sci, Mat & Surface Sci Grp, Windsor, ON N9B 3P4, Canada.
   Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis & Ciencia Mat, BR-13562 Sao Carlos, SP, Brazil.
RP Aroca, RF, Univ Windsor, Sch Phys Sci, Mat & Surface Sci Grp, Windsor,
   ON N9B 3P4, Canada.
EM raroca1@cogeco.ca
CR ABUEITTAH RH, 1972, APPL SPECTROSC, V26, P270
   AROCA RF, 2000, J PHYS CHEM A, V104, P9500
   CARRASCOFLORES EA, 2004, APPL SPECTROSC, V58, P555
   CONSTANTINO CJL, 2001, ADV FUNCT MATER, V11, P65
   CONSTANTINO CJL, 2001, ANAL CHEM, V73, P3674
   CORNELL BA, 1997, NATURE, V387, P580
   ERTL GR, 1997, HDB HETEROGENEOUS CA
   FORESMAN JB, 1996, EXPLORING CHEM ELECT
   FRANCHY R, 1998, REP PROG PHYS, V61, P691
   FRISCH MJ, 2003, GAUSSIAN 03 REVISION
   GOULET PJG, 2003, ANAL CHEM, V75, P1918
   JOO TH, 1987, J RAMAN SPECTROSC, V18, P57
   KAPOOR S, 2002, CHEM PHYS LETT, V354, P443
   KIM C, 2002, LANGMUIR, V18, P3159
   KNEIPP K, 1995, APPL SPECTROSC, V49, P780
   KNEIPP K, 1999, CHEM REV, V99, P2957
   MOSKOVITS M, 1984, J PHYS CHEM-US, V88, P5526
   MOSKOVITS M, 2002, TOP APPL PHYS, V82, P215
   OTTO A, 2002, J RAMAN SPECTROSC, V33, P593
   REN B, 2003, J AM CHEM SOC, V125, P9598
   SANCHEZCORTES S, 1994, J COLLOID INTERF SCI, V167, P428
   SHORYGIN PP, 1997, J RAMAN SPECTROSC, V28, P383
   SKADTCHENKO BO, 2001, SPECTROCHIM ACTA A, V57, P1009
   TARLOV MJ, 1993, J AM CHEM SOC, V115, P5305
   TOLAIEB B, 2003, CAN J ANAL SCI SPECT, V48, P139
   TOLAIEB B, 2004, ANALYST, V129, P337
   UCHIRO H, 1999, TETRAHEDRON LETT, V40, P3179
NR 27
TC 6
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
   ENGLAND
SN 0003-2654
J9 ANALYST
JI Analyst
PY 2004
VL 129
IS 12
BP 1251
EP 1256
PG 6
SC Chemistry, Analytical
GA 874FE
UT ISI:000225335500017
ER

PT J
AU Legoas, SB
   Rodrigues, V
   Ugarte, D
   Galvao, DS
TI Contaminants in suspended gold chains: An ab initio molecular dynamics
   study
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID NANOWIRES; CONDUCTANCE; ATOMS; MICROSCOPY; CLUSTERS; BULK
AB Recently, we have proposed that the origin of anomalously long
   interatomic distances in suspended gold chains could be the result of
   carbon contamination during sample manipulation [S. B. Legoas et al.,
   Phys. Rev. Lett. 88, 076105 (2002)]. More recently, however, other
   works have proposed that hydrogen instead of carbon should be the most
   probable contaminant. We report ab initio molecular dynamics results
   for different temperatures considering different possible contaminants.
   Our results show that at nonzero temperatures (more realistic to
   simulate the experimental conditions) hydrogen may be ruled out and
   carbon atoms remain the best candidate for contamination.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
   Univ Fed Amazonas, Dept Fis, BR-69077000 Manaus, Amazonas, Brazil.
   Lab Nacl Luz Sincrotron, BR-13084971 Campinas, SP, Brazil.
RP Galvao, DS, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
   BR-13083970 Campinas, SP, Brazil.
EM galvao@ifi.unicamp.br
CR *EPAPS, EPRLTAO93071447 EPAP
   AGRAIT N, 2003, PHYS REP, V377, P81
   DELLEY B, 1990, J CHEM PHYS, V92, P508
   DELLEY B, 2000, J CHEM PHYS, V113, P7756
   HABERLEN OD, 1997, J CHEM PHYS, V106, P5189
   HAKKINEN H, 1999, J PHYS CHEM B, V103, P8814
   KOIZUMI H, 2001, ULTRAMICROSCOPY, V88, P17
   KONDO Y, 1999, B AM PHYS SOC, V44, P312
   KONDO Y, 2000, SCIENCE, V289, P606
   LEGOAS SB, 2002, PHYS REV LETT, V88
   NOVAES FD, 2003, PHYS REV LETT, V90
   OHNISHI H, 1998, NATURE, V395, P780
   OKAMOTO M, 1999, PHYS REV B, V60, P7808
   PACCHIONI G, 1994, CHEM PHYS, V184, P125
   PASCUAL JI, 1993, PHYS REV LETT, V71, P1852
   REIMER L, 1997, SPRINGER SERIES OPTI
   RODRIGUES V, 2000, PHYS REV LETT, V85, P4124
   RODRIGUES V, 2001, PHYS REV B, V63
   RODRIGUES V, 2003, PHYS REV LETT, V91
   SANCHEZPORTAL D, 1999, PHYS REV LETT, V83, P3884
   SKORODUMOVA NV, 2003, PHYS REV B, V67
   SORENSEN MR, 1998, PHYS REV B, V57, P3283
   TAKAI Y, 2001, PHYS REV LETT, V87
   TOSATTI E, 2001, SCIENCE, V291, P288
   WANG Y, 1991, PHYS REV B, V43, P8911
   YANSON AI, 1998, NATURE, V395, P783
NR 26
TC 5
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 19
PY 2004
VL 93
IS 21
AR 216103
DI ARTN 216103
PG 4
SC Physics, Multidisciplinary
GA 872PU
UT ISI:000225220500052
ER

PT J
AU Cucinotta, CS
   Ruini, A
   Caldas, MJ
   Molinari, E
TI Ab initio study of chemisorption reactions for carboxylic acids on
   hydrogenated silicon surfaces
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Letter
ID FORMATION MECHANISMS; ALKYL MONOLAYERS; SPECTROSCOPY; CHEMISTRY;
   MOLECULES
AB We study chemisorbed configurations of C3H6O2 on the extended H:Si(100)
   surface, through first-principles density-functional calculations in a
   supercell approach. We demonstrate that oxygen-bonded organic
   monolayers on this silicon substrate is thermodynamically very stable,
   and comparing several Si-O-C and Si-C linked configurations, we find
   that the doubly-O-bonded configuration is favored and should lead to
   ordered SAMs. We find, moreover, that the Si-O-C bridge in this case
   does not block charge transfer from surface to molecule.
C1 Univ Modena, INFM, Natl Ctr NanoStruct & BioSystems Surfaces S3, I-41100 Modena, Italy.
   Univ Modena, Dept Fis, I-41100 Modena, Italy.
   Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
RP Cucinotta, CS, Univ Modena, INFM, Natl Ctr NanoStruct & BioSystems
   Surfaces S3, Via Campi 213-A, I-41100 Modena, Italy.
EM c.cucinotta@unimo.it
CR BOUKHERROUB R, 2000, LANGMUIR, V16, P7429
   BURIAK JM, 2002, CHEM REV, V102, P1271
   CEROFOLINI GF, 2003, SEMICOND SCI TECH, V18, P423
   GREEN WH, 1995, APPL PHYS LETT, V67, P1468
   HWANG MJ, 1994, J AM CHEM SOC, V116, P2515
   KOHN W, 1965, PHYS REV, V140, A1133
   LEE EJ, 1996, J AM CHEM SOC, V118, P5375
   LEHNER A, 2003, J APPL PHYS, V94, P2289
   LINFORD MR, 1995, J AM CHEM SOC, V117, P3145
   LOPINSKI GP, 2000, NATURE, V406, P48
   MAJOR RC, 2001, LANGMUIR, V17, P5576
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   NORTHRUP JE, 1991, PHYS REV B, V44, P1419
   PEI Y, 2003, LANGMUIR, V19, P7652
   PERDEW JP, 1992, PHYS REV B, V46, P6671
   SIEVAL AB, 1998, LANGMUIR, V14, P1759
   ULMAN A, 1996, CHEM REV, V96, P1533
   VANDERBILT D, 1990, PHYS REV B, V41, P7892
   WINKLER A, 1994, J AM CHEM SOC, V116, P9233
   ZHU XY, 2000, LANGMUIR, V16, P6766
NR 20
TC 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 11
PY 2004
VL 108
IS 45
BP 17278
EP 17280
PG 3
SC Chemistry, Physical
GA 869OM
UT ISI:000224993900003
ER

PT J
AU Nascimento, CS
   Dos Santos, HF
   De Almeida, WB
TI Theoretical study of the formation of the alpha-cyclodextrin hexahydrate
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID BETA-CYCLODEXTRIN; INCLUSION COMPLEXES; MOLECULAR-STRUCTURE; AB-INITIO;
   WATER; ENERGY; TOPOGRAPHY; CRYSTAL; EQUILIBRIUM; HYDRATION
AB The alpha-ciclodextrin (alpha-CD) consist of six glucopyranose units.
   The crystalline form I of alpha-CD is obtained in the solid state as
   the hexahydrate structure (alpha-CD . 6H(2)O) containing two water
   molecules inside and four outside the cavity. In this Letter, we report
   a quantum chemical study of the formation of the alpha-cyclodextrin
   hexahydrate using the semiempirical PM3 method and Density Functional
   Theory (BLYP/6-31G(d,p) calculation). Distinct chemical processes are
   considered for the calculation of the thermodynamic properties. We
   found a good agreement with experimental data for entropy, enthalpy and
   Gibbs free energy, which add support to the theoretical approach we
   used. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Fed Minas Gerais, Dept Quim, ICEx, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
   UFJF, Dept Quim, ICE, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
RP De Almeida, WB, Univ Fed Minas Gerais, Dept Quim, ICEx, LQCMM, Campus
   Univ, BR-31270901 Belo Horizonte, MG, Brazil.
EM wagnar@netuno.qui.ufmg.br
CR BECKE AD, 1988, PHYS REV A, V38, P3098
   BENSON SW, 1992, J AM CHEM SOC, V114, P4269
   BILAL M, 1995, THERMOCHIM ACTA, V249, P63
   BIRTTO MAF, 2004, IN PRESS QIM NOVA
   CHACKO KK, 1981, J AM CHEM SOC, V103, P1708
   CONNORS KA, 1997, CHEM REV, V97, P1325
   CURTISS LA, 1979, J CHEM PHYS, V71, P2703
   DASILVA AM, 1997, J CHEM SOC CHEM COMM, V465
   DASILVA AMGM, 1996, J INCLUS PHENOM MOL, V25, P21
   DASILVA AMM, 1996, CHEM COMMUN, P1871
   DOSSANTOS HF, 2000, CHEM PHYS LETT, V319, P569
   DOSSANTOS HF, 2002, CHEM PHYS, V280, P31
   FERRARI AM, 1993, CHEM PHYS LETT, V212, P644
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GERMAIN P, 1998, J INCLUS PHENOM MOL, V31, P205
   GREGORY JK, 1996, J PHYS CHEM-US, V100, P18014
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   KEUTSCH FN, 2003, CHEM REV, V103, P2533
   KLOPPER W, 2000, PHYS CHEM CHEM PHYS, V2, P2227
   LEE C, 1988, PHYS REV B, V37, P785
   LINNERT W, 1992, CHEM PHYS, V161, P327
   LIU K, 1996, SCIENCE, V271, P929
   LUDWIG R, 2001, ANGEW CHEM INT EDIT, V40, P1808
   MANOR PC, 1974, J AM CHEM SOC, V96, P3630
   MCQUARRIE DA, 1973, STAT THERMODYNAMICS
   NAIDOO KJ, 2004, J PHYS CHEM B, V108, P4236
   PULITI R, 1998, CARBOHYD RES, V310, P1
   SAENGER W, 1980, ANGEW CHEM INT EDIT, V19, P344
   STEINER T, 1992, BIOCHEM BIOPH RES CO, V188, P1060
   STEINER T, 1994, J AM CHEM SOC, V116, P5122
   STEWART JJP, 1989, J COMPUT CHEM, V10, P221
   STILLINGER FH, 1980, SCIENCE, V209, P451
   SZEJTLI J, 1998, CHEM REV, V98, P1743
   WORMER PES, 2000, CHEM REV, V100, P4109
   ZUBAVICUS Y, 2004, SCIENCE, V304, P974
NR 35
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD OCT 21
PY 2004
VL 397
IS 4-6
BP 422
EP 428
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 863DN
UT ISI:000224541000027
ER

PT J
AU Pliego, JR
TI Basic hydrolysis of formamide in aqueous solution: a reliable
   theoretical calculation of the activation free energy using the
   cluster-continuum model
SO CHEMICAL PHYSICS
LA English
DT Article
ID SOLVATION FREE-ENERGY; QUANTUM-MECHANICAL CALCULATIONS;
   DIMETHYL-SULFOXIDE SOLUTIONS; DENSITY-FUNCTIONAL THEORY; BETA-LACTAM
   ANTIBIOTICS; MONTE-CARLO SIMULATIONS; AB-INITIO; MOLECULAR-DYNAMICS;
   HYDROXIDE ION; GAS-PHASE
AB The first step of the reaction of the hydroxide ion with formamide in
   aqueous solution was studied by high level ab initio calculations and
   including the solvent effect through the cluster-continuum model. This
   hybrid discrete/continuum solvation model considers the ion explicitly
   solvated by some solvent molecules and the bulk solvent is described by
   a dielectric continuum (PCM). Two and three explicit water molecules
   solvating the hydroxide ion were included to describe the transition
   states. Our theoretical activation free energy barrier at 25 degreesC
   is 23.4 kcal mol(-1), only 2.2 kcal mol(-1) higher than the
   experimental value of 21.2 kcal mol(-1). We have also investigated a
   general basic catalysis mechanism, where the hydroxide ion acts as a
   base and one water molecule in its solvation shell is the nucleophile.
   Our results indicate that this mechanism does not take place and the
   real process is the direct nucleophilic attack of the hydroxide ion to
   the carbonyl carbon. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Fed Santa Catarina, Dept Quim, BR-88040900 Florianopolis, SC, Brazil.
RP Pliego, JR, Univ Fed Santa Catarina, Dept Quim, BR-88040900
   Florianopolis, SC, Brazil.
EM josef@qmc.ufsc.br
CR ALEMAN C, 1998, CHEM PHYS, V232, P151
   ALEMAN C, 1999, CHEM PHYS LETT, V302, P461
   ASTHAGIRI D, 2003, CHEM PHYS LETT, V371, P613
   BAKOWIES D, 1999, J AM CHEM SOC, V121, P5712
   BANDYOPADHYAY P, 2000, J CHEM PHYS, V113, P1104
   BANDYOPADHYAY P, 2002, J CHEM PHYS, V116, P5023
   BARONE V, 1997, J CHEM PHYS, V107, P3210
   BARONE V, 1998, J PHYS CHEM-US, V102, P1195
   BENDER ML, 1958, J AM CHEM SOC, V80, P1044
   BRINCK T, 2002, J PHYS CHEM A, V106, P8827
   BROWN RS, 1992, ACCOUNTS CHEM RES, V25, P481
   CANCES E, 1997, J CHEM PHYS, V107, P3032
   CANCES E, 2001, J CHEM PHYS, V114, P4744
   CAR R, 1985, PHYS REV LETT, V55, P2471
   CARLSON HA, 1993, J COMPUT CHEM, V14, P1240
   CHENG A, 2000, J MOL GRAPH MODEL, V18, P273
   CHIPMAN DM, 2002, J PHYS CHEM A, V106, P7413
   CLAVERIE P, 1978, J PHYS CHEM-US, V82, P405
   COSSI M, 1996, CHEM PHYS LETT, V255, P327
   COSSI M, 2002, J CHEM PHYS, V117, P43
   CRAMER CJ, 1999, CHEM REV, V99, P2161
   CURUTCHET C, 2001, J COMPUT CHEM, V22, P1180
   CURUTCHET C, 2003, J COMPUT CHEM, V24, P284
   DAY PN, 1996, J CHEM PHYS, V105, P1968
   FLORIS F, 1995, CHEM PHYS, V195, P207
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FREITAS LCG, 1992, J CHEM SOC FARADAY T, V88, P189
   FRISCH MJ, 1994, GAUSSIAN 94
   GAO J, 1992, J PHYS CHEM-US, V96, P537
   GAO JL, 1996, ACCOUNTS CHEM RES, V29, P298
   GAO JL, 1996, J AM CHEM SOC, V118, P4912
   GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
   GONCALVES PFB, 1999, CHEM PHYS LETT, V304, P438
   GUTHRIE JP, 1974, J AM CHEM SOC, V96, P3608
   HERMANS J, 1997, J AM CHEM SOC, V119, P2707
   HINE J, 1981, J ORG CHEM, V46, P3186
   HORI K, 1997, TETRAHEDRON, V53, P4317
   HUMMER G, 1998, J PHYS CHEM A, V102, P7885
   JOHNSON SL, 1967, ADV PHYS ORG CHEM, V5, P237
   JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
   JORGENSEN WL, 1989, ACCOUNTS CHEM RES, V22, P184
   KOLLMAN P, 1993, CHEM REV, V93, P2395
   KOLLMAN PA, 2001, ACCOUNTS CHEM RES, V34, P72
   LEVY RM, 1998, ANNU REV PHYS CHEM, V49, P531
   LI JB, 1998, CHEM PHYS LETT, V288, P293
   LI JB, 1999, THEOR CHEM ACC, V103, P9
   LIM C, 1991, J PHYS CHEM-US, V95, P5610
   LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
   LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
   MADURA JD, 1986, J AM CHEM SOC, V108, P2517
   MARLIER JF, 1999, J AM CHEM SOC, V121, P4356
   MARLIER JF, 2001, ACCOUNTS CHEM RES, V34, P283
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   MIERTUS S, 1982, CHEM PHYS, V65, P239
   MORAWETZ H, 1963, J AM CHEM SOC, V85, P463
   OBRIEN JF, 1995, J PHYS CHEM-US, V99, P12759
   OROZCO M, 1994, CHEM PHYS, V182, P237
   PENG Z, 1993, J AM CHEM SOC, V115, P9640
   PITARCH J, 1997, J PHYS CHEM B, V101, P3581
   PITARCH J, 1998, J AM CHEM SOC, V120, P2146
   PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
   PLIEGO JR, 2000, J PHYS CHEM B, V104, P5155
   PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
   PLIEGO JR, 2002, CHEM PHYS LETT, V355, P543
   PLIEGO JR, 2002, CHEM-EUR J, V8, P1945
   PLIEGO JR, 2002, J PHYS CHEM A, V106, P7434
   PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
   POSTMA JPM, 1982, FARADAY S CHEM SOC, V17, P55
   RICHARDSON WH, 1997, INT J QUANTUM CHEM, V61, P207
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SIEGBAHN PEM, 1996, J AM CHEM SOC, V118, P4442
   SINGH UC, 1987, J AM CHEM SOC, V109, P1607
   SITKOFF D, 1996, J PHYS CHEM-US, V100, P2744
   SLEBOCKATILK H, 2002, CAN J CHEM, V80, P1343
   SLEBOCKATILK H, 2003, J AM CHEM SOC, V125, P1851
   STANTON RV, 1993, J PHYS CHEM-US, V97, P11868
   STEFANOVICH EV, 1995, CHEM PHYS LETT, V244, P65
   STRAATSMA TP, 1986, J CHEM PHYS, V85, P6720
   STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
   STRAIJBL M, 2002, J PHYS CHEM B, V106, P1333
   STRAJBL M, 2000, J AM CHEM SOC, V122, P5354
   TAWA GJ, 1998, J CHEM PHYS, V109, P4852
   TOMASI J, 1994, CHEM REV, V94, P2027
   TOMASI J, 2002, PHYS CHEM CHEM PHYS, V4, P5697
   TOPOL IA, 1999, J CHEM PHYS, V111, P10998
   TSE JS, 2003, ANNU REV PHYS CHEM, V53, P249
   TUNON I, 1995, CHEM PHYS LETT, V241, P450
   TUNON I, 1995, J PHYS CHEM-US, V99, P3798
   VAIDEHI N, 1992, J CHEM PHYS, V97, P4264
   WEINER SJ, 1985, J AM CHEM SOC, V107, P2219
   WESOLOWSKI T, 1994, J PHYS CHEM-US, V98, P5183
   WIBERG KB, 2000, J PHYS CHEM A, V104, P7625
   WONG MW, 1991, J AM CHEM SOC, V113, P4776
   ZHENG YJ, 1998, THEOCHEM-J MOL STRUC, V429, P41
NR 94
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD NOV 15
PY 2004
VL 306
IS 1-3
BP 273
EP 280
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 865AG
UT ISI:000224674000026
ER

PT J
AU Koiller, B
   Capaz, RB
   Hu, XD
   Das Sarma, S
TI Shallow-donor wave functions and donor-pair exchange in silicon: Ab
   initio theory and floating-phase Heitler-London approach
SO PHYSICAL REVIEW B
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; ELECTRONIC-STRUCTURE; QUANTUM COMPUTER;
   GROUND-STATE; SEMICONDUCTORS; SI; PSEUDOPOTENTIALS; GERMANIUM; SYSTEMS
AB Electronic and nuclear spins of shallow donors in silicon are
   attractive candidates for qubits in quantum computer proposals. Shallow
   donor exchange gates are frequently invoked to perform two-qubit
   operations in such proposals. We study shallow donor electron
   properties in Si within the Kohn-Luttinger envelope function approach,
   incorporating the full Bloch states of the six band edges of the Si
   conduction band, obtained from ab initio calculations within the
   density-functional and pseudopotential frameworks. Intervalley
   interference between the conduction-band-edge states of Si leads to
   oscillatory behavior in the charge distribution of one-electron bound
   states and in the exchange coupling in two-electron states. The
   behavior in the donor electron charge distribution is strongly
   influenced by interference from the plane wave and periodic parts of
   the Bloch functions. For two donors, oscillations in the exchange
   coupling calculated within the Heitler-London (HL) approach are due to
   the plane-wave parts of the Bloch functions alone, which are pinned to
   the impurity sites. The robustness of this result is assessed by
   relaxing the phase pinning to the donor sites. We introduce a more
   general theoretical scheme, the floating-phase HL, from which the
   previously reported donor exchange oscillatory behavior is
   qualitatively and quantitatively confirmed. The floating-phase
   formalism provides a "handle" on how to theoretically anticipate the
   occurrence of oscillatory behavior in electronic properties associated
   with electron bound states in more general confining potentials, such
   as in quantum dots.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945 Rio De Janeiro, Brazil.
   SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA.
   Univ Maryland, Condensed Matter Theory Ctr, Dept Phys, College Pk, MD 20742 USA.
RP Koiller, B, Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528,
   BR-21945 Rio De Janeiro, Brazil.
CR ALTARELLI M, 1979, PHYS REV LETT, V43, P1346
   ANDRES K, 1981, PHYS REV B, V24, P244
   BALDERESCHI A, 1970, PHYS REV           B, V1, P4673
   BOYKIN TB, 2004, APPL PHYS LETT, V84, P115
   BUEHLER TM, 2002, NANOTECHNOLOGY, V13, P686
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   FAULKNER RA, 1969, PHYS REV, V184, P713
   FEHER G, 1959, PHYS REV, V114, P1219
   FRIESEN M, 2003, PHYS REV B, V67
   FUCHS M, 1999, COMPUT PHYS COMMUN, V119, P67
   GOEDECKER S, 1997, SIAM J SCI COMPUT, V18, P1605
   GONZE X, 1996, PHYS REV B, V54, P4383
   GONZE X, 2002, COMP MATER SCI, V25, P478
   HERRING C, 1964, PHYS REV A-GEN PHYS, V134, A362
   HOHENBERG P, 1964, PHYS REV, V136, B84
   HU XD, 2000, PHYS REV A, V61
   HU XD, 2001, PHYS REV A, V64
   HURLEY AC, 1954, P ROY SOC LOND A MAT, V226, P179
   IVEY JL, 1975, PHYS REV B, V11, P822
   KANE BE, 1998, NATURE, V393, P133
   KOHN W, 1957, SOLID STATE PHYS, V5, P257
   KOHN W, 1965, PHYS REV, V140, A1133
   KOILLER B, 2002, PHYS REV B, V66
   KOILLER B, 2002, PHYS REV LETT, V88
   KOILLER B, 2003, PHYS REV LETT, V90
   LEVY J, 2001, PHYS REV A, V64
   MADELUNG O, 1996, SEMICONDUCTORS BASIC
   MARTINS AS, 2004, PHYS REV B, V69
   MEIER F, 2003, PHYS REV LETT, V90
   MIZEL A, 2004, PHYS REV LETT, V92
   OBRIEN JL, 2001, PHYS REV B, V64
   OVERHOF H, 2004, PHYS REV LETT, V92
   PANTELIDES ST, 1978, REV MOD PHYS, V50, P797
   PAYNE MC, 1992, REV MOD PHYS, V64, P1045
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   RICHARDSON SL, 1987, PHYS REV B, V35, P1388
   SCHENKEL T, 2003, J APPL PHYS, V94, P7017
   SCHOFIELD SR, 2003, PHYS REV LETT, V91
   SLATER JC, 1963, QUANTUM THEORY MOL S, V1
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   VOYLES P, 2002, NATURE, V416, P827
   WEILER H, 1984, PHYS REV B, V30, P2266
   WELLARD CJ, 2003, PHYS REV B, V68
NR 43
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD SEP
PY 2004
VL 70
IS 11
AR 115207
DI ARTN 115207
PG 8
SC Physics, Condensed Matter
GA 858RN
UT ISI:000224209500040
ER

PT J
AU Tormena, CF
   Rittner, R
   Contreras, RH
   Peralta, JE
TI Anomeric effect on geminal and vicinal J(HH) NMR coupling constants
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; CONFORMATIONAL-ANALYSIS; NEGATIVE
   HYPERCONJUGATION; MOLECULAR-STRUCTURE; KARPLUS EQUATION; DOUBLE
   RESONANCE; RELATIVE SIGNS; BOND LENGTHS; SOLVATION; CYCLOHEXANE
AB Trends for geminal ((2)J(HH)) and vicinal ((3)J(HH)) nuclear magnetic
   resonance indirect spin-spin coupling constants, SSCCs, for
   2-methylthiirane (5) and 2-methyloxirane (6) are studied both from
   experimental and theoretical points of view to determine the influence
   of hyperconjugative interactions on these couplings. These two
   analogous compounds were chosen because it was expected that they
   exhibit quite different anomeric effects. Hyperconjugative interactions
   are investigated using the "natural bond orbital" method. Coupling
   constants are calculated within the density functional theory including
   all four scalar contributions, that is, the Fermi contact, the
   spin-dipolar, and the paramagnetic and diamagnetic spin-orbital
   contributions. Solvent dielectric effects are taken into account using
   Tomasi's polarizable continuum model. Results for geminal couplings are
   consistent with linear correlations connecting (2)J(HH) with the
   coupling pathway occupation numbers taken from the literature. The
   present analysis suggests that both (2)J(HH) and (2)J(HH) coupling
   constants are sensitive probes to gauge the anomeric effect, as well as
   other hyperconjugative interactions.
C1 Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Quim, BR-14040901 Ribeirao Preto, SP, Brazil.
   Univ Estadual Campinas, Inst Quim, Phys Organ Chem Lab, BR-13084971 Campinas, SP, Brazil.
   Univ Buenos Aires, Dept Phys, RA-1428 Buenos Aires, DF, Argentina.
RP Tormena, CF, Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao
   Pret, Dept Quim, Av Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP,
   Brazil.
EM tormena@ffclrp.usp.br
CR ALABUGIN IV, 2000, J ORG CHEM, V65, P3910
   ALABUGIN IV, 2003, J AM CHEM SOC, V125, P14015
   ALTONA C, 1996, ENCY NUCL MAGNETIC R, V8, P4909
   ANDO I, 1984, J MOL LIQ, V27, P179
   BARFIELD M, 1963, J AM CHEM SOC, V85, P1899
   BARONE V, 2001, J COMPUT CHEM, V22, P1615
   BARONE V, 2002, J PHYS CHEM A, V106, P5607
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BENT HA, 1961, CHEM REV, V61, P275
   CHUCK RJ, 1969, MOL PHYS, V16, P121
   CLORAN F, 1999, J PHYS CHEM A, V103, P3783
   CLORAN F, 2000, J AM CHEM SOC, V122, P6435
   CONTRERAS RH, 2000, ANN R NMR S, V41, P55
   CONTRERAS RH, 2000, PROG NUCL MAG RES SP, V37, P321
   CONTRERAS RH, 2003, ANNU REP NMR SPECTRO, V51, P167
   CUEVAS G, 1999, J PHYS CHEM A, V103, P932
   CUEVAS G, 2002, J AM CHEM SOC, V124, P13088
   ELIEL EL, 1968, J ORG CHEM, V33, P3754
   ELIEL EL, 1994, STEREOCHEMSITRY ORGA
   ELLEMAN DD, 1962, J MOL SPECTROSC, V9, P477
   ESTEBAN AL, 2001, J PHYS CHEM A, V105, P5298
   FREITAS MP, 2001, J PHYS ORG CHEM, V14, P317
   FREITAS MP, 2003, J PHYS ORG CHEM, V16, P27
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GIL VMS, 1989, MAGN RESON CHEM, V27, P409
   GLENDENING ED, 1998, NBO VERSION 3 1
   GRAYSON M, 2000, MOL PHYS, V98, P1981
   HANSEN MJ, 2002, MOL PHYS, V100, P2807
   HANSEN PE, 1989, CHEM DOUBLE BONDED F, CH3
   HELGAKER T, 1999, CHEM REV, V99, P293
   HELGAKER T, 1999, DALTON VERSION 1 1
   HELGAKER T, 2000, J CHEM PHYS, V113, P9402
   HETENYI AN, 2003, J ORG CHEM, V68, P5705
   HU SJ, 1997, J AM CHEM SOC, V119, P6360
   IMAI K, 1990, MAGN RESON CHEM, V28, P668
   JUARISTI E, 1995, CONFORMATIONAL BEHAV
   KARPLUS M, 1959, J CHEM PHYS, V30, P11
   KENDALL RA, 1992, J CHEM PHYS, V96, P6796
   KING JF, 2000, J AM CHEM SOC, V122, P10308
   KIRBY JA, 2000, STEREOELECTRONIC EFF
   LEE C, 1988, PHYS REV B, V37, P785
   LEMIEUX RU, 1969, CAN J CHEM, V47, P4427
   MAHAIM C, 1985, HELV CHIM ACTA, V68, P2182
   MALKINA OL, 2001, J PHYS CHEM A, V105, P9188
   MANATT SL, 1965, J AM CHEM SOC, V87, P2220
   MERTIUS S, 1981, CHEM PHYS, V55, P117
   MERTIUS S, 1982, CHEM PHYS, V65, P239
   MINCH MJ, 1994, CONCEPT MAGNETIC RES, V6, P41
   MORRIS DG, 2001, STEREOCHEMISTRY
   PERALTA JE, 2003, J CHEM PHYS LETT, V375, P452
   PEREZ JE, 1990, J MOL STRUCT THEOCHE, V210, P193
   PERLIN AS, 1969, TETRAHEDRON LETT, P2921
   PERRIN CL, 2002, ACCOUNTS CHEM RES, V35, P28
   POPLE JA, 1965, J CHEM PHYS, V42, P1339
   POPLE JA, 1970, APPROXIMATE MOL ORBI
   PROVASI PF, 2001, J CHEM PHYS, V115, P1981
   PROVASI PF, 2003, INT J MOL SCI, V4, P231
   RAMSEY NF, 1953, PHYS REV, V91, P303
   REED AE, 1988, CHEM REV, V88, P899
   REED AE, 1990, J AM CHEM SOC, V112, P1434
   SPROVIERO EM, 2002, J PHYS CHEM A, V106, P7834
   STENUTZ R, 2002, J ORG CHEM, V67, P949
   STERNHELL S, 1969, QUART REV, V23, P236
   SYCHROVSKY V, 2000, J CHEM PHYS, V113, P3530
   TAHA AN, 2000, J PHYS CHEM A, V104, P2985
   THOMAS WA, 1997, PROG NUCL MAG RE 3-4, V30, P183
   VAARA J, 1997, J PHYS CHEM A, V101, P5069
   WILIAMS DH, 1965, CHEM IND-LONDON, P506
   WOLFE S, 1990, CAN J CHEM, V68, P1051
   WONG TC, 1944, J CHEM SOC CHEM COMM, P1518
   YOSHINAGA F, 2002, J CHEM SOC PERK T 2, P1494
NR 71
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 23
PY 2004
VL 108
IS 38
BP 7762
EP 7768
PG 7
SC Chemistry, Physical
GA 854RX
UT ISI:000223922100018
ER

PT J
AU Ramalho, TC
   da Cunha, EFF
   de Alencastro, RB
TI Solvent effects on C-13 and N-15 shielding tensors of nitroimidazoles
   in the condensed phase: a sequential molecular dynamics/quantum
   mechanics study
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID VERTICAL ELECTRON-AFFINITY; NMR CHEMICAL-SHIFTS; AB-INITIO;
   COMPUTER-SIMULATION; NUCLEAR SHIELDINGS; MAGNETIC-RESONANCE;
   HYDROGEN-BOND; LIQUID WATER; SPECTROSCOPY; RELAXATION
AB N-15-and C-13 NMR chemical shifts for three nitroimidazoles have been
   calculated and compared with experimental data. The solvent effects on
   NMR spectra were simulated with the polarizable continuum model (PCM)
   and an alternative sequential molecular dynamics/quantum mechanics
   methodology (S-MD/QM). The sampling of the structures for the quantum
   mechanical calculations is made by using the interval of statistical
   correlation obtained from the autocorrelation function of the energy.
   Magnetic shielding tensors were evaluated at the GIAO-B3LYP level using
   II' basis set. It has been shown that it is essential to incorporate
   the dynamics and solvent effects in NMR calculations in the condensed
   phase.
C1 Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany.
   Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Phys Organ Chem Grp, BR-21949900 Rio De Janeiro, Brazil.
RP Ramalho, TC, Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470
   Mulheim, Germany.
EM teo@ime.eb.br
CR *INRIA ENPC, 1989, SCIL V 2 7
   ALLEN MP, 1987, COMPUTER SIMULATION
   ANDERSON CJ, 1999, CHEM REV, V99, P2219
   BARONE V, 1998, J COMPUT CHEM, V19, P404
   BONDI A, 1964, J PHYS CHEM-US, V68, P441
   CHAFIELD C, 1984, ANAL TIMES SERIES IN
   CHAPMAN JD, 1996, BRIT J CANCER, V74, P204
   CHEN BC, 1983, HELV CHIM ACTA, V66, P1537
   CHESNUT DB, 1994, J MOL STRUCT THEOCHE, V314, P19
   COSSI M, 1998, CHEM PHYS LETT, V253, P286
   COSSI M, 2003, J CHEM PHYS, V118, P8863
   COSSI M, 2004, THEOR CHEM ACC, V111, P162
   CRAMER CJ, 1995, REV COMPUTATIONAL CH, V6
   CUI Q, 2000, J PHYS CHEM B, V104, P3721
   DACUNHA EFF, 2004, J THEOR COMPUT CHEM, V3, P1
   DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
   FIELD MJ, 1990, J COMPUT CHEM, V11, P700
   FINCHAM D, 1986, J CHEM PHYS, V84, P4535
   FRIEDBERG R, 1970, J CHEM PHYS, V52, P6049
   FRISCH MJ, 2001, GAUSSIAN98 A 11 SOFT
   HARRIS CD, 1996, QUANTITATIVE CHEM AN
   HORI H, 1997, BIOORGAN MED CHEM, V5, P591
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   KUTZELNIGG W, 1999, IGLO METHOD AB INITI, V23
   LAAKSONEN A, 1998, J CHEM PHYS, V108, P455
   LAUFFER RB, 1987, CHEM REV, V87, P901
   LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
   LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
   MALASPINA T, 2002, J CHEM PHYS, V117, P1692
   MALKIN VG, 1996, CHEM-EUR J, V2, P452
   MARTINS TLC, 2003, MAGN RESON CHEM, V41, P983
   MCCOY CL, 1996, BRIT J CANCER S27, V74, S226
   MCKILLOP A, 1983, TETRAHEDRON, V39, P3797
   MENNUCCI B, 2001, J PHYS CHEM A, V105, P7287
   MENNUCCI B, 2002, J AM CHEM SOC, V124, P1506
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   ODELIUS M, 1993, J MAGN RESON SER A, V105, P289
   PECUL M, 1999, CHEM PHYS, V248, P27
   PECUL M, 2001, CHEM PHYS LETT, V333, P139
   PFROMMER BG, 2000, J AM CHEM SOC, V122, P123
   PIVNENKO NS, 2002, MAGN RESON CHEM, V40, P566
   RAMALHO TC, 2002, J MOL STRUC-THEOCHEM, V580, P217
   RAMALHO TC, 2003, INT J QUANTUM CHEM, V95, P267
   RAMALHO TC, 2004, BIOPHYS CHEM, V110, P267
   RAMALHO TC, 2004, J MOL STRUC-THEOCHEM, V676, P149
   REICHARDT C, 1979, SOLVENTS SOLVENT EFF
   RUUD K, 2003, INT J MOL SCI, V4, P119
   SEBASTIANI D, 2001, J PHYS CHEM A, V105, P1951
   SEGALL MD, 2002, J PHYS-CONDENS MAT, V14, P2957
   STILLINGER FH, 1974, J CHEM PHYS, V74, P3336
   SWOPE WC, 1982, J CHEM PHYS, V76, P637
   TINOCO LW, 1999, J BRAZIL CHEM SOC, V10, P281
   TOMASI J, 1994, CHEM REV, V94, P2027
   VERLET L, 1967, PHYS REV, V159, P98
   WANG P, 1991, J AM CHEM SOC, V113, P55
   WARSHEL A, 1991, COMPUTER MODELING CH
   WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 57
TC 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD SEP 1
PY 2004
VL 16
IS 34
BP 6159
EP 6170
PG 12
SC Physics, Condensed Matter
GA 854LI
UT ISI:000223904000017
ER

PT J
AU Marques, M
   Teles, LK
   Scolfaro, LMR
   Ferreira, LG
   Leite, JR
TI Microscopic description of the phase separation process in
   AlxGayIn1-x-yN quaternary alloys
SO PHYSICAL REVIEW B
LA English
DT Article
ID LIGHT-EMITTING-DIODES; SEMICONDUCTORS; INXALYGA1-X-YN; LUMINESCENCE;
   EMISSION; GAP
AB Ab initio total energy electronic structure calculations are combined
   with Monte Carlo simulations to study the thermodynamic properties of
   AlxGayIn1-x-yN quaternary alloys. We provide a microscopic description
   of the phase separation process by analyzing the thermodynamic behavior
   of the different atoms with respect to the temperature and cation
   contents. We obtained, at growth temperatures, the range of
   compositions for the stable and unstable phases. The presence of Al in
   InGaN is proven to "catalyze" the phase separation process for the
   formation of the In-rich phase. Based on our results, we propose that
   the ultraviolet emission currently seen in samples containing AlInGaN
   quaternaries arises from the matrix of a random alloy, in which
   composition fluctuations toward InGaN- and AlGaN-like alloys formation
   may be present, and that a coexisting emission in the green-blue region
   results from the In-rich segregated clusters.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Marques, M, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR ADIVARAHAN V, 2001, APPL PHYS LETT, V79, P4240
   CHEN CH, 2004, APPL PHYS LETT, V84, P1480
   COWLEY JM, 1950, J APPL PHYS, V21, P24
   FENG SW, 2003, APPL PHYS LETT, V82, P1377
   FERREIRA LG, 1991, INT J SUPERCOMPUT AP, V5, P34
   HIRAYAMA H, 2002, APPL PHYS LETT, V80, P207
   KNEISSL M, 2003, APPL PHYS LETT, V82, P2386
   KRESSE G, 1996, COMP MATER SCI, V6, P15
   KUNG P, 2000, OPTO-ELECTRON REV, V8, P201
   LEMOS V, 2000, PHYS REV LETT, V84, P3666
   MARQUES M, UNPUB
   MARQUES M, 2003, APPL PHYS LETT, V83, P890
   MATSUOKA T, 1998, MRS INTERNET J N S R, V3
   METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
   NAGAHAMA S, 2001, JPN J APPL PHYS PT 2, V40, L778
   TAKAYAMA T, 2001, J APPL PHYS, V90, P2358
   TAMULAITIS G, 2000, APPL PHYS LETT, V77, P2136
   TELES LK, 2000, PHYS REV B, V62, P2475
   TELES LK, 2002, J APPL PHYS, V92, P7109
   YAMAGUCHI S, 1998, J CRYST GROWTH, V195, P309
   YASAN A, 2002, APPL PHYS LETT, V81, P2151
NR 21
TC 3
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD AUG
PY 2004
VL 70
IS 7
AR 073202
DI ARTN 073202
PG 4
SC Physics, Condensed Matter
GA 851WG
UT ISI:000223716600007
ER

PT J
AU Pereira, RP
   Rocco, AM
   Bielschowsky, CE
TI Poly(ethylene oxide): Electronic structure, energetics, and vibrational
   spectrum
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID AB-INITIO CALCULATIONS; POLY(METHYL METHACRYLATE) BLENDS; POLYMER
   ELECTROLYTES; COMPLEXES; PEO; BEHAVIOR; LICLO4; ETHER
AB The electronic structure, energetics, and vibrational spectrum of
   poly(ethylene oxide) (PEO) are determined from density functional
   theoretical calculations on model systems (CH2CH2O)(n)X-2,
   ((EO)(n)X-2), where X is a termination group, such as methyl or
   hydroxyl, and n varies from 2 to 8. Geometry optimization was performed
   on these linear model systems chosen to represent the noncrystalline
   conformer of PEO, and the convergence of selected properties (total
   energy, vibrational spectra) was studied. To simulate the crystalline
   conformer, geometry optimization and vibrational spectrum calculations
   were carried out on a helical (EO)(6)(CH3)(2) model system.
   Differential scanning calorimetry data were employed to determine the
   crystalline fraction, used as weight for the simulation of total
   vibrational spectra, based on the spectra of the two conformers. The
   high resolution simulated spectra exhibited the contribution of
   individual vibrational modes to the experimentally observed broad peaks
   (or envelopes), while the simulated spectra with low resolution
   exhibited good agreement with experimental data, indicating a strong
   influence of the line width on the simulated spectra, caused by the
   distribution of chain conformations in the experimental PEO sample. The
   electronic structure of the linear (EO)(6)(CH3)(2) model system
   exhibited localization of the frontier orbitals on the oxygen atoms,
   where the border effect is highly pronounced, the orbitals localized on
   the oxygen atoms closer to the termination being highly energetic. The
   simulation of PEO by the finite size cluster approach utilizing
   oligo(ethylene oxide) model systems with six units was shown to be a
   good approximation to the calculation of electronic structure and
   vibrational spectra.
C1 Univ Fed Rio de Janeiro, Inst Quim, Grp Espectroscopia Teor, BR-21945970 Rio De Janeiro, Brazil.
   Univ Fed Rio de Janeiro, Inst Quim, Grp Mat Condutores, BR-21945970 Rio De Janeiro, Brazil.
RP Pereira, RP, Univ Fed Rio de Janeiro, Inst Quim, Grp Espectroscopia
   Teor, CT,Bloco A,Cidade Univ, BR-21945970 Rio De Janeiro, Brazil.
EM rpacheco@iq.ufrj.br
CR ABDURAHMAN A, 1999, J CHEM PHYS, V110, P8819
   ABDURAHMAN A, 2000, CHEM PHYS, V257, P301
   BABOUL AG, 1999, J AM CHEM SOC, V121, P7220
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BORODIN O, 2003, J PHYS CHEM B, V107, P6801
   BOYS SF, 1966, QUANTUM THEORY ATOMS, P253
   BRUCE PG, 1997, SOLID STATE ELECTROC
   CIMMINO S, 1990, MAKROMOL CHEM, V191, P2447
   DEPAOLI MA, 1997, J ELECTROANAL CHEM, V435, P217
   EDMISTON C, 1963, REV MOD PHYS, V35, P457
   JOHANSSON P, 1999, POLYMER, V40, P4399
   JOHANSSON P, 2001, POLYMER, V42, P4367
   JOHANSSON P, 2001, POLYMER, V42, P6573
   KRISHNAN M, 2003, PHYS REV B, V68
   KRIZ J, 1999, J PHYS CHEM A, V103, P8502
   LI X, 1984, J POLYM SCI POL PHYS, V22, P1331
   MACGLASHAN GS, 1999, NATURE, V398, P792
   MARTINLITAS I, 2002, CHEM MATER, V14, P2166
   MULLERPLATHE F, 1994, MACROMOLECULES, V27, P6040
   MURATA K, 2000, ELECTROCHIM ACTA, V45, P1501
   ROCCO AM, 2002, POLYMER, V43, P3601
   ROCCO AM, 2003, EUR POLYM J, V39, P1925
   ROCCO AM, 2003, POLYMER, V44, P361
   SALOMON M, 1994, J PHYS CHEM-US, V98, P8234
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
   TADOKORO H, 1984, POLYMER, V25, P147
   TAKAHASHI Y, 1973, MACROMOLECULES, V6, P672
NR 28
TC 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD AUG 26
PY 2004
VL 108
IS 34
BP 12677
EP 12684
PG 8
SC Chemistry, Physical
GA 847XG
UT ISI:000223430800011
ER

PT J
AU Brewer, WD
   Scherz, A
   Sorg, C
   Wende, H
   Baberschke, K
   Bencok, P
   Frota-Pessoa, S
TI Direct observation of orbital magnetism in cubic solids
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID RAY CIRCULAR-DICHROISM; 3D IMPURITIES; DILUTE AUCO; FE; MAGNETIZATION;
   FIELDS; COBALT; ATOMS
AB We present x-ray magnetic circular dichroism determinations of the
   orbital/spin magnetic moment ratios of dilute 3d-series impurities in
   Au (and Cu) host matrices. This is the first direct measurement of
   considerable orbital moments in cubic symmetry for a localized impurity
   in a bulk metal host. It is shown that the unquenching of orbital
   magnetism depends on a delicate balance of hybridization effects
   between the local impurity with the host and the filling of the 3d
   states of the impurity. The results are accompanied by ab initio
   calculations that support our experimental findings.
C1 Free Univ Berlin, Inst Expt Phys, D-14195 Berlin, Germany.
   European Synchrotron Radiat Facil, F-38043 Grenoble, France.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Brewer, WD, Free Univ Berlin, Inst Expt Phys, Arnimallee 14, D-14195
   Berlin, Germany.
EM brewer@physik.fu-berlin.de
CR BOYSEN J, 1973, SOLID STATE COMMUN, V12, P1095
   CABRIA I, 2002, PHYS REV B, V65
   CARRA P, 1993, PHYS REV LETT, V70, P694
   CHEN CT, 1995, PHYS REV LETT, V75, P152
   EBERT H, 1990, J APPL PHYS, V67, P4576
   ERIKSSON O, 1990, PHYS REV B, V42, P2707
   FRIEDEL J, 1958, NUOVO CIM SUPPL, V7, P287
   FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
   FROTAPESSOA S, 2001, J MAGN MAGN MATER 1, V226, P1021
   FROTAPESSOA S, 2004, PHYS REV B, V69
   GAMBARDELLA P, 2002, PHYS REV LETT, V88
   GAMBARDELLA P, 2003, SCIENCE, V300, P1130
   LEGOAS SB, 2000, PHYS REV B, V61, P10417
   NARATH A, 1973, PHYS REV B, V7, P2195
   RADO GT, 1973, MAGNETISM MAGNETIC P, V5
   RIEGEL D, 1988, NATO ADV STUDY I E, V144, P327
   SCHERZ A, 2002, PHYS REV B, V66
   STEINER P, 1975, PHYS REV B, V12, P842
   THOLE BT, 1988, PHYS REV B, V38, P3158
   THOLE BT, 1992, PHYS REV LETT, V68, P1943
   VANDERLAAN G, 1991, PHYS REV B B, V43, P13401
NR 21
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 13
PY 2004
VL 93
IS 7
AR 077205
DI ARTN 077205
PG 4
SC Physics, Multidisciplinary
GA 845VL
UT ISI:000223273300057
ER

PT J
AU Rino, JP
   Ebbsjo, I
   Branicio, PS
   Kalia, RK
   Nakano, A
   Shimojo, F
   Vashishta, P
TI Short- and intermediate-range structural correlations in amorphous
   silicon carbide: A molecular dynamics study
SO PHYSICAL REVIEW B
LA English
DT Article
ID DENSITY-FUNCTIONAL-THEORY; X-RAY-ABSORPTION; CARBON ALLOYS; CHEMICAL
   ORDER; NEUTRON-SCATTERING; PHOSPHATE-GLASSES; ATOMIC-STRUCTURE;
   FINE-STRUCTURE; A-SI1-XCX-H; ICE
AB Short- and intermediate-range structural correlations in amorphous
   silicon carbide (a-SiC) are studied in terms of partial pair
   distributions, bond angle distribution functions, and shortest-path
   ring statistics. A well relaxed sample is prepared following a slow
   annealing schedule of the simulation at the experimental density of the
   amorphous phase. The short-range correlation functions indicate a
   locally ordered amorphous structure with heteronuclear bonds, Si-C,
   with no phase separation, and no graphitic or diamond structures
   present. The bond distances and coordination numbers are similar to
   those in the crystalline phase. The rings statistics indicate an
   intermediate-range topology formed by the rearrangement of tetrahedra
   with the occurrence of corner and edge sharing units connecting two-
   (similar to5% of total), three-, four-, and five-fold rings. The
   presence of large size rings indicates the existence of nano-voids in
   the structure, which explains the low density compared with the crystal
   phase while keeping the same coordination number and bond distance.
   These simulation results agree well with experimental results.
C1 Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
   Univ So Calif, Dept Phys & Astron, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
   Univ So Calif, Dept Comp Sci, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
   Univ So Calif, Dept Biomed Engn, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
   Univ Fed Sao Carlos, Dept Phys, BR-13560 Sao Carlos, SP, Brazil.
   Univ Uppsala, Studsvik Neutron Res Lab, Nykoping, Sweden.
   Kumamoto Univ, Dept Phys, Kumamoto, Japan.
RP Rino, JP, Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp &
   Simulat, Los Angeles, CA 90089 USA.
CR ARMAND P, 1995, EUROPHYS LETT, V29, P549
   CAR R, 1985, PHYS REV LETT, V55, P2471
   CATTI M, 2001, PHYS REV LETT, V87
   CATTI M, 2002, PHYS REV B, V65
   CHASE MW, 1985, J PHYS CHEM REF DATA, V14, P1
   COHEN ML, 1993, SCIENCE, V261, P307
   EBBSJO I, 2000, J APPL PHYS, V87, P7708
   EMIN D, 1987, NOV REFR SEM S HELD
   FINOCCHI F, 1992, PHYS REV LETT, V68, P3044
   FISHER GR, 1990, PHILOS MAG B, V61, P217
   HEERA V, 1995, J APPL PHYS, V77, P2999
   HEERA V, 1997, APPL PHYS LETT, V70, P3531
   HIOKI T, 1986, J MATER SCI, V21, P1321
   HOHENBERG P, 1964, PHYS REV, V136, B864
   ISHIMARU M, 2002, PHYS REV LETT, V89
   IVASHCHENKO VI, 2002, PHYS REV B, V66
   IYETOMI H, 2000, J NON-CRYST SOLIDS, V262, P135
   KALOYEROS AE, 1988, PHYS REV B, V38, P13099
   KATAYAMA Y, 1981, PHILOS MAG B, V43, P283
   KELIRES PC, 1991, EUROPHYS LETT, V14, P43
   KELIRES PC, 1992, PHYS REV B, V46, P10048
   KELIRES PC, 1993, SOLID STATE COMMUN, V87, P851
   KELIRES PC, 1998, J NON-CRYST SOLIDS, V231, P200
   KLUG DD, 1999, PHYS REV LETT, V83, P2584
   KOLESNIKOV AI, 1999, PHYS REV B, V59, P3569
   KOLESNIKOV AI, 1999, PHYSICA B, V263, P650
   KRESSE G, 1994, PHYS REV B, V49, P14251
   LEVINSHTEAEIN ME, 2001, PROPERTIES ADV SEMIC
   LOONG CK, 1997, PHYSICA B, V241, P890
   MARSHALL RC, 1974, SIL CARB 1973 P U S
   MENEGHINI C, 1991, J NON-CRYST SOLIDS, V137, P75
   MENEGHINI C, 1994, PHYS REV B, V50, P11535
   MURA D, 1998, PHYS REV B, V58, P10357
   OCONNOR JR, 1960, SILICON CARBIDE HIGH
   PASCARELLI S, 1992, PHYS REV B, V45, P1650
   PECHENIK A, 1999, COMPUTER AIDED DESIG
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   PRICE DL, 1991, J PHYS-CONDENS MAT, V3, P9835
   PRICE DL, 1994, J NON-CRYST SOLIDS, V177, P293
   RINO JP, 1993, PHYS REV B, V47, P3053
   ROVIRA PI, 1997, PHYS REV B, V55, P4426
   SAMPATH S, 2003, PHYS REV LETT, V90
   SEEKAMP J, 1998, J NON-CRYST SOLIDS A, V230, P474
   SEKINE T, 1997, PHYS REV B, V55, P8034
   SHIMOJO F, 2000, PHYS REV LETT, V84, P3338
   SHIMOJO F, 2001, COMPUT PHYS COMMUN, V140, P303
   SPROUL A, 1986, PHILOS MAG B, V54, P113
   SUZUYA K, 1998, J NON-CRYST SOLIDS, V234, P650
   TERSOFF J, 1989, PHYS REV B, V39, P5566
   TERSOFF J, 1994, PHYS REV B, V49, P16349
   THORPE MF, 1997, AMORPHOUS INSULATORS
   TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
   VANDERBILT D, 1990, PHYS REV B, V41, P7892
   WILLIAMS JM, 1983, NUCL INSTRUM METHODS, V209, P317
   YOSHIDA M, 1993, PHYS REV B, V48, P10587
NR 55
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2004
VL 70
IS 4
AR 045207
DI ARTN 045207
PG 11
SC Physics, Condensed Matter
GA 843CO
UT ISI:000223053300026
ER

PT J
AU Bugs, MR
   Forato, LA
   Bortoleto-Bugs, RK
   Fischer, H
   Mascarenhas, YP
   Ward, RJ
   Colnago, LA
TI Spectroscopic characterization and structural modeling of prolamin from
   maize and pearl millet
SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS
LA English
DT Article
DE pennisetin molecular model; zein molecular model; circular dichroism;
   dynamic light scattering; small-angle X-ray scattering
ID PROTEIN SECONDARY STRUCTURE; NUCLEAR-MAGNETIC-RESONANCE; ALPHA-ZEIN
   PROTEINS; X-RAY-SCATTERING; 3-DIMENSIONAL STRUCTURE;
   CIRCULAR-DICHROISM; SEQUENCE-ANALYSIS; SPECTRA; EVOLUTION; GENES
AB Biophysical methods and structural modeling techniques have been used
   to characterize the prolamins from maize (Zea mays) and pearl millet
   (Pennisetum americanum). The alcohol-soluble prolamin from maize,
   called zein, was extracted using a simple protocol and purified by gel
   filtration in a 70% ethanol solution. Two protein fractions were
   petrified from seed extracts of pearl millet with molecular weights of
   25.5 and 7 kDa, as estimated by SDS-PAGE. The high molecular weight
   protein corresponds to pennisetin, which has a high alpha-helical
   content both in solution and the solid state, as demonstrated by
   circular dichroism and Fourier transform infrared spectra. Fluorescence
   spectroscopy of both fractions indicated changes in the tryptophan
   microenvironments with increasing water content of the buffer.
   Low-resolution envelopes of both fractions were retrieved by ab initio
   procedures from small-angle X-ray scattering data, which yielded
   maximum molecular dimensions of about 14 nm and 1 nm for pennisetin and
   the low molecular weight protein, respectively, and similar values were
   observed by dynamic light scattering experiments. Furthermore, H-1
   nuclear magnetic resonance spectra of zein and pennisetin do not show
   any signal below 0.9 ppm, which is compatible with more extended
   solution structures. The molecular models for zein and pennisetin in
   solution suggest that both proteins have an elongated molecular
   structure which is approximately a prolate ellipsoid composed of
   ribbons of folded alpha-helical segments with a length of about 14 run,
   resulting in a structure that permits efficient packing within the seed
   endosperm.
C1 Embrapa Instrumentacao Agropecuaria, BR-13560970 Sao Carlos, SP, Brazil.
   Univ Sao Paulo, Inst Fis Sao Carlos, Grp Cristalog, BR-13566590 Sao Carlos, SP, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Quim, BR-14049901 Ribeirao Preto, SP, Brazil.
RP Colnago, LA, Embrapa Instrumentacao Agropecuaria, Rua 15 Novembro 1452,
   BR-13560970 Sao Carlos, SP, Brazil.
EM colnago@cnpdia.embrapa.br
CR ARGOS P, 1982, J BIOL CHEM, V257, P9984
   BIETZ JA, 1982, BIOCHEM GENET, V20, P1039
   BUGS MR, 2001, PHOTOCHEM PHOTOBIOL, V74, P512
   BYLER DM, 1986, BIOPOLYMERS, V25, P469
   ELLIOTT MA, 1939, J AM CHEM SOC, V61, P718
   FASMAN GD, 1996, CIRCULAR DICHROISM C
   FORATO LA, 2000, BBA-PROTEIN STRUCT M, V1543, P106
   FOSTER JF, 1945, J AM CHEM SOC, V67, P617
   GARRATT R, 1993, PROTEINS, V15, P88
   GLATTER O, 1982, SMALL ANGLE XRAY SCA
   GUINIER A, 1955, SMALL ANGLE SCATTERI
   HADDEN JM, 1995, BBA-PROTEIN STRUCT M, V1248, P115
   HARIS PI, 1996, INFRARED SPECTROSCOP, P239
   HEIDECKER G, 1991, GENOMICS, V10, P719
   KELLERMANN G, 1997, J APPL CRYSTALLOGR 5, V30, P880
   KRESTCHMER CB, 1957, J PHYS CHEM-US, V61, P1627
   LAEMMLI UK, 1970, NATURE, V227, P680
   LASKOWSKI RA, 1993, J APPL CRYSTALLOGR, V26, P283
   MATSUSHIMA N, 1997, BBA-PROTEIN STRUCT M, V1339, P14
   NELSON JW, 1986, PROTEINS, V1, P211
   PEDERSEN K, 1982, CELL, V29, P1015
   PELTON JT, 2000, ANAL BIOCHEM, V277, P167
   POROD G, 1982, SMALL ANGLE XRAY SCA, P17
   SAINANI MN, 1992, PLANT SCI, V83, P15
   SVERGUN DI, 1992, J APPL CRYSTALLOGR, V25, P495
   SVERGUN DI, 2001, BIOPHYS J, V80, P2946
   TATHAM AS, 1993, J BIOL CHEM, V268, P26253
   UNNEBERG P, 2001, PROTEINS, V42, P460
   WILLIAMS JW, 1938, COLD SPRING HARB SYM, V6, P208
   WOO YM, 2001, PLANT CELL, V13, P2297
NR 30
TC 3
PU SPRINGER
PI NEW YORK
PA 233 SPRING STREET, NEW YORK, NY 10013 USA
SN 0175-7571
J9 EUR BIOPHYS J BIOPHYS LETT
JI Eur. Biophys. J. Biophys. Lett.
PD JUL
PY 2004
VL 33
IS 4
BP 335
EP 343
PG 9
SC Biophysics
GA 841OU
UT ISI:000222941000007
ER

PT J
AU Fagan, SB
   Souza, AG
   Lima, JOG
   Mendes, J
   Ferreira, OP
   Mazali, IO
   Alves, OL
   Dresselhaus, MS
TI 1,2-dichlorobenzene interacting with carbon nanotubes
SO NANO LETTERS
LA English
DT Article
ID AB-INITIO; RAMAN-SPECTROSCOPY; LARGE SYSTEMS; WATER
AB The interaction of 1,2-dichlorobenzene (DCB) with carbon nanotubes is
   analyzed by experimental and theoretical methods. Using
   first-principles calculations we studied the structural and electronic
   behavior of DCB interacting with a semiconductor (8,10) single-wall
   carbon nanotube (SWNT). We have found that the DCB weakly interacts
   with a perfect SWNT surface, but this interaction is slightly stronger
   when the SWNT surface has structural vacancies. Resonant Raman
   experiments performed on DCB-adsorbed SWNTs confirm the weak DCB-SWNT
   interaction, as suggested by the ab initio simulations.
C1 Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil.
   Univ Estadual Campinas, Inst Quim, LQES, BR-13081970 Campinas, SP, Brazil.
   MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA.
   MIT, Dept Phys, Cambridge, MA 02139 USA.
RP Fagan, SB, Univ Fed Ceara, Dept Fis, Caixa Postal 6030,Campus Pici,
   BR-60455900 Fortaleza, Ceara, Brazil.
EM solange@fisica.ufc.br
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
   CORIO P, 2004, CHEM PHYS LETT, V383, P475
   DAI HJ, 2002, SURF SCI, V500, P218
   DASILVA LB, 2004, NANO LETT, V4, P65
   DRESSELHAUS MS, 2000, ADV PHYS, V49, P705
   DRESSELHAUS MS, 2001, CARBON NANOTUBES
   DRESSELHAUS MS, 2002, CARBON, V40, P2043
   FAGAN SB, 2003, PHYS REV B, V67
   HILL GA, 1991, ENVIRON PROG, V10, P147
   IIJIMA S, 1991, NATURE, V354, P36
   ORDEJON P, 1996, PHYS REV B, V53
   PENG S, 2000, NANOTECHNOLOGY, V11, P57
   PENG XJ, 2003, CHEM PHYS LETT, V376, P154
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   ROBERGE F, 2001, WATER SCI TECHNOL, V44, P287
   SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
   SANKEY OF, 1989, PHYS REV B, V40, P3979
   SOUZA AG, 2003, NANOTECHNOLOGY, V14, P1130
   SUMANASEKERA GU, 1999, J PHYS CHEM B, V103, P4292
   TROULLIER N, 1991, PHYS REV B, V43, P1993
NR 20
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2004
VL 4
IS 7
BP 1285
EP 1288
PG 4
SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
GA 839CX
UT ISI:000222762000022
ER

PT J
AU Kleinpeter, E
   Seidl, PR
TI The gamma- and the delta-effects in C-13 NMR spectroscopy in terms of
   nuclear chemical shielding (NCS) analysis
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE C-13 NMR spectroscopy; gamma- and delta-effects; steric hindrance;
   partitions to natural chemical shieldings
ID AB-INITIO IGLO; MAGNETIC-RESONANCE; SUBSTITUENT DEPENDENCIES; SHIFTS;
   SPECTRA; TENSORS; ANGLE
AB Carbon-13 NMR is widely used in the determination of the
   stereochemistry of organic compounds. Changes in chemical shifts caused
   by interactions of groups that are close in space normally result in
   shielding of the carbon and deshielding of the hydrogen nuclei that are
   involved. This is not always the case, however, and further work on the
   origin of these effects would be desirable. Early applications of
   theoretical methods to the study of NMR shielding parameters were not
   particularly successful, but in recent years, the calculation of NMR
   shielding parameters by theoretical methods has developed into a useful
   and popular tool for structural studies by NMR. A promising approach to
   the problem of distinguishing and evaluating stereochemical influences
   on carbon and hydrogen chemical shifts is provided by natural chemical
   shielding (NCS) analysis. This method allows a partitioning of
   theoretical NMR shieldings into magnetic contributions from bonds and
   lone pairs of the molecule using the natural bond orbital (NBO) method.
   In order to investigate the origins of steric effects, we employed the
   NCS analysis to axial/equatorial-Me-cyclohexane, norbornane and
   exo/endo-Me-norbornane, in addition to n-pentane in the anti, gauche
   and g(P) g(M) conformations. Our results indicate that distortions in
   molecular structure due to steric effects can result in bond stretching
   or compression or in angular distortions. Changes in bond lengths
   result in the predictable shielding or deshielding of the nuclei that
   are involved. Where the molecular framework may be distorted to
   alleviate strain, chemical shifts appear to reflect changes in angles.
   Copyright (C) 2004 John Wiley Sons, Ltd.
C1 Univ Potsdam, Inst Chem, D-14415 Potsdam, Germany.
   Univ Fed Fluminense, Programa Posgrad Quim Organ, BR-24020150 Niteroi, RJ, Brazil.
RP Kleinpeter, E, Univ Potsdam, Inst Chem, POB 60 15 53, D-14415 Potsdam,
   Germany.
EM kp@chem.uni-potsdam.de
CR BARFIELD M, 1990, J AM CHEM SOC, V112, P4747
   BARFIELD M, 1993, J AM CHEM SOC, V115, P6916
   BARFIELD M, 1993, NUCLEAR MAGNETIC SHI, P523
   BARFIELD M, 1995, J AM CHEM SOC, V117, P2862
   BARFIELD M, 1998, MAGN RESON CHEM, V36, P593
   BLENDENIG ED, 2001, NBO 5 0
   BOHMANN JA, 1997, J CHEM PHYS, V107, P1173
   BORN R, 1994, MACROMOLECULES, V27, P1500
   BORN R, 1995, MACROMOLECULES, V28, P7785
   CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
   DEDIOS AC, 1994, ANN REP NUCL MAGN RE, V29, P1
   DEDIOS AC, 1994, J AM CHEM SOC, V116, P5307
   DITCHFIELD R, 1974, MOL PHYS, V27, P789
   FISHER J, 1992, MAGN RESON CHEM, V30, P338
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GRANT DM, 1964, J AM CHEM SOC, V86, P2984
   GUNTHER H, 1995, NMR SPECTROSCOPY BAS
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HELGAKER T, 1999, CHEM REV, V99, P293
   JIAO D, 1992, J AM CHEM SOC, V114, P3639
   JIAO D, 1993, J AM CHEM SOC, V115, P10883
   KLOD S, 2002, J CHEM SOC PERK T 2, P1506
   KUROSU H, 1993, MAGN RESON CHEM, V31, P399
   MANN G, 1978, MAGN RESON CHEM, V11, P561
   PAUL EG, 1963, J AM CHEM SOC, V85, P2701
   SEIDL PR, 1990, J MOL STRUCT THEOCHE, V204, P183
   SEIDL PR, 1993, MAGN RESON CHEM, V31, P241
   SEIDL PR, 1998, MAGN RESON CHEM, V36, P261
   WADA M, 1995, MAGN RESON CHEM, V33, P453
   WIBERG KB, 1987, J AM CHEM SOC, V109, P1001
   WINSTEIN S, 1965, J AM CHEM SOC, V87, P5247
NR 31
TC 3
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD AUG
PY 2004
VL 17
IS 8
BP 680
EP 685
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 840TV
UT ISI:000222883700005
ER

PT J
AU Ramalho, TC
   de Alencastro, RB
   La-Scalea, MA
   Figueroa-Villar, JD
TI Theoretical evaluation of adiabatic and vertical electron affinity of
   some radiosensitizers in solution using FEP, ab initio and DFT methods
SO BIOPHYSICAL CHEMISTRY
LA English
DT Article
DE radiosensitizers; electron affinity; HF and DFT calculations
ID HYPOXIC CELL RADIOSENSITIZERS; DIFFERENCE THERMODYNAMIC INTEGRATION;
   MOLECULAR-DYNAMICS SIMULATION; MST-SCRF CALCULATIONS; FREE-ENERGY;
   BIOLOGICAL-ACTIVITY; PHOTOELECTRON-SPECTROSCOPY; VOLTAMMETRIC BEHAVIOR;
   IONIZATION-POTENTIALS; DRUG-RESISTANCE
AB The biological activity of radiosensitizers is associated to their
   electron affinity (EA), which can be divided in two main processes:
   vertical and adiabatic. In this work, we calculated the EAs of
   nitrofurans and nitroimidazoles (Fig. 2) using Hartree-Fock (HF) and
   density functional theory (DFT) methods and evaluated solvent effects
   (water and carbon tetrachloride) on EAs. For water, we combined the
   polarized continuum model (PCM) and free energy perturbation (FEP)
   (finite difference thermodynamic integration, FDTI) methods. For carbon
   tetrachloride, we used the FDTI method. The values of adiabatic EA
   obtained are in agreement with experimental data (deviations of 0.013
   eV). The vertical EAs were calculated according to Cederbaum's outer
   valence Green function (OVGF) method. This methodology, which relies on
   theoretical aspects of free energy calculations on charged molecules in
   solution, was used to select potential selective radiosensitizers from
   recently reported compounds and could be helpful in the rational design
   of new and more selective bioreductive anticancer drugs. (C) 2004
   Elsevier B.V. All rights reserved.
C1 Inst Mil Engn, Dept Quim, BR-22290270 Rio De Janeiro, Brazil.
   Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Grp Fisicoquim Organ, BR-21949900 Rio De Janeiro, Brazil.
   Univ Sao Paulo, Fac Ciencias Farmaceut, Dept Farm, BR-05508900 Sao Paulo, Brazil.
RP Figueroa-Villar, JD, Inst Mil Engn, Dept Quim, Praca Gen Tiburcio 80,
   BR-22290270 Rio De Janeiro, Brazil.
EM figueroa@ime.eb.br
CR PC SPARTAN PRO 1 0 1
   *BIOS MSI, 1995, BIOS MSI INS 2 VERS
   ADAMS GE, 1976, RADIAT RES, V67, P550
   ADAMS GE, 1979, INT J RADIAT BIOL, V35, P133
   ADAMS GE, 1979, INT J RADIAT BIOL, V35, P151
   AHMED AA, 1997, SPECTROCHIM ACTA A, V53, P335
   AMES JR, 1987, LIFE SCI, V41, P1895
   AQVIST J, 1990, J PHYS CHEM-US, V94, P8021
   BACHS M, 1994, J COMPUT CHEM, V15, P446
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BENAKLI K, 2002, HETEROCYCLES, V57, P1689
   BRACUTI AJ, 1998, J CHEM CRYSTALLOGR, V28, P367
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   BRETT AMO, 1997, ELECTROANAL, V9, P1132
   BRETT AMO, 1999, METHOD ENZYMOL, V300, P314
   BROWN JM, 1999, CANCER RES, V59, P1391
   BU YX, 1998, THEOCHEM-J MOL STRUC, V422, P219
   CAMMI R, 1997, THEORETICAL ASPECTS
   CANCES E, 1997, J CHEM PHYS, V107, P3032
   CHAPMAN JD, 1996, BRIT J CANCER, V74, P204
   CHAUVIERE G, 2003, J MED CHEM, V46, P427
   CHEN GX, 1998, CHEM PHYS LETT, V290, P211
   CHEN M, 1998, J CHROMATOGR A, V825, P37
   COLOMINAS C, 1999, CHEM PHYS, V240, P253
   COLOMINAS C, 1999, J COMPUT CHEM, V20, P665
   DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
   FISCHER CF, 1987, PHYS REV LETT, V59, P2263
   FRISCH MJ, 2001, GAUSSIAN
   GOLDMAN P, 1986, BIOCHEM PHARMACOL, V35, P43
   GUIMARAES CRW, 2002, J PHYS CHEM B, V106, P466
   HALLIWELL B, 1985, FREE RADICALS BILOGY
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   HORI H, 1997, BIOORGAN MED CHEM, V5, P591
   HORIS H, 1994, ADV ENV SCI TECHNOLO
   JARGER R, 2001, J MOL GRAPH MODEL, V13, P89
   JOHNSON BG, 1993, J CHEM PHYS, V98, P5612
   KASAI S, 2001, BIOORGAN MED CHEM, V9, P453
   KING G, 1989, J CHEM PHYS, V91, P3647
   KNOX RJ, 1981, BRIT J CANCER, V44, P741
   KOHN W, 1965, PHYS REV, V140, A1133
   KOLLMAN P, 1993, CHEM REV, V93, P2395
   LASCALEA MA, 1999, J BRAZIL CHEM SOC, V10, P127
   LASCALEA MA, 1999, QUIM NOVA, V22, P417
   LISTER SG, 1992, INT J QUANTUM CHEM, V41, P293
   LISTER SG, 1997, INT QUANTUM CHEM, V59, P135
   LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
   MEZEI M, 1987, J CHEM PHYS, V86, P7084
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   MOTTANETO DJ, 1992, INT J QUANTUM CHEM Q, V44, P743
   OROZCO M, 1994, CHEM PHYS, V182, P237
   ORTIZ JV, 1988, J CHEM PHYS, V89, P6348
   PIRES JR, 2001, J MED CHEM, V44, P3673
   PRAMANN A, 2001, CHEM PHYS LETT, V343, P99
   PRESS WH, 1986, NUMERICAL RECIPES AR
   REYNOLDS CA, 1988, J CHEM SOC CHEM COMM, P1434
   REYNOLDS CA, 1990, J AM CHEM SOC, V112, P7545
   RIENSTRAKIRACOFE JC, 2002, CHEM REV, V102, P231
   SINGH UC, 1984, J COMPUT CHEM, V5, P129
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
   TEICHER BA, 1994, CANCER METAST REV, V13, P139
   TOMASI J, 1994, CHEM REV, V94, P2027
   TOMASI J, 1999, J MOL STRUC-THEOCHEM, V464, P211
   TOMIDA A, 1999, ANTI-CANCER DRUG DES, V14, P169
   VIODE C, 1999, BIOCHEM PHARMACOL, V57, P549
   VONNIESSEN W, 1984, COMPUT PHYS REP, V1, P57
   WARDMAN P, 1976, BIOCHEM BIOPH RES CO, V69, P942
   WARDMAN P, 1976, J CHEM SOC FARAD T 1, V72, P1377
   WARDMAN P, 1980, RAD SENSITIZERS THEI, P83
   WARSHEL A, 1985, CHEM PHYS LETT, V121, P124
   WYMORE T, 1999, BIOPHYS J 2, V76, A57
NR 71
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-4622
J9 BIOPHYS CHEM
JI Biophys. Chem.
PD AUG 1
PY 2004
VL 110
IS 3
BP 267
EP 279
PG 13
SC Chemistry, Physical; Biochemistry & Molecular Biology; Biophysics
GA 836XM
UT ISI:000222589500008
ER

PT J
AU Orhan, E
   Pontes, FM
   Santos, MA
   Leite, ER
   Beltran, A
   Andres, J
   Boschi, TM
   Pizani, PS
   Varela, JA
   Taft, CA
   Longo, E
TI Combined experimental and theoretical study to understand the
   photoluminescence of Sr1-xTiO3-x
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID THIN-FILMS; ABO(3) PEROVSKITES; STRONTIUM-TITANATE; ROOM-TEMPERATURE;
   VISIBLE PHOTOLUMINESCENCE; AMORPHOUS SRTIO3; ABSORPTION EDGE; CHEMICAL
   ROUTE; LEAD TITANATE; ENERGY-BANDS
AB A joint experimental and theoretical study has been carried out to
   rationalize the results of visible photoluminescence measurements at
   room temperature on Sr1-xTiO3-x (ST) perovskite thin films. From the
   experimental side, ST thin films, x = 0 to 0.9, have been synthesized
   following soft chemical processing, and the corresponding
   photoluminescence properties have been measured. First principles
   quantum mechanical techniques, based on density functional theory at
   the B3LYP level, have been employed to study the electronic structure
   of a crystalline, stoichiometric (x = 0) ST-s model and a
   nonstoichiometric (SrO-deficient, x not equal 0) and structurally
   disordered ST-d model. The relevance of the present theoretical and
   experimental results of the photoluminescence behavior of ST is
   discussed. The optical spectra and the calculations indicate that the
   symmetry-breaking process on going from ST-s to ST-d creates electronic
   levels in the valence band. Moreover, an analysis of the Mulliken
   charge distribution reveals a charge gradient in the structure. These
   combined effects seem to be responsible for the photoluminescence
   behavior of deficient Sr1-xTiO3-x.
C1 Univ Estadual Paulista, Inst Quim, BR-14801907 Araraquara, SP, Brazil.
   Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
   Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
   Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
   Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
RP Orhan, E, Univ Estadual Paulista, Inst Quim, BR-14801907 Araraquara,
   SP, Brazil.
EM emmanuelle.orhan@liec.ufscar.br
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BLASSE G, 1994, LUMINESCENT MAT
   BLAZEY KW, 1971, PHYS REV LETT, V27, P146
   BOUMA B, 1995, J PHYS CHEM SOLIDS, V56, P261
   CANHAM LT, 1990, APPL PHYS LETT, V57, P1046
   CAPIZZI M, 1970, PHYS REV LETT, V25, P1298
   CARDONA M, 1965, PHYS REV A, V140, P651
   COHEN MI, 1968, PHYS REV, V168, P929
   EGLITIS RI, 2002, EUR PHYS J B, V27, P483
   HEIFETS E, 2002, SURF SCI, V513, P211
   JONES RO, 1989, REV MOD PHYS, V61, P689
   KAHN AH, 1964, PHYS REV A, V135, P1321
   KOKALJ A, 1999, J MOL GRAPH MODEL, V17, P176
   LANCIOTTI F, 2002, APPL PHYS A-MATER, V74, P787
   LEE C, 1988, PHYS REV B, V37, P785
   LEITE ER, 2000, ADV MATER OPT ELECTR, V10, P235
   LEITE ER, 2001, APPL PHYS LETT, V78, P2148
   LEITE ER, 2002, APPL PHYS A-MATER, V74, P529
   LEITE ER, 2003, J MATER SCI, V38, P1775
   LEONELLI R, 1986, PHYS REV B, V33, P8649
   LONGO E, 2004, IN PRESS PHYS REV B
   MATTHEISS LF, 1972, PHYS REV B, V6, P4718
   MO SD, 1999, PHYS REV B, V60, P2416
   MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
   NOLAND JA, 1954, PHYS REV, V94, P724
   OBRIEN MCM, 1993, AM J PHYS, V61, P688
   PINHEIRO CD, 2003, APPL PHYS A-MATER, V77, P81
   PIZANI PS, 2000, APPL PHYS LETT, V77, P824
   PIZANI PS, 2002, APPL PHYS LETT, V81, P253
   PONTES FM, 2000, ADV MATER OPT ELECTR, V10, P81
   PONTES FM, 2000, MATER LETT, V43, P249
   PONTES FM, 2003, J LUMIN, V104, P175
   PONTES FM, 2003, J MATER RES, V18, P659
   PONTES FM, 2003, MATER CHEM PHYS, V77, P598
   PONTES FM, 2003, MATER CHEM PHYS, V78, P227
   RANGEL JH, 2002, J LUMIN, V99, P7
   SAUNDERS V, 1998, CRYSTAL98 USERS MANU
   SOLEDADE LEB, 2002, APPL PHYS A-MATER, V75, P629
   URBACH F, 1953, PHYS REV, V92, P1324
   WOOD DL, 1972, PHYS REV B-SOLID ST, V5, P3144
NR 40
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD JUL 1
PY 2004
VL 108
IS 26
BP 9221
EP 9227
PG 7
SC Chemistry, Physical
GA 832PJ
UT ISI:000222279100067
ER

PT J
AU Ferretti, A
   Ruini, A
   Bussi, G
   Molinari, E
   Caldas, MJ
TI Ab initio study of transport parameters in polymer crystals
SO PHYSICAL REVIEW B
LA English
DT Article
ID CONJUGATED POLYMERS; CHARGE-TRANSPORT; INTERCHAIN INTERACTIONS;
   POLYTHIOPHENE CRYSTALS; CONDUCTING POLYMERS; CHAINS;
   POLY(3-ALKYLTHIOPHENES); POLY(3-OCTYLTHIOPHENE); 1ST-PRINCIPLES;
   COHERENT
AB Transfer integrals (TI's) are essential parameters in the calculation
   of electron transport both in coherent and incoherent regimes. We show
   that TI's for polymer crystals can be obtained from first principles,
   starting from plane-wave density-functional calculations of the
   electronic structure in the local-density approximation, and propose
   methods at different levels of approximation. We demonstrate that
   special choices of single-chain states can be used very effectively as
   building blocks for the crystal electronic structure, thus allowing a
   deeper insight into the transport properties of molecular crystals. We
   apply this approach to polymer systems of great interest to molecular
   electronics, such as poly-para-phenylene-vinylene and polythiophene in
   different crystal packing morphologies, and show that it offers a very
   powerful tool to understand and design the impact of intermolecular
   interactions on conduction of organic crystals.
C1 Univ Modena & Reggio Emilia, INFM Natl Ctr Nanostruct & Biosyst Surface S3, I-41100 Modena, Italy.
   Univ Modena & Reggio Emilia, Dipartimento Fis, I-41100 Modena, Italy.
   Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
RP Ferretti, A, Univ Modena & Reggio Emilia, INFM Natl Ctr Nanostruct &
   Biosyst Surface S3, Via Campi 213-A, I-41100 Modena, Italy.
EM ferretti.andrea@unimo.it
CR AHLSKOG M, 1996, PHYS REV B, V53, P15529
   AMBROSCHDRAXL C, 1995, PHYS REV B, V51, P9668
   BREDAS JL, 2002, P NATL ACAD SCI USA, V99, P5804
   BREDAS JL, 2002, SYNTHETIC MET, V125, P107
   BURROUGHES JH, 1990, NATURE, V347, P539
   BUSSI G, 2002, APPL PHYS LETT, V80, P4118
   BUTTIKER M, 1985, PHYS REV B, V31, P6207
   BUTTIKER M, 1986, PHYS REV LETT, V57, P1761
   CHEN D, 1990, PHYS REV B, V41, P6759
   CHEN D, 1992, POLYMER, V33, P3116
   CHEN TA, 1995, J AM CHEM SOC, V117, P233
   CORNIL J, 2001, SYNTHETIC MET, V119, P1
   DAVILA LYA, 2002, J COMPUT CHEM, V23, P1135
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   EMIN D, 1986, PHYS REV B, V33, P3973
   FERRETTI A, 2003, PHYS REV LETT, V90
   FRIEND RH, 1999, NATURE, V397, P121
   GALVAO DS, 1989, PHYS REV LETT, V63, P786
   HEY R, 1997, PHYS REV B, V55, P4231
   HOLSTEIN T, 1959, ANN PHYS-NEW YORK, V8, P325
   JOHANSSON A, 2001, PHYS REV LETT, V86, P3602
   JOHANSSON A, 2002, PHYS REV B, V66
   LANDAUER R, 1970, PHILOS MAG, V21, P863
   MARCUS RA, 1985, BIOCHIM BIOPHYS ACTA, V811, P265
   MARUMOTO K, 2003, CHEM PHYS LETT, V382, P541
   MCCULLOUGH RD, 1993, J AM CHEM SOC, V115, P4910
   MIZES HA, 1993, PHYS REV LETT, V70, P1505
   NEWTON MD, 2000, INT J QUANTUM CHEM, V77, P255
   NGUYEN TQ, 2000, APPL PHYS LETT, V76, P2454
   PROSA TJ, 1995, PHYS REV B, V51, P159
   PUSCHNIG P, 2001, SYNTHETIC MET, V119, P245
   RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
   ROHLFING M, 1999, PHYS REV LETT, V82, P1959
   RUINI A, 2002, PHYS REV LETT, V88
   RUINI A, 2003, SYNTHETIC MET, V139, P755
   SANTOS MA, UNPUB
   SCHULZ PA, 1991, PHYS REV B, V44, P6073
   SIEGRIST T, 1998, ADV MATER, V10, P379
   SIRRINGHAUS H, 1998, SCIENCE, V280, P1741
   SIRRINGHAUS H, 1999, NATURE, V401, P685
   SLATER JC, 1954, PHYS REV, V94, P1498
   WANG GM, 2003, J APPL PHYS 1, V93, P6137
   YANG CY, 1998, POLYMER, V39, P2299
NR 43
TC 3
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAY
PY 2004
VL 69
IS 20
AR 205205
DI ARTN 205205
PG 10
SC Physics, Condensed Matter
GA 830BD
UT ISI:000222095700036
ER

PT J
AU Da Cunha, EFF
   De Alencastro, RB
   Ramalho, TC
TI Theoretical study of adiabatic and vertical electron affinity of
   radiosensitizers in solution Part 2: Analogues of tirapazamine
SO JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE radiosensitizers; electron affinity; HF and DFT calculations
ID HYPOXIC CELL RADIOSENSITIZERS; MOLECULAR-DYNAMICS SIMULATION;
   FREE-ENERGY; THERMODYNAMIC INTEGRATION; VOLTAMMETRIC BEHAVIOR;
   AQUEOUS-SOLUTION; ANTICANCER DRUG; SOLID TUMORS; AB-INITIO; POTENTIALS
AB Tirapazamine is a radiosensitizer, whose biological activity is
   associated to its electron affinity (EA). The electron affinity can be
   divided in two main processes: Vertical and Adiabatic. In this work, we
   calculated the EAs of nitroimidazoles (Fig. 2) using HF and DFT methods
   and evaluated solvent effects (water and carbon tetrachloride) on EAs.
   For water, we combined the Polarized Continuum Model (PCM) and free
   energy perturbation (Finite Difference Thermodynamic Integration, FDTI)
   methods. For carbon tetrachloride, we used the FDTI method. The values
   of adiabatic EA obtained axe in agreement with experimental data
   (deviations of 13.25 meV). The vertical EA were calculated according to
   Cederbaum's Outer Valence Green Function (OVGF) method. This study,
   which relays on theoretical aspects of free energy calculations on
   charged molecules in solution, could be helpful in the rational design
   of new and more selective bioreductive anticancer drugs.
C1 Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, Brazil.
   Fed Univ Rio De Janeiro, Inst Quim, Dept Quim Organ, Grp Fis Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Da Cunha, EFF, Inst Militar Engn, Dept Quim, Praca Gen Tiburcio 80,
   BR-22290270 Rio De Janeiro, Brazil.
CR ADAMS GE, 1976, RADIAT RES, V67, P550
   ADAMS GE, 1979, INT J RADIAT BIOL, V35, P133
   ADAMS GE, 1979, INT J RADIAT BIOL, V35, P151
   AHYMED AA, 1997, SPECTROCHIM ACTA A, V53, P335
   AQVIST J, 1990, J PHYS CHEM-US, V94, P8021
   BACHS M, 1994, J COMPUT CHEM, V15, P446
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   BRETT AMO, 1997, ELECTROANAL, V9, P1132
   BROWN JM, 1993, BRIT J CANCER, V67, P1163
   BROWN JM, 1999, CANCER RES, V59, P1391
   CAMMI R, 1997, THEORETICAL ASPECTS
   CANCES E, 1997, J CHEM PHYS, V107, P3032
   CHEN GX, 1998, CHEM PHYS LETT, V290, P211
   CHEN M, 1998, J CHROMATOGR A, V825, P37
   COLIMAS C, 1999, CHEM PHYS, V240, P253
   DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
   DENNY WA, 2000, EXPERT OPIN INV DRUG, V9, P2889
   FISCHER CF, 1987, PHYS REV LETT, V59, P2263
   FRISCH MJ, 2001, GAUSSIAN INC PITTSB
   FUCHS T, 2001, J CHEM CRYSTALLOGR, V31, P387
   GUIMARAES CRW, 2002, J PHYS CHEM B, V106, P466
   HAY MP, 2003, BR J MED CHEM, V46, P169
   HOHENBERG P, 1964, PHYS REV, V136, B864
   HORIS H, 1994, ADV ENV SCI TECHNOLO
   JARGER R, 2001, J MOL GRAPH MODEL, V13, P89
   JOHNSON BG, 1993, J CHEM PHYS, V98, P5612
   KASAI S, 2001, BIOORGAN MED CHEM, V9, P453
   KAZANSKY V, 2003, PHYS CHEM CHEM PHYS, V5, P31
   KELSON AB, 1998, ANTI-CANCER DRUG DES, V13, P575
   KING G, 1989, J CHEM PHYS, V91, P3647
   KOHN W, 1965, PHYS REV, V140, A1133
   KOLLMAN P, 1993, CHEM REV, V93, P2395
   LASCALEA MA, 1999, J BRAZIL CHEM SOC, V10, P127
   LASCALEA MA, 1999, QUIM NOVA, V22, P417
   LEE WW, 1991, 9104028, WO
   LISTER SG, 1992, INT J QUANTUM CHEM, V41, P293
   LISTER SG, 1997, INT QUANTUM CHEM, V59, P135
   LLOYD RV, 1991, MOL PHARMACOL, V40, P440
   LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
   MEZEI M, 1987, J CHEM PHYS, V86, P7084
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   MOTTANETO DJ, 1992, INT J QUANTUM CHEM Q, V44, P743
   ORTIZ JV, 1988, J CHEM PHYS, V89, P6348
   ORZCO M, 1994, CHEM PHYS, V182, P237
   POSAKONY JJ, 1999, CAN J CHEM, V77, P182
   PRAMANN A, 2001, CHEM PHYS LETT, V343, P99
   PRESS WH, 1986, NUMERICAL RECIPES AR
   RAMALHO TC, 2003, INT J QUANTUM CHEM, V95, P267
   REYNOLDS CA, 1988, J CHEM SOC CHEM COMM, P1434
   REYNOLDS CA, 1990, J AM CHEM SOC, V112, P7545
   SINGH UC, 1984, J COMPUT CHEM, V5, P129
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
   TEICHER BA, 1994, CANCER METAST REV, V13, P139
   TOMASI J, 1994, CHEM REV, V94, P2027
   TOMASI J, 1999, J MOL STRUC-THEOCHEM, V464, P211
   TOMIDA A, 1999, ANTI-CANCER DRUG DES, V14, P169
   VIODE C, 1999, BIOCHEM PHARMACOL, V57, P549
   VONNIESSEN W, 1984, COMPUT PHYS REP, V1, P57
   WARDMAN P, 1989, J PHYS CHEM REF DATA, V18, P1637
   WARSHEL A, 1985, CHEM PHYS LETT, V121, P124
   WYMORE T, 1999, BIOPHYS J 2, V76, A57
   YUXIANQ B, 1998, J MOL STRUCT THEOCHE, V422, P219
NR 64
TC 4
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 912805, SINGAPORE
SN 0219-6336
J9 J THEOR COMPUT CHEM
JI J. Theor. Comput. Chem.
PD MAR
PY 2004
VL 3
IS 1
BP 1
EP 13
PG 13
SC Chemistry, Multidisciplinary
GA 820UD
UT ISI:000221414000001
ER

PT J
AU Ramalho, TC
   da Cunha, EFF
   de Alencastro, RB
TI A density functional study on the complexation of ethambutol with
   divalent cations
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE ethambutol-metal complexes; mycobacterium tuberculosis; DFT
ID POLARIZABLE CONTINUUM MODEL; AB-INITIO; MYCOBACTERIUM-TUBERCULOSIS;
   ENERGY; METAL; ARABINOGALACTAN; APPROXIMATION; SMEGMATIS; IRON
AB The influence of non-bonded interactions on the formation of ethambutol
   (EMB) complexes with divalent cations was studied by DFT
   (B3LYP/6-311++G**). An analysis of the natural bond order provided a
   possible explanation for the difference in stability on (S, S), (R, R)
   and (meso) EMB complexes as well as an evaluation of the structural and
   electronic effects, applying non-bonded interactions. Due to
   n(O7)/sigma*(C3-H) interactions, Gibbs energies can be rationalized in
   terms of the stabilization of the complexes. Our results are in
   agreement with experimental studies which show that the (S,
   S)-configuration of EMB complexes is essential for activity against
   Mycobacterium tuberculosis. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Lab Fisicoquim Organ, BR-21949900 Rio De Janeiro, Brazil.
   Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, Brazil.
RP de Alencastro, RB, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ,
   Lab Fisicoquim Organ, Ilha Fundao,CT,Bloco A,Sala 609, BR-21949900 Rio
   De Janeiro, Brazil.
EM bicca@iq.ufrj.br
CR ARMITAGE IM, 1976, J AM CHEM SOC, V98, P5710
   BARONE V, 1998, J COMPUT CHEM, V19, P404
   BARREIRO EJ, 2000, J MOL STRUC-THEOCHEM, V532, P11
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BHATTACHARYA RG, 1990, INDIAN J CHEM A, V29, P986
   BLANCHARD JS, 1996, ANNU REV BIOCHEM, V65, P215
   BURDA JV, 1996, J PHYS CHEM-US, V100, P7250
   CAMMI R, 1997, THEORETICAL ASPECTS
   CANCES E, 1997, J CHEM PHYS, V107, P3032
   CAROLINE P, 1996, J PHYS CHEM-US, V100, P17797
   CHO SG, 2000, J MOL STRUC-THEOCHEM, V532, P279
   COMBA P, 2003, COORDIN CHEM REV, V238, P9
   COSSI M, 1998, CHEM PHYS LETT, V286, P253
   DAMOTTANETO DJ, 1992, INT J QUANTUM CHEM Q, V19, P225
   DESSEN A, 1995, SCIENCE, V267, P1638
   ELTAHER S, 2001, INT J QUANTUM CHEM, V82, P242
   ESCUYER VE, 2001, J BIOL CHEM, V276, P48854
   FRISCH MJ, 2001, GAUSSIAN
   GIANNINI G, 1991, INORG CHEM, V30, P2853
   GOBIN J, 1996, J EXP MED, V183, P1527
   GURUROW TN, 1981, J AM CHEM SOC, V103, P477
   HAUSLER H, 2001, BIOORG MED CHEM LETT, V11, P1679
   HOOPS SC, 1991, J AM CHEM SOC, V113, P8262
   JACKSON TA, 2002, J AM CHEM SOC, V124, P10833
   KOLLMAN P, 1993, CHEM REV, V93, P2395
   KOZAK SF, 1998, DIAGN MICR INFEC DIS, V30, P83
   LOW BW, 1959, J AM CHEM SOC, V81, P4412
   MADDRY JA, 1995, CHEMOTHERAPY, V106
   MARCUS RA, 1988, CHEM REV, V88, P1492
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   RAMALHO TC, 2001, J MOL STRUCT THEOCHE, V580, P217
   RAMALHO TC, 2003, INT J QUANTUM CHEM, V95, P267
   RAMALHO TC, 2003, P 12 S BRAS QUIM TEO
   RAMASUBBU N, 1987, PHOSPHORUS SULFUR, V31, P221
   SALZNER U, 1993, J AM CHEM SOC, V115, P10231
   SPONER J, 1997, CHEM PHYS LETT, V267, P263
   TAKAYAMA K, 1989, ANTIMICROB AGENTS CH, V33, P1493
   TOMASI J, 1999, J MOL STRUC-THEOCHEM, V464, P211
   WANG P, 1991, J AM CHEM SOC, V113, P55
NR 39
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAY 14
PY 2004
VL 676
IS 1-3
BP 149
EP 153
PG 5
SC Chemistry, Physical
GA 819YB
UT ISI:000221351100023
ER

PT J
AU Jalbout, AF
   Basso, EA
   Pontes, RM
   Das, D
TI Hyperconjugative interactions in vinylic systems: the problem of the
   barrier to methyl rotation in acetone
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE hyperconjugation; acetone; rotational barrier; natural bond orbital
ID SET MODEL CHEMISTRY; INTERNAL-ROTATION; ALIPHATIC-ALDEHYDES; TORSIONAL
   SPECTRA; AB-INITIO; ENERGIES; MOLECULES; KETONES; ROTORS; ETHANE
AB The origin of the barrier to methyl rotation in acetone has been
   studied through natural bond orbital theory. The analysis is divided in
   two parts, one involving the stability of bonds and lone pairs and
   other involving hyperconjugative donor-acceptor interactions. In the
   first part, we observed that the carbon-carbon bond of the rotor is
   destabilized upon rotation, and it represents the largest contribution
   to the barrier among bond energy and lone pair components, in
   accordance to studies of similar molecules. In addition, lone pairs
   were found to play an important role. The analysis of hyperconjugation
   effects showed that interactions involving the out-of-plane sigma CH
   orbitals and sigma and pi CO orbitals contribute to increase the
   rotational barrier, while analogous interactions involving the in-plane
   CH bond are either null or antibarrier forming. By excluding the
   mentioned donor-acceptor interactions during geometry optimization, it
   was possible to estimate their influence on bond and lone pair
   stabilities. From this analysis, it was observed that the
   destabilization of bonds and lone pairs upon rotation is determined by
   some of the considered hyperconjugative interactions, which led us to
   conclude that the latter are the primary source of the rotational
   barrier. Finally, a simple set of canonical structures is proposed to
   describe this effect. The model showed to be useful in the qualitative
   understanding of the rotational barrier in similar systems and even of
   conformational preferences. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Estadual Maringa, Dept Quim, BR-87020900 Maringa, Parana, Brazil.
   Univ New Orleans, Dept Chem, New Orleans, LA 70148 USA.
   Dillard Univ, Dept Phys, New Orleans, LA 70112 USA.
RP Basso, EA, Univ Estadual Maringa, Dept Quim, Av Colombo 5790,
   BR-87020900 Maringa, Parana, Brazil.
EM eabasso@uem.br
CR ALLEN LC, 1971, J AM CHEM SOC, V93, P6373
   ALLINGER NL, 1991, J AM CHEM SOC, V113, P4505
   BELL S, 2000, J PHYS CHEM A, V104, P514
   BERRY RJ, 1995, J PHYS CHEM-US, V99, P10511
   CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
   COOTE ML, 2002, J PHYS CHEM A, V106, P12124
   COSSEBARBI A, 1978, J MOL STRUCT, V49, P181
   CURTISS LA, 1991, J CHEM PHYS, V94, P7221
   DALE J, 1966, TETRAHEDRON, V22, P3373
   DURIG JR, 1976, J MOL SPECTROSC, V62, P159
   FLETCHER R, 1963, COMPUT J, V6, P163
   FOSTER JP, 1980, J AM CHEM SOC, V102, P7211
   FRISCH MJ, 2001, GAUSSIAN 98 REVISION
   GLENDENING ED, 1995, NBO 3 0 PROGRAM MANU
   GOODMAN L, 1996, J PHYS CHEM-US, V100, P2770
   GOODMAN L, 1999, ACCOUNTS CHEM RES, V32, P983
   GRONER P, 1987, J CHEM PHYS, V86, P565
   GUIRGIS GA, 1998, SPECTROCHIM ACTA A, V54, P123
   GUO D, 1996, J PHYS CHEM-US, V100, P12540
   HEHRE WJ, 1976, J AM CHEM SOC, V98, P664
   HINDERAKER MP, 2003, PROTEIN SCI, V12, P1188
   JORGENSEN WL, 1971, J AM CHEM SOC, V93, P568
   KARABATSOS GJ, 1965, J AM CHEM SOC, V87, P2864
   LOWE JP, 1970, J AM CHEM SOC, V92, P3799
   LU KT, 1995, J CHEM PHYS, V102, P6787
   MONTGOMERY JA, 1994, J CHEM PHYS, V101, P5900
   NYDEN MR, 1981, J CHEM PHYS, V75, P1843
   OZKABAK AG, 1990, J AM CHEM SOC, V112, P7854
   OZKABAK AG, 1991, CHEM PHYS LETT, V176, P19
   PETERSSON GA, 1991, J CHEM PHYS, V94, P6081
   POPHRISTIC V, 2001, NATURE, V411, P565
   REED AE, 1985, J CHEM PHYS, V83, P1736
   REED AE, 1988, CHEM REV, V88, P899
   REED AE, 1991, ISRAEL J CHEM, V31, P277
   SMEYERS YG, 1984, J MOL STRUCT THEOCHE, V16, P3
   SMEYERS YG, 1993, J CHEM PHYS, V98, P2754
   SWALEN JD, 1959, J CHEM PHYS, V31, P1562
   WEINHOLD F, 1999, J CHEM EDUC, V76, P1141
   WEINHOLD F, 2001, CHEM ED RES PRACT EU, V2, P91
   WEINHOLD F, 2001, NATURE, V411, P539
   WIBERG KB, 1995, J AM CHEM SOC, V117, P2201
NR 41
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAY 31
PY 2004
VL 677
IS 1-3
BP 167
EP 171
PG 5
SC Chemistry, Physical
GA 820WR
UT ISI:000221420900024
ER

PT J
AU Longo, E
   Orhan, E
   Pontes, FM
   Pinheiro, CD
   Leite, ER
   Varela, JA
   Pizani, PS
   Boschi, TM
   Lanciotti, F
   Beltran, A
   Andres, J
TI Density functional theory calculation of the electronic structure of
   Ba0.5Sr0.5TiO3: Photoluminescent properties and structural disorder
SO PHYSICAL REVIEW B
LA English
DT Article
ID THIN-FILM; ABO(3) PEROVSKITES; OPTICAL-PROPERTIES; LUMINESCENCE;
   BATIO3; SRTIO3; MICROSTRUCTURE; ABSORPTION; TITANATE
AB First-principles quantum-mechanical techniques, based on density
   functional theory (B3LYP level) were employed to study the electronic
   structure of ordered and deformed asymmetric models for Ba0.5Sr0.5TiO3.
   Electronic properties are analyzed and the relevance of the present
   theoretical and experimental results on the photoluminescence behavior
   is discussed. The presence of localized electronic levels in the band
   gap, due to the symmetry break, would be responsible for the visible
   photoluminescence of the amorphous state at room temperature. Thin
   films were synthesized following a soft chemical processing. Their
   structure was confirmed by x-ray data and the corresponding
   photoluminescence properties measured.
C1 Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
   Univ Estadual Paulista, Inst Quim, BR-14801907 Araraquara, SP, Brazil.
   Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
   Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
RP Longo, E, Univ Fed Sao Carlos, Dept Quim, Caixa Postal 676, BR-13565905
   Sao Carlos, SP, Brazil.
EM liec@dq.ufscar.br
CR BANIECKI JD, 1999, J EUR CERAM SOC, V19, P1457
   BARBOSA GA, 1978, J OPT SOC AM, V68, P610
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BERGLUND CN, 1967, PHYS REV, V164, P790
   BOUMA B, 1995, J PHYS CHEM SOLIDS, V56, P261
   CARDONA M, 1965, PHYS REV A, V140, P651
   CHO WS, 1998, J ALLOY COMPD, V268, P78
   DIEN E, 1999, J EUR CERAM SOC, V19, P1349
   EDEN S, 1999, RADIAT EFF DEFECT S, V149, P107
   EGLITIS RI, 2002, EUR PHYS J B, V27, P483
   EGLITIS RI, 2002, J PHYS-CONDENS MAT, V14, P3735
   GHOSEZ P, 1998, PHYS REV B, V58, P6224
   HEIFETS E, 2001, PHYS REV B, V64
   KOKALJ A, 1999, J MOL GRAPH MODEL, V17, P176
   LEE C, 1988, PHYS REV B, V37, P785
   LEITE ER, 2000, ADV MATER OPT ELECTR, V10, P235
   LEITE ER, 2002, APPL PHYS A-MATER, V74, P529
   LEONELLI R, 1985, SOLID STATE COMMUN, V54, P505
   MENG JF, 1995, PHYS LETT A, V205, P72
   MO SD, 1999, PHYS REV B, V60, P2416
   MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
   PINTO H, 2002, PHYS REV B, V65
   PIZANI PS, 2000, APPL PHYS LETT, V77, P824
   PIZANI PS, 2002, APPL PHYS LETT, V81, P253
   PONTES FM, 2000, ADV MATER OPT ELECTR, V10, P81
   PONTES FM, 2000, J MATER RES, V15, P1176
   PONTES FM, 2002, J APPL PHYS, V91, P5972
   PONTES FM, 2002, MATER CHEM PHYS, V77, P598
   SAHA S, 2000, PHYS REV B, V62, P8828
   SAUNDERS VR, 1998, CRYSTAL98 USERS MANU
   SHUVAEVA V, 2000, PHYS REV B, V62, P2969
   WEMPLE SH, 1970, PHYS REV B, V2, P2679
   YUZYUK YI, 2002, PHYS REV B, V66
   ZHU W, 2000, SENSOR ACTUAT B-CHEM, V65, P366
NR 34
TC 12
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2004
VL 69
IS 12
AR 125115
DI ARTN 125115
PG 7
SC Physics, Condensed Matter
GA 818QG
UT ISI:000221259000041
ER

PT J
AU da Silva, EZ
   Novaes, FD
   da Silva, AJR
   Fazzio, A
TI Theoretical study of the formation, evolution, and breaking of gold
   nanowires
SO PHYSICAL REVIEW B
LA English
DT Article
ID QUANTIZED CONDUCTANCE; LARGE SYSTEMS; ELECTRON-GAS; ENERGY;
   PSEUDOPOTENTIALS; OSCILLATIONS; METALS; WIRES; ATOMS
AB Real time imaging experiments with metal nanowires (NWs), in particular
   gold under stress, that show their formation, evolution, and breaking,
   were obtained with high resolution electron microscopy. In order to
   understand these results, we use density functional theory (DFT) based
   methods to simulate the evolution of Au NWs. First we use a
   tight-binding molecular dynamics (TBMD) method to understand the
   mechanisms of formation of very thin gold NWs. We present realistic
   simulations for the breaking of these NWs, whose main features are very
   similar to the experimental results. We show how defects lead to the
   formation of one-atom constrictions in the Au NW, which evolves into a
   one-atom-thick necklace chain. Similarly to the experimental results,
   we obtain that these necklaces can get as long as five-atoms from apex
   to apex. Before breaking, we obtain relatively large Au-Au bond
   distances, of the order of 3.0-3.1 Angstrom. A further pull of the wire
   causes a sudden increase of one of the bond distances, indicating the
   breaking of the NW. To get some more insight into the electronic
   structure aspects of this problem, we considered several of our
   tight-binding structures before breaking and studied them in detail
   using an ab initio method based on the DFT. By pulling the wire
   quasi-statically in this case, we also observed the breaking of the
   wire at similar distances as in the TBMD. This result was independent
   of the exchange-correlation potential used-either the local density
   approximation (LDA) or the generalized gradient approximation (GGA).
   The pulling force before rupture was obtained as 2.4 nN for the LDA,
   and 1.9 nN for the GGA. Finally, we also present a detailed analysis of
   the electronic structure properties for the Au neck atoms, such as the
   density of states and charge densities, for some configurations before
   the rupture.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP da Silva, EZ, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
   BR-13083970 Campinas, SP, Brazil.
EM zacarias@ifi.unicamp.br
   ajrsilva@if.usp.br
   fazzio@if.usp.br
CR AGRAIT N, 1993, PHYS REV B, V47
   ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
   BAHN SR, 2002, PHYS REV B, V66
   BRANDBYGE M, 1995, PHYS REV B, V52, P8499
   DASILVA EZ, IN PRESS COMPUT MAT
   DASILVA EZ, 2001, PHYS REV LETT, V87
   GIMZEWSKI JK, 1987, PHYSICA C, V38, P1284
   GULSEREN O, 1998, PHYS REV LETT, V80, P3775
   HAKKINEN H, 1999, J PHYS CHEM B, V103, P8814
   HAMMER B, 1999, PHYS REV B, V59, P7413
   HEURICH J, 2002, PHYS REV LETT, V88
   HOHENBERG P, 1964, PHYS REV, V136, B864
   IIJIMA S, 1991, NATURE, V354, P56
   KIRCHHOFF F, 2001, PHYS REV B, V63
   KOHN W, 1965, PHYS REV, V140, A1133
   KONDO Y, 1997, PHYS REV LETT, V79, P3455
   KONDO Y, 2000, SCIENCE, V289, P606
   KRESSE G, 1993, PHYS REV B, V47, R558
   KRESSE G, 1996, PHYS REV B, V54, P11169
   KRUGER D, 2002, PHYS REV LETT, V89
   LANDMAN U, 1990, SCIENCE, V248, P454
   LEGOAS SB, 2002, PHYS REV LETT, V88
   MEHL MJ, 1996, PHYS REV B, V54, P4519
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   MORELAND J, 1992, PHYSICA C, V191, P485
   MULLER CJ, 1992, PHYS REV LETT, V69, P140
   NOVAES FD, 2003, PHYS REV LETT, V90
   OHNISHI H, 1998, NATURE, V395, P780
   ORDEJON P, 1996, PHYS REV B, V53
   OSHIMA Y, 2002, PHYS REV B, V65
   PARK H, 2000, NATURE, V407, P57
   PERDEW JP, 1992, PHYS REV B, V45, P13244
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   REICHERT J, 2002, PHYS REV LETT, V88
   RIBEIRO FJ, 2003, PHYS REV B, V68
   RODRIGUES V, 2000, PHYS REV LETT, V85, P4124
   RODRIGUES V, 2001, PHYS REV B, V63
   RUBIOBOLLINGER G, 2001, PHYS REV LETT, V87
   SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
   SANCHEZPORTAL D, 1999, PHYS REV LETT, V83, P3884
   SERENA PA, 1997, NANOWIRES, V340
   SKORODUMOVA NV, 2003, PHYS REV B, V67
   TAKAI Y, 2001, PHYS REV LETT, V87
   TORRES JA, 1999, SURF SCI LETT, V83, P441
   TOSATTI E, 2001, SCIENCE, V291, P288
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   VANDERBILT D, 1990, PHYS REV B, V41, P7892
   WEBB RA, 1985, PHYS REV LETT, V54, P2696
   WIESENDANGER R, 1994, SCANNING PROBE MICRO
   YANSON AI, 1998, NATURE, V395, P783
NR 50
TC 14
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2004
VL 69
IS 11
AR 115411
DI ARTN 115411
PG 11
SC Physics, Condensed Matter
GA 812BC
UT ISI:000220814000125
ER

PT J
AU Shimizu, K
   Chaimovich, H
   Farah, JPS
   Dias, LG
   Bostick, DL
TI Calculation of the dipole moment for polypeptides using the generalized
   born-electronegativity equalization method: Results in vacuum and
   continuum-dielectric solvent
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID INITIO QUANTUM-CHEMISTRY; POLARIZABLE FORCE-FIELD; ATOMIC CHARGES;
   FLUCTUATING CHARGE; MODEL; SOLVATION; PARAMETERIZATION; DISTRIBUTIONS;
   POTENTIALS; MOLECULES
AB The electronegativity equalization methodology, EEM, is frequently used
   to calculate the charge distribution and reactivity index (e.g., local
   softness and hardness, condensed Fukui function) of molecules. However,
   recent work (Chelli, R. et al., J. Chem. Phys. 1999, 111, 8569) has
   shown a serious shortcoming of EEM in the prediction of the
   polarizability for large molecules. In this paper, our goal is to show
   that we can obtain a reliable dipole moment for polypeptides in vacuum
   and continuum-dielectric solvent using the constrained charge
   approximation and the generalized Born-electronegativity equalization
   method. Different EEM parameterizations were tested and compared to the
   expected values of the dipole moment vector operator as calculated at
   the ab initio B3LYP/6-311G(d,p) level. One EEM parameterization
   (Bakowies, D., Thiel, W., J. Comput. Chem. 1996, 17, 87) when used with
   the constrained charge approximation and the generalized
   Born-electronegativity equalization method was comparable to the CM1
   charge model (Storer et al., J. Comput.-Aided Mol. Des. 1995, 9, 87) in
   the prediction of the dipole moment vector in vacuum and
   continuum-dielectric solvent, but was calculated with a much greater
   computational efficiency.
C1 Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA.
   Univ Sao Paulo, Inst Chem, Dept Chem, Sao Paulo, SP, Brazil.
   Univ Sao Paulo, Inst Chem, Dept Biochem, Sao Paulo, SP, Brazil.
   Univ N Carolina, Dept Phys, Chapel Hill, NC 27599 USA.
   Univ N Carolina, Program Mol & Cell Biophys, Chapel Hill, NC 27599 USA.
RP Dias, LG, Univ N Carolina, Dept Chem, Venable Hall CB 3290, Chapel
   Hill, NC 27599 USA.
EM lgdias@email.unc.edu
CR BAKOWIES D, 1996, J COMPUT CHEM, V17, P87
   BANKS JL, 1999, J CHEM PHYS, V110, P741
   BASHFORD D, 2000, ANNU REV PHYS CHEM, V51, P129
   BONDI A, 1964, J PHYS CHEM-US, V68, P441
   BOTTCHER CJF, 1952, THEORY ELECT POLARIZ
   CHELLI R, 1999, J CHEM PHYS, V111, P8569
   CHELLI R, 2002, J CHEM PHYS, V117, P9175
   CHO KH, 2001, J PHYS CHEM B, V105, P3624
   CONG Y, 2000, CHEM PHYS LETT, V316, P324
   CRAMER CJ, 1999, CHEM REV, V99, P2161
   DEPPMEIER BJ, 1999, MACSPARTAN PRO VL 02
   DIAS LG, 2002, CHEM PHYS, V282, P237
   FRISCH MJ, 2003, GAUSSIAN 03 REVISION
   GASTEIGER J, 1980, TETRAHEDRON, V36, P3219
   GHOSH A, 1998, J PHYS CHEM B, V102, P10983
   HAWKINS GD, 1999, AMSOL VERSION 6 6
   JORGENSEN ML, 1996, J AN CHEM SOC, V113, P11225
   KAMINSKI GA, 2002, J COMPUT CHEM, V23, P1515
   LIPINSKI J, 1996, CHEM PHYS LETT, V262, P449
   MENEGON G, 2002, PHYS CHEM CHEM PHYS, V4, P5933
   MORTIER WJ, 1986, J AM CHEM SOC, V108, P4315
   NILAR SH, 1996, THEOCHEM-J MOL STRUC, V363, P97
   PASCUALAHUIR JL, 1994, J COMPUT CHEM, V15, P1127
   PEARSON RG, 1986, J AM CHEM SOC, V108, P6109
   RIBEIRO MCC, 2000, J CHEM PHYS, V113, P4722
   RICK SW, 1996, J AM CHEM SOC, V118, P672
   SHARP K, 1992, J PHYS CHEM-US, V96, P3822
   STERN HA, 1999, J PHYS CHEM B, V103, P4730
   STORER JW, 1995, J COMPUT AID MOL DES, V9, P87
   TOMASI J, 1994, CHEM REV, V94, P2027
   YANG ZZ, 1997, J PHYS CHEM A, V101, P6315
   YORK DM, 1996, J CHEM PHYS, V104, P159
NR 32
TC 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD APR 1
PY 2004
VL 108
IS 13
BP 4171
EP 4177
PG 7
SC Chemistry, Physical
GA 807TT
UT ISI:000220524500033
ER

PT J
AU Pliego, JR
   Riveros, JM
TI Free energy profile of the reaction between the hydroxide ion and ethyl
   acetate in aqueous and dimethyl sulfoxide solutions: A theoretical
   analysis of the changes induced by the solvent on the different
   reaction pathways
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; CARBOXYLIC-ACID ESTERS; GAS-PHASE
   REACTION; BASE-CATALYZED-HYDROLYSIS; CARBONYL OXYGEN EXCHANGE;
   SOLVATION FREE-ENERGY; ALKALINE-HYDROLYSIS; AB-INITIO; METHYL FORMATE;
   REACTION-MECHANISMS
AB An extensive analysis of the free energy profile for the reaction of
   the hydroxide ion with ethyl acetate in both aqueous and dimethyl
   sulfoxide (DMSO) solutions has been carried out using ab initio
   calculations and including the solvent effect by the polarizable
   continuum model. Different reaction pathways were investigated, such as
   the usual B(AC)2 mechanism, the carbanion mechanism, the elimination
   mechanism, and the S(N)2 mechanism. Our calculation agrees with the
   view that in aqueous and DMSO solution basic hydrolysis occurs by the
   B(AC)2 mechanism. In water, the predicted activation free energy value
   is 17.6 kcal mol(-1), which is in very good agreement with the
   experimental value of 18.8 kcal mol(-1). Using a new parametrization of
   the polarizable continuum model adequate to describe anions and neutral
   species in DMSO, the present study predicts a rate enhancement by a
   factor of 435 in the reaction when going from water (protic solvent) to
   DMSO (dipolar aprotic solvent). In this solvent, the activation free
   energy is predicted to drop to 14.0 kcal mol(-1). Furthermore, our
   results point out that the elimination mechanism is only 6.0 kcal
   mol(-1) (DeltaG(Sol)(double dagger) = 20.0 kcal mol(-1)) less favorable
   than the B(AC)2 mechanism in DMSO solution, and 8.4 kcal mol(-1) less
   favorable in water. The S(N)2 and the carbanion mechanisms have
   barriers above 30 kcal mol(-1) in water and DMSO and are thus highly
   unfavorable. These results suggest the elimination mechanism can become
   the dominant pathway in the basic hydrolysis of sterically crowded
   esters at the carbonyl center.
C1 Univ Fed Santa Catarina, Dept Quim, CFM, BR-88040900 Florianopolis, SC, Brazil.
   Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Pliego, JR, Univ Fed Santa Catarina, Dept Quim, CFM, BR-88040900
   Florianopolis, SC, Brazil.
EM josef@qmc.ufsc.br
   jmmigra@iq.usp.br
CR ALMERINDO GI, 2004, J PHYS CHEM A, V108, P166
   BAKOWIES D, 1999, J AM CHEM SOC, V121, P5712
   BARONE V, 1997, J CHEM PHYS, V107, P3210
   BASAIF S, 1989, J AM CHEM SOC, V111, P2647
   BENDER ML, 1956, J AM CHEM SOC, V78, P317
   BENDER ML, 1958, J AM CHEM SOC, V80, P1044
   BERNARDI F, 1993, J ORG CHEM, V58, P750
   BORDWELL FG, 1988, ACCOUNTS CHEM RES, V21, P456
   BRUICE TC, 1968, J AM CHEM SOC, V90, P7136
   CANCES E, 1997, J CHEM PHYS, V107, P3032
   CHANDRASEKHAR J, 2002, J PHYS CHEM B, V106, P8078
   COSSI M, 1996, CHEM PHYS LETT, V255, P327
   CUCCOVIA IM, 2000, J CHEM SOC PERK T 2, P1896
   DEJAEGERE A, 1994, J CHEM SOC FARADAY T, V90, P1763
   FRISCH MJ, 1994, GAUSSIAN 94
   FUCHS R, 1974, J PHYS CHEM-US, V78, P1509
   GUTHRIE JP, 1974, J AM CHEM SOC, V96, P3608
   HABERFIELD P, 1972, J AM CHEM SOC, V94, P71
   HAEFFNER F, 1999, J MOL STRUC-THEOCHEM, V459, P85
   HILL TL, 1960, INTRO STAT THERMODYN
   JENCKS WP, 1972, CHEM REV, V72, P705
   JOHNSON SL, 1967, ADV PHYS ORG CHEM, V5, P237
   JORGENSEN WL, 1987, ACS SYM SER, V353, P200
   KAHN K, 2003, J PHYS CHEM B, V107, P6876
   LINSTROM PJ, 2003, NIST CHEM WEBBOOK
   LONGO RL, 2001, J BRAZIL CHEM SOC, V12, P52
   LOPEZ X, 2003, J PHYS CHEM A, V107, P2304
   MASSOVA I, 1999, J PHYS CHEM B, V103, P8628
   MCMURRY J, 1976, ORG REACTIONS, V24, P187
   MILLER WH, 1980, J CHEM PHYS, V72, P99
   MUKHTAR TA, 2001, BIOCHEMISTRY-US, V40, P8877
   OBRIEN JF, 1995, J PHYS CHEM-US, V99, P12759
   PARKER AJ, 1969, CHEM REV, V69, P1
   PENG Z, 1993, J AM CHEM SOC, V115, P9640
   PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
   PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
   PLIEGO JR, 2001, CHEM-EUR J, V7, P169
   PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
   PLIEGO JR, 2002, CHEM PHYS LETT, V355, P543
   PLIEGO JR, 2002, CHEM-EUR J, V8, P1945
   PLIEGO JR, 2002, J PHYS CHEM A, V106, P371
   PLIEGO JR, 2002, J PHYS CHEM A, V106, P7434
   PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
   PRANATA J, 1994, J PHYS CHEM-US, V98, P1180
   REPIC O, 2001, ORG PROCESS RES DEV, V5, P519
   ROBERTS DD, 1965, J ORG CHEM, V30, P3516
   ROUX A, 1980, J SOLUTION CHEM, V9, P59
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SHAIN SA, 1968, J AM CHEM SOC, V90, P5848
   SLEBOCKATILK H, 2002, CAN J CHEM, V80, P1343
   SLEBOCKATILK H, 2003, J AM CHEM SOC, V125, P1851
   SMITH MB, 2001, MARCHS ADV ORGANIC C
   TANTILLO DJ, 1999, J ORG CHEM, V64, P3066
   TOMASI J, 1994, CHEM REV, V94, P2027
   TOMASI J, 1999, INT J QUANTUM CHEM, V75, P783
   TOMASI J, 2002, PHYS CHEM CHEM PHYS, V4, P5697
   WU ZJ, 2003, J AM CHEM SOC, V125, P3642
   ZHAN CG, 2000, J AM CHEM SOC, V122, P1522
   ZHAN CG, 2000, J AM CHEM SOC, V122, P2621
   ZHAN CG, 2000, J PHYS CHEM A, V104, P7672
NR 60
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD APR 1
PY 2004
VL 108
IS 13
BP 2520
EP 2526
PG 7
SC Chemistry, Physical
GA 807TR
UT ISI:000220524300024
ER

PT J
AU Machado, AM
   Masili, M
TI Variationally stable calculations for molecular systems:
   Polarizabilities and two-photon ionization cross section for the
   hydrogen molecule
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MATRIX-FLOQUET THEORY; INTENSE LASER FIELDS; MULTIPHOTON IONIZATION;
   H-2 MOLECULE; DYNAMIC POLARIZABILITIES; DIPOLE POLARIZABILITIES;
   OPTICAL-PROPERTIES; WAVE-FUNCTIONS; H-ATOM; HYPERPOLARIZABILITIES
AB The variationally stable method of Gao and Starace [B. Gao and A. F.
   Starace, Phys. Rev. Lett. 61, 404 (1988); Phys. Rev. A 39, 4550 (1989)]
   has been applied for the first time to the study of multiphoton
   processes in molecular systems. The generalization in theory is
   presented, as well as the calculation of properties such as the static
   and dynamic polarizabilities of the hydrogen molecule and the
   generalized two-photon ionization cross section. The Schwinger
   variational iterative method [R. R. Lucchese and V. McKoy, Phys. Rev. A
   21, 112 (1980)] has been applied in the achievement of the
   photoelectron wave function, while a Hartree-Fock representation has
   been used for the target. This research has been motivated by the
   scarceness of ab initio calculations of molecular multiphoton
   ionization cross sections in the literature. (C) 2004 American
   Institute of Physics.
C1 Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
   Ctr Univ Cent Paulista, BR-13563470 Sao Carlos, SP, Brazil.
RP Machado, AM, Univ Sao Paulo, Inst Fis Sao Carlos, Caixa Postal 369,
   BR-13560970 Sao Carlos, SP, Brazil.
CR APALATEGUI A, 2002, J PHYS B-AT MOL OPT, V35, P1909
   BERNS RM, 1981, MOL PHYS, V44, P1215
   BISHOP DM, 1980, J CHEM PHYS, V72, P5125
   BISHOP DM, 1987, PHYS REV A, V36, P2171
   BISHOP DM, 1990, REV MOD PHYS, V62, P343
   BONIN KD, 1994, INT J MOD PHYS B, V8, P3313
   BURKE PG, 1991, J PHYS B ATOM MOL PH, V24, P761
   BURKE PG, 2000, J PHYS B-AT MOL OPT, V33, P143
   CAFFAREL M, 1993, PHYS REV A, V47, P3704
   COLGAN J, 2001, J PHYS B-AT MOL OPT, V34, P2089
   DALGARNO A, 1955, P ROY SOC LOND A MAT, V233, P70
   FORD AL, 1973, PHYS REV A, V7, P418
   GAO B, 1988, PHYS REV LETT, V61, P404
   GAO B, 1989, PHYS REV A, V39, P4550
   GAO B, 1990, J OPT SOC AM B, V7, P622
   GIUSTISUZOR A, 1995, J PHYS B-AT MOL OPT, V28, P309
   JASZUNSKI M, 1984, MOL PHYS, V52, P1209
   JIANG TF, 1988, PHYS REV A, V38, P2347
   KOBUS J, 2001, J PHYS B-AT MOL OPT, V34, P5127
   KOLOS W, 1960, REV MOD PHYS, V32, P219
   KOLOS W, 1967, J CHEM PHYS, V46, P1426
   KULANDER KC, 1996, PHYS REV A, V53, P2562
   LAMBROPOULOS P, 1998, PHYS REP, V305, P203
   LANGHOFF PW, 1970, J CHEM PHYS, V52, P1435
   LIU CR, 1992, PHYS REV A, V46, P5985
   LUCCHESE RR, 1980, PHYS REV A, V21, P112
   MACHADO LE, 1999, J CHEM PHYS, V110, P7228
   MADSEN LB, 1998, J PHYS B-AT MOL OPT, V31, P87
   MASILI M, 2000, PHYS REV A, V62
   MASILI M, 2003, PHYS REV A, V68
   MONZANI AL, 1999, PHYS REV A, V60, R21
   PAN C, 1990, PHYS REV A, V41, P6271
   PAPADOPOULOS MG, 1995, J CHEM PHYS, V102, P371
   PLUMMER M, 1995, J PHYS B-AT MOL OPT, V28, P4073
   PURVIS J, 1993, PHYS REV LETT, V71, P3943
   REINSCH EA, 1985, J CHEM PHYS, V83, P5784
   RYCHLEWSKI J, 1980, CHEM PHYS LETT, V73, P135
   SAENZ A, 1999, J PHYS B-AT MOL OPT, V32, P5629
   SAUER SPA, 1991, INT J QUANTUM CHEM, V39, P667
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SOBRINHO AA, 2001, J MOL STRUC-THEOCHEM, V539, P65
   STARACE AF, 1987, PHYS REV A, V36, P1705
   STASZEWSKA G, 2002, J MOL SPECTROSC, V212, P208
   VANGISBERGEN SJA, 1998, PHYS REV A, V57, P2556
NR 44
TC 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD APR 22
PY 2004
VL 120
IS 16
BP 7505
EP 7511
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 810AA
UT ISI:000220676000032
ER

PT J
AU Costa, LAS
   Rocha, WR
   De Almeida, WB
   Dos Santos, HF
TI The solvent effect on the aquation processes of the
   cis-dichloro(ethylenediammine)platinum(II) using continuum solvation
   models
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; ORGANIC-MOLECULES;
   AB-INITIO; APPROXIMATION; DNA
AB The present Letter describes a systematic analysis of the solvent
   effect on the hydrolysis process of an important cisplatin analogue
   (cis-DEP). Self-consistent reaction field continuum models were used to
   include the solvent effect at the HF, DFT and MP2 levels of theory. A
   disagreement between the gas phase calculated (k(2) = 1.92 x 10(-11)
   M-1 s(-1)) and experimental (k(2) = 4.4 x 10(-5) M-1 s(-1)) rate
   constant for the second aquation reaction of cis-DEP was recently
   reported by us. The value calculated in aqueous solution at the PCM-MP2
   level was 2.87 x 10(-5) M-1 s(-1) in perfect accordance with
   experiment. Calculations using spherical cavity SCRF model require
   inclusion of high order multipole terms (up to octupole). (C) 2004
   Elsevier B.V. All rights reserved.
C1 Univ Fed Juiz Fora, ICE, Dept Quim, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
   Univ Fed Minas Gerais, Dept Quim, ICEx, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
   EPCAR, DEPENS, Dept Ensino Aeronaut, Comando Aeronaut, BR-36200000 Barbacena, MG, Brazil.
   Univ Fed Pernambuco, CCEN, Dept Quim Fundamental, BR-50670901 Recife, PE, Brazil.
RP Dos Santos, HF, Univ Fed Juiz Fora, ICE, Dept Quim, NEQC, Campus Univ
   Martelos, BR-36036330 Juiz De Fora, MG, Brazil.
EM helius@quimica.ufjf.br
CR BARONE V, 1997, J CHEM PHYS, V107, P3210
   BONDI A, 1964, J PHYS CHEM-US, V68, P441
   COLEY RF, 1973, INORG CHIM ACTA, V7, P573
   CONNORS KA, 1990, CHEM KINETICS, P200
   COSSI M, 1996, CHEM PHYS LETT, V255, P327
   COSTA LAS, 2003, J CHEM PHYS, V118, P10584
   DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
   FREY U, 1993, INORG CHEM, V32, P1333
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   HAMBLEY TW, 2001, J CHEM SOC DALT 1007, P2711
   HAY PJ, 1985, J CHEM PHYS, V82, P299
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   KIRKWOOD JG, 1938, J CHEM PHYS, V6, P506
   MILLER SE, 1991, INORG CHIM ACTA, V190, P135
   MUNK VP, 2003, INORG CHEM, V42, P3582
   ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
   ORVILLETHOMAS WJ, 1972, INTERNAL ROTATION MO, P498
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PERDEW JP, 1992, PHYS REV B, V46, P6671
   RAYMOND E, 2002, MOL CANCER THER, V1, P227
   WONG E, 1999, CHEM REV, V99, P2451
NR 21
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAR 21
PY 2004
VL 387
IS 1-3
BP 182
EP 187
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 804AV
UT ISI:000220272500032
ER

PT J
AU de Lazaro, S
   Longo, E
   Sambrano, JR
   Beltran, A
TI Structural and electronic properties of PbTiO3 slabs: a DFT periodic
   study
SO SURFACE SCIENCE
LA English
DT Article
DE lead; titanium oxide; density functional calculations; surface
   electronic phenomena (work function; surface potential, surface states,
   etc.); semiconducting surfaces
ID THIN-FILMS; VISIBLE PHOTOLUMINESCENCE; FERROELECTRIC MEMORIES;
   PEROVSKITE TITANATES; SURFACE RELAXATION; ABO(3) PEROVSKITES;
   FUNCTIONAL THEORY; DENSITY; BATIO3; BULK
AB Structural and electronic properties of the bulk and relaxed surfaces
   (TiO2 and PbO terminated) of cubic PbTiO3 are investigated by means of
   periodic quantum-mechanical calculations based on density functional
   theory. It is observed that the difference in surface energies is small
   and relaxations effects are most prominent for Ti and Ph surface atoms.
   The electronic structure shows a splitting of the lowest conduction
   bands for the TiO2 terminated surface and of the highest valence bands
   for the PbO terminated slab. The calculated indirect band gap is: 3.18,
   2.99 and 3.03 eV for bulk, TiO2 and PbO terminations, respectively. The
   electron density maps show that the Ti-O bond has a partial covalent
   character, whereas the Pb-O bonds present a very low covalency. (C)
   2004 Elsevier B.V. All rights reserved.
C1 Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
   Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
   Univ Estadual Paulista, Lab Simulacao Mol, BR-17033360 Bauru, SP, Brazil.
RP Sambrano, JR, Univ Jaume I, Dept Ciencies Expt, POB 6029, Castello
   12080, Spain.
EM sambrano@fc.unesp.br
   beltran@exp.uji.es
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BELTRAN A, 2001, CHEM PHYS LETT, V338, P224
   BELTRAN A, 2001, SURF SCI, V490, P116
   BIRCH F, 1978, J GEOPHYS RES, V83, P1257
   CHEN ZX, 2001, CHEM PHYS, V270, P253
   CHEN ZX, 2001, J PHYS CHEM B, V105, P5766
   CHEN ZX, 2002, J PHYS CHEM B, V106, P9986
   CHENG C, 2000, PHYS REV B, V62, P10409
   COHEN RE, 2000, J PHYS CHEM SOLIDS, V61, P139
   COX PA, 1998, ELECT STRUCTURE CHEM
   DOVESI R, 1998, CRYSTAL98 USERS MANU
   DURAND P, 1975, THEOR CHIM ACTA, V38, P283
   GARCIA A, 1996, PHYS REV B, V54, P3817
   GLAZER AM, 1978, ACTA CRYSTALLOGR B, V34, P1065
   GONIAKOWSKI J, 1996, PHYS REV B, V53, P957
   HEIFETS E, 1999, SURF REV LETT, V6, P1215
   HEIFETS E, 2000, SURF SCI, V462, P19
   HEIFETS E, 2001, PHYS REV B, V64
   HEIFETS E, 2002, SURF SCI, V513, P211
   HU CH, 1998, ENCY COMPUTATIONAL C
   KOKALJ A, 1999, J MOL GRAPH MODEL, V17, P176
   KRMAR M, 2003, PHYS REV B, V68
   LANCIOTTI F, 2002, APPL PHYS A-MATER, V74, P787
   LEE C, 1988, PHYS REV B, V37, P785
   LEE SY, 2001, J CRYST GROWTH, V226, P247
   LEITE ER, 2001, APPL PHYS LETT, V78, P2148
   MEYER B, 1999, FARADAY DISCUSS, V114, P395
   MURALT P, 2000, J MICROMECH MICROENG, V10, P136
   MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
   NELDER JA, 1965, COMPUT J, V7, P308
   PISANI C, 1988, HARTREEFOCK AB INITI
   PIZANI PS, 2000, APPL PHYS LETT, V77, P824
   PIZANI PS, 2002, APPL PHYS LETT, V81, P253
   SANI A, 2002, J PHYS-CONDENS MAT, V14, P10601
   SCHWARTZ RN, 1995, APPL PHYS LETT, V67, P1352
   SCOTT JF, 1989, SCIENCE, V246, P1400
   SCOTT JF, 1989, SCIENCE, V246, P1549
   SCOTT JF, 1995, PHYS WORLD, V8, P46
   SENSATO FR, 2002, SURF SCI, V511, P408
   TSENG YK, 1998, APPL PHYS LETT, V72, P3285
   TYBELL T, 1998, APPL PHYS LETT, V72, P1454
   ZHAO Q, 2002, SURF COAT TECH, V160, P173
NR 42
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD MAR 10
PY 2004
VL 552
IS 1-3
BP 149
EP 159
PG 11
SC Chemistry, Physical
GA 801VI
UT ISI:000220123000019
ER

PT J
AU Scopel, WL
   da Silva, AJR
   Orellana, W
   Fazzio, A
TI Comparative study of defect energetics in HfO2 and SiO2
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; THERMAL-STABILITY; THIN-FILMS;
   MOLECULAR-DYNAMICS; METALS; SUBSTRATE; SI(100); HAFNIUM; OXIDES; ZRO2
AB We perform ab initio calculations, based on density functional theory,
   for substitutional and vacancy defects in the monoclinic hafnium oxide
   (m-HfO2) and alpha-quartz (SiO2). The neutral oxygen vacancies and
   substitutional Si and Hf defects in HfO2 and SiO2, respectively, are
   investigated. Our calculations show that, for a large range of Hf
   chemical potential, Si substitutional defects are most likely to form
   in HfO2, leading to the formation of a silicate layer at the HfO2/Si
   interface. We also find that it is energetically more favorable to form
   oxygen vacancies in SiO2 than in HfO2, which implies that
   oxygen-deficient HfO2 grown on top of SiO2 will consume oxygen from the
   SiO2. (C) 2004 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Scopel, WL, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
   Sao Paulo, Brazil.
EM fazzio@if.usp.br
CR BASTOS KP, 2002, APPL PHYS LETT, V81, P1669
   BINGGELI N, 1991, PHYS REV B, V44, P4771
   BUSH BW, 2002, MAT RES B, V27, P206
   CALLEGARI A, 2001, J APPL PHYS, V90, P6466
   CHO M, 2002, APPL PHYS LETT, V81, P3630
   CHO MH, 2002, APPL PHYS LETT, V81, P472
   FOSTER AS, 2002, PHYS REV B, V65
   FOSTER AS, 2002, PHYS REV LETT, V89
   GUTOWSKI M, 2002, APPL PHYS LETT, V80, P1897
   JEON TS, 2001, APPL PHYS LETT, V78, P368
   KANG J, 2003, PHYS REV B, V68
   KATO H, 2002, J APPL PHYS, V92, P1106
   KRESSE G, 1993, PHYS REV B, V47, P558
   KRESSE G, 1993, PHYS REV B, V48, P13115
   KRESSE G, 1996, COMP MATER SCI, V6, P15
   LEE JH, 2002, PHYS REV B, V66
   MISA V, 2002, MRS BULL, V27, P212
   MULLER DA, 1999, NATURE, V399, P758
   ORELLANA W, 2001, PHYS REV LETT, V87
   ORELLANA W, 2003, PHYS REV LETT, V90
   PARK BK, 2002, APPL PHYS LETT, V80, P2368
   PARK J, 2002, J ELECTROCHEM SOC, V149, G89
   PERDEW JP, 1992, PHYS REV B, V46, P6671
   VANDERBILT D, 1990, PHYS REV B, V41, P7892
   WANG SJ, 2003, APPL PHYS LETT, V82, P2047
NR 25
TC 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD MAR 1
PY 2004
VL 84
IS 9
BP 1492
EP 1494
PG 3
SC Physics, Applied
GA 778WJ
UT ISI:000189264100020
ER

PT J
AU Silva, CHTP
   Almeida, P
   Taft, CA
TI Density functional and docking studies of retinoids for cancer treatment
SO JOURNAL OF MOLECULAR MODELING
LA English
DT Article
DE density functional; docking; cancer treatment
ID NUCLEAR RECEPTOR; AB-INITIO; ACID; GAMMA; SELECTIVITY; ANALOGS;
   BINDING; ALPHA
AB The retinoic acid receptor (RAR) and retinoid X receptor (RXR) are
   members of the nuclear receptor superfamily. The ligand-binding domain
   contains the ligand-dependent activation function. The isotypes
   RARalpha,beta and gamma are distinct pharmacological targets for
   retinoids involved in the treatment of various cancers and skin
   diseases. There is thus considerable interest in synthetic retinoids
   with isotype selectivity and reduced side effects. In this work we have
   focused on the retinoid acid receptor and three of its panagonists. We
   have carried out density functional geometry optimizations at the
   B3LYP/6-31G* level, computed two types of atomic charges and also
   electrostatic potentials. A docking program was used to investigate the
   interactions between the receptor and the three ligands. A
   theoretically more potent inhibitor, which was obtained by modifying
   one of the retinoic acids investigated, is proposed.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
   Univ Sao Paulo, Inst Fis Sao Carlos, Sao Carlos, SP, Brazil.
   Inst Ciencias Saude, Dept Ciencias Biointeracao, Lab Biotecnol & Ecol Microrganismos, Salvador, BA, Brazil.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150,
   BR-22290180 Rio De Janeiro, Brazil.
EM taft@cbpf.br
CR *ACC, 2000, INS 2 US GUID VERS 2
   ADAMS J, 1993, NEUROTOXICOL TERATOL, V15, P193
   ALLENBY G, 1994, J BIOL CHEM, V269, P16689
   ARISSAWA M, 2003, INT J QUANTUM CHEM, V93, P422
   BLANEY FE, 1999, INT J QUANTUM CHEM, V73, P97
   EWING TJA, 2001, J COMPUT AID MOL DES, V15, P411
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FRISCH MJ, 2002, GAUSSIAN 98 REVISION
   GUDAS LJ, 1994, J BIOL CHEM, V269, P15399
   HIXSON EJ, 1978, TOXICOL APPL PHARM, V44, P29
   KLAHOLZ BP, 2000, J MOL BIOL, V302, P155
   KLAHOLZ BP, 2000, P NATL ACAD SCI USA, V97, P6322
   LEVIN AA, 1992, NATURE, V355, P359
   MANGELSDORF DJ, 1990, NATURE, V345, P224
   MARTINS JBL, 1998, INT J QUANTUM CHEM, V69, P117
   MARTINS JBL, 2002, INT J QUANTUM CHEM, V90, P575
   MOON RC, 1994, RETINOIDS BIOL CHEM, P573
   MUCCIO DD, 1996, J MED CHEM, V39, P3625
   NAZDAN AM, 1995, REPORTS MED CHEM, V30, P119
   PAVAO AC, 2001, J PHYS CHEM A, V105, P5
   PETKOVICH M, 1987, NATURE, V330, P444
   PONDER MS, 2001, J MOL STRUC-THEOCHEM, V549, P39
   ROSEN J, 1995, J MED CHEM, V38, P4855
   ZHANG XK, 1992, NATURE, V358, P587
NR 24
TC 5
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 0948-5023
J9 J MOL MODEL
JI J. Mol. Model.
PD FEB
PY 2004
VL 10
IS 1
BP 38
EP 43
PG 6
SC Chemistry, Multidisciplinary; Computer Science, Interdisciplinary
   Applications; Biochemistry & Molecular Biology; Biophysics
GA 774RK
UT ISI:000188998200007
ER

PT J
AU Gracia, L
   Andres, J
   Safont, VS
   Beltran, A
TI DFT study of the reaction between VO2+ and C2H6
SO ORGANOMETALLICS
LA English
DT Review
ID POTENTIAL-ENERGY SURFACES; OXIDE CLUSTER CATIONS; GAS-PHASE CHEMISTRY;
   ELECTRONIC-STRUCTURE ASPECTS; C-H BOND; SPIN-FORBIDDEN PROCESSES;
   VANADIUM-OXIDE; AB-INITIO; TRANSITION-STATES; CROSSING POINTS
AB The molecular mechanisms of the reaction VO2+ ((1)A(1)/(3)A'') + C2H6
   ((1)A(g)) to yield V(OH)(2)(+) ((1)Sigma(+)/(3)Sigma(-)) + C2H4
   ((1)A(g)) and/or VO+ ((1)Delta/(3)Sigma) + H2O ((1)A(1)) + C2H4 (Ag-1)
   have been investigated with density functional theory (DFT) at the
   B3LYP/6-311G(2d,p) level. Calculations including geometry optimization,
   vibrational analysis, and Gibbs free energy for the stationary points
   on the reactive potential energy surfaces at both the singlet (s) and
   first excited triplet (t) electronic states have been carried out. The
   most thermodynamically and kinetically favorable pathway is the
   formation of t-V(OH)(2)(+) + C2H4 along a four-step molecular mechanism
   (insertion, two consecutive hydrogen transfers, and elimination). A
   crossing point between s and t electronic states has been
   characterized. A comparison with previous works on VO2+ + C2H4 (Gracia
   et al. J. Phys. Chem. A 2003, 107, 3107-3120) and VO2+ + C3H8 (Engeser
   et al. Organometallics 2003, 22, 3933-3943) reactions allows us a
   rationalization of the different reactivity patterns. The catalytic
   role of water molecules in the tautomerization process between hydrated
   oxide cation, VO(H2O)(+,) and dihydroxide cation, V(OH)(2)(+), is
   achieved by a water-assisted mechanism.
C1 Univ Jaume I, Dept Ciencias Expt, Castello 12080, Spain.
   Univ Estadual Paulista, Lab Simulacao Mol, BR-17033360 Bauru, SP, Brazil.
RP Andres, J, Univ Jaume I, Dept Ciencias Expt, Box 224, Castello 12080,
   Spain.
EM andres@exp.uji.es
CR ANGLADA JM, 1996, J AM CHEM SOC, V118, P4636
   ANGLADA JM, 1997, J COMPUT CHEM, V18, P992
   ARGYLE MD, 2002, J PHYS CHEM B, V106, P5421
   ARMENTROUT PB, 1991, SCIENCE, V251, P175
   ASCHI M, 1998, CHEM COMMUN     0307, P531
   ASCHI M, 1999, J CHEM SOC PERK  JUN, P1059
   ASCHI M, 2000, INT J MASS SPECTROM, V201, P151
   ASCHI M, 2001, CHEM PHYS, V265, P251
   ASMIS KR, 2002, PHYS CHEM CHEM PHYS, V4, P1101
   BARRIENTOS C, 1999, CHEM PHYS LETT, V306, P168
   BEARPARK MJ, 1994, CHEM PHYS LETT, V223, P269
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BELL RC, 1998, J PHYS CHEM A, V102, P1733
   BELL RC, 1998, J PHYS CHEM A, V102, P8293
   BELL RC, 1999, J CLUST SCI, V10, P509
   BELL RC, 1999, J PHYS CHEM A, V103, P1585
   BELL RC, 1999, J PHYS CHEM A, V103, P2992
   BELL RC, 2001, J CHEM PHYS, V114, P798
   BOHME DK, 1992, INT J MASS SPECTROM, V115, P95
   BOTTOMLEY F, 1988, ADV ORGANOMET CHEM, V28, P339
   CALATAYUD M, 2001, CHEM PHYS LETT, V333, P493
   CALATAYUD M, 2001, J PHYS CHEM A, V105, P9760
   CALATAYUD M, 2001, THEOR CHEM ACC, V105, P299
   CARTER EA, 1988, J PHYS CHEM-US, V92, P5679
   CASSADY CJ, 1992, ORGANOMETALLICS, V11, P2367
   CHANG AHH, 1993, J CHEM PHYS, V99, P6824
   CORNEHL HH, 1997, CHEM-EUR J, V3, P1083
   CUI Q, 1997, CHEM PHYS LETT, V272, P319
   DANOVICH D, 1997, J AM CHEM SOC, V119, P1773
   DAVIDSON ER, 2000, CHEM REV, V100, P351
   DUNN KM, 1996, J PHYS CHEM-US, V100, P123
   ELLER K, 1991, CHEM REV, V91, P1121
   ENGESER M, 2003, ORGANOMETALLICS, V22, P3933
   ESCRIBANO VS, 1990, J PHYS CHEM-US, V94, P8945
   FARAZDEL A, 1991, J COMPUT CHEM, V12, P276
   FIEDLER A, 1994, J AM CHEM SOC, V116, P10734
   FIEDLER A, 1996, J AM CHEM SOC, V118, P9941
   FIELICKE A, 2002, PHYS CHEM CHEM PHYS, V4, P2621
   FOLTIN M, 1999, J CHEM PHYS, V111, P9577
   FRISCH MJ, 1998, GAUSSIAN98 REVISION
   FUKUI K, 1970, J PHYS CHEM-US, V74, P4161
   GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
   GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
   GRACIA L, 2003, J PHYS CHEM A, V107, P3107
   GREEN JC, 2002, J CHEM SOC DALTON, P1861
   HARVEY JN, 1998, THEOR CHEM ACC, V99, P95
   HARVEY JN, 1999, INT J MASS SPECTROM, V182, P85
   HARVEY JN, 1999, PHYS CHEM CHEM PHYS, V1, P5555
   HARVEY JN, 2000, J AM CHEM SOC, V122, P12401
   HARVEY NH, 2000, COMPUTATIONAL ORGANO, P291
   HEINEMANN C, 1996, INORG CHEM, V35, P2463
   HENRICH VE, 1994, SURFACE SCI METAL OX, V45
   HESS JS, 2002, J AM CHEM SOC, V124, P2454
   IJJAALI F, 2001, PHYS CHEM CHEM PHYS, V3, P179
   IRIKURA KK, 1989, J AM CHEM SOC, V111, P75
   JENSEN F, 1992, J AM CHEM SOC, V114, P1596
   KALEDIN AL, 1999, J CHEM PHYS, V111, P5004
   KOGA N, 1985, CHEM PHYS LETT, V119, P371
   KOOI SE, 1999, J PHYS CHEM A, V103, P5671
   KOYANAGI GK, 2001, J PHYS CHEM A, V105, P4259
   KRETZSCHMAR I, 1997, INT J MASS SPECTROM, V167, P103
   KRETZSCHMAR I, 1997, J PHYS CHEM A, V101, P6252
   LEE C, 1988, PHYS REV B, V37, P785
   LEGROGNEC E, 2001, CHEM-EUR J, V7, P4572
   LINKE D, 2002, J CATAL, V205, P16
   MANAA MR, 1991, J CHEM PHYS, V95, P1808
   MCIVER JW, 1974, ACCOUNTS CHEM RES, V7, P72
   MUSAEV DG, 1996, J PHYS CHEM-US, V100, P11600
   NGUYEN KA, 1993, J CHEM PHYS, V98, P3845
   OGLIARO F, 2000, J AM CHEM SOC, V122, P8977
   OIESTAD EL, 2000, J PHYS CHEM A, V104, P8382
   OYAMA ST, 1990, J PHYS CHEM-US, V94, P5022
   OYAMA ST, 1993, CATALYTIC SELECTIVE
   PLATTNER DA, 1999, ANGEW CHEM INT EDIT, V38, P82
   POLI R, 2003, CHEM SOC REV, V32, P1
   POPE RM, 1992, ORGANOMETALLICS, V11, P2001
   POPE RM, 1993, ORG MASS SPECTROM, V28, P1616
   POPLE JA, 1987, J CHEM PHYS, V87, P5968
   RAO CNR, 1995, TRANSITION METAL OXI
   REED AE, 1985, J CHEM PHYS, V83, P735
   REED AE, 1988, CHEM REV, V88, P899
   RICCA A, 1997, J PHYS CHEM A, V101, P8949
   RUTH K, 1998, J CATAL, V175, P16
   SADYGOV RG, 1997, J CHEM PHYS, V107, P4994
   SCHALLEY CA, 1998, J PHYS CHEM A, V102, P1021
   SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
   SCHRODER D, 1994, INORG CHEM, V33, P5094
   SCHRODER D, 1998, CHEM-EUR J, V4, P2550
   SCHRODER D, 2000, ACCOUNTS CHEM RES, V33, P139
   SCHRODER D, 2000, METAL OXO METAL PERO, P91
   SHAIK S, 1995, HELV CHIM ACTA, V78, P1393
   SHILOV AE, 1997, CHEM REV, V97, P2879
   SHILOV AE, 1999, ACCOUNTS CHEM RES, V32, P763
   SHIOTA Y, 2000, J AM CHEM SOC, V122, P12317
   SMITH KM, 2000, NEW J CHEM, V24, P77
   SMITH KM, 2001, CHEM-EUR J, V7, P1679
   STEVENS JE, 1998, J CHEM PHYS, V108, P1452
   TORRENT M, 2000, CHEM REV, V100, P439
   VANKOPPEN PAM, 1990, J AM CHEM SOC, V112, P5663
   VANKOPPEN PAM, 1991, J AM CHEM SOC, V113, P2359
   VANKOPPEN PAM, 1994, J AM CHEM SOC, V116, P3780
   VYBOISHCHIKOV SF, 2000, J PHYS CHEM A, V104, P10913
   VYBOISHCHIKOV SF, 2001, J PHYS CHEM A, V105, P8588
   WARREN DK, 1996, HETEROGENEOUS HYDROC
   WESENDRUP R, 1995, ANGEW CHEM INT EDIT, V34, P2033
   WILSEY S, 1999, J PHYS CHEM A, V103, P1669
   YARKONY DR, 1993, J PHYS CHEM-US, V97, P4407
   YARKONY DR, 1996, J PHYS CHEM-US, V100, P18612
   YOSHIZAWA K, 1999, J AM CHEM SOC, V121, P147
   YOSHIZAWA K, 1999, J CHEM PHYS, V111, P535
   ZEMSKI KA, 2001, J PHYS CHEM A, V105, P10237
   ZEMSKI KA, 2002, J PHYS CHEM B, V106, P6136
   ZIEGLER T, 2002, J CHEM SOC DALT 0307, P642
NR 113
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD FEB 16
PY 2004
VL 23
IS 4
BP 730
EP 739
PG 10
SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
GA 772ZF
UT ISI:000188872700015
ER

PT J
AU Larico, R
   Justo, JF
   Machado, WVM
   Assali, LVC
TI An ab initio investigation on nickel impurities in diamond
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE diamond; synthetic diamond; transition metals; nickel impurities
ID SYNTHETIC DIAMOND; POINT-DEFECTS; NI; CENTERS; TRANSITION; EPR
AB We carried out a theoretical investigation on the electronic and
   structural properties of substitutional and interstitial nickel
   impurities in diamond. The atomic structures, symmetries, acceptor and
   donor transition energies, and formation energies of isolated Ni in
   diamond were computed using a total energy all electron ab initio
   methodology. Compared to available experimental data on the
   electrically and optically active centers in synthetic diamond, our
   results provide a new interpretation for the microscopic structure of
   those active centers. (C) 2003 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Sao Paulo, Escola Politecn, BR-05424970 Sao Paulo, Brazil.
RP Assali, LVC, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
EM lassali@if.usp.br
CR BARBOSA KO, 2001, PHYSICA B, V308, P726
   BEELER F, 1990, PHYS REV B, V41, P1603
   BLAHA P, 1999, WIEN97 FULL POTENTIA
   GERSTMANN U, 1999, PHYSICA B, V274, P632
   HOFMANN DM, 1994, PHYS REV B, V50, P17618
   HOFMANN DM, 1995, MATER SCI FORUM, V196, P79
   ISOYA J, 1990, PHYS REV B, V41, P3905
   ISOYA J, 1990, PHYS REV B, V42, P9843
   JINLONG Y, 1994, PHYS REV B, V49, P15525
   KOHN W, 1965, PHYS REV, V140, A1133
   LOWTHER JE, 1995, PHYS REV B, V51, P91
   LUDWIG GW, 1962, SOLID STATE PHYS, V13, P223
   MASON PW, 1999, PHYS REV B, V60, P5417
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   NAZARE MH, 1991, PHYS REV B, V43, P14196
   NAZARE MH, 2001, PHYSICA B, V308, P616
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
NR 17
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD DEC 31
PY 2003
VL 340
BP 84
EP 88
PG 5
SC Physics, Condensed Matter
GA 765TR
UT ISI:000188300200012
ER

PT J
AU Assali, LVC
   Machado, WVM
   Justo, JF
TI Transition metal impurities in 3C-SiC and 2H-SiC
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE silicon carbide; transition metals; LAPW methods
ID ELECTRONIC-PROPERTIES; SIC POLYTYPES; SILICON-CARBIDE; BAND-GAP; LEVEL;
   TI; CENTERS; STATES; PAIRS; CR
AB The electronic and structural properties of 3d transition metal (TM)
   impurities in 3C-SiC and 2H-SiC have been investigated by ab initio
   calculations. The stability, spin states, formation and transition
   energies of isolated Ti, V, and Cr impurities in several charge states
   were computed. Our results were compared to available experimental
   data. (C) 2003 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Sao Paulo, Escola Politecn, BR-05424970 Sao Paulo, Brazil.
RP Assali, LVC, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
EM lassali@if.usp.br
CR ACHTZIGER N, 1998, PHYS REV B, V57, P12181
   ASSALI LVC, 1998, PHYS REV B, V58, P3870
   BARANOV PG, 1999, PHYS SOLID STATE+, V41, P783
   BARBOSA KO, 2001, PHYSICA B, V308, P726
   BARBOSA KO, 2003, THESIS U SAO PAULO
   BAUR J, 1997, PHYS STATUS SOLIDI A, V162, P153
   BLAHA P, 1999, WIEN97 FULL POTENTIA
   DALIBOR T, 1997, PHYS STATUS SOLIDI A, V162, P199
   EVWARAYE AO, 1995, APPL PHYS LETT, V67, P3319
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   JUSTO JF, 1999, INT J MOD PHYS B, V13, P2387
   LEBEDEV AA, 1999, SEMICONDUCTORS+, V33, P107
   MITCHEL WC, 1999, J APPL PHYS, V86, P5040
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   PASOLD G, 2000, MATER SCI FORUM, V353, P471
   PATRICK L, 1974, PHYS REV B, V10, P5091
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   QTEISH A, 1993, PHYSICA B, V185, P366
   RESHANOV SA, 2001, DIAM RELAT MATER, V10, P2035
   SULEIMANOV YM, 2001, PHYSICA B, V308, P714
NR 20
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD DEC 31
PY 2003
VL 340
BP 116
EP 120
PG 5
SC Physics, Condensed Matter
GA 765TR
UT ISI:000188300200018
ER

PT J
AU Trasferetti, BC
   Davanzo, CU
   de Moraes, MAB
TI Infrared and Raman studies on films of organosiloxane networks produced
   by PECVD
SO MACROMOLECULES
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; VIBRATIONAL-SPECTRA; PLASMA
   POLYMERIZATION; SILICA FILM; AB-INITIO; OXYGEN; SPECTROSCOPY;
   ABSORPTION; NITROGEN
AB The effect of the incorporation of oxygen and nitrogen on the structure
   of films obtained by PECVD of hexamethyldisiloxane (HMDSO)-He-N-2 and
   HMDSO-He-O-2 mixtures is investigated using infrared and Raman
   spectroscopies. From transmittance spectra of films deposited onto
   single-crystal KBr disks, the transverse optical (TO) and longitudinal
   optical (LO) functions in the mid-infrared region were calculated. To
   correlate structural aspects with the observed LO-TO splittings, an
   identification analysis of functional group based on the infrared and
   Raman literature was made. It was concluded that the structure of the
   films deposited from HMDSO-He-O-2 discharges was strongly dependent on
   the proportion of oxygen in the gas feed. In the absence of oxygen,
   i.e., for a discharge of a HMDSO-He mixture, the resulting film
   consisted of a network of interconnected siloxane and carbosilane
   units. Addition of O-2 precluded the formation of methylene bridges and
   induced the formation of a material enriched with Si-O-Si groups. Films
   formed from the HMDSO-He-N-2 plasmas, on the other hand, consisted
   mainly of interconnected siloxane and carbosilane units in addition to
   a small quantity of silazane units. On the basis of these results, we
   propose an interpretation for the variation of the LO-TO splitting
   amplitude for the asymmetrical stretching mode (AS1) of Si-O in Si-O-Si
   groups as a function of the oxygen or nitrogen incorporation into the
   films.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
   Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Davanzo, CU, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
   BR-13083970 Campinas, SP, Brazil.
EM celso@iqm.unicamp.br
CR ALEXANDER MR, 1997, J PHYS CHEM B, V101, P3614
   ANDERSON DR, 1974, ANAL SILICONES
   BELLAMY LJ, 1975, INFRA RED SPECTRA CO
   BERREMAN DW, 1963, PHYS REV, V130, P2193
   CALZAFERRI G, 1994, J CHEM SOC DA, P3123
   DACRUZ NC, 1998, J POLYM SCI POL PHYS, V36, P1873
   DECIUS JC, 1968, J CHEM PHYS, V49, P1387
   FLEISCHER H, 1999, J PHYS CHEM A, V103, P727
   FURUSAWA T, 2001, ELECTROCHEM SOLID ST, V4, G31
   GREEN ML, 1994, APPL PHYS LETT, V65, P848
   GUITON TA, 1993, COLLOID SURFACE A, V74, P33
   HAWRANEK JP, 1976, SPECTROCHIM ACTA A, V32, P99
   HEAVENS O, 1964, PHYS THIN FILMS, V2, P120
   HINDS BJ, 1998, J NONCRYST SOLIDS, V227, P507
   INAGAKI N, 1983, J POLYM SCI POL CHEM, V21, P1847
   JONES LH, 1991, J PHYS CHEM-US, V95, P2701
   KAMITSOS EI, 1993, PHYS REV B, V48, P12499
   KIRK CT, 1988, PHYS REV B, V38, P1255
   KITTEL C, 1996, INTRO SOLID STATE PH
   LEWIS HGP, 2000, CHEM MATER, V12, P3488
   LEWIS HGP, 2001, J ELECTROCHEM SOC, V148, F212
   MAGNI D, 2001, J PHYS D APPL PHYS, V34, P87
   MARCHAND A, 1962, J CHIM PHYS PCB, V59, P1142
   MARCOLLI C, 1999, APPL ORGANOMET CHEM, V13, P213
   MATSUYAMA H, 1994, J APPL POLYM SCI, V51, P689
   MCKEAN DC, COMMUNICATION
   MCKEAN DC, 1970, SPECTROCHIM ACTA A, V26, P1815
   MCKEAN DCC, 1999, SPECTROCHIM ACTA A, V55, P1485
   ONO H, 1999, APPL PHYS LETT, V74, P203
   PAI PG, 1986, J VAC SCI TECHNOL A, V4, P689
   PASQUARELLO A, 1997, PHYS REV LETT, V79, P1766
   PRYCE LHG, 2000, CHEM MATER, V12, P3488
   RAU C, 1994, THIN SOLID FILMS, V249, P28
   RIGNANESE GM, 1997, PHYS REV LETT, V79, P5174
   SARNTHEIN J, 1997, SCIENCE, V275, P1925
   SCARLETE M, 1994, CHEM MATER, V6, P977
   SMITH AL, 1984, APPL SPECTROSC, V38, P822
   SUGAHARA S, 1999, JPN J APPL PHYS 1, V38, P1428
   SUGAHARA S, 2001, J ELECTROCHEM SOC, V148, F120
   TEN YS, 1989, J PHYS CHEM-US, V93, P7208
   THEIL JA, 1994, J VAC SCI TECHNOL  1, V12, P1365
   THEIRICH D, 2003, J VACUUM, V71, P348
   TRANSFERETTI B, 2003, J PHYS CHEM B, V107, P10699
   TRASFERETTI BC, 2000, APPL SPECTROSC, V54, P502
   TSU DV, 1989, PHYS REV B, V40, P1795
   USAMI K, 2000, P 7 INT S QUANT EFF
   WOLFE DM, 1999, J VAC SCI TECHNOL  2, V17, P2170
   WROBEL AM, 1980, J MACROMOL SCI CHEM, V14, P321
   WROBEL AM, 1983, J MACROMOL SCI CHEM, V20, P583
   YAMAMOTO K, 1994, VIB SPECTROSC, V8, P1
NR 50
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD JAN 27
PY 2004
VL 37
IS 2
BP 459
EP 466
PG 8
SC Polymer Science
GA 766NU
UT ISI:000188383100034
ER

PT J
AU Larico, R
   Assali, LVC
   Machado, WVM
   Justo, JF
TI Isolated nickel impurities in diamond: A microscopic model for the
   electrically active centers
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SYNTHETIC DIAMOND; NI; EPR; ABSORPTION; PRESSURE; SITE
AB We present a theoretical investigation on the structural and electronic
   properties of isolated nickel impurities in diamond. The atomic
   structures, symmetries, formation and transition energies, and
   hyperfine parameters of isolated interstitial and substitutional Ni
   were computed using ab initio total energy methods. Based on our
   results, we ultimately propose a consistent microscopic model which
   explains several experimentally identified nickel-related active
   centers in diamond. (C) 2004 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Sao Paulo, Escola Politecn, BR-05424970 Sao Paulo, Brazil.
RP Assali, LVC, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
EM lassali@if.usp.br
CR ANGUS JC, 1988, SCIENCE, V241, P913
   BARBOSA KO, 2001, PHYSICA B, V308, P726
   BLAHA P, 1999, WIEN97 FULL POTENTIA
   COLLINS AT, 1989, J PHYS-CONDENS MAT, V1, P439
   DAVIES G, 1989, EUROPHYS LETT, V9, P47
   GOSS J, 1995, MATER SCI FORUM, V196, P67
   HOFMANN DM, 1994, PHYS REV B, V50, P17618
   HOFMANN DM, 1995, MATER SCI FORUM, V196, P79
   HOHENBERG P, 1964, PHYS REV, V136, B864
   ISOYA J, 1990, PHYS REV B, V41, P3905
   ISOYA J, 1990, PHYS REV B, V42, P9843
   JINLONG Y, 1994, PHYS REV B, V49, P15525
   KOHN W, 1965, PHYS REV, V140, A1133
   LOWTHER JE, 1995, PHYS REV B, V51, P91
   LUDWIG GW, 1962, SOLID STATE PHYS, V13, P223
   MASON PW, 1999, PHYS REV B, V60, P5417
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   NADOLINNY VA, 1999, J PHYS-CONDENS MAT, V11, P7357
   NAZARE MH, 1991, PHYS REV B, V43, P14196
   NAZARE MH, 2001, PHYSICA B, V308, P616
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   SINGH DJ, 1994, PLANEWAVES PSEUDOPOT
   TWITCHEN DJ, 2000, PHYS REV B, V61, P9
NR 23
TC 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 2
PY 2004
VL 84
IS 5
BP 720
EP 722
PG 3
SC Physics, Applied
GA 767WX
UT ISI:000188497800026
ER

PT J
AU da Silva, LB
   Fagan, SB
   Mota, R
TI Ab initio study of deformed carbon nanotube sensors for carbon monoxide
   molecules
SO NANO LETTERS
LA English
DT Article
ID LARGE SYSTEMS; ENERGETICS
AB Deformed single-wall carbon nanotubes (SWCNT) are investigated through
   ab initio simulations as sensors to detect the presence of chemical
   gases. Although the viability of using undeformed SWCNT devices has
   been demonstrated for many molecules, there are important exceptions of
   toxic gases, such as carbon monoxide, which are not detectable by these
   sensors. To overcome this problem, recent interesting propositions have
   been presented based on doping of impurity atoms into SWCNT. In this
   paper, an alternative method is proposed using radial deformation,
   which induces fundamental changes on the electronic properties of
   SWCNT, allowing functionalization of the tube surface to detect the
   presence of CO molecules.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
   Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil.
RP Mota, R, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
   Brazil.
EM mota@ccne.ufsm.br
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
   BAIERLE RJ, 2001, PHYS REV B, V64
   FAGAN SB, 2003, DIAM RELAT MATER, V12, P861
   FAGAN SB, 2003, MATER CHARACT, V50, P183
   FAGAN SB, 2003, NANO LETT, V3, P289
   FAGAN SB, 2003, PHYS REV B, V67
   KONG J, 2001, ADV MATER, V13, P1384
   ORDEJON P, 1996, PHYS REV B, V53
   PENG S, 2003, NANO LETT, V3, P513
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
   SANKEY OF, 1989, PHYS REV B, V40, P3979
   TROULLIER N, 1991, PHYS REV B, V43, P1993
NR 13
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JAN
PY 2004
VL 4
IS 1
BP 65
EP 67
PG 3
SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
GA 764YA
UT ISI:000188233200013
ER

PT J
AU Almerindo, GI
   Tondo, DW
   Pliego, JR
TI Ionization of organic acids in dimethyl sulfoxide solution: A
   theoretical ab initio calculation of the pK(a) using a new
   parametrization of the polarizable continuum model
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID COMPLETE BASIS-SET; DENSITY-FUNCTIONAL THEORY; QUANTUM-MECHANICAL
   CALCULATIONS; SOLVATION FREE-ENERGY; CARBOXYLIC-ACIDS;
   AQUEOUS-SOLUTION; GAS-PHASE; THERMODYNAMIC CYCLES; ALIPHATIC-ALCOHOLS;
   HALOACETIC ACIDS
AB The pK(a) values of over 41 organic acids in dimethyl sulfoxide (DMSO)
   solution were calculated using ab initio electronic structure methods
   at MP2 and MP4 levels of electron correlation and including basis set
   of 6-31+G(d) and 6-311+G(2df,2p) quality. The solvation was included
   through the polarizable continuum model (PCM), using the recent
   parametrization of Pliego and Riveros. The root-mean-square (RMS) error
   over this set of molecules having different functional groups is only
   2.2 units. A linear fit on this data set decreases this error by only
   0.2 units, indicating that this empirical correction is not necessary.
   The major error in the calculated pK(a) value was -5.3 units for the
   CH3SO3H solute. Halogenated carboxylic acids have also presented a high
   deviation (similar to4 units). An explanation for these high deviations
   is the possibility of strong hydrogen-bond formation involving the
   neutral acid molecule and DMSO. The pK(a) values were also calculated
   using a combination of theoretical solvation data with experimental
   gas-phase data. In this case, the RMS error increased to 2.3 units for
   a set of 36 acids. Our results show that the performance of the PCM
   model with a fixed atomic radius in DMSO solution is very superior to
   its performance in aqueous solution, which is a behavior that can be
   attributed to the presence of strong and specific solute-solvent
   interactions of ionic solutes with water molecules. In addition, no
   extensive parametrization of the PCM model is needed to describe the
   solvation of anions in DMSO solution.
C1 Univ Fed Santa Catarina, Dept Quim, BR-88040900 Florianopolis, SC, Brazil.
RP Pliego, JR, Univ Fed Santa Catarina, Dept Quim, BR-88040900
   Florianopolis, SC, Brazil.
EM josef@qmc.ufsc.br
CR ASHTHAGIRI D, 2003, CHEM PHYS LETT, V371, P613
   BORDWELL FG, 1988, ACCOUNTS CHEM RES, V21, P456
   CHIPMAN DM, 2002, J PHYS CHEM A, V106, P7413
   COSSI M, 1996, CHEM PHYS LETT, V255, P327
   CURUTCHET C, 2001, J COMPUT CHEM, V22, P1180
   DASILVA CO, 1999, INT J QUANTUM CHEM, V74, P417
   DASILVA CO, 1999, J PHYS CHEM A, V103, P11194
   GAO JL, 1996, J AM CHEM SOC, V118, P4912
   GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
   GRANOVSKY A, 2003, PC GAMESS
   JANG YH, 2001, J PHYS CHEM A, V105, P274
   JORGENSEN WL, 1987, J AM CHEM SOC, V109, P6857
   JORGENSEN WL, 1989, J AM CHEM SOC, V111, P4190
   KALLIES B, 1997, J PHYS CHEM B, V101, P2959
   KAWATA M, 1995, CHEM PHYS LETT, V240, P199
   KLICIC JJ, 2002, J PHYS CHEM A, V106, P1327
   LI J, 1996, INORG CHEM, V35, P4694
   LI JB, 1998, CHEM PHYS LETT, V288, P293
   LI JB, 1999, THEOR CHEM ACC, V103, P9
   LIM C, 1991, J PHYS CHEM-US, V95, P5610
   LINSTROM PJ, 2003, 69 NIST
   LIPTAK MD, 2001, INT J QUANTUM CHEM, V85, P727
   LIPTAK MD, 2001, J AM CHEM SOC, V123, P7314
   LIPTAK MD, 2002, J AM CHEM SOC, V124, P6421
   LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
   LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
   MARTIN RL, 1998, J PHYS CHEM A, V102, P3565
   NAMAZIAN M, 2003, THEOCHEM, V620, P257
   PERAKYLA M, 1999, PHYS CHEM CHEM PHYS, V1, P5643
   PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
   PLIEGO JR, 2002, CHEM PHYS LETT, V355, P543
   PLIEGO JR, 2002, J PHYS CHEM A, V106, P7434
   PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
   PLIEGO JR, 2003, CHEM PHYS LETT, V367, P145
   REICHARDT C, 1988, SOLVENTS SOLVENT EFF
   RICHARDSON WH, 1997, INT J QUANTUM CHEM, V61, P207
   SARACINO GAA, 2003, CHEM PHYS LETT, V373, P411
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCHUURMANN G, 1998, J PHYS CHEM A, V102, P6706
   SCHUURMANN G, 1999, CHEM PHYS LETT, V302, P471
   SHAPLEY WA, 1998, J PHYS CHEM B, V102, P1938
   SILVA CO, 2000, J PHYS CHEM A, V104, P2402
   TOMASI J, 1999, INT J QUANTUM CHEM, V75, P783
   TOMASI J, 2002, PHYS CHEM CHEM PHYS, V4, P5697
   TOPOL IA, 1997, J PHYS CHEM A, V101, P10075
   TOPOL IA, 2000, J PHYS CHEM A, V104, P866
   TOPOL IA, 2000, J PHYS CHEM A, V104, P9619
   TOTH AM, 2001, J CHEM PHYS, V114, P4595
   TUNON I, 1992, J PHYS CHEM-US, V96, P9043
   TUNON I, 1993, J AM CHEM SOC, V115, P2226
   WIBERG KB, 1996, J COMPUT CHEM, V17, P185
   WIBERG KB, 2000, J PHYS CHEM A, V104, P7625
NR 52
TC 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JAN 8
PY 2004
VL 108
IS 1
BP 166
EP 171
PG 6
SC Chemistry, Physical
GA 760MU
UT ISI:000187838500024
ER

PT J
AU Jorge, FE
   Autschbach, J
   Ziegler, T
TI On the origin of the optical activity in the d-d transition region of
   tris-bidentate Co(III) and Rh(III) complexes
SO INORGANIC CHEMISTRY
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; CIRCULAR-DICHROISM SPECTRA; CO-ORDINATION
   COMPOUNDS; METAL-COMPLEXES; CRYSTAL-STRUCTURE; COBALT(III) COMPLEXES;
   RESPONSE THEORY; ROTATORY POWER; ABSOLUTE-CONFIGURATIONS; CHIROPTICAL
   PROPERTIES
AB Time-dependent density functional theory (TD-DFT) has been employed to
   calculate the rotatory strengths in the d-d transition region for
   various tris-bidentate Co(III) and Rh(III) complexes. Optimized
   structural parameters are also reported. Our results confirm a
   previously proposed relationship between the azimuthal distortion of a
   complex containing saturated tris(diamine) and its optical activity.
   Formally d-d transitions are forbidden and should not exhibit optical
   activity. However, it is shown here that the intensity of these bands
   originates from a coupling of even ligand combination (participating in
   the e(g) type LUMO) and an odd ligand combination (participating in the
   t(2g) HOMO). For complexes containing planar unsaturated ligands, the
   signs of the d-d bands observed from the single-crystal circular and
   linear dichroisms are in accordance with the TD-DFT predictions. It is
   shown that by using hypothetical Co(NH3)(6)(3+) complexes it is
   possible to estimate the contribution from the azimuthal distortion to
   the total rotatory strengths of the saturated tris(diamine) complexes.
   A discussion is also provided of previous theoretical studies and the
   way in which these investigations rationalized the optical activity.
C1 Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada.
   Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES, Brazil.
   SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA.
RP Ziegler, T, Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada.
EM ziegler@ucalgary.ca
CR AUTSCHBACH J, 2002, J CHEM PHYS, V116, P6930
   AUTSCHBACH J, 2002, J CHEM PHYS, V116, P891
   AUTSCHBACH J, 2002, J CHEM PHYS, V117, P581
   AUTSCHBACH J, 2003, INORG CHEM, V42, P2867
   BALLHAUSEN CJ, 1979, MOL ELECT STRUCTURES, P195
   BAUERNSCHMITT R, 1996, CHEM PHYS LETT, V256, P454
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BUTLER KR, 1971, J CHEM SOC A, P565
   CASIDA ME, 1995, RECENT ADV DENSITY F, V1
   CONDON EU, 1937, J CHEM PHYS, V5, P753
   DIEDRICH C, 2003, J PHYS CHEM A, V107, P2524
   DOBSON JF, 1998, ELECT DENSITY FUNCTI
   EVANS RS, 1974, INORG CHEM, V13, P2185
   FURCHE F, 2000, J AM CHEM SOC, V122, P1717
   GORELSKY SI, 2001, J ORGANOMET CHEM, V635, P187
   GROSS EKU, 1990, ADV QUANTUM CHEM, V21, P255
   GROSS EKU, 1996, TOP CURR CHEM, V181, P81
   GUERRA CF, 1995, METHODS TECHNIQUES C
   IWATA M, 1969, ACTA CRYSTALLOGR B, V25, P2562
   JAMORSKI C, 1996, J CHEM PHYS, V104, P5134
   JUDKINS RR, 1974, INORG CHEM, V13, P945
   KARIPIDES AG, 1964, J CHEM PHYS, V40, P674
   KRUGER GJ, 1974, ACTA CRYSTALLOGR B, V30, P822
   KURODA R, 1974, ACTA CRYSTALLOGR B, V30, P2126
   KURODA R, 1976, B CHEM SOC JPN, V49, P433
   LIEHR AD, 1964, J PHYS CHEM-US, V68, P665
   MASON SF, 1965, CHEM COMMUN, P48
   MASON SF, 1971, J CHEM SOC A, P667
   MASON SF, 1973, FUNDAMENTAL ASPECTS
   MASON SF, 1976, MOL PHYS, V31, P755
   MCCAFFERY AJ, 1965, J CHEM SOC, P2883
   MOFFITT W, 1956, J CHEM PHYS, V25, P1189
   MOUCHARAFIEH NC, 1978, INORG CHEM, V17, P1220
   NAGAO R, 1973, ACTA CRYSTALLOGR B, V29, P2438
   NAKATSU K, 1962, B CHEM SOC JPN, V35, P832
   PATCHKOVSKII S, 2002, J CHEM PHYS, V116, P7806
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PIPER TS, 1962, MOL PHYS, V5, P475
   POPLE JA, 1979, INT J QUANTUM CHEM S, V13, P225
   RICCIARDI G, 2000, J PHYS CHEM A, V104, P635
   RICCIARDI G, 2001, J PHYS CHEM A, V105, P5242
   RICHARDSON FS, 1971, J CHEM PHYS, V54, P2453
   RICHARDSON FS, 1972, INORG CHEM, V11, P2366
   ROSA A, 1999, J AM CHEM SOC, V121, P10356
   ROSA A, 2001, J PHYS CHEM A, V105, P3311
   SAITO Y, 1974, COORDIN CHEM REV, V13, P305
   SHINADA M, 1964, J PHYS SOC JPN, V19, P1607
   SOLOMON EI, 1999, INORGANIC ELECT STR, V2
   SOLOMON EI, 1999, INORGANIC ELECT STRU, V1
   STIEFEL EI, 1972, INORG CHEM, V11, P434
   STRICKLAND RW, 1973, INORG CHEM, V12, P1025
   TEVELDE G, 2001, J COMPUT CHEM, V22, P931
   VANGISBERGEN SJA, 1995, J CHEM PHYS, V103, P9347
   VANGISBERGEN SJA, 1999, COMPUT PHYS COMMUN, V118, P119
   VANGISBERGEN SJA, 1999, J PHYS CHEM A, V103, P6835
   VANGISBERGEN SJA, 2000, J COMPUT CHEM, V21, P1511
   VONDREELE RB, 1971, AM CHE SOC, V93, P4936
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
   ZIEGLER T, 2002, J CHEM SOC DALT 0307, P642
NR 59
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD DEC 29
PY 2003
VL 42
IS 26
BP 8902
EP 8910
PG 9
SC Chemistry, Inorganic & Nuclear
GA 759LX
UT ISI:000187740100044
ER

PT J
AU Carauta, ANM
   de Souza, V
   Hollauer, E
   Tellez, CA
TI Vibrational study of dialkylphosphonates: di-n-propyl- and
   di-i-propylphosphonates by semiempirical and ab initio methods
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE dialkylphosphonates; vibrational spectra; semiempirical AM1; ab initio
   RHF/6-31G
ID ORGANOPHOSPHORUS COMPOUNDS; CONFORMATIONAL STABILITY; INFRARED-SPECTRA;
   FORCE-FIELD; PHOSPHONATE; COMPLEXES; FREQUENCIES; RAMAN; ASSIGNMENTS;
   DIESTER
AB Fourier transform infrared and Fourier transform Raman spectra of
   n-C3H7 and i-C3H7 dialkylphosphonates have been obtained. Semiempirical
   AM1 and the ab initio orbital molecular RHF/6-31G* theories have been
   used to study the molecular geometry, and the harmonic vibrational
   spectra with the purpose to assist the experimental assignments of
   these compounds. An extensive discussion on the assignment of the C-C,
   C-O, P-O and P=O stretching is carried out based on experimental data
   of compounds which have the propyl and isopropyl groups, as well as
   comparing the vibrational spectra of propane. Most of the RHF/6-31G*
   and AM1 results, once applied the appropriate scaling factor, showed an
   excellent agreement with the experimental wavenumbers. A few calculated
   frequencies related to CC and CO stretching do not agree well with the
   experimental trends. (C) 2003 Elsevier B.V. All rights reserved.
C1 Univ Fed Fluminense, Inst Quim, Dept Quim Geral & Inorgan, BR-24210150 Rio De Janeiro, Brazil.
   INMETRO, Rio De Janeiro, Brazil.
   Univ Fed Fluminense, Dept Quim Fis, Inst Quim, BR-24210150 Rio De Janeiro, Brazil.
RP Tellez, CA, Univ Fed Fluminense, Inst Quim, Dept Quim Geral & Inorgan,
   Morro do Valonguinho S-N,Niteroi Ctr, BR-24210150 Rio De Janeiro,
   Brazil.
CR BEELAMY LJ, 1952, J CHEM SOC, P475
   BONE R, 1991, BIOCHEMISTRY-US, V30, P2263
   BROYDEN CG, 1970, J I MATH APPL, V6, P222
   CAO G, 1991, CHEM MATER, V3, P149
   CHHIBA M, 1996, J MOL STRUCT, V384, P55
   COOLIDGE MB, 1991, J COMPUT CHEM, V12, P948
   DAASCH LW, 1951, ANAL CHEM, V23, P853
   DESOUZA MC, 1995, THESIS IME BRAZIL
   DEWAR MJS, 1978, J AM CHEM SOC, V100, P3607
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DURIG JR, 1992, J MOL STRUCT THEOCHE, V261, P133
   DURIG JR, 1992, J RAMAN SPECTROSC, V23, P107
   DURIG JR, 1994, J RAMAN SPECTROSC, V25, P132
   DURIG JR, 1994, J RAMAN SPECTROSC, V25, P327
   DURIG JR, 1995, J MOL STRUCT, V19, P350
   DURIG JR, 1996, J MOL STRUCT, V375, P53
   FELCMAN J, 2001, SYN REACT INORG MET, V31, P507
   FLETCHER R, 1970, COMPUT J, V13, P317
   FLORIAN J, 1998, J AM CHEM SOC, V120, P7959
   GOLDFARB D, 1970, MATH COMPUT, V24, P23
   GONZALEZ L, 1998, J CHEM PHYS, V109, P2685
   HARKINS PC, 1996, J INORG BIOCHEM, V61, P25
   HERLINGER AW, 1998, POLYHEDRON, V17, P1471
   HIRSCHMANN R, 1997, J AM CHEM SOC, V119, P8177
   KIM CU, 1991, J ORG CHEM, V56, P2642
   KIM H, 1991, BIOCHEMISTRY-US, V30, P8171
   KOCH R, 1995, J ORG CHEM, V60, P5861
   MCCOMBIE H, 1945, J CHEM SOC, P380
   MISRA AK, 1965, J APPL CHEM-USSR, V28, P187
   RIES UJ, 1992, CHEM PHYS LIPIDS, V61, P225
   SAINZDIAZ CI, 1995, J ORG CHEM, V60, P74
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
   SHANNO DF, 1970, MATH COMPUT, V24, P647
   SNYDER RG, 1963, SPECTROCHIM ACTA, V19, P85
   SNYDER RG, 1965, SPECTROCHIM ACTA, V21, P169
   STAWINSKI J, 1991, NUCLEOS NUCLEOT, V10, P511
   STEWART JJP, 1993, MOPAC 93 MANUAL REVI
   SVERDLOV LM, 1974, VIBRATIONAL SPECTRA
   TELLEZ CA, 2000, SPECTROCHIM ACTA A, V56, P1563
   TELLEZ CA, 2000, SPECTROCHIM ACTA A, V56, P653
   THOMAS LC, 1974, INTERPRETATION INFRA
NR 42
TC 3
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JAN
PY 2004
VL 60
IS 1-2
BP 41
EP 51
PG 11
SC Spectroscopy
GA 759RK
UT ISI:000187750500006
ER

PT J
AU De Abreu, HA
   De Almeida, WB
   Duarte, HA
TI pK(a) calculation of poliprotic acid: histamine
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; COMPLETE BASIS-SET; CORRELATION-ENERGY;
   AB-INITIO; N-HYDROXYACETAMIDE; SOLVATION METHODS; GAS-PHASE; DENSITY;
   IONS; APPROXIMATION
AB Various theoretical studies have been reported addressing the
   performance of solvation models available to estimate pK(a) values.
   However, no attention has been paid so far to the role played by the
   electronic, thermal and solvation energy individual contributions to
   the Gibbs free energy of the deprotonation process. In this work, we
   decompose the total Gibbs free energy into three distinct terms and
   then evaluate the dependence of each contribution on the level of
   theory employed for its determination using different levels of theory.
   The three possible pK(a)s of histamine have been estimated and compared
   with available experimental data. We found that the electronic energy
   term is sensitive to the level of theory and basis set, and, therefore,
   could be also a source of error in the theoretical calculation of
   pK(a)s. (C) 2003 Elsevier B.V. All rights reserved.
C1 UFMG, ICEx, Dept Quim, LQC MM, BR-31270901 Belo Horizonte, MG, Brazil.
RP Duarte, HA, UFMG, ICEx, Dept Quim, LQC MM, Av Antonio Carlos 6627,
   BR-31270901 Belo Horizonte, MG, Brazil.
CR 1992, HDB CHEM PHYS
   ADAM KR, 2002, J PHYS CHEM A, V106, P11963
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BRODSKAYA E, 2002, J PHYS CHEM B, V106, P6479
   CHEN JG, 1998, J ORG CHEM, V63, P4611
   CHIPMAN DM, 2002, J PHYS CHEM A, V106, P7413
   COOKSON RF, 1974, CHEM REV, V74, P5
   COSSI M, 1996, CHEM PHYS LETT, V255, P327
   DOSSANTOS HF, 2002, CHEM PHYS, V280, P31
   DOSSANTOS HF, 2002, THEOR CHEM ACC, V107, P229
   DUARTE HA, 1998, J INORG BIOCHEM, V72, P71
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   HOLMES F, 1962, J CHEM SOC, P2818
   HOLMES F, 1969, J CHEM SOC, P113
   KARMACHARYA R, 2001, J PHYS CHEM A, V105, P2563
   KINSER RD, 2002, J PHYS CHEM A, V106, P9925
   KLAMT A, 2003, J PHYS CHEM A, V107, P9380
   LEE C, 1988, PHYS REV B, V37, P785
   LIM C, 1991, J PHYS CHEM-US, V95, P5610
   LIPTAK MD, 2001, J AM CHEM SOC, V123, P7314
   MEJIAS JA, 2000, J CHEM PHYS, V113, P7306
   MIEHLICH B, 1989, CHEM PHYS LETT, V157, P200
   PERAKYLA M, 1996, J ORG CHEM, V61, P7420
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PLIEGO JR, 2000, CHEM PHYS LETT, V332, P597
   PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
   PLIEGO JR, 2003, CHEM PHYS LETT, V367, P145
   SANTOS JMD, 2003, J INORG BIOCHEM, V95, P14
   SARACINO GAA, 2003, CHEM PHYS LETT, V373, P411
   SILVA CO, 1999, J PHYS CHEM A, V103, P11194
   SZABO A, 1989, MODERN QUANTUM CHEM
   TOTH AM, 2001, J CHEM PHYS, V114, P4595
NR 33
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JAN 1
PY 2004
VL 383
IS 1-2
BP 47
EP 52
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 759TL
UT ISI:000187752900010
ER

PT J
AU Schimpl, J
   Petrilli, HM
   Blochl, PE
TI Nitrogen binding to the FeMo-cofactor of nitrogenase
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AUGMENTED-WAVE METHOD; AZOTOBACTER-VINELANDII NITROGENASE;
   DENSITY-FUNCTIONAL THEORY; IRON-MOLYBDENUM COFACTOR; ATOMIC-LEVEL
   MECHANISM; MOFE-PROTEIN; KLEBSIELLA-PNEUMONIAE; MOLECULAR-DYNAMICS;
   CENTRAL LIGAND; CRYSTALLOGRAPHIC STRUCTURE
AB Density functional calculations are presented to unravel the first
   steps of nitrogen fixation of nitrogenase. The individual steps leading
   from the resting state to nitrogen binding at the FeMo-cofactor with a
   central nitrogen ligand are characterized. The calculations indicate
   that the Fe-Mo cage opens as dinitrogen binds to the cluster. In the
   resting state, the central cage is overall neutral. Electrons and
   protons are transferred in an alternating manner. Upon dinitrogen
   binding, one protonated sulfur bridge is broken. An axial and a bridged
   binding mode of dinitrogen have been identified. Adsorption at the Mo
   site has been investigated but appears to be less favorable than
   binding at Fe sites.
C1 Tech Univ Clausthal, Inst Theoret Phys, D-38678 Clausthal Zellerfeld, Germany.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
RP Blochl, PE, Tech Univ Clausthal, Inst Theoret Phys, D-38678 Clausthal
   Zellerfeld, Germany.
CR BENTON PMC, 2003, BIOCHEMISTRY-US, V42, P9102
   BLOCHL P, 1986, J CHEM PHYS, V103, P7422
   BLOCHL PE, 1994, PHYS REV B, V50, P17953
   BLOCHL PE, 1996, ORGANOMETALLICS, V15, P4125
   BLOCHL PE, 2003, B MATER SCI, V26, P33
   BURGESS BK, 1996, CHEM REV, V96, P2983
   CAR R, 1985, PHYS REV LETT, V55, P2471
   CHRISTIANSEN J, 1995, J AM CHEM SOC, V117, P10017
   DANCE I, 1997, CHEM COMMUN     0121, P165
   DANCE I, 1998, CHEM COMMUN     0307, P523
   DANCE I, 2003, CHEM COMMUN, V3, P324
   DURRANT MC, 2001, BIOCHEM J 3, V355, P569
   DURRANT MC, 2002, BIOCHEMISTRY-US, V41, P13934
   DURRANT MC, 2002, BIOCHEMISTRY-US, V41, P13946
   EADY R, 1997, J PHYS C SOLID STATE, V2, P611
   EADY RR, 1996, CHEM REV, V96, P3013
   EINSLE O, 2002, SCIENCE, V297, P1696
   FISHER K, 2001, BIOCHEMISTRY-US, V40, P3333
   GEORGIADIS MM, 1992, SCIENCE, V257, P1653
   GRONBERG KLC, 1998, J AM CHEM SOC, V120, P10613
   HARVEY I, 1998, INORG CHIM ACTA, V275, P150
   HINNEMANN B, 2003, J AM CHEM SOC, V125, P1466
   HOBBS D, 2000, PHYS REV B, V62, P11556
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   KIM J, 1992, SCIENCE, V257, P1667
   KIM JS, 1992, NATURE, V360, P553
   KOHN W, 1965, PHYS REV, V140, A1133
   KUBLER J, 1988, J PHYS F MET PHYS, V18, P469
   LEE HI, 2003, J AM CHEM SOC, V125, P5604
   LEIGH GJ, 2003, SCIENCE, V301, P55
   LOVELL T, 2001, J AM CHEM SOC, V123, P12392
   LOVELL T, 2002, J AM CHEM SOC, V124, P4546
   LOVELL T, 2002, J BIOL INORG CHEM, V7, P735
   LOVELL T, 2003, J AM CHEM SOC, V125, P8377
   LOWE DJ, 1984, BIOCHEM J, V224, P895
   MAYER SM, 1999, J MOL BIOL, V292, P871
   MAYER SM, 2002, J CHEM SOC DA, V5, P802
   MUNCK E, 1975, BIOCHIM BIOPHYS ACTA, V400, P32
   ODA T, 1998, PHYS REV LETT, V80, P3622
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   PETERS JW, 1997, BIOCHEMISTRY-US, V36, P1181
   PICKETT CJ, 1996, J BIOL INORG CHEM, V1, P601
   RAPPE AK, 1992, J AM CHEM SOC, V114, P10024
   ROD TH, 1999, PHYS REV LETT, V82, P4054
   ROD TH, 2000, J AM CHEM SOC, V122, P12751
   ROD TH, 2000, J CHEM PHYS, V112, P5343
   SANDRATSKII LM, 1986, J PHYS F MET PHYS, V16, P43
   SCHAFTENAAR G, 2000, J COMPUT AID MOL DES, V14, P123
   SELLMANN D, 1996, J BIOL INORG CHEM, V1, P597
   SELLMANN D, 1999, COORDIN CHEM REV, V190, P607
   SELLMANN D, 2000, COORDIN CHEM REV, V200, P545
   SIMPSON FB, 1984, SCIENCE, V224, P1095
   SZILAGYI R, 2000, THEOCHEM, V506, P131
   SZILAGYI RK, 2001, INORG CHEM, V40, P766
   THORNELEY R, 1996, J BIOL INORG CHEM, V1, P575
   THORNELEY RNF, 1984, BIOCHEM J, V224, P887
   THORNELEY RNF, 1984, BIOCHEM J, V224, P903
   TRUE AE, 1988, J AM CHEM SOC, V110, P1935
   VENTERS RA, 1986, J AM CHEM SOC, V108, P3487
   YANDULOV DV, 2003, SCIENCE, V301, P76
   YOO SJ, 2000, J AM CHEM SOC, V122, P4926
NR 61
TC 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD DEC 24
PY 2003
VL 125
IS 51
BP 15772
EP 15778
PG 7
SC Chemistry, Multidisciplinary
GA 755XF
UT ISI:000187436200042
ER

PT J
AU Pereira, MS
   Nascimento, MAC
TI Theoretical study on reactions catalyzed by gallium-substituted zeolites
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
DE zeolite; gallium; catalysis by zeolites
ID DEHYDROGENATION REACTION; AROMATIZATION; ZSM-5; GA; GALLOSILICATES;
   ISOBUTANE; ACIDITY; PROPANE; ALKANES; STATE
AB The dehydrogenation and cracking reactions of light alkanes in
   gallium-containing zeolites were studied using density functional
   theory. Gallium isomorphically substituted, generating Bronsted acid
   sites, was used in the computations. The following reactions were
   examined: dehydrogenation of methane, ethane, propane, isobutane and
   cracking of ethane, propane and isobutene, all catalyzed by the
   framework gallium species. The cracking reaction seems to be favored
   relative to the dehydrogenation when framework gallium species are
   used. This behavior is also observed in aluminum-containing zeolites
   (H-ZSM5). The geometries and energetics of the transition states found
   for the gallium zeolites were compared with theoretical data for the
   same transition states in aluminum zeolites. There seems to be no
   significant difference between framework gallium and framework aluminum
   species. Therefore the framework gallium should not be the species
   responsible for the catalytic enhancement observed in
   gallium-containing zeolites.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis,
   Cidade Univ,CT,Bloco A,Sala 412, BR-21949900 Rio De Janeiro, Brazil.
CR *GAUSS INC, 1995, GAUSS 98
   *SCHROD INC, 1998, JAG 3 5
   BAYENSE CR, 1991, APPL CATAL, V72, P81
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BRABEC L, 1998, APPL CATAL A-GEN, V167, P309
   BROCLAWIK E, 1995, J CHEM PHYS, V103, P2102
   CHAO KJ, 1997, ZEOLITES, V18, P18
   CHOUDHARY VR, 1996, J CATAL, V158, P34
   CUSUMORO JA, 1992, PERSPECTIVES CATALYS
   DOOLEY KM, 1992, APPL CATAL A-GEN, V84, P17
   FRASH MV, 1995, J PHYS CHEM A, V103, P2102
   FURTADO E, 2001, THEORETICAL ASPECTS, P39
   FURTADO EA, 2001, PHYS STATUS SOLIDI A, V187, P275
   GIANNETTO G, 1993, J CATAL, V145, P86
   GUISNET M, 1992, APPL CATAL A-GEN, V89, P1
   HIMEI H, 1995, J PHYS CHEM-US, V99, P12461
   IGLESIA E, 1992, J CATAL, V134, P549
   INUI T, 1987, IND ENG CHEM RES, V26, P647
   LANH HD, 1993, APPL CATAL A-GEN, V103, P205
   LEE C, 1988, PHYS REV B, V37, P786
   LIU XS, 1992, J PHYS CHEM-US, V96, P3403
   MEITZNER GD, 1993, J CATAL, V140, P209
   MILAS I, 2001, CHEM PHYS LETT, V338, P67
   MILAS I, 2003, CHEM PHYS LETT, V373, P379
   MOWRY JR, 1985, ARAB J SCI ENG, V10, P36
   MOWRY JR, 1985, OIL GAS J, V83, P128
   PRICE GL, 1995, ZEOLITES, V15, P725
   PRICE GL, 1998, J CATAL, V173, P12
   STAVE MS, 1995, J PHYS CHEM-US, V99, P15046
   SULIKOWSKI B, 1996, J PHYS CHEM-US, V100, P10323
   TAKEGUCHI T, 1998, J CATAL, V175, P1
   VAUGHAN DEW, 1988, CHEM ENG PROGR   FEB, P25
   VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13713
NR 33
TC 3
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD DEC
PY 2003
VL 110
IS 6
BP 441
EP 445
PG 5
SC Chemistry, Physical
GA 749YU
UT ISI:000186958300014
ER

PT J
AU Martins, TLC
   Ramalho, TC
   Figueroa-Villar, JD
   Flores, AFC
   Pereira, CMP
TI Theoretical and experimental C-13 and N-15 NMR investigation of
   guanylhydrazones in solution
SO MAGNETIC RESONANCE IN CHEMISTRY
LA English
DT Article
DE NMR; N-15 NMR; C-13 NMR; chemical shifts; molecular dynamics; GIAO;
   DFT; guanylhydrazones
ID SEQUENTIAL MONTE-CARLO; CHEMICAL-SHIFTS; AB-INITIO; SOLVENT;
   DERIVATIVES; SIMULATION; CONTINUUM; AGENTS; RELAXATION; MOLECULES
AB Experimental and theoretical N-15 and C-13 NMR data for the three
   nitrobenzaldehyde guanylhydrazones are reported. The theoretical data
   were obtained using sequential molecular dynamics/quantum mechanics
   methodology for the calculation of flexible molecules in a condensed
   phase, followed by the use of the GIAO/DFT method with the 6-311G**
   basis set. The experimental N-15 chemical shifts for the
   guanylhydrazones are compared with the calculated shifts. Copyright (C)
   2003 John Wiley Sons, Ltd.
C1 Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, RJ, Brazil.
   Univ Fed Santa Maria, Dept Quim, BR-97105900 Santa Maria, RS, Brazil.
RP Figueroa-Villar, JD, Inst Militar Engn, Dept Quim, BR-22290270 Rio De
   Janeiro, RJ, Brazil.
CR ALLEN MP, 1987, COMP SIMULATION LIQU
   ANDREANI A, 2000, BIOORGAN MED CHEM, V8, P2359
   BARONE V, 1998, J COMPUT CHEM, V19, P404
   BAX A, 1983, J AM CHEM SOC, V105, P7188
   BAX A, 1983, J MAGN RESON, V55, P301
   BIEGER W, 1985, CHEM PHYS LETT, V115, P275
   CARPY A, 1984, ACTA CRYSTALLOGR C, V40, P1265
   CHAFIELD C, 1984, ANAL TIMES SERIES IN
   CHESNUT DB, 1994, ANN REPORTS NMR SPEC, V29, P71
   CHESTNUT DB, 1989, ANNU REP NMR SPECTRO, V21, P51
   COLIMAS C, 1999, J COMPUT CHEM, V20, P665
   COSSI M, 1998, CHEM PHYS LETT, V253, P286
   COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
   DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
   FOYE WO, 1990, J PHARM SCI, V79, P527
   FRIEDBERG R, 1970, J CHEM PHYS, V52, P6049
   FRISCH MJ, 2001, GAUSSIAN 98W REVISIO
   FUKUI H, 1987, MAGNET RESON REV, V11, P205
   GADAD AK, 2000, EUR J MED CHEM, V35, P853
   GAUSS J, 1995, J CHEM PHYS, V102, P251
   HARRIS CD, 1996, QUANTITATIVE CHEM AN
   HOLZER W, 1992, MONATSH CHEM, V123, P1163
   KRATSCHMER R, 1976, J STAT PHYS, V15, P267
   LUHMER M, 1998, PROG NUCL MAG RES  1, V33, P57
   LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
   LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
   MALASPINA T, 2002, J CHEM PHYS, V117, P1692
   MALKIN VG, 1993, CHEM PHYS LETT, V80, P204
   MALKIN VG, 1994, J AM CHEM SOC, V116, P5898
   MANOLO MG, 1986, EUR J MED CHEM, V21, P467
   MENNUCCI B, 2001, J PHYS CHEM A, V105, P7287
   MESSEDER JC, 1995, BIOORG MED CHEM LETT, V5, P3079
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   MIERTUS S, 1982, CHEM PHYS, V65, P239
   PIVNENKO NS, 2002, MAGN RESON CHEM, V40, P566
   SCHRECKENBACH G, 1995, J PHYS CHEM-US, V99, P606
   SCHRECKENBACH G, 1996, DENSITY FUNCTIONAL T
   SUNDBERG RJ, 1990, J MED CHEM, V33, P298
   TAI AW, 1984, J MED CHEM, V27, P236
   TINOCO LW, 1999, J BRAZIL CHEM SOC, V10, P281
   TINOCO LW, 1999, SPECTROSC LETT, V32, P941
   TOMASI J, 1994, CHEM REV, V94, P2027
   VERLET L, 1967, PHYS REV, V159, P98
   WERBEL LM, 1985, EUR J MED CHEM, V20, P363
   WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
   ZILM KW, 1993, NATO ASI SERIES C, V386
NR 46
TC 3
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0749-1581
J9 MAGN RESON CHEM
JI Magn. Reson. Chem.
PD DEC
PY 2003
VL 41
IS 12
BP 983
EP 988
PG 6
SC Chemistry, Multidisciplinary; Chemistry, Physical; Spectroscopy
GA 747CW
UT ISI:000186788500002
ER

PT J
AU Barbosa, PHR
   Raposo, EP
   Coutinho, MD
TI Microscopic description of an ising spin glass near the percolation
   threshold
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID RANDOM-FIELD; RANDOM-EXCHANGE; ORDERED PHASE; MONTE-CARLO;
   NONEQUILIBRIUM DYNAMICS; DILUTED ANTIFERROMAGNET; NEUTRON-SCATTERING;
   SYSTEM FEXZN1-XF2; CRITICAL-BEHAVIOR; FE0.25ZN0.75F2
AB Monte Carlo results using a microscopic model to describe FexZn1-xF2
   indicate that its spin-glass phase at x=0.25 and zero magnetic field is
   characterized by the presence of antiferromagnetic fractal domains,
   separated by random vacancies and strongly correlated in time. The
   effective local random-field distribution corroborates this glassy
   behavior, which emerges irrespective of ab initio competing
   interactions and is a consequence of the fractal domain structure near
   the percolation threshold, x(p)=0.24. The aging properties of the
   system are in agreement with predictions of short-range stochastic
   spin-glass models and with the droplets model for spin glass close to
   percolation.
C1 Univ Fed Pernambuco, Dept Fis, Lab Fis Teor & Computac, BR-50670901 Recife, PE, Brazil.
   Univ Fed Piaui, Dept Fis, BR-64048550 Teresina, PI, Brazil.
RP Barbosa, PHR, Univ Fed Pernambuco, Dept Fis, Lab Fis Teor & Computac,
   BR-50670901 Recife, PE, Brazil.
CR BALLESTEROS HG, 1998, PHYS REV B, V58, P2740
   BARBER WC, 2000, PHYS REV B, V61, P8960
   BARBOSA PHR, 2000, J APPL PHYS 3, V87, P6531
   BARBOSA PHR, 2001, J MAGN MAGN MATER 2, V226, P1293
   BARBOSA PHR, 2001, MATER SCI FORUM, V373, P705
   BARBOSA PHR, 2001, PHYSICA A, V295, P140
   BARRAT A, 2001, PHYS REV LETT, V87
   BARRETT PH, 1986, PHYS REV B, V34, P3513
   BELANGER DP, 1986, PHYS REV B, V34, P452
   BELANGER DP, 1991, PHYS REV B, V44, P2161
   BELANGER DP, 1993, PHYS REV B, V47, P5051
   BELANGER DP, 2000, BRAZ J PHYS, V30, P682
   BERNARDI LW, 2001, PHYS REV LETT, V86, P720
   BIRGENEAU RJ, 1983, PHYS REV B, V27, P6747
   BRAY AJ, 1988, COMMENTS CONDENS MAT, V14, P21
   CARTER AC, 2002, PHYS REV LETT, V88
   CASTILLO HE, 2002, PHYS REV LETT, V88
   ESSER J, 1997, PHYS REV B, V55, P5866
   FISHER DS, 1986, PHYS REV LETT, V56, P1601
   FISHER DS, 1988, PHYS REV B, V38, P373
   FISHER DS, 1988, PHYS REV B, V38, P386
   GUNNARSSON K, 1988, PHYS REV LETT, V61, P754
   HED G, 2001, PHYS REV LETT, V86, P3148
   HENLEY CL, 1985, PHYS REV LETT, V54, P2030
   HUTCHINGS MT, 1970, J PHYS             C, V3, P307
   JONASON K, 1997, PHYS REV B, V56, P5404
   JONSSON PE, 2002, PHYS REV LETT, V88
   JONSSON PE, 2002, PHYS REV LETT, V89
   KISKER J, 1996, PHYS REV B, V53, P6418
   KRZAKALA F, 2001, PHYS REV LETT, V87
   LUNDGREN L, 1986, PHYS REV B, V34, P8164
   MEZARD M, 1987, SPIN GLASS THEORY
   MONTENEGRO FC, COMMUNICATION
   MONTENEGRO FC, 1988, J APPL PHYS 3, V63, P3755
   MONTENEGRO FC, 1989, EUROPHYS LETT, V8, P382
   MONTENEGRO FC, 1990, J APPL PHYS 2B, V67, P5243
   MONTENEGRO FC, 1991, PHYS REV B, V44, P2155
   OGIELSKI AT, 1985, PHYS REV B, V32, P7384
   RAMMAL R, 1985, J PHYSIQUE LETT, V46, L667
   RAMMAL R, 1985, PHYS REV LETT, V55, P649
   RAPOSO EP, 1995, EUROPHYS LETT, V29, P507
   RAPOSO EP, 1996, J MAGN MAGN MATER, V154, L155
   RAPOSO EP, 1997, J APPL PHYS 2B, V81, P5279
   RAPOSO EP, 1998, J APPL PHYS 2, V83, P6311
   RAPOSO EP, 1998, PHYS REV B, V57, P3495
   REZENDE SM, 1988, J PHYS-PARIS, V49, P1267
   RIEGER H, 1993, J PHYS A, V26, L615
   ROSALESRIVERA A, 2000, EUROPHYS LETT, V50, P264
   ROSOV N, 1988, PHYS REV B, V37, P3265
   SLANIC Z, 1999, PHYS REV LETT, V82, P426
   TEMESVARI T, 2002, PHYS REV LETT, V89
   YE F, 2002, PHYS REV LETT, V89
   YOUNG AP, 1997, SPIN GLASSES RANDOM
NR 53
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 7
PY 2003
VL 91
IS 19
AR 197207
DI ARTN 197207
PG 4
SC Physics, Multidisciplinary
GA 740VR
UT ISI:000186422700045
ER

PT J
AU Sensato, FR
   Custodio, R
   Longo, E
   Beltran, A
   Andres, J
TI Electronic and structural properties of SnxTi1-xO2 solid solutions: a
   periodic DFT study
SO CATALYSIS TODAY
LA English
DT Article
DE oxidation-reduction potential; electron-hole recombination; Fermi
   level; SnO2-TiO2; periodic DFT calculation; photocatalysis
ID DENSITY-FUNCTIONAL THEORY; GAS-SENSING PROPERTIES; THIN-FILMS;
   1ST-PRINCIPLES CALCULATIONS; THEORETICAL-ANALYSIS; SNO2(110) SURFACES;
   TIO2-SNO2 SYSTEM; TIO2; ADSORPTION; SENSORS
AB The structural and electronic properties of selected compositions of
   SnxTi1-xO2 solid solutions (x = 0, 1/24, 1/16, 1/12, 1/8, 1/6, 1/4,
   1/2, 3/4, 5/6, 7/8, 11/12, 15/16, 23/24 and 1) were investigated by
   means of periodic density functional theory (DFT) calculations at B3LYP
   level. The calculations show that the corresponding lattice parameters
   vary non-linearly with composition, supporting positive deviations from
   Vegard's law in the SnxTi1-xO2 system. Our results also account for the
   fact that chemical decomposition in SnxTi1-xO2 system is dominated by
   composition fluctuations along [0 0 1] direction. A nearly continuous
   evolution of the direct band gap and the Fermi level with the growing
   value of x is predicted. Ti 3d states dominate the lower portion of the
   conduction band of SnxTi1-xO2 solid solutions. Sn substitution for Ti
   in TiO2 increases the oxidation-reduction potential of the oxide as
   well as it renders the lowest energy transition to be indirect. These
   two effects can be the key factors controlling the rate for the
   photogenerated electron-hole recombination. These theoretical results
   are capable to explain the enhancement of photoactivity in SnxTi1-xO2
   solid solutions. (C) 2003 Elsevier B.V All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
   Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
   Univ Jaume 1, Dept Ciencies Expt, Castello, Spain.
RP Sensato, FR, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13083970
   Campinas, SP, Brazil.
CR ABEE MW, 2002, SURF SCI, V520, P65
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BEGINCOLIN S, 1996, J SOLID STATE CHEM, V127, P98
   BELTRAN A, 2001, SURF SCI, V490, P116
   BUENO PR, 2002, J AM CERAM SOC, V85, P282
   BUENO PR, 2003, J EUR CERAM SOC, V23, P887
   CALATAYUD M, 1999, SURF SCI, V430, P213
   CATLOW CRA, 1990, NATURE, V347, P243
   CATLOW CRA, 1993, J SOLID STATE CHEM, V106, P13
   COHEN ML, 1997, INT J QUANTUM CHEM, V61, P603
   COHEN RM, 1988, J AM CERAM SOC, V71, C401
   COX PA, 1998, ELECT STRUCTURE CHEM
   DURAND P, 1975, THEOR CHIM ACTA, V38, P283
   DUSASTRE V, 1999, J MATER CHEM, V9, P445
   EDELMAN F, 2000, MAT SCI ENG B-SOLID, V69, P386
   FAHMI A, 1993, PHYS REV B, V47, P11717
   GROSS A, 2003, THEORETICAL SURFACE
   GUPTA PK, 1970, PHILOS MAG, V21, P611
   HIRATA T, 1996, PHYS REV B, V53, P8442
   HU CH, 1998, ENCY COMPUTATIONAL C
   KOKALJ A, 1999, J MOL GRAPH MODEL, V17, P176
   KONG LB, 2002, J ALLOY COMPD, V336, P315
   LARACASTELLS MP, 2002, CHEM PHYS LETT, V354, P483
   LEE C, 1988, PHYS REV B, V37, P785
   LIN J, 1999, J CATAL, V183, P368
   LINDAN PJD, 1997, FARADAY DISCUSS, V106, P135
   MELLEFRANCO M, 2000, SURF SCI, V461, P54
   MENETREY M, 2003, SURF SCI, V524, P49
   MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
   MUSCAT J, 2002, PHYS REV B, V65
   NELDER JA, 1965, COMPUT J, V7, P308
   OVIEDO J, 2000, SURF SCI, V463, P93
   PARK M, 1975, J AM CERAM SOC, V58, P43
   PISANI C, 1999, J MOL STRUC-THEOCHEM, V463, P125
   RADECKA M, 1998, SENSOR ACTUAT B-CHEM, V47, P194
   RADECKA M, 2001, THIN SOLID FILMS, V391, P247
   RAMAMOORTHY M, 1994, PHYS REV B, V49, P16721
   RANTALA TT, 1999, SURF SCI, V420, P103
   SAUER J, 1989, CHEM REV, V89, P199
   SAUNDERS VR, 1998, CRYST 98 US MAN U TO
   SCHULTZ AH, 1968, PHILOS MAG, V18, P929
   SENSATO FR, 2002, SURF SCI, V511, P408
   SERMON PA, 1997, SOLID STATE IONICS 2, V101, P673
   SILVI B, 1991, J PHYS CHEM SOLIDS, V52, P1005
   TAI WP, 2002, SENSOR ACTUAT B-CHEM, V85, P154
   YAMAGUCHI Y, 2002, J PHYS CHEM A, V106, P411
   YANG J, 2002, J SOLID STATE CHEM, V165, P193
   ZAKRZEWSKA K, 1997, THIN SOLID FILMS, V310, P161
   ZAKRZEWSKA K, 2001, THIN SOLID FILMS, V391, P229
NR 49
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5861
J9 CATAL TODAY
JI Catal. Today
PD OCT 15
PY 2003
VL 85
IS 2-4
BP 145
EP 152
PG 8
SC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
GA 738FG
UT ISI:000186275600007
ER

PT J
AU Machado, M
   Piquini, P
   Mota, R
TI Electronic properties of selected BN nanocones
SO MATERIALS CHARACTERIZATION
LA English
DT Article
DE apex; BN; nanocones; atoms
ID BORON-NITRIDE NANOTUBES; CARBON NANOTUBES; DENSITY; FRUSTRATION;
   STATES; GROWTH; CONES
AB The electronic properties of selected BN nanocones are investigated. In
   particular, we have proposed one configuration for BN nanocones
   associated with the 240degrees disclination as the most stable one
   presenting as characteristic four pentagons at the apex and termination
   in two atoms. This structure is simulated by clusters containing 58 B
   plus N atoms and additional 12 H atoms to saturate the dangling bonds
   at the edge. The geometric structure is obtained through molecular
   mechanics optimization calculations. The density-functional theory is
   employed to perform total energy calculations. The most stable
   termination is obtained when the two terminating atoms are one B and
   one N. For those cases where the two apex atoms are of the same kind,
   the apex with B atoms is determined to present lower binding energy
   than with N atoms. For the topologies studied, the local densities of
   states are investigated near the apex of the nanocones and sharp
   resonant states are found to dominate the electronic structure in the
   region close to the Fermi energy. These BN nanocones with pentagonal
   sites at their apex are proposed as good candidates for nanoprobes in
   scanning microscopy and also for electron field emitters. (C) 2003
   Elsevier Inc. All rights reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Machado, M, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
   RS, Brazil.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BENGU E, 2001, PHYS REV LETT, V86, P2385
   BLASE X, 1998, PHYS REV LETT, V80, P1666
   BOURGEOIS L, 2000, PHYS REV B, V61, P7686
   CARROLL DL, 1997, PHYS REV LETT, V78, P2811
   CHOI WB, 1999, APPL PHYS LETT, V75, P3129
   CHOPRA NG, 1995, SCIENCE, V269, P966
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   FOWLER PW, 1999, CHEM PHYS LETT, V299, P359
   FOWLER PW, 1999, ELECT PROPERTIES NOV
   FRISCH MJ, 1998, GAUSSIAN 98
   GE M, 1994, CHEM PHYS LETT, V220, P192
   GE MH, 1994, APPL PHYS LETT, V64, P710
   KIM P, 1999, PHYS REV LETT, V82, P1225
   LEE C, 1988, PHYS REV B, V37, P785
   LIJIMA S, 1992, NATURE, V356, P776
   MARTIN JML, 1996, CHEM PHYS LETT, V248, P95
   MENON M, 1999, CHEM PHYS LETT, V307, P407
   ROGERS KM, 2000, CHEM PHYS LETT, V332, P43
   RUBIO A, 1994, PHYS REV B, V49, P5081
   SEIFERT G, 1997, CHEM PHYS LETT, V268, P352
NR 21
TC 5
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1044-5803
J9 MATER CHARACT
JI Mater. Charact.
PD MAR
PY 2003
VL 50
IS 2-3
BP 179
EP 182
PG 4
SC Materials Science, Characterization & Testing
GA 737UJ
UT ISI:000186249900015
ER

PT J
AU Fagan, SB
   Mota, R
   Baierle, RJ
   da Silva, AJR
   Fazzio, A
TI Energetics and structural properties of adsorbed atoms and molecules on
   silicon-doped carbon nanotubes
SO MATERIALS CHARACTERIZATION
LA English
DT Article
DE energetics; structural properties; silicon-doped carbon nanotubes
ID LARGE SYSTEMS; CLUSTERS; GAS
AB The energetics and structural properties of atoms and molecules on a
   substitutional Si atom in single wall carbon nanotubes (SWCN) are
   investigated using first principle calculations based on
   density-functional theory. A detailed analysis is performed for the
   geometry and the electronic structures of a Si-doped semiconducting
   (10,0) carbon nanotube interacting with F, Cl, H, CH3, and SiH3. A
   common feature for the systems with these atoms or molecules is the
   presence of one half-filled level close to the top of the valence band.
   The specific position of this level in the gap depends on the
   chemisorbed species and the binding energy between this species and the
   Si atom. (C) 2003 Elsevier Inc. All rights reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
   Ctr Univ Franciscano, Dept Ciencias Exatas, BR-97101032 Santa Maria, RS, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
RP Fagan, SB, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
   Brazil.
EM sfagan@mail.ufsm.br
CR ALRUBAIEY N, 1998, J PHYS CHEM A, V102, P8564
   ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
   BAIERLE RJ, 2001, PHYS REV B, V64
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   DASH AK, 2002, J ALLOY COMPD, V344, P65
   FYE JL, 1997, J PHYS CHEM A, V101, P1836
   GULSEREN O, 2001, PHYS REV LETT, V87
   KIMURA T, 1996, CHEM PHYS LETT, V256, P269
   KONG J, 2000, SCIENCE, V287, P622
   MICKELSON ET, 1998, CHEM PHYS LETT, V296, P188
   ORDEJON P, 1996, PHYS REV B, V53
   PENG S, 2000, NANOTECHNOLOGY, V11, P57
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   RAY C, 1998, PHYS REV LETT, V80, P5365
   SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
   SANKEY OF, 1989, PHYS REV B, V40, P3979
   SRIVASTAVA D, 1999, PHYS REV LETT, V83, P2973
   TRANKLER KA, 2001, ORGANOMETALLICS, V20, P5139
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   YANG J, 2001, PHYS REV B, V64, P85420
   ZHAO J, 2000, PHYS REV LETT, V85, P1706
   ZHAO J, 2001, CONDENS MATTER, V1
NR 22
TC 3
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1044-5803
J9 MATER CHARACT
JI Mater. Charact.
PD MAR
PY 2003
VL 50
IS 2-3
BP 183
EP 187
PG 5
SC Materials Science, Characterization & Testing
GA 737UJ
UT ISI:000186249900016
ER

PT J
AU Guedes, RC
   Coutinho, K
   Cabral, BJC
   Canuto, S
   Correia, CF
   dos Santos, RMB
   Simoes, JAM
TI Solvent effects on the energetics of the phenol O-H bond: Differential
   solvation of phenol and phenoxy radical in benzene and acetonitrile
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID SUBSTITUTED CYCLOPENTADIENYL RADICALS; CARLO-QUANTUM-MECHANICS; SMALL
   CLUSTERS; BASIS-SET; PHOTOACOUSTIC CALORIMETRY; THERMAL-DECOMPOSITION;
   TOTAL ENERGIES; AB-INITIO; HYDRATION; WATER
AB Monte Carlo statistical mechanics simulations, density-functional
   theory calculations, time-resolved photoacoustic calorimetry, and
   isoperibol reaction-solution calorimetry experiments were carried out
   to investigate the solvation enthalpies and solvent effects on the
   energetics of the phenol O-H bond in benzene and acetonitrile. A good
   agreement between theoretical and experimental results is obtained for
   the solvation enthalpies of phenol in benzene and acetonitrile. The
   theoretical calculations also indicate that the differences between the
   solvation enthalpies of phenol (PhOH) and phenoxy radical (PhO*) in
   both benzene and acetonitrile are significantly smaller than previous
   estimations based on the ECW model. The results for the solvation
   enthalpies are used to obtain the O-H bond dissociation enthalpies in
   benzene and acetonitrile. For benzene and acetonitrile, the theoretical
   results of 89.4 +/- 1.2 and 90.5 +/- 1.7 kcal mol(-1), respectively,
   are in good agreement with the experimental values (90.9 +/- 1.3 and
   92.9 +/- 0.9 kcal mol(-1)), obtained by photoacoustic calorimetry. The
   solute-solvent interaction energies of phenol and phenoxy radical with
   both acetonitrile and benzene differ by less than 2 kcal mol-1. A
   detailed analysis of the solvent contributions to the differential
   solvation enthalpy is made in terms of the hydrogen bonds and the
   solute-solvent interactions. Both PhOH and PhO* induce a significant,
   although equivalent, solvent reorganization enthalpy. Finally, the
   convergence of the solute-solvent interaction is analyzed as a function
   of the distance to the solute and illustrates the advantages and
   limitations of local models such as microsolvation and
   hydrogen-bond-only models.
C1 Univ Lisbon, Fac Ciencias, Dept Quim & Bioquim, P-1749016 Lisbon, Portugal.
   Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal.
   Univ Mogi Cruzes, BR-08701970 Sao Paulo, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Algarve, Fac Engn Recursos Nat, P-8005139 Faro, Portugal.
RP Cabral, BJC, Univ Lisbon, Fac Ciencias, Dept Quim & Bioquim, P-1749016
   Lisbon, Portugal.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BESLER BH, 1990, J COMPUT CHEM, V11, P431
   BOHM HJ, 1983, MOL PHYS, V49, P347
   BOYS SF, 1970, MOL PHYS, V19, P553
   BRAY JA, 1999, J PHYS CHEM A, V103, P2214
   CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
   CHIPMAN DM, 1999, J PHYS CHEM A, V103, P11181
   CORREIA CF, 2003, UNPUB J PHYS CHEM A
   COUTINHO K, 2000, DICE GEN MONTE CARLO
   COUTINHO K, 2000, J CHEM PHYS, V112, P9874
   COUTINHO K, 2000, J CHEM PHYS, V113, P9132
   COUTO PC, 2002, INT J QUANTUM CHEM, V86, P297
   DIOGO HP, 1995, J CHEM THERMODYN, V27, P597
   DIOGO HP, 2001, J ORGANOMET CHEM, V632, P188
   DOSSANTOS RMB, 1998, J PHYS CHEM REF DATA, V27, P707
   DOSSANTOS RMB, 1999, J CHEM THERMODYN, V31, P1483
   DOSSANTOS RMB, 2001, J AM CHEM SOC, V123, P12670
   DOSSANTOS RMB, 2002, J PHYS CHEM A, V106, P9883
   DRAGO RS, 1993, INORG CHEM, V32, P2473
   DRAGO RS, 1994, APPL ELECTROSTATIC C
   FERNANDEZ JA, 1997, J CHEM PHYS, V107, P3363
   FERNANDEZ JA, 1999, J CHEM PHYS, V110, P5159
   FERNANDEZ JA, 1999, J CHEM PHYS, V110, P5183
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GUEDES RC, 2000, J PHYS CHEM A, V104, P6062
   GUEDES RC, 2003, J PHYS CHEM B, V107, P4304
   IRIKURA KK, 1998, ACS S SERIES, V677
   ITOH S, 2000, COORDIN CHEM REV, V198, P3
   JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
   JORGENSEN WL, 1990, J AM CHEM SOC, V112, P4768
   JORGENSEN WL, 1993, J COMPUT CHEM, V14, P195
   KAGAN VE, 1998, ANN NY ACAD SCI, P854
   KATRITZKY AR, 1986, J AM CHEM SOC, V108, P7213
   KIRKWOOD JG, 1935, J CHEM PHYS, V3, P300
   KRISHNAN R, 1980, J CHEM PHYS, V72, P650
   KRYACHKO ES, 2002, J PHYS CHEM A, V106, P4267
   LAZARIDIS T, 2000, J PHYS CHEM B, V104, P4964
   LEE C, 1988, PHYS REV B, V37, P785
   LEVCHUK VN, 1991, CHEM PHYS LETT, V185, P339
   LIN CY, 1986, J PHYS CHEM-US, V90, P425
   LIU RF, 1996, J PHYS CHEM-US, V100, P9314
   MALASPINA T, 2002, J CHEM PHYS, V117, P1692
   MCCLENMAN AL, 1963, TABLES EXPT DIPOLE M, V1
   MOONEY DA, 1998, CHEM PHYS LETT, V294, P135
   PARKER VD, 1993, J AM CHEM SOC, V115, P1201
   PEDLEY JB, 1994, THERMODYNAMIC DATA S, V1
   PETERSSON GA, 1988, J CHEM PHYS, V89, P2193
   PLATZ J, 1998, J PHYS CHEM A, V102, P7964
   SIBENER SJ, 1980, J CHEM PHYS, V72, P4341
   SINGH UC, 1984, J COMPUT CHEM, V5, P129
   STRAATSMA TP, 1989, J CHEM PHYS, V90, P3300
   VOGEL GC, 1996, J CHEM EDUC, V73, P701
   WAYNER DDM, 1995, J AM CHEM SOC, V117, P8737
   WEAVER EC, 1968, ANNU REV PLANT PHYS, V19, P283
   XANTHEAS SS, 1996, J CHEM PHYS, V104, P8821
   YAO J, 1999, J CHEM PHYS, V110, P5174
   ZWANZIG RW, 1954, J CHEM PHYS, V22, P1420
NR 57
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 30
PY 2003
VL 107
IS 43
BP 9197
EP 9207
PG 11
SC Chemistry, Physical
GA 736DQ
UT ISI:000186156000018
ER

PT J
AU Souza-Neto, NM
   Ramos, AY
   Tolentino, HCN
   Favre-Nicolin, E
   Ranno, L
TI Local anisotropy in strained manganite thin films
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID MAGNETIC-ANISOTROPY; MAGNETORESISTANCE; SPECTROSCOPY; DEPENDENCE
AB We report on an angular resolved x-ray absorption spectroscopy study of
   the local atomic structure around the manganese ions in La0.7Sr0.3MnO3
   thin films epitaxially grown on tensile and compressive substrates. Ab
   initio calculations provide strong support to the analysis of the
   experimental data and make possible the unambiguous derivation of a
   model of local distortion around the manganese atoms, without
   modification of the tilt angle Mn-O-Mn, among the octahedra. This
   distortion, tending to localize the charge carriers, is the driving
   parameter in the modifications of the magnetic and transport properties
   observed in thin films with respect to bulk systems. (C) 2003 American
   Institute of Physics.
C1 LNLS, BR-13084971 Campinas, Brazil.
   UNICAMP, Inst Fis Gleb Wataghin, BR-13083970 Campinas, Brazil.
   LMCP, CNRS, UMR 7590, Paris, France.
   Univ Grenoble 1, CNRS, UPR 5051, Lab Louis Neel, Grenoble, France.
RP Souza-Neto, NM, LNLS, CP 6192, BR-13084971 Campinas, Brazil.
CR ANKUDINOV AL, 2002, PHYS REV B, V65
   DHO J, 2003, APPL PHYS LETT, V82, P1434
   MANCEAU A, 1992, AM MINERAL, V77, P1133
   MILLIS AJ, 1998, J APPL PHYS, V83, P1588
   MILLIS AJ, 1998, NATURE, V392, P147
   MINIOTAS A, 2001, J APPL PHYS, V89, P2134
   PRELLIER W, 2001, J PHYS-CONDENS MAT, V13, R915
   QIAN Q, 2001, PHYS REV B, V63
   RAMOS AY, 2003, AIP CONF PROC, V652, P456
   RANNO L, 2002, APPL SURF SCI, V188, P170
   STEENBECK K, 2002, APPL PHYS LETT, V80, P3361
   TOLENTINO HCN, 2001, J SYNCHROTRON RADI 3, V8, P1040
   TYSON TA, 1996, PHYS REV B, V53, P13985
   URUSHIBARA A, 1995, PHYS REV B, V51, P14103
   WU XW, 2000, PHYS REV B, V61, P501
NR 15
TC 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 27
PY 2003
VL 83
IS 17
BP 3587
EP 3589
PG 3
SC Physics, Applied
GA 734QQ
UT ISI:000186068400048
ER

PT J
AU de Oliveira, HCB
   Fonseca, TL
   Castro, MA
   Amaral, OAV
   Cunha, S
TI Theoretical study of the static first hyperpolarizability of
   azo-enaminone compounds
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID CONJUGATED ORGANIC-MOLECULES; NONLINEAR-OPTICAL-PROPERTIES; BOND-LENGTH
   ALTERNATION; AB-INITIO; ELECTRON CORRELATION; AROMATIC-COMPOUNDS;
   DIPOLE-MOMENT; FIRST-ORDER; POLARIZABILITIES; DERIVATIVES
AB In this work the static electric properties of azo-enaminones, with
   special emphasis to the vector component of the first
   hyperpolarizability beta(vec), are determined at the Hartree-Fock (HF)
   level with the electron correlation (EC) effects included through the
   second-order Moller-Plesset perturbation theory (MP2). The ab initio
   results, in accordance with previous semiempirical calculations, show
   that appropriate choices of substituents to be incorporated to the
   molecular structure can have a marked influence on the first
   hyperpolarizability. An initial study about the changes on the
   beta(vec) values of these compounds, as a result of the incorporation
   of different donor groups, indicates that this property increases as
   function of the donor group strength tending to a saturated value. A
   comparison between our HF and MP2 results, for all compounds studied
   here, show that the beta(vec) values are strongly affected by the
   effects of the electron correlation correction. (C) 2003 American
   Institute of Physics.
C1 Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
   Univ Fed Bahia, Inst Quim, BR-41170290 Salvador, BA, Brazil.
RP de Oliveira, HCB, Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go,
   Brazil.
CR ABE J, 1997, J PHYS CHEM B, V101, P576
   ADANT C, 1997, J PHYS CHEM A, V101, P3025
   BOSSHARD C, 1992, J APPL PHYS, V71, P1594
   BOSSHARD C, 1995, ORGANIC NONLINEAR OP
   BOURHILL G, 1994, J AM CHEM SOC, V116, P2619
   BURKELAING M, 1976, ACTA CRYSTALLOGR, V32, P3216
   CHEMLA DS, 1987, NONLINEAR OPTICAL PR, V1
   CHEMLA DS, 1987, NONLINEAR OPTICAL PR, V2
   DANIEL C, 1990, CHEM PHYS LETT, V171, P209
   EBERLIN MN, 1990, J MOL STRUCT THEOCHE, V207, P143
   EDAFIOGHO O, 2002, BIOORGAN MED CHEM, V10, P993
   FIGEIREDO LJO, 1997, J ORG CHEM, V62, P1164
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GILLI P, 2000, J AM CHEM SOC, V122, P10405
   HURST GJB, 1988, J CHEM PHYS, V89, P385
   JACQUEMIN D, 1998, CHEM PHYS LETT, V284, P24
   KANIS DR, 1994, CHEM REV, V94, P195
   KETTMANN V, 2001, ACTA CRYSTALLOGR C 6, V57, P737
   KUBICKI M, 2000, J MOL STRUCT, V525, P141
   LALAMA SJ, 1979, PHYS REV A, V20, P1179
   LEVINE BF, 1974, APPL PHYS LETT, V24, P445
   MACHACEK V, 2000, MAGN RESON CHEM, V38, P293
   MADER SR, 1994, SCIENCE, V265, P632
   MARDER SR, 1991, SCIENCE, V252, P103
   MAROULIS G, 1999, J PHYS CHEM A, V103, P4359
   MEYERS F, 1994, J AM CHEM SOC, V116, P10703
   NARINGREKAR VH, 1990, J PHARM SCI, V79, P138
   OLIVEIRA LN, 2003, CHEM PHYS, V289, P221
   OUDAR JL, 1977, J CHEM PHYS, V66, P2664
   OUDAR JL, 1977, J CHEM PHYS, V67, P446
   PRASAD P, 1991, INTRO NONLINEAR OPTI
   RODRIGUES BL, 1996, ACTA CRYSTALLOGR C 3, V52, P705
   SHMUELI U, 1973, J CHEM SOC P2, V2, P657
   SIM F, 1993, J PHYS CHEM-US, V97, P1158
   SIMUNEK P, 2002, J MOL STRUCT, V642, P41
   SINGER KD, 1981, J CHEM PHYS, V75, P3572
   STAHELIN M, 1993, J CHEM PHYS, V98, P5595
   TIEMANN BG, 1993, J CHEM SOC CHEM COMM, P735
   TOTO TT, 1995, CHEM PHYS LETT, V244, P59
   TSUNEKAWA T, 1992, J PHYS CHEM-US, V96, P10268
   WANG P, 1999, J PHYS CHEM A, V103, P7076
   YANG ML, 2002, CHEM PHYS LETT, V354, P316
   ZHU WH, 2002, CHEM PHYS LETT, V358, P1
NR 43
TC 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD OCT 22
PY 2003
VL 119
IS 16
BP 8417
EP 8423
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 731BW
UT ISI:000185865500024
ER

PT J
AU Perpetuo, GJ
   Janczak, J
TI Three-dimensional self-assembly supramolecular structure of hydrogen
   bonded melaminium citrate
SO POLISH JOURNAL OF CHEMISTRY
LA English
DT Article
DE melaminium; citrate; crystal structure; self-assembling; conformation;
   hydrogen bond
ID ANHYDROUS CITRIC ACID; RAY CRYSTAL ANALYSIS; X-RAY; SOLID-STATE; TAPES;
   TETRAHYDRATE; ARCHITECTURE; SECONDARY; ACONITASE; COMPLEXES
AB The melaminium dihydrogencitrate,
   (C3H7N6)(HOOC-CH2-C(OH)(COOH)-CH2-COO), crystallizes from water
   solution at room temperature in the P2(1)/c space group of the
   monoclinic system with the lattice parameters of a = 5.531(1), b =
   20.869(4), c = 11.282(2) Angstrom and beta = 99.96(3)degrees and Z = 4.
   The crystals are built up from singly protonated at the one N-ring atom
   melaminium cations that interact in a near linear fashion through a
   pair of N-(HN)-N-... hydrogen bonds to form the centrosymmetric dimeric
   structure. The dihydrogencitrate(-) anions interact in the head-to-tail
   fashion via the terminal dissociated (COO-) and non-dissociated (COOH)
   carboxyl groups to form O-(HO)-O-... hydrogen bonded zigzag infinite
   chains. The hydroxyl group of dihydrogencitrate(-) ions is involved
   into O-(HO)-O-... hydrogen bonds that linked together the
   dihydrogencitrate(-) chains into two-dimensional network. The
   centrosymmetric dimers of melaminiurn moieties interact with the sheets
   of dihydrogencitrate(-) to form the three-dimensional hydrogen bonded
   network. The conformation of the dihydrogencitrate(-) ion in the
   crystal is compared with the conformation in the gas-phase obtained by
   the ab-initio molecular orbital calculation.
C1 Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland.
   Univ Fed Ouro Preto, Inst Ciencias Exatas & Biol, Dept Fis, BR-35400000 Ouro Preto, MG, Brazil.
RP Janczak, J, Polish Acad Sci, Inst Low Temp & Struct Res, POB 1410,
   PL-50950 Wroclaw, Poland.
CR *KUMA KM 4 CCD SOF, 1999, VER 163 US GUID
   ALLEN FH, 1987, J CHEM SOC P2, S1
   ALLEN FH, 1993, CHEM DESIGN AUTOMATI, V8, P31
   AUKERBY CB, 2001, AUST J CHEM, V54, P409
   BATES RG, 1949, J AM CHEM SOC, V71, P1274
   DESIRAJU GR, 1990, CRYSTAL ENG DESIGN O
   DESIRAJU GR, 1995, ANGEW CHEM INT EDIT, V34, P2311
   DESIRAJU GR, 1999, WEAK HYDROGEN BOND S
   FRISCH MJ, 1995, GAUSSIAN94 REVISION
   FYFE MCT, 1997, ACCOUNTS CHEM RES, V30, P393
   GILLESPIE RJ, 1963, J CHEM EDUC, V40, P295
   GILLESPIE RJ, 1992, CHEM SOC REV, V21, P59
   GLUSKER JP, 1969, ACTA CRYSTALLOGR B, V25, P1066
   GLUSKER JP, 1980, ACCOUNTS CHEM RES, V13, P345
   JANCZAK J, 2001, ACTA CRYSTALLOGR  12, V57, P1431
   JANCZAK J, 2001, ACTA CRYSTALLOGR C 1, V57, P123
   JANCZAK J, 2001, ACTA CRYSTALLOGR C 7, V57, P873
   JANCZAK J, 2001, ACTA CRYSTALLOGR C 9, V57, P1120
   JANCZAK J, 2002, ACTA CRYSTALLOGR C 8, V58, O455
   JANCZAK J, 2002, ACTA CRYSTALLOGR C, V58, O112
   JANCZAK J, 2002, ACTA CRYSTALLOGR C, V58, O431
   JANCZAK J, 2003, ACTA CRYSTALLOGR C 6, V59, O349
   KRISCHE MJ, 2000, STRUCT BOND, V96, P3
   MACDONALD JC, 1994, CHEM REV, V94, P2382
   MARCHEWKA M, 2003, SOLID STATE SCI, V5, P643
   MARTIN A, 1995, ACTA CRYSTALLOGR  10, V51, P2174
   NORDMAN CE, 1960, ACTA CRYSTALLOGR, V13, P418
   ROELOFSEN G, 1972, CRYST STRUCT COMMUN, V1, P23
   ROW TNG, 1999, COORDIN CHEM REV, V183, P81
   SHELDRICK GM, 1990, SHELXTL PROGRAM
   SHELDRICK GM, 1997, SHELXL97 PROGRAM SOL
   VARGHESE JN, 1977, ACTA CRYSTALLOGR B, V33, P2102
   VISHWESHWAR P, 2002, J ORG CHEM, V67, P556
   WHITESIDES GM, 1995, ACCOUNTS CHEM RES, V28, P81
   ZACHARIAS DE, 1984, ACTA CRYSTALLOGR C, V40, P2100
   ZERKOWSKI J, 1994, J AM CHEM SOC, V116, P2982
   ZERKOWSKI JA, 1990, J AM CHEM SOC, V112, P9025
   ZERKOWSKI JA, 1994, CHEM MATER, V6, P1250
   ZERKOWSKI JA, 1994, J AM CHEM SOC, V116, P4298
NR 39
TC 4
PU POLISH CHEMICAL SOCIETY
PI WARSAW
PA C/O POLISH ACAD SCIENCES, INST PHYSICAL CHEMISTRY, UL KASPRZAKA 44/52,
   01-224 WARSAW, POLAND
SN 0137-5083
J9 POLISH J CHEM
JI Pol. J. Chem.
PD OCT
PY 2003
VL 77
IS 10
BP 1323
EP 1337
PG 15
SC Chemistry, Multidisciplinary
GA 730VK
UT ISI:000185850700012
ER

PT J
AU Trasferetti, BC
   Davanzo, CU
   de Moraes, MAB
TI LO-TO splittings in plasma-deposited siloxane films
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID INFRARED-REFLECTANCE SPECTRA; CHEMICAL-VAPOR-DEPOSITION; GEL-DERIVED
   SILICA; THIN-FILMS; VIBRATIONAL-SPECTRA; SI/SIO2 INTERFACE; AB-INITIO;
   SPECTROSCOPY; OXYGEN; ABSORPTION
AB The present work presents LO and TO functions in the mid-infrared
   region for thin films deposited from glow discharge plasmas of
   tetramethylsilane (TMS) diluted either in Ar or O-2 or in mixtures of
   these two gases. These functions were calculated through the
   Kramers-Kronig analysis of transmittance spectra of the films supported
   on KBr disks. To correlate structural aspects of the films with the
   observed LO-TO splittings, a group frequency analysis based on the
   literature was made. Such an analysis indicated that the films
   deposited from the TMS Ar mixture were formed mainly by a
   polycarbosilane skeleton, whereas those deposited from TMS-O-2 and
   TMS-O-2-Ar were formed by a random network of four types of distorted
   tetrahedra: (CH3)(3)SiO0.5, (CH3)(2)SiO, (CH3SiO1.5), and SiO2. From
   the LO-TO splitting for the asymmetrical stretching mode of Si-O-Si
   groups, the density and the presence of defects in samples obtained
   from TMS-O-2 and TMS-O-2-Ar mixtures were evaluated. The number of
   defects increased as the Ar-to-O-2 flow rate decreased. We also report
   for the first time LO-TO splittings for bands related to the bending of
   CH3 and to the stretching of the Si-C bond in Si(CH3)(x) groups. The
   knowledge of such splittings is very important for a correct evaluation
   of the infrared reflection -absorption spectra taken at oblique
   incidence of thin films containing Si-O bonds and Si(CH3)(x) groups
   deposited on metals.
C1 Univ Estadual Campinas, Inst Quim, BR-13083862 Campinas, SP, Brazil.
   Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13087970 Campinas, SP, Brazil.
RP Davanzo, CU, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
   BR-13083862 Campinas, SP, Brazil.
CR ALLARA DL, 1985, LANGMUIR, V1, P52
   ALMEIDA RM, 1992, PHYS REV B, V45, P161
   ALMEIDA RM, 1996, PHYS REV B, V53, P14656
   ANDERSON DR, 1974, ANAL SILICONES
   BELLAMY LJ, 1975, INFRARED SPECTRA COM
   BERREMAN DW, 1963, PHYS REV, V130, P2193
   BLAKEMORE JS, 1995, SOLID STATE PHYSICS
   DACRUZ NC, 1998, J POLYM SCI POL PHYS, V36, P1873
   DECIUS JC, 1968, J CHEM PHYS, V49, P1387
   DELEEUW SW, 1985, PHYS REV LETT, V55, P2879
   DEVINE RAB, 1996, APPL PHYS LETT, V68, P3108
   FLEISCHER H, 1999, J PHYS CHEM A, V103, P727
   FURUSAWA T, 2001, ELECTROCHEM SOLID ST, V4, G31
   GALEENER FL, 1976, PHYS REV LETT, V37, P1474
   GUITON TA, 1993, COLLOID SURFACE A, V74, P33
   HARBECKE B, 1985, APPL PHYS A-SOLID, V38, P263
   HAWRANEK JP, 1976, SPECTROCHIM ACTA A, V32, P99
   HINDS BJ, 1998, J NONCRYST SOLIDS, V227, P507
   JONES LH, 1991, J PHYS CHEM-US, V95, P2701
   KAMITSOS EI, 1993, PHYS REV B, V48, P12499
   KAMITSOS EI, 1996, PHYS REV B, V53, P14659
   KIRK CT, 1988, PHYS REV B, V38, P1255
   KITTEL C, 1996, INTRO SOLID STATE PH
   LEWIS HGP, 2000, CHEM MATER, V12, P3488
   LEWIS HGP, 2001, J ELECTROCHEM SOC, V148, F212
   LUCOVSKY G, 1980, SOL CELLS, V2, P431
   LUCOVSKY G, 1998, J NONCRYST SOLIDS, V227, P1
   MAGNI D, 2001, J PHYS D APPL PHYS, V34, P87
   MARCHAND A, 1962, CHIM PHYS, V59, P1142
   MARTINET C, 1997, J APPL PHYS, V81, P6996
   MCKEAN DC, 1970, SPECTROCHIM ACTA A, V26, P1815
   MCKEAN DCC, 1999, SPECTROCHIM ACTA A, V55, P1485
   PAI PG, 1986, J VAC SCI TECHNOL A, V4, P689
   PASQUARELLO A, 1997, PHYS REV LETT, V79, P1766
   PAYNE MC, 1984, J NON-CRYST SOLIDS, V68, P351
   QUEENEY KT, 2000, J APPL PHYS, V87, P1322
   RAU C, 1994, THIN SOLID FILMS, V249, P28
   SARNTHEIN J, 1997, SCIENCE, V275, P1925
   SCARLETE M, 1994, CHEM MATER, V6, P977
   SEKIMOTO K, 1982, PHYS REV B, V26, P3411
   SMITH AL, 1984, APPL SPECTROSC, V38, P822
   SMITH DY, 1985, HDB OPTICAL CONSTANT
   SUGAHARA S, 1999, JPN J APPL PHYS 1, V38, P1428
   SUGAHARA S, 2001, J ELECTROCHEM SOC, V148, F120
   TEN YS, 1989, PHYS CHEM, V93, P7208
   TRASFERETTI BC, UNPUB
   TRASFERETTI BC, 2000, APPL SPECTROSC, V54, P502
   TSU DV, 1989, PHYS REV B, V40, P1795
   USAMI K, 2000, P 7 INT S QUANT EFF
   WOLFE DM, 1999, J VAC SCI TECHNOL  2, V17, P2170
   WROBEL AM, 1980, J MACROMOL SCI CHEM, V14, P321
   YAMAMOTO K, 1994, VIB SPECTROSC, V8, P1
   ZHANG CX, 1998, J AM CHEM SOC, V120, P8380
NR 53
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD OCT 2
PY 2003
VL 107
IS 39
BP 10699
EP 10708
PG 10
SC Chemistry, Physical
GA 726QC
UT ISI:000185609600005
ER

PT J
AU Ramalho, TC
   Martins, TLC
   Borges, LEP
   Figueroa-Villar, JD
TI Influence of nonbonded interactions in the kinetics of formation of
   chalcogenol esters from chalcogenoacetylenes
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE chalcogenoacetylene; chalcogenol ester; DFT; kinetics of formation;
   nonbonded interactions; transition state
ID POLARIZABLE CONTINUUM MODEL; SELENAZOFURIN; TIAZOFURIN; CONTACTS;
   THIAZOLE; SOLVENT; ENERGY; SULFUR; AGENT
AB The influence of nonbonded interactions in the kinetics of formation of
   chalcogenol (thiol and selenol) esters from chalcogenoacetylenes was
   studied by molecular modeling. Using semiempirical and density
   functional theory methods it was possible to explain the differences
   between the reaction rates for the analogous sulfur and selenium
   chalcogenoacetylenes as well as evaluate the structural and electronic
   effects (nonbonded interactions) on the formation of the esters. The
   differences in the reaction rates can be explained in terms of the
   carbocation stabilization by the chalcogen atom. It is proposed that
   these differences are due to the differences in the intensity of the
   dominant interaction pi(CO)(*)/n(Y) between the nonbonding orbitals of
   sulfur and selenium with the vacant orbital of carbon in the cationic
   transition state. (C) 2003 Wiley Periodicals, Inc.
C1 Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, Brazil.
RP Figueroa-Villar, JD, Inst Militar Engn, Dept Quim, Praca Gen Tiburcio
   80, BR-22290270 Rio De Janeiro, Brazil.
CR BACA M, 1995, J AM CHEM SOC, V117, P1881
   BARONE V, 1998, J COMPUT CHEM, V19, P404
   BECKE AD, 1988, PHYS REV A, V38, P3089
   BRAGA AL, 1999, J CHEM CRYSTALLOGR, V29, P77
   BRAGA AL, 2001, SYNLETT          MAR, P371
   BRAGA AL, 2001, TETRAHEDRON, V57, P3297
   BURLING FT, 1992, J AM CHEM SOC, V114, P2313
   CAMMI R, 1994, J CHEM PHYS, V100, P7495
   CANTOR CR, 1980, BIOPHYSICAL CHEM 1, CH5
   CAROLINE P, 1996, J PHYS CHEM-US, V100, P17797
   CHO SG, 2000, J MOL STRUC-THEOCHEM, V532, P279
   COHENADDAD C, 1984, J CHEM SOC P2, P191
   ELTAHER S, 2001, INT J QUANTUM CHEM, V20, P242
   FRISCH MJ, 2001, GAUSSIAN 98 REVISION
   GOLDSTEIN BM, 1983, J AM CHEM SOC, V105, P7416
   GOLDSTEIN BM, 1985, J AM CHEM SOC, V107, P1394
   GOLDSTEIN BM, 1988, J MED CHEM, V31, P1026
   GOLDSTEIN BM, 1990, J AM CHEM SOC, V112, P8265
   GURUROW TN, 1981, J AM CHEM SOC, V103, P477
   HALGREN TA, 1996, J COMPUT CHEM, V17, P490
   HEHRE WJ, 1999, PC SPAR TAN PRO
   KUCSMAN A, 1985, ORGANIC SULFUR CHEM, CH4
   LI HG, 2001, J AM CHEM SOC, V123, P2326
   MOTTANETO DJ, 1992, J QUANTUM CHEM QUANT, V19, P225
   MUKAIYAMA T, 1973, J AM CHEM SOC, V95, P4763
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   RAMASUBBU N, 1987, PHOSPHORUS SULFUR, V31, P221
   ROSENFIELD RE, 1977, J AM CHEM SOC, V99, P4860
   SALZNER U, 1993, J AM CHEM SOC, V115, P10231
   TOMASI J, 1994, CHEM REV, V94, P2027
   WANG P, 1991, J AM CHEM SOC, V113, P55
   WANG X, 1999, J AM CHEM SOC, V121, P8567
   WIRTH T, 1998, J AM CHEM SOC, V120, P3376
NR 33
TC 4
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD NOV 5
PY 2003
VL 95
IS 3
BP 267
EP 273
PG 7
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA 728CF
UT ISI:000185697100009
ER

PT J
AU Laschuk, EF
   Martins, MM
   Evangelisti, S
TI Ab initio potentials for weakly interacting systems: Homonuclear rare
   gas dimers
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE ab initio; rare gas dimers; rovibrational spectroscopy; second virial
   coefficient
ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; WAVE-FUNCTIONS;
   ENERGY CURVES; INTERMOLECULAR INTERACTIONS; BENCHMARK CALCULATIONS;
   SCHRODINGER-EQUATION; ELECTRIC PROPERTIES; NEON DIMER; AR-2
AB A series of high-level ab initio interatomic potentials for the
   homonuclear rare gas dimers He-2, Ne-2, and Ar-2 is presented, with
   predictions of rovibrational spectroscopic parameters and second virial
   coefficients. These potentials were created by using d-aug-cc-pVnZ, n =
   D,T,Q basis sets, NP4 and CCSD(T) correlation energy treatments, the
   counterpoise correction to the basis set superposition error, and
   extrapolation schemes for estimating complete basis set (CBS) limits. A
   careful FCI correction was added to our best He-2 CCSD(T) potential.
   The characteristic parameters D-e, R-e, k, and sigma of the ab initio
   potentials were compared with those of reliable empirical and ab initio
   potentials. Our best results for He-2 recovered 99.9% of Janzen's SAPT2
   well depth. In the case of Ar-2, we recovered 99.8% of Aziz's HFDID1
   well depth. For neon, second virial coefficients typically came to
   within 0.5-1.0 cm(3)mol(-1) of experimental values and rovibrational
   energy levels exhibited errors of about 1.4 cm(-1). Our best argon
   results exhibited second virial coefficients in agreement of 0.25
   cm(3)mol(-1) with experiment and rovibrational energy level errors
   around 0.2 cm(-1). (C) 2003 Wiley Periodicals, Inc.
C1 Univ Fed Rio Grande Sul, Theoret Chem Grp, BR-91501970 Porto Alegre, RS, Brazil.
   Univ Bologna, Theoret & Inorgan Chem Dept, Bologna, Italy.
RP Laschuk, EF, Univ Fed Rio Grande Sul, Theoret Chem Grp, BR-91501970
   Porto Alegre, RS, Brazil.
CR ANDERSON JB, 2001, J CHEM PHYS, V115, P4546
   AZIZ RA, 1989, CHEM PHYS, V130, P187
   AZIZ RA, 1993, J CHEM PHYS, V99, P4518
   BALINTKURTI GG, 1992, INT REV PHYS CHEM, V11, P317
   BURDA JV, 1996, MOL PHYS, V89, P425
   COLBOURN EA, 1976, J CHEM PHYS, V65, P1741
   CYBULSKI SM, 1999, J CHEM PHYS, V111, P10520
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   FERNANDEZ B, 1998, J CHEM PHYS, V109, P10255
   FRISCH MJ, 1995, GAUSSIAN 98
   GDANITZ RJ, 2000, J CHEM PHYS, V113, P5145
   GDANITZ RJ, 2001, CHEM PHYS LETT, V348, P67
   GROCHOLA G, 1998, MOL PHYS, V95, P471
   HATTIG C, 1999, J CHEM PHYS, V111, P10099
   HERMAN PR, 1988, J CHEM PHYS, V89, P4535
   JANZEN AR, 1997, J CHEM PHYS, V107, P914
   KENDALL RA, 1992, J CHEM PHYS, V96, P6796
   KOCH H, 1999, J CHEM PHYS, V111, P10108
   LEROY RJ, 1974, MOL PHYS, V28, P587
   MARSTON CC, 1989, J CHEM PHYS, V91, P3571
   TANAKA Y, 1972, J CHEM PHYS, V57, P2964
   TAO FM, 1994, MOL PHYS, V81, P507
   TELEGER C, 1999, J PHYS CHEM REF DATA, V28, P779
   VANDEBOVENKAMP J, 1999, CHEM PHYS LETT, V309, P287
   VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
   VANMOURIK T, 1999, MOL PHYS, V96, P529
   WERNER HJ, 1997, MOLPRO
   WOON DE, 1993, J CHEM PHYS, V98, P1358
   WOON DE, 1994, J CHEM PHYS, V100, P2838
   WOON DE, 1994, J CHEM PHYS, V100, P2975
NR 30
TC 3
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD NOV 5
PY 2003
VL 95
IS 3
BP 303
EP 312
PG 10
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA 728CF
UT ISI:000185697100014
ER

PT J
AU Alexandre, SS
   Artacho, E
   Soler, JM
   Chacham, H
TI Small polarons in dry DNA
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID CHARGE MIGRATION; DOUBLE HELIX; LAMBDA-DNA; TRANSPORT; MODEL;
   PSEUDOPOTENTIALS; CONDUCTIVITY; MOLECULES; DAMAGE; MOTION
AB We report ab initio calculations for positively charged fragments of
   dry poly(dC)-poly(dG) DNA, with up to 4 C-G pairs. We find a strong
   hole-lattice coupling and clear evidence for the formation of small
   polarons. The largest geometry distortions occur in only one or two
   base pairs. They involve the stretching of weak bonds within each base
   pair, increasing the distance of positive hydrogens, and decreasing
   that of negative oxygens, to the region in which the hole localizes. We
   obtain an energy of similar to0.30 eV for the polaron formation, nearly
   independent of the chain size. From it, we can estimate an activation
   energy for polaron hopping of similar to0.15 eV, consistent with the
   available experimental value.
C1 Univ Fed Minas Gerais, Dept Fis, ICEx, BR-30123970 Belo Horizonte, MG, Brazil.
   Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England.
   Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain.
RP Alexandre, SS, Univ Fed Minas Gerais, Dept Fis, ICEx, CP 702,
   BR-30123970 Belo Horizonte, MG, Brazil.
CR ARTACHO E, IN PRESS MOL PHYS
   BARNETT RN, 2001, SCIENCE, V294, P567
   BERATAN DN, 1997, CHEM BIOL, V4, P3
   BRUINSMA R, 2000, PHYS REV LETT, V85, P4393
   CONWELL EM, 2000, P NATL ACAD SCI USA, V97, P4556
   CUNIBERTI G, 2002, PHYS REV B, V65
   DEMPLE B, 1994, ANNU REV BIOCHEM, V63, P915
   DEPABLO PJ, 2000, PHYS REV LETT, V85, P4992
   FINK HW, 1999, NATURE, V398, P407
   GERVASIO FL, 2002, PHYS REV LETT, V89
   HOLSTEIN T, 1959, ANN PHYS-NEW YORK, V8, P325
   HOLSTEIN T, 1959, ANN PHYS-NEW YORK, V8, P343
   KALOSAKAS G, 1998, PHYS REV B, V58, P3094
   KELLEY SO, 1999, SCIENCE, V283, P375
   KIM JN, 1995, PHYS REV B, V52, P1640
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   KOHN W, 1965, PHYS REV, V140, A1133
   LOFT S, 1996, J MOL MED-JMM, V74, P297
   MAHAN GD, 1986, MANY PARTICLE PHYSIC
   MAKOV G, 1995, PHYS REV B, V51, P4014
   ORDEJON P, 1995, PHYS REV B, V51, P1456
   ORDEJON P, 1996, PHYS REV B, V53
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   PORATH D, 2000, NATURE, V403, P635
   SARTOR V, 1999, J AM CHEM SOC, V121, P11027
   SOLER JM, 2002, J PHYS-CONDENS MAT, V14, P2745
   TRAN P, 2000, PHYS REV LETT, V85, P1564
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   VERISSIMOALVES M, 2001, PHYS REV LETT, V86, P3372
   YOO KH, 2001, PHYS REV LETT, V87
   YU ZG, 2001, PHYS REV LETT, V86, P6018
   ZHANG W, 2002, PHYS REV B, V66
NR 32
TC 18
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD SEP 5
PY 2003
VL 91
IS 10
AR 108105
DI ARTN 108105
PG 4
SC Physics, Multidisciplinary
GA 724KA
UT ISI:000185485700048
ER

PT J
AU Coutinho, K
   Canuto, S
TI The sequential Monte Carlo-quantum mechanics methodology. Application
   to the solvent effects in the Stokes shift of acetone in water
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Monte Carlo-quantum mechanics methodology; super-molecular calculation;
   solvent effects
ID POLARIZABLE CONTINUUM MODEL; MOLECULAR-DYNAMICS SIMULATIONS;
   INTEGRAL-EQUATION FORMALISM; FORBIDDEN VIBRONIC SPECTRA; PI-ASTERISK
   TRANSITION; SELF-CONSISTENT-FIELD; LIQUID WATER; AQUEOUS-SOLUTION;
   AB-INITIO; CONFIGURATION-INTERACTION
AB The sequential Monte Carlo quantum mechanics methodology is used to
   obtain the solvent effects on the Stokes shift of acetone in water. One
   of the great advantages of this methodology is that all the important
   statistical information is known before running into the costly quantum
   mechanical calculations. This advantage is discussed not only with
   respect to the statistical correlation between the different structures
   generated by the simulation but also in the proper identification of
   hydrogen bonds in liquids. To obtain the solvent effects in the Stokes
   shift of the n-pi* absorption transition of acetone in water,
   quantum-mechanical calculations are performed in super-molecular
   structures generated by NVT Monte Carlo simulation. The statistical
   correlation between configurations is analyzed using the
   auto-correlation function of the energy. The largest calculations
   include one acetone and 170 water molecules. One-hundred INDO/CIS
   super-molecular calculations are performed for each solvation shell to
   obtain the statistical average value. The calculated solvatochromic
   shift of the n-pi* absorption transition of acetone in water, compared
   to gas phase, is similar to 1310 cm(-1) in good agreement with the
   experimental blue shift of 1500 +/- 200 cm(-1). For the emission of the
   relaxed excited state, the calculated shift is similar to 1850 cm(-1).
   The total calculated solvent effect on the Stokes shift of acetone in
   aqueous solution is thus 540 cm(-1). A detailed analysis of the
   sampling of the configurations obtained in the Monte Carlo simulation
   is made and it is shown that all results represent statistically
   converged values. (C) 2003 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Mogi das Cruzes, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
   ANTONCZAK S, 1998, J AM CHEM SOC, V120, P8825
   BABA M, 1985, J CHEM PHYS, V82, P3938
   BAYLISS NS, 1954, J PHYS CHEM-US, V58, P1006
   BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
   BISWAS R, 1999, J PHYS CHEM A, V103, P2495
   BLAIR JT, 1989, J AM CHEM SOC, V111, P6948
   BROO A, 1997, J PHYS CHEM A, V101, P2478
   CAMMI R, 1995, J COMPUT CHEM, V16, P1449
   CAMMI R, 1998, J AM CHEM SOC, V120, P8834
   CANCES E, 1997, J CHEM PHYS, V107, P3032
   CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
   CANUTO S, 2002, CURRENT DEV ATOMIC M, P127
   CANUTO S, 2003, ADV QUANTUM CHEM, V41, P161
   CHATFIELD C, 1984, ANAL TIME SERIES INT
   CHIPOT C, 1991, CHEM PHYS LETT, V191, P287
   CHRISTIANSEN O, 1999, J CHEM PHYS, V110, P1365
   COSSI M, 2002, J CHEM PHYS, V117, P43
   COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
   COUTINHO K, 1997, DICE MONTE CARLO PRO
   COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
   COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
   COUTINHO K, 2000, J CHEM PHYS, V112, P9874
   COUTINHO K, 2000, J CHEM PHYS, V113, P9132
   CRAMER CJ, 1991, J AM CHEM SOC, V113, P8305
   CRAMER CJ, 1999, CHEM REV, V99, P2161
   DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
   DEVRIES AH, 1996, INT J QUANTUM CHEM, V57, P1067
   FIELD MJ, 1990, J COMPUT CHEM, V11, P700
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GAO JL, 1992, SCIENCE, V258, P631
   GAO JL, 1994, J AM CHEM SOC, V116, P9324
   GAO JL, 1997, J AM CHEM SOC, V119, P2962
   HAYES WP, 1965, SPECTROCHIM ACTA, V21, P529
   HONMA K, 1991, J CHEM PHYS, V94, P3496
   HOUJOU H, 1997, J CHEM PHYS, V107, P5652
   IFTIMIE R, 2000, J CHEM PHYS, V113, P4852
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   KARELSON MM, 1992, J PHYS CHEM-US, V96, P6949
   KIRKWOOD JG, 1934, J CHEM PHYS, V2, P351
   KLAMT A, 1993, J CHEM SOC P2, P799
   KRATSCHMER R, 1976, J STAT PHYS, V15, P267
   LEVY RM, 1990, J PHYS CHEM-US, V94, P4470
   LIAO DW, 1999, J CHEM PHYS, V111, P205
   MALASPINA T, 2002, J CHEM PHYS, P117
   MARTIN ME, 2000, J CHEM PHYS, V113, P6308
   MARTIN ME, 2002, J CHEM PHYS, V116, P1613
   MENNUCCI B, 1998, J CHEM PHYS, V109, P2798
   METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
   MEZEI M, 1981, J CHEM PHYS, V74, P622
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   MIKKELSEN KV, 1988, J CHEM PHYS, V89, P3086
   MONARD G, 1999, ACCOUNTS CHEM RES, V32, P904
   NAKA K, 1999, J CHEM PHYS, V110, P3484
   OGILBY PR, 1999, ACCOUNTS CHEM RES, V32, P512
   ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
   POULSEN TD, 1999, J CHEM PHYS, V111, P2678
   RAHMAN A, 1971, J CHEM PHYS, V55, P3336
   REICHHARDT C, 1979, SOLVENT EFFECTS ORGA
   RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
   RIVAIL JL, 1976, CHEM PHYS, V18, P233
   RIVAIL JL, 1998, J MOL GRAPH MODEL, V16, P272
   ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
   ROCHA WR, 2001, CHEM PHYS LETT, V345, P171
   ROCHA WR, 2002, THEOR CHEM ACC, V108, P31
   SANCHEZ ML, 1995, J PHYS CHEM-US, V99, P15758
   SATO H, 1999, J CHEM PHYS, V111, P8545
   SERRANOANDRES L, 1997, INT J QUANTUM CHEM, V65, P167
   SHIU YJ, 2001, J CHEM PHYS, V115, P4080
   STILLINGER FH, 1974, J CHEM PHYS, V60, P1545
   STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
   SUPPAN P, 1997, SOLVATOCHROMISM
   SVENSSON M, 1996, J PHYS CHEM-US, V100, P19357
   TANG S, 1987, PHYS REV B, V36, P567
   TAPIA O, 1975, MOL PHYS, V29, P1653
   TENNO S, 1993, CHEM PHYS LETT, V214, P391
   TENNO S, 1994, J CHEM PHYS, V100, P7443
   THOMPSON MA, 1996, J PHYS CHEM-US, V100, P14494
   THURBER MC, 1999, APPL PHYS B-LASERS O, V69, P229
   TOMASI J, 1994, CHEM REV, V94, P2027
   VANDUUREN BL, 1963, CHEM REV, V63, P325
   VREVEN T, 2001, J CHEM PHYS, V115, P62
   WARSHEL A, 1976, J MOL BIOL, V103, P227
   ZENG J, 1993, J CHEM PHYS, V99, P1496
   ZERNER MC, 1999, ZINDO SEMIEMPIRICAL
NR 85
TC 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD AUG 1
PY 2003
VL 632
SI Sp. Iss. SI
BP 235
EP 246
PG 12
SC Chemistry, Physical
GA 722VQ
UT ISI:000185399100019
ER

PT J
AU Branicio, PS
   Rino, JP
   Shimojo, F
   Kalia, RK
   Nakano, A
   Vashishta, P
TI Molecular dynamics study of structural, mechanical, and vibrational
   properties of crystalline and amorphous Gal-xInxAs alloys
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID SILICON-NITRIDE; PHONON DISPERSIONS; GALLIUM-ARSENIDE; SQUARE
   NANOMESAS; SOLID-SOLUTIONS; GA1-XINXAS; FRACTURE; AMORPHIZATION;
   BEHAVIOR; SIMULATION
AB Using an interaction potential scheme, molecular dynamics (MD)
   simulations are performed to investigate structural, mechanical, and
   vibrational properties of Ga1-xInxAs alloys in the crystalline and
   amorphous phases. For the crystalline phase we find that: (i) Ga-As and
   In-As bond lengths vary only slightly for different compositions; (ii)
   the nearest-neighbor cation-cation distribution has a broad peak; and
   (iii) there are two nearest-neighbor As-As distances in the As (anion)
   sublattice. These MD results are in excellent agreement with extended
   x-ray absorption fine structure and high-energy x-ray diffraction data
   and also with ab initio MD simulation results. The calculated lattice
   constant deviates less than 0.18% from Vegard's law. The calculated
   phonon density of states exhibits a two-mode behavior for
   high-frequency optical phonons with peaks close to those in binary
   alloys (GaAs and InAs), which agrees well with a recent Raman study.
   Calculated elastic constants show a significant nonlinear dependence on
   the composition. For the amorphous phase, MD results show that: (i) the
   nearest-neighbor cation-anion distribution splits into well-defined
   As-Ga and As-In peaks as in the crystal phase; (ii) the cation-cation
   distribution is similar to that in the crystal phase; and (iii) the
   As-As distribution is quite different from that in the crystal, having
   only one nearest-neighbor distance. (C) 2003 American Institute of
   Physics.
C1 Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
   Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA.
   Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA.
   Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA.
   Univ Fed Sao Carlos, Dept Fis, Sao Paulo, Brazil.
   Kumamoto Univ, Dept Phys, Kumamoto 860, Japan.
RP Branicio, PS, Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp &
   Simulat, Los Angeles, CA 90089 USA.
CR ALLEN MP, 1987, COMPUTER SIMULATION
   BARONI S, 1990, PHYS REV LETT, V65, P84
   BAZANT MZ, 1997, PHYS REV B, V56, P8542
   BRANICIO PS, 2003, APPL PHYS LETT, V82, P1057
   BRENNER DW, 2000, PHYS STATUS SOLIDI B, V217, P23
   BRIGGS EL, 1996, PHYS REV B, V54, P14362
   BRODSKY MH, 1968, PHYS REV LETT, V21, P990
   CHATTERJEE A, 2000, APPL PHYS LETT, V77, P1132
   CHELIKOWSKY JR, 1994, PHYS REV B, V50, P11355
   COHEN ML, 1993, SCIENCE, V261, P307
   EBBSJO I, 2000, J APPL PHYS, V87, P7708
   FONG CY, 1976, PHYS REV B, V14, P5387
   GEHRSITZ S, 1999, PHYS REV B, V60, P11601
   GIANNOZZI P, 1991, PHYS REV B, V43, P7231
   GROENEN J, 1998, PHYS REV B, V58, P10452
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   KALIA RK, 1997, PHYS REV LETT, V78, P2144
   KALIA RK, 1997, PHYS REV LETT, V78, P689
   KODIYALAM S, 2001, PHYS REV LETT, V86, P55
   KOHN W, 1983, INHOMOGENEOUS ELECT, P79
   KRESSE G, 1994, PHYS REV B, V49, P14251
   LI W, 1996, PHYS REV LETT, V77, P2241
   MARTINS JL, 1984, PHYS REV B, V30, P6217
   MIGLIORATO MA, 2002, PHYS REV B, V65
   MIKKELSEN JC, 1982, PHYS REV LETT, V49, P1412
   PATEL C, 1984, J MOL STRUCT, V115, P149
   PAULING L, 1967, NATURE CHEM BOND
   PETKOV V, 1999, PHYS REV LETT, V83, P4089
   PHILIPS BA, 1995, PHYS REV LETT, V74, P3640
   PHILLIPS JC, 1973, BONDS BANDS SEMICOND, P214
   SHIMOJO F, 2001, COMPUT PHYS COMMUN, V140, P303
   SU XT, 2001, APPL PHYS LETT, V78, P3717
   SU XT, 2001, APPL PHYS LETT, V79, P4577
   TERSOFF J, 1989, PHYS REV B, V39, P5566
   TROULLIER N, 1991, PHYS REV B, V43, P8861
   TSURUTA K, 1998, J AM CERAM SOC, V81, P433
   TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
   VASHISHTA P, 1989, PHYS REV LETT, V62, P1651
   VASHISHTA P, 1990, PHYS REV B, V41, P12197
   VASHISHTA P, 1995, PHYS REV LETT, V75, P858
   VEGARD L, 1921, Z PHYS, V5, P17
   WALSH P, 2000, APPL PHYS LETT, V77, P4332
   WALSH P, 2001, APPL PHYS LETT, V78, P3328
NR 43
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD SEP 15
PY 2003
VL 94
IS 6
BP 3840
EP 3848
PG 9
SC Physics, Applied
GA 723EN
UT ISI:000185419600023
ER

PT J
AU Meurer, EC
   Gozzo, FC
   Augusti, R
   Eberlin, MN
TI The kinetic method as a structural diagnostic tool: ionized
   alpha-diketones as loosely one-electron bonded diacylium ion dimers
SO EUROPEAN JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
ID POLYCYCLIC AROMATIC-HYDROCARBONS; QUADRUPOLE MASS SPECTROMETERS;
   PROTON-BOUND DIMERS; GAS-PHASE ACIDITIES; RADICAL CATIONS;
   THERMOCHEMICAL DETERMINATIONS; DISSOCIATION ENERGIES; IONIZATION
   ENERGIES; ATTACHMENT SITES; CHIRAL ANALYSIS
AB The kinetic method is used to corroborate the description of ground
   state ionized alpha-diketones as loosely electron-bonded acylium ion
   dimers: R'-C=O+---e(-)---O+=C-R-2. The abundance ratio of both the
   acylium ion fragments (RCO)-C-1* and (RCO+)-C-2 (summed to those of
   their respective secondary fragments) formed upon low energy (5 eV)
   collision-induced dissociation of several ionized alpha-diketones is
   found to correlate linearly with the ionization energies (IEs) of the
   corresponding (RCO.)-C-1 and (RCO.)-C-2 free radicals as predicted by
   density functional theory calculations at the B3LY/P/6-311++G(d,p)
   level. However, when these abundances are taken from 70 eV electron
   ionization mass spectra, lower and sometimes inverted ratios
   (2,3-pentanedione and 2,3-hexanedione) are observed. Inverted ratios
   are also observed via charge-exchange mass spectrometry/mass
   spectrometry (MS/MS) experiments for ionized 2,3-pentanodione formed
   with relatively high internal energies. Ionized alpha-diketones are
   found to display an effective temperature of 1705 K, which indicates an
   intermediate loosely-bonded nature. B3LY/P/6-311++G(d,p) optimized
   geometries and charge and spin densities also corroborate the
   description of ground state ionized alpha-diketones as loosely
   electron-bonded diacylium ion dimers.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
   UFMG, Dept Chem, BR-31270901 Belo Horizonte, MG, Brazil.
RP Eberlin, MN, UNICAMP, Inst Chem, CP154, BR-13083970 Campinas, SP,
   Brazil.
CR AUGUSTI DV, 2002, ANAL CHEM, V74, P3458
   BAER T, 1997, J AM SOC MASS SPECTR, V8, P103
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BOAND G, 1983, J AM CHEM SOC, V105, P2203
   BURINSKY DJ, 1984, J AM CHEM SOC, V106, P2770
   CERDA BA, 1996, J AM CHEM SOC, V118, P11884
   CERDA BA, 1998, J AM CHEM SOC, V120, P2437
   CHEN G, 1996, J AM SOC MASS SPECTR, V7, P619
   CHEN GD, 1997, ANAL CHEM, V69, P3641
   CHEN GD, 1997, J MASS SPECTROM, V32, P1305
   CHEN GD, 1997, J MASS SPECTROM, V32, P333
   CHENG XH, 1993, J AM CHEM SOC, V115, P4844
   COOKS RG, 1977, J AM CHEM SOC, V99, P1279
   COOKS RG, 1994, MASS SPECTROM REV, V13, P287
   COOKS RG, 1998, ACCOUNTS CHEM RES, V31, P379
   DAMRAUER R, 1988, J AM CHEM SOC, V110, P2005
   DENAULT JW, 1998, J AM SOC MASS SPECTR, V9, P1141
   DENAULT JW, 2000, J PHYS CHEM A, V104, P11290
   DEPUY CH, 1984, J AM CHEM SOC, V106, P4051
   DERRICK PJ, 1995, ADV MASS SPECTROM, V13, P23
   DEVISSER SP, 1998, INT J MASS SPECTROM, V180, P43
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DRAHOS L, 1999, J MASS SPECTROM, V34, P79
   DRAHOS L, 2001, J MASS SPECTROM, V36, P237
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GOZZO FC, 2001, J MASS SPECTROM, V36, P1140
   GRESE RP, 1990, J AM SOC MASS SPECTR, V1, P172
   GRIFFIN LL, 2002, INT J MASS SPECTROM, V217, P23
   GUO JH, 1999, ANGEW CHEM INT EDIT, V38, P1755
   HANLEY JH, 1992, J PHYS CHEM-US, V92, P5803
   HARCOURT RD, 1997, J PHYS CHEM A, V101, P5962
   JARROLD MF, 1987, J CHEM PHYS, V86, P3876
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KISHORE K, 2000, J PHYS CHEM A, V104, P9646
   LIAS SG, 1988, J PHYS CHEM REF D S1, V17, P1
   LIAS SG, 2001, ION ENERGETICS DATA
   LUND KH, 1996, INT J MASS SPECTROM, V156, P203
   MA SG, 1997, INT J MASS SPECTROM, V163, P89
   MA SG, 1998, J MASS SPECTROM, V33, P943
   MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
   MCLUCKEY SA, 1983, INT J MASS SPECTROM, V52, P165
   MCLUCKEY SA, 1984, ORG MASS SPECTROM, V19, P545
   MURAD E, 1964, J CHEM PHYS, V41, P404
   ROBINSON PJ, 1972, UNIMOLECULAR REACTIO
   SCHROETER K, 1998, EUR J ORG CHEM   APR, P565
   SHEN WY, 1997, RAPID COMMUN MASS SP, V11, P71
   STEVENSON DP, 1951, DISCUSS FARADAY SOC, P35
   STOCKIGT D, 1995, INT J MASS SPECTROM, V150, P1
   TAO WA, 1999, ANAL CHEM, V71, P4427
   TAO WA, 2001, ANAL CHEM, V73, P1692
   TAO WA, 2003, ANAL CHEM, V75, A25
   TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
   TRIKOUPIS MA, 1999, J AM SOC MASS SPECTR, V10, P869
   VEKEY K, 1997, ANAL CHEM, V69, P1700
   WANG F, 1998, INT J MASS SPECTROM, V180, P195
   WONG PSH, 1996, ANAL CHEM, V68, P4254
   WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
   WONG PSH, 1997, J ORGANOMET CHEM, V539, P131
   WRIGHT LG, 1982, INT J MASS SPECTROM, V42, P115
   YANG SS, 1995, J MASS SPECTROM, V30, P807
   YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
NR 63
TC 4
PU IM PUBLICATIONS
PI W SUSSEX
PA 6 CHARLTON MILL, CHARLTON, CHICHESTER,, W SUSSEX PO18 0HY, ENGLAND
SN 1469-0667
J9 EUR J MASS SPECTROM
JI Eur. J. Mass Spectrom.
PY 2003
VL 9
IS 4
BP 295
EP 304
PG 10
SC Physics, Atomic, Molecular & Chemical; Spectroscopy
GA 723XD
UT ISI:000185456100009
ER

PT J
AU Ruini, A
   Bussi, G
   Ferretti, A
   Caldas, MJ
   Molinari, E
TI Charge transport and radiative recombination in polythiophene crystals:
   a first-principles study
SO SYNTHETIC METALS
LA English
DT Article
DE density-functional theory; optical absorption; charge transport;
   polythiophene
ID ORGANIC SEMICONDUCTORS; SINGLE-CRYSTALS; AB-INITIO; GROWTH
AB We investigate two phases of polythiophene crystals by means of
   first-principles calculations, focusing on the effect of the different
   structure on charge transport parameters and luminescence quantum
   yield. The resulting microscopic interpretation highlights the impact
   of solid-state interchain coupling on both transport and emissive
   properties of semiconducting polymer crystals. (C) 2003 Elsevier B.V.
   All rights reserved.
C1 INFM, Natl Ctr NanoStruct & BioSyst Surfaces S3, Modena, Italy.
   Univ Modena, Dipartimento Fis, I-41100 Modena, Italy.
   Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
RP Ruini, A, INFM, Natl Ctr NanoStruct & BioSyst Surfaces S3, Modena,
   Italy.
CR ACKERMANN J, 2002, THIN SOLID FILMS, V403, P157
   BREDAS JL, 2002, P NATL ACAD SCI USA, V99, P5804
   BUSSI G, 2002, APPL PHYS LETT, V80, P4118
   DAVYDOV AS, 1962, THEORY MOL EXCITONS
   FERRETTI A, 2003, PHYS REV LETT, V90
   GEBAUER W, 1998, CHEM PHYS, V227, P33
   GIGLI G, 1998, APPL PHYS LETT, V72, P1013
   GRANSTROM M, 1999, SYNTHETIC MET, V102, P957
   HOHENESTER U, 2001, PHYS REV B, V64
   KOHN W, 1965, PHYS REV, V140, A1133
   KOUKI F, 2000, J CHEM PHYS, V113, P385
   MARCUS RA, 1985, BIOCHIM BIOPHYS ACTA, V811, P265
   MARKS RN, 1995, EUROPHYS LETT, V32, P523
   MOLLER S, 2000, PHYS REV B, V61, P15749
   MUCCINI M, 2000, PHYS REV B, V62, P6296
   PUSCHNIG P, 2001, SYNTHETIC MET, V119, P245
   ROHLFING M, 1998, PHYS REV LETT, V81, P2312
   ROHLFING M, 2000, PHYS REV B, V62, P4927
   RUINI A, 2002, PHYS REV LETT, V88
   RUINI A, 2002, RAD MATTER INTRACTIO, P155
   SIEGRIST T, 1998, ADV MATER, V10, P379
   SIRRINGHAUS H, 1998, SCIENCE, V280, P1741
   SLATER JC, 1954, PHYS REV, V94, P1498
NR 23
TC 3
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD OCT 9
PY 2003
VL 139
IS 3
BP 755
EP 757
PG 3
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
   Polymer Science
GA 721EG
UT ISI:000185303600050
ER

PT J
AU Coluci, VR
   Braga, SF
   Legoas, SB
   Galvao, DS
   Baughman, RH
TI Families of carbon nanotubes: Graphyne-based nanotubes
SO PHYSICAL REVIEW B
LA English
DT Article
ID GRAPHDIYNE SUBSTRUCTURES; ELECTRONIC-STRUCTURE; DEHYDROBENZOANNULENES;
   MICROTUBULES; SYSTEM
AB New families of carbon single-walled nanotubes are proposed and their
   electronic structures are investigated. These nanotubes, called
   graphynes, result from the elongation of covalent interconnections of
   graphite-based nanotubes by the introduction of yne groups. Analogously
   to ordinary nanotubes, armchair, zigzag, and chiral graphyne nanotubes
   are possible. We here predict the electronic properties of these
   unusual nanotubes using tight-binding and ab initio density functional
   methods. Of the three graphyne nanotube families analyzed here, two
   provide metallic behavior for armchair tubes and either metallic or
   semiconducting behavior for zigzag nanotubes. A diameter- and
   chirality-independent band gap is predicted for the other investigated
   graphyne family, as well as an oscillatory dependence of the effective
   mass on nanotube diameter.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
   Univ Texas, NanoTech Inst, Richardson, TX USA.
   Univ Texas, Dept Chem, Richardson, TX 75083 USA.
RP Coluci, VR, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
   BR-13083970 Campinas, SP, Brazil.
CR ANTHONY JE, 1997, TETRAHEDRON LETT, V38, P3499
   BAUGHMAN RH, 1987, J CHEM PHYS, V87, P6687
   BELL ML, 2001, TETRAHEDRON, V57, P3507
   CLEMENTI E, 1963, J CHEM PHYS, V38, P2686
   COLUCI VR, UNPUB
   CUMINGS J, 2000, SCIENCE, V289, P602
   GALLAGHER ME, 2001, TETRAHEDRON LETT, V42, P7533
   HALEY MM, 1997, ANGEW CHEM INT EDIT, V36, P836
   HAMADA N, 1992, PHYS REV LETT, V68, P1579
   HARIGAYA K, 1999, PCCP PHYS CHEM CH PH, V1, P1687
   HOFFMANN R, 1963, J CHEM PHYS, V39, P1397
   IIJIMA S, 1991, NATURE, V354, P56
   KEHOE JM, 2000, ORG LETT, V2, P969
   KIM P, 2001, PHYS REV LETT, V87
   KOCIAK M, 2001, PHYS REV LETT, V86, P2416
   KOPELMAN R, 1997, PHYS REV LETT, V78, P1239
   LEGOAS SB, 2003, PHYS REV LETT, V90
   MULLIKEN RS, 1949, J CHEM PHYS, V17, P1248
   NARITA N, 1998, PHYS REV B, V58, P11009
   NARITA N, 2000, PHYS REV B, V62, P11146
   ORDEJON P, 1996, PHYS REV B, V53
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   RANA D, 2001, CHEM PHYS LETT, V334, P314
   RINZLER AG, 1995, SCIENCE, V269, P1550
   SAITO R, 1992, PHYS REV B, V46, P1804
   SINNOTT SB, 2001, CRIT REV SOLID STATE, V26, P145
   SONODA M, 2001, ORG LETT, V3, P2419
   SRINIVASAN M, 2000, ORG LETT, V2, P3849
   TANS SJ, 1997, NATURE, V386, P474
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   WALLACE PR, 1947, PHYS REV, V71, P622
   WAN WB, 2001, J ORG CHEM, V66, P3893
   ZHENG QS, 2002, PHYS REV LETT, V88
   ZHOU YF, 2002, SOLID STATE COMMUN, V122, P307
NR 34
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL 15
PY 2003
VL 68
IS 3
AR 035430
DI ARTN 035430
PG 6
SC Physics, Condensed Matter
GA 719XD
UT ISI:000185229600144
ER

PT J
AU Orestes, E
   Marcasso, T
   Capelle, K
TI Density-functional calculation of ionization energies of
   current-carrying atomic states
SO PHYSICAL REVIEW A
LA English
DT Article
ID INHOMOGENEOUS ELECTRON-GAS; STRONG MAGNETIC-FIELDS; EXCHANGE; SYSTEMS;
   POTENTIALS; SUPERCONDUCTORS; APPROXIMATIONS; FORMALISM; SOLIDS
AB Current-density-functional theory is used to calculate ionization
   energies of current-carrying atomic states. A recently proposed
   perturbative approximation to full current-density-functional theory is
   implemented and found to be numerically feasible. Different
   parametrizations for the current-dependence of the density functional
   are critically compared. Orbital currents in open-shell atoms turn out
   to produce a small shift in the ionization energies. We find that
   modern density functionals have reached an accuracy at which small
   current-related terms appearing in open-shell configurations are not
   negligible anymore, compared to the remaining difference to experiment.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil.
RP Orestes, E, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol,
   Caixa Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR BAERENDS EJ, 1997, CHEM PHYS LETT, V265, P481
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 2002, J CHEM PHYS, V117, P6935
   CAPELLE K, 1997, PHYS REV LETT, V78, P1872
   CAPELLE K, 1999, PHYS REV A, V60, P733
   CAPELLE K, 2000, EUROPHYS LETT, V49, P376
   CAPELLE K, 2000, PHYS REV B, V61, P15228
   CHEN JQ, 1996, PHYS REV A, V54, P3939
   CHONG DP, 2002, J CHEM PHYS, V116, P1760
   COLWELL SM, 1994, CHEM PHYS LETT, V217, P271
   DREIZLER RM, 1990, DENSITY FUNCTIONAL T
   EBERT H, 1997, EUROPHYS LETT, V40, P545
   GUNNARSSON O, 1976, PHYS REV B, V13, P4274
   HOHENBERG P, 1964, PHYS REV, V136, B864
   KOHN W, 1996, J PHYS CHEM-US, V100, P12974
   KOHN W, 1999, REV MOD PHYS, V71, P1253
   KURTH S, 1999, PHYS REV LETT, V83, P2628
   LEE AM, 1994, CHEM PHYS LETT, V229, P225
   LEE AM, 1995, J CHEM PHYS, V103, P10095
   LEE AM, 1999, PHYS REV A, V59, P209
   LEE C, 1988, PHYS REV B, V37, P785
   MACDONALD AH, 1979, J PHYS C SOLID STATE, V12, P2977
   OLIVEIRA LN, 1988, PHYS REV LETT, V60, P2430
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   PETERSILKA M, 2000, INT J QUANTUM CHEM, V80, P534
   RAJAGOPAL AK, 1973, PHYS REV B, V7, P1912
   RASOLT M, 1992, PHYS REV LETT, V69, P2563
   STRANGE P, 1998, RELATIVISTIC QUANTUM
   VIGNALE G, 1987, PHYS REV LETT, V59, P2360
   VIGNALE G, 1988, PHYS REV B, V37, P10685
   VIGNALE G, 1988, PHYS REV B, V37, P2502
   VIGNALE G, 1990, ADV QUANTUM CHEM, V21, P235
   VIGNALE G, 1992, PHYS REV B, V46, P10232
   VIGNALE G, 1993, PHYS REV B, V47, P10105
NR 35
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD AUG
PY 2003
VL 68
IS 2
AR 022105
DI ARTN 022105
PG 6
SC Physics, Atomic, Molecular & Chemical; Optics
GA 719FC
UT ISI:000185192100011
ER

PT J
AU Borges, JC
   Fischer, H
   Craievich, AF
   Hansen, LD
   Ramos, CHI
TI Free human mitochondrial GrpE is a symmetric dimer in solution
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID HEAT-SHOCK PROTEINS; LAMBDA-DNA REPLICATION; NUCLEOTIDE EXCHANGE
   FACTOR; ESCHERICHIA-COLI DNAK; SOLUTION SCATTERING; BIOLOGICAL
   MACROMOLECULES; SWISS-MODEL; SYSTEM; GENE; BACTERIOPHAGE
AB The co-chaperone GrpE is essential for the activities of the Hsp70
   system, which assists protein folding. GrpE is present in several
   organisms, and characterization of homologous GrpEs is important for
   developing structure-function relationships. Cloning, producing, and
   conformational studies of the recombinant human mitochondrial GrpE are
   reported here. Circular dichroism measurements demonstrate that the
   purified protein is folded. Thermal unfolding of human GrpE measured
   both by circular dichroism and differential scanning calorimetry
   differs from that of prokaryotic GrpE. Analytical ultracentrifugation
   data indicate that human GrpE is a dimer, and the sedimentation
   coefficient agrees with an elongated shape model. Small angle x-ray
   scattering analysis shows that the protein possesses an elongated shape
   in solution and demonstrates that its envelope, determined by an ab
   initio method, is similar to the high resolution envelope of
   Escherichia coli GrpE bound to DnaK obtained from single crystal x-ray
   diffraction. However, in these conditions, the E. coli GrpE dimer is
   asymmetric because the monomer that binds DnaK adopts an open
   conformation. It is of considerable importance for structural GrpE
   research to answer the question of whether the GrpE dimer is only
   asymmetric while bound to DnaK or also as a free dimer in solution. The
   low resolution structure of human GrpE presented here suggests that
   GrpE is a symmetric dimer when not bound to DnaK. This information is
   important for understanding the conformational changes GrpE undergoes
   on binding to DnaK.
C1 Lab Nacl Luz Sincroton, Ctr Biol Mol Estrutural, BR-13084971 Campinas, SP, Brazil.
   UNICAMP, Inst Biol, Dept Bioquim, BR-13084971 Sao Paulo, Brazil.
   Univ Sao Paulo, Inst Fis, Dept Fis Aplicada, BR-05389970 Sao Paulo, Brazil.
   Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA.
RP Ramos, CHI, Lab Nacl Luz Sincroton, Ctr Biol Mol Estrutural, POB 6192,
   BR-13084971 Campinas, SP, Brazil.
CR ANG D, 1986, J BACTERIOL, V167, P25
   BALDI P, 1999, BIOINFORMATICS, V15, P937
   BORGES JC, 2001, GENET MOL BIOL, V24, P85
   CHOGLAY AA, 2001, GENE, V267, P125
   DELATORRE JG, 1997, EUR BIOPHYS J BIOPHY, V25, P361
   DELATORRE JG, 2000, BIOPHYS J, V78, P719
   EDELHOCH H, 1967, BIOCHEMISTRY-US, V6, P1948
   FEIGIN LA, 1987, STRUCTURE ANAL SMALL, P83
   FINK AL, 1999, PHYSIOL REV, V79, P425
   FLAHERTY KM, 1990, NATURE, V346, P623
   FRIEDMAN DI, 1984, MICROBIOL REV, V48, P299
   GELINAS AD, 2002, J MOL BIOL, V323, P131
   GETHING MJ, 1992, NATURE, V355, P33
   GILL SC, 1989, ANAL BIOCHEM, V182, P319
   GOLDBERG RJ, 1953, J PHYS CHEM-US, V57, P194
   GRIMSHAW JPA, 2001, J BIOL CHEM, V276, P6098
   GUEX N, 1997, ELECTROPHORESIS, V18, P2714
   HARRISON CJ, 1997, SCIENCE, V276, P431
   JOHNSON C, 1989, J BACTERIOL, V171, P1590
   JOHNSON ML, 1981, BIOPHYS J, V36, P575
   KELLERMANN G, 1997, J APPL CRYSTALLOGR 5, V30, P880
   KONAREV PV, 2001, J APPL CRYSTALLOGR 4, V34, P527
   KOZIN MB, 2001, J APPL CRYSTALLOGR 1, V34, P33
   LAEMMLI UK, 1970, NATURE, V227, P680
   LANGER T, 1992, NATURE, V356, P683
   LIBEREK K, 1991, P NATL ACAD SCI USA, V88, P2874
   MARTIN AS, 1997, ADV MATER OPT ELECTR, V7, P45
   MAYER MP, 2001, ADV PROTEIN CHEM, V59, P1
   MEHL AF, 2001, BIOCHEM BIOPH RES CO, V282, P562
   NAYLOR DJ, 1998, J BIOL CHEM, V273, P21169
   OSIPIUK J, 1993, J BIOL CHEM, V268, P4821
   PEITSCH MC, 1995, BIO-TECHNOL, V13, P658
   PEITSCH MC, 1996, BIOCHEM SOC T, V24, P274
   PELHAM HRB, 1986, CELL, V46, P959
   POROD G, 1982, SMALL ANGLE XRAY SCA, P17
   SCHLICHER T, 1997, PLANT MOL BIOL, V33, P181
   SCHONFELD HJ, 1995, J BIOL CHEM, V270, P2183
   SCHRODER H, 1993, EMBO J, V12, P4137
   SKOWYRA D, 1990, CELL, V62, P939
   STAFFORD WF, 1994, METHOD ENZYMOL, V240, P478
   SVERGUN D, 1995, J APPL CRYSTALLOGR 6, V28, P768
   SVERGUN DI, 1991, ACTA CRYSTALLOGR A, V47, P736
   SVERGUN DI, 1992, J APPL CRYSTALLOGR, V25, P495
   SVERGUN DI, 1999, BIOPHYS J, V76, P2879
   SZABO A, 1994, P NATL ACAD SCI USA, V91, P10345
   VANHOLDE KE, 1978, BIOPOLYMERS, V17, P1397
   WU B, 1994, J BACTERIOL, V176, P6965
   ZYLICZ M, 1987, J BIOL CHEM, V262, P17437
   ZYLICZ M, 1989, EMBO J, V8, P1601
NR 49
TC 3
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
J9 J BIOL CHEM
JI J. Biol. Chem.
PD SEP 12
PY 2003
VL 278
IS 37
BP 35337
EP 35344
PG 8
SC Biochemistry & Molecular Biology
GA 718UG
UT ISI:000185164400073
ER

PT J
AU da Silva, CO
   Mennucci, B
   Vreven, T
TI Combining microsolvation and polarizable continuum studies: New
   insights in the rotation mechanism of amides in water
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID N BOND ROTATION; AB-INITIO; ELECTRON-DIFFRACTION; MOLECULAR-STRUCTURE;
   INTERNAL-ROTATION; HYDROGEN-BOND; BARRIER; MODEL;
   N,N-DIMETHYLAMINOACRYLONITRILE; N,N-DIMETHYLFORMAMIDE
AB We present a quantum mechanical investigation of the rotation
   mechanisms of N,N-dimethylformamide (DMF) and NN-dimethylacetamide
   (DMA) in water. This rotation can happen through two distinct
   transition states known as TS1 and TS2, where the nitrogen lone pair is
   on the opposite side of the oxygen atom or on the same side,
   respectively. The analysis is focused on complementary descriptions of
   the solvent, either represented by a limited number of explicit solvent
   molecules (microsolvation), by an implicit (or continuum) solvation, or
   by combinations of these two approaches. The combined approach
   (microsolvation + continuum) can provide quantitative agreement with
   the experimental results for the gas to solution shift of the
   rotational barrier. For both amides, continuum effects alone are
   sufficient to select the correct channels. However, hydrogen-bond
   effects (via the explicit solvent molecules) are necessary to obtain
   quantitative agreement with experiment, provided this is combined with
   a continuum description. In the rotation in DMF, it seems that a single
   water molecule is directly involved, while the other solvent molecules
   act as a "mean field" (the bulk), which is well reproduced by a
   polarizable continuum medium. The mechanism in DMA is less clear. In
   gas phase the steric repulsive interactions between methyl groups make
   TS1 clearly favored with respect to TS2. In water, the larger dipole
   moment of TS2 produces an opposite effect with respect to the repulsion
   interactions, making the corresponding channel less disfavored than in
   gas phase. The results are compared with previous Monte Carlo
   simulations, and this comparison is used to draw a more general picture
   about how different descriptions of the solvent can take into account
   long-range and mediated effects on one side and shorter-range and
   dynamic effects on the other side.
C1 Univ Pisa, Dipartimento Chim & Chim Ind, Pisa, Italy.
   Univ Fed Rio de Janeiro, Dept Quim, Rio De Janeiro, Brazil.
   Gaussian Inc, N Haven, CT 06473 USA.
RP Vreven, T, Univ Pisa, Dipartimento Chim & Chim Ind, Via Risorgimento
   35, Pisa, Italy.
CR BONDI A, 1964, J PHYS CHEM-US, V68, P441
   CAMMI R, 1995, J COMPUT CHEM, V16, P1449
   CANCES E, 1997, J CHEM PHYS, V107, P3032
   CAPPELLI C, 2000, J CHEM PHYS, V112, P5382
   CLAVERIE P, 1978, INTERMOLECULAR INTER
   DRAKENBERG T, 1972, J PHYS CHEM-US, V76, P2178
   DUFFY EM, 1992, J AM CHEM SOC, V114, P7535
   FISCHER G, 1990, BIOCHEMISTRY-US, V29, P2205
   FLORIS FM, 1991, J COMPUT CHEM, V12, P784
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FRISCH MJ, 2002, DEV VERSION
   GAO JL, 1993, J AM CHEM SOC, V115, P2930
   KITANO M, 1973, B CHEM SOC JPN, V46, P384
   LANGLEY CH, 2002, J PHYS CHEM A, V106, P5638
   LEIS J, 2001, COMPUT CHEM, V25, P171
   MENNUCCI B, 2002, J AM CHEM SOC, V124, P1506
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   MOHAMED AA, 2001, J PHYS CHEM A, V105, P3259
   PIEROTTI RA, 1976, CHEM REV, V76, P717
   RABLEN PR, 1999, J AM CHEM SOC, V121, P218
   RABLEN PR, 1999, J AM CHEM SOC, V121, P227
   RAOS G, 1999, INT J QUANTUM CHEM, V74, P249
   RE S, 2001, J PHYS CHEM A, V105, P7185
   RIVELINO R, 2002, J PHYS CHEM B, V106, P12317
   SCHREIBER SL, 1991, SCIENCE, V251, P283
   SCHULTZ G, 1993, J PHYS CHEM-US, V97, P4966
   SICINSKA D, 2002, J PHYS CHEM B, V106, P2708
   VASSILEV NG, 2000, J MOL STRUCT, V522, P37
   WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
NR 29
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 28
PY 2003
VL 107
IS 34
BP 6630
EP 6637
PG 8
SC Chemistry, Physical
GA 715JD
UT ISI:000184967600019
ER

PT J
AU Treu, O
   Pinheiro, JC
   Kondo, RT
   Marques, RFC
   Paiva-Santos, CO
   Davolos, MR
   Jafelicci, M
TI Development of basis sets to calculations of the electronic structure
   of YMnO3
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Gaussian basis sets; contracted basis sets; dipole moments; total
   energy; total atomic charges; YMnO3
ID COORDINATE HARTREE-FOCK; MOLECULAR-SYSTEMS; WAVE-FUNCTIONS;
   GAUSSIAN-BASIS; AB-INITIO; FORMALISM; ATOMS
AB The generator coordinate Hartree-Fock method was used to develop
   20s17p, 30s20p14d, and 30s21p16d Gaussian basis sets for the O ((3)p),
   Mn (S-6), and Y (D-2) atoms, respectively. The Gaussian basis sets were
   contracted to 20s17p/9s7p, 30s20p14d/11s7p7d, and 30s21p16d/14s7p7d and
   utilized in calculations of total energy and orbital energies of the
   (MnO1+)-Mn-5 and (YO1+)-Y-3 fragments to evaluate its quality in
   molecular studies. Finally, the contracted basis set for O atom was
   supplemented with one polarization function of d symmetry and used
   along with the other contracted basis sets (for Mn and Y) to calculate
   dipole moments, total energy, and total atomic charges in YMnO3 in
   space group D-6h. The analysis of those properties showed that is
   reasonable to believe that YMnO3 present behavior of piezoelectric
   material. (C) 2003 Elsevier B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab Quim Teor & Computac, BR-66075110 Belem, Para, Brazil.
   UNESP, Inst Quim, Araraquara, SP, Brazil.
   Cooperat Ctr Educ Cient & Empreendedora Amazonia, BR-66601306 Belem, Para, Brazil.
   Univ Sao Paulo, Ctr Informat Sao Carlos, Seccao Tecn Suporte, BR-13560970 Sao Carlos, SP, Brazil.
RP Pinheiro, JC, Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab
   Quim Teor & Computac, CP 101101, BR-66075110 Belem, Para, Brazil.
CR CHAKRAVORY SJ, 1989, MOTEC MODERN TECHNIQ
   DACOSTA HFM, 1991, CHEM PHYS, V154, P379
   DACOSTA HFM, 1992, CHEM PHYS LETT, V192, P195
   DUNNING TH, 1977, METHODS ELECT STRUCT
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GIORDAN M, 1997, CHEM PHYS LETT, V279, P396
   JAFFE B, 1991, PIEZOELECTRIC CERAMI
   JARDIM IN, 1999, J MOL STRUC-THEOCHEM, V464, P15
   KOGA T, 1993, PHYS REV A B, V47, P4510
   LUKASZEWICZ K, 1974, FERROELECTRICS, V7, P81
   MCWEENY R, 1968, J CHEM PHYS, V49, P4852
   MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
   MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
   PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
   ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
   SAVEDRA RML, 2002, J MOL STRUC-THEOCHEM, V587, P9
   SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
   TREU O, UNPUB
NR 20
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JUL 4
PY 2003
VL 629
BP 21
EP 26
PG 6
SC Chemistry, Physical
GA 714CT
UT ISI:000184895300004
ER

PT J
AU Sambrano, JR
   Vasconcellos, LA
   Martins, JBL
   Santos, MRC
   Longo, E
   Beltran, A
TI A theoretical analysis on electronic structure of the (110) surface of
   TiO2-SnO2 mixed oxide
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE mixed oxide; titanium oxide; surface defects; clusters; ab initio
ID TIO2 THIN-FILMS; TITANIUM-DIOXIDE; ELECTRICAL-PROPERTIES; GAS SENSORS;
   OPTICAL-PROPERTIES; OXYGEN VACANCIES; VARISTOR SYSTEM; PHOTOCATALYTIC
   DEGRADATION; SOLID-SOLUTIONS; DOPING PROCESS
AB Mixed oxide compounds, such as TiO2-SnO2 system are widely used as gas
   sensors and should also provide varistor properties modifying the TiO2
   surface. Therefore, a theoretical investigation has been carried out
   characterizing the effect of SnO2 on TiO2 addition on the electronic
   structure by means of ab initio SCF-LCAO calculations using all
   electrons. In order to take into account the finite size of the
   cluster, we have used the point charge model for the (TiO2)(15) cluster
   to study the effect on electronic structure of doping the TiO2 (110)
   Surface. The contracted basis set for titanium (4322/42/3), oxygen
   (33/3) and tin (43333/4333/43) atoms were used. The charge
   distributions, dipole moments, and density of states of doping TiO2 and
   vacancy formation are reported and analysed. (C) 2003 Elsevier B.V. All
   rights reserved.
C1 Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
   Univ Estadual Paulista, Lab Simulacao Mol, BR-17033360 Bauru, SP, Brazil.
   Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
   Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
RP Martins, JBL, Univ Brasilia, Inst Quim, Campus Univ,LQC Caixa Postal
   04478, BR-70919970 Brasilia, DF, Brazil.
CR ANTUNES AC, 2000, J MATER SCI, V35, P1453
   BELTRAN A, 2001, SURF SCI, V490, P116
   BUENO PR, 1996, J MATER SCI LETT, V15, P2048
   BUENO PR, 1998, J APPL PHYS, V84, P3700
   BUENO PR, 2001, APPL PHYS LETT, V79, P48
   BUENO PR, 2002, J AM CERAM SOC, V85, P282
   CALATAYUD M, 1999, SURF SCI, V430, P213
   CAO Y, 2000, CHEM MATER, V12, P3445
   CARDONA M, 1965, PHYS REV, V137, P1467
   DUSASTRE V, 1999, J MATER CHEM, V9, P965
   EDELMAN F, 1999, SOLID STATE PHENOM, V67, P269
   EDELMAN F, 2000, MAT SCI ENG B-SOLID, V69, P386
   FAHMI A, 1993, PHYS REV B, V47, P11717
   GERCHER VA, 1994, SURF SCI, V306, P279
   GERCHER VA, 1994, SURF SCI, V312, P106
   GERCHER VA, 1995, SURF SCI, V322, P177
   GLASSFORD KM, 1992, PHYS REV B, V45, P3874
   GLASSFORD KM, 1992, PHYS REV B, V46, P1284
   GODIN TJ, 1993, PHYS REV B, V47, P6518
   GONIAKOWSKI J, 1996, SURF SCI, V350, P145
   HENRICH E, 1994, SURFACE SCI METAL OX
   HENRICH VE, 1985, REP PROG PHYS, V48, P1481
   HIRD B, 1997, SURF SCI, V385, L1023
   HUZINAGA S, 1985, COMPUT PHYS REP, V2, P281
   IIZUKA Y, 1997, CATAL TODAY, V36, P115
   KOHL D, 1989, SENSOR ACTUATOR, V18, P71
   KOKUSEN H, 1996, CATAL TODAY, V28, P191
   KONG LB, 1998, J MATER SCI LETT, V17, P769
   LEVY B, 1997, J PHYS CHEM B, V101, P1810
   LIN J, 1999, J CATAL, V183, P368
   LIU P, 2001, ACTA PHYS-CHIM SIN, V17, P265
   MARUCCO JF, 1981, J PHYS CHEM SOLIDS, V42, P363
   MEDVEDEVA NI, 1990, PHYS STATUS SOLIDI B, V160, P517
   MO SD, 1995, PHYS REV B, V51, P13023
   MUSCAT J, 2000, SURF SCI, V446, P119
   NAIDU HP, 1998, J AM CERAM SOC, V81, P2176
   NASR C, 1996, J PHYS CHEM-US, V100, P8436
   OLIVEIRA MM, 2002, MATER CHEM PHYS, V74, P150
   OLIVER PM, 1997, J MATER CHEM, V7, P563
   PARK M, 1975, J AM CERAM SOC, V58, P43
   PENNEWISS J, 1990, MATER LETT, V9, P219
   PIANARO SA, 1995, J MATER SCI LETT, V14, P692
   PIANARO SA, 1997, J MATER SCI LETT, V16, P634
   RADECKA M, 1998, SENSOR ACTUAT B-CHEM, V47, P194
   RANTALA T, 1998, SENSOR ACTUAT B-CHEM, V47, P59
   RANTALA TS, 1996, J APPL PHYS, V79, P9206
   RANTALA TT, 1999, SURF SCI, V420, P103
   RICKERBY DG, 1998, NANOSTRUCT MATER, V10, P357
   RITTNER F, 1998, PHYS REV B, V57, P4160
   RITTNER F, 1999, LANGMUIR, V15, P1449
   ROHRER GS, 1992, SURF SCI, V278, P146
   SAKAI Y, 1982, J COMPUT CHEM, V3, P6
   SAMBRANO JR, 1997, INT J QUANTUM CHEM, V65, P625
   SAMBRANO JR, 2001, INT J QUANTUM CHEM, V85, P44
   SANTOS MRC, 2001, J EUR CERAM SOC, V21, P161
   SAUER J, 1989, CHEM REV, V89, P199
   SCHELLING PK, 1998, PHYS REV B, V58, P1279
   SCHIERBAUM KD, 1996, SURF SCI, V345, P261
   SENSATO FR, 2001, J MOL STRUC-THEOCHEM, V541, P69
   STASHANS A, 1996, J PHYS CHEM SOLIDS, V57, P1293
   TADA H, 2000, J PHYS CHEM B, V104, P4585
   TATEWAKI H, 1980, J COMPUT CHEM, V1, P205
   TIT N, 1993, APPL SURF SCI, V65, P246
   TIT N, 1993, NUOVO CIMENTO SOC IT, V15, P1405
   VINODGOPAL K, 1995, ENVIRON SCI TECHNOL, V29, P841
   VINODGOPAL K, 1996, CHEM MATER, V8, P2180
   WATANABE Y, 1994, J NON-CRYST SOLIDS, V178, P84
   YANG SL, 1995, J MATER RES, V10, P345
   YUE LH, 1999, ACTA CHIM SINICA, V57, P1219
   ZAKRZEWSKA K, 1997, ACTA PHYS POL A, V91, P899
   ZAKRZEWSKA K, 1997, THIN SOLID FILMS, V310, P161
   ZAKRZEWSKA K, 2001, THIN SOLID FILMS, V391, P229
NR 72
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JUL 4
PY 2003
VL 629
BP 307
EP 314
PG 8
SC Chemistry, Physical
GA 714CT
UT ISI:000184895300032
ER

PT J
AU Gordon, ML
   Cooper, G
   Morin, C
   Araki, T
   Turci, CC
   Kaznatcheev, K
   Hitchcock, AP
TI Inner-shell excitation spectroscopy of the peptide bond: Comparison of
   the C 1s, N 1s, and O 1s spectra of glycine, glycyl-glycine, and
   glycyl-glycyl-glycine
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID X-RAY-ABSORPTION; MILLIMETER WAVE SPECTRUM; EDGE XANES SPECTROSCOPY;
   ADVANCED LIGHT-SOURCE; AMINO-ACIDS; PHOTOELECTRON-SPECTROSCOPY;
   ELECTRONIC-STRUCTURE; GASEOUS GLYCINE; GAS-PHASE; MOLECULES
AB Oscillator strengths for C 1s, N 1s, and O 1s excitation spectra of
   gaseous glycine and the dipeptide, glycyl glycine, have been derived
   from inner-shell electron energy-loss spectroscopy recorded under
   scattering conditions where electric dipole transitions dominate (2.5
   keV residual energy, theta approximate to 2degrees). X-ray absorption
   spectra of solid glycine, glycyl-glycine, glycyl-glycyl-glycine, and a
   large protein, fibrinogen, were recorded in a scanning transmission
   X-ray microscope. The experimental spectra are assigned through
   interspecies comparisons and by comparison to ab initio computed
   spectra of various conformations of glycine and glycylglycine.
   Inner-shell excitation spectral features characteristic of the peptide
   bond are readily identified by comparison of the spectra of gas-phase
   glycine and glycyl-glycine. They include a clear broadening and a
   similar to0.3 eV shift of the C 1s - pi*(C=O) peak and introduction of
   a new pre-edge feature in the N 1s spectrum. These effects are due to
   1s --> pi*(amide) transitions introduced with formation of the peptide
   bond. Similar changes occur in the spectra of the solids. The
   computational results support the interpretation of the experimental
   inner-shell spectra and provide insight into electron density
   distributions in the core excited states. Possible conformational
   dependence of the inner-shell excitation spectra was explored by
   computing the spectra of neutral glycine in its four most common
   conformations, and of glycyl-glycine in planar and two twisted
   conformations. A strong dependence of the computed C 1s, N 1s, and O 1s
   spectra of glycylglycine on the conformation about the amide linkage
   was confirmed by additional ab initio calculations of the
   conformational dependence of the spectra of formamide.
C1 McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
   Univ Fed Rio de Janeiro, Inst Quim, BR-21910 Rio De Janeiro, Brazil.
   Univ Saskatchewan, Canadian Light Source, Saskatoon, SK S7N 5C6, Canada.
RP Hitchcock, AP, McMaster Univ, Dept Chem, 1280 Main St W, Hamilton, ON
   L8S 4M1, Canada.
CR ABRAMOV YA, 2000, J PHYS CHEM B, V104, P2183
   ADE H, 1998, EXPT METHODS PHYSICA, V32, P225
   ADE H, 2002, CHEM APPL SYNCHROTRO, P285
   BARONE V, 1995, J CHEM PHYS, V102, P364
   BOESE J, 1997, J ELECTRON SPECTROSC, V85, P9
   BOMBEN KD, 1988, ANAL CHEM, V60, P1393
   BRION CE, 1982, AIP C P, V94, P429
   BROWN RD, 1978, J CHEM SOC CHEM COMM, P547
   CANNINGTON PH, 1979, J ELECT SPECTROSC RE, V15, P79
   CANNINGTON PH, 1983, J ELECTRON SPECTROSC, V32, P139
   CARRAVETTA V, 1998, J CHEM PHYS, V109, P1456
   CSASZAR AG, 1992, J AM CHEM SOC, V114, P9568
   DEBIES TP, 1974, J ELECTRON SPECTROSC, V3, P315
   GODDARD WA, 1969, CHEM PHYS LETT, V3, P414
   GODFREY PD, 1995, J AM CHEM SOC, V117, P2019
   HASSELSTROM J, 1998, SURF SCI, V407, P221
   HITCHCOCK AP, 1987, J ELECTRON SPECTROSC, V42, P11
   HITCHCOCK AP, 1990, PHYSICA SCRIPTA T, V31, P159
   HITCHCOCK AP, 1994, J ELECTRON SPECTROSC, V67, P1
   HITCHCOCK AP, 2000, J ELECTRON SPECTROSC, V112, P9
   HITCHCOCK AP, 2001, J SYNCHROTRON RADI 2, V8, P66
   HITCHCOCK AP, 2002, J BIOMAT SCI-POLYM E, V13, P919
   HU CH, 1993, J AM CHEM SOC, V115, P2923
   HUZINGA S, 1984, GAUSSIAN BASIS SETS
   ISHII I, 1987, J CHEM PHYS, V87, P4344
   ISHII I, 1987, J CHEM PHYS, V87, P830
   ISHII I, 1988, J ELECTRON SPECTROSC, V46, P55
   JENSEN JH, 1991, J AM CHEM SOC, V113, P7917
   JOLLY WL, 1984, ATOM DATA NUCL DATA, V31, P433
   KAZNACHEYEV K, 2002, J PHYS CHEM A, V106, P3153
   KILCOYNE ALD, 2003, J SYNCHROTRON RADI 2, V10, P125
   KLASINC L, 1976, J ELECTRON SPECTROSC, V8, P161
   KOSUGI N, 1980, CHEM PHYS LETT, V74, P490
   KOSUGI N, 1987, THEOR CHIM ACTA, V72, P149
   KOSUGI N, 2002, CHEM APPL SYNCHROTRO, P228
   LESSARD RJ, UNPUB
   LOO BW, 2001, J MICROSC-OXFORD 1, V204, P69
   MEYERILSE W, 2001, J MICROSC-OXFORD 3, V201, P395
   NYBERG M, 2000, J CHEM PHYS, V112, P5420
   OUTKA DA, 1987, SURF SCI, V185, P53
   RAMACHANDRAN GN, 1968, ADV PROTEIN CHEM, V23, P283
   RAMEK M, 1991, THEOCHEM-J MOL STRUC, V81, P1
   RICKER G, 1984, J ELECT SPECTROSC RE, V34, P327
   SCHAFER L, 1980, J AM CHEM SOC, V102, P6566
   SODHI RNS, 1984, J ELECTRON SPECTROSC, V34, P363
   STEINBERGER IT, 1999, PHYS REV B, V60, P3995
   STOHR J, 1992, SPRINGER TRACTS SURF
   SUENRAM RD, 1978, J MOL SPECTROSC, V72, P372
   SUENRAM RD, 1980, J AM CHEM SOC, V102, P7180
   TANAKA M, 2001, J SYNCHROTRON RADI 2, V8, P1009
   URQUHART SG, 2002, J PHYS CHEM B, V106, P8531
   VAIRAVAMURTHY A, 2002, ENVIRON SCI TECHNOL, V36, P3050
   WARWICK T, 2002, J SYNCHROTRON RADI 4, V9, P254
   WEISS K, 1999, J CHEM PHYS, V111, P6834
   YANG L, 1999, J SYNCHROTRON RADI 3, V6, P708
   YU D, 1992, CAN J CHEM, V70, P1762
   ZUBAVICHUS Y, UNPUB J ELECT SPECTR
NR 57
TC 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 14
PY 2003
VL 107
IS 32
BP 6144
EP 6159
PG 16
SC Chemistry, Physical
GA 710DC
UT ISI:000184664700004
ER

PT J
AU Treu, O
   Pinheiro, JC
   Kondo, RT
   Marques, RFC
   Paiva-Santos, CO
   Davolos, MR
   Jafelicci, M
TI Gaussian basis sets to the theoretical study of the electronic
   structure of perovskite (LaMnO3)
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Gaussian basis sets; Generator Coordinate Hartree-Fock method;
   perovskite; LaMnO3; piezoelectric
ID COORDINATE HARTREE-FOCK; DIATOMIC-MOLECULES; 2ND-ROW ATOMS; AB-INITIO;
   OPTIMIZATION; CHOICE
AB The Generator Coordinate Hartree-Fock (GCHF) method is applied to
   generate extended (20s14p), (30s19p13d), and (31s23p18d) Gaussian basis
   sets for the 0, Mn, and La atoms, respectively. The role of the weight
   functions (WFs) in the assessment of the numerical integration range of
   the GCHF equations is shown. These basis sets are then contracted to
   [5s3p] and [11s6p6d] for 0 and Mn atoms, respectively, and [17s11p7d]
   for La atom by a standard procedure. For quality evaluation of
   contracted basis sets in molecular calculations, we have accomplished
   calculations of total and orbital energies in the Hartree-Fock-Roothaan
   (HFR) method for (MnO1+)-Mn-5 and (LaO1+)-La-1 fragments. The results
   obtained with the contracted basis sets are compared with values
   obtained with the extended basis sets. The addition of one d
   polarization function in the contracted basis set for 0 atom and its
   utilization with the contracted basis sets for Mn and La atoms leads to
   the calculations of dipole moment and total atomic charges of
   perovskite (LaMnO3). The calculations were performed at the HFR level
   with the crystal [LaMnO3](2) fragment in space group C-2v The values of
   dipole moment, total energy, and total atomic charges showed that it is
   reasonable to believe that LaMnO3 presents behaviour of piezoelectric
   material. (C) 2003 Elsevier B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Naturais, Dept Quim, Lab Quim Teor & Computac, BR-66075110 Belem, Para, Brazil.
   UNESP, Inst Quim, Araraquara, SP, Brazil.
   Cooperat Ctr Educ Cientifica & Empreendedora Amaz, BR-66013060 Belem, Para, Brazil.
   Univ Sao Paulo, Ctr Informat Sao Carlos, Seccao Tecn Suporte, BR-13560970 Sao Carlos, SP, Brazil.
RP Pinheiro, JC, Fed Univ Para, Ctr Ciencias Exatas & Naturais, Dept Quim,
   Lab Quim Teor & Computac, CP 101101, BR-66075110 Belem, Para, Brazil.
CR CADY WG, 1964, PIEZOELECTRICITY
   CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
   DECASTRO EVR, 1999, CHEM PHYS, V243, P1
   DUNNING TH, 1977, METHODS ELECT STRUCT
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GERLOCH M, 1994, TRANSITION METAL CHE
   GOLDSCHMIDT VM, 1926, MAT NATURV KL, V2, P8
   JAFFE B, 1971, PIEZOELECTRIC CERAMI
   JARDIM IN, 1999, J MOL STRUC-THEOCHEM, V464, P15
   KALTSOYANNIS N, 1999, F ELEMENTS
   KAY HF, 1949, PHILOS MAG, V40, P1019
   MILLINI R, 1994, J MATER SCI, V29, P4065
   MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
   MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   PAVANI R, 1989, 518 RU IBM RES
   PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
   PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
   PINHEIRO JC, 1999, J MOL STRUC-THEOCHEM, V491, P81
   PINHEIRO JC, 2000, INT J QUANTUM CHEM, V78, P15
   ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
   SAVEDRA RML, 2002, J MOL STRUC-THEOCHEM, V587, P9
   SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
NR 23
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD AUG 1
PY 2003
VL 631
BP 93
EP 99
PG 7
SC Chemistry, Physical
GA 707PD
UT ISI:000184518300011
ER

PT J
AU Beltran, A
   Andres, J
   Longo, E
   Leite, ER
TI Thermodynamic argument about SnO2 nanoribbon growth
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID OXIDE NANOWIRES; CRYSTAL-GROWTH; TIN OXIDE; NANOTUBES; SURFACES;
   MICROSTRUCTURE; TEMPERATURE; ENERGETICS; MECHANISM; DENSITY
AB Calculations based on density functional theory at Becke's
   three-parameter exchange functional combined with the Lee-Yang-Parr
   correlation functional (B3LYP) level and periodic slab models have been
   done to obtain: (i) the surface energy per unit area of different
   stoichiometric SnO2 surfaces, and (ii) by using a simple Wulff
   construction equation-type, the thermodynamic stability associated to
   the formation of nanoribbons from these surfaces has been obtained. In
   agreement with previous theoretical studies, the (110) face is the
   thermodynamically most stable surface. The present theoretical results
   and high-resolution transmission electron microscopy data reveal that
   the nanoribbons preferentially grow along the [101] crystal direction.
   (C) 2003 American Institute of Physics.
C1 Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
   Univ Fed Sao Carlos, Dept Chem, BR-13565905 Sao Carlos, SP, Brazil.
RP Beltran, A, Univ Jaume I, Dept Ciencies Expt, POB 6029 AP, Castello
   12080, Spain.
CR ALIVISATOS AP, 1996, SCIENCE, V271, P993
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BRENNER SS, 1956, ACTA METALL, V4, P268
   CALATAYUD M, 1999, SURF SCI, V430, P213
   DAI ZR, 2001, SOLID STATE COMMUN, V118, P351
   DAI ZR, 2002, J PHYS CHEM B, V106, P1274
   DURAND P, 1975, THEOR CHIM ACTA, V38, P283
   GROSS A, 2003, THEORETICAL SURFACE
   HU JT, 1999, ACCOUNTS CHEM RES, V32, P435
   HUANG MH, 2001, ADV MATER, V13, P113
   KHARE SV, 2003, SURF SCI, V52, P75
   LAW M, 2002, ANGEW CHEM, V114, P2511
   LEE C, 1988, PHYS REV B, V37, P785
   LEITE ER, 2000, ADV MATER, V12, P965
   LEITE ER, 2002, J NANOSCI NANOTECHNO, V2, P125
   MULHEARN PA, 1992, MODEL SIMUL MATER SC, V1, P233
   MURRAY CB, 1995, SCIENCE, V270, P1335
   MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
   NEGISHI N, 1999, J MATER SCI LETT, V18, P515
   OVIEDO J, 2000, SURF SCI, V463, P93
   PAN ZW, 2001, SCIENCE, V291, P1947
   PENN RL, 1998, SCIENCE, V281, P969
   PENN RL, 1999, GEOCHIM COSMOCHIM AC, V63, P1549
   POSTMA HWC, 2000, ADV MATER, V12, P1299
   POSTMA HWC, 2001, SCIENCE, V293, P76
   RAMAMOORTHY M, 1994, PHYS REV B, V49, P16721
   SAUNDERS VR, 1998, CRYSTAL98 USERS MANU
   SENSATO FR, 2002, SURF SCI, V512, P408
   SLATER B, 1999, J PHYS CHEM B, V103, P10644
   WAGNER RS, 1964, APPL PHYS LETT, V4, P89
   WEBER IT, 2001, SENSOR ACTUAT B-CHEM, V72, P180
   WULFF G, 1901, Z KRISTALLOGR, V34, P449
   YANG PD, 1997, J MATER RES, V12, P2981
NR 33
TC 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUL 28
PY 2003
VL 83
IS 4
BP 635
EP 637
PG 3
SC Physics, Applied
GA 704JM
UT ISI:000184336600015
ER

PT J
AU deAzevedo, ER
   Franco, RWA
   Marletta, A
   Faria, RM
   Bonagamba, TJ
TI Conformational dynamics of phenylene rings in poly(p-phenylene
   vinylene) as revealed by C-13 magic-angle-spinning exchange nuclear
   magnetic resonance experiments
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID CENTERBAND-ONLY DETECTION; NMR CHARACTERIZATION; MOLECULAR MOTIONS; MAS
   NMR; FILMS; SOLIDS; MORPHOLOGY; DEPENDENCE; RELAXATION; PRINCIPLES
AB Poly(p-phenylene vinylene) (PPV) has shown a great potential for
   electro-optical applications due to its electroluminescent and
   semiconducting properties. Such properties are directly related with
   the polymer chain conformation and dynamics. Then, it is important to
   understand in detail the local chain motions. In this work, three C-13
   solid-state magic-angle-spinning (MAS) exchange NMR techniques were
   used to study conformational dynamics of phenylene rings in PPV. The
   standard 2D MAS exchange experiment was used to identify exchange
   processes between equivalent and nonequivalent sites. Centerband-only
   detection of exchange (CODEX) experiments were applied to determine the
   amplitude of the phenylene ring flips and small-angle oscillations.
   Additionally, a new version of the CODEX technique, which allows for
   the selective observation of segments executing exchange between
   non-equivalent sites, is demonstrated and applied to determine the
   flipping fractions and the activation energies of the phenylene ring
   rotations. It was found that, at -15 degreesC, (26+/-3)% of the rings
   undergo 180degrees flips in the millisecond time scale, with average
   imprecision of (30+/-5)degrees and activation energies of (23+/-3)
   kJ/mol. Other (31+/-10)% of the rings perform only small-angle
   oscillations with an average amplitude of (9+/-2)degrees. These results
   corroborate previous experimental data and agree with recent ab initio
   calculations of potential energies barriers in phenylenevinylene
   oligomers. (C) 2003 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
RP Bonagamba, TJ, Univ Sao Paulo, Inst Fis Sao Carlos, Caixa Postal 369,
   BR-13560970 Sao Carlos, SP, Brazil.
CR BIELECKI A, 1995, J MAGN RESON SER A, V116, P215
   BJORKLUND TG, 2002, SYNTHETIC MET, V126, P295
   BONAGAMBA TJ, 2001, J POLYM SCI POL PHYS, V39, P2444
   CAPAZ RB, 2003, PHYS REV B, V67
   CLAUDIO GC, 2001, CHEM PHYS, V276, P81
   CONNOR C, 1985, CHEM PHYS LETT, V113, P123
   CUMBRERA FL, 1993, J MATER SCI, V28, P5387
   DAMLIN P, 1999, ELECTROCHIM ACTA, V44, P4087
   DEAZEVEDO ER, 1999, J AM CHEM SOC, V121, P8411
   DEAZEVEDO ER, 2000, CHEM PHYS LETT, V321, P43
   DEAZEVEDO ER, 2000, J CHEM PHYS, V112, P8988
   GROZEMA FC, 2002, J CHEM PHYS, V117, P11366
   GULLION T, 1989, ADV MAGN RESON, V13, P57
   HAGEMEYER A, 1989, ADV MAGN RESON, V13, P85
   HALLIDAY DA, 1993, SYNTHETIC MET, V55, P902
   HERZFELD J, 1980, J CHEM PHYS, V73, P6021
   JEENER J, 1979, J CHEM PHYS, V71, P4546
   KENTGENS APM, 1985, MACROMOLECULES, V18, P1045
   KENTGENS APM, 1987, J CHEM PHYS, V87, P6859
   KROPEWNICKI ML, 2002, SOLID STATE NUCL MAG, V22, P275
   LUZ Z, 1992, ISRAEL J CHEM, V32, P145
   LUZ Z, 2002, PROG NUCL MAG RES SP, V41, P83
   MASSE MA, 1990, J MATER SCI, V25, P311
   MEHRING M, 1982, HIGH RESOLUTION NMR
   OU RQ, 2001, POLYM ENG SCI, V41, P1705
   REICHERT D, 2000, SOLID STATE NUCL MAG, V18, P17
   REICHERT D, 2001, J MAGN RESON, V151, P129
   SAALWACHTER K, 2002, J MAGN RESON, V157, P17
   SCHMIDT C, 1988, J MAGN RESON, V79, P269
   SCHMIDTROHR K, 1994, MACROMOLECULES, V27, P4733
   SCHMIDTROHR K, 1994, MULTIDIMENSIONAL SOL
   SCHMIDTROHR K, 2002, ENCY NMR, V9, P633
   SIMPSON JH, 1990, J POLYM SCI POL PHYS, V28, P1859
   SIMPSON JH, 1992, J POLYM SCI POL PHYS, V30, P11
   SIMPSON JH, 1992, MACROMOLECULES, V25, P3068
   SZEVERENYI NM, 1983, J AM CHEM SOC, V105, P2579
   TONELLI AE, 1989, NMR SPECTROSCOPY POL
   TRETIAK S, 2002, PHYS REV LETT, V89
   VANDONGENTORMAN.JD, 1978, J CHEM PHYS, V68, P3233
   VEEMAN WS, 1984, PROG NUCL MAG RES SP, V16, P193
   WEFING S, 1988, J CHEM PHYS, V89, P1234
   WILLIAMS G, 1970, T FARADAY SOC, V66, P80
   ZHONG GL, 2002, MOL CRYST LIQ CRYST, V377, P169
NR 43
TC 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD AUG 1
PY 2003
VL 119
IS 5
BP 2923
EP 2934
PG 12
SC Physics, Atomic, Molecular & Chemical
GA 702UE
UT ISI:000184242100050
ER

PT J
AU Fileti, EE
   Coutinho, K
   Malaspina, T
   Canuto, S
TI Electronic changes due to thermal disorder of hydrogen bonds in
   liquids: Pyridine in an aqueous environment
SO PHYSICAL REVIEW E
LA English
DT Article
ID CARLO-QUANTUM-MECHANICS; QUADRUPOLE COUPLING-CONSTANTS; AB-INITIO;
   VANDERWAALS MOLECULES; (HCN)(N) CLUSTERS; INTERMOLECULAR FORCES; WATER
   DIMER; SPECTROSCOPY; POLARIZABILITIES; FORMALDEHYDE
AB Combined Metropolis Monte Carlo computer simulation and
   first-principles quantum mechanical calculations of pyridine in water
   are performed to analyze the role of thermal disorder in the electronic
   properties of hydrogen bonds in an aqueous environment. The simulation
   uses the NVT ensemble and includes one pyridine and 400 water
   molecules. Using a very efficient geometric-energetic criterion, the
   hydrogen bonds between pyridine and water C5H5N---H2O are identified
   and separated for subsequent quantum mechanical calculations of the
   electronic and spectroscopic properties. Statistically uncorrelated
   configurations composed of one pyridine and one water molecule are used
   to represent the configuration space of the hydrogen bonds in the
   liquid. The quantum mechanical calculations on these structures are
   performed at the correlated second-order perturbation theory level and
   all results are corrected for basis-set superposition error. The
   results are compared with the equivalent electronic properties of the
   hydrogen bond in the minimum-energy configuration. Charge transfer,
   dipole moment, and dipole polarizabilities are calculated for the
   thermally disordered and minimum-energy structures. In addition, using
   the mean and anisotropic polarizabilities, the Rayleigh depolarizations
   are obtained. All properties obtained for the thermally disordered
   structures are represented by a statistical distribution and a
   convergence of the average values is obtained. The results indicate
   that the charge transfer, dipole moment, and average depolarization
   ratios are systematically decreased in the liquid compared to the
   optimized cluster. This study quantifies, using ab initio quantum
   mechanics and statistical analysis, the important aspect of the thermal
   disorder of the hydrogen bond in a liquid system.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Mogi Cruzed, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
CR ABDURAHMAN A, 2002, PHYS REV B, V66
   ALLEN MP, 1987, COMPUTER SIMULATION
   BALL P, 2000, H2O BIOGRAPHY WATER
   BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
   BAZTERRA VE, 2002, J CHEM PHYS, V117, P11158
   BELL TW, 2002, J AM CHEM SOC, V124, P14092
   BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
   BERNSTEIN ER, 1990, ATOMIC MOL CLUSTERS
   BLANCH EW, 2002, J PHYS CHEM A, V106, P4257
   BONIN KD, 1997, ELECT DIPOLE POLARIZ
   BOYS SF, 1970, MOL PHYS, V19, P553
   BUCKINGHAM AD, 1983, J CHEM PHYS, V79, P6426
   BUCKINGHAM AD, 1986, INT REV PHYS CHEM, V5, P107
   BUCKINGHAM AD, 1988, CHEM REV, V88, P963
   CANUTO S, 1997, ADV QUANTUM CHEM, V28, P90
   CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
   CORNILESCU G, 1999, J AM CHEM SOC, V121, P2949
   COUTINHO K, 2000, DICE VERSION 2 8
   COUTINHO K, 2000, J CHEM PHYS, V112, P9874
   COUTINHO K, 2000, J CHEM PHYS, V113, P9132
   DINGLEY AJ, 1998, J AM CHEM SOC, V120, P8293
   DYKSTRA CE, 1986, J MOL STRUCT THEOCHE, V135, P357
   DYKSTRA CE, 1993, CHEM REV, V93, P2339
   EISENBERG D, 1969, STRUCTURE PROPERTIES
   FABELLINSKII IL, 1968, MOL SCATTERING LIGHT
   FILETI EE, 2003, J PHYS B-AT MOL OPT, V36, P399
   FINNEY JL, 2002, PHYS REV LETT, V88
   FOWLER PW, 1983, MOL PHYS, V50, P1349
   FRANKS F, 1972, WATER COMPREHENSIVE
   GALE GM, 1999, PHYS REV LETT, V82, P1068
   GHANTY TK, 2000, J AM CHEM SOC, V122, P1210
   GUO JH, 2002, PHYS REV LETT, V89
   HERZBERG G, 1945, INFRARED RAMAN SPECT
   ISAACS ED, 1999, PHYS REV LETT, V82, P600
   JEFFREY GA, 1997, INTRO HYDROGEN BOND
   JENSEN L, 2002, J CHEM PHYS, V117, P3316
   JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
   JORGENSEN WL, 1998, J MOL STRUCT THEOCHE, V424, P145
   KING BF, 1995, J CHEM PHYS, V103, P333
   KING BF, 1995, J CHEM PHYS, V103, P348
   LUDWIG R, 1995, J PHYS CHEM-US, V99, P9681
   LUDWIG R, 1997, J CHEM PHYS, V107, P499
   MALASPINA T, 2002, J CHEM PHYS, V117, P1692
   MAROULIS G, 2000, J CHEM PHYS, V113, P1813
   MEZEI M, 1981, J CHEM PHYS, V74, P622
   MORGENSTERN K, 2002, PHYS REV LETT, V88
   MORITA A, 1999, J CHEM PHYS, V110, P11987
   MOROKUMA K, 1977, ACCOUNTS CHEM RES, V10, P294
   RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
   REED AE, 1988, CHEM REV, V88, P899
   RISCH MJ, 1998, GAUSSIAN 98 REVISION
   ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
   SATO H, 1999, J CHEM PHYS, V111, P8545
   SCHEINER S, 1997, HYDROGEN BONDING THE
   SCOLES G, 1990, CHEM PHYSICS ATOMIC
   STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
   STONE AJ, 1997, J CHEM PHYS, V107, P1030
   VANDERVAART A, 2002, J CHEM PHYS, V116, P7380
   WILSON KR, 2000, PHYS REV LETT, V85, P4289
   ZWIER TS, 1996, ANNU REV PHYS CHEM, V47, P205
NR 60
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUN
PY 2003
VL 67
IS 6
PN Part 1
AR 061504
DI ARTN 061504
PG 7
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 699XD
UT ISI:000184081000046
ER

PT J
AU Skaf, MS
   Vechi, SM
TI Polarizability anisotropy relaxation in pure and aqueous
   dimethylsulfoxide
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; SULFOXIDE-WATER MIXTURES; DEPOLARIZED
   LIGHT-SCATTERING; FEMTOSECOND OPTICAL KERR; PERIODIC
   BOUNDARY-CONDITIONS; LIQUID DIMETHYL-SULFOXIDE; INTERMOLECULAR
   DYNAMICS; DIELECTRIC-PROPERTIES; COMPUTER-SIMULATION; ULTRAFAST DYNAMICS
AB A molecular dynamics simulation study is presented for the relaxation
   of the polarizability anisotropy of liquid dimethylsulfoxide (DMSO) and
   DMSO-water mixtures of DMSO mole fractions x(D)=0.05, 0.10, 0.25, 0.50,
   and 0.75. The system's collective polarizability is computed through a
   dipolar induction mechanism involving the intrinsic polarizability and
   first hyperpolarizability tensors for water and DMSO, obtained from ab
   initio quantum chemical calculations at the MP2/6-311++G(d,p) level.
   The rotational-diffusion components of the anisotropy relaxation of the
   pure liquids increase upon mixing to a maximum near 25% DMSO, showing
   consistency with other dynamical properties of these mixtures. Features
   of the optical Kerr effect (OKE) nuclear response of liquid water,
   previously ascribed to hydrogen bonding distortions, show significant
   enhancement upon addition of DMSO due to the formation of strong
   DMSO-water H-bonds. The OKE spectrum for DMSO is in close agreement
   with experimental measurements, but there are discrepancies for pure
   water in the vicinity of 60 cm(-1), pointing to the existence of
   inaccuracies in our description of OKE sensitive polarizability
   fluctuations of water. The mixtures OKE spectra feature an enhancement
   in the high frequency water librational band. (C) 2003 American
   Institute of Physics.
C1 Univ Estadual Campinas, Inst Quim, BR-13084971 Campinas, SP, Brazil.
RP Skaf, MS, Univ Estadual Campinas, Inst Quim, Cx P 6154, BR-13084971
   Campinas, SP, Brazil.
CR ALLEN MP, COMPUTER SIMULATION
   AMEY RL, 1968, J PHYS CHEM-US, V72, P3358
   BAKER ES, 1985, J PHYS CHEM-US, V89, P1730
   BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
   BERNE BJ, 2000, DYNAMIC LIGHT SCATTE
   BERTOLUZZA A, 1979, J RAMAN SPECTROSC, V8, P231
   BORIN IA, 1998, CHEM PHYS LETT, V296, P125
   BORYSOW J, 1985, MOL PHYS, V56, P913
   BURSULAYA BD, 1997, J PHYS CHEM B, V101, P10994
   BURSULAYA BD, 1998, J CHEM PHYS, V109, P4911
   CABRAL JT, 2000, J CHEM PHYS, V113, P8736
   CASTNER EW, 1995, J CHEM PHYS, V102, P653
   CHALARIS M, 2002, J MOL LIQ, V98, P399
   CHANG YJ, 1993, J CHEM PHYS, V99, P7289
   CHO MH, 1993, J CHEM PHYS, V99, P2410
   COWIE MG, 1964, CAN J CHEM, V39, P224
   DELATORRE JC, 1983, ANN NY ACAD SCI, V411, P1
   DELEEUW S, 1980, P ROY SOC LOND A MAT, V373, P57
   DELEEUW SW, 1980, P ROY SOC LOND A MAT, V373, P27
   DELEEUW SW, 1986, ANNU REV PHYS CHEM, V37, P245
   FAURSKOVNIELSEN O, 1993, ANNU REP PROG CHEM C, V90, P3
   FECKO CJ, 2002, J CHEM PHYS, V117, P1139
   FOX MF, 1974, J CHEM SOC FARADAY T, V75, P1407
   FOX T, 1998, J PHYS CHEM B, V102, P8070
   FRIEDMAN JS, 1993, J CHEM PHYS, V99, P4960
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GEIGER LC, 1987, J CHEM PHYS, V87, P191
   GEIGER LC, 1989, CHEM PHYS LETT, V159, P413
   GORDALLA BC, 1986, MOL PHYS, V59, P817
   HIGASHIGAKI Y, 1981, J PHYS CHEM-US, V85, P2531
   HOCKNEY RW, 1970, METHOD COMPUT PHYS, V9, P136
   JACOB SW, 1975, BIOL ACTIONS DIMETHY, V243
   JANSEN TIC, 2001, J CHEM PHYS, V114, P10910
   KAATZE U, 1989, J PHYS CHEM-US, V93, P5623
   KIRCHNER B, 2002, J AM CHEM SOC, V124, P6206
   KIYOHARA K, 2000, J CHEM PHYS, V112, P6338
   LADANYI BM, 1985, CHEM PHYS LETT, V121, P351
   LADANYI BM, 1995, J CHEM PHYS, V103, P6325
   LADANYI BM, 1996, J CHEM PHYS, V105, P1552
   LAI JTW, 1995, J SOLUTION CHEM, V24, P89
   LIU HY, 1995, J AM CHEM SOC, V117, P4363
   LUTHER BM, 2000, THESIS COLORADO STAT
   LUZAR A, 1993, J CHEM PHYS, V98, P8160
   LUZAR A, 1994, NATO ADV STUDIES I C, V435
   LUZAR A, 1996, FARADAY DISCUSS, V103, P29
   LUZAR A, 1996, NATURE, V379, P55
   MADDEN PA, 1985, ULTRAFAST PHENOMENA, V4, P244
   MARTIN D, 1975, DIMETHYL SULFOXIDE
   MARTINS LR, 2003, J CHEM PHYS, V118, P5955
   MCMORROW D, 1988, IEEE J QUANTUM ELECT, V24, P443
   MCMORROW D, 1991, J PHYS CHEM-US, V95, P10395
   MCMORROW D, 1996, J PHYS CHEM-US, V100, P10389
   MILLER KJ, 1990, J AM CHEM SOC, V112, P8533
   MRAZKOVA E, 2003, J PHYS CHEM A, V107, P1032
   MUKAMEL S, 1999, PRINCIPLES NONLINEAR
   PACAK P, 1987, J SOLUTION CHEM, V16, P71
   PACKER KJ, 1971, T FARADAY SOC, V67, P1302
   PALESE S, 1994, J PHYS CHEM-US, V98, P6308
   PURANIK SM, 1992, J CHEM SOC FARADAY T, V88, P433
   RAO BG, 1990, J AM CHEM SOC, V112, P3803
   RIGHINI R, 1993, SCIENCE, V262, P1386
   ROSENTHAL SJ, 1993, ULTRAFAST PHENOMENA
   RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327
   SAFFORD GJ, 1969, J CHEM PHYS, V50, P2140
   SAITO S, 1997, J CHEM PHYS, V106, P4889
   SHEN DN, 2001, J PHYS CHEM B, V105, P6759
   SHIROTA H, 2001, J AM CHEM SOC, V123, P12877
   SKAF MS, 1997, J CHEM PHYS, V107, P7996
   SKAF MS, 1999, J PHYS CHEM A, V103, P10719
   SMITH NA, 1997, J PHYS CHEM A, V101, P9578
   SMITH NA, 2000, J PHYS CHEM A, V104, P4223
   SOPER AK, 1996, J PHYS CHEM-US, V100, P1357
   STASSEN H, 1994, J CHEM PHYS, V100, P6318
   STASSEN H, 1999, J CHEM PHYS, V110, P7382
   STEFFEN T, 1998, J PHYS CHEM A, V102, P4213
   TOKUHIRO T, 1974, J CHEM PHYS, V61, P2275
   TOMMILA E, 1969, SUOM KEMISTIL B, V41, P172
   TORII H, 2001, CHEM PHYS LETT, V353, P431
   VAISMAN II, 1992, J AM CHEM SOC, V114, P7889
   VISHNYAKOV A, 2001, J PHYS CHEM A, V105, P1702
   WIEWIOR PP, 2002, J CHEM PHYS, V116, P4643
   WINKLER K, 2000, J CHEM PHYS, V113, P4674
NR 82
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUL 22
PY 2003
VL 119
IS 4
BP 2181
EP 2187
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 700FY
UT ISI:000184103000035
ER

PT J
AU Dardenne, LE
   Werneck, AS
   Neto, MD
   Bisch, PM
TI Electrostatic properties in the catalytic site of papain: A possible
   regulatory mechanism for the reactivity of the ion pair
SO PROTEINS-STRUCTURE FUNCTION AND GENETICS
LA English
DT Article
DE papain; cysteine proteinases; electrostatic properties; enzymatic
   catalysis; ab initio calculations; multicenter multipolar expansions
ID CYSTEINE PROTEASE PAPAIN; DISTRIBUTED MULTIPOLE ANALYSIS; MOLECULAR
   CHARGE-DISTRIBUTION; ACTIVE-SITE; QUANTUM-CHEMISTRY; ENZYME CATALYSIS;
   IONIZATION CHARACTERISTICS; DIELECTRIC-CONSTANTS; PROTEINASE ACTIVITY;
   SERINE PROTEINASES
AB We present an analysis of the electrostatic properties in the catalytic
   site of papain (EC 3.4.22.2), an archetype enzyme of the C1 cysteine
   proteinase family, and we investigate their possible role in the
   formation, stabilization and regulation of the Cys25((-))...His159((+))
   catalytic ion pair. The electrostatic properties were computed using a
   reassociation method based in multicentered multipolar expansions
   obtained from ab initio quantum calculations of overlapping protein
   fragments. Solvent effects were introduced by coupling the use of
   multicentered multipolar expansions to two continuum boundary element
   methods to solve the Poisson and the linearized Poisson-Boltzmann
   equations. The electrostatic profile found in the proton transfer
   region of papain showed that this enzyme has a well-defined
   electrostatic environment to favor the formation and stabilization of
   the catalytic ion pair. The papain catalytic site electrostatic profile
   can be considered as an electrostatic fingerprint of the papain family
   with the following characteristics: (i) the presence of a net electric
   field highly aligned in the (Cys25)-SG-->(His159)-ND1 direction; (ii)
   the electrostatic profile has a saddle-point character; (iii) it is
   basically a local environmental effect. Furthermore, our analysis
   describes a possible regulatory mechanism (the ESG-->ND1 attenuation
   effect) controlling the ion pair reactivity and permits to infer the
   Asp57 acidic residue as the most probable candidate to act as the
   electrostatic modulator. (C) 2003 Wiley-Liss, Inc.
C1 Fed Univ Rio De Janeiro, Lab Fis Biol, Inst Biofis Carlos Chagas Filho, BR-21949900 Rio De Janeiro, RJ, Brazil.
   LNCC, BR-25651070 Petropolis, RJ, Brazil.
   UCB, Dept Fis, BR-72030170 Taguatinga, DF, Brazil.
   Univ Brasilia, Inst Quim, BR-70910900 Brasilia, DF, Brazil.
RP Bisch, PM, Fed Univ Rio De Janeiro, Lab Fis Biol, Inst Biofis Carlos
   Chagas Filho, CCS,Bloco G Ilha Fundao, BR-21949900 Rio De Janeiro, RJ,
   Brazil.
CR ALTSCHUH D, 1994, PROTEIN ENG, V7, P769
   ANGYAN J, 1983, J THEOR BIOL, V103, P349
   ANGYAN JG, 1994, INT J QUANTUM CHEM, V52, P17
   ARAD D, 1990, J AM CHEM SOC, V112, P491
   BENTZIEN J, 1998, J PHYS CHEM B, V102, P2293
   BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
   BERTI PJ, 1995, J MOL BIOL, V246, P273
   BEVERIDGE AJ, 1996, PROTEIN SCI, V5, P1355
   CAFFARENA ER, 2000, J MOL GRAPH MODEL, V18, P119
   CAMMI R, 1995, J COMPUT CHEM, V16, P1449
   CARTER CE, 2000, BIOCHEMISTRY-US, V39, P11005
   CAZZULO JJ, 1997, BIOL CHEM, V378, P1
   CHIPOT C, 1993, J PHYS CHEM-US, V97, P9788
   COITINO EL, 1995, J COMPUT CHEM, V16, P20
   COLONNA F, 1992, J COMPUT CHEM, V13, P1234
   CONNOLLY ML, 1983, SCIENCE, V221, P709
   CONNOLLY ML, 1993, MDS MOL DOT SURFACE
   DARDENNE LE, 2001, J COMPUT CHEM, V22, P689
   DAY PN, 1996, J CHEM PHYS, V105, P1968
   DESIDERI A, 1992, J MOL BIOL, V223, P337
   DEVRIES AH, 1995, J COMPUT CHEM, V16, P37
   DIJKMAN JP, 1987, INT J QUANTUM CHEM Q, V14, P211
   DIJKMAN JP, 1989, INT J QUANTUM CHEM, V35, P241
   DRENTH J, 1976, BIOCHEMISTRY-US, V15, P3731
   DUNCAN GD, 1992, J AM CHEM SOC, V114, P5784
   EURENIUS KP, 1996, INT J QUANTUM CHEM, V60, P1189
   FREITAG MA, 2000, J CHEM PHYS, V112, P7300
   GARAVITO RM, 1977, BIOCHEMISTRY-US, V16, P5065
   GARMER DR, 1998, PROTEINS, V31, P42
   GILSON MK, 1988, PROTEINS, V3, P32
   GOLDBLUM A, 1997, UNDERS CH R, V19, P295
   GRESH N, 1984, THEOR CHIM ACTA, V66, P1
   GRESH N, 1986, INT J QUANTUM CHEM, V29, P101
   GRESH N, 1997, BIOPOLYMERS, V41, P145
   GRIMSLEY GR, 1999, PROTEIN SCI, V8, P1843
   HARRISON MJ, 1997, J AM CHEM SOC, V119, P12285
   HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33
   HWANG JK, 1995, CHEM PHYS LETT, V243, P171
   IKEUCHI Y, 1998, FEBS LETT, V437, P91
   JUFFER AH, 1991, J COMPUT PHYS, V97, P144
   KAMPHUIS IG, 1984, J MOL BIOL, V179, P233
   KAMPHUIS IG, 1985, J MOL BIOL, V182, P317
   LAMOTTEBRASSEUR J, 1990, J THEOR BIOL, V145, P183
   LANGLET J, 1988, J PHYS CHEM-US, V92, P1617
   LAVERY R, 1983, INT J QUANTUM CHEM, V24, P353
   LEE B, 1971, J MOL BIOL, V55, P379
   LEWIS SD, 1976, BIOCHEMISTRY-US, V15, P5009
   LEWIS SD, 1981, BIOCHEMISTRY-US, V20, P48
   LIMA APC, 2001, MOL BIOCHEM PARASIT, V114, P1
   MCKERROW JH, 1993, ANNU REV MICROBIOL, V47, P821
   MELLOR GW, 1993, BIOCHEM J 1, V294, P201
   MELLOR GW, 1993, BIOCHEM J, V290, P289
   MENARD R, 1990, BIOCHEMISTRY-US, V29, P6706
   MENARD R, 1991, BIOCHEMISTRY-US, V30, P5531
   MENARD R, 1991, PROTEIN ENG, V4, P307
   MENARD R, 1995, BIOCHEMISTRY-US, V34, P464
   MINIKIS RM, 2001, J PHYS CHEM A, V105, P3829
   MONARD G, 1996, INT J QUANTUM CHEM, V58, P153
   NAKAMURA H, 1996, Q REV BIOPHYS, V29, P1
   NARAYSZABO G, 1997, UNDERS CH R, V19, P237
   NOBLE MA, 2000, BIOCHEM J 3, V351, P723
   PASCUTTI PG, 1999, J COMPUT CHEM, V20, P971
   PERAHIA D, 1977, THEOR CHIM ACTA, V43, P207
   PICKERSGILL RW, 1988, BIOCHEM J, V254, P235
   PINITGLANG S, 1997, BIOCHEMISTRY-US, V36, P9968
   PLOU FJ, 1996, J MOL BIOL, V257, P1088
   POORNIMA CS, 1995, J COMPUT AID MOL DES, V9, P500
   POORNIMA CS, 1995, J COMPUT AID MOL DES, V9, P513
   RASHIN AA, 1987, J PHYS CHEM-US, V91, P6003
   RIPOLL DR, 1993, P NATL ACAD SCI USA, V90, P5128
   RULLMANN JAC, 1989, J MOL BIOL, V206, P101
   RUSSELL AJ, 1987, NATURE, V328, P496
   SANSCHAGRIN PC, 1998, PROTEIN SCI, V7, P2054
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCHRODER E, 1993, FEBS LETT, V315, P38
   SCHUTZ CN, 2001, PROTEINS, V44, P400
   SHAM YY, 1998, BIOPHYS J, V74, P1744
   SHARP KA, 1997, UNDERS CH R, V19, P199
   SHENAI BR, 2000, J BIOL CHEM, V275, P29000
   SIMONSON T, 2002, ACCOUNTS CHEM RES, V35, P430
   SMITH LJ, 1995, BIOCHEMISTRY-US, V34, P10918
   STONE AJ, 1981, CHEM PHYS LETT, V83, P233
   STONE AJ, 1985, MOL PHYS, V56, P1047
   TAYLOR MAJ, 1994, PROTEIN ENG, V7, P1267
   TOPHAM CM, 1991, BIOCHEM J, V280, P79
   VANGUNSTEREN WF, 1987, GRONINGEN MOL SIMULA
   VERNET T, 1995, J BIOL CHEM, V270, P16645
   VIGNEMAEDER F, 1988, J CHEM PHYS, V88, P4934
   WARSHEL A, 1976, J MOL BIOL, V103, P227
   WARSHEL A, 1991, COMPUTER MODELING CH, P140
   WARSHEL A, 1998, J BIOL CHEM, V273, P27035
   WARSHEL A, 1998, P NATL ACAD SCI USA, V95, P5950
   WERNECK AS, 1998, THEOCHEM-J MOL STRUC, V427, P15
   YOON BJ, 1990, J COMPUT CHEM, V11, P1080
NR 94
TC 6
PU WILEY-LISS
PI NEW YORK
PA DIV JOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0887-3585
J9 PROTEIN-STRUCT FUNCT GENET
JI Proteins
PD AUG 1
PY 2003
VL 52
IS 2
BP 236
EP 253
PG 18
SC Biochemistry & Molecular Biology; Genetics & Heredity
GA 697BW
UT ISI:000183923200012
ER

PT J
AU Arenzon, JJ
   Levin, Y
   Sellitto, M
TI Slow dynamics under gravity: a nonlinear diffusion model
SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
LA English
DT Article
DE granular matter; structural arrest; glass transition; compaction
   dynamics
ID VIBRATED GRANULAR MATERIAL; LATTICE-GAS MODEL; GLASS-TRANSITION;
   DENSITY-FLUCTUATIONS; COMPACTION; RELAXATION; MATTER; LIQUIDS; MEDIA;
   CRYSTALLIZATION
AB We present an analytical and numerical study of a nonlinear diffusion
   model which describes density relaxation of densely packed particles
   under gravity and weak random (thermal) vibration, and compare the
   results with Monte Carlo simulations of a lattice gas under gravity.
   The dynamical equation can be thought of as a local density functional
   theory for a class of lattice gases used to model slow relaxation of
   glassy and granular materials. The theory predicts a jamming transition
   line between a low-density fluid phase and a high-density glassy
   regime, characterized by diverging relaxation time and logarithmic or
   power-law compaction according to the specific form of the diffusion
   coefficient. In particular, we show that the model exhibits
   history-dependent properties, such as quasi-reversible-irreversible
   cycle and memory effects-as observed in recent experiments, and
   dynamical heterogeneities. (C) 2003 Elsevier Science B.V. All rights
   reserved.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
   Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Arenzon, JJ, Univ Fed Rio Grande Sul, Inst Fis, CP 15051, BR-91501970
   Porto Alegre, RS, Brazil.
CR BARRAT A, 2000, J PHYS A-MATH GEN, V33, P4401
   BARRAT A, 2001, EUROPHYS LETT, V53, P297
   BERG J, 2001, EUROPHYS LETT, V56, P784
   BOUCHAUD JP, CONDMAT0211196
   BOUCHAUD JP, 1997, SPIN GLASSES RANDOM
   BOUTREUX T, 1997, PHYSICA A, V244, P59
   BREY JJ, 1999, PHYS REV E B, V60, P5685
   BREY JJ, 2001, PHYS REV E 1, V63
   CLEMENT E, 1991, EUROPHYS LETT, V16, P133
   DANNA G, 2001, NATURE, V413, P407
   DANNA G, 2001, PHYS REV LETT, V87
   DEGENNES PG, 1998, PHYSICA A, V261, P267
   DURAN J, 2000, SANDS POWDERS GRAINS
   EDWARDS SF, 1991, DISORDER CONDENSED M
   EDWARDS SF, 1994, GRANULAR MATTER INTE
   FRANZ S, 2002, PHYS REV E 1, V65
   FUSCO C, 2002, PHYS REV E 1, V66
   GOTZE W, 1992, REP PROG PHYS, V55, P241
   HEAD DA, 2000, PHYS REV E B, V62, P2439
   IMPARATO A, 2000, PHYS LETT A, V269, P154
   JOSSERAND C, 2000, PHYS REV LETT, V85, P3632
   KADANOFF LP, 1999, REV MOD PHYS, V71, P435
   KNIGHT JB, 1995, PHYS REV E A, V51, P3957
   KOB W, 1993, PHYS REV E, V48, P4364
   KOVACS AJ, 1963, FORTSCH HOCHPOLYM FO, V3, P394
   LAWLOR A, 2002, PHYS REV LETT, V89
   LEVIN Y, 2000, PHYSICA A, V287, P100
   LEVIN Y, 2001, EUROPHYS LETT, V55, P767
   LIU AJ, 1998, NATURE, V396, P21
   NICODEMI M, 1997, PHYS REV E, V55, P3962
   NICOLAS M, 2000, EUR PHYS J E, V3, P309
   NOWAK ER, 1997, POWDER TECHNOL, V94, P79
   NOWAK ER, 1998, PHYS REV E B, V57, P1971
   PELITI L, 1998, J PHYS IV, V8, PR6
   PHILIPPE P, 2001, PHYS REV E 1, V63
   POULIQUEN O, 1997, PHYS REV LETT, V79, P3640
   PRADOS A, 2000, PHYSICA A, V284, P277
   RICHERT R, 2002, J PHYS-CONDENS MAT, V14, R703
   RITORT F, CONDMAT0210382
   SELLITTO M, 2000, PHYS REV E A, V62, P7793
   SELLITTO M, 2001, PHYS REV E 1, V63
   SILLESCU H, 1999, J NON-CRYST SOLIDS, V243, P81
   STARIOLO DA, 1997, PHYS REV E, V55, P4806
   STRUIK LCE, 1978, PHYSICAL AGING AMORP
   TOKUYAMA M, 1995, PHYSICA A, V216, P85
   VANMEGEN W, 1998, PHYS REV E B, V58, P6073
   VILLARRUEL FX, 2000, PHYS REV E B, V61, P6914
   WARR S, 1996, EUROPHYS LETT, V36, P589
   WILDMAN RD, 2000, PHYS REV E B, V62, P3826
   WILDMAN RD, 2001, PHYS REV E 1, V63
   YANG XY, 2002, PHYS REV LETT, V88
NR 51
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD JUL 15
PY 2003
VL 325
IS 3-4
BP 371
EP 395
PG 25
SC Physics, Multidisciplinary
GA 696VZ
UT ISI:000183909400006
ER

PT J
AU Capelle, K
TI Variational calculation of many-body wave functions and energies from
   density functional theory
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID GENERATOR-COORDINATE METHOD; NONORTHOGONAL SLATER DETERMINANTS;
   EXCITATION-ENERGIES; ELECTRON-GAS; DISCRETIZATION; SUPERPOSITION;
   APPROXIMATION; STATES; ATOMS
AB A generating coordinate is introduced into the exchange-correlation
   functional of density functional theory (DFT). The many-body wave
   function is represented as a superposition of Kohn-Sham (KS) Slater
   determinants arising from different values of the generating
   coordinate. This superposition is used to variationally calculate
   many-body energies and wave functions from solutions of the KS equation
   of DFT. The method works for ground and excited states, and does not
   depend on identifying the KS orbitals and energies with physical ones.
   Numerical application to the Helium isoelectronic series illustrates
   the method's viability and potential. (C) 2003 American Institute of
   Physics.
C1 Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
RP Capelle, K, Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim Sao Carlos,
   Caixa Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR ANDREJKOVICS I, 1998, CHEM PHYS LETT, V296, P489
   ARICKX F, 1981, J COMPUT PHYS, V39, P272
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BROECKHOVE J, 1979, Z PHYS A, V292, P243
   CHATTOPADYAY P, 1978, Z PHYS A, V285, P7
   DASILVA ABF, 1989, MOL PHYS, V68, P433
   DASILVA ABF, 1993, CHEM PHYS LETT, V203, P201
   DAVIDSON ER, 1991, PHYS REV A, V44, P7071
   DEUMENS E, 1984, INT J QUANTUM CHEM, V18, P339
   FUKUTOME H, 1988, PROG THEOR PHYS, V80, P417
   GORLING A, 1999, PHYS REV A, V59, P3359
   GRIFFIN JJ, 1957, PHYS REV, V108, P311
   GROSS EKU, 1988, PHYS REV A, V37, P2805
   HILL DL, 1953, PHYS REV, V89, P1106
   HOHENBERG P, 1964, PHYS REV, V136, B864
   JOHANSSON B, 1978, PHYSICA B, V94, P152
   LASKOWSKI B, 1976, J CHEM PHYS, V69, P5222
   LASKOWSKI B, 1976, QUANTUM SCI METHODS
   LEE C, 1988, PHYS REV B, V37, P785
   MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
   PETERSILKA M, 1996, PHYS REV LETT, V76, P1212
   SZABO A, 1989, MODERN QUANTUM CHEM
   TENNO S, 1997, THEOR CHEM ACC, V98, P182
   TOMITA N, 1996, CHEM PHYS LETT, V263, P687
NR 24
TC 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUL 15
PY 2003
VL 119
IS 3
BP 1285
EP 1288
PG 4
SC Physics, Atomic, Molecular & Chemical
GA 696YL
UT ISI:000183915100001
ER

PT J
AU Capaz, RB
   Caldas, MJ
TI Ab initio calculations of structural and dynamical properties of
   poly(p-phenylene) and poly(p-phenylene vinylene)
SO PHYSICAL REVIEW B
LA English
DT Article
ID VIBRATIONAL-SPECTRA; DOPED POLYPARAPHENYLENE; CRYSTAL-STRUCTURE;
   PHASE-TRANSITION; X-RAY; PERDEUTERATED BIPHENYL; OPTICAL
   INVESTIGATIONS; ELECTRONIC-STRUCTURE; CONJUGATED POLYMERS; PHENYLENE
   VINYLENE
AB We perform ab initio calculations within the local density
   approximation for infinite, isolated chains of poly(para-phenylene)
   (PPP) and poly(para-phenylene-vinylene) (PPV). Phonon frequencies at
   (k) over right arrow = (0) over right arrow and structural properties
   are investigated with special focus on the ring-torsion barriers. Our
   results for PPV indicate a planar geometry, while for PPP we find a
   ring-torsion potential that is not affected by next-nearest-neighbor
   rings. This suggests the existence of a multiply degenerate ground
   state for PPP, with chiral, ordered, or random angle-alternating
   configurations having the same energy. In addition, we couple these
   results to a simple molecular-dynamics simulation in order to
   investigate the finite temperature behavior of the systems.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, Brazil.
RP Capaz, RB, Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528,
   BR-21941972 Rio De Janeiro, Brazil.
CR ALMENNINGEN A, 1985, J MOL STRUCT, V128, P59
   AMBROSCHDRAXL C, 1995, PHYS REV B, V51, P9668
   BAITOUL M, 2000, POLYMER, V41, P6955
   BASTIANSEN O, 1985, J MOL STRUCT, V128, P115
   BAUDOUR JL, 1977, ACTA CRYSTALLOGR B, V33, P1773
   BAUDOUR JL, 1978, ACTA CRYSTALLOGR B, V34, P625
   BAUDOUR JL, 1991, ACTA CRYSTALLOGR B, V47, P935
   BRADLEY DDC, 1987, J PHYS D APPL PHYS, V20, P1389
   BREDAS JL, 1984, PHYS REV B, V29, P6761
   CAPAZ RB, 1999, J MOL STRUC-THEOCHEM, V464, P31
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CHEN D, 1990, PHYS REV B, V41, P6759
   CHEN D, 1992, POLYMER, V33, P3116
   CHOI CH, 1997, J PHYS CHEM A, V101, P3823
   CUFF L, 1994, MACROMOLECULES, V27, P762
   CUFF LL, 1994, J AM CHEM SOC, V116, P9269
   DELUGEARD Y, 1976, ACTA CRYSTALLOGR, V32, P702
   FINCHER CR, 1982, PHYS REV LETT, V48, P100
   FINDER CJ, 1974, ACTA CRYSTALLOGR B, V30, P411
   FRIEND RH, 1999, NATURE, V397, P121
   FURUKAWA Y, 1991, SPECTROCHIM ACTA A, V47, P1367
   GINDER JM, 1990, PHYS REV B, V41, P10674
   HOHENBERG P, 1964, PHYS REV, V136, B864
   HONG SY, 1990, PHYS REV B, V41, P11368
   KOHN W, 1965, PHYS REV, V140, A1133
   KOVACIC P, 1968, J APPL POLYM SCI, V12, P1735
   MARTIN SJ, 1999, PHYS REV B, V59, P15133
   ORION I, 1998, PHYS REV B, V57, P7050
   PAPANEK P, 1994, PHYS REV B, V50, P15668
   PAYNE MC, 1992, REV MOD PHYS, V64, P1045
   PELOUS Y, 1989, SYNTHETIC MET, V29, E17
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   RAKOVIC D, 1990, PHYS REV B, V41, P10744
   RAPPE AM, 1990, PHYS REV B, V41, P1227
   RIETVELD HM, 1970, ACTA CRYSTALLOGR B, V26, P693
   SAKAMOTO A, 1992, J PHYS CHEM-US, V96, P1490
   SHACKLETTE LW, 1979, SYNTHETIC MET, V1, P307
   SIMPSON JH, 1992, J POLYM SCI POL PHYS, V30, P11
   STAMM M, 1983, J PHYS-PARIS, V44, P667
   STAMM M, 1985, MOL CRYST LIQ CRYST, V118, P281
   TIAN B, 1991, J CHEM PHYS, V95, P3191
   TIAN B, 1991, J CHEM PHYS, V95, P3198
   TOUDIC B, 1983, SOLID STATE COMMUN, V47, P291
   TUYAROT DE, 2000, PHYS REV B, V61, P7187
   WANG WZ, 1994, PHYS REV B, V50, P6068
   ZANNONI G, 1985, J CHEM PHYS, V82, P31
NR 46
TC 8
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2003
VL 67
IS 20
AR 205205
DI ARTN 205205
PG 9
SC Physics, Condensed Matter
GA 689GL
UT ISI:000183483200032
ER

PT J
AU Fagan, SB
   Mota, R
   da Silva, AJR
   Fazzio, A
TI Ab initio study of an iron atom interacting with single-wall carbon
   nanotubes
SO PHYSICAL REVIEW B
LA English
DT Article
ID TRANSITION-METAL ADATOMS; MOLECULAR-DYNAMICS; LARGE SYSTEMS; GRAPHITE;
   MAGNETISM; GROWTH; IMPURITIES; ADSORPTION; PARTICLES; SPECTRA
AB The interaction of an iron atom with a single-wall carbon nanotube is
   investigated using spin-polarized total-energy first-principles
   calculations. A systematic study for the atom approaching the tube
   surface, both from outside and inside, is presented for several
   configurations to determine the equilibrium distances and the binding
   energies. It is shown that when the atom interacts with the tube from
   outside, a 3d(7) 4s(1) effective configuration is obtained and the
   total magnetization is close to the atomic value. For the inside case,
   as a consequence of higher hybridization and a confinement effect, the
   magnetization decreases and the finally obtained effective
   configuration is 3d(8) 4s(0).
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Fagan, SB, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
   Brazil.
CR ANDRIOTIS AN, 2000, APPL PHYS LETT, V76, P3890
   ANDRIOTIS AN, 2000, PHYS REV B, V61, P13393
   ANDRIOTIS AN, 2000, PHYS REV LETT, V85, P3193
   ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
   BINNS C, 1996, PHYS REV B, V53, P7451
   BUMER M, 1995, SURF SCI, V327, P321
   DAI HJ, 2002, SURF SCI, V500, P218
   DRESSELHAUS MS, 2001, CARBON NANOTUBES
   DUFFY DM, 1998, PHYS REV B, V58, P7443
   FAZZIO A, 1984, PHYS REV B, V30, P3430
   HOHENBERG P, 1964, PHYS REV, V136, B864
   JOURNET C, 1997, NATURE, V388, P756
   KATAYAMAYOSHIDA H, 1984, PHYS REV LETT, V53, P1256
   KATAYAMAYOSHIDA H, 1985, PHYS REV B, V31, P7877
   KOHN W, 1965, PHYS REV, V140, A1133
   KONG K, 1999, PHYS REV B, V60, P6074
   KRUGER P, 1998, PHYS REV B, V57, P5276
   KRUGER P, 1999, PHYS REV B, V59, P15093
   LEE YH, 1997, PHYS REV LETT, V78, P2393
   MENON M, 2000, CHEM PHYS LETT, V320, P425
   MINTMIRE JW, 1992, PHYS REV LETT, V68, P631
   NARDELLI MB, 2001, PHYS REV B, V64
   ORDEJON P, 1996, PHYS REV B, V53
   PANDEY R, 2000, CHEM PHYS LETT, V321, P142
   PENG SS, 1996, PHILOS MAG B, V73, P611
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
   SANKEY OF, 1989, PHYS REV B, V40, P3979
   SETLUR AA, 1998, J MATER RES, V13, P2139
   TIBBETTS GG, 1987, CARBON, V25, P367
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   TSUKAGOSHI K, 1999, NATURE, V401, P572
   ZHANG Y, 2000, CHEM PHYS LETT, V331, P35
NR 33
TC 13
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2003
VL 67
IS 20
AR 205414
DI ARTN 205414
PG 5
SC Physics, Condensed Matter
GA 689GL
UT ISI:000183483200087
ER

PT J
AU Guerini, S
   Piquini, P
TI Theoretical investigation of TiB2 nanotubes
SO MICROELECTRONICS JOURNAL
LA English
DT Article
DE TiB2 nanotubes; density of states; strain energy
ID HARTREE-FOCK
AB We investigated the energetic and electronic properties of zig-zag
   titanium diboride (TiB2) nanotubes through ab initio density functional
   theory. It is determined that an isolated (6,0) bilayered TiB2 nanotube
   has a semiconductor character, with an energy gap of 1.32 eV. The
   strain energy to form the (6,0) TiB2 nanotube is calculated to be 0.26
   eV per unit formula. The electronic density of states of a three-layer
   tube ((6,0) TiB2 + (12,0) B tube) shows a metallic behavior for this
   system, which is consistent with previous calculations on similar
   hypothetical nanotubes. (C) 2003 Elsevier Science Ltd. All rights
   reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Piquini, P, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
   RS, Brazil.
CR BARTHELAT JC, 1977, MOL PHYS, V33, P159
   BLASE X, 1994, EUROPHYS LETT, V28, P225
   CAUSA M, 1991, PHYS REV B, V43, P11937
   CHERNOZATONSKII LA, 2001, JETP LETT, V74, P369
   CHOPRA NG, 1995, SCIENCE, V269, P966
   COTE M, 1998, PHYS REV B, V58, R4277
   FELDMAN Y, 1995, SCIENCE, V267, P222
   HACOHEN YR, 1998, NATURE, V395, P336
   HARRIS PJF, 1999, CARBON NANOTUBES REL
   LEE SM, 1999, PHYS REV B, V60, P7788
   LI XY, 1996, J APPL PHYS, V80, P3860
   LIJIMA S, 1991, NATURE, V354, P56
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   PEROTTONI CA, 2000, J PHYS-CONDENS MAT, V12, P7205
   QUANDT A, 2001, PHYS REV B, V64
   SAUNDERS VR, 1998, CRYSTALS 98 USERS MA
   SEIFERT G, 2000, CHEM PHYS LETT, V318, P355
   SILVER AH, 1963, J CHEM PHYS, V38, P865
NR 19
TC 3
PU ELSEVIER ADVANCED TECHNOLOGY
PI OXFORD
PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,
   OXFORD OX5 1GB, OXON, ENGLAND
SN 0026-2692
J9 MICROELECTR J
JI Microelectron. J.
PD MAY-AUG
PY 2003
VL 34
IS 5-8
BP 495
EP 497
PG 3
SC Engineering, Electrical & Electronic
GA 691LH
UT ISI:000183607400039
ER

PT J
AU Machado, M
   Mota, R
   Piquini, P
TI Electronic properties of BN nanocones under electric fields
SO MICROELECTRONICS JOURNAL
LA English
DT Article
DE electronic structures of nanoscale materials; nanocones; BN
ID EMISSION PROPERTIES; CARBON NANOTUBES; LARGE SYSTEMS; CONES
AB The electronic properties of BN nanocones with 240degrees disclination
   under electric fields are investigated using first-principles
   calculations based on the density-functional theory. The cones are
   studied under the influence of electric fields, up to 1.13 V/Angstrom,
   applied along the cone axis. The densities of states (DOS) of these BN
   nanocones show different patterns depending on the termination two
   atoms (BN, BB or NN) and the electric field strength. A decreasing of
   the gap is observed with increasing field. The field emission
   properties are very sensitive to the DOS and we show that the
   termination atoms, as well as the electric field, contribute to enhance
   the electron field emission. (C) 2003 Elsevier Science Ltd. All rights
   reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Machado, M, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
   RS, Brazil.
CR BAIERLE RJ, 2001, PHYS REV B, V64
   BOURGEOIS L, 2000, PHYS REV B, V61, P7686
   CHARLIER JC, 2001, PHYS REV LETT, V86, P5970
   CHARLIER JC, 2002, NANO LETT, V2, P1191
   MACHADO, 2003, EUR PHYS J D, V23, P91
   MEUNIER V, 2002, APPL PHYS LETT, V81, P46
   MOTA R, 2003, PHYS STATUS SOLIDI C, P799
   ORDEJON P, 1996, PHYS REV B, V53
   RUBIO A, 1994, PHYS REV B, V49, P5081
   SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
   TERAUCHI M, 2000, CHEM PHYS LETT, V324, P359
   ZHANG G, 2002, APPL PHYS LETT, V80, P2589
NR 12
TC 5
PU ELSEVIER ADVANCED TECHNOLOGY
PI OXFORD
PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,
   OXFORD OX5 1GB, OXON, ENGLAND
SN 0026-2692
J9 MICROELECTR J
JI Microelectron. J.
PD MAY-AUG
PY 2003
VL 34
IS 5-8
BP 545
EP 547
PG 3
SC Engineering, Electrical & Electronic
GA 691LH
UT ISI:000183607400051
ER

PT J
AU Arissawa, M
   Taft, CA
   Felcman, J
TI Investigation of nucleoside analogs with anti-HIV activity
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE HIV; reverse transcriptase; drug-DNA interaction; nucleoside analogs
ID HUMAN-IMMUNODEFICIENCY-VIRUS; TYPE-1 REVERSE-TRANSCRIPTASE; BLOOD
   MONONUCLEAR-CELLS; DRUG-RESISTANCE; AB-INITIO; 2',3'-DIDEOXYNUCLEOSIDE
   ANALOGS; POPULATION ANALYSIS; ANTI-HIV-1 ACTIVITY; HUMAN-LYMPHOCYTES;
   LAMIVUDINE 3TC
AB Although a relatively large number of drugs that inhibit human
   immunodeficiency syndrome (HIV)-1 reverse transcriptase have been
   developed-such as AZT, d4T, ddI, 3TC, and ddC, which are chain
   terminating nucleoside analogs-resistance is still a major problem.
   Atomic charges, regioselective patterns of chemical reactivity, and
   other indices of biochemical activity may help us acquire a better
   understanding of how the drugs work and the mechanism of drug
   resistance. In this work, we investigated the above-mentioned
   nucleoside analogs using the ab initio Hartree-Fock method with 3-21G,
   3-21G*, 6-31G, 6-31G*, 6-31G**, and 6-31+G** basis sets as well as
   B3LYP/6-31G**, including thus diffusion, polarization, and correlation
   effects to obtain fully optimized geometric parameters. Vibrational
   frequencies were calculated and we also investigated the effects of
   solvents, Mulliken, and natural bond orbital charge distribution, as
   well as hydrogen bond effects. We tried to correlate very low and very
   high anti-HIV activity with charges, vibrational stretching
   frequencies, interatomic distances, and the effect of solvents. (C)
   2003 Wiley Periodicals, Inc.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290 Rio De Janeiro, Brazil.
   Pontificia Univ Catolica Rio de Janeiro, Dept Quim, Rio De Janeiro, Brazil.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
   Estatist, Rua Dr Xavier Sigaud,150, BR-22290 Rio De Janeiro, Brazil.
CR ALBER F, 2000, PROTEIN SCI, V9, P2535
   ALTONA C, 1972, J AM CHEM SOC, V94, P8205
   BALZARINI J, 1989, BIOCHEM PHARMACOL, V38, P869
   BIRNBAUM GI, 1988, BIOCHEM BIOPH RES CO, V151, P608
   BOYER PL, 1994, P NATL ACAD SCI USA, V91, P4882
   BROSSETTE T, 2001, TETRAHEDRON, V57, P8129
   CAMERMAN A, 1987, P NATL ACAD SCI USA, V84, P8239
   CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
   CHOI Y, 2002, ORG LETT, V4, P305
   CHU CK, 1988, BIOCHEM PHARMACOL, V37, P3543
   CIUFFO GM, 1998, THEOCHEM-J MOL STRUC, V428, P155
   COATES JAV, 1992, ANTIMICROB AGENTS CH, V36, P202
   COLACINO E, 2001, TETRAHEDRON, V57, P8551
   DECLERCQ E, 1989, NUCLEOS NUCLEOT, V8, P659
   ELIEL EL, 1993, STEREOCHEMISTRY ORGA
   FARAJ A, 2000, ANTIVIR RES, V47, P97
   FIDANZA NG, 2001, J MOL STRUC-THEOCHEM, V543, P185
   FISHER MA, 1994, J MOL RECOGNIT, V7, P211
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FOSTER JP, 1980, J AM CHEM SOC, V102, P7211
   FRISCH MJ, 1998, GAUSSIAN98 REVISION
   GALISTEO D, 1995, J MOL STRUCT, V350, P147
   GAO WY, 1993, J CLIN INVEST, V91, P2326
   GU ZX, 1992, J VIROL, V66, P7128
   HARTE WE, 1991, BIOCHEM BIOPH RES CO, V175, P298
   HERDEWIJN P, 1987, J MED CHEM, V30, P1270
   HUANG HF, 1998, SCIENCE, V282, P1669
   KIM HO, 1993, J MED CHEM, V36, P30
   LIN TS, 1987, BIOCHEM PHARMACOL, V36, P2713
   LIN TS, 1988, J MED CHEM, V31, P336
   MAAG H, 1994, J MED CHEM, V37, P431
   MARQUEZ VE, 1998, J AM CHEM SOC, V120, P2780
   MARTINS JBL, 1998, INT J QUANTUM CHEM, V69, P117
   MARTINS JBL, 2002, INT J QUANTUM CHEM, V90, P575
   MCLEAN AR, 1995, REV MED VIROL, V5, P141
   MICKLE T, 2000, ANTIMICROB AGENTS CH, V44, P2939
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   NETO JDM, 1992, INT J QUANTUM CHEM Q, V19, P225
   NISHIMURA Y, 1986, J MOL STRUCT, V146, P123
   PAINTER GR, 1993, BIOCHEM BIOPH RES CO, V191, P1166
   PAINTER GR, 2000, NUCLEOS NUCLEOT NUCL, V19, P13
   PASTORANGLADA M, 1998, TRENDS PHARMACOL SCI, V19, P424
   PERACH M, 1997, J MOL BIOL, V268, P648
   PLAVEC J, 1992, J BIOCHEM BIOPH METH, V25, P253
   QUAN YD, 1998, J MOL BIOL, V277, P237
   REARDON JE, 1992, BIOCHEMISTRY-US, V31, P4473
   REED AE, 1980, J AM CHEM SOC, V102, P7211
   REED AE, 1985, J CHEM PHYS, V83, P735
   REED AE, 1988, CHEM REV, V88, P899
   SAENGER W, 1984, PRINCIPLES NUCLEIC A, P9
   SARAFIANOS SG, 1999, P NATL ACAD SCI USA, V96, P10027
   SCHINAZI RF, 1990, ANTIMICROB AGENTS CH, V34, P1061
   SCHINAZI RF, 1992, ANTIMICROB AGENTS CH, V36, P672
   SCHINAZI RF, 1993, ANTIMICROB AGENTS CH, V37, P875
   SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
   SOOK G, 1996, TETRAHEDRON, V52, P12643
   TANTILLO C, 1994, J MOL BIOL, V243, P369
   VANROEY P, 1988, J AM CHEM SOC, V110, P2277
   VANROEY P, 1989, P NATL ACAD SCI USA, V86, P3929
   WEINHOLD H, 1988, STRUCTURE SMALL MOL, P227
   WONG MW, 1991, J AM CHEM SOC, V113, P4776
   YOO SJ, 2002, BIOORGAN MED CHEM, V10, P215
   ZHANG XG, 2002, J ORG CHEM, V67, P1016
NR 63
TC 5
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD JUL 5
PY 2003
VL 93
IS 6
BP 422
EP 432
PG 11
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA 689WH
UT ISI:000183515600006
ER

PT J
AU Janczak, J
   Perpetuo, GJ
TI Bis(melaminium) DL-malate tetrahydrate
SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS
LA English
DT Article
ID HYDROGEN; DIHYDRATE; SECONDARY; TAPES; ACID
AB The crystal structure of the title melaminium salt, bis(2,4,6-
   triamino-1,3,5-triazin-1-ium) DL-malate tetrahydrate,
   2C(3)H(7)N(6)(+).C4H4O52-.4H(2)O, consists of singly protonated
   melaminium residues, DL-malate dianions and water molecules. The
   melaminium residues are connected into chains by four N-H...N hydrogen
   bonds, and these chains form a stacking structure along the c axis. The
   DL-malate dianions form hydrogen-bonded chains and, together with
   hydrogen-bonded water molecules, form a layer parallel to the ( 100)
   plane. The conformation of the malate ion is compared with an ab initio
   molecular-orbital calculation. The oppositely charged moieties, i.e.
   the stacks of melaminium chains and hydrogen-bonded DL-malate anions
   and water molecules, form a three-dimensional polymeric structure, in
   which N-H...O hydrogen bonds stabilize the stacking.
C1 Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland.
   Univ Fed Ouro Preto, Dept Fis, Inst Ciencias Exatas & Biolog, BR-35400000 Ouro Preto, MG, Brazil.
RP Janczak, J, Polish Acad Sci, Inst Low Temp & Struct Res, POB 1410,
   PL-50950 Wroclaw, Poland.
CR *KUM DIFFR, 2000, KM 4 SOFTW VERS 163
   ALLEN FH, 1987, J CHEM SOC P2, V2, P1
   ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380
   DESIRAJU GR, 1990, CRYSTAL ENG DESIGN O
   FRISCH JM, 1995, GAUSSIAN94 REVISION
   GILLESPIE RJ, 1963, J CHEM EDUC, V40, P295
   GILLESPIE RJ, 1992, CHEM SOC REV, V21, P59
   JANCZAK J, 1999, ACTA CHEM SCAND, V53, P606
   JANCZAK J, 2001, ACTA CRYSTALLOGR  12, V57, P1431
   JANCZAK J, 2001, ACTA CRYSTALLOGR C 1, V57, P123
   JANCZAK J, 2001, ACTA CRYSTALLOGR C 7, V57, P873
   JANCZAK J, 2001, ACTA CRYSTALLOGR C 9, V57, P1120
   JANCZAK J, 2002, ACTA CRYSTALLOGR C 6, V58, O339
   JANCZAK J, 2002, ACTA CRYSTALLOGR C 8, V58, O455
   KRISCHE MJ, 2000, STRUCT BOND, V96, P3
   MACDONALD JC, 1994, CHEM REV, V94, P2383
   PAULING L, 1960, NATURE CHEM BOND, V3, P260
   PERPETUO GJ, 2002, ACTA CRYSTALLOGR C 2, V58, O112
   PERPETUO GJ, 2002, ACTA CRYSTALLOGR C 7, V58, O431
   ROW TNG, 1999, COORDIN CHEM REV, V183, P81
   SHELDRICK GM, 1990, SHELXTL
   SHELDRICK GM, 1997, SHELXS97 SHELXL97
   SHERRINGTON DC, 2001, CHEM SOC REV, V30, P83
   VANDERSLUIS P, 1985, ACTA CRYSTALLOGR C, V41, P956
   VANDERSLUIS P, 1989, ACTA CRYSTALLOGR C, V45, P1406
   ZERKOWSKI JA, 1994, CHEM MATER, V6, P1250
NR 26
TC 8
PU BLACKWELL MUNKSGAARD
PI COPENHAGEN
PA 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK
SN 0108-2701
J9 ACTA CRYSTALLOGR C-CRYST STR
JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun.
PD JUN
PY 2003
VL 59
PN Part 6
BP O349
EP O352
PG 4
SC Crystallography
GA 686WZ
UT ISI:000183345100047
ER

PT J
AU Costa, LAS
   Rocha, WR
   De Almeida, WB
   Dos Santos, HF
TI The hydrolysis process of the
   cis-dichloro(ethylenediamine)platinum(II): A theoretical study
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; AB-INITIO;
   CONFORMATIONAL-ANALYSIS; ORGANIC-MOLECULES; ANTITUMOR DRUGS; CISPLATIN;
   DNA; COMPLEXES; PATH
AB The hydrolysis process of the cisplatin analog
   cis-dichloro(ethylenediamine)platinum(II) (cis-DEP) was theoretically
   investigated at the Hartree-Fock, density functional theory and the
   second order Moller-Plesset perturbation theory levels of calculation.
   The stationary points on the gas phase potential energy surface for the
   first and second hydrolysis steps were fully optimized and
   characterized. For the first aquation process the gas phase results are
   in satisfactory agreement with the experimental data. However in order
   to reproduce the observed rate constant for the second hydrolysis step
   it is essential to include the solvent effect. The structures and
   energetic properties are similar to the values found for the parent
   compound cisplatin, showing that the cis-DEP analog should be
   considered as a potential drug concerning its hydrolysis process. (C)
   2003 American Institute of Physics.
C1 Univ Fed Juiz de Fora, NEQC, Dept Quim, ICE, BR-36036330 Juiz De Fora, MG, Brazil.
   Univ Fed Minas Gerais, LQC MM, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
   EPCAR, DEPENS, BR-36200000 Barbacena, MG, Brazil.
   Univ Fed Pernambuco, Dept Quim Fundamental, CCEN, BR-50740901 Recife, PE, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, NEQC, Dept Quim, ICE, Campus
   Univ Martelos, BR-36036330 Juiz De Fora, MG, Brazil.
CR BANCROFT DP, 1990, J AM CHEM SOC, V112, P6860
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   CARLONI P, 1995, CHEM PHYS LETT, V234, P50
   CARLONI P, 2000, J PHYS CHEM B, V104, P823
   CHVAL Z, 2000, J MOL STRUC-THEOCHEM, V532, P59
   COLEY RF, 1973, INORG CHIM ACTA, V7, P573
   CONNORS KA, 1990, CHEM KINETICS, P200
   CUNDARI TR, 1998, THEOCHEM-J MOL STRUC, V425, P51
   DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
   DOSSANTOS HF, 2002, CHEM PHYS, V280, P31
   DOSSANTOS HF, 2002, THEOR CHEM ACC, V107, P229
   EASTMAN A, 1983, BIOCHEMISTRY-US, V22, P3927
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
   GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
   GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
   HAY PJ, 1985, J CHEM PHYS, V82, P299
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   JESTIN JL, 1994, INORG CHEM, V33, P4277
   LOEHRER PJ, 1984, ANN INTERN MED, V100, P704
   MARCELIS ATM, 1980, J INORG BIOCHEM, V13, P213
   MILBURN GHW, 1966, J CHEM SOC A, P1609
   MILLER SE, 1989, INORG CHIM ACTA, V166, P189
   MILLER SE, 1991, INORG CHIM ACTA, V190, P135
   MULLANEY M, 1997, INORG CHIM ACTA, V265, P275
   ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PERDEW JP, 1992, PHYS REV B, V46, P6671
   RAJSKI SR, 1998, CHEM REV, V98, P2723
   ROSENBERG B, 1965, NATURE, V205, P689
   ROSENBERG B, 1969, NATURE, V222, P385
   SHERMAN SE, 1987, CHEM REV, V87, P1153
   TEO BK, 1978, J AM CHEM SOC, V100, P3225
   YAO S, 1994, INORG CHEM, V33, P6061
   ZHANG Y, 2001, J AM CHEM SOC, V123, P9378
   ZILBERBERG IL, 1997, THEOCHEM-J MOL STRUC, V418, P73
NR 36
TC 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 15
PY 2003
VL 118
IS 23
BP 10584
EP 10592
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 683AJ
UT ISI:000183124300025
ER

PT J
AU Rivelino, R
   Chaudhuri, P
   Canuto, S
TI Quantifying multiple-body interaction terms in H-bonded HCN chains with
   many-body perturbation/coupled-cluster theories
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID AB-INITIO; QUANTUM-CHEMISTRY; (HCN)(N) CLUSTERS; HYDROGEN-CYANIDE;
   WATER CLUSTERS; COMPLEXES; DELOCALIZATION; COOPERATIVITY; SPECTROSCOPY;
   MOLECULE
AB Many-body perturbation/coupled-cluster calculations have been carried
   out to investigate the multiple-body energy terms and their
   contribution to the interaction energy of linear (HCN)(N) chains. All
   minimum energy geometries of the clusters (N = 2-7) are obtained at the
   second-order many-body perturbation (MP2) levels of theory. Electron
   correlation and cooperative effects in the C-H...N hydrogen bonds are
   also quantitatively characterized during the aggregation process. It is
   found that the two- and three-body terms account for nearly all of the
   total interaction energy, but all high-body terms increase with the
   size of the cluster. Detailed numerical values are given for all the
   many-body contributions of the (HCN)(N) chains. Electron correlation
   effects are found to be important for the two- and three-body terms but
   have decreased importance for the higher-body terms. Cooperative
   effects are also investigated for the binding energy and dipole moment.
   The dipole moments of the HCN oligomers are larger than the sum of the
   individual monomers with differences ranging between 12% (N = 2) and
   28% (N = 7). The limiting values for the binding energy and dipole
   moment of (HCN)(N), per monomer, corresponding to very large N values,
   are estimated to be 22.9 kJ/mol and 3.87 D, per monomer, respectively.
   These results correspond to cooperative contributions of 5.8 kJ/mol to
   the energy, and 1.0 D to the dipole moment. (C) 2003 American Institute
   of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
   BHATTACHARYA BN, 1960, PHYS REV, V119, P144
   BOYS SF, 1970, MOL PHYS, V19, P553
   CABALEIROLAGO EM, 1998, J CHEM PHYS, V108, P3598
   CAMPBELL EJ, 1983, CHEM PHYS, V76, P225
   DESIRAJU GR, 2001, NATURE, V412, P397
   DULMAGE WJ, 1951, ACTA CRYSTALLOGR, V4, P330
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   FELSING WA, 1936, J AM CHEM SOC, V58, P1714
   FRISCH MJ, 1998, GAUSSIAN 98
   HANKINS D, 1970, J CHEM PHYS, V53, P4544
   HEHRE WJ, 1986, AB INITIO MOL ORBITA, CH4
   HEIKKILA A, 1999, J PHYS CHEM A, V103, P2945
   HEIKKILA AT, 2000, J PHYS CHEM A, V104, P6637
   HERSCHBACH D, 1999, REV MOD PHYS, V71, S411
   HEYES DM, 1997, LIQUID STATE APPL MO
   KING BF, 1995, J CHEM PHYS, V103, P333
   KOFRANEK M, 1987, CHEM PHYS, V113, P53
   KOFRANEK M, 1987, MOL PHYS, V61, P1519
   LEGON AC, 1977, CHEM PHYS LETT, V47, P589
   LIU K, 1996, SCIENCE, V271, P929
   PALDUS J, 1999, ADV CHEM PHYS, V110, P1
   PAULING L, 1960, NATURE CHEM BOND, P215
   RINCON L, 2001, J CHEM PHYS, V114, P5552
   RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
   RIVELINO R, 2001, J PHYS CHEM A, V105, P11260
   RUOFF RS, 1988, J CHEM PHYS, V89, P138
   SCHEIER P, 2000, PHYS REV LETT, V84, P55
   SCHEINER S, 1997, HYDROGEN BONDING THE, CH5
   SMETS J, 1998, CHEM PHYS LETT, V297, P451
   STONE AJ, 1997, J CHEM PHYS, V107, P1030
   SUHAI S, 1994, INT J QUANTUM CHEM, V52, P395
   XANTHEAS SS, 1994, J CHEM PHYS, V100, P7523
NR 33
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 15
PY 2003
VL 118
IS 23
BP 10593
EP 10601
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 683AJ
UT ISI:000183124300026
ER

PT J
AU Freitas, MP
   Tormena, CF
   Rittner, R
   Abraham, RJ
TI The utility of infrared spectroscopy for quantitative conformational
   analysis at a single temperature
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE infrared spectroscopy; conformational analysis; molar absorption
   coefficients; 2-bromocyclohexanone
ID R(0) STRUCTURAL PARAMETERS; AB-INITIO CALCULATIONS; VIBRATIONAL
   ASSIGNMENT; RAMAN-SPECTRA; ELECTRONIC INTERACTION; NMR; SOLVATION;
   STABILITY; ISOMERISM
AB The carbonyl stretching vibration of 2-bromocyclohexanone (1) has been
   measured in a variety of solvents. It is shown that its component
   intensities are not only dependent on the populations of the axial and
   equatorial conformers, but are also dependent on the molar
   absorptivities (epsilon) which are specific for each conformer in each
   solvent. In CCl4, the axial and equatorial conformers have, values of
   417 and 818 1 mol(-1) cm(-1), respectively, while in CH3CN solution,
   the values were 664 and 293 1 mol(-1) cm(-1). These results are
   supported by results of theoretical calculations of frequencies, which
   gave an intensity of 223.8 kM mol(-1) (1782 cm(-1)) for the axial and
   174.4 kM mol(-1) (1802 cm(-1)) for the equatorial conformer, indicating
   that the axial conformer presents a larger molar absorptivity than the
   equatorial one in the vapor phase. Moreover, the results presented here
   clearly demonstrate that although infrared spectroscopy at a single
   temperature can be an important auxiliary technique for conformational
   analysis, it must not be used to quantify conformational preferences of
   a molecule if the absorption molar coefficients for each conformer are
   not known or not amenable to experimental determination. (C) 2003
   Elsevier Science B.V. All rights reserved.
C1 UNICAMP, Inst Quim, Chim Organ Phys Lab, BR-13083862 Campinas, SP, Brazil.
   Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Rittner, R, UNICAMP, Inst Quim, Chim Organ Phys Lab, Cx Postal 6154,
   BR-13083862 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
   ABRAHAM RJ, 1996, J CHEM SOC PERK  APR, P533
   ABRAHAM RJ, 1999, J CHEM SOC PERK  AUG, P1663
   ALLINGER J, 1958, TETRAHEDRON, V2, P64
   BASSO EA, 1993, J ORG CHEM, V58, P7865
   BERVELT JP, 1968, SPECTROCHIM ACTA A, V24, P1411
   BODOT H, 1967, B SOC CHIM FR, P870
   CHEN CY, 1965, J CHEM SOC, P3700
   DURIG JR, 2002, J MOL STRUCT, V607, P117
   DURIG JR, 2002, SPECTROCHIM ACTA A, V58, P91
   DURIG JR, 2002, STRUCT CHEM, V13, P1
   GARBISCH EW, 1964, J AM CHEM SOC, V86, P1780
   GUIRGIS GA, 2002, PHYS CHEM CHEM PHYS, V4, P1438
   KLAEBOE P, 1957, ACTA CHEM SCAND, V11, P1677
   OLIVATO PR, 1996, REV HETEROATOM CHEM, V15, P115
   OLIVATO PR, 2002, J MOL STRUCT, V607, P87
   PAN YH, 1967, CAN J CHEM, V45, P2943
   PERRIN DD, 1988, PURIFICATION LAB CHE
   RITTNER R, 1988, MAGN RESON CHEM, V26, P51
   SHIRATORI Y, 1999, SPECTROCHIM ACTA A, V55, P2659
   WOLFE S, 1967, J CHEM SOC CHEM COMM, P872
   YOSHINAGA F, 2002, J CHEM SOC PERK T 2, P1494
NR 22
TC 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUN
PY 2003
VL 59
IS 8
BP 1783
EP 1789
PG 7
SC Spectroscopy
GA 680YB
UT ISI:000183006700014
ER

PT J
AU Milas, I
   Nascimento, MAC
TI The dehydrogenation and cracking reactions of isobutane over the ZSM-5
   zeolite
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; LIGHT ALKANES; AB-INITIO; ACIDIC CATALYSTS;
   ISOMERIZATION; EXCHANGE; PROTON; HZSM-5; RATES
AB The dehydrogenation and cracking reactions of isobutane over zeolite
   HZMS-5 were studied at the DFT/B3LYP level of calculation. The zeolite
   was represented by the 'double-ring' 20T cluster. The activation
   energies for the reactions were 9-12 kcal/mol lower than those obtained
   with the linear 5T cluster. In both cases the attack of the acid site
   proton was directly on a carbon atom of the substrate, and not on the
   C-H and C-C bonds, evidencing carbonium-ion-type transition states. The
   results suggest that the reactions should be competitive, although the
   more hindered acid sites should favor the dehydrogenation over the
   cracking reaction. (C) 2003 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Dept Quim Fis, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Dept Quim Fis, Inst Quim,
   Cidade Univ,CT Bloco A,Sala 412, BR-21949900 Rio De Janeiro, Brazil.
CR *SCHR INC, 1998, JAG 3 5
   AGARWAL N, 2002, IND ENG CHEM RES, V41, P4016
   ASENSI MA, 1998, APPL CATAL A-GEN, V174, P163
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BENCO L, 2001, MICRO MESO MAT, V41, P1
   BENCO L, 2002, COMMUNICATION    MAY
   BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
   BORONAT M, 2000, PHYS CHEM CHEM PHYS, V2, P3327
   CORMA A, 1994, J CATAL, V145, P171
   DEVRIES AH, 1999, J PHYS CHEM B, V103, P6133
   FURTADO EA, 2001, PHYS STATUS SOLIDI A, V187, P275
   KAZANSKY VB, 1989, J CATAL, V119, P108
   KAZANSKY VB, 1996, APPL CATAL A-GEN, V146, P225
   KISSIN YV, 1996, J CATAL, V163, P50
   KOTREL S, 2000, MICROPOR MESOPOR MAT, V35, P11
   MAKOV G, 1995, PHYS REV B, V51, P4014
   MARTINEZMAGADAN JM, 2002, INT J QUANTUM CHEM, V88, P750
   MILAS I, 2001, CHEM PHYS LETT, V338, P67
   NARBESHUBER TF, 1997, J CATAL, V172, P127
   NASCIMENTO MAC, 1999, J MOL STRUC-THEOCHEM, V464, P239
   RAMACHANDRAN S, 1996, J PHYS CHEM-US, V100, P5898
   ROZANSKA X, 2001, THEORETICAL ASPECTS, CH1
   ROZANSKA X, 2002, J PHYS CHEM B, V106, P4652
   SAUER J, 2000, J COMPUT CHEM, V21, P1470
   STEFANADIS C, 1991, J MOL CATAL, V67, P363
   TREESUKOL P, 2001, CHEM PHYS LETT, V350, P128
   VIRUELA P, 1993, J PHYS CHEM-US, V97, P12719
   VOSS AM, 2001, J AM CHEM SOC, V123, P2799
NR 28
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 20
PY 2003
VL 373
IS 3-4
BP 379
EP 384
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 681BG
UT ISI:000183016300023
ER

PT J
AU Verissimo-Alves, M
   Koiller, B
   Chacham, H
   Capaz, RB
TI Electromechanical effects in carbon nanotubes: Ab initio and analytical
   tight-binding calculations
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC-STRUCTURE; LARGE SYSTEMS; MICROTUBULES; JUNCTIONS
AB We perform ab initio calculations of charged graphene and single-wall
   carbon nanotubes (CNTs). A wealth of electromechanical behaviors is
   obtained. (1) Both nanotubes and graphene expand upon electron
   injection. (2) Upon hole injection, metallic nanotubes and graphene
   display a nonmonotonic behavior. Upon increasing hole densities, the
   lattice constant initially contracts, reaches a minimum, and then
   starts to expand. The hole densities at minimum lattice constants are
   0.3 \e\/atom for graphene and between 0.1 and 0.3\e\/atom for the
   metallic nanotubes studied. (3) Semiconducting CNT's with small
   diameters (dless than or similar to20 Angstrom) always expand upon hole
   injection. (4) Semiconducting CNT's with large diameters (dgreater than
   or similar to20 Angstrom) display a behavior intermediate between those
   of metallic and large-gap CNT's. (5) The strain versus extra charge
   displays a linear plus power-law behavior, with characteristic
   exponents for graphene, metallic, and semiconducting CNT's. All these
   features are physically understood within a simple tight-binding
   total-energy model.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil.
   Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
   Univ Fed Minas Gerais, Dept Fis, ICEx, BR-30123970 Belo Horizonte, MG, Brazil.
RP Verissimo-Alves, M, Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio
   De Janeiro, Brazil.
CR BAUGHMAN RH, 1999, SCIENCE, V284, P1340
   CUMINGS J, 2000, SCIENCE, V289, P602
   DRESSELHAUS MS, 1981, ADV PHYS, V30, P139
   FISCHER JE, 1996, J PHYS CHEM SOLIDS, V57, R9
   FORRO L, 2000, SCIENCE, V289, P560
   GARTSTEIN YN, 2002, PHYS REV LETT, V89
   HAMADA N, 1992, PHYS REV LETT, V68, P1579
   IIJIMA S, 1991, NATURE, V354, P56
   KERTESZ M, 1983, MATERIALS RES SOC P, V20, P141
   KIM P, 1999, SCIENCE, V286, P2148
   MAZZONI MSC, 2000, PHYS REV B, V61, P7312
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   ORDEJON P, 1996, PHYS REV B, V53
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   PONCHARAL P, 1999, SCIENCE, V283, P1513
   REICH S, 2001, PHYS REV B, V64
   SAITO R, 1992, APPL PHYS LETT, V60, P2204
   SAITO R, 1998, PHYSICAL PROPERTIES
   SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
   SANCHEZPORTAL D, 1999, PHYS REV B, V59, P12678
   TANS SJ, 1998, NATURE, V393, P49
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   VERISSIMOALVES M, 2001, PHYS REV LETT, V86, P3372
   WILDOER JWG, 1998, NATURE, V391, P59
   YAO Z, 1999, NATURE, V402, P273
   YOON YG, 2001, PHYS REV LETT, V86, P688
NR 26
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD APR 15
PY 2003
VL 67
IS 16
AR 161401
DI ARTN 161401
PG 4
SC Physics, Condensed Matter
GA 677TT
UT ISI:000182824200017
ER

PT J
AU Machado, MP
   Piquini, P
   Mota, R
TI Energetics and electronic properties of BN nanocones with pentagonal
   rings at their apexes
SO EUROPEAN PHYSICAL JOURNAL D
LA English
DT Article
ID BORON-NITRIDE NANOTUBES; CARBON NANOTUBES; CONES; GROWTH; FRUSTRATION;
   STATES
AB The geometric structures, energetics and electronic properties of the
   recently discovered BN nanocones are investigated using
   first-principles calculations based on the density-functional theory.
   We have proposed one particular structure for BN nanocones associated
   with the 240degrees disclination, derived by the extraction of four
   60degrees segments, presenting as characteristic four pentagons at the
   apex and termination in two atoms. The cones are simulated by three
   clusters containing 58 B plus N atoms and additional 12 H atoms to
   saturate the dangling bonds at the edge. The most stable configuration
   is obtained when the two terminating atoms are one B and one N. For the
   cases where the two terminating atoms are of the same kind, the tip
   with B atoms is determined to have lower binding energy than with N
   atoms. The local densities of states of these BN nanocones are
   investigated and sharp states are found in the regions close (below and
   above) to the Fermi energy.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Machado, MP, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
   RS, Brazil.
CR AHLRICHS R, 1989, CHEM PHYS LETT, V162, P165
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BLASE X, 1998, PHYS REV LETT, V80, P1666
   BOURGEOIS L, 1999, ACTA CRYSTALLOGR A 2, V55, P168
   BOURGEOIS L, 2000, PHYS REV B, V61, P7686
   CARROLL DL, 1997, PHYS REV LETT, V78, P2811
   CHARLIER JC, 2001, PHYS REV LETT, V86, P5970
   CHOI WB, 1999, APPL PHYS LETT, V75, P3129
   FOWLER PW, 1999, CHEM PHYS LETT, V299, P359
   GE M, 1994, CHEM PHYS LETT, V220, P192
   GE MH, 1994, APPL PHYS LETT, V64, P710
   IIJIMA S, 1992, NATURE, V356, P776
   KIM P, 1999, PHYS REV LETT, V82, P1225
   KRISHNAN A, 1997, NATURE, V388, P451
   MARTIN JML, 1996, CHEM PHYS LETT, V248, P95
   MENON M, 1999, CHEM PHYS LETT, V307, P407
   MOTA R, 2003, PHYS STAT SOL C
   ROGERS KM, 2000, CHEM PHYS LETT, V332, P43
   RUBIO A, 1994, PHYS REV B, V49, P5081
   SEIFERT G, 1997, CHEM PHYS LETT, V268, P352
   TERAUCHI M, 2000, CHEM PHYS LETT, V324, P359
   TREACY MMJ, 2001, MAT RES S P, V673
NR 22
TC 5
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6060
J9 EUR PHYS J D
JI Eur. Phys. J. D
PD APR
PY 2003
VL 23
IS 1
BP 91
EP 93
PG 3
SC Physics, Atomic, Molecular & Chemical
GA 679HN
UT ISI:000182914800012
ER

PT J
AU Bhering, DL
   Ramirez-Solis, A
   Mota, CJA
TI A density functional theory based approach to extraframework aluminum
   species in zeolites
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID COMPACT EFFECTIVE POTENTIALS; EXTRA-FRAMEWORK ALUMINUM; EXPONENT
   BASIS-SETS; Y-TYPE ZEOLITES; H-Y; LEWIS ACIDITY; DEALUMINATION;
   CRACKING; MODELS; SITES
AB The structures of six different extraframework aluminum (EFAL) species,
   possibly present in zeolites, were studied by density functional theory
   methods. A T-6 cluster (T = Si, Al), with different Si/Al ratios, was
   used to simulate the real zeolite Y structure and the coordination of
   the chosen EFAL species (Al3+, Al(OH)(2+), AlO+, AI(OH)(2)(+), AlO(OH),
   and Al(OH)(3)) The monovalent cations prefer to attain bicoordination
   with the framework AlO4- moiety, while di- and trivalent cations
   usually achieve tetracoordination. One important result is that, in all
   cases, coordination occurs with the oxygen atoms nearest to the
   framework aluminum ones. A single water molecule addition to the
   optimized Al3+.T-6 cluster produces a strongly exothermic reaction,
   leading to formation of a hydroxyaluminum cation and an acidic site on
   the zeolite. The addition of a second water molecule produces only
   minor energetic and structural changes.
C1 Fed Univ Rio De Janeiro, Inst Quim, Dept Quim Organ, BR-21949900 Rio De Janeiro, Brazil.
   Univ Autonoma Estado Morelos, Fac Ciencias, Dept Fis, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Fed Univ Rio De Janeiro, Inst Quim, Dept Quim Organ, Cidade
   Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR BENCO L, 2002, J CATAL, V209, P480
   BERAN S, 1990, J PHYS CHEM-US, V94, P335
   BEYERLEIN RA, 1997, TOP CATAL, V4, P27
   BIAGLOW AI, 1994, J CATAL, V148, P213
   BORODZINSKI A, 1980, CAN J CHEM ENG, V58, P219
   CARVAJAL R, 1990, J CATAL, V125, P121
   CATANA G, 2001, J PHYS CHEM B, V105, P4904
   CORMA A, 1990, APPL CATAL, V59, P267
   CUSUMANO JA, 1992, PERSPECTIVES CATALYS
   DATKA J, 1981, J CHEM SOC F1, V77, P2877
   FLEISCH TF, 1986, J CATAL, V118, P85
   FRISCH MJ, 1998, GAUSSIAN 98
   FRITZ PO, 1989, J CATAL, V118, P85
   GUISNET M, 1990, CATAL LETT, V4, P299
   HABIB ET, 1990, HYDROCARBON CHEM FCC, P1
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   JACOBS PA, 1979, J PHYS CHEM-US, V83, P1174
   KEIR D, 1988, ZEOLITES, V8, P228
   KUEHNE MA, 1997, J CATAL, V171, P293
   LEE C, 1988, PHYS REV B, V37, P785
   LONYI F, 1992, J CATAL, V136, P566
   LUKINSKAS P, 2001, APPL CATAL A-GEN, V209, P193
   MARYNEN P, 1984, ZEOLITES, V4, P287
   MOTA CJA, 1994, J CHEM SOC FARADAY T, V90, P227
   NACE D, 1980, IND ENG CHEM PROD RD, V58, P219
   OLAH GA, 1985, SUPERACIDS
   PINE LA, 1984, J CATAL, V85, P466
   PINES H, 1981, CHEM CATALYTIC HYDRO
   REMY MJ, 1996, J PHYS CHEM-US, V100, P12440
   RUIZ JM, 1997, J PHYS CHEM B, V101, P1733
   SCHERZER J, 1984, ACS SYM SER, V248, P157
   SHANNON RD, 1985, J PHYS CHEM-US, V89, P4778
   SOKOL AA, 2000, ADV MATER, V12, P1801
   SOKOL AA, 2002, J PHYS CHEM B, V106, P6163
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
   STEVENS WJ, 1992, CAN J CHEM, V70, P612
   TUNG SE, 1968, J CATAL, V10, P166
   UMANSKY BS, 1990, J CATAL, V124, P97
   UMANSKY BS, 1990, J CATAL, V127, P128
   WANG QL, 1991, J CATAL, V130, P459
   WANG QL, 1991, J CATAL, V130, P471
   WARD JW, 1976, ADV CHEM SER, V171, P118
   XU T, 1994, J AM CHEM SOC, V116, P1962
   ZHIDOMIROV GM, 1999, CATAL TODAY, V51, P397
NR 44
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD MAY 8
PY 2003
VL 107
IS 18
BP 4342
EP 4347
PG 6
SC Chemistry, Physical
GA 676BX
UT ISI:000182733000018
ER

PT J
AU Fischer, H
   Dias, SMG
   Santos, MAM
   Alves, AC
   Zanchin, N
   Craievich, AF
   Apriletti, JW
   Baxter, JD
   Webb, P
   Neves, FAR
   Ribeiro, RCJ
   Polikarpov, I
TI Low resolution structures of the retinoid X receptor DNA-binding and
   ligand-binding domains revealed by synchrotron x-ray solution scattering
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID DIRECT SHAPE DETERMINATION; THYROID-HORMONE RECEPTORS; SMALL-ANGLE
   SCATTERING; NUCLEAR RECEPTORS; BIOLOGICAL MACROMOLECULES; TETRAMER
   FORMATION; CRYSTAL-STRUCTURE; RXR-ALPHA; ACID; HETERODIMERS
AB Nuclear receptors are ligand-inducible transcription factors that share
   structurally related DNA-binding (DBD) and ligand-binding (LBD)
   domains. Biochemical and structural studies have revealed the modular
   nature of DBD and LBD. Nevertheless, the domains function in concert in
   vivo. While high-resolution crystal structures of nuclear receptor DBDs
   and LBDs are available, there are no x-ray structural studies of
   nuclear receptor proteins containing multiple domains. We report the
   solution structures of the human retinoid X receptor DBD-LBD
   (hRXRalphaDeltaAB) region. We obtained ab initio shapes of
   hRXRalphaDeltaAB dimer and tetramer to 3.3 and 1.7 nm resolutions,
   respectively, and established the position and orientation of the DBD
   and LBD by fitting atomic coordinates of hRXRalpha DBD and LBD. The
   dimer is U-shaped with DBDs spaced at similar to2 nm in a head to head
   orientation forming an angle of about 10degrees with respect to each
   other and with an extensive interface area provided by the LBD. The
   tetramer is a more elongated X-shaped molecule formed by two dimers in
   head to head arrangement in which the DBDs are extended from the
   structure and spaced at about 6 nm. The close proximity of DBDs in
   dimers may facilitate homodimer formation on DNA, however, for the
   homodimer to bind to a DNA element containing two directly repeated
   half-sites, one of the DBDs would need to rotate with respect to the
   other element. By contrast, the separation of DBDs in the tetramers may
   account for their decreased ability to recognize DNA.
C1 Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
   Lab Nacl Luz Sincrotron, BR-13084971 Campinas, SP, Brazil.
   Univ Calif San Francisco, Ctr Diabet, Metab Res Unit, San Francisco, CA 94143 USA.
   Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA.
   Univ Brasilia, Dept Ciencias Farmaceut, BR-70900910 Brasilia, DF, Brazil.
RP Polikarpov, I, Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao
   Carlos, Av Trabalhador Sao Carlense 400, BR-13560970 Sao Carlos, SP,
   Brazil.
CR BOURGUET W, 1995, NATURE, V375, P377
   CHAWLA A, 2001, SCIENCE, V294, P1866
   CHEN HW, 1995, P NATL ACAD SCI USA, V92, P422
   CHEN ZP, 1998, J MOL BIOL, V275, P55
   DELATORRE JG, 2000, BIOPHYS J, V78, P719
   DEURQUIZA AM, 2000, SCIENCE, V290, P2140
   EGEA PF, 2000, EMBO J, V19, P2592
   EGEA PF, 2001, J MOL BIOL, V307, P557
   EVANS RM, 1988, SCIENCE, V240, P889
   FEIGIN LA, 1987, STRUCTURE ANAL SMALL, P83
   GAMPE RT, 2000, GENE DEV, V14, P2229
   GUINIER A, 1955, SMALL ANGLE SCATTERI
   HORWITZ KB, 1996, MOL ENDOCRINOL, V10, P1167
   KASTNER P, 1995, CELL, V83, P859
   KELLERMANN G, 1997, J APPL CRYSTALLOGR 5, V30, P880
   KERSTEN S, 1995, BIOCHEMISTRY-US, V34, P13717
   KERSTEN S, 1995, BIOCHEMISTRY-US, V34, P14263
   KONAREV PV, 2001, J APPL CRYSTALLOGR 4, V34, P527
   KOZIN MB, 2001, J APPL CRYSTALLOGR 1, V34, P33
   LAZAR MA, 1993, ENDOCR REV, V14, P184
   LIN BC, 1997, J BIOL CHEM, V272, P9860
   MAGLI E, 2000, RRD PATTERN RECOGN I, V1, P1
   MANGELSDORF DJ, 1991, CELL, V66, P555
   MANGELSDORF DJ, 1995, CELL, V83, P841
   MARIMUTHU A, 2002, MOL ENDOCRINOL, V16, P271
   MORAS D, 1998, CURR OPIN CELL BIOL, V10, P384
   MUKHERJEE R, 1997, NATURE, V386, P407
   MUKHERJEE R, 1998, ARTERIOSCL THROM VAS, V18, P272
   POROD G, 1982, SMALL ANGLE XRAY SCA, P17
   RASTINEJAD F, 1995, NATURE, V375, P203
   RASTINEJAD F, 2000, EMBO J, V19, P1045
   RIBEIRO RC, 1992, MOL ENDOCRINOL, V6, P1142
   RIBEIRO RCJ, 1994, ENDOCRINOLOGY, V135, P2076
   RIBEIRO RCJ, 1998, RECENT PROG HORM RES, V53, P351
   RIBEIRO RCJ, 2001, J BIOL CHEM, V276, P14987
   SHANNON CE, 1949, MATH THEORY COMMUNIC
   SPORN MB, 1994, RETINOIDS BIOL CHEM
   STURMANN HB, 1970, J PHYS CHEM-US, V72, P177
   SVERGUN D, 1995, J APPL CRYSTALLOGR 6, V28, P768
   SVERGUN DI, 1991, ACTA CRYSTALLOGR A, V47, P736
   SVERGUN DI, 1992, J APPL CRYSTALLOGR, V25, P495
   SVERGUN DI, 1996, ACTA CRYSTALLOGR A 3, V52, P419
   SVERGUN DI, 1997, J APPL CRYSTALLOGR 5, V30, P798
   SVERGUN DI, 1999, BIOPHYS J, V76, P2879
   TSAI MJ, 1994, ANNU REV BIOCHEM, V63, P451
   WURTZ JM, 1996, NAT STRUCT BIOL, V3, P87
   YEN PM, 1992, J BIOL CHEM, V267, P3565
   ZHAO Q, 1998, MOL CELL, V1, P849
   ZHAO Q, 2000, J MOL BIOL, V296, P509
NR 49
TC 3
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
J9 J BIOL CHEM
JI J. Biol. Chem.
PD MAY 2
PY 2003
VL 278
IS 18
BP 16030
EP 16038
PG 9
SC Biochemistry & Molecular Biology
GA 675EL
UT ISI:000182680000074
ER

PT J
AU Autschbach, J
   Jorge, FE
   Zlegler, T
TI Density functional calculations on electronic circular dichroism
   spectra of chiral transition metal complexes
SO INORGANIC CHEMISTRY
LA English
DT Article
ID EXCHANGE-CORRELATION POTENTIALS; D-3 LANTHANIDE(III) COMPLEXES; F-F
   TRANSITIONS; EXCITATION-ENERGIES; RESPONSE THEORY; OPTICAL-ACTIVITY;
   CHIROPTICAL PROPERTIES; MAGNETIC-PROPERTIES; ORGANIC-MOLECULES; MODEL
AB Time-dependent density functional theory (TD-DFT) has for the first
   time been applied to the computation of circular dichroism (CD) spectra
   of transition metal complexes, and a detailed comparison with
   experimental spectra has been made. Absorption spectra are also
   reported. Various Co-III complexes as well as [Rh(en)(3)](3+) are
   studied in this work. The resulting simulated CD spectra are generally
   in good agreement with experimental spectra after corrections for
   systematic errors in a few of the lowest excitation energies are
   applied. This allows for an interpretation and assignment of the
   spectra for the whole experimentally accessible energy range (UV/vis).
   Solvent effects on the excitations are estimated via inclusion of a
   continuum solvent model. This significantly improves the computed
   excitation energies for charge-transfer bands for complexes of charge
   +3, but has only a small effect on those for neutral or singly charged
   complexes. The energies of the weak d-to-d transitions of the Co
   complexes are systematically overestimated due to deficiencies of the
   density functionals. These errors are much smaller for the 4d metal
   complex. Taking these systematic errors and the effect of a solvent
   into consideration, TD-DFT computations are demonstrated to be a
   reliable tool in order to assist with the assignment and interpretation
   of CD spectra of chiral transition metal complexes.
C1 Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada.
   Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES, Brazil.
RP Autschbach, J, Univ Erlangen Nurnberg, Lehrstuhl Theoret Chem,
   Egerlandstr 3, D-91058 Erlangen, Germany.
CR AUTSCHBACH J, IN PRESS
   AUTSCHBACH J, UNPUB
   AUTSCHBACH J, 2002, J CHEM PHYS, V116, P6930
   AUTSCHBACH J, 2002, J CHEM PHYS, V116, P891
   AUTSCHBACH J, 2002, J CHEM PHYS, V117, P581
   BAIK MH, 2000, J AM CHEM SOC, V122, P9143
   BALLHAUSEN CJ, 1979, MOL ELECT STRUCTURES
   BAUERNSCHMITT R, 1996, CHEM PHYS LETT, V256, P454
   BEATTIE JK, 1971, ACCOUNTS CHEM RES, V4, P253
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BEDDOE PG, 1968, INORG NUCL CHEM LETT, V4, P433
   BROWN A, 1971, J CHEM SOC A, P751
   CALDWELL DJ, 1971, THEORY OPTICAL ACTIV
   CASIDA ME, 1995, RECENT ADV DENSITY F, V1
   CASIDA ME, 1998, INT J QUANTUM CHEM, V70, P933
   CASIDA ME, 2000, J CHEM PHYS, V113, P7062
   CHARNEY E, 1979, MOL BASIS OPTICAL AC
   CONDON EU, 1937, REV MOD PHYS, V9, P432
   COREY EJ, 1959, J AM CHEM SOC, V81, P2620
   CRAMER CJ, 1999, CHEM REV, V99, P2161
   CRAMER CJ, 2002, ESSENTIALS COMPUTATI
   DIAZACOSTA I, 2001, J PHYS CHEM A, V105, P238
   DOBSON JF, 1998, RECENT PROGR NEW DIR
   DOUGLAS BE, 1980, ACS S SERIES, V119
   EVANS RS, 1974, INORG CHEM, V13, P2185
   FRANTZ J, 2002, G3DATA
   FREEDMAN TB, 2002, J PHYS CHEM A, V106, P3560
   FURCHE F, 2000, J AM CHEM SOC, V122, P1717
   FURCHE F, 2001, J CHEM PHYS, V114, P5982
   GORELSKY SI, 2001, J ORGANOMET CHEM, V635, P187
   GROSS EKU, 1990, ADV QUANTUM CHEM, V21, P255
   GROSS EKU, 1996, TOP CURR CHEM, V181, P81
   GRUNING M, 2001, J CHEM PHYS, V114, P652
   GUERRA CF, 1995, METHODS TECHNIQUES C
   HANSEN AE, 1980, ADV CHEM PHYS, V44, P545
   HE YN, 2001, J AM CHEM SOC, V123, P11320
   HEARSON JA, 1977, INORG CHIM ACTA, P95
   JAMORSKI C, 1996, J CHEM PHYS, V104, P5134
   JUDKINS RR, 1974, INORG CHEM, V13, P945
   KLAMT A, 1993, J CHEM SOC P2, P799
   KLAMT A, 1996, J PHYS CHEM-US, V100, P3349
   KOOTSTRA F, 2000, J CHEM PHYS, V112, P6517
   KRAL M, 1973, THEOR CHIM ACTA, V30, P339
   KRAL M, 1979, THEOR CHIM ACTA, V50, P355
   KURODA R, 1994, CIRCULAR DICHROISM P
   LARSSON R, 1968, J CHEM SOC A, P1310
   MALKIN VG, 1995, MODERN DENSITY FUNCT, V2
   MASON SF, 1969, J CHEM SOC A, P1442
   MASON SF, 1976, MOL PHYS, V31, P755
   MASON SF, 1977, J CHEM SOC DA, P937
   MCCAFFERY AJ, 1965, J CHEM SOC CHEM COMM, V3, P49
   MCCAFFERY AJ, 1965, J CHEM SOC, P2883
   MCCAFFERY AJ, 1965, J CHEM SOC, P5094
   MCCAFFERY AJ, 1968, J CHEM SOC A, P1304
   MCCAFFERY AJ, 1969, J CHEM SOC A, P1428
   MENNUCCI B, 2002, J PHYS CHEM A, V106, P6102
   MOSCOWITZ A, 1962, ADV CHEM PHYS, V4, P67
   NAKANISHI K, 1994, CIRCULAR DICHROISM P
   ODDERSHEDE J, 1978, ADV QUANTUM CHEM, V11, P275
   ODDERSHEDE J, 1987, AB INITION METHODS Q, V2
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PATCHKOVSKII S, 2000, J AM CHEM SOC, V122, P3506
   PATCHKOVSKII S, 2001, J CHEM PHYS, V115, P26
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PYE CC, 1999, THEOR CHEM ACC, V101, P396
   RICCIARDI G, 2000, J PHYS CHEM A, V104, P635
   RICCIARDI G, 2001, J PHYS CHEM A, V105, P5242
   RICHARDSON FS, 1982, J CHEM PHYS, V76, P1595
   ROSA A, 1999, J AM CHEM SOC, V121, P10356
   ROSA A, 2001, J PHYS CHEM A, V105, P3311
   SAXE JD, 1982, J CHEM PHYS, V76, P1607
   SCHIPPER PE, 1978, J AM CHEM SOC, V100, P1433
   SCHIPPER PRT, 2000, J CHEM PHYS, V112, P1344
   SCHLAFER HL, 1969, BASIC PRINCIPLES LIG
   SOLOMON EI, 1999, INORGANIC ELECT STRU, V1
   STRICKLAND RW, 1973, INORG CHEM, V12, P1025
   TEVELDE G, 2001, J COMPUT CHEM, V22, P931
   TOMASI J, 1994, CHEM REV, V94, P2027
   TOZER DJ, 1998, J CHEM PHYS, V109, P10180
   VANGISBERGEN SJA, 1995, J CHEM PHYS, V103, P9347
   VANGISBERGEN SJA, 1998, PHYS REV A, V57, P2556
   VANGISBERGEN SJA, 1999, COMPUT PHYS COMMUN, V118, P119
   VANGISBERGEN SJA, 1999, J PHYS CHEM A, V103, P6835
   VANGISBERGEN SJA, 2000, J COMPUT CHEM, V21, P1511
   VOLOSOV A, 1994, CIRCULAR DICHROISM P
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
   ZIEGLER T, 2002, J CHEM SOC DALT 0307, P642
NR 87
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD MAY 5
PY 2003
VL 42
IS 9
BP 2867
EP 2877
PG 11
SC Chemistry, Inorganic & Nuclear
GA 674RU
UT ISI:000182650400012
ER

PT J
AU Lima, NA
   Silva, MF
   Oliveira, LN
   Capelle, K
TI Density functionals not based on the electron gas: Local-density
   approximation for a luttinger liquid
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SOLVABLE SEMICONDUCTOR MODEL; DIMENSIONAL HUBBARD-MODEL; FORMALISM
AB By shifting the reference system for the local-density approximation
   (LDA) from the electron gas to other model systems, one obtains a new
   class of density functionals, which by design account for the
   correlations present in the chosen reference system. This strategy is
   illustrated by constructing an explicit LDA for the one-dimensional
   Hubbard model. While the traditional ab initio LDA is based on a Fermi
   liquid (the three-dimensional interacting electron gas), this one is
   based on a Luttinger liquid. First applications to inhomogeneous
   Hubbard models, including one containing a localized impurity, are
   reported.
C1 Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, Sao Paulo, Brazil.
   Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, Sao Paulo, Brazil.
RP Lima, NA, Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao Carlos,
   Caixa Postal 369, BR-13560970 Sao Carlos, Sao Paulo, Brazil.
CR ARYASETIAWAN F, 1998, REP PROG PHYS, V61, P237
   BEDURFTIG G, 1998, PHYS REV B, V58, P10225
   BETHE H, 1931, Z PHYS, V71, P205
   CAPELLE K, CONDMAT0209245
   GUNNARSSON O, 1986, PHYS REV LETT, V56, P1968
   HOHENBERG P, 1964, PHYS REV, V136, B864
   KOHN W, 1965, PHYS REV, V140, A1133
   KOHN W, 1999, REV MOD PHYS, V71, P1253
   LIEB EH, 1968, PHYS REV LETT, V20, P1445
   LIMA NA, 2002, EUROPHYS LETT, V60, P601
   MAJEWSKI JA, 1992, PHYS REV B, V46, P12219
   OGATA M, 1990, PHYS REV B, V41, P2326
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   ROJO AG, 1989, PHYS REV B, V39, P2685
   RUNGE E, 1996, ANN PHYS-LEIPZIG, V5, P333
   SCHLOTTMANN P, 1997, INT J MOD PHYS B, V11, P355
   SCHONHAMMER K, 1995, PHYS REV B, V52, P2504
   SCHULZ HJ, 1990, PHYS REV LETT, V64, P2831
   SEB P, 1996, PHYS REV B, V53, P328
   SHAM LJ, 1988, PHYS REV LETT, V60, P1582
   SVANE A, 1988, PHYS REV B, V37, P9919
   SZABO A, 1989, MODERN QUANTUM CHEM
   VOIT J, 1995, REP PROG PHYS, V58, P977
   VONDERLINDEN W, 1992, PHYS REP, V220, P53
   WHITE SR, 1992, PHYS REV LETT, V69, P2863
   XIE YN, 1998, PHYS REV B, V58, P12721
   ZVYAGIN AA, 1997, PHYS REV B, V56, P300
NR 27
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD APR 11
PY 2003
VL 90
IS 14
AR 146402
DI ARTN 146402
PG 4
SC Physics, Multidisciplinary
GA 668XH
UT ISI:000182320100037
ER

PT J
AU Jellinek, J
   Acioli, PH
TI Converting Kohn-Sham eigenenergies into electron binding energies
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; SELF-INTERACTION CORRECTION; TO-METAL
   TRANSITION; PHOTOELECTRON-SPECTROSCOPY; MAGNESIUM CLUSTERS; REMOVAL
   ENERGIES; APPROXIMATION; EIGENVALUE; BEHAVIOR; NEON
AB A new accurate scheme for converting the Kohn-Sham eigenenergies into
   electron binding energies is formulated. The accuracy of the scheme is
   illustrated in applications to ten atoms and three molecules. (C) 2003
   American Institute of Physics.
C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA.
   Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil.
RP Jellinek, J, Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL
   60439 USA.
CR ACIOLI PH, IN PRESS EUR PHYS D
   ACIOLI PH, 2002, PHYS REV LETT, V89
   AKOLA J, 2000, EUR PHYS J D, V8, P93
   AKOLA J, 2000, PHYS REV B, V62, P13216
   BECKE AD, 1988, PHYS REV A, V38, P3098
   DUFFY P, 1993, ORG MASS SPECTROM, V28, P321
   GODBOUT N, 1992, CAN J CHEM, V70, P560
   HAMEL S, 2002, J CHEM PHYS, V116, P8276
   HAMEL S, 2002, J ELECTRON SPECTROSC, V123, P345
   HARRIS M, 1999, CHEM PHYS LETT, V303, P420
   HOHENBERG P, 1964, PHYS REV, V136, B864
   JANAK JF, 1978, PHYS REV B, V18, P7165
   JELLINEK J, 2002, J PHYS CHEM A, V106, P10919
   JELLINEK J, 2003, J PHYS CHEM A, V107, P1670
   KIMURA K, 1981, HDB HEI PHOTOELECTRO
   KLEINMAN L, 1997, PHYS REV B, V56, P12042
   KLEINMAN L, 1997, PHYS REV B, V56, P16029
   KOHN W, 1965, PHYS REV, V140, A1133
   LEVY M, 1984, PHYS REV A, V30, P2745
   LIDE DR, 2001, CRC HDB CHEM PHYSICS
   NESBET RK, 1997, PHYS REV A, V56, P2665
   NORMAN MR, 1983, PHYS REV B, V28, P2135
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   PERDEW JP, 1982, PHYS REV LETT, V49, P1691
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PERDEW JP, 1997, PHYS REV B, V56, P16021
   SEVIER KD, 1979, ATOM DATA NUCL DATA, V24, P323
   SHIRLEY DA, 1977, PHYS REV B, V15, P544
   THOMAS OC, 2002, PHYS REV LETT, V89
   TRICKEY SB, 1986, PHYS REV LETT, V56, P881
   VANLONKHUYZEN H, 1984, CHEM PHYS, V89, P313
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
   WANG LS, 1998, Z PHYS CHEM 1-2, V203, P45
NR 33
TC 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAY 1
PY 2003
VL 118
IS 17
BP 7783
EP 7796
PG 14
SC Physics, Atomic, Molecular & Chemical
GA 668DY
UT ISI:000182276100008
ER

PT J
AU Treu, O
   Kondo, RT
   Pinheiro, JC
TI Contracted GTF basis sets applied to the theoretical interpretation of
   the Raman spectrum of hexaaquachromium(III) ion
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE contracted basis sets; GTF basis sets; generator coordinate
   Hartree-Fock method; vibrational properties of molecular species;
   theoretical interpretation of the Raman spectrum
ID COORDINATE HARTREE-FOCK; GAUSSIAN-BASIS; AB-INITIO; ATOMS; CHOICE
AB Contracted GTF basis sets designed with aid of the Generator Coordinate
   Hartree-Fock (GCHF) method for H(S-2), O2-(IS), and Cr3+(F-4) atomic
   species are applied to perform theoretical interpretation of the Raman
   spectrum of hexaaquachromium(III) ion. The 16s, 16s10p, and 24s17p13d
   GTF basis sets were contracted to [4s] for H atom, [6s4p], and [9s6p3d]
   for O2- and Cr3+, respectively, by Dunning's scheme. For Cr3+, the
   [9s6p3d] basis set was enriched with f polarization function and used
   in combination com [4s] and [6s4p] in the study of our interest. The
   results obtained in this report show that the contracted GTF basis sets
   used are a useful alternative for the theoretical interpretation of
   Raman spectrum of hexaaquachromium(III) ion and that GCHF method is an
   effective alternative to selection of GTF basis sets for theoretical
   study of vibrational properties of poliatomic species. (C) 2003
   Elsevier Science B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab Quim Teor & Computac, BR-66075110 Belem, Para, Brazil.
   UNESP, Inst Quim, Araraquara, SP, Brazil.
   Univ Sao Paulo, Ctr Informat Sao Carlos, Secao Suporte, BR-13560970 Sao Carlos, SP, Brazil.
   Cooperat Ctr Educ Cient & Empreendedore Amazonia, BR-66013060 Belem, Para, Brazil.
RP Pinheiro, JC, Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab
   Quim Teor & Computac, CP 10101, BR-66075110 Belem, Para, Brazil.
CR CHAKRAVORTY SJ, 1989, MODERN TECHNIQUES CO
   DACOSTA HFM, 1987, MOL PHYS, V62, P91
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GOORDSON DZ, 1982, J PHYS CHEM-US, V86, P659
   JACOBS H, 1987, Z ANORG ALLG CHEM, V546, P33
   JARDIM IN, 1999, J MOL STRUC-THEOCHEM, V464, P15
   MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
   MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
   MOHELLEM JR, 1987, J CHEM PHYS, V86, P5043
   MOROSIN B, 1966, ACTA CRYSTALLOGR, V21, P280
   PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
   PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
   ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
   SAVEDRA RML, UNPUB
   SAVEDRA RML, 2002, J MOL STRUC-THEOCHEM, V587, P9
   SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
   SOPOTRAJANOV B, 1999, J MOL STRUCT, V482, P109
   STEFOV V, 1993, J MOL STRUCT, V293, P97
NR 18
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 25
PY 2003
VL 624
BP 153
EP 157
PG 5
SC Chemistry, Physical
GA 666HC
UT ISI:000182170700019
ER

PT J
AU Zamora, MA
   Masman, MF
   Bombasaro, JA
   Freile, ML
   Cechinel, V
   Lopez, SN
   Zacchino, SA
   Enriz, RD
TI Conformational and electronic study of
   N-phenylalkyl-3,4-dichloromaleimides: Ab initio and DFT study
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE maleimides; ab initio and DFT calculations; conformational study;
   antifungal activity
ID FUNGAL CELL-WALL; GEOMETRICAL ALGORITHM; SPACE GASCOS; SEARCH;
   ELECTROSTATICS; RECOGNITION; MECHANISM; MOLECULES
AB A conformational and electronic study on
   N-phenylalkyl-3,4-dichloromaleimides, a new series of antifungal
   compounds, was carried out. In this study ab initio [RHF/3-21G and
   RHF/6-31G(d)] and density functional theory (B3LYP/6-31G(d))
   calculations were performed. The effect of solvent (water) was taken
   into account by performing calculations with the isodensity polarizable
   continuum model method. The electronic study of the compounds was
   carried out using molecular electrostatic potentials. The presence of
   two symmetrical aromatic systems reduces notably the conformational
   possibilities of these maleimides. The results permit the recognition
   of the minimal structural requirements for the production of the
   antifungal response; a 3,4-dichloroimido ring and a benzene ring appear
   to be indispensable. Also, theoretical calculations suggest that the
   optimum interatomic distance between these moieties is about 3.5-5.0
   Angstrom. (C) 2003 Wiley Periodicals, Inc.
C1 Univ Nacl San Luis, Fac Quim Bioquim & Farm, Dept Quim, RA-5700 San Luis, Argentina.
   UNPSJB, Fac Ciencias Nat, Dept Quim, RA-9000 Comodoro Rivadavia, Chubut, Argentina.
   Univ Vale Itajai, CCS, NIQFAR, Itajai, SC, Brazil.
   Univ Nacl Rosario, Fac Ciencias Bioquim & Farmaceut, RA-2000 Rosario, Santa Fe, Argentina.
RP Enriz, RD, Univ Nacl San Luis, Fac Quim Bioquim & Farm, Dept Quim,
   Chacabuco 917, RA-5700 San Luis, Argentina.
CR *WAV INC, 1996, PC SPARTAN PRO
   ALLINGER NL, 1977, J AM CHEM SOC, V99, P8127
   BANDYOPADHYAY P, 2000, J CHEM PHYS, V113, P1104
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P5618
   CARRUPT PA, 1991, METHOD ENZYMOL, V203, P638
   CSIZMADIA IG, 1974, CHEM THIOL GROUP, CH1
   FARKAS O, 1996, THEOCHEM-J MOL STRUC, V367, P25
   FEIGEL M, 1966, J MOL STRUCT THEOCHE, V366, P83
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   FROMTLING RA, 1999, DRUG NEW PERSPECT, V12, P557
   GREELING P, 1996, THEORETICAL COMPUTAT, V3, P587
   JAUREGUI EA, 1997, TEMAS ACTUALES QUIMI, V29, P327
   JHON JS, 1999, J PHYS CHEM A, V103, P5436
   LEE C, 1988, PHYS REV B, V37, P785
   LOPEZ SN, UNPUB BIOORG MED CHE
   LOPEZ SN, 2001, BIOORGAN MED CHEM, V9, P1999
   MEADOWS DH, 1969, J MOL BIOL, V45, P491
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   NARAYSZABO G, 1995, CHEM REV, V95, P829
   NORTH ACT, 1989, J MOL GRAPHICS, V7, P67
   PETERSON MR, 1978, J AM CHEM SOC, V100, P6911
   PETERSON MR, 1982, RECENT ADV, V3, P190
   POLILZER P, 1991, CHEM APPL ATOMIC MOL
   POLITZER P, 1991, REV COMPUTATIONAL CH, V2, CH7
   RADKIEWICZ JL, 1996, J AM CHEM SOC, V118, P9148
   RODRIQUEZ CF, 1996, THEOCHEM-J MOL STRUC, V363, P131
   ROGERS P, 1973, FEBS LETT, V36, P330
   SANTAGATA LN, 1999, J MOL STRUC-THEOCHEM, V465, P33
   SANTAGATA LN, 2000, J MOL STRUC-THEOCHEM, V507, P89
   SANTAGATA LN, 2001, J MOL STRUC-THEOCHEM, V536, P173
   SANTAGATA LN, 2001, J MOL STRUC-THEOCHEM, V571, P91
   SARAI A, 1989, J THEOR BIOL, V140, P137
   SCROCCO E, 1973, TOP CURR CHEM, V42, P95
   SHUKLA MK, 2000, J COMPUT CHEM, V21, P826
   URBINA JM, 2000, BIOORGAN MED CHEM, V8, P691
   VILLAGRA SE, 2001, J MOL STRUC-THEOCHEM, V549, P217
   WALSH TJ, 1992, EMERGING TARGETS ANT, P349
   WHITE TC, 1998, CLIN MICROBIOL REV, V11, P382
   ZACCHINO SA, IN PRESS NEED NEW AT
   ZACCHINO SA, 1999, J NAT PROD, V62, P1353
NR 42
TC 5
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD MAY 15
PY 2003
VL 93
IS 1
BP 32
EP 46
PG 15
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA 667HY
UT ISI:000182226700004
ER

PT J
AU Oliveira, LN
   Amaral, OAV
   Castro, MA
   Fonseca, TL
TI Static polarizabilities of doubly charged polyacetylene oligomers:
   basis set and electron correlation effects
SO CHEMICAL PHYSICS
LA English
DT Article
DE polarizabilities; polyacetylene oligomers; charged bipolarons
ID VARIATIONAL PERTURBATIONAL TREATMENT; DYNAMIC DIPOLE POLARIZABILITIES;
   NONLINEAR-OPTICAL PROPERTIES; BOND-LENGTH ALTERNATION; STABLE ATOMIC
   ANIONS; PUSH-PULL POLYENES; CONJUGATED CHAINS; FIRST
   HYPERPOLARIZABILITY; LINEAR-POLARIZABILITIES; POLARONS
AB Ab initio calculations, carried out with different basis sets, for the
   static longitudinal linear polarizability, alpha(L), and second order
   hyperpolarizability, gamma(L), Of Small doubly charged polyacetylene
   (PA) chains, are presented. The polarizabilities were calculated using
   the Hartree-Fock (HF) method while the electron correlation effects
   were included through the second-order Moller-Plesset perturbation
   theory (MP2). Positively and negatively charged bipolarons were
   studied. The results obtained for positive and negative chains show
   that the ionization state effect decreases more rapidly, as the chain
   length is increased, for alpha(L) than for gamma(L). For both types of
   charged chains, the incorporation of the electron correlation increases
   the alpha(L) and gamma(L) values, as compared to the HF values. A
   comparison between the results obtained using the standard 6-31G basis
   set and augmented versions of this set, obtained by the addition of
   diffuse and polarization functions, shows that 6-31G basis set does not
   provide a good description of the negative chains studied here and that
   the addition of extra diffuse functions on the basis set is needed in
   order to obtain reliable estimates for polarizabilities, specially for
   gamma(L). (C) 2003 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
RP Fonseca, TL, Univ Fed Goias, Inst Fis, Campus 2,Caixa Postal 131,
   BR-74001970 Goiania, Go, Brazil.
CR AHLHEIM M, 1996, SCIENCE, V271, P335
   AN Z, 2001, J CHEM PHYS, V114, P1010
   ANDRADE OP, 2002, MOL PHYS, V100, P1975
   BEZERRA AG, 1999, J CHEM PHYS, V111, P1
   BISHOP DM, 1991, J CHEM PHYS, V95, P2646
   BISHOP DM, 1992, J CHEM PHYS, V97, P5255
   BOSSHARD CH, 1995, ORGANIC NONLINEAR OP
   BOUDREAUX DS, 1983, PHYS REV B, V28, P6927
   BREDAS JL, 1982, PHYS REV B, V26, P5843
   CANUTO S, 1994, PHYS REV A, V49, P3515
   CASTRO MA, 1996, PHYS REV A, V53, P3664
   CHAMPAGNE B, 1997, J CHEM PHYS, V107, P5433
   CHAMPAGNE B, 2002, J CHEM PHYS, V116, P3935
   COSTA MF, 1999, PHYS LETT A, V263, P186
   DEMELO CP, 1987, CHEM PHYS LETT, V140, P537
   DEMELO CP, 1988, J CHEM PHYS, V88, P2558
   DEMELO CP, 1988, J CHEM PHYS, V88, P2567
   DEMELO CP, 1996, CHEM PHYS LETT, V28, P261
   FONSECA TL, 2001, SYNTHETIC MET, V123, P11
   FRISCH MJ, 1995, GAUSSIAN 94 REV
   HURST GJB, 1988, J CHEM PHYS, V89, P385
   JACQUEMIN D, 1997, INT J QUANTUM CHEM, V65, P679
   JACQUEMIN D, 1998, CHEM PHYS LETT, V284, P24
   JACQUEMIN D, 1998, THEOCHEM-J MOL STRUC, V425, P69
   KANIS DR, 1994, CHEM REV, V94, P195
   KIRTMAN B, 1990, CHEM PHYS LETT, V175, P601
   LUIS JM, 1997, J CHEM PHYS, V107, P1501
   LUIS JM, 1999, J CHEM PHYS, V111, P875
   MADER SR, 1994, SCIENCE, V265, P632
   MARDER SR, 1994, SCIENCE, V263, P511
   MAROULIS G, 1999, J PHYS CHEM A, V103, P4359
   MEYERS F, 1994, J AM CHEM SOC, V116, P10703
   PRASAD P, 1991, INTRO NONLINEAR OPTI
   SCHMALZLIN E, 1997, CHEM PHYS LETT, V280, P551
   STAHELIN M, 1993, J CHEM PHYS, V98, P5595
   STAHELIN M, 1996, J OPT SOC AM B, V13, P2401
   SUHAI S, 1983, CHEM PHYS LETT, V96, P619
   TOTO JL, 1995, CHEM PHYS LETT, V245, P660
   TOTO TT, 1995, CHEM PHYS LETT, V244, P59
   VERBIEST T, 1997, J MATER CHEM, V7, P2175
   VILLAR HO, 1988, PHYS REV B, V37, P2520
NR 41
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD APR 15
PY 2003
VL 289
IS 2-3
BP 221
EP 230
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 665DH
UT ISI:000182104000004
ER

PT J
AU Gonzales-Ormeno, PG
   Petrilli, HM
   Schon, CG
TI Ab-initio calculations of the formation energies of BCC-based
   superlattices in the Fe-Al system
SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
LA English
DT Article
ID ROOM-TEMPERATURE DUCTILITY; FE3AL-BASED ALLOYS; IRON ALUMINIDES;
   PHASE-DIAGRAMS; GROUND-STATE; ORDER; TENSILE; NICKEL; FE3AL; FCC
AB First-principles calculations of the total energies of A2 iron and
   Aluminum, B2 (FeAl), B32 (FeAl) and D0(3) (Fe3Al and FeAl3) compounds
   were performed in the frame of density functional theory (DFT) using
   the Full Potential - Linear Augmented Plane Wave method (FP-LAPW).
   These results have been used to obtain formation energies of the
   respective ground states. The calculated formation energies of the
   D0(3) (Fe3Al) and B2 (FeAl) compounds show excellent agreement with
   available calorimetric data on standard enthalpies of formation of
   Fe-Al alloys up to 50 at.% aluminum. As the Fe-Al system has a
   controversial magnetic behavior when described by ab-initio methods in
   the DFT, this agreement is remarkable. (C) 2003 Elsevier Science Ltd.
   All rights reserved.
C1 Univ Sao Paulo, Escola Politecn, Dept Met & Mat Engn, Computat Mat Sci Lab, BR-05508900 Sao Paulo, Brazil.
   Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, BR-05508900 Sao Paulo, Brazil.
RP Schon, CG, Univ Sao Paulo, Escola Politecn, Dept Met & Mat Engn,
   Computat Mat Sci Lab, Av Prof Mello Moraes 2463, BR-05508900 Sao Paulo,
   Brazil.
EM schoen@usp.br
CR ALEXANDER DJ, 1998, MAT SCI ENG A-STRUCT, V258, P276
   BAGNO P, 1989, PHYS REV B, V40, P1997
   BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
   BOGNER J, 1998, PHYS REV B, V58, P14922
   CHEN Q, 2001, J PHASE EQUILIB, V22, P631
   DEEVI SC, 1996, INTERMETALLICS, V4, P357
   DEEVI SC, 1997, PROG MATER SCI, V42, P177
   DEFONTAINE D, 1995, CALPHAD, V19, P499
   ELDRIDGE J, 1964, T TMS AIME, V230, P226
   FERRO R, 2000, THERMOCHIM ACTA, V347, P103
   HACK K, 1996, SGTE CASEBOOK THERMO
   HUANG YD, 1999, MAT SCI ENG A-STRUCT, V263, P75
   HUANG YD, 2001, INTERMETALLICS, V9, P119
   HUANG YD, 2001, INTERMETALLICS, V9, P331
   INDEN G, 1981, PHYSICA B, V103, P82
   INDEN G, 1990, Z METALLKD, V81, P770
   INDEN G, 1991, PHASE TRANSFORMATION, P499
   KOHN W, 1965, PHYS REV, V140, A1133
   KUBASCHEWSKI O, 1982, IRON BINARY PHASE DI
   LECHERMANN F, 2002, PHYS REV B, V65
   LIU CT, 1998, MAT SCI ENG A-STRUCT, V258, P84
   MOHN P, 2001, PHYS REV LETT, V87
   MORRIS DG, 1997, SCRIPTA MATER, V37, P71
   NOGUEIRA RN, 2002, J PHYS-CONDENS MAT, V14, P1067
   OELSEN W, 1937, MITT KAISER WILHELM, V19, P1
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   PICKART SJ, 1961, PHYS REV, V123, P1163
   RADCLIFFE SV, 1961, ACTA METALL, V9, P169
   RZYMAN K, 2000, CALPHAD, V24, P309
   SCHON CG, 1997, J CHIM PHYS PCB, V94, P1143
   SCHON CG, 1998, ACTA MATER, V46, P4219
   SCHON CG, 1998, THESIS U DORTMUND GE
   SCHON CG, 1999, CALPHAD, V23, P3
   VILLARS P, 1985, PEARSONS HDB CRYSTAL
NR 34
TC 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0364-5916
J9 CALPHAD-COMPUT COUP PHASE DIA
JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
PD DEC
PY 2002
VL 26
IS 4
BP 573
EP 582
PG 10
SC Chemistry, Physical; Thermodynamics
GA 657TK
UT ISI:000181682300007
ER

PT J
AU Bechstedt, F
   Furthmuller, J
   Ferhat, M
   Teles, LK
   Scolfaro, LMR
   Leite, JR
   Davydov, VY
   Ambacher, O
   Goldhahn, R
TI Energy gap and optical properties of In(x)Gal(1-x)N
SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; BAND-GAP; INXGA1-XN ALLOYS;
   STRUCTURAL-PROPERTIES; EPITAXIAL LAYERS; INDIUM NITRIDE; INN;
   SEMICONDUCTORS; 1ST-PRINCIPLES; CRYSTALS
AB We present ab initio calculations of the electronic structure and the
   optical properties of InxGa1-xN. They are completed by studies of the
   strain influence on the alloys. The results are critically discussed in
   the light of recent experiments. We find an energy gap of InN < 1 eV
   and a nonparabolic absorption edge. The strong variation of the alloy
   gap with the In molar fraction is described by a composition-dependent
   bowing parameter. The tendency of spinodal decomposition is suppressed
   by biaxial strain. Its extent depends on the realization of strain
   accommodation.
C1 Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743 Jena, Germany.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Carlos, SP, Brazil.
   Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia.
   Tech Univ, Ctr Micro & Nanotechnol, D-98693 Ilmenau, Germany.
   Tech Univ Ilmenau, Inst Phys, D-98684 Ilmenau, Germany.
RP Bechstedt, F, Univ Jena, Inst Festkorpertheorie & Theoret Opt, Max Wien
   Pl 1, D-07743 Jena, Germany.
EM bechstedt@ifto.physik.uni-jena.de
CR ADOLPH B, 2001, PHYS REV B, V63
   BECHSTEDT F, 1988, PHYS REV B, V38, P7710
   BECHSTEDT F, 2002, J CRYST GROWTH, V246, P315
   BECHSTEDT F, 2002, LOW DIMENSIONAL NITR, P11
   BU Y, 1993, J VAC SCI TECHNOL A, V11, P2931
   DAVYDOV VY, 2002, PHYS STATUS SOLIDI B, V229, R1
   DAVYDOV VY, 2002, PHYS STATUS SOLIDI B, V230, R4
   FERHAT M, 2002, APPL PHYS LETT, V80, P1394
   FERHAT M, 2002, PHYS REV B, V65
   GROSSNER U, 1998, PHYS REV B, V58, R1722
   GUO Q, 1997, SOLID STATE COMMUN, V83, P721
   GUO QX, 1994, JPN J APPL PHYS PT 1, V33, P2453
   GUO QX, 1998, PHYS REV B, V58, P15304
   KIM MH, 1999, PHYS STATUS SOLIDI A, V176, P269
   KRESSE G, 1996, COMP MATER SCI, V6, P15
   LAMBRECHT WRL, 1997, SOLID STATE ELECTRON, V41, P195
   LAMBRECHT WRL, 2002, SOLID STATE COMMUN, V121, P549
   LISCHKA K, 2002, APPL PHYS LETT, V88, P769
   ODONNELL KP, 2000, MAT RES SOC S, V595
   PERSSON C, 2001, J PHYS-CONDENS MAT, V13, P8945
   RIEGER MM, 1995, PHYS REV B, V52, P16567
   SHAN W, 1996, APPL PHYS LETT, V69, P3315
   STAMPFL C, 1999, PHYS REV B, V59, P5529
   TABATA A, 1999, APPL PHYS LETT, V74, P362
   TABATA A, 2002, APPL PHYS LETT, V80, P769
   TANSLEY TL, 1986, J APPL PHYS, V59, P3241
   TELES LK, UNPUB
   TELES LK, 2000, PHYS REV B, V62, P2475
   TELES LK, 2001, PHYS REV B, V63
   WENZIEN B, 1995, PHYS REV B, V51, P14701
NR 30
TC 29
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0031-8965
J9 PHYS STATUS SOLIDI A-APPL RES
JI Phys. Status Solidi A-Appl. Res.
PD FEB
PY 2003
VL 195
IS 3
BP 628
EP 633
PG 6
SC Physics, Condensed Matter
GA 656GA
UT ISI:000181599300027
ER

PT J
AU Fagan, SB
   da Silva, LB
   Mota, R
TI Ab initio study of radial deformation plus vacancy on carbon nanotubes:
   Energetics and electronic properties
SO NANO LETTERS
LA English
DT Article
ID LARGE SYSTEMS; CONDUCTANCE
AB The effects of radial deformation and single vacancy on the electronic
   properties of a single-wall carbon nanotube are studied through ab
   initio method. Different paths are considered: the tube is deformed and
   subsequently a vacancy is produced, or a vacancy is created and the
   tube is deformed later. The involved energies, band structures, and
   densities of states following several paths are discussed, and a simple
   way to induce fundamental changes on the electronic properties is
   proposed.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Mota, R, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
   Brazil.
EM mota@ccne.ufsm.br
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
   BAIERLE RJ, 2001, PHYS REV B, V64
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   DRESSELHAUS MS, 2000, CARBON NANOTUBES SYN
   FAGAN SB, 2003, PHYS REV B, V67
   GULSEREN O, 2001, PHYS REV LETT, V87
   GULSEREN O, 2002, PHYS REV B, V65
   HANSSON A, 2000, PHYS REV B, V62, P7639
   IGAMI M, 1999, J PHYS SOC JPN, V68, P716
   MAITI A, 2002, PHYS REV LETT, V88
   ORDEJON P, 1996, PHYS REV B, V53
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   ROCHEFORT A, 1999, PHYS REV B, V60, P13824
   SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
   SANKEY OF, 1989, PHYS REV B, V40, P3979
   SRIVASTAVA D, 1999, PHYS REV LETT, V83, P2973
   TROULLIER N, 1991, PHYS REV B, V43, P1993
NR 17
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2003
VL 3
IS 3
BP 289
EP 291
PG 3
SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
GA 656AN
UT ISI:000181586600004
ER

PT J
AU Schiwietz, G
   Grande, PL
TI The role of basic energy-loss processes in layer-resolved surface
   investigations with ions
SO CURRENT APPLIED PHYSICS
LA English
DT Article
DE electronic energy-loss distribution; stopping power; backscattering;
   coupled-channel calculations; protons; aluminum surface; innershell
   ionizaton
ID SCATTERING EXPERIMENTS; ANGULAR-DEPENDENCE; HE; INCIDENT; BARE
AB Ab initio quantum mechanical calculations have been performed for the
   energy loss of protons backscattered from an Al surface. Results from
   first-order perturbation theory are compared to full numerical
   atomic-orbital coupled-channel calculations. It is shown that both
   inner shells and non-perturbative effects are important for the
   understanding of ion energy-loss spectra. (C) 2002 Elsevier Science
   B.V. All rights reserved.
C1 Hahn Meitner Inst Berlin GmbH, Abt SF4, Bereich Strukturforsch, D-14109 Berlin, Germany.
   Univ Fed Rio Grande Sul, Inst Fis, BR-91501470 Porto Alegre, RS, Brazil.
RP Schiwietz, G, Hahn Meitner Inst Berlin GmbH, Abt SF4, Bereich
   Strukturforsch, Glienicker Str 100, D-14109 Berlin, Germany.
CR DOSSANTOS JHR, 1997, PHYS REV B, V55, P4332
   FRENKEN JWM, 1986, NUCL INSTRUM METH B, V17, P334
   GRANDE PL, UNPUB
   GRANDE PL, 1991, PHYS REV A, V44, P2984
   GRANDE PL, 1993, PHYS REV A, V47, P1119
   GRNDE PL, 1998, NUCL INSTRUM METH B, V136, P125
   SCHIWIETZ G, 1990, PHYS REV A, V42, P296
   SCHIWIETZ G, 1992, NUCL INSTRUM METH B, V69, P10
   SCHIWIETZ G, 1994, PHYS REV LETT, V72, P2159
   SCHULTE WH, 2001, NUCL INSTRUM METH B, V183, P16
NR 10
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1567-1739
J9 CURR APPL PHYS
JI Curr. Appl. Phys.
PD FEB
PY 2003
VL 3
IS 1
BP 35
EP 37
PG 3
SC Materials Science, Multidisciplinary; Physics, Applied
GA 657FV
UT ISI:000181656100008
ER

PT J
AU Ornellas, FR
   Resende, SM
   Machado, FBC
   Roberto-Neto, O
TI A high level theoretical investigation of the N2O4 -> 2 NO2
   dissociation reaction: Is there a transition state?
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID POTENTIAL-ENERGY FUNCTION; DINITROGEN TETROXIDE; AB-INITIO;
   ELECTRON-DIFFRACTION; GAS; TEMPERATURE; DYNAMICS; ABINITIO
AB The N2O4-->2 NO2 dissociation reaction was investigated at a high level
   of theory using the couple cluster with all single and double
   excitations and connected triples [CCSD(T)] and complete active space
   self-consistent field approaches, and the cc-pVDZ, aug-cc-pVDZ, and
   cc-pVTZ basis sets. Only at the coupled cluster level a first-order
   saddle point was found connecting reactant and products. Collectively,
   structural, vibrational, and thermodynamic data for the three
   stationary points represent the best theoretical description of this
   reaction system to date, and are in good agreement with available
   experimental results. Unimolecular transition state theory rate
   constants (k(infinity)) were also evaluated at 250, 298.15, and 350 K.
   At the CCSD(T)/cc-pVTZ level of calculation these results are
   0.62x10(1), 1.90x10(3), and 1.66x10(5) s(-1), respectively. Known
   experimental results at 298 K vary from 1.7x10(5) to 1.0x10(6) s(-1).
   Including an estimate for basis set superposition error, we predict
   DeltaH(298)(0) for the dissociation reaction to be 12.76 kcal/mol
   (Expt. 13.1-13.7 kcal/mol). (C) 2003 American Institute of Physics.
C1 Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05513970 Sao Paulo, Brazil.
   Ctr Tecn Aeroesp, Dept Quim, Inst Tecnol Aeronaut, BR-12228900 Sao Paulo, Brazil.
   Inst Estudos Avancados, BR-1228840 Sao Jose Dos Campos, Brazil.
RP Ornellas, FR, Univ Sao Paulo, Inst Quim, Dept Quim Fundamental,
   BR-05513970 Sao Paulo, Brazil.
CR BAUSCHLICHER CW, 1983, J AM CHEM SOC, V105, P745
   BIBART CH, 1974, J CHEM PHYS, V61, P1284
   BIRD GR, 1964, J CHEM PHYS, V40, P3378
   BORDEN WT, 1996, ACCOUNTS CHEM RES, V29, P67
   BORISENKO KB, 1997, J MOL STRUCT, V121, P413
   BOYS SF, 1970, MOL PHYS, V19, P553
   CARRINGTON T, 1953, J PHYS CHEM-US, V57, P418
   CARTWRIGHT BS, 1966, CHEM COMMUN, V3, P82
   CHER M, 1962, J CHEM PHYS, V37, P2564
   DOMENECH JL, 1994, J CHEM PHYS, V100, P6993
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   ELYOUSSOUFI Y, 1997, SPECTROCHIM ACTA A, V53, P881
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GIAUQUE WF, 1938, J CHEM PHYS, V6, P40
   GIVAN A, 1989, J CHEM PHYS, V90, P6135
   GUTMAN A, 1962, J CHEM PHYS, V36, P98
   HISATSUNE IC, 1961, J PHYS CHEM-US, V65, P2249
   HOZBA P, 1988, CHEM REV, V88, P871
   JACOX ME, 1984, J PHYS CHEM REF DATA, V13, P945
   KATO T, 1996, J CHEM PHYS, V105, P4511
   KOHATA K, 1982, J PHYS CHEM-US, V86, P602
   KOPUT J, 1993, CHEM PHYS LETT, V204, P183
   KOPUT J, 1995, CHEM PHYS LETT, V240, P553
   KVICK A, 1982, J CHEM PHYS, V76, P3754
   LEE TJ, 1995, QUANTUM MECH ELECT S, P47
   LIDE DR, 1994, CRC HDB CHEM PHYSICS
   LIU RF, 1993, J PHYS CHEM-US, V97, P4413
   LOUIS RV, 1965, J CHEM PHYS, V42, P857
   MACHADO FBC, 2002, CHEM PHYS LETT, V352, P120
   MCCLELLAND BW, 1972, J CHEM PHYS, V56, P4541
   MCKEE ML, 1995, J AM CHEM SOC, V117, P1629
   MORINO Y, 1983, J MOL SPECTROSC, V98, P330
   PASTIRK I, 2001, CHEM PHYS LETT, V349, P71
   RAGHAVACHARI K, 1989, CHEM PHYS LETT, V479, P157
   SHEN Q, 1998, J PHYS CHEM A, V102, P6470
   STEINFELD JI, 1989, CHEM KINETICS DYNAMI
   WANG XF, 1998, THEOCHEM-J MOL STRUC, V432, P55
   WERNER HJ, 1985, J CHEM PHYS, V82, P5053
   WERNER HJ, 1988, J CHEM PHYS, V89, P5803
   WERNER HJ, 2000, MOLPRO
   WESOLOWSKI SS, 1997, J CHEM PHYS, V106, P7178
   YANG JA, 1991, J PHYS CHEM-US, V95, P9221
NR 42
TC 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAR 1
PY 2003
VL 118
IS 9
BP 4060
EP 4065
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 646DC
UT ISI:000181018700018
ER

PT J
AU Branicio, PS
   Kalia, RK
   Nakano, A
   Rino, JP
   Shimojo, F
   Vashishta, P
TI Structural, mechanical, and vibrational properties of Ga1-xInxAs
   alloys: A molecular dynamics study
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ABSORPTION FINE-STRUCTURE; RANDOM SOLID-SOLUTIONS
AB Structural, mechanical, and vibrational properties of Ga1-xInxAs (0less
   than or equal toxless than or equal to1) random solid solutions are
   investigated with classical and ab initio molecular-dynamics
   simulations. We find that the Ga-As and In-As bond lengths change only
   slightly as a function of x, despite the large lattice mismatch
   (similar to7%) between GaAs and InAs crystals. The nearest
   cation-cation distance has a broad distribution, whereas the nearest
   neighbor anion-anion distance distribution has two distinct peaks. The
   elastic constants exhibit a significant nonlinear dependence on x. The
   phonon density-of-states exhibits two high-frequency optical modes.
   These results are in excellent agreement with experiments. (C) 2003
   American Institute of Physics.
C1 Univ So Calif, Dept Phys & Astron, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA.
   Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA.
   Univ So Calif, Dept Mat Sci & Engn, Los Angeles, CA 90089 USA.
   Univ Fed Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
   Kumamoto Univ, Kumamoto, Japan.
RP Branicio, PS, Univ So Calif, Dept Phys & Astron, Collaboratory Adv Comp
   & Simulat, Los Angeles, CA 90089 USA.
CR BAZANT MZ, 1997, PHYS REV B, V56, P8542
   BOYCE JB, 1989, J CRYST GROWTH, V98, P37
   BRENNER DW, 2000, PHYS STATUS SOLIDI B, V217, P23
   BRIGGS EL, 1996, PHYS REV B, V54, P14362
   BRODSKY MH, 1968, PHYS REV LETT, V21, P990
   CHELIKOWSKY JR, 1994, PHYS REV B, V50, P11355
   COHEN ML, 1993, SCIENCE, V261, P307
   EBBSJO I, 2000, J APPL PHYS, V87, P7708
   GIANNOZZI P, 1991, PHYS REV B, V43, P7231
   GROENEN J, 1998, PHYS REV B, V58, P10452
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   MARTINS JL, 1984, PHYS REV B, V30, P6217
   MIGLIORATO MA, 2002, PHYS REV B, V65
   MIKKELSEN JC, 1982, PHYS REV LETT, V49, P1412
   MIKKELSEN JC, 1983, PHYS REV B, V28, P7130
   PATREL C, 1984, J MOL STRUCT, V115, P149
   PAULING L, 1967, NATURE CHEM BOND
   PHILLIPS JC, 1973, BONDS BANDS SEMICOND, P214
   SHIMOJO F, 2001, COMPUT PHYS COMMUN, V140, P303
   TROULLIER N, 1991, PHYS REV B, V43, P8861
   VEGARD L, 1921, Z PHYS, V5, P17
NR 21
TC 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 17
PY 2003
VL 82
IS 7
BP 1057
EP 1059
PG 3
SC Physics, Applied
GA 644KR
UT ISI:000180917000019
ER

PT J
AU Fileti, EE
   Rivelino, R
   Canuto, S
TI Rayleigh light scattering of hydrogen bonded clusters investigated by
   means of ab initio calculations
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
ID WATER-METHANOL COMPLEXES; MATRIX-ISOLATION; BASIS-SET;
   ELECTRON-CORRELATION; INTERACTION ENERGY; DIMER; POLARIZABILITIES;
   HYPERPOLARIZABILITY; SPECTRA; HCN-H2O
AB Ab initio calculations of depolarization ratios and intensities of
   classically scattered light, in terms of dipole polarizabilities and
   polarizability anisotropies, are reported for different hydrogen bonded
   molecular clusters. Five different groups of organic heterodimers
   formed with water are considered: HCHO...H2O, CH3HO...H2O, HCOOH...H2O,
   CH3CN...H2O, and (CH3)(2)CO...H2O, together with the water dimer
   H2O...H2O. The geometries of all complexes have been optimized by means
   of the second-order Moller-Plesset many-body perturbation theory (MP2),
   using the augmented correlation-consistent basis set with polarized
   valence of double-zeta quality (aug-cc-pVDZ). The calculated average
   dipole polarizabilities of the isolated molecules are in good agreement
   with available experimental results. The calculations are then extended
   to the complexes and, from these, the Rayleigh scattering activities
   and depolarization ratio changes, upon hydrogen bond formation, are
   obtained and analysed. The differences in activity and depolarization
   for Rayleigh scattered radiation between two groups of isomers, (i)
   HCN...H2O and H2O...HCN and (ii) CH3HO...H2O and CH3OH...OH2, have also
   been investigated.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Fileti, EE, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR BAKKAS N, 1993, J CHEM PHYS, V99, P3335
   BAKKAS N, 1995, CHEM PHYS LETT, V232, P90
   BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
   BELL AJ, 1993, J PHYS D APPL PHYS, V26, P994
   BONIN KD, 1997, ELECT DIPOLE POLARIS
   BUCKINGHAM AD, 1967, ADV CHEM PHYS, V12, P107
   BUCKINGHAM AD, 1988, CHEM REV, V88, P827
   BUSH AM, 1998, J PHYS CHEM A, V102, P6457
   CASTRO MA, 1993, J PHYS B-AT MOL OPT, V26, P4301
   CERNUSAK I, 1986, PHYS REV A, V33, P814
   COHEN HD, 1965, J CHEM PHYS S, V43, P34
   COULING VW, 2001, J PHYS CHEM A, V105, P4365
   COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
   CURTISS LA, 1975, J MOL SPECTROSC, V55, P1
   DIERCKSEN GHF, 1975, THEOR CHIM ACTA, V36, P249
   DIERCKSEN GHF, 1988, CHEM PHYS LETT, V153, P93
   DIXIT S, 2002, NATURE, V416, P829
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   DYKSTRA CE, 1989, J CHEM PHYS, V91, P6472
   ENGDAHL A, 1987, J CHEM PHYS, V86, P4831
   FABELLINSKII IL, 1968, MOL SCATTERING LIGHT
   FEYEREISEN MW, 1996, J PHYS CHEM-US, V100, P2993
   FRISCH MJ, 1985, J PHYS CHEM-US, V89, P3664
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GONZALEZ L, 1998, J CHEM PHYS, V109, P139
   HEIKKILA A, 1999, J PHYS CHEM A, V103, P2945
   HERZBERG G, 1945, INFRARED RAMAN SPECT
   HUISKEN F, 1991, CHEM PHYS LETT, V180, P355
   KIRSCHNER KN, 2001, J PHYS CHEM A, V105, P4150
   LIDE R, 1992, HDB CHEM PHYSICS
   LIU K, 1996, SCIENCE, V271, P929
   LOVAS FJ, 1978, J PHYS CHEM REF DATA, V7, P1445
   MAROULIS G, 2000, J CHEM PHYS, V113, P1813
   MAROULIS G, 2001, J PHYS B-AT MOL OPT, V34, P3727
   MEULENBROEKS RFG, 1992, PHYS REV LETT, V69, P1379
   MICALI N, 1996, PHYS REV E, V54, P1720
   NAKAGAWA S, 1997, CHEM PHYS LETT, V278, P272
   ODUTOLA JA, 1980, J CHEM PHYS, V72, P5062
   PARK HS, 1999, J PHYS CHEM B, V103, P2355
   RAMAN CV, 1930, MOL SCTATTERIN LIGHT, P267
   RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
   RIVELINO R, 2002, J MOL STRUCT, V615, P259
   SCHUTZ M, 1997, J CHEM PHYS, V107, P4597
   STOCKMAN PA, 1997, J CHEM PHYS, V107, P3782
   TERAGISHI Y, 1999, J ELECTROANAL CHEM, V473, P132
   TSUZUKI S, 1999, J CHEM PHYS, V110, P11906
   WEI DQ, 2002, J CHEM PHYS, V116, P6028
   WILSON EB, 1980, MOL VIBRATIONS THEOR
   XANTHEAS SS, 1993, J CHEM PHYS, V99, P8774
   XANTHEAS SS, 1996, J CHEM PHYS, V104, P8821
   ZHOU T, 2000, J PHYS CHEM A, V104, P2204
NR 51
TC 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS-B-AT MOL OPT PHYS
JI J. Phys. B-At. Mol. Opt. Phys.
PD JAN 28
PY 2003
VL 36
IS 2
BP 399
EP 408
PG 10
SC Physics, Atomic, Molecular & Chemical; Optics
GA 642YT
UT ISI:000180835500021
ER

PT J
AU Borges, I
   Varandas, AM
   Rocha, AB
   Bielschowsky, CE
TI Forbidden transitions in benzene
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Herzberg-Teller effect; vibronic coupling; complete active space self
   consistent field wavefunctions
ID JET-COOLED BENZENE; ELECTRONIC-TRANSITION; AB-INITIO; SPECTRA; ACETONE;
   STATES
AB We have computed the optical oscillator strengths for the
   symmetry-forbidden transitions 1 B-1(2u) <-- (X) over tilde and 1
   B-1(1u) <-- (X) over tilde for benzene through vibronic coupling.
   Electronic transition dipole moments were calculated at the complete
   active space self consistent field level along the normal coordinates.
   Optical oscillator strengths for the sum of the total vibronic
   excitations are compared with available theoretical and experimental
   results. (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Dept Fisicoquim, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
   Univ Coimbra, Dept Quim, P-3049 Coimbra, Portugal.
   Univ Fed Rio de Janeiro, Inst Fis, BR-21945 Rio De Janeiro, Brazil.
RP Borges, I, Univ Fed Rio de Janeiro, Dept Fisicoquim, Inst Quim, Cidade
   Univ,CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR ALBRECHT AC, 1960, J CHEM PHYS, V33, P169
   BERGER R, 1998, J PHYS CHEM A, V102, P7157
   BERNHARDSSON A, 2000, J CHEM PHYS, V112, P2798
   BRITH M, 1971, J CHEM PHYS, V54, P5104
   CALLOMON JH, 1966, PHILOS T ROY SOC A, V259, P499
   CHRISTIANSEN O, 1998, J CHEM PHYS, V108, P3987
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   FISHER G, 1977, CHEM PHYS LETT, V49, P427
   GOODMAN L, 1991, J PHYS CHEM-US, V95, P9044
   HARRIS DC, 1989, SYMMETRY SPECTROSCOP
   HEHRE WJ, 1972, J CHEM PHYS, V62, P2921
   HERZBERG G, 1933, Z PHYS CHEM B-CHEM E, V21, P410
   HIRAYA A, 1991, J CHEM PHYS 1, V94, P7700
   KOPPEL H, 1984, ADV CHEM PHYS, V57, P59
   LIAO DW, 1999, J CHEM PHYS, V111, P205
   METZ F, 1977, CHEM PHYS LETT, V51, P8
   MURRELL JN, 1956, P PHYS SOC LOND A, V69, P245
   ORLANDI G, 1994, J CHEM PHYS, V100, P2458
   PANTOS E, 1978, J MOL SPECTROSC, V72, P36
   ROCHA AB, 2000, CHEM PHYS, V253, P51
   ROCHA AB, 2001, CHEM PHYS LETT, V337, P331
   ROCHA AB, 2001, J MOL STRUC-THEOCHEM, V539, P145
   ROCHE M, 1974, J CHEM PHYS, V60, P1193
   ROOS BO, 1992, CHEM PHYS LETT, V192, P5
   SCHUMM S, 2000, J PHYS CHEM A, V104, P10648
   SMALL GJ, 1971, J CHEM PHYS, V54, P3300
   STEPHENSON TA, 1984, J CHEM PHYS, V81, P1060
   WERNER HJ, 2000, MOLPRO
   ZIEGLER L, 1974, J CHEM PHYS, V60, P3558
NR 29
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD FEB 3
PY 2003
VL 621
IS 1-2
BP 99
EP 105
PG 7
SC Chemistry, Physical
GA 640FE
UT ISI:000180677000012
ER

PT J
AU Capelle, K
   Gyorffy, BL
TI Exploring dynamical magnetism with time-dependent density-functional
   theory: From spin fluctuations to Gilbert damping
SO EUROPHYSICS LETTERS
LA English
DT Article
ID FERROMAGNETS; STATE
AB We use time-dependent spin-density-functional theory to study dynamical
   magnetic phenomena. First, we recall that the local-spin-density
   approximation (LSDA) fails to account correctly for magnetic
   fluctuations in the paramagnetic state of iron and other itinerant
   ferromagnets. Next, we construct a gradient-dependent density
   functional that does not suffer from this problem of the LSDA. This
   functional is then used to derive, for the first time, the
   phenomenological Gilbert equation of micromagnetics directly from
   time-dependent density-functional theory. Limitations and extensions of
   Gilbert damping are discussed on this basis, and some comparisons with
   phenomenological theories and experiments are made.
C1 Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim, BR-13560970 Sao Carlos, SP, Brazil.
   Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
RP Capelle, K, Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim, Caixa
   Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR ANTROPOV VP, 1995, PHYS REV LETT, V75, P729
   BROWN WF, 1978, MICROMAGNETICS
   CAPELLE K, 2001, PHYS REV LETT, V87
   EDWARDS DM, 1984, J MAGN MAGN MATER, V45, P151
   GABAUER R, 2000, PHYS REV B, V61, P6459
   GROSS EKU, 1996, TOPICS CURRENT CHEM, V181
   GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337
   HALILOV SV, 1998, PHYS REV B, V58, P293
   LIFSHITZ EM, 1980, COURSE THEORETICAL P, V9
   LONZARICH GG, 1985, J PHYS C SOLID STATE, V18, P4339
   MOHN P, 1987, J PHYS F MET PHYS, V17, P2421
   MORIYA T, 1956, PROG THEOR PHYS, V16, P23
   MURATA KK, 1972, PHYS REV LETT, V29, P285
   NIU Q, 1998, PHYS REV LETT, V80, P2205
   PRINZ GA, 1998, SCIENCE, V282, P1660
   RUNGE E, 1984, PHYS REV LETT, V52, P997
   SAVRASOV SY, 1998, PHYS REV LETT, V81, P2570
   SCHREFL T, 2001, ADV SOLID STATE PHYS, V41, P623
   SCHWITALLA J, 2001, PHYS REV B, V63
   TSERKOVNYAK Y, 2002, PHYS REV LETT, V88
   URBAN R, 2001, PHYS REV LETT, V87
   VANLEEUWEN R, 1999, PHYS REV LETT, V82, P3863
   WOLF SA, 2001, SCIENCE, V294, P1488
NR 23
TC 5
PU E D P SCIENCES
PI LES ULIS CEDEXA
PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
   ULIS CEDEXA, FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD FEB
PY 2003
VL 61
IS 3
BP 354
EP 360
PG 7
SC Physics, Multidisciplinary
GA 639PN
UT ISI:000180638600011
ER

PT J
AU Freedman, TB
   Cao, XL
   Oliveira, RV
   Cass, QB
   Nafie, LA
TI Determination of the absolute configuration and solution conformation
   of gossypol by vibrational circular dichroism
SO CHIRALITY
LA English
DT Article
DE vibrational circular dichroism; gossypol; DFT calculations; absolute
   configuration; solution conformation
ID TUMOR-CELL LINES; BREAST-CANCER; ENANTIOMERS
AB Vibrational circular dichroism (VCD) measurements and density
   functional theory (DFT) calculations were used to obtain the first
   definitive assignment of the absolute configuration for the
   polyphenolic binaphpthyl dialdehyde gossypol and a determination of the
   solution conformation in CDCl3. VCD spectra recorded for the two
   resolved enantiomers are near mirror images and excellent agreement
   between the observed IR and VCD spectra and intensity calculations
   carried out at the DFT (B3LYP/6-31G*) level establish the absolute
   configurations of (+)-gossypol as P and (-)-gossypol as M, with two
   conformations in CDCl3 solution that differ in isopropyl group
   orientation.
C1 Syracuse Univ, Dept Chem, Ctr Sci & Technol 1 014, Syracuse, NY 13244 USA.
   Univ Fed Sao Carlos, Dept Chem, BR-13565905 Sao Carlos, SP, Brazil.
RP Freedman, TB, Syracuse Univ, Dept Chem, Ctr Sci & Technol 1 014,
   Syracuse, NY 13244 USA.
CR BRZEZINSKI B, 1990, J MOL STRUCT, V220, P261
   BUSHUNOW P, 1999, J NEURO-ONCOL, V43, P79
   CASS QB, 1991, PHYTOCHEMISTRY, V30, P2655
   CASS QB, 1995, 18 ANN M BRAZ CHEM S
   CASS QB, 2002, J LIQ CHROMATOGR R T, V25, P819
   CHEESEMAN JR, 1996, CHEM PHYS LETT, V252, P211
   DUKOR RK, 2000, ENCY ANAL CHEM INSTR, P662
   DYATKIN AB, 2002, CHIRALITY, V14, P215
   FISH RG, 1995, TETRAHEDRON-ASYMMETR, V6, P873
   FREEDMAN TB, 2002, HELV CHIM ACTA, V85, P1160
   FRISCH MJ, 1998, GAUSSIAN 98
   HARADA N, 1983, CIRCULAR DICHROIC SP
   HRON RJ, 1999, J AM OIL CHEM SOC, P76
   HUANG L, 1988, COLLECT CZECH CHEM C, V53, P2664
   IBRAGIMOV BT, 1981, KHIM PRIR SOEDIN, V5, P664
   JAROSZEWSKI JW, 1992, CHIRALITY, V4, P216
   JAROSZEWSKI JW, 1992, PLANTA MED, V58, P454
   LINDBERG MC, 1987, INT J ANDROL, V10, P619
   MEYERS AI, 1998, TETRAHEDRON, V54, P10493
   NAFIE LA, 2000, APPL SPECTROSC, V54, P1634
   NAFIE LA, 2000, CIRCULAR DICHROISM P, P97
   NAFIE LA, 2000, ENCY SPECTROSCOPY, P2391
   NAFIE LA, 2001, INFRARED RAMAN SPECT, P15
   POLAVARAPU PL, 2000, FRESEN J ANAL CHEM, V366, P727
   SCHMIDT JH, 1990, J AGR FOOD CHEM, V38, P505
   SEGAL SJ, 1985, GOSSYPOL POTENTIAL A
   SEIDMAN AD, 1998, INVEST MED, V46, A213
   SHAH RD, 2001, CURR OPIN DRUG DISC, V4, P764
   SHELLEY MD, 1999, CANCER LETT, V135, P171
   SHELLEY MD, 2000, ANTI-CANCER DRUG, V11, P209
   SOLLADIECAVALLO A, 2001, TETRAHEDRON-ASYMMETR, V12, P2605
   SOLLADIECAVALLO A, 2001, TETRAHEDRON-ASYMMETR, V12, P2703
   SOLLADIECAVALLO A, 2002, EUR J ORG CHEM   JUN, P1788
   SONENBERG M, 1988, CONTRACEPTION, V37, P247
   STEPHENS PJ, 2000, CHIRALITY, V12, P172
   TALIPOV SA, 1985, KHIM PRIR SOEDIN, V6, P835
   VANPOZNAK C, 2001, BREAST CANCER RES TR, V66, P239
   WAITES GMH, 1998, INT J ANDROL, V21, P8
   WANG XH, 2000, LIFE SCI, V67, P2663
   XU C, 1982, SCI SINICA SER B, V25, P1194
   ZHOU RH, 1988, CONTRACEPTION, V37, P239
NR 41
TC 16
PU WILEY-LISS
PI NEW YORK
PA DIV JOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0899-0042
J9 CHIRALITY
JI Chirality
PD FEB
PY 2003
VL 15
IS 2
BP 196
EP 200
PG 5
SC Chemistry, Analytical; Chemistry, Medicinal; Chemistry, Organic;
   Pharmacology & Pharmacy
GA 640PH
UT ISI:000180696800014
ER

PT J
AU Duarte, HA
   Duani, H
   De Almeida, WB
TI Ab initio correlated comparative study of the torsional potentials for
   2,2-bipyrrole and 2,2 '-bifuran five membered heterocyclic dimers
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID GAUSSIAN-BASIS SETS; MOLECULAR CALCULATIONS; CONDUCTING POLYMERS;
   INTERNAL-ROTATION; POLYPYRROLE; ATOMS; 2,2'-BITHIOPHENE; APPROXIMATION;
   BITHIOPHENE; EXCHANGE
AB This Letter reports an MP4(SDQ) ab initio investigation of the electron
   correlation and basis set effects on the torsional potentials for
   2,2'-bipyrrole and 2,2'-bifuran. Pople's standard basis sets and
   Dunning's double-zeta (D95**) and correlated consistent basis sets
   (aug-cc-pVDZ) were employed. We also included for the first time
   thermal corrections to the ab initio relative energies. The torsional
   potentials were fitted to a truncated Fourier expansion. Our
   MP4(SDQ)/6-311++G** and MP4(SDQ)/aug-cc-pVDZ improved levels show an
   agreement within ca. 2 U mol(-1), indicating that convergence has been
   virtually achieved. Therefore, our new torsional energy data should be
   used as reference for further studies. (C) 2003 Elsevier Science B.V.
   All rights reserved.
C1 Univ Fed Minas Gerais, LQC MM, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, Univ Fed Minas Gerais, LQC MM, Dept Quim, ICEx,
   BR-31270901 Belo Horizonte, MG, Brazil.
CR AYALA PY, 1998, J CHEM PHYS, V108, P2315
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P1372
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   CASIDA ME, 1996, DEMON SOFTWARE DEMON
   CHADWICK JE, 1994, J PHYS CHEM-US, V98, P3631
   CHUANG YY, 2000, J CHEM PHYS, V112, P1221
   DIAZ AF, 1979, J CHEM SOC CHEM COMM, P635
   DIAZ AF, 1998, J CHEM SOC CHEM COMM, P183
   DOSSANTOS HF, 2002, CHEM PHYS, V280, P31
   DUARTE HA, 2000, J CHEM PHYS, V113, P4206
   DUNNING TH, 1976, MODERN THEORETICAL C, V3, P1
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   FRISCH MJ, 1995, GAUSSIAN 94
   GHOSHAL SK, 1989, CHEM PHYS LETT, V158, P65
   HEEGER AJ, 1988, REV MOD PHYS, V60, P781
   INGANAS O, 1988, SYNTHETIC MET, V22, P395
   KANAZAWA KK, 1980, SYNTHETIC MET, V1, P329
   KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
   KRISHNAN R, 1980, J CHEM PHYS, V72, P650
   KUANI H, 2003, IN PRESS P 11 BRAZ S
   LEE C, 1988, PHYS REV B, V37, P785
   MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
   MILLEFIORI S, 1998, J CHEM SOC FARADAY T, V94, P25
   NYGAARD L, 1969, J MOL STRUCT, V3, P491
   ORTI E, 1987, J PHYS CHEM-US, V91, P545
   ORTI E, 1995, J PHYS CHEM-US, V99, P4955
   PATIL AO, 1988, CHEM REV, V88, P183
   PREZYNA LA, 1991, MACROMOLECULES, V24, P5283
   PROYNOV EI, 1995, INT J QUANTUM CHEM S, V29, P61
   SKOTHEIM TA, 1986, HDB CONDUCTING POLYM, V1
   STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
   SZABO A, 1996, MODERN QUANTUM CHEM
   TRUHLAR DG, 1991, J COMPUT CHEM, V12, P266
   VIRUELA PM, 1998, INT J QUANTUM CHEM, V70, P303
   WOON DE, 1993, J CHEM PHYS, V98, P1358
NR 36
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD FEB 7
PY 2003
VL 369
IS 1-2
BP 114
EP 124
PG 11
SC Physics, Atomic, Molecular & Chemical
GA 642GE
UT ISI:000180795200017
ER

PT J
AU Novaes, FD
   da Silva, AJR
   da Silva, EZ
   Fazzio, A
TI Effect of impurities in the large Au-Au distances in gold nanowires
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID LARGE SYSTEMS; ATOMS; MICROSCOPY; WIRE
AB Experimentally obtained atomically thin gold nanowires have presented
   exceedingly large Au-Au interatomic distances before they break. Since
   no theoretical calculations of pure gold nanowires have been able to
   produce such large distances, we have investigated, through ab initio
   calculations, how impurities could affect them. We have studied the
   effect of H, B, C, N, O, and S impurities on the nanowire electronic
   and structural properties, in particular how they affect the maximum
   Au-Au bond length. We find that the most likely candidates to explain
   the distances in the range of 3.6 Angstrom and 4.8 Angstromare H and S
   impurity atoms, respectively.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   UNICAMP, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Novaes, FD, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
   BAHN SR, 2002, PHYS REV B, V66
   DASILVA EZ, UNPUB
   DASILVA EZ, 2001, PHYS REV LETT, V87
   HOHENBERG P, 1964, PHYS REV, V136, B864
   KOHN W, 1965, PHYS REV, V140, A1133
   KOIZUMI H, 2001, ULTRAMICROSCOPY, V88, P17
   KONDO Y, 2000, SCIENCE, V289, P606
   LEGOAS SB, 2002, PHYS REV LETT, V88
   MEHREZ H, 2002, PHYS REV B, V65
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   OHNISHI H, 1998, NATURE, V395, P780
   ORDEJON P, 1996, PHYS REV B, V53
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   RODRIGUES V, 2001, PHYS REV B, V63
   RUBIOBOLLINGER G, 2001, PHYS REV LETT, V87
   SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
   SKORODUMOVA NV, CONDMAT0203162
   TAKAI Y, 2001, PHYS REV LETT, V87
   TORRES JA, 1999, SURF SCI LETT, V83, P441
   TOSATTI E, 2001, SCIENCE, V291, P288
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   UNTIEDT C, 2002, PHYS REV B, V66
   YANSON AI, 1998, NATURE, V395, P783
NR 24
TC 20
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JAN 24
PY 2003
VL 90
IS 3
AR 036101
DI ARTN 036101
PG 4
SC Physics, Multidisciplinary
GA 638PJ
UT ISI:000180579200037
ER

PT J
AU Junqueira, GMA
   Rocha, WR
   De Almeida, WB
   Dos Santos, HF
TI Theoretical analysis of the oxocarbons: The solvent and counter-ion
   effects on the structure and spectroscopic properties of the squarate
   ion
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID DIFFERENTIAL-OVERLAP TECHNIQUE; MOLECULAR-ORBITAL METHODS; MONTE-CARLO;
   INTERMEDIATE NEGLECT; RAMAN-SPECTROSCOPY; CROCONATE DIANION; BASIS SET;
   TRANSITION; WATER; COMPLEXES
AB The squarate anion and their coordination compounds with Li+, Na+ and
   K+ are studied in gas phase and aqueous solution using ab initio
   quantum chemical methods and a sequential Monte Carlo/quantum
   mechanical procedure. The infrared and Raman spectra were calculated
   and the vibrational modes assigned at the second order Moller-Plesset
   perturbation (MP2) level of theory, employing standard split-valence
   basis set with inclusion of polarization and diffuse functions
   (6-31G(d), 6-31+G(d), 6-311+G(d), 6-311+G(2d), 6-311+G(2df)) on the O
   and C atoms. The vibrational analysis showed an important role played
   by the polarization functions on the low frequency vibrations. The
   solvent and counter-ions effects on the electronic spectrum are
   analyzed showing that both should be included in the calculation in
   order to reproduce the observed UV spectrum. This conclusion supports
   our previous analysis on the oxocarbon series.
C1 Univ Fed Juiz de Fora, NEQC, Dept Quim, ICE, BR-36036330 Juiz De Fora, MG, Brazil.
   Univ Fed Pernambuco, Dept Quim Fundamental, CCEN, BR-50740901 Recife, PE, Brazil.
   Univ Fed Minas Gerais, LQC MM, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, NEQC, Dept Quim, ICE, Campus
   Martelos, BR-36036330 Juiz De Fora, MG, Brazil.
CR 1992, HDB CHEM PHYSICS
   AIHARA J, 1981, J AM CHEM SOC, V103, P1633
   ALLEN MP, 1987, COMPUTER SIMULATION
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
   COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
   COUTINHO K, 1997, DICE MONTE CARLO PRO
   COUTINHO K, 2000, J CHEM PHYS, V113, P9132
   DAMM W, 1997, J COMPUT CHEM, V18, P1995
   DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
   DEMIRANDA SG, 2002, J BRAZIL CHEM SOC, V13, P324
   DEOLIVEIRA LFC, 1991, J MOL STRUCT, V245, P215
   DEOLIVEIRA LFC, 1992, J MOL STRUCT, V269, P85
   DEOLIVEIRA LFC, 1999, J MOL STRUCT, V510, P97
   DORY M, 1994, J CHEM SOC FARADAY T, V90, P2319
   DUMESTRE F, 1998, J CHEM SOC DA, V24, P4131
   EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
   EGGERDING D, 1975, J AM CHEM SOC, V97, P207
   FABRE PL, 2000, ELECTROCHIM ACTA, V45, P2697
   FARNELL L, 1981, J MOL STRUCT, V76, P1
   FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GLICK MD, 1964, INORG CHEM, V3, P1712
   GLICK MD, 1966, INORG CHEM, V5, P289
   GONCALVES NS, 1996, ACTA CRYSTALLOGR C 3, V52, P622
   HA TK, 1986, J MOL STRUCT, V137, P183
   HEAD JD, 1986, CHEM PHYS LETT, V131, P359
   ITO M, 1963, J AM CHEM SOC, V85, P2580
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   JUNQUEIRA GMA, 2001, PHYS CHEM CHEM PHYS, V3, P3499
   JUNQUEIRA GMA, 2002, PHYS CHEM CHEM PHYS, V4, P2517
   JUNQUEIRA GMA, 2002, PHYS CHEM CHEM PHYS, V4, P2919
   KRISHNAN R, 1980, J CHEM PHYS, V72, P650
   LOPES JGS, 2001, SPECTROCHIM ACTA A, V57, P399
   MACINTYRE WM, 1964, J CHEM PHYS, V42, P3563
   METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
   PETERSSON GA, 1991, J CHEM PHYS, V94, P6081
   PUEBLA C, 1986, J MOL STRUCT THEOCHE, V137, P171
   QUINONERO D, 2001, CHEM PHYS LETT, V350, P331
   RIBEIRO MCC, 2002, PHYS CHEM CHEM PHYS, V4, P2917
   RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
   ROCHA WR, 2001, CHEM PHYS LETT, V127, P335
   SANTOS PS, 1991, J MOL STRUCT, V243, P223
   SEITZ G, 1992, CHEM REV, V92, P1227
   SPASSOVA M, 2000, J MOL STRUC-THEOCHEM, V528, P151
   TAKAHASHI M, 1978, CHEM PHYS, V35, P293
   TORII H, 1995, J MOL STRUCT THEOCHE, V334, P15
   VON RP, 2000, J ORG CHEM, V65, P426
   WEST R, 1960, J AM CHEM SOC, V82, P6204
   WEST R, 1963, J AM CHEM SOC, V85, P2577
   WEST R, 1963, J AM CHEM SOC, V85, P2586
   WEST R, 1979, J AM CHEM SOC, V101, P1710
   WEST R, 1981, J AM CHEM SOC, V103, P5073
   ZERNER MC, 1980, J AM CHEM SOC, V102, P589
   ZHAO B, 1992, CAN J CHEM, V70, P135
NR 55
TC 3
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
   ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2003
VL 5
IS 3
BP 437
EP 445
PG 9
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 635YG
UT ISI:000180427300002
ER

PT J
AU El Akramine, O
   Lester, WA
   Krokidis, X
   Taft, CA
   Guimaraes, TC
   Pavao, AC
   Zhu, R
TI Quantum Monte Carlo study of the CO interaction with a dimer model
   surface for Cr(110)
SO MOLECULAR PHYSICS
LA English
DT Article
ID ELECTRON LOCALIZATION FUNCTION; METAL-SURFACES; EFFECTIVE POTENTIALS;
   WAVE-FUNCTIONS; CLUSTERS; ATOMS; DISSOCIATION; SIMULATIONS; MOLECULES;
   SOLIDS
AB The chemisorption of CO on a Cr( 110) surface is investigated using the
   quantum Monte Carlo method in the diffusion Monte Carlo (DMC) variant
   and a model Cr2CO cluster. The present results are consistent with the
   earlier ab initio HF study with this model that showed the tilted/
   near-parallel orientation as energetically favoured over the
   perpendicular arrangement. The DMC energy difference between the two
   orientations is larger (1.9 eV) than that computed in the previous
   study. The distribution and reorganization of electrons during CO
   adsorption on the model surface are analysed using the topological
   electron localization function method that yields electron populations,
   charge transfer and clear insight on the chemical bonding that occurs
   with CO adsorption and dissociation on the model surface.
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
   Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA.
   Accelrys, Mat Sci, F-91898 Orsay, France.
   Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
   Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
   Chinese Acad Sci, LNM, Inst Mech, Beijing 100864, Peoples R China.
RP Lester, WA, Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci,
   Berkeley, CA 94720 USA.
CR ANDERSON JB, 1999, REV COMP CH, V13, P133
   ASPURUGUZIK A, UNPUB
   BADER RFW, 1990, ATOMS MOL QUANTUM TH
   BAGUS PS, 1983, PHYS REV B, V28, P5423
   BARTLETT RJ, 1990, CHEM PHYS LETT, V165, P513
   BAUSCHLICHER CW, 1986, J CHEM PHYS, V85, P354
   BECKE AD, 1990, J CHEM PHYS, V92, P5397
   BELOHOREC P, 1993, J CHEM PHYS, V98, P6401
   BLYHOLDER G, 1964, J PHYS CHEM-US, V68, P2772
   BOYS SF, 1969, P ROY SOC LOND A MAT, V310, P43
   CEYER ST, 1988, ANNU REV PHYS CHEM, V39, P479
   CHRISTIANSEN PA, 1991, J CHEM PHYS, V95, P361
   FLAD HJ, 1997, J CHEM PHYS, V107, P7951
   FOULKES WMC, 2001, REV MOD PHYS, V73, P33
   GREEFF CW, 1997, J CHEM PHYS, V106, P6412
   GROSSMAN JC, 2000, J AM CHEM SOC, V122, P705
   GROSSMAN JC, 2001, PHYS REV LETT, V86, P472
   GUIMARAES TC, 1997, PHYS REV B, V56, P7001
   HAMMOND BL, 1994, MONTE CARLO METHODS
   HARKLESS JA, 2001, J CHEM PHYS, V113, P2680
   KROKIDIS X, 1997, J PHYS CHEM A, V101, P7277
   KROKIDIS X, 1998, NEW J CHEM, P1341
   KROKIDIS X, 1999, CHEM PHYS LETT, V314, P534
   LESTER WS, 1997, RECENT ADV QUANTUM M
   LUECHOW A, 2000, ANNU REV PHYS CHEM, V51, P501
   MEHANDRU SP, 1986, SURF SCI, V169, L281
   MITAS L, 1994, PHYS REV A, V49, P4411
   MITAS L, 1996, ADV CHEM PHYS, V93, P1
   NOURY S, 1997, TOPOLOGICAL MOL DESC
   NOURY S, 1999, COMPUT CHEM, V23, P597
   OVCHARENKO IV, 2001, J CHEM PHYS, V114, P9028
   PAVAO AC, 1991, PHYS REV B, V44, P1910
   PAVAO AC, 1994, PHYS REV B, V50, P1868
   PAVAO AC, 1995, SURF SCI, V323, P340
   PAVAO AC, 1999, J MOL STRUC-THEOCHEM, V458, P99
   PAVAO AC, 2001, J PHYS CHEM A, V105, P5
   PEPKE E, 1993, SCIAN
   PLUMMER EW, 1985, SURF SCI, V158, P58
   PORTER AR, 2001, J CHEM PHYS, V114, P7795
   ROTHSTEIN SM, 1996, INT J QUANTUM CHEM, V60, P803
   SCHAUTZ F, 1998, THEOR CHEM ACC, V99, P231
   SCHMIDT KE, 1990, J CHEM PHYS, V93, P4172
   SELVI B, 1994, NATURE, V371, P683
   SHINN ND, 1984, PHYS REV LETT, V53, P2481
   SILVI B, 2000, J PHYS CHEM A, V104, P947
   SOKOLOVA S, 2000, CHEM PHYS LETT, V320, P421
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
   SUNG SS, 1985, J AM CHEM SOC, V107, P578
   TAFT CA, 1999, INT REV PHYS CHEM, V18, P163
   XIAO C, 2001, J MOL STRUC-THEOCHEM, V549, P181
NR 50
TC 4
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0026-8976
J9 MOL PHYS
JI Mol. Phys.
PY 2003
VL 101
IS 1-2
BP 277
EP 285
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 633QC
UT ISI:000180293100030
ER

PT J
AU Freitas, MP
   Tormena, CF
   Rittner, R
   Abraham, RJ
TI Conformational analysis of trans-2-halocyclohexanols and their methyl
   ethers: a H-1 NMR, theoretical and solvation approach
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE trans-1,2-disubstituted cyclohexanes; conformational analysis; NMR;
   density functional theory
ID AB-INITIO; ISOMERISM; CYCLOHEXANES; OH
AB The conformational equilibria of trans-1-methoxy-2-chloro- (1),
   trans-1-methoxy-2-bromo- (2) and trans-1-methoxy-2-iodocyclohexane (3),
   and their corresponding alcohols (4-6), were studied through a combined
   method of NMR, theoretical calculations and solvation theory. They can
   be described in terms of the axial-axial and equatorial-equatorial
   conformations, taking into account the main rotamers of each of these
   conformations. From the NMR experiments at 183 K in (CDCl2)-Cl-2-CS2,
   it was possible to observe proton H-2 in the ax-ax and eq-eq conformers
   separately for 1 and 2, but not for 3, which gave directly their
   populations and conformer energies. In the alcohols the proportion of
   the ax-ax. conformer was too low to be detected by NMR under these
   conditions. Those HH couplings together with the values at room
   temperature, in a variety of solvents allowed the determination of the
   solvent dependence of the conformer energies and hence the vapor state
   energy difference. The DeltaE (E-ax-E-eq) values in the vapor state for
   1, 2 and 3 are -0.05, 0.20 and 0.55 kcal mol(-1), respectively,
   increasing to 1.10, 1.22 and 1.41 kcal mol(-1) in CD3CN solution (I
   kcal = 4.184 kJ). For 4-6 the eq-eq conformation is always much more
   stable in both non-polar and polar solvents, with energy differences
   ranging from 1.78, 1.94 and 1.86 kcal mol(-1) (in CCl4) to 1.27, 1.49
   and 1.54 kcal mol(-1) (in DMSO), respectively. Comparison of the
   hydroxy and methoxy compounds gives the intramolecular hydrogen bonding
   energy for the alcohols as 1.40, 1.36 and 1.00 kcal mol(-1) (in CCl4)
   for 4, 5 and 6, respectively. Copyright (C) 2002 John Wiley Sons, Ltd.
C1 UNICAMP, Phys Organ Chem Lab, Inst Quim, BR-13084971 Campinas, SP, Brazil.
   Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Rittner, R, UNICAMP, Phys Organ Chem Lab, Inst Quim, Caixa Postal 6154,
   BR-13084971 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
   ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
   ABRAHAM RJ, 1996, J CHEM SOC PERK  APR, P533
   ABRAHAM RJ, 1996, J CHEM SOC PERK  SEP, P1949
   ABRAHAM RJ, 1999, J CHEM SOC PERK  AUG, P1663
   ALLINGER J, 1958, TETRAHEDRON, V2, P64
   ALLINGER NL, 1958, J AM CHEM SOC, V80, P5476
   BAJWA JS, 1991, TETRAHEDRON LETT, V32, P3021
   BASSO EA, 1993, J ORG CHEM, V58, P7865
   BERVELT JP, 1968, SPECTROCHIM ACTA A, V24, P1411
   BODOT H, 1967, B SOC CHIM FR, P870
   CARRENO MC, 1990, TETRAHEDRON, V46, P5649
   COLLIN P, 1995, MONOSACCHARIDES THEI
   CRAIG NC, 1997, J AM CHEM SOC, V119, P4789
   EPIOTIS ND, 1973, J AM CHEM SOC, V95, P3087
   FREITAS MP, 2001, J MOL STRUCT, V570, P175
   FREITAS MP, 2001, J PHYS ORG CHEM, V14, P317
   FRISCH MJ, 1998, GAUSSIAN 98
   GANGULY B, 2000, J ORG CHEM, V65, P558
   GUSS CO, 1955, J AM CHEM SOC, V77, P2549
   JONES DC, 1928, J CHEM SOC, P1193
   KAY JB, 1970, J PHARM PHARMACOL, V22, P214
   LAGOWSKI JJ, 1976, CHEM NONAQUEOUS SOLV, V3
   LI ZH, 2001, J PHYS CHEM A, V105, P10890
   RABLEN PR, 1999, J CHEM SOC PERK  AUG, P1719
   ROCKWELL GD, 1996, AUST J CHEM, V49, P379
   SENDEROWITZ H, 1997, THEOCHEM-J MOL STRUC, V395, P123
   SOSNOVSKII GM, 1990, ZH ORG KHIM, V26, P911
   TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
   WIBERG KB, 1990, J PHYS CHEM-US, V94, P6956
   WOLFE S, 1967, J CHEM SOC CHEM COMM, P872
   ZEFIROV NS, 1976, TETRAHEDRON, V32, P1211
   ZEFIROV NS, 1978, TETRAHEDRON, V34, P2953
NR 33
TC 4
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD JAN
PY 2003
VL 16
IS 1
BP 27
EP 33
PG 7
SC Chemistry, Organic; Chemistry, Physical
GA 635PB
UT ISI:000180407000005
ER

PT J
AU Miwa, RH
   Srivastava, GP
TI Self-organized Bi lines on the Si(001) surface: A theoretical study
SO PHYSICAL REVIEW B
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; ELECTRONIC-STRUCTURE; SI(100) SURFACE;
   BISMUTH; X-1); PSEUDOPOTENTIALS; NANOWIRE; GROWTH; CHAINS; STATE
AB We have performed an ab initio theoretical study of the stability,
   atomic geometry, and electronic structure of the self-organized Bi
   lines on the Si(001) surface. We have examined the two currently
   proposed models and two new hybrid models for the structure of Bi
   lines. Our results confirm the model proposed by Miki , in which the Bi
   lines are formed by Bi dimers parallel to the surrounding Si dimers,
   with a missing dimer row between the Bi dimers. However, in contrast to
   the proposal of symmetrically disposed surface Si dimers (i.e., with no
   buckling) by Miki , our total-energy calculations indicate that the
   buckling of the Si dimers is an exothermic process, reducing the
   surface total energy by 0.11 eV/dimer. Our theoretically simulated
   scanning tunneling microscopy results suggest a low density of states
   close to the valence-band maximum, localized on the Bi lines,
   supporting the recently proposed model of quantum antiwire systems for
   Bi lines on the Si(001) surface.
C1 Univ Fed Uberlandia, Fac Fis, BR-38400902 Uberlandia, MG, Brazil.
   Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP Miwa, RH, Univ Fed Uberlandia, Fac Fis, Caixa Postal 593, BR-38400902
   Uberlandia, MG, Brazil.
CR ABUKAWA T, 1995, SURF SCI, V325, P33
   BOWLER DR, 2000, PHYS REV B, V62, P7237
   BUNK O, 1999, PHYS REV B, V59, P12228
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CHO JH, 2001, PHYS REV B, V64
   DABROWSKI J, 1992, APPL SURF SCI, V56, P15
   GAY SCA, 1999, PHYS REV B, V60, P1488
   GONZE X, 1991, PHYS REV B, V44, P8503
   JENKINS SJ, 1996, J PHYS-CONDENS MAT, V8, P6641
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   LOUIE SG, 1982, PHYS REV B, V26, P1738
   MIKI K, 1999, PHYS REV B, V59, P14868
   MIKI K, 1999, SURF SCI, V421, P397
   MIWA RH, 2001, SURF SCI, V473, P123
   MIWA RH, 2002, SURF SCI, V507, P368
   NAITOH M, 1997, SURF SCI, V377, P899
   NAITOH M, 1999, APPL SURF SCI, V142, P38
   NAITOH M, 2000, JPN J APPL PHYS 1, V39, P2793
   NAITOH M, 2001, SURF SCI 2, V482, P1440
   NAKAMURA J, 2001, PHYS REV B, V63
   NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   SHIMOMURA M, 2000, SURF SCI, V447, L169
   TERSOFF J, 1985, PHYS REV B, V31, P805
   TUTUNCU HM, 1997, PHYS REV B, V56, P4656
   TUTUNCU HM, 2000, SURF SCI, V454, P504
   YEOM HW, 1999, PHYS REV LETT, V82, P4898
NR 27
TC 9
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD DEC 15
PY 2002
VL 66
IS 23
AR 235317
DI ARTN 235317
PG 6
SC Physics, Condensed Matter
GA 633JL
UT ISI:000180279400084
ER

PT J
AU Gomez, JA
   Guenzburger, D
TI Hyperfine fields and field gradients of thin films of
   face-centred-cubic Fe on Cu(001)
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; FCC IRON FILMS; GAMMA-FE; FE/CU(001)
   OVERLAYERS; COMPLEX RECONSTRUCTION; ELECTRONIC-STRUCTURE;
   MAGNETIC-PROPERTIES; FIRST-PRINCIPLES; ULTRATHIN FILMS; GROUND-STATE
AB The discrete variational method in density functional theory was
   employed to perform first-principles electronic structure calculations
   for embedded clusters representing thin films of face-centred-cubic Fe
   on a Cu(001) substrate. 3, 4 and 5 ML of Fe were investigated; the
   ferromagnetic and several types of antiferromagnetic spin
   configurations were considered. Layer-by-layer calculations of the
   contact and dipolar components of the magnetic hyperfine field are
   reported, as well as electric-field gradients at the surface and
   interface layers. Significant field gradients were found at the
   surfaces. Clusters modelling the interdiffusion of Fe and Cu between
   two layers at the interface were also investigated, to determine the
   effects on the properties.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil.
RP Gomez, JA, Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150,
   BR-22290180 Rio De Janeiro, RJ, Brazil.
CR ABRAGAM A, 1961, PRINCIPLES NUCL MAGN
   ALLENSPACH R, 1994, J MAGN MAGN MATER, V129, P160
   ASADA T, 1997, PHYS REV LETT, V79, P507
   BLAHA P, 1988, PHYS REV B, V37, P2792
   CEPERLEY D, 1978, PHYS REV B, V18, P3126
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   DELLEY B, 1982, J CHEM PHYS, V76, P1949
   DUNN JH, 1996, PHYS REV B, V54
   ELLERBROCK RD, 1995, PHYS REV LETT, V74, P3053
   ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
   ELLIS DE, 1970, PHYS REV           B, V2, P2887
   ELLIS DE, 1999, ADV QUANTUM CHEM, V34, P51
   FERNANDO GW, 1988, PHYS REV B, V38, P3016
   FU CL, 1987, PHYS REV B, V35, P925
   GOMEZ JA, 2001, J MAGN MAGN MATER 1, V226, P381
   GOMEZ JA, 2001, PHYS REV B, V63
   GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
   GUENZBURGER D, 1995, PHYS REV B, V51, P12519
   GUENZBURGER D, 1995, PHYS REV B, V52, P13390
   GUO GY, 1996, HYPERFINE INTERACT, V97, P11
   GUO GY, 1996, PHYS REV B, V53, P2492
   HALBAUER R, 1983, J MAGN MAGN MATER, V35, P55
   HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V1
   HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2
   HEINZ K, 1996, SURF SCI, V352, P942
   KEUNE W, 1989, PHYSICA B, V161, P269
   KEUNE W, 1996, J APPL PHYS 1, V79, P4265
   KIRK KJ, 2000, CONTEMP PHYS, V41, P61
   LI C, 1990, J MAGN MAGN MATER, V83, P51
   LI DQ, 1994, PHYS REV LETT, V72, P3112
   LINDGREN B, 1990, EUROPHYS LETT, V11, P555
   MACEDO WAA, 1988, PHYS REV LETT, V61, P475
   MACEDO WAA, 1991, J MAGN MAGN MATER, V93, P552
   MAGNAN H, 1991, PHYS REV LETT, V67, P859
   MORONI EG, 1999, J MAGN MAGN MATER, V198, P551
   MORONI EG, 1999, J PHYS-CONDENS MAT, V11, L35
   MORUZZI VL, 1986, PHYS REV B, V34, P1784
   MRYASOV ON, 1992, PHYS REV B, V45, P12330
   MULLER S, 1995, PHYS REV LETT, V74, P765
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
   PARR RG, 1989, DENSITY FUNCTIONAL A
   PEDUTO PR, 1997, BRAZ J PHYS, V27, P574
   PESCIA D, 1987, PHYS REV LETT, V58, P2126
   PIZZINI S, 1995, PHYS REV LETT, V74, P1470
   POPESCU V, 2000, PHYS REV B, V61, P15241
   QIAN D, 2001, PHYS REV LETT, V87
   SCHMITZ D, 1999, PHYS REV B, V59, P4327
   SPISAK D, 2000, PHYS REV B, V61, P16129
   STRAUB M, 1996, PHYS REV LETT, V77, P743
   SZUNYOGH L, 1997, PHYS REV B, V55, P14392
   THOMASSEN J, 1992, PHYS REV LETT, V69, P3831
   UHL M, 1992, J MAGN MAGN MATER, V103, P314
   UJFALUSSY B, 1996, PHYS REV B, V54, P9883
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
   WANG CS, 1985, PHYS REV LETT, V54, P1852
   WUTTIG M, 1993, SURF SCI, V282, P237
   ZHARNIKOV M, 1996, PHYS REV LETT, V76, P4620
NR 58
TC 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD DEC 2
PY 2002
VL 14
IS 47
BP 12311
EP 12328
PG 18
SC Physics, Condensed Matter
GA 634DC
UT ISI:000180323900011
ER

PT J
AU Machado, AED
   de Miranda, JA
   Guilardi, S
   Nicodem, DE
   Severino, D
TI Photophysics and spectroscopic properties of
   3-benzoxazol-2-yl-chromen-2-one
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE photophysics; coumarin derivative; molecular structure; electronic
   structure; PM3; ZINDO/S; ab initio
ID DERIVATIVES; COUMARINS; COMPOUND; SOLVENT; STATE; AM1
AB The photophysics of 3-benzoxazol-2-yl-chromen-2-one was studied in
   different solvents. High molar absorptivities, between 14 800 and 22
   900 dm(3)/mol cm, were observed for the absorption peak related to the
   S-0 --> S-1 transition which suggests a pi --> pi*character. This
   compound presents a limited solvatochromism, attributed to the
   benzoxazole group, and high fluorescence quantum yields, Phi(f). The
   fluorescence quantum yield is lowered with the increase of solvent
   polarity, favouring the participation of internal conversion as
   deactivation path of the S, state. The Stokes shift shows that the
   excited state is stabilised with increasing solvent polarity. The
   dipole moment was estimated by ab initio calculations as being between
   5.28 and 5.62 Debye for S-1, and 4.75 Debye for S-0. Phosphorescence
   was not observed. A small but not negligible quantum yield of singlet
   oxygen generation ((Phi(Delta) = 0.15) was measured in chloroform. The
   geometric parameters obtained by semi-empirical calculation (PM3) are
   in good agreement with crystallographic data, showing a r.m.s.
   deviation of 0.153 Angstrom for the superposition of both structures.
   The predicted structure is all planar, while the crystallographic data
   reveal a dihedral angle of 6.5degrees, between the coumarin and
   benzoxazole rings. The theoretical description of the electronic
   spectra, obtained from a PM3 CI calculation, shows excellent agreement
   with the experimental data. Deviations lower than 2% are observed in
   the predicted absorption maxima, with best results when solvation is
   considered. For electronic states calculation, ZINDO/S gave a better
   prediction of excited state energies, with a deviation lower than 7%
   for the S, energy. The most probable sequence for the first four
   excited states is: T-1(npi*) < T-2(pipi*) < S-1(pipi*) < S-2(npi*). (C)
   2002 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Uberlandia, Inst Quim, Lab Fotoquim, GFQL, BR-38400089 Uberlandia, MG, Brazil.
   Univ Fed Rio de Janeiro, Inst Quim, Lab Espectroscopia Resolvida Tempo, BR-21949900 Rio De Janeiro, Brazil.
RP Machado, AED, Univ Fed Uberlandia, Inst Quim, Lab Fotoquim, GFQL, POB
   593, BR-38400089 Uberlandia, MG, Brazil.
CR 1999, HYPERCHEMISTRY 5 11
   ARBELOA TL, 1993, J PHYS CHEM-US, V97, P4704
   DEMELO JSS, 1994, J PHYS CHEM-US, V98, P6054
   DREXHAGE KH, 1973, TOPICS APPL PHYSICS, V1
   EATON DF, 1988, PURE APPL CHEM, V60, P1107
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GAO F, 2000, DYES PIGMENTS, V47, P231
   GILBERT A, 1991, ESSENTIALS MOL PHOTO
   GUILARDI S, UNPUB
   JONES G, 1994, J PHYS CHEM-US, V98, P13028
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   KRASOVITSKII BM, 1988, ORGANIC LUMINESCENT, CH7
   LAKOWICZ JR, 1999, PRINCIPLES FLUORESCE
   LIPPERT E, 1955, Z NATURFORSCHG     A, V10, P541
   LUAN XH, UNPUB ADV COLOUR SCI
   MACHADO AED, 2001, J PHOTOCH PHOTOBIO A, V141, P109
   MACHADO AEH, UNPUB
   MACHADO AEH, 2001, J PHOTOCH PHOTOBIO A, V146, P72
   MCCARTHY PK, 1993, J PHYS CHEM-US, V97, P12205
   MIRANDA JA, 2001, THESIS U FEDERAL UBE
   RAJU BB, 1994, J PHYS CHEM-US, V98, P8903
   RAJU BB, 1998, J PHOTOCH PHOTOBIO A, V116, P135
   REICHARDT C, 1988, SOLVENTS SOLVENT EFF
   SCHMIDT R, 1994, J PHOTOCH PHOTOBIO A, V79, P11
   SILVERSTEIN RM, 1991, SPECTROMETRIC IDENTI
   TURRO NJ, 1991, MODERN MOL PHOTOCHEM
   WHEELOCK CE, 1959, J AM CHEM SOC, V81, P1348
NR 27
TC 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JAN 1
PY 2003
VL 59
IS 2
BP 345
EP 355
PG 11
SC Spectroscopy
GA 626PY
UT ISI:000179882900017
ER

PT J
AU Bruns, RE
   Haiduke, RLA
   do Amaral, AT
TI The linear relationship between Koopmans' and hydrogen bond energies
   for some simple carbonyl molecules
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE hydrogen bonding; atomic charges; Koopmans' energy; QSAR
ID DIPOLE-MOMENT DERIVATIVES; FIELD ANALYSIS; AB-INITIO;
   CONFORMATIONAL-ANALYSIS; SEMIEMPIRICAL METHODS; INFRARED INTENSITIES;
   ATOMIC CHARGES; POLAR TENSORS; DESCRIPTORS; POTENTIALS
AB Recently Galabov and Bobadova-Parvanova have shown that the energy of
   hydrogen bond formation calculated at the HF/6-31G(d,p) level is highly
   correlated with the molecular electrostatic potential at the acceptor
   site for a number of simple carbonyl compounds. Here it is shown that
   the electrostatic potential can be replaced by Koopmans' energy. The
   correlation between this energy and the hydrogen bond formation energy
   is just as high as the one observed by Galabov and Bobadova-Parvanova.
   The Siegbahn simple potential relating Koopmans' energies and GAPT
   charges shows that the hydrogen bond energy is not simply correlated
   with the charge of the acceptor site because the charges on the
   neighboring atoms are also important in the hydrogen bonding process.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
   Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Bruns, RE, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13083970
   Campinas, SP, Brazil.
CR BESLER BH, 1990, J COMPUT CHEM, V11, P431
   BIARGE JF, 1961, ANALES REAL SOC ES A, V57, P81
   BOBADOVAPARVANOVA P, 1998, J PHYS CHEM A, V102, P1815
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   BUREAU R, 1996, QUANT STRUCT-ACT REL, V15, P373
   CIOSLOWSKI J, 1989, J AM CHEM SOC, V111, P8333
   DEOLIVEIRA AE, 2000, J PHYS CHEM A, V104, P5320
   FOLKERS G, 1993, 3D QSAR DRUG DESIGN, P583
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GALABOV B, 1999, J PHYS CHEM A, V103, P6793
   GANCIA E, 2000, J COMPUT AID MOL DES, V14, P293
   GUADAGNINI PH, 1997, J AM CHEM SOC, V119, P4224
   HAIDUKE RLA, 2002, J PHYS CHEM A, V106, P1824
   KARELSON M, 1996, CHEM REV, V96, P1027
   KROEMER RT, 1996, J COMPUT CHEM, V17, P1296
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   NAVAJAS C, 1996, QUANT STRUCT-ACT REL, V15, P189
   OVEREND J, 1963, INFRARED SPECTROSCOP, CH10
   PERSON WB, 1974, J CHEM PHYS, V61, P1040
   RECANATINI M, 1996, J COMPUT AID MOL DES, V10, P74
   TONMUNPHEAN S, 1998, J COMPUT AID MOL DES, V12, P397
   WALLER CL, 1993, J MED CHEM, V36, P2390
   WILSON EB, 1955, MOL VIBRATIONS
NR 23
TC 3
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD NOV-DEC
PY 2002
VL 13
IS 6
BP 800
EP 805
PG 6
SC Chemistry, Multidisciplinary
GA 627DC
UT ISI:000179914600011
ER

PT J
AU de Andrade, J
   Boes, ES
   Stassen, H
TI Computational study of room temperature molten salts composed by
   1-alkyl-3-methylimidazolium cations-force-field proposal and validation
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID IONIC LIQUIDS; CHLOROALUMINATE MELTS; MOLECULAR-DYNAMICS; IMIDAZOLIUM
   SALTS; SIMULATIONS; CATALYSIS; SOLVENTS; SPECTROSCOPY; CHLORIDE; SEARCH
AB We present a complete force field for liquid-state simulations on ionic
   liquids containing 1-ethyl-3-methylimidazolium and
   1-n-butyl-3-methylimidazolium cations and the tetrachloroaluminate and
   tetrafluoroborate anions. The force field is compatible with the AMBER
   methodology and is easily extendable to other dialkylimidazolium salts.
   On the basis of the general AMBER procedures to develop lacking
   intramolecular parameters and the RESP approach to calculate the atomic
   point charges, we obtained an all-atom force field which was validated
   against the experimental density, diffusion coefficient, vibrational
   frequencies, as well as X-ray (crystal state) and neutron (liquid
   state) diffraction structural data. Moreover, molecular mechanics
   calculations for the developed force field produce the cation's
   structures and dipole moments in very good agreement with quantum
   mechanical ab initio calculations. In addition, a basic study
   concerning the simulated liquid structure in terms of the radial
   distribution functions has been undertaken using molecular dynamics
   simulation. In summary, we achieved a very consistent picture in the
   computed data for the four room-temperature molten salts.
C1 Univ Fed Rio Grande Sul, Inst Quim, Grp Quim Teor, BR-91540000 Porto Alegre, RS, Brazil.
RP Stassen, H, Univ Fed Rio Grande Sul, Inst Quim, Grp Quim Teor,
   BR-91540000 Porto Alegre, RS, Brazil.
CR AKDENIZ Z, 1999, Z NATURFORSCH A, V54, P180
   ALLEN MP, 1987, COMPUTER SIMULATIONS
   BAYLY CI, 1993, J PHYS CHEM-US, V97, P10269
   BOLM C, 1999, ANGEW CHEM INT EDIT, V38, P907
   CAMPBELL JLE, 1994, INORG CHEM, V33, P3340
   CASE DA, 1999, AMBER, V6
   CHITRA R, 1997, J PHYS CHEM B, V101, P5437
   CORNELL WD, 1995, J AM CHEM SOC, V117, P5179
   DEANDRADE J, 2002, J PHYS CHEM B, V106, P3546
   DUDEK MJ, 1998, J COMPUT CHEM, V19, P548
   DUPONT J, 2000, CHEM-EUR J, V6, P2377
   DUPONT J, 2000, J BRAZIL CHEM SOC, V11, P337
   DYMEK CJ, 1989, INORG CHEM, V28, P1472
   ELAIWI A, 1995, J CHEM SOC DA, P3467
   FANNIN AA, 1984, J PHYS CHEM-US, V88, P2614
   FISH RH, 1999, CHEM-EUR J, V5, P1677
   FOX T, 1998, J PHYS CHEM B, V102, P8070
   FRANCL MM, 1982, J CHEM PHYS, V77, P3654
   GORDON CM, 1998, J MATER CHEM, V8, P2627
   GOUGH CA, 1992, J COMPUT CHEM, V13, P963
   HAGIWARA R, 2000, J FLUORINE CHEM, V105, P221
   HANKE CG, 2001, MOL PHYS, V99, P801
   HANKE CG, 2002, GREEN CHEM, V4, P107
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
   HUGHES DJ, 1955, US ATOMIC ENERGY COM
   JESSOP PG, 1999, CHEM REV, V99, P475
   KAUPP G, 1994, ANGEW CHEM INT EDIT, V33, P1452
   KAUPP G, 1994, ANGEW CHEM, V106, P1519
   LARIVE CK, 1995, J PHYS CHEM-US, V99, P12409
   LIDE DR, 1999, HDB CHEM PHYSICS
   LYUBARTSEV AP, 2000, COMPUT PHYS COMMUN, V128, P565
   MARTYNA GJ, 1996, MOL PHYS, V87, P1117
   MAYO SL, 1990, J PHYS CHEM-US, V94, P8897
   MENG Z, 2002, J MOL STRUC-THEOCHEM, V585, P119
   PAPPU RV, 1998, J PHYS CHEM B, V102, P9725
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SHAH JK, 2002, GREEN CHEM, V4, P112
   SUAREZ PAZ, 1998, J CHIM PHYS PCB, V95, P1626
   TAKAHASHI S, 1995, INORG CHEM, V34, P2990
   TAKAHASHI S, 1999, Z PHYS CHEM 2, V209, P209
   TOSI MP, 1993, ANNU REV PHYS CHEM, V44, P173
   TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
   WASSERSCHEID P, 2000, ANGEW CHEM INT EDIT, V39, P3772
   WELTON T, 1999, CHEM REV, V99, P2071
   WILKES JS, 1982, INORG CHEM, V21, P1263
NR 45
TC 32
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD DEC 26
PY 2002
VL 106
IS 51
BP 13344
EP 13351
PG 8
SC Chemistry, Physical
GA 628GQ
UT ISI:000179985100035
ER

PT J
AU Oliveira, HPM
   Camargo, AJ
   Macedo, LG
   Gehlen, MH
   da Silva, ABF
TI Synthesis, structure, electronic and vibrational spectra of
   9-(diethylamino)-benzo(a)phenoxazin-7-ium-5-N-methacrylamide
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE dye laser; Nile Blue; photophysical properties; DFT calculations
ID DENSITY-FUNCTIONAL THERMOCHEMISTRY; NILE-RED; ZIRCONIUM-PHOSPHATE;
   PROTON-TRANSFER; DYES; FLUORESCENCE; ANISOTROPY; EXCHANGE; DYNAMICS;
   BLUE
AB The electronic and vibrational spectra of
   9-(Diethylamino)-benzo(a)phenoxazin-7-ium-5-N-methacrylamide (Nile
   Blue-5-N-methacrylamide) are measured, and the results are compared
   with the theoretical values obtained by quantum chemical calculations.
   The geometry, electronic transitions, charge distribution, and the IR
   normal modes of this new dye and of its precursor Nile Blue have been
   computed by using Density Functional Theory (DFT) method with the
   functional B3LYP and the 6-31G(d) Gaussian basis set. The molecular
   properties of the two dyes, predicted and observed, are very similar in
   the electronic ground state. In the excited state, however, the longer
   lifetime and larger fluorescence quantum yield of the Nile
   Blue-5-methacrylamide is ascribed to an inhibition of the twisted
   intramolecular charge transfer (TICT) process, when the NH2 is
   substituted by the methacrylamide in the 5-position of the aromatic
   extended ring of the dye. The change in charge density of the N atom in
   5-position, as well as the difference in dipole moment and ionization
   potential of the two dyes molecules, explain the attenuation of TICT
   process. The vibration spectra of both dyes are simulated properly by
   using the DFT method. (C) 2002 Elsevier Science B.V. All rights
   reserved.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
RP Gehlen, MH, Univ Sao Paulo, Inst Quim Sao Carlos, CP 780, BR-13560970
   Sao Carlos, SP, Brazil.
CR BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1992, J CHEM PHYS, V96, P2155
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   DEBACKER S, 1996, J PHYS CHEM-US, V100, P512
   DIAS LC, 1999, CHEM PHYS LETT, V302, P505
   DUNKERS J, 1995, SPECTROCHIM ACTA A, V51, P1061
   DUTT GB, 1991, J CHEM PHYS, V94, P5360
   DUTTA AK, 1996, J PHOTOCH PHOTOBIO A, V93, P57
   GHONEIM N, 2000, SPECTROCHIM ACTA A, V56, P1003
   GOLINI CM, 1998, J FLUORESC, V8, P395
   GROFCSIK A, 1996, CHEM PHYS LETT, V250, P261
   GROFCSIK A, 2000, J MOL STRUCT, V555, P15
   KICQ P, 1987, BIOELECTROCH BIOENER, V17, P277
   LEE C, 1988, PHYS REV B, V37, P785
   MALINAUSKAS A, 2000, J ELECTROANAL CHEM, V484, P55
   NAKASHIMA K, 1993, LANGMUIR, V9, P2825
   PESSOA CA, 1997, J ELECTROANAL CHEM, V431, P23
   SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
   SOMLOI J, 1992, SPECTROCHIM ACTA A, V48, P77
   SOUTAR I, 1996, J PHOTOCH PHOTOBIO A, V102, P87
   VISWANATHAN K, 1996, J PHOTOCH PHOTOBIO A, V95, P245
   WONG MW, 1996, CHEM PHYS LETT, V256, P391
NR 22
TC 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD DEC
PY 2002
VL 58
IS 14
BP 3103
EP 3111
PG 9
SC Spectroscopy
GA 620CD
UT ISI:000179514900007
ER

PT J
AU Menegon, G
   Shimizu, K
   Farah, JPS
   Dias, LG
   Chaimovich, H
TI Parameterization of the electronegativity equalization method based on
   the charge model 1
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID ATOMIC CHARGES; AB-INITIO; ELECTROSTATIC POTENTIALS; MOLECULES;
   HARDNESS; POLARIZABILITY; DEPENDENCE; CHEMISTRY
AB Fast calculation of charge distributions in molecules is feasible in
   the electronegativity equalization method, EEM. Atomic
   electronegativities and hardnesses, fundamental parameters in EEM, were
   obtained here by using CM1 atomic charges at semiempirical PM3 level as
   targets. A new optimization approach composed of Genetic and Simplex
   algorithms is also described. The correlation between EEM and CM1
   charges improved considerably (correlation coefficient improved from
   0.931 to 0.977, standard deviation from 0.079 to 0.032 and Fisher's F
   from 31 627 to 102 977, for 4093 data points) in comparison to previous
   EEM parameters ( L. G. Dias et al., Chem. Phys., 2002, 282, 237, ref.
   23). Atomic parameters obtained here are discussed and compared to
   other EEM schemes and to parameters derived from empirical approaches.
C1 Univ Sao Paulo, Inst Chem, Dept Biochem, Sao Paulo, Brazil.
   Univ Sao Paulo, Inst Chem, Dept Chem, Sao Paulo, Brazil.
RP Menegon, G, Univ Sao Paulo, Inst Chem, Dept Biochem, Sao Paulo, Brazil.
CR BADER RFW, 1981, ADV QUANTUM CHEM, V14, P63
   BAKOWIES D, 1996, J COMPUT CHEM, V17, P87
   BANKS JL, 1999, J CHEM PHYS, V110, P741
   BAYLY CI, 1993, J PHYS CHEM-US, V97, P10269
   CHAMBERS CC, 1996, J PHYS CHEM-US, V100, P16385
   CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
   CHO KH, 2001, J PHYS CHEM B, V105, P3624
   CONG Y, 2000, CHEM PHYS LETT, V316, P324
   DEPROFT F, 1993, J PHYS CHEM-US, V97, P1826
   DIAS LG, 2002, CHEM PHYS, V282, P237
   GOLDBERG DE, 1989, GENETIC ALGORITHMS S
   HAWKINS GD, 1999, AMSOL VERSION6 6
   KOMATSUZAKI T, 1996, MOL SIMULAT, V16, P321
   KOMOROWSKI L, 1987, CHEM PHYS, V114, P55
   LI JB, 1998, J PHYS CHEM A, V102, P1820
   LIU YP, 1998, J CHEM PHYS, V108, P4739
   LOWDIN PO, 1950, J CHEM PHYS, V18, P365
   MARTIN B, 2000, INT J QUANTUM CHEM, V77, P473
   MILLER KJ, 1990, J AM CHEM SOC, V112, P8533
   MORTIER WJ, 1985, J AM CHEM SOC, V107, P829
   MORTIER WJ, 1986, J AM CHEM SOC, V108, P4315
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   NALEWAJSKI RF, 1988, INT J QUANT CHEM S, V22, P349
   NO KT, 1993, J AM CHEM SOC, V115, P2005
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PEARSON RG, 1988, INORG CHEM, V27, P734
   PRESS WH, 1992, NUMERICAL RECIPES FO
   REED AE, 1985, J CHEM PHYS, V83, P735
   RIBEIRO MCC, 1999, J CHEM PHYS, V110, P11445
   RIBEIRO MCC, 2000, J CHEM PHYS, V113, P4722
   STORER JW, 1995, J COMPUT AID MOL DES, V9, P87
   TOUFAR H, 1996, J PHYS CHEM-US, V100, P15383
   YANG ZZ, 1997, J PHYS CHEM A, V101, P6315
NR 33
TC 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
   ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2002
VL 4
IS 24
BP 5933
EP 5936
PG 4
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 620XD
UT ISI:000179558000003
ER

PT J
AU Pereira, AS
   Perottoni, CA
   da Jornada, JAH
   Leger, JM
   Haines, J
TI Compressibility of AlB2-type transition metal diborides
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID TITANIUM DIBORIDE; STATE
AB The pressure behaviour of a series of transition metal borides has been
   studied both experimentally and by means of ab initio calculations.
   X-ray diffraction patterns measured up to similar to50 GPa for VB2 and
   ZrB2 show no obvious phase transition. Bulk moduli of 322 and 317 GPa,
   respectively, were obtained using a Murnaghan equation of state.
   Hartree-Fock LCCO (linear combination of crystal orbitals) calculations
   performed for TiB2 have allowed its compression behaviour to be
   studied. The bulk modulus obtained (292 GPa) and the proposed important
   contribution of the interlayer interaction to the elastic behaviour
   under high pressure are consistent with the experimental results for
   the other borides.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
   UFRGS, Escola Engn, BR-90035190 Porto Alegre, RS, Brazil.
   Univ Caxias Sul, Ctr Ciencias Exatas & Tecnol, BR-95070560 Caxias Do Sul, RS, Brazil.
   Inst Nacl Metrol Normalizacao & Qualidade Ind, Duque De Caxias, RJ, Brazil.
   Lab Proprietes Mecan & Thermodynam Mat, Villetaneuse, France.
   Univ Montpellier 2, Lab Phys Chim Mat Condensee, Montpellier, France.
RP Pereira, AS, Univ Fed Rio Grande Sul, Inst Fis, Caixa Postal 15051,
   BR-91501970 Porto Alegre, RS, Brazil.
CR CHEN XL, 2001, J PHYS-CONDENS MAT, V13, L723
   CUTLER RA, 1991, ENG PROPERTIES BORID
   MUNRO RG, 2000, J RES NATL INST STAN, V105, P709
   PEROTTONI CA, 2000, J PHYS-CONDENS MAT, V12, P7205
   PISANI C, 1988, SPRINGER LECT NOTES, V48
   VAJEESTON P, 2001, PHYS REV B, V63
NR 6
TC 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD NOV 11
PY 2002
VL 14
IS 44
BP 10615
EP 10618
PG 4
SC Physics, Condensed Matter
GA 620PL
UT ISI:000179541700043
ER

PT J
AU Rivelino, R
   Coutinho, K
   Canuto, S
TI A Monte Carlo-quantum mechanics study of the solvent-induced spectral
   shift and the specific role of hydrogen bonds in the conformational
   equilibrium of furfural in water
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID LIQUID WATER; AB-INITIO; ROTATIONAL BARRIERS; MOLECULAR-STRUCTURE;
   SPECTROSCOPY; SIMULATION; DYNAMICS; NMR; TRANSITION; ISOMERISM
AB The solvation shift of the lowest absorption transition of furfural in
   water is analyzed as a function of the rotation angle for the
   interconversion between the two conformations, OO-cis and OO-trans, of
   furfural. In total, 20 Monte Carlo NPT simulations are performed,
   corresponding to different rotation angles of the carbonyl group. The
   solvation shift of the n-pi* state is calculated to be 1230 +/- 45
   cm(-1) in the most stable OO-cis form. This calculated shift is found
   to be essentially independent of the rotation angle. The hydrogen bonds
   between furfural and water are also analyzed along the interconversion
   path. These hydrogen bonds are found to be equivalent, both in number
   and in binding energy, for all rotation angles. The results for the
   solvent-induced spectral shift and the hydrogen bond interactions
   confirm that in water they make no preference for any rotamer of
   furfural and lead to small contribution to the entropic activation
   barrier of furfural in protic solvents.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Mogi Cruzes, CIIB, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR ABRAHAM RJ, 1972, TETRAHEDRON, V28, P3015
   ABRAHAM RJ, 1974, INTERNAL ROTATIONAL, CH13
   ABRAHAM RJ, 1982, TETRAHEDRON, V38, P3245
   ALEN MP, 1987, COMPUTER SIMULATION
   ALLEN G, 1955, CAN J CHEM, V33, P1055
   ALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
   BAIN AD, 1997, J PHYS CHEM A, V101, P7182
   BALDRIDGE KK, 2000, J CHEM PHYS, V113, P7519
   BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
   BENASSI R, 1987, ADV HETEROCYCL CHEM, V41, P75
   BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
   BIRNSTOCK F, 1976, THEOR CHIM ACTA, V42, P311
   BRAATHEN GO, 1986, J MOL STRUCT, V145, P45
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
   CANUTO S, 2002, IN PRESS ADV QUANTUM
   COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
   COUTINHO K, 1997, MONTE CARLO PROGRAM
   COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
   COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
   COUTINHO K, 2000, J CHEM PHYS, V112, P9874
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HIRAOKA H, 1968, J CHEM PHYS, V48, P2185
   JOHNSON P, 2001, J ECON THEORY, V100, P1
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225
   KAMIYA H, 1998, HYBRIDOMA, V17, P87
   LITTLE TS, 1989, SPECTROCHIM ACTA A, V45, P789
   MALASPINA T, 2002, J CHEM PHYS, V117, P1692
   MARTIN ML, 1970, TETRAHEDRON LETT, V39, P3407
   METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
   MEZEI M, 1981, J CHEM PHYS, V74, P622
   MILLER FA, 1967, SPECTROCHIM ACTA   A, V23, P891
   MIYAHARA Y, 1996, THEOCHEM-J MOL STRUC, V364, P131
   MONNIG F, 1965, Z NATURFORSCH A, V20, P1323
   MONTAUDO G, 1973, TETRAHEDRON, V29, P3915
   MORADIEZ N, 1998, THEOCHEM-J MOL STRUC, V453, P49
   PETRONGOLO C, 1976, CHEM PHYS LETT, V42, P512
   RAHMAN A, 1971, J CHEM PHYS, V55, P3336
   RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
   ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
   ROQUES B, 1970, TETRAHEDRON, V26, P3555
   SALMAN SR, 1982, ORG MAGN RESONANCE, V20, P151
   STILLINGER FH, 1974, J CHEM PHYS, V60, P1545
   STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
   ZERNER MC, 1997, ZINDO SEMIEMPIRICAL
NR 48
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 28
PY 2002
VL 106
IS 47
BP 12317
EP 12322
PG 6
SC Chemistry, Physical
GA 620QJ
UT ISI:000179543800035
ER

PT J
AU Teles, LK
   Scolfaro, LMR
   Leite, JR
   Furthmuller, J
   Bechstedt, F
TI Phase diagram, chemical bonds, and gap bowing of cubic InxAl1-xN
   alloys: Ab initio calculations
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID FIRST-PRINCIPLES CALCULATIONS; MOLECULAR-BEAM EPITAXY; FORCE-FIELD
   MODEL; STRUCTURAL-PROPERTIES; SEMICONDUCTOR ALLOYS; INXGA1-XN; ENERGY;
   REGION; INGAN; INN
AB Thermodynamic, structural, and electronic properties of cubic InxAl1-xN
   alloys are studied by combining first-principles total energy
   calculations and the generalized quasichemical approach. Results for
   bond-lengths, second-nearest-neighbors distances, and bond angles in
   the alloy are presented. The calculated phase diagram of the alloy
   shows a broad and asymmetric miscibility gap. The gap fluctuations in
   the alloy allow for the definition of a minimum gap and an average gap
   with different bowing parameters, that can provide an explanation for
   the discrepancies found in the experimental values for the bowing
   parameter. It is also found that lattice matched In0.2Al0.8N with GaN
   is suitable to form a barrier material for electronic and
   optoelectronic nitride based devices. (C) 2002 American Institute of
   Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743 Jena, Germany.
RP Teles, LK, Univ Sao Paulo, Inst Fis, CP66318, BR-05315970 Sao Paulo,
   Brazil.
CR ABERNATHY CR, 1995, J VAC SCI TECHNOL  1, V13, P716
   CHEN AB, 1995, SEMICONDUCTOR ALLOYS
   DAVYDOV VY, 2002, PHYS STATUS SOLIDI B, V229, R1
   FERHAT M, 2002, PHYS REV B, V65
   GOANO M, 2000, J APPL PHYS, V88, P6476
   GOLDHAHN R, 2000, APPL PHYS LETT, V76, P291
   GUO QX, 1995, J CRYST GROWTH, V146, P462
   ITO T, 2000, PHYS STATUS SOLIDI B, V217, R7
   KIM KS, 1997, APPL PHYS LETT, V71, P800
   KRESSE G, 1996, COMP MATER SCI, V6, P15
   LEMOS V, 2000, PHYS REV LETT, V84, P3666
   LIMA AP, 1999, J CRYST GROWTH, V201, P396
   LUKITSCH MJ, 2001, APPL PHYS LETT, V79, P632
   MATSUOKA T, 1997, APPL PHYS LETT, V71, P105
   NAKAMURA S, 1997, BLUE LASER DIODE GAN
   OKUMURA H, 1998, J CRYST GROWTH, V189, P390
   PANKOVE JI, 1998, SEMICONDUCT SEMIMET, V50, P127
   PEARTON SJ, 1994, APPL PHYS LETT, V64, P3643
   PEARTON SJ, 1995, APPL PHYS LETT, V67, P2329
   PENG T, 1997, APPL PHYS LETT, V71, P243
   SAITO T, 1999, PHYS REV B, V60, P1701
   SCOLFARO LMR, 2002, PHYS STATUS SOLIDI A, V190, P15
   SHER A, 1987, PHYS REV B, V36, P4279
   TABATA A, 1999, APPL PHYS LETT, V74, P362
   TABATA A, 2002, APPL PHYS LETT, V80, P769
   TAKAYAMA T, 2000, JPN J APPL PHYS 1, V39, P5057
   TAKAYAMA T, 2001, J CRYST GROWTH, V222, P29
   TELES LK, 2000, PHYS REV B, V62, P2475
   TELES LK, 2001, PHYS REV B, V63
   TELES LK, 2002, APPL PHYS LETT, V80, P1177
   VANSCHILFGAARDE M, 1997, J CRYST GROWTH, V178, P8
   WEI SH, 1990, PHYS REV B, V41, P8240
   WRIGHT AF, 1995, APPL PHYS LETT, V66, P3465
   YAMAGUCHI S, 1998, J CRYST GROWTH, V195, P309
   ZUNGER A, 1994, STATICS DYNAMICS ALL, P361
NR 35
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD DEC 15
PY 2002
VL 92
IS 12
BP 7109
EP 7113
PG 5
SC Physics, Applied
GA 619UD
UT ISI:000179495100021
ER

PT J
AU Levin, Y
TI Electrostatic correlations: from plasma to biology
SO REPORTS ON PROGRESS IN PHYSICS
LA English
DT Review
ID ONE-COMPONENT PLASMA; DIPOLAR HARD-SPHERES; CHARGED COLLOIDAL
   PARTICLES; HYPERNETTED-CHAIN APPROXIMATION; 2-DIMENSIONAL COULOMB GAS;
   VAPOR-LIQUID CONDENSATION; DENSITY-FUNCTIONAL THEORY; DEBYE-HUCKEL
   THEORY; RESTRICTED PRIMITIVE MODEL; MONTE-CARLO SIMULATIONS
AB Electrostatic correlations play an important role in physics, chemistry
   and biology. In plasmas they result in thermodynamic instability
   similar to the liquid-gas phase transition of simple molecular fluids.
   For charged colloidal suspensions the electrostatic correlations are
   responsible for screening and colloidal charge renormalization. In
   aqueous solutions containing multivalent counterions they can lead to
   charge inversion and flocculation. In biological systems the
   correlations account for the organization of cytoskeleton and the
   compaction of genetic material. In spite of their ubiquity, the true
   importance of electrostatic correlations has come to be fully
   appreciated only quite recently. In this paper, we will review the
   thermodynamic consequences of electrostatic correlations in a variety
   of systems ranging from classical plasmas to molecular biology.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
RP Levin, Y, Univ Fed Rio Grande Sul, Inst Fis, Caixa Postal 15051,
   BR-91501970 Porto Alegre, RS, Brazil.
CR ALEXANDER S, 1984, J CHEM PHYS, V80, P5776
   ALLAHYAROV E, 1998, PHYS REV LETT, V81, P1334
   ALLEN R, 2001, PHYS CHEM CHEM PHYS, V3, P4177
   ANDELMAN D, 2000, CR ACAD SCI IV-PHYS, V1, P1153
   ARENZON JJ, 1999, EUR PHYS J B, V12, P79
   ARIEL G, CONDMAT0206361
   ARRHENIUS S, 1887, Z PHYS CHEM, V1, P631
   AUFFINGER P, 1996, FARADAY DISCUSS, V103, P151
   AUFFINGER P, 1998, CURR OPIN STRUC BIOL, V8, P227
   BANERJEE S, 1998, J STAT PHYS, V93, P109
   BARBOSA MC, 2000, EUROPHYS LETT, V52, P80
   BARRAT JL, 1996, ADV CHEM PHYS, V94, P1
   BAUS M, 1980, PHYS REP, V59, P1
   BELLONI L, 1986, PHYS REV LETT, V57, P2026
   BELLONI L, 1993, J CHEM PHYS, V98, P8080
   BELLONI L, 1998, COLLOID SURFACE A, V140, P227
   BELLONI L, 2000, J PHYS-CONDENS MAT, V12, R549
   BJERRUM N, 1926, KGL DANSKE VIDENSKAB, V7, P1
   BLOCH F, 1930, Z PHYS, V61, P206
   BLOOMFIELD VA, 1991, BIOPOLYMERS, V31, P1471
   BLOOMFIELD VA, 1997, BIOPOLYMERS, V44, P269
   BORUKHOV I, 2002, J CHEM PHYS, V117, P462
   BOWEN WR, 1998, NATURE, V393, P663
   CAILLOL JM, 1993, J CHEM PHYS, V98, P9835
   CAILLOL JM, 1994, J CHEM PHYS, V100, P2161
   CAILLOL JM, 1997, J CHEM PHYS, V107, P1565
   CAMP PJ, 1999, J CHEM PHYS, V111, P9000
   CHAN DYC, 2001, LANGMUIR, V17, P4202
   CHAPLICK AV, 1971, SOV PHYS JETP, V35, P395
   CHAPMAN DL, 1913, PHILOS MAG, V25, P475
   CHUI ST, 1976, PHYS REV B, V14, P4978
   CRANDALL RS, 1971, PHYS LETTERS       A, V34, P404
   CROCKER JC, 1994, PHYS REV LETT, V73, P352
   CURTIN WA, 1985, PHYS REV A, V32, P2909
   DEBYE P, 1923, PHYS Z, V24, P185
   DEGENNES PG, 1970, PHYS KONDENS MATER, V11, P189
   DEGENNES PG, 1976, J PHYS-PARIS, V37, P1461
   DERJAGUIN BV, 1941, ACTA PHYSICOCHIMICA, V14
   DESERNO M, CONDMAT0202029
   DESERNO M, CONDMAT0206126
   DESERNO M, 2001, ELECTROSTATIC EFFECT, V46
   DIEHL A, 2001, EUROPHYS LETT, V53, P86
   DIEHL A, 2001, PHYS REV E 1, V64
   DOBRYNIN AV, 1995, J PHYS II, V5, P677
   DOBRYNIN AV, 1996, MACROMOLECULES, V29, P2974
   EBELING W, 1968, Z PHYS CHEM-LEIPZIG, V238, P400
   FALKENHAGEN H, 1971, IONIC INTERACTIONS
   FELGNER PL, 1989, NATURE, V337, P387
   FELGNER PL, 1997, SCI AM, V276, P86
   FERNANDEZNIEVES A, 2000, LANGMUIR, V16, P4090
   FERNANDEZNIEVES A, 2001, PHYS REV E 1, V63
   FIREY B, 1977, PHYS REV A, V15, P2072
   FISHER ME, 1981, PHYS REV LETT, V47, P421
   FISHER ME, 1993, PHYS REV LETT, V71, P3826
   FISHER ME, 1994, J CHEM PHYS, V101, P2273
   FISHER ME, 1995, J STAT PHYS, V79, P1
   FISHER ME, 1996, PHYS REV LETT, V77, P3561
   FLORESMENA JE, 2001, PHYS REV E 2, V63
   FRIEDMANN T, 1997, SCI AM, V276, P80
   FUOSS RM, 1951, P NATL ACAD SCI USA, V37, P579
   GANN RC, 1979, PHYS REV B, V20, P326
   GILSON MK, 1985, J MOL BIOL, V184, P503
   GLASSTONE S, 1946, TXB PHYSICAL CHEM
   GOLESTANIAN R, 1999, PHYS REV LETT, V82, P4456
   GOLESTANIAN R, 2000, EUROPHYS LETT, V52, P47
   GONZALESTOVAR E, 1985, J CHEM PHYS, V83, P361
   GOSULE LC, 1976, NATURE, V259, P333
   GOULDING D, 1998, MOL PHYS, V95, P649
   GOULDING D, 1999, EUROPHYS LETT, V46, P407
   GOUY G, 1910, J PHYS-PARIS, V9, P457
   GRIER DG, UNPUB COMMUNICATION
   GRIER DG, 2000, J PHYS-CONDENS MAT, V12, A85
   GRIER DG, 2000, PHYS REV E, V61, P980
   GRIMES CC, 1979, PHYS REV LETT, V42, P795
   GROH B, 1994, PHYS REV E, V50, P3814
   GROH B, 1996, PHYS REV E, V54, P1687
   GROH B, 1997, PHYS REV LETT, V79, P749
   GRONBECHJENSEN N, 1997, PHYS REV LETT, V78, P2477
   GRONBECHJENSEN N, 1998, PHYSICA A, V261, P74
   GROOT RD, 1991, J CHEM PHYS, V95, P9191
   GROSBERG AY, 2002, REV MOD PHYS, V74, P329
   GULDBRAND L, 1984, J CHEM PHYS, V80, P2221
   HA BY, CONDMAT0003162
   HA BY, 1997, PHYS REV LETT, V79, P1289
   HA BY, 1999, EUROPHYS LETT, V46, P624
   HANSEN JP, 1976, THEORY SIMPLE LIQUID
   HANSEN JP, 2000, ANNU REV PHYS CHEM, V51, P209
   HIGGS PG, 1991, J CHEM PHYS, V94, P1543
   HOPE MJ, 1998, MOL MEMBR BIOL, V15, P1
   ISRAELACHVILI JN, 1976, J CHEM SOC FARADAY T, V72, P1525
   JANCOVICI B, 1982, J STAT PHYS, V28, P43
   JANCOVICI B, 1982, J STAT PHYS, V29, P263
   KANTOR Y, 1995, PHYS REV E, V51, P1299
   KARDAR M, 1999, REV MOD PHYS, V71, P1233
   KEPLER GM, 1994, PHYS REV LETT, V73, P356
   KHOKHLOV AR, 1980, J PHYS A, V13, P979
   KHOLODENKO AL, 1995, PHYS REV LETT, V74, P4679
   KHRAPUNOV SN, BIOCH BIOPHYSICA ACT, V1351, P213
   KJELLANDER R, 1984, CHEM PHYS LETT, V112, P49
   KJELLANDER R, 1986, J PHYS CHEM-US, V90, P1230
   KLEIN R, 2001, PURE APPL CHEM, V73, P1705
   KLIMENKO SM, 1967, J MOL BIOL, V23, P523
   KORNYSHEV AA, 1999, PHYS REV LETT, V82, P4138
   KORNYSHEV AA, 2000, PHYS REV E B, V62, P2576
   KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181
   KUHN P, 1998, CHEM PHYS LETT, V298, P5
   KUHN PS, 1998, MACROMOLECULES, V31, P8347
   KUHN PS, 1999, PHYSICA A, V274, P8
   LANDAU LD, 1937, PHYS Z SOWJETUNION, V11, P26
   LARSEN AE, 1996, PHYS REV LETT, V76, P3862
   LAU AWC, 2000, PHYS REV LETT, V84, P4116
   LEE N, 2001, MACROMOLECULES, V34, P3446
   LEVIN Y, 1994, PHYS REV LETT, V73, P2716
   LEVIN Y, 1995, EUROPHYS LETT, V31, P513
   LEVIN Y, 1996, EUROPHYS LETT, V34, P405
   LEVIN Y, 1996, PHYSICA A, V225, P164
   LEVIN Y, 1998, EUROPHYS LETT, V41, P123
   LEVIN Y, 1998, PHYSICA A, V257, P408
   LEVIN Y, 1999, PHYS REV LETT, V83, P1159
   LEVIN Y, 1999, PHYS REV LETT, V83, P2680
   LEVIN Y, 1999, PHYSICA A, V265, P432
   LI XJ, 1994, EUROPHYS LETT, V26, P683
   LINSE P, 1999, PHYS REV LETT, V83, P4208
   LINSE P, 2000, J CHEM PHYS, V112, P3917
   LINSE P, 2000, J CHEM PHYS, V113, P4359
   LOBASKIN V, 2000, J MOL LIQ, V84, P131
   LOWEN H, 1993, J CHEM PHYS, V98, P3275
   LOWEN H, 1994, J CHEM PHYS, V100, P6738
   LOZADACASSOU M, 1982, J CHEM PHYS, V77, P5150
   LUIJTEN E, CONDMAT0112388
   LUIJTEN E, UNPUB
   MANNING GS, 1969, J CHEM PHYS, V51, P924
   MANNING GS, 1978, Q REV BIOPHYS, V11, P179
   MANSOORI GA, 1969, J CHEM PHYS, V51, P4958
   MARCUS RA, 1955, J CHEM PHYS, V23, P1057
   MATEESCU EM, 1999, EUROPHYS LETT, V46, P493
   MCMILLAN WG, 1945, J CHEM PHYS, V13, P276
   MERMIN ND, 1968, PHYS REV, V171, P272
   MESSINA R, CONDMAT0111335
   MESSINA R, 2000, PHYS REV LETT, V85, P872
   MESSINA R, 2001, PHYS REV E 1, V64
   MICKA U, 1999, LANGMUIR, V15, P4033
   MINNHAGEN P, 1987, REV MOD PHYS, V59, P1001
   NARAYANAN T, 1994, PHYS REV LETT, V73, P3002
   NARAYANAN T, 1995, J CHEM PHYS, V102, P8118
   NELSON DR, 1983, PHASE TRANSITIONS CR, P1
   NETZ R, CONDMAT0203364
   NETZ RR, 1999, EUROPHYS LETT, V45, P726
   NEU JC, 1999, PHYS REV LETT, V82, P1072
   NG KC, 1974, J CHEM PHYS, V61, P2680
   NGUYEN TT, CONDMAT0005304
   NGUYEN TT, 2000, J CHEM PHYS, V112, P2562
   NGUYEN TT, 2000, J CHEM PHYS, V113, P1110
   NGUYEN TT, 2000, PHYS REV LETT, V85, P1568
   NINHAM BW, 1971, J THEOR BIOL, V31, P405
   NORDHOLM S, 1984, CHEM PHYS LETT, V105, P302
   ODIJK T, 1998, BIOPHYS J, V75, P1223
   ONSAGER L, 1933, CHEM REV, V13, P1933
   OOSAWA F, 1971, POLYELECTROLYTES
   ORKOULAS G, 1996, J CHEM PHYS, V104, P7205
   ORKOULAS G, 1999, J CHEM PHYS, V110, P1581
   OVERBEEK JTG, 1987, J CHEM PHYS, V87, P4406
   PALBERG T, 1994, PHYS REV LETT, V72, P786
   PANAGIOTOPOULOS AZ, 1902, PHYS REV LETT, V88
   PARK SY, 1998, BIOPHYS J, V75, P714
   PARK SY, 1999, EUROPHYS LETT, V46, P493
   PATEY GN, 1980, J CHEM PHYS, V72, P5763
   PEIERLS RE, 1935, ANN I H POINCARE, V5, P177
   PELTA J, 1996, BIOPHYS J, V71, P48
   PELTA J, 1996, J BIOL CHEM, V271, P5656
   PENFOLD R, 1990, J CHEM PHYS, V92, P1915
   PENFOLD R, 1998, J PHYS CHEM B, V102, P8599
   PITZER KS, 1995, J PHYS CHEM-US, V99, P13070
   PODGORNIK R, 1998, PHYS REV LETT, V80, P1560
   POLLOCK EL, 1973, PHYS REV A, V8, P3110
   QUESADAPEREZ M, 2000, PHYS REV E, V61, P574
   ROBBINS MO, 1988, J CHEM PHYS, V88, P3286
   ROGERS FJ, 1983, PHYS REV A, V28, P2990
   ROUZINA I, 1996, J PHYS CHEM-US, V100, P9977
   RUSHBROOKE GS, 1973, MOL PHYS, V26, P1199
   RUSSEL WB, 1989, COLLOIDAL DISPERSION
   SABIR AK, 1998, MOL PHYS, V93, P405
   SADER JE, 1999, J COLLOID INTERF SCI, V213, P268
   SAMINATHAN M, 1999, BIOCHEMISTRY-US, V38, P3821
   SCHMIDT A, 1999, J CHEM PHYS, V110, P113
   SCHMIDT AB, 2001, PHYSICA A, V293, P21
   SEAR RP, 1996, PHYS REV LETT, V76, P2310
   SHKLOVSKII BI, 1999, PHYS REV E B, V60, P5802
   SHKLOVSKII BI, 1999, PHYS REV LETT, V82, P3628
   SOGAMI I, 1984, J CHEM PHYS, V81, P6320
   SOLIS FJ, 1999, PHYS REV E B, V60, P4496
   SOLIS FJ, 2000, J CHEM PHYS, V112, P2030
   SPASSOV V, 1998, PROTEIN SCI, V7, P554
   SQUIRES TM, 2001, PHYS REV LETT, V86, P5266
   STEVENS MJ, 1990, EUROPHYS LETT, V12, P81
   STEVENS MJ, 1995, J CHEM PHYS, V103, P1669
   STEVENS MJ, 1996, J CHEM PHYS, V104, P5209
   STILCK JF, 2002, J STAT PHYS, V106, P287
   STREY HH, 1998, CURR OPIN STRUC BIOL, V8, P309
   TAMASHIRO MN, UNPUB
   TAMASHIRO MN, 1999, PHYSICA A, V268, P24
   TANAKA M, 2001, J CHEM PHYS, V115, P567
   TANG JX, 1996, BER BUNSEN PHYS CHEM, V100, P796
   TANG JX, 1996, J BIOL CHEM, V271, P8556
   TANG JX, 1997, EUR J BIOCHEM, V247, P432
   TARAZONA P, 1985, PHYS REV A, V31, P2672
   TARNASHIRO MN, 1998, PHYSICA A, V258, P341
   TATA BVR, 1992, PHYS REV LETT, V69, P3778
   TATA BVR, 1994, PHYS REV LETT, V72, P787
   TAVARES JM, 1997, PHYS REV E, V56, P6252
   TORRIE GM, 1980, J CHEM PHYS, V73, P5807
   TOTSUJI H, 1975, J PHYS SOC JPN, V39, P253
   TOTSUJI H, 1976, J PHYS SOC JPN, V40, P857
   TRIZAC E, CONDMAT0201510
   TRIZAC E, UNPUB
   TRIZAC E, 1999, PHYS REV E A, V60, P6530
   TRIZAC E, 2000, PHYS REV E A, V62, R1465
   VANDERWAALS JD, 1873, THESIS LEIDEN
   VANLEEUWEN ME, 1993, PHYS REV LETT, V71, P3991
   VANROIJ R, 1996, PHYS REV LETT, V76, P3348
   VANROIJ R, 1997, PHYS REV LETT, V79, P3082
   VELAZQUEZ ES, 1997, PHYSICA A, V244, P453
   VERWEY EJW, 1948, THEORY STABILITY LYO
   VONGRUNBERG HH, 2001, EUROPHYS LETT, V55, P580
   WARREN PB, 2000, J CHEM PHYS, V112, P4683
   WEEKS JD, 1981, PHYS REV B, V24, P1530
   WEIS JJ, 1993, PHYS REV LETT, V71, P2729
   WEISS P, 1907, J PHYS, V6, P667
   WENNERSTROM H, 1982, J CHEM PHYS, V76, P4665
   WIEGAND S, 1998, J CHEM PHYS, V109, P9038
   YAN QL, 1999, J CHEM PHYS, V111, P9509
NR 231
TC 117
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0034-4885
J9 REP PROGR PHYS
JI Rep. Prog. Phys.
PD NOV
PY 2002
VL 65
IS 11
BP 1577
EP 1632
PG 56
SC Physics, Multidisciplinary
GA 619JH
UT ISI:000179472500001
ER

PT J
AU Acioli, PH
   Jellinek, J
TI Electron binding energies of anionic magnesium clusters and the
   nonmetal-to-metal transition
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MG CLUSTERS; DENSITY; APPROXIMATION; GAS; NA
AB The binding energies of the two most external electrons in Mg-n(-), n =
   2-22, clusters are computed using the gradient-corrected density
   functional theory and a new scheme for converting the Kohn-Sham
   eigenenergies into electron removal energies. The computations are
   performed for the anionic clusters considered in the most stable
   configurations of both Mg-n(-) and Mg-n. The results are compared with
   photoelectron spectroscopy data [O. C. Thomas et al., following Letter,
   Phys. Rev. Lett. 89, 213403 (2002)], and their implications for the
   finite-size analog of the nonmetal-to-metal transition are analyzed.
C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA.
   Univ Brasilia, Inst Fis, Nucleo Fis Atom Mol & Fluidos, BR-70919970 Brasilia, DF, Brazil.
RP Acioli, PH, Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL
   60439 USA.
CR ACIOLI PH, IN PRESS
   AKOLA J, 2001, EUR PHYS J D, V16, P21
   BARAILLE I, 1998, J PHYS-CONDENS MAT, V10, P10969
   BECKE AD, 1988, PHYS REV A, V38, P3098
   DAVIDSON ER, 1997, J CHEM PHYS, V106, P2331
   DELALY P, 1992, PHYS REV B, V45, P3838
   DIEDERICH T, 2001, PHYS REV LETT, V86, P4807
   ERIKSSON LA, 1995, J CHEM PHYS, V103, P1050
   GONG XG, 1993, PHYS LETT A, V181, P459
   GUPTA RP, 1976, PHYS REV LETT, V36, P1194
   JELLINEK J, IN PRESS
   JELLINEK J, 2002, J PHYS CHEM A, V106, P10919
   KOHN A, 2001, PHYS CHEM CHEM PHYS, V3, P711
   KUMAR V, 1991, PHYS REV B, V44, P8243
   LEE TJ, 1990, J CHEM PHYS, V93, P6636
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   REUSE F, 1990, PHYS REV B, V41, P11743
   RIEMANN SM, 1997, PHYS REV B, V56, P12147
   ROTHLISBERGER U, 1992, J CHEM PHYS, V96, P1248
   THOMAS OC, 2002, PHYS REV LETT, V89
   WADT WR, 1985, J CHEM PHYS, V82, P284
NR 21
TC 15
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 18
PY 2002
VL 89
IS 21
AR 213402
DI ARTN 213402
PG 4
SC Physics, Multidisciplinary
GA 612HH
UT ISI:000179068000015
ER

PT J
AU Frota-Pessoa, S
   Klautau, AB
   Legoas, SB
TI Influence of interface mixing on the magnetic properties of Ni/Pt
   multilayers
SO PHYSICAL REVIEW B
LA English
DT Article
ID REAL-SPACE; ANISOTROPY; FE; NI; IMPURITIES; MOMENTS
AB Motivated by existing experimental data, we study here the influence of
   interface mixing on the magnetic behavior of Ni-6/Pt-5(111)
   multilayers. In the present ab initio calculations the mixing,
   restricted to the interface layers, was simulated by ordered
   two-dimensional Ni-Pt lattices. Two different degrees of mixing of the
   components at the interface were considered-namely, 25% and 50%. The
   perfect interface was also calculated and for some of the systems
   orbital moments were obtained. We find that interface mixing explains
   rather well the observed magnetic moment profile for Ni sites. But even
   with the inclusion of orbital contributions, the theoretical results
   tend to underestimate the induced moment at the Pt sites found
   experimentally.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Fed Univ Para, Dept Fis, BR-66059 Belem, Para, Brazil.
   Univ Estadual Campinas, Inst Fis, Campinas, SP, Brazil.
RP Frota-Pessoa, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
   Paulo, Brazil.
CR ANDERSEN OK, 1975, PHYS REV B, V12, P3060
   ANDERSEN OK, 1985, HIGHLIGHTS CONDENSED
   BEER N, 1984, ELECT STRUCTURE COMP
   ERIKSSON O, 1990, PHYS REV B, V42, P2707
   FROTAPESSOA S, UNPUB
   FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
   FROTAPESSOA S, 1993, PHYS REV LETT, V71, P4206
   HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215
   KIRSCH R, 2002, EUROPHYS LETT, V59, P430
   KLAUTAU AB, 1999, PHYS REV B, V60, P3421
   KLAUTAU AB, 2002, SURF SCI, V497, P385
   KRISHNAN R, 1993, J APPL PHYS 2B, V73, P6433
   LEGOAS SB, 2000, PHYS REV B, V61, P10417
   NOUGUEIRA RN, 2001, J PHYS CONDENS MATT, V14, P1067
   PARRA RE, 1979, J APPL PHYS, V50, P7522
   PEDUTO PR, 1991, PHYS REV B, V44, P13283
   POULOPOULOS P, 1995, J MAGN MAGN MATER 1, V140, P613
   POULOPOULOS P, 2001, J APPL PHYS, V89, P3874
   SHIN SC, 1998, APPL PHYS LETT, V73, P393
   STOEFFLER D, 1991, PHYS REV B, V44, P10389
   VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
   WILHELM F, 2000, PHYS REV B, V61, P8647
   WILHELM F, 2000, PHYS REV LETT, V85, P413
NR 23
TC 5
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD OCT 1
PY 2002
VL 66
IS 13
AR 132416
DI ARTN 132416
PG 4
SC Physics, Condensed Matter
GA 612HG
UT ISI:000179067900030
ER

PT J
AU Orellana, W
   Ferraz, AC
TI Stability and electronic structure of hydrogen-nitrogen complexes in
   GaAs
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID GALLIUM-ARSENIDE; AB-INITIO; PSEUDOPOTENTIALS; DEFECTS
AB We investigate the stability and electronic properties of defects
   formed by a substitutional nitrogen in GaAs (N-As) plus interstitial
   hydrogen atoms using first-principles total-energy calculations. We
   find the formation of strong N-As-H bond when a single H atom is
   incorporated in the lowest-energy bond centered (BC) position. This
   defect induces an electrically active level in the GaAs band gap. When
   two H atoms are incorporated, we find the stable N-As-H-2* complex as
   the lowest-energy configuration, with one H atom at the BC position and
   the second H atom at an antibonding position. The electronic structure
   of this complex shows the passivation of the gap level restoring the
   GaAs band gap. (C) 2002 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Orellana, W, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR BALDASSARRI G, 2001, APPL PHYS LETT, V78, P3472
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   BONAPASTA AA, 1995, PHYS REV B, V51, P4172
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   ESTREICHER SK, 1995, MAT SCI ENG R, V14, P319
   FRANCOEUR S, 1998, APPL PHYS LETT, V72, P1857
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   JANOTTI A, 2002, PHYS REV LETT, V88
   KOHN W, 1965, PHYS REV, V140, A1133
   KOHN W, 1985, PHYS REV A, V140, P2471
   LOUIE SG, 1982, PHYS REV B, V26, P1738
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   ORELLANA W, 1997, THESIS U SAO PAULO
   ORELLANA W, 2001, APPL PHYS LETT, V78, P1231
   PAVESI L, 1992, PHYS REV B, V46, P4621
   POLIMENI A, 2001, PHYSICA B, V308, P850
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   ZHANG Y, 2000, PHYS REV B, V61, P7579
   ZHANG Y, 2001, PHYS REV B, V63
NR 19
TC 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 11
PY 2002
VL 81
IS 20
BP 3816
EP 3818
PG 3
SC Physics, Applied
GA 611XB
UT ISI:000179042200038
ER

PT J
AU Braga, SF
   Galvao, DS
TI A semiempirical study on the electronic structure of
   10-deacetylbaccatin-III
SO JOURNAL OF MOLECULAR GRAPHICS & MODELLING
LA English
DT Article
DE paclitaxel; taxoids; baccatin; semiempirical methods; molecular orbital
   calculations
ID POLYCYCLIC AROMATIC-HYDROCARBONS; IDENTIFY CARCINOGENIC ACTIVITY;
   SIDE-CHAIN; ANTIMITOTIC ACTIVITY; PACLITAXEL TAXOL(R);
   MOLECULAR-STRUCTURE; CRYSTAL-STRUCTURE; PACIFIC YEW; AB-INITIO; ANALOGS
AB We performed a conformational and electronic analysis for
   10-deacetylbaccatin-III (DBAC) using well-known semiempirical methods
   (parametric method 3 (PM3) and Zerner's intermediate neglect of
   differential overlap (ZINDO)) coupled to the concepts of total and
   local density of states (LDOS). Our results indicate that regions
   presented by paclitaxel (Taxol(R)) as important for the biological
   activity can be traced out by the electronic features present in DBAC.
   These molecules differ only by a phenylisoserine side chain. Compared
   to paclitaxel, DBAC has a simpler structure in terms of molecular size
   and number of degrees of freedom (d.f.). This makes DBAC a good
   candidate for a preliminary investigation of the taxoid family. Our
   results question the importance of the oxetane group, which seems to be
   consistent with recent experimental data. (C) 2002 Elsevier Science
   Inc. All rights reserved.
C1 Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, BR-13091970 Campinas, SP, Brazil.
RP Galvao, DS, Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, CP
   6165, BR-13091970 Campinas, SP, Brazil.
CR *EIU, 1990, EIU MARK EUR TRAD RE
   *MOPAC, MOPAC PROGR VERS 6 0
   BALLONE P, 1999, J PHYS CHEM A, V103, P3097
   BARONE PMVB, 1996, PHYS REV LETT, V77, P1186
   BARONE PMVB, 1999, J MOL STRUC-THEOCHEM, V465, P219
   BARONE PMVB, 2000, J MOL STRUC-THEOCHEM, V505, P55
   BAUMANN H, 1999, J COMPUT CHEM, V20, P396
   BOLIVARMARINEZ LE, 1996, J PHYS CHEM-US, V100, P11029
   BOLIVARMARINEZ LE, 1999, J PHYS CHEM B, V103, P2993
   BRAGA RS, 2000, J CHEM INF COMP SCI, V40, P1377
   BRAGA SF, IN PRESS STRUCTURE A
   CAMPBELL SJ, 1995, ACS SYM SER, V583, P58
   CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
   CHEN SH, 1995, ACS SYM SER, V583, P247
   COMMERCON A, 1995, ACS SYM SER, V583, P233
   CYRILLO M, 1999, J MOL STRUC-THEOCHEM, V464, P267
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P5231
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DEWAR MJS, 1990, J COMPUT CHEM, V11, P541
   DOSSANTOS HF, 1995, J MOL STRUC-THEOCHEM, V335, P129
   DUBOIS J, 1993, TETRAHEDRON, V49, P6533
   EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
   FARINA V, 1995, CHEM PHARM TAXOL
   GALVAO DS, 1993, J CHEM PHYS, V98, P3016
   GAO Q, 1995, ACTA CRYSTALLOGR, V51, P2995
   GAO Q, 1996, TETRAHEDRON LETT, V37, P3425
   GAO Q, 1996, TETRAHEDRON, V52, P2291
   GEORG GI, 1995, ACS SYM SER, V583, P217
   GORB L, 1998, THEOCHEM-J MOL STRUC, V425, P137
   GUENARD D, 1993, ACCOUNTS CHEM RES, V26, P160
   GUERITTEVOEGELEIN F, 1991, J MED CHEM, V34, P992
   HOLTON RA, 1994, J AM CHEM SOC, V116, P1597
   HOLTON RA, 1994, J AM CHEM SOC, V116, P1599
   JAYASINGHE LR, 1994, J MED CHEM, V37, P2981
   JEFFORD CW, 1995, THEOCHEM-J MOL STRUC, V337, P31
   JENKINS P, 1996, CHEM BRIT, V11, P43
   KISLOV VV, 1999, INTERNET J CHEM, V2, P1
   KOLL A, 2000, J MOL STRUCT, V552, P193
   LEVINE IN, 1991, QUANTUM CHEM
   LI YK, 2000, BIOCHEMISTRY-US, V39, P281
   LODISH H, 1995, MOL CELL BIOL
   LOZYNSKI M, 1995, TETRAHEDRON LETT, V36, P8849
   LYTHGOE B, 1968, ALKALOIDS, V10, P597
   MASTROPAOLO D, 1995, P NATL ACAD SCI USA, V92, P6920
   MCKINNEL RG, 1998, BIOL BASIS CANC
   MILANESIO M, 1999, J MED CHEM, V42, P291
   NICOLAOU KC, 1994, NATURE, V367, P630
   PALAFOX MA, 1999, J MOL STRUC-THEOCHEM, V459, P239
   RIDLEY JE, 1976, THEOR CHIM ACTA, V42, P223
   RUDDON RW, 1987, CANC BIOL
   SANTO LLD, 1999, J MOL STRUC-THEOCHEM, V464, P273
   SCANO P, 1991, J COMPUT CHEM, V12, P172
   SNYDER JP, 2000, J AM CHEM SOC, V122, P724
   SOOS ZG, 1994, J PHYS CHEM-US, V98, P1029
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STEWART JJP, 1989, J COMPUT CHEM, V10, P221
   STIERLE A, 1995, ACS SYM SER, V583, P81
   SUFFNESS M, 1995, ACS SYM SER, V583, P1
   SUGIMURA T, 1992, SCIENCE, V258, P603
   SWINDELL CS, 1991, J MED CHEM, V34, P1176
   VENDRAME R, IN PRESS J CHEM INF
   VENDRAME R, 1999, J CHEM INF COMP SCI, V39, P1094
   WANG MM, 2000, J ORG CHEM, V65, P1059
   WESSJOHANN L, 1994, ANGEW CHEM INT EDIT, V33, P959
   WILLIAMS HJ, 1996, J MED CHEM, V39, P1555
   ZERNER MC, 1991, REV COMPUTATIONAL CH, V2, P313
NR 66
TC 3
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1093-3263
J9 J MOL GRAPH MODEL
JI J. Mol. Graph.
PD AUG
PY 2002
VL 21
IS 1
BP 57
EP 70
PG 14
SC Computer Science, Interdisciplinary Applications; Biochemical Research
   Methods; Biochemistry & Molecular Biology; Crystallography
GA 611LX
UT ISI:000179019900008
ER

PT J
AU Dalpian, GM
   Venezuela, P
   da Silva, AJR
   Fazzio, A
TI Ab initio calculations of vacancies in SixGe1-x
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SILICON; ALLOYS
AB Ab initio calculations are used to investigate the structural and
   electronic properties of vacancies in SixGe1-x. The (+ +), (+), (0),
   and (-) charge states are studied and the substitutional disorder of
   the alloy is considered explicitly. We found a linear relationship
   between the effective-U for the system formed by the ( + +), ( +), and
   (0) charge states and the number of Si atoms in the first neighborhood
   of a vacancy (N-Si). The effective-U is positive when N-Si is zero, and
   it is negative when N-Si is 2 and 4. In all cases, the absolute value
   of the effective-U in the alloy is significantly smaller than its value
   for pure Si and pure Ge. (C) 2002 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Dalpian, GM, Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ,
   Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
   BARAFF GA, 1980, PHYS REV B, V21, P5662
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   BOGUSLAWSKI P, 1999, PHYS REV B, V59, P1567
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   FAZZIO A, 2000, PHYS REV B, V61, P2401
   HASSLEIN H, 1998, PHYS REV LETT, V80, P2626
   JANOTTI A, 1999, PHYSICA B, V273, P575
   LENTO J, 2000, APPL PHYS LETT, V77, P232
   STURM JC, 2000, PROPERTIES SIGE SIGE, P305
   VENEZUELA P, 2001, PHYS REV B, V64
   VENEZUELA P, 2002, PHYS REV B, V65
   VRIJEN R, 2000, PHYS REV A, V62
   WATKINS GD, 1980, PHYS REV LETT, V44, P593
   WATKINS GD, 1986, DEEP CTR SEMICONDUCT, P147
   WEI SH, 1990, PHYS REV B, V42, P9622
NR 16
TC 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 28
PY 2002
VL 81
IS 18
BP 3383
EP 3385
PG 3
SC Physics, Applied
GA 609BB
UT ISI:000178881800025
ER

PT J
AU Giroldo, T
   Riveros, JM
TI Keto-enol isomerization of gas-phase 2 '-methylacetophenone molecular
   ions probed by high-temperature near-blackbody-induced dissociation,
   ion-molecule reactions, and ab initio calculations
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID INFRARED RADIATIVE DISSOCIATION; HYDRATED ALUMINUM CATIONS; TANDEM
   MASS-SPECTROMETRY; CNH2NO RADICAL CATIONS; UNIMOLECULAR DISSOCIATION;
   MULTIPHOTON DISSOCIATION; ACTIVATION-ENERGIES; LASER PHOTODISSOCIATION;
   THERMAL-DISSOCIATION; CARBONYL-COMPOUNDS
AB The thermal dissociation of several substituted acetophenone molecular
   ions induced by infrared radiation from a hot wire has been studied in
   a Fourier transform ion cyclotron resonance spectrometer. The
   temperature dependence of the dissociation rate constants reveals that
   the 2'-methylacetophenone molecular ion is characterized by a much
   higher activation energy for dissociation than other acetophenones.
   This molecular ion also exhibits a very different behavior with respect
   to charge-transfer reactions. Unlike molecular ions obtained from other
   isomeric acetophenones, the 2'-methylacetophenone M+. ion does not
   promote charge exchange with dimethyl disulfide but does undergo
   relatively slow electron transfer with ferrocene (IE = 6.74 eV). Ab
   initio calculations at the MP2/6-31G(d) level predict that the
   2-MeC6H4COCH3+. ion (1) can undergo facile tautomerization to the much
   more stable enol ion 2,2'-(CH2C6H4C+)-C-.(OH)CH3, by a 1,4-hydrogen
   migration (calculated energy barrier of 20 kJ mol(-1)). The calculated
   recombination energy of this ion is in good agreement with the
   observations from the charge-exchange experiments. A full analysis of
   the potential energy surface suggests that, at low ionizing energies
   (less than or equal to 11.5 eV), essentially all of the long-lived
   molecular ions have isomerized to 2. The present example reveals the
   versatility and some of the advantages of the high-temperature
   near-blackbody-induced dissociation (hot wire emission) for probing
   structural problems in ion chemistry.
C1 Univ Sao Paulo, Inst Quim, BR-05515970 Sao Paulo, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05515970
   Sao Paulo, Brazil.
CR AASERUD DJ, 1997, INT J MASS SPECTROM, V167, P705
   ANDREWS L, 1981, J AM CHEM SOC, V103, P99
   BAR R, 1982, CHEM PHYS LETT, V91, P440
   BARKOW A, 1995, EUR MASS SPECTROM, V1, P525
   BAYKUT G, 1985, J AM CHEM SOC, V107, P8036
   BEYER M, 1996, J AM CHEM SOC, V118, P7386
   BEYER M, 1999, J PHYS CHEM A, V103, P671
   BOMBACH R, 1983, J AM CHEM SOC, V105, P4205
   BOMSE DS, 1979, J AM CHEM SOC, V101, P5503
   BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P1
   BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P203
   BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR, P162
   BURSEY MM, 1966, J AM CHEM SOC, V88, P529
   CENTINEO G, 1978, J MOL STRUCT, V44, P203
   CHAMOTROOKE J, 2000, INT J MASS SPECTROM, V195, P385
   DAS PK, 1979, J AM CHEM SOC, V101, P6965
   DUNBAR RC, 1991, J CHEM PHYS, V95, P2537
   DUNBAR RC, 1994, J PHYS CHEM-US, V98, P8705
   DUNBAR RC, 1998, SCIENCE, V279, P194
   FOX BS, 2001, J PHYS CHEM A, V105, P6386
   FREITAS MA, 2000, J AM CHEM SOC, V122, P7768
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GAMBI A, 1980, SPECTROCHIM ACTA A, V36, P871
   GAUMANN T, 1991, J AM SOC MASS SPECTR, V2, P372
   GRELLMANN KH, 1983, CHEM PHYS LETT, V95, P195
   HAAG R, 1977, HELV CHIM ACTA, V60, P2595
   HEINRICH N, 1988, J AM CHEM SOC, V110, P8183
   HEYDORN LN, 2001, Z PHYS CHEM 2, V215, P141
   HOLMES JL, 1980, J AM CHEM SOC, V102, P1591
   JOCKUSCH RA, 1997, ANAL CHEM, V69, P1119
   JOCKUSCH RA, 2000, J PHYS CHEM A, V104, P3188
   KUKOL A, 1993, ORG MASS SPECTROM, V28, P1107
   LEE SW, 1998, J AM CHEM SOC, V120, P11758
   LEE SW, 1999, J AM CHEM SOC, V121, P10152
   LI WK, 1993, J CHEM PHYS, V99, P8440
   LIFSHITZ C, 1993, INT J MASS SPECTROM, V125, R7
   LIN CY, 1996, J PHYS CHEM-US, V100, P19659
   LIN CY, 1996, J PHYS CHEM-US, V100, P655
   LITTLE DP, 1994, ANAL CHEM, V66, P2809
   MARCINEK A, 1992, J CHEM SOC P2, P1353
   MCLOUGHLIN RG, 1979, ORG MASS SPECTROM, V14, P434
   MCLUCKEY SA, 1997, J MASS SPECTROM, V32, P461
   MEYERSON S, 1957, J AM CHEM SOC, V79, P1058
   MORAES LAB, 1996, J ORG CHEM, V61, P8726
   MORAES LAB, 2001, J AM SOC MASS SPECTR, V12, P150
   MORGON NH, 1996, J PHYS CHEM-US, V100, P18048
   MOURGUES P, 1993, ORG MASS SPECTROM, V28, P193
   PEIRIS DM, 1996, INT J MASS SPECTROM, V159, P169
   PRICE WD, 1996, ANAL CHEM, V68, P859
   PRICE WD, 1997, J PHYS CHEM B, V101, P664
   RABBIH MA, 1980, ORG MASS SPECTROM, V15, P195
   RABBIH MA, 1981, INDIAN J PURE APPL P, V19, P335
   REBRIONROWE C, 2000, J CHEM PHYS, V113, P3039
   RIVEROS JM, 1998, PURE APPL CHEM, V70, P1969
   RODRIGUEZCRUZ SE, 1998, J AM CHEM SOC, V120, P5842
   RYAN MF, 1992, J AM CHEM SOC, V114, P8611
   SCHNIER PD, 1998, ANAL CHEM, V70, P3033
   SCHNIER PD, 1998, J AM CHEM SOC, V120, P9605
   SCHWARZ H, 1978, TOP CURR CHEM, V73, P232
   SCHWARZ H, 1985, ADV MASS SPECTROM, V10, P13
   SENA M, UNPUB
   SENA M, 1994, RAPID COMMUN MASS SP, V8, P1031
   SENA M, 1997, J PHYS CHEM A, V101, P4384
   SENA M, 2000, CHEM-EUR J, V6, P785
   SENA M, 2001, ADV MASS SPECTROM, V15, P783
   SENA M, 2001, THESIS U SAO PAULO S
   SHIN SK, 1990, J AM CHEM SOC, V112, P2066
   SILVA MLP, 1997, INT J MASS SPECTROM, V165, P83
   STIRK KM, 1992, J AM CHEM SOC, V114, P8604
   STRITTMATTER EF, 1999, J AM SOC MASS SPECTR, V10, P1095
   THOLMANN D, 1994, J PHYS CHEM-US, V98, P2002
   THORNE LR, 1984, GAS PHASE ION CHEM, V3, P42
   TURECEK F, 1990, CHEM ENOLS, P95
   UECHI GT, 1992, J CHEM PHYS, V96, P8897
   VANDEREST G, 2000, INT J MASS SPECTROM, V195, P385
   WOODIN RL, 1979, CHEM BIOCH APPL LASE, V4, P355
   XAVIER LA, 1998, INT J MASS SPECTROM, V179, P223
NR 77
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 24
PY 2002
VL 106
IS 42
BP 9930
EP 9938
PG 9
SC Chemistry, Physical
GA 607LA
UT ISI:000178792000038
ER

PT J
AU Basso, EA
   Pontes, RM
TI Further studies on the rotational barriers of Carbamates. An NMR and
   DFT analysis of the solvent effect for Cyclohexyl N,N-dimethylcarbamate
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE carbamates; rotational barriers; DFT calculations; SCRF theory
ID C-N BOND; INTERNAL-ROTATION; AB-INITIO; HARTREE-FOCK; AMIDES;
   N,N-DIMETHYLFORMAMIDE; RESONANCE; THIOFORMAMIDE; SUBSTITUENT; FORMAMIDE
AB The solvent effect on the Gibbs energy of activation for rotation
   around the (C=O)-N bond in cyclohexyl N,N-dimethylcarbamate was
   investigated by dynamic NMR spectroscopy and density-functional theory
   at the B3LYP/6-311 + G** level. The experimental barriers were about 15
   kcal mol(-1) with no appreciable variation when the solvent polarity
   was changed. A reaction field model was applied to theoretically
   mediate the solvent effect and the results were comparable to the
   experimental data. An analysis, based on the Onsager solvation theory,
   showed that the solvent effect on rotational barriers can be understood
   employing the total molecular dipole moment, the difference between the
   dipole moments of the ground and the transition state structures, or
   both, as appropriate. (C) 2002 Elsevier Science B.V. All rights
   reserved.
C1 Univ Estadual Maringa, Dept Quim, BR-87020900 Maringa, Parana, Brazil.
RP Basso, EA, Univ Estadual Maringa, Dept Quim, Av Colombo 5790,
   BR-87020900 Maringa, Parana, Brazil.
CR ALLERHAND A, 1966, J AM CHEM SOC, V88, P3185
   BASSO EA, 2001, J BRAZIL CHEM SOC, V12, P215
   BECKE AD, 1993, J CHEM PHYS, V98, P1372
   COX C, 1998, J ORG CHEM, V63, P2426
   DRAKENBERG T, 1972, J PHYS CHEM-US, V76, P2178
   DUFFI EM, 1992, J AM CHEM SOC, V114, P7235
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   KINCAID JF, 1941, CHEM REV, V28, P301
   KIRKWOOD JG, 1934, J CHEM PHYS, V2, P351
   LAIDIG KE, 1996, J AM CHEM SOC, V118, P1737
   LAUVERGNAT D, 1997, J AM CHEM SOC, V119, P9478
   LEE C, 1988, PHYS REV B, V37, P785
   LEMASTER CB, 1989, J PHYS CHEM-US, V93, P1307
   LIM KT, 1987, J PHYS CHEM-US, V91, P2716
   ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
   PENG C, 1994, ISRAEL J CHEM, V33, P449
   PENG CY, 1996, J COMPUT CHEM, V17, P49
   PLIEGO JR, 2001, J PHYS CHEM A, V30, P7241
   RABLEN PR, 1999, J AM CHEM SOC, V121, P218
   RABLEN PR, 2000, J ORG CHEM, V65, P7930
   ROSS BD, 1984, J AM CHEM SOC, V106, P2451
   SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
   STEWART WE, 1970, CHEM REV, V70, P517
   TOMASI J, 1994, CHEM REV, V94, P2027
   VASSILEV NG, 1999, J MOL STRUCT, V484, P39
   WIBERG KB, 1992, J AM CHEM SOC, V114, P831
   WIBERG KB, 1993, J AM CHEM SOC, V115, P9234
   WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
   WONG MW, 1991, J PHYS CHEM-US, V95, P8491
NR 29
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD OCT 18
PY 2002
VL 594
IS 3
BP 199
EP 206
PG 8
SC Chemistry, Physical
GA 602MM
UT ISI:000178509100009
ER

PT J
AU Tutuncu, HM
   Miotto, R
   Srivastava, GP
   Tse, JS
TI Phonons on group-III nitride (110) surfaces
SO PHYSICAL REVIEW B
LA English
DT Article
ID BOND-CHARGE MODEL; DENSITY-FUNCTIONAL CALCULATIONS; AB-INITIO;
   LATTICE-DYNAMICS; FIRST-PRINCIPLES; GALLIUM NITRIDE; SEMICONDUCTOR
   SURFACES; ELECTRONIC-PROPERTIES; SI(001)(2X1) SURFACE; EPITAXIAL LAYERS
AB We have applied the adiabatic bond-charge model within a supercell
   approach to study the lattice dynamics of group-III nitride (110)
   surfaces. The structural and electronic information necessary for these
   calculations is obtained from using the ab initio pseudopotential
   method. The phonon dispersion curves for the group-III nitride (110)
   surfaces are presented and compared with each other in detail. From
   this comparison, it is found that the InN(110) and GaN(110) surfaces
   show similar dynamical behavior due to their large cation-anion mass
   differences. It is pointed out that in general surface phonon modes on
   group-III nitride (110) can be related to their counterparts on
   non-nitride III-V(110) and II-VI(110) surfaces provided that results
   are scaled with respect to the reduced mass and lattice constant
   differences. The rotational phonon mode predicted for other
   semiconductor surfaces is also identified for the group-III nitride
   (110) surfaces.
C1 Sakarya Univ, Fen Edebiyat Fak, Fiz Bolumu, Adapazari, Turkey.
   Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP Tutuncu, HM, Sakarya Univ, Fen Edebiyat Fak, Fiz Bolumu, Adapazari,
   Turkey.
CR AGRAWAL BK, 1998, SURF SCI, V405, P54
   ALLAN DC, 1984, PHYS REV LETT, V53, P826
   ALVES JLA, 1991, PHYS REV B, V44, P6188
   AZUHATA T, 1995, J PHYS CONDENS MATT, V7, P1949
   AZUHATA T, 1995, J PHYS CONDENS MATT, V7, L129
   BECHSTEDT F, 2000, PHYS REV B, V62, P8003
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   CHEN XJ, 1995, PHYS REV B, V52, P2348
   DOLL GL, 1994, PROPERTIES GROUP, V3
   EREMETS MI, 1995, PHYS REV B, V52, P8854
   FILIPPIDIS L, 1996, PHYS STATUS SOLIDI B, V198, P621
   FRITSCH J, 1999, PHYS REP, V309, P209
   GROSSNER U, 1998, PHYS REV B, V58, R1722
   HARTEN U, 1987, EUROPHYS LETT, V4, P833
   JAFFE JE, 1996, PHYS REV B, V53, R4209
   JENKINS SJ, 1994, J PHYS-CONDENS MAT, V6, P8781
   KARCH K, 1997, PHYS REV B, V56, P7404
   KARCH K, 1998, PHYS REV B, V57, P7043
   LOUIE SG, 1982, PHYS REV B, V26, P1738
   MIOTTO R, 1999, PHYS REV B, V59, P3008
   MIOTTO R, 1999, SURF SCI, V426, P75
   MIOTTO R, 2000, SOLID STATE COMMUN, V115, P67
   NIENHAUS H, 1995, SURF SCI, V328, L561
   NIENHAUS H, 1997, PHYS REV B, V56, P13194
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   POLLMANN J, 1986, APPL PHYS A-SOLID, V41, P21
   RAJPUT BD, 1996, PHYS REV B, V53, P9052
   RUSTAGI KC, 1979, SOLID STATE COMMUN, V18, P673
   SANJURJO JA, 1983, PHYS REV B, V28, P5479
   SIEGLE H, 1995, SOLID STATE COMMUN, V96, P943
   SRIVASTAVA GP, 1997, REP PROG PHYS, V60, P561
   SWARTS CA, 1981, SURF SCI, V110, P400
   TABATA A, 1996, J APPL PHYS 1, V79, P4137
   TABATA A, 1999, APPL PHYS LETT, V74, P362
   TAKAGI N, 1999, PHYS REV B, V60, P10919
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   TUTUNCU HM, 1996, J PHYS-CONDENS MAT, V8, P1345
   TUTUNCU HM, 1997, PHYS REV B, V56, P4656
   TUTUNCU HM, 1999, PHYS REV B, V59, P4925
   TUTUNCU HM, 2000, PHYS REV B, V62, P15797
   TUTUNCU HM, 2000, PHYS REV B, V62, P5028
   TUTUNCU HM, 2002, APPL PHYS LETT, V80, P3322
   TUTUNCU HM, 2002, PHYSICA B, V316, P190
   WEBER W, 1974, PHYS REV LETT, V33, P371
   WEBER W, 1977, PHYS REV B, V15, P4789
   ZANGWILL A, 1992, PHYSICS SURFACES
   ZAPOL P, 1997, J PHYS-CONDENS MAT, V9, P9517
NR 47
TC 5
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD SEP 15
PY 2002
VL 66
IS 11
AR 115304
DI ARTN 115304
PG 11
SC Physics, Condensed Matter
GA 601RG
UT ISI:000178461000050
ER

PT J
AU Menegon, G
   Loos, M
   Chaimovich, H
TI Ab initio study of the thiolysis of trimethyl phosphate ester in the
   gas phase
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PROTEIN-TYROSINE-PHOSPHATASE; VIBRATIONAL FREQUENCIES;
   AQUEOUS-SOLUTION; HYDROLYSIS; REACTIVITY; MECHANISMS; CATALYSIS;
   SPECTROSCOPY; INSIGHTS; ATTACK
AB Phosphate esters are key compounds in important biological reactions,
   One family of enzymes, PTPases, catalyze the dephosphorylation of
   tyrosine residues from other proteins by a cystein side-chain
   nucleophilic attack at tyrosin phosphate. Very little is known about
   the intrinsic reactivity of thiol nucleophiles with phosphor-us
   centers. To explore this important reaction, we have performed ab
   initio calculations on the trimethyl phosphate ester (TMP) thiolysis by
   (CH3S)(-). Results in the gas phase indicate that attack at TMP carbon
   is essentially predominant over phosphorus. Mechanisms are A(n)D(n) and
   exoergic for reaction at carbon and A(n) + D-n with large activation
   barriers and endoergic reaction for attack on phosphorus. A
   trigonal-bipyramid intermediate was formed upon (CH3S)(-) reaction at
   phosphorus and two different and competitive pathways were found for
   the elimination of methoxide from this intermediate. One of the
   elimination pathways is positioned in-line to the thiol group, as
   proposed in the enzymatic mechanism. If PTPases work by the same
   mechanism as the gas-phase reaction, these enzymes should drastically
   lower the activation barriers for attack at phosphorus.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Menegon, G, Univ Sao Paulo, Inst Quim, Av Lineu Prestes 748,
   BR-05508900 Sao Paulo, Brazil.
CR ADMIRAAL SJ, 2000, J AM CHEM SOC, V122, P2145
   AHN N, 2001, CHEM REV, V101
   ASUBIOJO OI, 1977, J AM CHEM SOC, V99, P7707
   AYALA PY, 1998, J CHEM PHYS, V108, P2314
   BARFORD D, 1998, ANNU REV BIOPH BIOM, V27, P133
   BILLING GD, 1996, INTRO MOL DYNAMICS C
   BUNTON CA, 1970, ACCOUNTS CHEM RES, V3, P257
   BUNTON CA, 1997, J PHYS ORG CHEM, V10, P221
   CHANG NY, 1997, J PHYS CHEM A, V101, P8706
   CHANG NY, 1998, J AM CHEM SOC, V120, P2156
   CLELAND WW, 1995, FASEB J, V9, P1585
   COX JR, 1964, CHEM REV, V64, P317
   DANTZMAN CL, 1996, J AM CHEM SOC, V118, P11715
   DEJAEGERE A, 1994, J CHEM SOC FARADAY T, V90, P1763
   FLORIAN J, 1997, J AM CHEM SOC, V119, P5473
   FLORIAN J, 1998, J AM CHEM SOC, V120, P11524
   FLORIAN J, 1998, J PHYS CHEM B, V102, P719
   FRISCH MJ, 1998, GAUSSIAN 98 REV A 9
   FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
   GEORGE L, 1997, J PHYS CHEM A, V101, P2459
   GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
   GUTHRIE RD, 1989, ACCOUNTS CHEM RES, V22, P343
   HODGES RV, 1980, J AM CHEM SOC, V102, P935
   JACKSON MD, 2001, CHEM REV, V101, P2313
   LIM C, 1990, J AM CHEM SOC, V112, P5872
   LUM RC, 1992, J AM CHEM SOC, V114, P8619
   MCQUARRIE DA, 1973, STAT THERMODYNAMICS
   MERCERO JM, 2000, J COMPUT CHEM, V21, P43
   MOLLER C, 1934, PHYS REV, V46, P618
   OCHTERSKI JW, 1999, WHITE PAPER VIBRATIO
   PANNIFER ADB, 1998, J BIOL CHEM, V273, P10454
   POPLE JA, 1993, ISRAEL J CHEM, V33, P345
   SHAIK SS, 1992, THEORETICAL ASPECTS
   STRECK R, 1996, J MOL STRUCT, V376, P277
   THATCHER GRJ, 1989, ADV PHYS ORG CHEM, V25, P99
   WESTHEIMER FH, 1968, ACCOUNTS CHEM RES, V1, P70
   WESTHEIMER FH, 1987, SCIENCE, V235, P1173
   YLINIEMELA A, 1993, J AM CHEM SOC, V115, P3032
   ZHANG ZY, 1993, BIOCHEMISTRY-US, V32, P9340
NR 39
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 3
PY 2002
VL 106
IS 39
BP 9078
EP 9084
PG 7
SC Chemistry, Physical
GA 598JU
UT ISI:000178273400014
ER

PT J
AU Martins, JBL
   Perez, MA
   Silva, CHT
   Taft, CA
   Arissawa, M
   Longo, E
   Mello, PC
   Stamato, FMLG
   Tostes, JGR
TI Theoretical ab initio study of ranitidine
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE ab initio; ranitidine; conformation
ID HELICOBACTER-PYLORI INFECTION; CITRATE PLUS CLARITHROMYCIN;
   DUODENAL-ULCER; ACTIVATION MECHANISM; BISMUTH CITRATE; RECEPTOR MODEL;
   H-2-RECEPTOR ANTAGONISTS; HISTAMINE H-2-RECEPTOR; MOLECULAR MECHANISM;
   GASTRIC PH
AB The presence of a heterocyclic ring containing a basic center linked
   via a methylene chain to a substituted guanidine or thiourea polar side
   chain, such as found in the H2-antagonist metiamide, which has an
   imidazole heterocyclic ring, has often been identified as one of the
   requirements for H-2-antagonist activity. In ranitidine, on the other
   hand, the imidazole ring is substituted for a furan ring, yielding a
   more active biological H2 antagonist. hi this work, we have used the ab
   initio Hartree-Fock (HF) and second-order Moller-Plesset (MP2) methods
   in order to investigate the open and folded ranitidine conformations,
   of the type observed in metiamide. Five basis sets (3-21G, 3-21+G**,
   6-31G, 6-31+G**, and 6-31+G**) were used in order to obtain fully
   optimized geometric parameters that indicated good agreement with the
   experimental crystallographic data, We have also investigated in this
   work the effects of solvents in both ranitidine and metiamide.
   Monocationic ranitidine was also investigated. All our results,
   indicate that, as in metiamide, the folded conformation is also
   preferred. We have investigated Mulliken and natural bond order (NBO)
   charge distributions, electrostatic and hydrogen bond effects on
   stabilizing the conformations and discussed the interactions of
   ranitidine with the biological receptor. (C) 2002 Wiley Periodicals,
   Inc.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estat, BR-22290180 Rio De Janeiro, Brazil.
   Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
   Univ Estadual Ponta Grossa, Dept Quim, BR-84031510 Ponta Grossa, Parana, Brazil.
   Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
   Univ Estadual Norte Fluminense, Lab Ciencias Quim, Ctr Ciencias Exatas & Tecnol, BR-18015620 Campos, RJ, Brazil.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
   Estat, R Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil.
CR BARDHAN KD, 1998, AM J GASTROENTEROL, V93, P380
   BARDITCHCROVO PA, 1998, ANTIVIR RES, V38, P209
   BARTLETT JA, 1998, J INFECT DIS, V177, P231
   BLACK JW, 1975, J MED CHEM, V18, P905
   BUSCHAUER A, 1989, RECEPTOR PHARM FUNCT, P293
   CHIARI G, 1983, J CHEM SOC P2, V1, P1815
   DURANT GJ, 1975, J MED CHEM, V18, P905
   EGGLESTON A, 1998, GUT, V42, P13
   ERICKS JC, 1993, MOL PHARMACOL, V44, P886
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FRANKE R, 1984, THEORETICAL DRUG DES
   FRISCH MJ, 1995, GAUSSIAN 94
   GANELLIN CR, 1973, J MED CHEM, V16, P610
   GANELLIN CR, 1973, J MED CHEM, V16, P620
   GANELLIN CR, 1974, MOL QUANTUM PHARM, P43
   GANELLIN CR, 1982, PHARM HISTAMINE RECE, P10
   GANTZ I, 1992, J BIOL CHEM, V267, P20840
   GIRALDO J, 1992, MOL PHARMACOL, V42, P373
   GIRALDO J, 1999, BIOCHEM PHARMACOL, V58, P343
   GREEN JP, 1977, P NATL ACAD SCI USA, V74, P5697
   HARRISON AM, 1998, CRIT CARE MED, V26, P1433
   ISHIDA T, 1990, ACTA CRYSTALLOGR C, V46, P1893
   KANEKO H, 1998, BBA-MOL BASIS DIS, V1407, P193
   KIER LB, 1986, J MED CHEM, V11, P441
   KIMURA E, 1984, CHEM PHARM BULL, V32, P3569
   KLOTZ U, 1991, PHARMACOL THERAPEUT, V50, P233
   KOJICPRODIC B, 1982, ACTA CRYSTALLOGR B, V38, P1837
   KUIPERS EJ, 1997, BAILLIERE CLIN INF D, V4, P395
   LANZA FL, 1998, HELICOBACTER, V3, P212
   LEFF P, 1997, TRENDS PHARMACOL SCI, V18, P355
   LIN JH, 1991, CLIN PHARMACOKINET, V20, P218
   LUQUE FJ, 1990, J CHIM PHYS PCB, V87, P1569
   MACRI G, 1998, AM J GASTROENTEROL, V93, P925
   MANES G, 1998, ITAL J GASTROENTEROL, V30, P28
   MARTINS JBL, 1998, INT J QUANTUM CHEM, V38, P727
   MAZZUREK AP, 1987, MOL PHARMACOL, V31, P345
   MEINING A, 1998, ALIMENT PHARM THERAP, V12, P735
   MIERTUS S, 1982, CHEM PHYS, V65, P239
   MOLDEN G, 1999, SCAFTENAAR CAOS
   NAGY PI, 1994, J AM CHEM SOC, V116, P4898
   NEER EJ, 1995, CELL, V80, P249
   NETZER P, 1998, ALIMENT PHARM THERAP, V12, P337
   ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
   PAPPA KA, 1998, CURR THER RES CLIN E, V59, P454
   PARDO L, 1991, MOL PHARMACOL, V40, P980
   PARDO L, 1997, EUR J PHARMACOL, V335, P73
   PARKMAN HP, 1998, DIGEST DIS SCI, V43, P497
   PARKMAN HP, 1998, GUT, V42, P243
   PORRO GB, 1998, ALIMENT PHARM THERAP, V12, P355
   POZZATO P, 1998, ALIMENT PHARM THERAP, V12, P447
   PROUT K, 1974, ACTA CRYSTALLOGR B, V30, P2284
   PULLMAN B, 1974, MOL PHARMACOL, V10, P360
   REGGIO P, 1986, J MED CHEM, V29, P2412
   REILLY TG, 1998, ALIMENT PHARM THERAP, V12, P469
   RICHARDS WG, 1977, QUANTUM PHARM
   RODGERS PT, 1998, PHARMACOTHERAPY, V18, P404
   SARAN A, 1992, IND J BIOCH BIOPHYS, V29, P54
   SIMANOWSKI UA, 1998, DIGESTION, V59, P314
   SMEYERS YG, 1985, J MOL STRUCT THEOCHE, V123, P431
   SMEYERS YG, 1985, P 5 EUR QSAR S VCH W, P374
   SMEYERS YG, 1990, J MOL STRUCT THEOCHE, V207, P157
   STAMATO FML, 1990, J MOL STRUCT THEOCHE, V210, P447
   STAMATO FML, 1992, J MOL STRUCT THEOCHE, V254, P505
   TOPIOL S, 1984, J MED CHEM, V27, P1531
   TOPIOL S, 1987, J COMPUT CHEM, V8, P142
   VEIDIS MV, 1969, J CHEM SOC A, V17, P2659
   VOGELSANGER B, 1991, J AM CHEM SOC, V113, P7864
   WEINSTEIN H, 1976, MOL PHARMACOL, V12, P738
   WEINSTEIN H, 1976, MOL PHARMACOL, V12, P738
   WEINSTEIN H, 1986, MOL PHARMACOL, V29, P28
NR 70
TC 6
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD OCT 15
PY 2002
VL 90
IS 2
BP 575
EP 586
PG 12
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA 595UE
UT ISI:000178126500011
ER

PT J
AU Rivelino, R
   Ludwig, V
   Rissi, E
   Canuto, S
TI Theoretical studies of hydrogen bonding in water-cyanides and in the
   base pair Gu-Cy
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE ab initio; hydrogen bond; water-cyanides; base pair
ID DENSITY-FUNCTIONAL-THEORY; PI-ASTERISK TRANSITION; AB-INITIO;
   MOLECULAR-INTERACTIONS; SOLVATOCHROMIC SHIFTS; ELECTRON CORRELATION;
   CORRELATION-ENERGY; QUANTUM-CHEMISTRY; BONDED COMPLEXES; ACETONE
AB Density-functional (DFF) and many-body-perturbation theories (MIBPT/CC)
   are used to study the hydrogen bonding in the water-cyanide complexes
   H-C=N...H2O, H3C-C=N...H2O and (CH3)(3)C-C=N...H2O. Structures, binding
   energies and changes in vibrational frequencies are analyzed. The
   calculated C=N stretching frequency is found to shift to the blue upon
   complexation in H-C=N...H2O and H3C-C=N...H2O. To investigate electron
   correlation effects on the binding energies of these complexes,
   single-point calculations are performed at the MBPT/CC (MP2, MP3, MP4,
   CCSD and CCSD(T)) levels using the optimized MP2 geometries. Binding
   energies are also obtained at different levels of DFT (B3LYP and PW91)
   and compared with the MBPT/CC results. All calculations include
   corrections for basis set superposition error (BSSE) and zero-point
   vibrational energies. Additionally, the triple hydrogen-bonded.
   guanine-cytosine (Gu-Cy) base pair is analyzed. The binding energy of
   the Watson-Crick model for Gu-Cy is calculated using the Hartree-Fock
   calculations and DFT (B3LYP and BP86) methods. The results for the
   hydrogen bonding distances and binding energies are in good agreement
   with experimental and recent theoretical values. The calculated dipole
   moment of the Gu-Cy complex is compared with the direct vector sum of
   the isolated bases. After taking into account the BSSE effects we find
   that the electron polarization due to the hydrogen binding leads to an
   increase of similar to20% of the calculated dipole moment of the
   complex. (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, POB 66318, BR-05315970 Sao Paulo,
   Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BERTRAN J, 1998, J AM CHEM SOC, V120, P8159
   BISWAS R, 1997, J MOL BIOL, V270, P511
   BONG DT, 2001, ANGEW CHEM INT EDIT, V40, P988
   BOYS SF, 1970, MOL PHYS, V19, P553
   BRANDL M, 1999, THEOR CHEM ACC, V101, P103
   COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
   COUTINHO K, 2000, J CHEM PHYS, V113, P9132
   CRUZAN JD, 1996, SCIENCE, V271, P59
   DAMEWOOD JR, 1987, J PHYS CHEM-US, V91, P3449
   DELBENE JE, 1997, INTERMOLECULAR INTER
   DESFRANCOIS C, 1995, SCIENCE, V269, P1707
   DEVRIES AH, 1995, THESIS U GRONINGEN
   DEVRIES AH, 1996, INT J QUANTUM CHEM, V57, P1067
   ELSTNER M, 2001, J CHEM PHYS, V114, P5149
   FOX T, 1992, CHEM PHYS LETT, V191, P33
   GAO JL, 1994, J AM CHEM SOC, V116, P9324
   GOGONEA V, 1999, J PHYS CHEM A, V103, P5171
   GOULD IR, 1994, J AM CHEM SOC, V116, P2493
   GUERRA CF, 2000, J AM CHEM SOC, V122, P4117
   GUTOWSKY HS, 1992, J CHEM PHYS, V96, P5808
   HEIKKILA A, 1999, J PHYS CHEM A, V103, P2945
   HEIKKILA AT, 2000, J PHYS CHEM A, V104, P6637
   HOBZA P, 2000, CHEM REV, V100, P4253
   JEFFREY GA, 1991, HYDROGEN BONDING BIO
   KARLSTROM G, 1982, THEOR CHIM ACTA, V61, P1
   KURDI L, 1987, CHEM PHYS, V92, P92
   LAASONEN K, 1993, J CHEM PHYS, V99, P9081
   LATAJKA Z, 1987, J CHEM PHYS, V87, P1194
   LEE C, 1988, PHYS REV B, V37, P785
   LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
   MEYER M, 2001, J COMPUT CHEM, V22, P109
   PAPPALARDO RR, 1993, CHEM PHYS LETT, V212, P12
   PARR RG, 1983, ANNU REV PHYS CHEM, V34, P631
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PERDEW JP, 1992, PHYS REV B, V45, P13244
   PERDEW JP, 1996, PHYS REV B, V54, P16533
   PIMENTEL GC, 1971, ANNU REV PHYS CHEM, V22, P347
   PORTMANN S, 2000, J CHEM PHYS, V113, P9577
   RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
   RINCON L, 2001, J CHEM PHYS, V114, P5552
   RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
   RIVELINO R, 2001, J PHYS CHEM A, V105, P11260
   SAENGER W, 1984, PRINCIPLES NUCL ACID
   SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
   SANTAMARIA R, 1994, J COMPUT CHEM, V15, P981
   SCHEINER S, 1997, HYDROGEN BONDING THE
   SCHEINER S, 2001, J BIOL CHEM, V276, P9832
   SPONER J, 1996, J PHYS CHEM-US, V100, P1965
   STEINER T, 1992, J AM CHEM SOC, V114, P10146
   SUHAI S, 1995, J PHYS CHEM-US, V99, P1172
   THOMPSON MA, 1996, J PHYS CHEM-US, V100, P14492
   TSUZUKI S, 2001, J CHEM PHYS, V114, P3949
   VANDERVAART A, 2000, J COMPUT CHEM, V21, P1494
   VANDERVAART A, 2000, J PHYS CHEM B, V104, P9554
   VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
   WATSON JD, 1953, NATURE, V171, P737
   XANTHEAS SS, 1994, J CHEM PHYS, V100, P7523
   YANSON IK, 1979, BIOPOLYMERS, V18, P1149
   YE YJ, 2000, J COMPUT CHEM, V21, P1109
NR 62
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD SEP 26
PY 2002
VL 615
IS 1-3
BP 257
EP 266
PG 10
SC Chemistry, Physical
GA 594XC
UT ISI:000178076800028
ER

PT J
AU Ramos, LE
   Furthmuller, J
   Scolfaro, LMR
   Leite, JR
   Bechstedt, F
TI Substitutional carbon in group-III nitrides: Ab initio description of
   shallow and deep levels
SO PHYSICAL REVIEW B
LA English
DT Article
ID CUBIC BORON-NITRIDE; PERIODIC BOUNDARY-CONDITIONS; TOTAL-ENERGY
   CALCULATIONS; MOLECULAR-BEAM EPITAXY; WAVE BASIS-SET; THIN-FILMS; GAN;
   RELAXATION; GROWTH; ALN
AB We present ab initio pseudopotential plane-wave calculations for the
   neutral and negatively charged carbon impurity on a nitrogen site in
   group-III nitrides. Ultrasoft non-norm-conserving Vanderbilt
   pseudopotentials allow the use of extremely large supercells up to 2744
   atoms. These supercells attenuate the defect-defect interaction and,
   hence, give an accurate description of the resulting acceptor levels in
   BN, AlN, GaN, and InN. We calculate atomic geometries and energetical
   positions of the defect levels, Franck-Condon shifts, and formation
   energies. The defect stability and the transition of the shallow-deep
   character are discussed along the series BN, AlN, GaN, and InN. For GaN
   we calculate a hole activation energy of about 0.2 eV in correspondence
   with photoluminescence and temperature-dependent Hall measurements.
C1 Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743 Jena, Germany.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Ramos, LE, Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743
   Jena, Germany.
CR ABERNATHY CR, 1995, APPL PHYS LETT, V66, P1969
   AMBACHER O, 1998, J PHYS D APPL PHYS, V31, P2653
   AS DJ, 1998, PHYS STATUS SOLIDI B, V210, P445
   AS DJ, 1999, MRS INT J NITRIDE SE
   AS DJ, 2001, J PHYS-CONDENS MAT, V13, P8923
   BIRKLE U, 1999, MRS INT J NITRIDE SE
   BOGUSLAWSKI P, 1996, APPL PHYS LETT, V69, P233
   BOGUSLAWSKI P, 1997, PHYS REV B, V56, P9496
   DAVYDOV VY, 2002, PHYS STATUS SOLIDI B, V229, R1
   EDGAR JH, 1994, PROPERTIES GROUP 3 N
   FEYNMAN RP, 1939, PHYS REV, V56, P340
   FISCHER S, 1995, APPL PHYS LETT, V67, P1298
   FURTHMULLER J, 2000, PHYS REV B, V61, P4576
   GORCZYCA I, 1997, MRS INTERNET J N S R, V2
   GORCZYCA I, 1997, SOLID STATE COMMUN, V101, P747
   GORCZYCA I, 1999, PHYS REV B, V60, P8147
   GROSSNER U, 1998, PHYS REV B, V58, R1722
   GROSSNER U, 1999, APPL PHYS LETT, V74, P3851
   GUBANOV VA, 1996, APPL PHYS LETT, V69, P227
   HOHENBERG P, 1964, PHYS REV, V136, B864
   JANAK JF, 1978, PHYS REV B, V18, P7165
   JENKINS DW, 1989, PHYS REV B, V39, P3317
   KANTOROVICH LN, 1999, J PHYS-CONDENS MAT, V11, P6159
   KANTOROVICH LN, 1999, PHYS REV B, V60, P15476
   KOHLER U, 2001, PHYSICA B, V308, P126
   KOHN W, 1965, PHYS REV, V140, A1139
   KRESSE G, 1996, COMP MATER SCI, V6, P15
   KRESSE G, 1996, PHYS REV B, V54, P11169
   LAASONEN K, 1992, PHYS REV B, V45, P4122
   LIMA AP, 1999, J CRYST GROWTH, V201, P396
   LU M, 1994, APPL PHYS LETT, V64, P1514
   MAKOV G, 1995, PHYS REV B, V51, P4014
   MARQUES M, 2001, P 25 INT C PHYS SEM, P1411
   MONEMAR B, 1974, PHYS REV B, V10, P676
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   NEUGEBAUER J, 1996, FESTKOR A S, V35, P25
   OKUMURA H, 1998, MATER SCI FORUM 1-2, V264, P1167
   ORELLANA W, 2000, PHYS REV B, V62, P10135
   PANKOVE JI, 1971, OPTICAL PROCESSES SE
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   PETROV I, 1992, APPL PHYS LETT, V60, P2491
   POWELL RC, 1993, J APPL PHYS, V73, P189
   RAMOS LE, 2001, PHYS REV B, V63
   RUBIO A, 1993, PHYS REV B, V48
   SLATER JC, 1972, ADVANCES QUANTUM CHE, V6, P1
   STAMPFL C, 2000, PHYS REV B, V61, P7846
   SURH MP, 1991, PHYS REV B, V43, P9126
   TABATA A, 1999, APPL PHYS LETT, V74, P362
   TANG X, 1998, APPL PHYS LETT, V72, P1501
   TELES LK, 1999, PHYS STATUS SOLIDI B, V216, P541
   THOMPSON MP, 2001, J APPL PHYS, V89, P3331
   VANDEWALLE CG, 1993, PHYS REV B, V47, P9425
   VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
   WENTORF RH, 1957, J CHEM PHYS, V26, P956
   WIDMAYER P, 1999, PHYS REV B, V59, P5233
   YI GC, 1997, APPL PHYS LETT, V70, P357
   ZHANG SB, 1991, PHYS REV LETT, V67, P2339
NR 57
TC 8
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 15
PY 2002
VL 66
IS 7
AR 075209
DI ARTN 075209
PG 9
SC Physics, Condensed Matter
GA 593AV
UT ISI:000177969800082
ER

PT J
AU Yoshinaga, F
   Tormena, CF
   Freitas, MP
   Rittner, R
   Abraham, RJ
TI Conformational analysis of 2-halocyclohexanones: an NMR, theoretical
   and solvation study
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID STEREOCHEMICAL CONSEQUENCES; ORGANIC-MOLECULES; ISOMERISM; PAIRS
AB The conformational equilibria of 2-fluoro-, 2-chloro- and
   2-iodo-cyclohexanone have been determined in various solvents by
   measurement of the J(2-3) couplings. The observed couplings were
   analysed using theoretical and solvation calculations to give both the
   conformer energies in the solvents studied plus the vapour phase
   energies and the coupling constants in the distinct conformers. These
   plus previous results for the 2-bromo compound give the conformer
   energies and couplings of all the 2-halocyclohexanones. In the 2-fluoro
   compound the axial conformation is the most stable one in the vapour
   phase (E-eq - E-ax = 0.45 kcal mol(-1)), while the equatorial conformer
   predominates in all the solvents studied. The other haloketones show
   similar behaviour, but the energy difference in the vapour phase is
   larger (E-eq - E-ax = 1.05, 1.50 and 1.90 kcal mol(-1), for the chloro,
   bromo and iodo compounds respectively) and the axial conformer is still
   the prevailing conformer in CCl4 solution for the chloro and bromo
   ketones and is the major form in all solvents for the iodo compound.
   The vapour state conformer energies for the fluoro and chloro compounds
   are in complete agreement with the ab initio calculated energies, but
   those for the bromo and iodo are not in such good agreement. Both the
   ab initio calculations and molecular mechanics are used to discuss the
   origins of the conformer energies. It is shown that the interaction
   between the C2 halogen and the C=O oxygen in the equatorial conformer
   is strongly attractive for fluorine, much less so for chlorine, ca.
   zero for bromine and repulsive for iodine. Comparison of the conformer
   couplings obtained here with calculated values show generally good
   agreement.
C1 Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
   Inst Quim, Phys Organ Chem Lab, BR-13083970 Campinas, SP, Brazil.
RP Abraham, RJ, Univ Liverpool, Dept Chem, POB 147, Liverpool L69 3BX,
   Merseyside, England.
CR *SER SOFTW, PCMODEL VERS 7 1
   ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
   ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
   ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
   ABRAHAM RJ, 1996, J CHEM SOC PERK  APR, P533
   ABRAHAM RJ, 1996, J CHEM SOC PERK  SEP, P1949
   ABRAHAM RJ, 1999, J CHEM SOC PERK  AUG, P1663
   ABRAHAM RJ, 2001, J CHEM SOC PERK T 2, P815
   ALLINGER NL, 1958, J AM CHEM SOC, V80, P5476
   BASSO EA, 1993, J ORG CHEM, V58, P7865
   BEDOUKIAN PZ, 1945, J AM CHEM SOC, V67, P1430
   EISENSTEIN O, 1974, TETRAHEDRON, V30, P1717
   ELIEL EL, 1994, STEREOCHEMISTRY ORGA
   ELIEL EL, 1994, STEREOCHEMISTRY ORGA, P696
   EPIOTIS ND, 1973, J AM CHEM SOC, V95, P3087
   FORESMAN JB, 1996, EXPLORING CHEM ELECT
   FREITAS MP, 2001, J PHYS ORG CHEM, V14, P317
   FRISCH MJ, 1998, GAUSSIAN 98
   GARBISCH EW, 1964, J AM CHEM SOC, V86, P1780
   HAASNOOT CAG, 1980, TETRAHEDRON, V36, P2783
   PAN YH, 1967, CAN J CHEM, V45, P2943
   RABLEN PR, 1999, J CHEM SOC PERK  AUG, P1719
   SENDEROWITZ H, 1997, THEOCHEM-J MOL STRUC, V395, P123
   TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
   WEAST RC, 1985, HDB CHEM PHYSICS
   WIBERG KB, 1990, J PHYS CHEM-US, V94, P6956
   WOLFE S, 1972, ACCOUNTS CHEM RES, V5, P102
   ZEFIROV NS, 1978, TETRAHEDRON, V34, P2953
NR 28
TC 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
   ENGLAND
SN 1472-779X
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2002
IS 9
BP 1494
EP 1498
PG 5
SC Chemistry, Organic; Chemistry, Physical
GA 587ZQ
UT ISI:000177675300002
ER

PT J
AU Rocha, WR
   Martins, VM
   Coutinho, K
   Canuto, S
TI Solvent effects on the electronic absorption spectrum of formamide
   studied by a sequential Monte Carlo/quantum mechanical approach
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
DE formamide; QM/MM; solvent effects; absorption spectrum; Monte Carlo
   simulation
ID CIRCULAR-DICHROISM CALCULATIONS; CARLO-QUANTUM-MECHANICS;
   N-METHYLACETAMIDE; AB-INITIO; EXCITED-STATES; HYDROGEN-BOND; LIQUID
   WATER; POTENTIAL FUNCTIONS; AMIDE CHROMOPHORE; AQUEOUS-SOLUTION
AB Sequential Monte Carlo/quantum mechanical calculations are performed to
   study the solvent effects on the electronic absorption spectrum of
   formamide (FMA) in aqueous solution, varying from hydrogen bonds to the
   outer solvation shells. Full quantum-mechanical intermediate neglect of
   differential overlap/singly excited configuration interaction
   calculations are performed in the supermolecular structures generated
   by the Monte Carlo simulation. The largest calculation involves the
   ensemble average of 75 statistically uncorrelated quantum mechanical
   results obtained with the FMA solute surrounded by 150 water solvent
   molecules. We find that the n --> pi* transition suffers a blueshift of
   1,600 cm(-1) upon solvation and the pi --> pi* transition undergoes a
   redshift of 800 cm(-1). On average, 1.5 hydrogen bonds are formed
   between FMA and water and these contribute with about 20% and about 30%
   of the total solvation shifts of the n --> pi* and pi --> pi*
   transitions, respectively. The autocorrelation function of the energy
   is used to sample configurations from the Monte Carlo simulation, and
   the solvation shifts are shown to be converged values.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Fed Juiz Fora, Dept Quim, BR-36036330 Juiz De Fora, MG, Brazil.
   Univ Mogi Cruzes, CCET, BR-08710970 Mogi das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
   BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
   BESLEY NA, 1998, J PHYS CHEM A, V102, P10791
   BESLEY NA, 1999, J AM CHEM SOC, V121, P8559
   BESLEY NA, 2000, J MOL STRUC-THEOCHEM, V506, P161
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
   CANUTO S, 2002, IN PRESS ADV QUANTUM
   CLARK LB, 1995, J AM CHEM SOC, V117, P7974
   CONTADOR JC, 1996, J CHEM PHYS, V104, P5539
   COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
   COUTINHO K, 1997, DICE MONTE CARLO PRO
   COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
   COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
   COUTINHO K, 2000, J CHEM PHYS, V112, P9874
   COUTINHO K, 2000, J CHEM PHYS, V113, P9132
   DAMM W, 1997, J COMPUT CHEM, V18, P1995
   DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
   DELBENE JE, 1975, J CHEM PHYS, V62, P1961
   FIELD MJ, 1990, J COMPUT CHEM, V11, P700
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GAO JL, 1992, SCIENCE, V258, P631
   GINGELL JM, 1997, CHEM PHYS, V220, P191
   HIRST JD, 1996, J PHYS CHEM-US, V100, P13487
   HIRST JD, 1997, J PHYS CHEM A, V101, P4821
   HIRST JD, 1998, J CHEM PHYS, V109, P782
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   JORGENSEN WL, 1985, J AM CHEM SOC, V107, P1489
   KRAUSS M, 1997, J CHEM PHYS, V107, P5771
   KUZNETSOVA LM, 1996, J MOL STRUCT, V380, P23
   LUDWIG R, 1997, J PHYS CHEM A, V101, P8861
   MARCHESE FT, 1984, J PHYS CHEM-US, V88, P5692
   MCCREERY JH, 1976, J AM CHEM SOC, V98, P7198
   MEZEI M, 1981, J CHEM PHYS, V74, P622
   RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
   ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
   ROCHA WR, 2001, CHEM PHYS LETT, V345, P171
   SCHWEITZERSTENNER R, 1998, J PHYS CHEM A, V102, P118
   SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P12190
   SIELER G, 1997, J AM CHEM SOC, V119, P1720
   SIM F, 1992, J AM CHEM SOC, V114, P4391
   SOBOLEWSKI AL, 1995, J PHOTOCH PHOTOBIO A, V89, P89
   STILINGER FH, 1974, J CHEM PHYS, V60, P3336
   SZALAY PG, 1997, CHEM PHYS LETT, V270, P406
   VANHOLDE KE, 1998, PRINCIPLES PHYSICAL
   WARSHEL A, 1976, J MOL BIOL, V103, P227
   WOODY RW, 1995, METHOD ENZYMOL, V246, P34
   WOODY RW, 1999, J CHEM PHYS, V111, P2844
   WOODY RW, 1999, J PHYS CHEM B, V103, P8984
   ZERNER MC, ZINDO SEMIEMPIRICAL
NR 50
TC 5
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD JUL
PY 2002
VL 108
IS 1
BP 31
EP 37
PG 7
SC Chemistry, Physical
GA 584XM
UT ISI:000177494100005
ER

PT J
AU Miotto, R
   Ferraz, AC
TI A theoretical study of C2H2 adsorption on the Ge(001) surface
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; surface relaxation and reconstruction;
   chemisorption; germanium; silicon
ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS; ORGANIC-MOLECULES;
   SI(001) SURFACE; ACETYLENE; SI(100)
AB Using a first-principles pseudopotential technique, we have
   investigated the adsorption of C2H2, on the Ge(0 01) surface. We have
   found that, at low temperatures, the di-sigma bond configuration is the
   most stable structure from the energetic point of view. According to
   our calculations, it is not possible to conclude if C2H2 adsorbs
   preferentially on alternate or adjacent dimer sites. The di-sigma
   adsorbed system is characterized by symmetric and slightly elongated
   Ge-Ge dimers, and by a symmetric C-C bond with length close to the
   double carbon bond length of the ethylene molecule. Our total energy
   calculations suggest that other meta-stable configurations, like the
   1,2-hydrogen transfer model, are also possible. This behaviour was also
   observed for the silicon based system. In addition, we present
   theoretical scanning tunneling microscopy images and calculated
   vibrational modes for the adsorbed system with a view to contribute to
   further experimental investigations. (C) 2002 Elsevier Science B.V. All
   rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Miotto, R, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
   Sao Paulo, Brazil.
CR *NIST, 2000, NIST CHEM WEBB
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   BOONE AJ, 1998, INT J QUANTUM CHEM, V70, P925
   DYSON AJ, 1997, SURF SCI, V375, P45
   HAMERS RJ, 1999, JPN J APPL PHYS 1, V38, P3879
   HIPPS KW, 2001, SCIENCE, V294, P536
   KITTEL C, 1996, INTRO SOLID STATE PH
   LIDE DR, 1995, HDB CHEM PHYSICS
   LIU HB, 1998, SURF SCI, V416, P354
   MEZHENNY S, 2001, CHEM PHYS LETT, V344, P7
   MIOTTO R, 2000, PHYS REV B, V62, P13623
   MIOTTO R, 2002, PHYS REV B, V65, P75401
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   PILING MJ, 1995, REACTION KINETICS
   REMEDIAKIS IN, 1999, PHYS REV B, V59, P5536
   SORESCU DC, 2000, J PHYS CHEM B, V104, P8259
   SRIVASTAVA GP, 1990, PHYSICS PHONONS
   SRIVASTAVA GP, 1997, REP PROG PHYS, V60, P561
   SRIVASTAVA GP, 1999, THEORETICAL MODELLIN
   TERBORG R, 2000, PHYS REV B, V61, P16697
   TOSCANO M, 1989, J MOL CATAL, V55, P101
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   XU SH, 1999, PHYS REV B, V60, P11586
   XU SH, 2000, PHYS REV LETT, V84, P939
NR 24
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD AUG 1
PY 2002
VL 513
IS 3
BP 422
EP 430
PG 9
SC Chemistry, Physical
GA 581XH
UT ISI:000177319500007
ER

PT J
AU Pliego, JR
   Riveros, JM
TI Theoretical calculation of pK(a) using the cluster-continuum model
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID COMPLETE BASIS-SET; SOLVATION FREE-ENERGY; AB-INITIO; AQUEOUS-SOLUTION;
   CARBOXYLIC-ACIDS; ORGANIC-COMPOUNDS; HALOACETIC ACIDS; HYDROXIDE ION;
   GAS-PHASE; ABSOLUTE
AB The pK(a)'s of 17 species from - 10 to 50 were calculated using the ab
   initio MP2/6-311+G(2df,2p) level of theory and inclusion of solvent
   effects by the cluster-continuum model, a hybrid approach that combines
   gas-phase clustering by explicit solvent molecules and solvation of the
   cluster by the dielectric continuum. In addition, the pure continuum
   methods SM5.42R and PCM were also used for comparison purposes. Species
   such as alcohols, carboxylic acids, phenol, acetaldehyde and its
   hydrate, thiols, hydrochloric acid, amines, and ethane were included.
   Our results show that the cluster-continuum model yields much better
   agreement with experiment than do the above-mentioned pure continuum
   methods, with a rms error of 2.2 pK(a) units as opposed to 7 pK(a)
   units for the SM5.42R and PCM methods. The good performance of the
   cluster-continuum model can be attributed to the introduction of strong
   and specific solute-solvent interactions with the molecules in the
   first solvation shell of ions. This feature decreases the dielectric
   continuum contribution to the difference in the solvation free energy
   between ions, making the method less susceptible to error because of
   the continuum contribution to solvation. Because the method is not
   based on extensive parametrizations and it is shown to fare well for
   several functional groups, the present results suggest that this method
   could be used as a general approach for predicting reliable pK(a)
   values.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
   Sao Paulo, Brazil.
CR *NIST, 2001, NIST CHEM WEBB
   ALBERT A, 1984, DETERMINATION IONIZA
   BARONE V, 1997, J CHEM PHYS, V107, P3210
   BENNAIM A, 1978, J PHYS CHEM-US, V82, P792
   COSSI M, 1996, CHEM PHYS LETT, V255, P327
   DASILVA CO, 1999, INT J QUANTUM CHEM, V74, P417
   DASILVA CO, 1999, J PHYS CHEM A, V103, P11194
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FRISCH MJ, 1995, GAUSSIAN 94
   GAO JL, 1996, J AM CHEM SOC, V118, P4912
   HILL TL, 1960, INTRO STAT THERMODYN
   JANG YH, 2001, J PHYS CHEM A, V105, P274
   JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
   JORGENSEN WL, 1987, J AM CHEM SOC, V109, P6857
   JORGENSEN WL, 1989, J AM CHEM SOC, V111, P4190
   KALLIES B, 1997, J PHYS CHEM B, V101, P2959
   KAWATA M, 1995, CHEM PHYS LETT, V240, P199
   KLICIC JJ, 2002, J PHYS CHEM A, V106, P1327
   KOLLMAN P, 1993, CHEM REV, V93, P2395
   LI J, 1996, INORG CHEM, V35, P4694
   LI J, 1999, GAMESOL
   LI JB, 1999, THEOR CHEM ACC, V103, P9
   LIM C, 1991, J PHYS CHEM-US, V95, P5610
   LIPTAK MD, 2001, INT J QUANTUM CHEM, V85, P727
   LIPTAK MD, 2001, J AM CHEM SOC, V123, P7314
   PITARCH J, 1998, J AM CHEM SOC, V120, P2146
   PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
   PLIEGO JR, 2000, J PHYS CHEM B, V104, P5155
   PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
   PLIEGO JR, 2002, CHEM-EUR J, V8, P1945
   PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
   RICHARD JP, 1999, J AM CHEM SOC, V121, P715
   RICHARDSON WH, 1997, INT J QUANTUM CHEM, V61, P207
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCHUURMANN G, 1998, J PHYS CHEM A, V102, P6706
   SHAPLEY WA, 1998, J PHYS CHEM B, V102, P1938
   SILVA CO, 2000, J PHYS CHEM A, V104, P2402
   TOPOL IA, 1997, J PHYS CHEM A, V101, P10075
   TOTH AM, 2001, J CHEM PHYS, V114, P4595
   TUNON I, 1992, J PHYS CHEM-US, V96, P9043
   TUNON I, 1993, J AM CHEM SOC, V115, P2226
   WIBERG KB, 2000, J PHYS CHEM A, V104, P7625
NR 42
TC 38
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 15
PY 2002
VL 106
IS 32
BP 7434
EP 7439
PG 6
SC Chemistry, Physical
GA 582LZ
UT ISI:000177353700024
ER

PT J
AU Kirsch, R
   Prandolini, MJ
   Beutler, O
   Brewer, WD
   Gruyters, M
   Kapoor, J
   Riegel, D
   Ebert, H
   Frota-Pessoa, S
TI The formation of orbital moments on iron impurities in Ag1-xAux alloys
SO EUROPHYSICS LETTERS
LA English
DT Article
ID LOCAL ENVIRONMENT; HYPERFINE FIELDS; ALKALI-METALS; CO; FE; SURFACES;
   3D; MAGNETISM; SPIN; NI
AB Using the high specificity and sensitivity of the in-beam perturbed
   gamma-ray angular distribution method, we have investigated the
   magnetic behavior of very dilute Fe-54 probes in Ag1-xAux alloys. The
   nuclear damping time and local susceptibility of Fe are found to depend
   strongly on its local environment, showing inhomogeneous line
   broadening as well as discrete magnetic responses due to the different
   configurations of Ag/Au nearest neighbors. The results can be
   understood with the aid of ab initio calculations of electronic
   structure, magnetic moments and hyperfine fields. They underline the
   central importance of orbital magnetism for understanding the
   experimental results.
C1 Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany.
   Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany.
   Univ Munich, D-81377 Munich, Germany.
   USP, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Kirsch, R, Free Univ Berlin, Fachbereich Phys, Arnimallee 14, D-14195
   Berlin, Germany.
CR AKAI H, 1999, HYPERFINE INTERACT, V121, P3
   BLUGEL S, 1987, PHYS REV B, V35, P3271
   EBERT H, 1988, Z PHYS B, V73, P77
   EBERT H, 2000, LECT NOTES PHYS, V535, P191
   ERIKSSON O, 1990, PHYS REV B, V42, P2707
   FARLE M, 1998, REP PROG PHYS, V61, P755
   FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
   GRUYTERS M, 2000, PHYS REV LETT, V85, P1582
   GUO GY, 2000, PHYS REV B, V62, P14609
   HJORTSTAM O, 1996, PHYS REV B, V53, P9204
   JACCARINO V, 1965, PHYS REV LETT, V15, P258
   KIRSCH R, UNPUB
   KITCHENS TA, 1974, PHYS REV B, V9, P344
   LEGOAS SB, 2000, PHYS REV B, V61, P10417
   METZ A, 1994, PHYS REV LETT, V73, P3161
   PUGACZOWAMICHALSKA M, 1998, J MAGN MAGN MATER, V185, P35
   RIEGEL D, 1988, NATO ADV STUDY I E, V144, P327
   RIEGEL D, 1998, AUST J PHYS, V51, P157
   STEINER P, 1975, PHYS REV B, V12, P842
   TISCHER M, 1995, PHYS REV LETT, V75, P1602
   UBA S, 1998, PHYS REV B, V57, P1534
NR 21
TC 6
PU E D P SCIENCES
PI LES ULIS CEDEXA
PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
   ULIS CEDEXA, FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD AUG
PY 2002
VL 59
IS 3
BP 430
EP 436
PG 7
SC Physics, Multidisciplinary
GA 581QP
UT ISI:000177304600018
ER

PT J
AU Davila, LYA
   Caldas, MJ
TI Applicability of MNDO techniques AM1 and PM3 to ring-structured polymers
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE structural properties; torsion angles; semiempirical models; ab initio;
   electronic structure
ID ELECTRONIC-PROPERTIES; SEMIEMPIRICAL METHODS; CONJUGATED POLYMERS;
   ADJACENT RINGS; TORSION ANGLE; POLYANILINE; PARAMETERS; OPTIMIZATION;
   EVOLUTION; VINYLENE)
AB Semiempirical Hartree-Fock techniques are widely used to study
   properties of long ring-structured chains, although these types of
   systems were not included in the original parametrization ensembles.
   These techniques are very useful for an ample class of studies, and
   their predictive power should be tested. We present here a study of the
   applicability of some techniques from the NDDO family (MNDO, AM1, and
   PM3) to the calculation of the ground state geometries of a specific
   set of molecules with the ring-structure characteristic. For this we
   have chosen to compare results against ab initio Restricted
   Hartree-Fock 6-31G(d,p) calculations, extended to Moller-Plesset 2
   perturbation theory for special cases. The systems investigated
   comprise the orthobenzoquinone (O2C6H4) molecule and dimers
   (O2C6H4)(2), as well as trimers of polyaniline, which present
   characteristics that extend to several systems of interest in the field
   of conducting polymers, such as ring structure and heterosubstitution.
   We focus on the torsion between rings, because this angle is known to
   affect strongly the electronic and optical properties of conjugated
   polymers. We find that AM1 is always in qualitative agreement with the
   ab initio results, and is thus indicated for further studies of longer,
   more complicated chains.
C1 USP, Inst Fis, BR-66318 Sao Paulo, Brazil.
RP Caldas, MJ, USP, Inst Fis, BR-66318 Sao Paulo, Brazil.
CR *IND U, MOPAC 6 0 PROGR 464
   AMBROSCHDRAXL C, 1995, PHYS REV B, V51, P9668
   BRAGA SF, IN PRESS
   BREDAS JL, 1985, J CHEM PHYS, V83, P1323
   BREDAS JL, 1991, PHYS REV B, V44, P6002
   BURROUGHES JH, 1990, NATURE, V347, P539
   CAPAZ RB, 1999, J MOL STRUC-THEOCHEM, V464, P31
   COULSON CA, 1947, P ROY SOC LOND A MAT, V191, P39
   DACOSTA PG, 1993, PHYS REV B, V47, P1800
   DAVILA LYA, 2001, SYNTHETIC MET, V119, P241
   DEWAR MJS, 1964, J COMPUT CHEM, V86, P4550
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DEWAR MJS, 1990, J COMPUT CHEM, V11, P541
   DOSSANTOS HF, 1995, J MOL STRUC-THEOCHEM, V335, P129
   FRISCH MJ, 1995, GAUSSIAN 94 GAUSSIAN
   GALVAO DS, 1989, PHYS REV LETT, V63, P786
   GALVAO DS, 1990, J CHEM PHYS, V93, P2848
   GALVAO DS, 1993, J CHEM PHYS, V98, P3016
   GORB L, 1998, THEOCHEM-J MOL STRUC, V425, P137
   KOLL A, 2000, J MOL STRUCT, V552, P193
   LIPKOWITZ KB, 1991, REV COMPUTATIONAL CH, V2, P313
   MACDIARMID AG, 1987, SYNTHETIC MET, V18, P285
   PARISER R, 1953, J CHEM PHYS, V21, P466
   POPLE JA, 1965, J CHEM PHYS, V43, S129
   ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
   SCANO P, 1991, J COMPUT CHEM, V12, P172
   SEGAL GA, 1977, MODERN THEORETICAL A, V7
   SHIRAKAWA H, 1977, J CHEM SOC CHEM COMM, P578
   STAFSTROM S, 1986, SYNTHETIC MET, V14, P297
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STEWART JJP, 1989, J COMPUT CHEM, V10, P221
   STEWART JJP, 1990, J COMPUT CHEM, V11, P543
NR 33
TC 11
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD SEP
PY 2002
VL 23
IS 12
BP 1135
EP 1142
PG 8
SC Chemistry, Multidisciplinary
GA 578ER
UT ISI:000177104900002
ER

PT J
AU Dabrowski, J
   Mussig, HJ
   Zavodinsky, V
   Baierle, R
   Caldas, MJ
TI Mechanism of dopant segregation to SiO2/Si(001) interfaces
SO PHYSICAL REVIEW B
LA English
DT Article
ID TRANSIENT ENHANCED DIFFUSION; PHOSPHORUS PILE-UP; POINT-DEFECTS; DOSE
   LOSS; ELECTRONIC-STRUCTURE; SI-SIO2 INTERFACE; SILICON DIOXIDE; MODEL;
   SI; PSEUDOPOTENTIALS
AB Dopant atoms can segregate to SiO2/Si(001) interfaces and be
   deactivated there. Using phosphorus as a typical example of a donor and
   guided by results of ab initio calculations, we present a model of
   donor segregation. We find that P is trapped at the interface in the
   form of threefold-coordinated atoms. The atomic detailed configuration
   and the process of P incorporation depend on P concentration C-P in the
   vicinity of the interface. At low C-P, phosphorus atoms prefer to
   substitute Si atoms with dangling bonds. At high C-P, phosphorus pairs
   are formed. At intermediate C-P, (around 10(17)-10(19) cm(-3))
   segregation occurs to sites associated with interface roughness and to
   interface Si-Si bridges, and is mediated by diffusion and annihilation
   of Si dangling bonds and by reoxidation during oxide annealing. Making
   diffusion of dangling bonds more difficult (for example, by
   nitridation) should, therefore, reduce the trapping efficiency of
   SiO2/Si(001) in the technologically important regime of intermediate
   C-P.
C1 IHP, D-15236 Frankfurt, Germany.
   Inst Automat & Control Proc, Vladivostok 690041, Russia.
   Univ Fed Santa Maria, Dept Fis, BR-9711030 Santa Maria, RS, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
RP Dabrowski, J, IHP, Technol Pk 25, D-15236 Frankfurt, Germany.
CR ASENOV A, 1998, P SISPAD 98, P223
   ASENOV A, 1999, IEEE T COMPUT AID D, V18, P1558
   BACHELET GB, 1982, PHYS REV B, V26, P4199
   BAIERLE R, 1999, PHYSICA B, V273, P260
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   BOTT E, 1998, J MATH PHYS, V39, P3393
   CALDAS MJ, 1990, PHYS REV LETT, V65, P2046
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CHOU NJ, 1974, APPL PHYS LETT, V24, P200
   DABROWSKI J, 1998, SURF SCI, V411, P54
   DABROWSKI J, 1999, ADV SOLID STATE PHYS, V38, P565
   DABROWSKI J, 2000, J VAC SCI TECHNOL B, V18, P2160
   DABROWSKI J, 2000, SILICON SURFACES FOR, P360
   DABROWSKI J, 2000, SPECIAL DEFECTS SEMI, P23
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DUNHAM ST, 1992, J APPL PHYS, V71, P685
   DUNHAM ST, 1992, J ELECTROCHEM SOC, V139, P2628
   FAHEY PM, 1989, REV MOD PHYS, V61, P289
   GRIFFIN PB, 1995, APPL PHYS LETT, V67, P482
   HAMANN DR, 1989, PHYS REV B, V40, P2980
   HUNTER LP, 1976, HDB SEMICONDUCTOR EL, P1
   JARAIZ M, 1996, APPL PHYS LETT, V68, P409
   JOHANNESSEN JS, 1978, J APPL PHYS, V49, P4453
   KASNAVI R, 1998, P SISPAD 98, P48
   KASNAVI R, 2000, J APPL PHYS, V87, P2255
   KHAVRYUTCHENKO VD, 1993, DYQUAMOD DYNAMICAL Q
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   LAU F, 1989, APPL PHYS A-SOLID, V49, P671
   LUCOVSKY G, 1996, J VAC SCI TECHNOL B, V14, P2832
   METHFESSEL M, 2000, IN PRESS LECT NOTES
   NORTHRUP JE, 1993, PHYS REV B, V47, P6791
   ORLOWSKI M, 1989, APPL PHYS LETT, V55, P1762
   PACKAN PA, 1999, SCIENCE, V285, P2079
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   QUEIROLO G, 1980, J ELECTROCHEM SOC, V127, P2438
   SAKAMOTO H, 1997, P SISPAD 97, P81
   SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
   SATO Y, 1993, J ELECTROCHEM SOC, V140, P2679
   SATO Y, 1995, J ELECTROCHEM SOC, V142, P655
   SATO Y, 1995, J ELECTROCHEM SOC, V142, P660
   SATO Y, 1997, J ELECTROCHEM SOC, V144, P2548
   SCHWARZ SA, 1981, J ELECTROCHEM SOC, V128, P1101
   STOLK PA, 1997, J APPL PHYS, V81, P6031
   SZE SM, 1981, PHYSICS SEMICONDUCTO
   TAKEDA S, 1995, PHYS REV B, V51, P2148
   VUONG HH, 1996, IEEE T ELECTRON DEV, V43, P1144
   VUONG HH, 1997, P SISPAD 97, P85
   VUONG HH, 1998, P SISPAD 98, P380
   VUONG HH, 2000, J VAC SCI TECHNOL B, V18, P428
   ZAYETZ VA, 1990, CLUSTER Z1 QUANTUM C
NR 50
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 15
PY 2002
VL 65
IS 24
AR 245305
DI ARTN 245305
PG 11
SC Physics, Condensed Matter
GA 577CA
UT ISI:000177043100064
ER

PT J
AU Savedra, RML
   Pinheiro, JC
   Treu, O
   Kondo, RT
TI Gaussian basis sets by generator coordinate Hartree-Fock method to ab
   initio calculations of electron affinities of enolates
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Gaussian basis sets; GCHFM; electron affinities; calculations of
   enolates; electron affinities of enolates
ID FIRST-ROW ATOMS; DIATOMIC-MOLECULES; 2ND-ROW ATOMS; CHOICE;
   CONTRACTION; EQUATIONS; EXCHANGE; VERSION; BASES; CO
AB The Generator Coordinate Hartree-Fock (GCHF) method is employed to
   generate uncontracted 15s and 18s11p gaussian basis sets for the H, C
   and O atoms, respectively. These basis sets are then contracted to 3s
   and 4s H atom and 6s5p, for C and O atoms by a standard procedure. For
   quality evaluation of contracted basis sets in molecular calculations,
   we have accomplished calculations of total and orbital energies in the
   Hartree-Fock-Roothaaii (HFR) approach for CH, C-2 and CO molecules. The
   results obtained with the uncontracted basis sets are compared with
   values obtained with the standard D95, 6-311G basis sets and with
   values reported in the literature. The 4s and 6s5p basis sets are
   enriched with polarization and diffuse functions for atoms of the
   parent neutral systems and of the enolates anions (cycloheptanone
   enolate, 2,5-dimethyleyelopentanone enolate, 4-heptanone enolate, and
   di-isopropyl ketone enolate) from the literature, in order to assess
   their performance in ab initio molecular calculations, and applied for
   calculations of electron affinities of the enolates. The calculations
   were performed at the DFT (BLYP and B3LYP) and HF levels and compared
   with the corresponding experimental values and with those obtained by
   using other 6-3 1 + +G((*)) and 6-311 + +G((*)) basis sets from
   literature. For the enolates studied, the differences between the
   electron affinities obtained with GCHF basis sets, at the B3LYP level,
   and the experimental values are -0.001, -0,014, -0.001, and -0.001 eV.
   (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab Quim Teor & Computac, BR-66075110 Belem, Para, Brazil.
   CEAM, Cooperat Ctr Educ Cient & Empreendedora Amazonia, BR-66013060 Belem, Para, Brazil.
   Univ Estadual Paulista, Inst Quim Araraquara, BR-14801970 Araraquara, SP, Brazil.
   Univ Sao Paulo, Ctr Informat Sao Carlos, Secao Suporte, BR-13560970 Sao Carlos, SP, Brazil.
RP Pinheiro, JC, Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab
   Quim Teor & Computac, Caixa Postal 101101, BR-66075110 Belem, Para,
   Brazil.
CR BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   CADE PE, 1967, J CHEM PHYS, V47, P614
   CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
   DACOSTA HFM, 1987, MOL PHYS, V62, P91
   DACOSTA HFM, 1992, CHEM PHYS LETT, V192, P195
   DASILVA ABF, 1989, MOL PHYS, V68, P433
   DECASTRO EVR, 1999, CHEM PHYS, V243, P1
   DRZAIC PS, 1984, GAS PHASE ION CHEM, V3
   DUNNING TH, 1997, METHODS ELECT STRUCT
   EVANS DA, 1984, ASYMMETRIC SYNTHESIS, V3
   FISCHER CF, 1977, HARTREE FOCK METHOD
   FRISCH MJ, 1995, GAUSSIAN 94 REV
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HUZINAGA S, 1985, CAN J CHEM, V63, P1812
   JARDIM IN, 1999, J MOL STRUC-THEOCHEM, V464, P15
   LEE C, 1988, PHYS REV B, V37, P785
   MEKELBURGER HB, 1991, COMPREHENSIVE ORGANI, V2
   MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
   MOHALLEM JR, 1987, J CHEM PHYS, V86, P5043
   NARAYSZABO G, 1987, APPL QUANTUM CHEM
   PAVANI P, 1989, RJ518 IBM RES
   PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
   PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
   PINHEIRO JC, 1999, J MOL STRUC-THEOCHEM, V491, P81
   PINHEIRO JC, 2000, INT J QUANTUM CHEM, V78, P15
   PINHEIRO JC, 2001, J MOL STRUC-THEOCHEM, V539, P29
   PYYKKO P, 1987, MOL PHYS, V60, P597
   RAFFENETTI RC, 1973, J CHEM PHYS, V58, P4452
   ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
   SIMONS J, 1987, CHEM PHYS REV, V8, P535
NR 31
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JUL 5
PY 2002
VL 587
BP 9
EP 17
PG 9
SC Chemistry, Physical
GA 576TA
UT ISI:000177020100002
ER

PT J
AU Vilela, AFA
   Neto, JJS
   Mundim, KC
   Mundim, MSP
   Gargano, R
TI Fitting potential energy surface for reactive scattering dynamics
   through generalized simulated annealing
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID OPTIMIZATION
AB We propose a stochastic optimization technique, based on generalized
   simulated annealing (GSA), as a new option to fit potential energy
   surfaces (PES) for reactive scattering dynamics. In order to show this,
   we reproduced the PES of the Na + HF --> NaF + H reaction utilizing the
   ab initio calculation as well as the trial function published by Lagan
   et al. Topological studies were done on the Na + HF GSA PES considering
   a great number of the nuclear configurations. These studies showed that
   the quality of the Na + HF GSA PES is comparable to the Na + HF PES
   obtained by Lagan et al. (C) 2002 Published by Elsevier Science B.V.
C1 Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil.
RP Gargano, R, Univ Brasilia, Inst Fis, Caixa Postal 04455, BR-70919970
   Brasilia, DF, Brazil.
CR AREAS EPG, 1995, J PHYS CHEM-US, V99, P14885
   BARTOSZEK FE, 1981, J CHEM PHYS, V74, P3400
   CEPERLY D, 2001, SCIENCE, V539, P215
   CURADO EMF, 1991, J PHYS A, V24, P3187
   DUREN R, 1989, J CHEM SOC FARAD T 8, V85, P1017
   GARGANO R, 1998, J CHEM PHYS, V108, P6266
   GARGANO R, 2001, J MOL STRUC-THEOCHEM, V539, P215
   KIRKPATRICK S, 1983, SCIENCE, V220, P671
   KIRKPATRICK S, 1984, J STAT PHYS, V34, P975
   LAGANA A, 1996, LECT NOTES COMPUT SC, V1041, P361
   LAGANA A, 1997, J CHEM PHYS, V106, P10222
   LOESCH HJ, 1989, J CHEM SOC FARADAY T, V85, P1052
   MIRANDA MP, 1999, CHEM PHYS LETT, V309, P257
   MORET MA, 1998, J COMPUT CHEM, V19, P647
   MUNDIM KC, 1996, INT J QUANTUM CHEM, V58, P373
   MUNDIM KC, 1998, PHYSICA A, V252, P405
   SZU H, 1987, PHYS LETT A, V122, P157
   TSALLIS C, 1988, J STAT PHYS, V52, P479
   WEISS PS, 1988, CHEM PHYS, V126, P93
NR 19
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JUN 27
PY 2002
VL 359
IS 5-6
BP 420
EP 427
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 576XN
UT ISI:000177032600011
ER

PT J
AU Malaspina, T
   Coutinho, K
   Canuto, S
TI Ab initio calculation of hydrogen bonds in liquids: A sequential Monte
   Carlo quantum mechanics study of pyridine in water
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-INTERACTIONS; BIOLOGICAL INTEREST; AQUEOUS-SOLUTIONS;
   AROMATIC BASES; REACTION FIELD; SOLVENT; COMPLEXES; SPECTROSCOPY;
   SIMULATION; DYNAMICS
AB A systematic procedure based on the sequential Monte Carlo quantum
   mechanics (S-MC/QM) methodology has been used to obtain hydrogen bond
   strength and structures in liquids. The system considered is pyridine
   in water. The structures are generated by NVT Monte Carlo simulation,
   of one pyridine molecule and 400 water molecules. The hydrogen bonds
   are obtained using a geometric and energetic procedure. Detailed
   analysis shows that 62% of the configurations have one hydrogen bond.
   In the average, pyridine in liquid water makes 1.1 hydrogen bonds. The
   sampling of the structures for the quantum mechanical calculations is
   made using the interval of statistical correlation obtained by the
   autocorrelation function of the energy. A detailed statistical analysis
   is presented and converged results are obtained. The QM calculations
   are performed at the ab initio MP2/6-31+G(d) level and the results are
   compared with the optimized 1:1 cluster. Our results using QM
   calculations on 155 structures making one hydrogen bond gives an
   average binding energy of 3.7 kcal/mol, after correcting for basis set
   superposition error, indicating that in the liquid the binding energy
   is about 2/3 of the corresponding binding in the optimized cluster. (C)
   2002 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Mogi das Cruzes, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
   AQUINO AJA, 2002, J PHYS CHEM A, V106, P1862
   BENEDICT WS, 1956, J CHEM PHYS, V24, P1139
   BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
   BERNSTEIN ER, 1990, ATOMIC MOL CLUSTERS
   BLAIR JT, 1989, J AM CHEM SOC, V111, P6948
   BOYS SF, 1970, MOL PHYS, V19, P553
   BROVCHENKO IV, 1997, J CHEM PHYS, V106, P7756
   BUCKINGHAM AD, 1988, CHEM REV, V88, P963
   CAMINATI W, 1998, J PHYS CHEM A, V102, P8097
   CANUTO S, IN PRESS ADV QUANTUM
   CANUTO S, 1997, ADV QUANTUM CHEM, V28, P90
   CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
   CHATFIELD C, 1984, ANAL TIME SERIES INT
   COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
   COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
   COUTINHO K, 2000, DICE VERSION 2 8 GEN
   COUTINHO K, 2000, J CHEM PHYS, V112, P9874
   COUTINHO K, 2000, J CHEM PHYS, V113, P9132
   CRAMER CJ, 1999, CHEM REV, V99, P2161
   CRUZAN JD, 1996, SCIENCE, V271, P59
   DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
   DELBENE JE, 1995, J PHYS CHEM-US, V99, P10705
   DKHISSI A, 2000, J PHYS CHEM A, V104, P2112
   EVANS GT, 2001, J CHEM PHYS, V115, P1440
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GAO JL, 1994, J AM CHEM SOC, V116, P9324
   GILLI G, 2000, J MOL STRUCT, V552, P1
   HOBZA P, 2000, CHEM REV, V100, P4253
   INNES KK, 1988, J MOL SPECTROSC, V132, P492
   JEFFREY GA, 1991, HYDROGEN BONDING BIO
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
   JORGENSEN WL, 1998, J MOL STRUCT THEOCHE, V424, P145
   KARELSON MM, 1992, J PHYS CHEM-US, V96, P6949
   KAWAHARA S, 1999, J PHYS CHEM A, V103, P8516
   KLAMT A, 1993, J CHEM SOC P2, V2, P799
   KRATSCHMER R, 1976, J STAT PHYS, V15, P267
   LADANYI BM, 1993, ANNU REV PHYS CHEM, V44, P335
   LADANYI BM, 1995, J MOL STRUCT THEOCHE, V335, P181
   LIDE DR, 1992, HDB CHEM PHYSICS
   LUQUE FJ, 2000, THEOR CHEM ACC, V103, P343
   MAES G, 1997, J MOL STRUCT, V410, P315
   MARTOPRAWIRO MA, 1995, MOL PHYS, V85, P573
   MELANDRI S, 1998, J AM CHEM SOC, V120, P11504
   METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
   MEZEI M, 1981, J CHEM PHYS, V74, P622
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   MULLERKRUMBHAAR H, 1973, J STAT PHYS, V8, P1
   OPADHYAY DM, 2001, INT J QUANTUM CHEM, V81, P90
   PERRIN CL, 1997, ANNU REV PHYS CHEM, V48, P511
   PIMENTEL GC, 1971, ANNU REV PHYS CHEM, V22, P347
   RAHMAN A, 1971, J CHEM PHYS, V55, P3336
   RINCON L, 2001, J CHEM PHYS, V114, P5552
   RIVAIL JL, 1976, CHEM PHYS, V18, P233
   RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
   RIVELINO R, 2001, J PHYS CHEM A, V105, P11260
   ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
   ROCHA WR, 2001, CHEM PHYS LETT, V345, P171
   SCHEINER S, 1997, HYDROGEN BONDING THE
   SCHEINER S, 2001, J BIOL CHEM, V276, P9832
   SCOLES G, 1990, CHEM PHYSICS ATOMIC
   SMETS J, 1999, J MOL STRUCT, V476, P27
   STILLINGER FH, 1974, J CHEM PHYS, V60, P1545
   STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
   SZCZESNIAK MM, 1986, J MOL STRUCT THEOCHE, V135, P179
   TANG S, 1987, PHYS REV B, V36, P567
   TAPIA O, 1975, MOL PHYS, V29, P1653
   TOMASI J, 1994, CHEM REV, V94, P2027
   TOMASI J, 2000, THEOR CHEM ACC, V103, P196
   VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
   XANTHEAS SS, 1994, J CHEM PHYS, V100, P7523
   ZENG J, 1993, J CHEM PHYS, V99, P1496
   ZWIER TS, 1996, ANNU REV PHYS CHEM, V47, P205
NR 74
TC 19
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUL 22
PY 2002
VL 117
IS 4
BP 1692
EP 1699
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 572DM
UT ISI:000176758200034
ER

PT J
AU Miotto, R
   Ferraz, AC
   Srivastava, GP
TI Comparative study of the adsorption of C2H4 on the Si(001) and Ge(001)
   surfaces
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; surface relaxation and reconstruction;
   chemisorption; vibrations of adsorbed molecules; silicon; germanium
ID SI(100)-(2X1) SURFACE; ETHYLENE ADSORPTION; FIRST-PRINCIPLES;
   ACETYLENE; SPECTROSCOPY; SI(100)(2X1); BEHAVIOR; STATES; X-1
AB Using a first-principles pseudopotential method we have compared the
   interaction processes involved in the adsorption of ethylene on the
   silicon and germanium surfaces. We have found that, at low
   temperatures, the di-sigma bond configuration is the most stable
   structure from the energetic point of view. According to our
   calculations C2H4 adsorbs preferentially on the alternate dimer sites,
   corresponding to a coverage of 0.5 ML. The di-sigma adsorbed system is
   characterized by symmetric and slightly elongated Si-Si (Ge-Ge) dimers,
   and by a symmetric C-C bond close to the single carbon bond length of
   the ethane molecule. The electronic band structure derived from our
   calculations suggest that the adsorption of the C2H4 molecule leaves a
   surface state in the fundamental band gap that is mainly localized
   around the adsorbate. Finally, our ab initio vibrational spectra
   further support the di-sigma model for the ethylene adsorption on
   IV(001)-(2 x 2). (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP Miotto, R, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
   Sao Paulo, Brazil.
CR BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   CAO PL, 1993, J PHYS-CONDENS MAT, V5, P2887
   CHO JH, 2001, PHYS REV B, V63
   CLEMEN L, 1992, SURF SCI, V268, P205
   HUANG C, 1994, SURF SCI, V315, L953
   LAL P, 1999, J CHEM PHYS, V110, P10545
   LIDE DR, 1995, HDB CHEM PHYSICS
   MATSUI F, 2000, PHYS REV B, V62, P5036
   MAYNE AJ, 1993, SURF SCI, V284, P247
   MIOTTO R, 2001, PHYS REV B, V63
   PAN W, 1997, J CHEM PHYS, V107, P3981
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   PILLING MJ, 1995, REACTION KINETICS
   ROCHET F, 1998, PHYS REV B, V58, P11029
   SORESCU DC, 2000, J PHYS CHEM B, V104, P8259
   SRIVASTAVA GP, 1990, PHYSICS PHONONS
   TERBORG R, 2000, PHYS REV B, V61, P16697
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   WIDDRA W, 1998, PHYS REV LETT, V80, P4269
   YOSHINOBU J, 1987, J CHEM PHYS, V87, P7332
NR 20
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD JUN 1
PY 2002
VL 507
BP 12
EP 17
PG 6
SC Chemistry, Physical
GA 569CV
UT ISI:000176583700004
ER

PT J
AU Miwa, RH
   Schmidt, TM
   Srivastava, GP
TI Ab initio study of the self-organised Bi-lines on the SK(001) surface
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; surface electronic phenomena (work
   function, surface potential, surface states, etc.); bismuth;
   self-assembly
ID SCANNING-TUNNELING-MICROSCOPY; ELECTRONIC-STRUCTURE; BISMUTH; SI(001);
   NANOWIRE; CHAINS; STATE; X-1)
AB We have perfomed an ab initio theoretical study of the stability,
   atomic geometry and electronic structure of the self-organised Bi-lines
   on the Si(0 0 1) surface. Our results show that the Bi-lines are formed
   by Bi-dimers parallel to the surrounding Si-dimers, with a missing
   dimer row between the Bi-dimers. In contrast to a recently proposed
   model of symmetrically disposed surface Si-dimers (i.e. with no
   buckling). our total energy calculations indicate that the buckling of
   the Si-dimers is an exothermic process, reducing the surface total
   energy by 0.11 eV/dimer. Our theoretically simulated STM results
   suggest a low density of states close to the valence band maximum,
   localized on the Bi-lines, supporting a recently proposed model of
   quantum antiwire systems for Bi-lines on the Si(0 0 1) surface. (C)
   2002 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Uberlandia, Fac Fis, BR-38400902 Uberlandia, MG, Brazil.
   Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP Miwa, RH, Univ Fed Uberlandia, Fac Fis, CP 593, BR-38400902 Uberlandia,
   MG, Brazil.
CR ABUKAWA T, 1995, SURF SCI, V325, P33
   BOWLER DR, 2000, PHYS REV B, V62, P7237
   BUNK O, 1999, PHYS REV B, V59, P12228
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   DABROWSKI J, 1992, APPL SURF SCI, V56, P15
   GAY SCA, 1999, PHYS REV B, V60, P1488
   GONZE X, 1991, PHYS REV B, V44, P8503
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   LOUIE SG, 1982, PHYS REV B, V26, P1739
   MIKI K, 1999, PHYS REV B, V59, P14868
   MIKI K, 1999, SURF SCI, V421, P397
   MIWA RH, 2001, SURF SCI, V473, P123
   NAITOH M, 1999, APPL SURF SCI, V142, P38
   NAITOH M, 2000, JPN J APPL PHYS 1, V39, P2793
   NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   SHIMOMURA M, 2000, SURF SCI, V447, L169
   TERSOFF J, 1985, PHYS REV B, V31, P805
   TUTUNCU HM, 1997, PHYS REV B, V56, P4656
   TUTUNCU HM, 2000, SURF SCI, V454, P504
   YEOM HW, 1999, PHYS REV LETT, V82, P4898
NR 21
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD JUN 1
PY 2002
VL 507
BP 368
EP 373
PG 6
SC Chemistry, Physical
GA 569CV
UT ISI:000176583700067
ER

PT J
AU Freire, HJP
   Egues, JC
TI Subband structure of II-VI modulation-doped magnetic quantum wells
SO BRAZILIAN JOURNAL OF PHYSICS
LA English
DT Article
ID ELECTRICAL SPIN INJECTION; SEMICONDUCTOR HETEROSTRUCTURE; TRANSPORT;
   MAGNETORESISTANCE; SUPERLATTICES; DENSITY
AB Here we investigate the spin-dependent subband structure of
   newly-developed Mn-based modulation-doped quantum wells. In the
   presence of an external magnetic field, the s-d exchange coupling
   between carriers and localized d electrons of the Mn impurities gives
   rise to large spin splittings resulting in a magnetic-field dependent
   subband structure. Within the framework of the effective-mass
   approximation, we self-consistently calculate the subband structure at
   zero temperature using Density Functional Theory (DFT) with a Local
   Spin Density Approximation (LSDA). We present results for the
   magnetic-field dependence of the subband structure of shallow
   ZnSe/ZnCdMnSe modulation doped quantum wells. Our results show a
   significant contribution to the self-consistent potential due to the
   exchange-correlation term. These calculations are the first step in the
   study of a variety of interesting spin-dependent phenomena, e.g.,
   spin-resolved transport and many-body effects in polarized
   two-dimensional electron gases.
C1 Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis Informat, BR-13560970 Sao Carlos, SP, Brazil.
RP Freire, HJP, Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis Informat,
   BR-13560970 Sao Carlos, SP, Brazil.
CR AWSCHALOM DD, 1999, J MAGN MAGN MATER, V200, P130
   BARAFF GA, 1981, PHYS REV B, V24, P2274
   BERRY JJ, 2000, J VAC SCI TECHNOL B, V18, P1692
   CHANG K, 2001, SOLID STATE COMMUN, V120, P181
   CROOKER SA, 1995, PHYS REV LETT, V75, P505
   EGUES JC, 1998, PHYS REV LETT, V80, P4578
   EGUES JC, 2001, PHYS REV B, V64
   FIEDERLING R, 1999, NATURE, V402, P787
   FURDYNA JK, 1988, J APPL PHYS, V64, P29
   GUNNARSSON O, 1976, PHYS REV B, V13, P4274
   GUO Y, 2001, PHYS REV B, V64
   JONKER BT, 2000, PHYS REV B, V62, P8180
   KNOBEL R, 2000, PHYSICA E, V6, P786
   OHNO Y, 1999, NATURE, V402, P790
   SCHMIDT G, 2001, PHYS REV LETT, V87
   SMORCHKOVA I, 1996, APPL PHYS LETT, V69, P1640
   SMORCHKOVA IP, 1997, PHYS REV LETT, V78, P3571
   STORMER HL, 1983, SCIENCE, V220, P1241
   VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
   VONKLITZING K, 1980, PHYS REV LETT, V45, P494
NR 20
TC 3
PU SOCIEDADE BRASILEIRA FISICA
PI SAO PAULO
PA CAIXA POSTAL 66328, 05315-970 SAO PAULO, BRAZIL
SN 0103-9733
J9 BRAZ J PHYS
JI Braz. J. Phys.
PD JUN
PY 2002
VL 32
IS 2
BP 327
EP 330
PG 4
SC Physics, Multidisciplinary
GA 568BF
UT ISI:000176522000021
ER

PT J
AU Perpetuo, GJ
   Janczak, J
TI 3-Amino-1,2,4-triazine
SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS
LA English
DT Article
ID HYDROGEN; DIHYDRATE; SECONDARY; COMPLEXES; TAPES
AB In the crystal structure of 3-amino-1,2,4-triazine, C3H4N4, the
   molecules form hydrogen-bonded chains that are almost parallel to the b
   axis (3.2degrees), and which are inclined to the a and c axes by
   similar to21 and similar to69degrees, respectively. The distortion of
   the 1,2,4-triazine ring in the crystal is compared with gas-phase ab
   initio molecular-orbital calculations.
C1 Univ Fed Ouro Preto, Inst Ciencias Exatas & Biol, Dept Fis, BR-35400000 Ouro Preto, MG, Brazil.
   Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland.
RP Janczak, J, Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Quim,
   BR-31270901 Belo Horizonte, MG, Brazil.
CR *SIEM AN XRAY INST, 1991, XSCANS US MAN VERS 2
   ALLEN FH, 1987, J CHEM SOC P2, V2, P1
   FRISCH MJ, 1995, GAUSSIAN94
   GILLESPIE RJ, 1963, J CHEM EDUC, V40, P295
   GILLESPIE RJ, 1992, CHEM SOC REV, V21, P59
   JANCZAK J, 1999, ACTA CHEM SCAND, V53, P606
   JANCZAK J, 2001, ACTA CRYSTALLOGR  12, V57, P1431
   JANCZAK J, 2001, ACTA CRYSTALLOGR C 1, V57, P123
   JANCZAK J, 2001, ACTA CRYSTALLOGR C 7, V57, P873
   JANCZAK J, 2001, ACTA CRYSTALLOGR C 9, V57, P1120
   JANCZAK J, 2002, ACTA CRYSTALLOGR C 6, V58, O339
   KRISCHE MJ, 2000, STRUCT BOND, V96, P3
   MACDONALD JC, 1994, CHEM REV, V94, P2383
   MATHIAS JP, 1994, J AM CHEM SOC, V116, P4316
   PAULING L, 1960, NATURE CHEM BOND, P262
   PERPETUO GJ, 2002, ACTA CRYSTALLOGR C 2, V58, O112
   ROW TNG, 1999, COORDIN CHEM REV, V183, P81
   SHELDRICK GM, 1990, SHELXTL
   SHELDRICK GM, 1997, SHELXL97
   SHELDRICK GM, 1997, SHELXS97
   SHERRINGTON DC, 2001, CHEM SOC REV, V30, P83
   ZERKOWSKI JA, 1994, J AM CHEM SOC, V116, P4298
NR 22
TC 3
PU BLACKWELL MUNKSGAARD
PI COPENHAGEN
PA 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK
SN 0108-2701
J9 ACTA CRYSTALLOGR C-CRYST STR
JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun.
PD JUL
PY 2002
VL 58
PN Part 7
BP O431
EP O432
PG 2
SC Crystallography
GA 568WF
UT ISI:000176567300047
ER

PT J
AU Sensato, FR
   Custodio, R
   Calatayud, M
   Beltran, A
   Andres, J
   Sambrano, JR
   Longo, E
TI Periodic study on the structural and electronic properties of bulk,
   oxidized and reduced SnO2(110) surfaces and the interaction with O-2
SO SURFACE SCIENCE
LA English
DT Article
DE ab initio quantum chemical method and calculations; density functional
   calculations; models of surface chemical reactions; chemisorption;
   surface electronic phenomena (work function, surface potential, surface
   states. etc.); oxygen; tin oxides; semiconducting surfaces
ID OXYGEN VACANCIES; THEORETICAL-ANALYSIS; FUNCTIONAL THEORY; TIN OXIDES;
   THIN-FILM; SNO2 110; PHOTOEMISSION; ADSORPTION; ANTIMONY; METHANE
AB The structural and electronic properties of bulk and both oxidized and
   reduced SnO2(110) surfaces as well as the adsorption process of O-2 on
   the reduced surface have been investigated by periodic DFT calculations
   at B3LYP level. The lattice parameters, charge distribution, density of
   states and band structure are reported for the bulk and surfaces.
   Surface relaxation effects have been explicitly taken into account by
   optimizing slab models of nine and seven atomic layers representing the
   oxidized and reduced surfaces, respectively. The conductivity behavior
   of the reduced SnO2(110) surface is explained by a distribution of the
   electrons in the electronic states in the band gap induced by oxygen
   vacancies. Three types of adsorption approaches of O-2 on the four-fold
   tin at the reduced SuO(2)(110) surface have been considered. The most
   exothermic channel corresponds to the adsorption of O-2 parallel to the
   surface and to the four-fold tin row, and it is believed to be
   associated with the formation of a peroxo O-2(2-) species. The
   chemisorption of O-2 on reduced SnO2(110) surface causes a significant
   depopulation of states along the band gap and it is shown to trap the
   electrons in the chemisorbed complex producing an electron-depleted
   space-charge layer in the inner surface region of the material in
   agreement with some experimental evidences. (C) 2002 Elsevier Science
   B.V. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
   Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
   Univ Estadual Paulista, Dept Matemat, BR-17030360 Bauru, SP, Brazil.
   Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Sensato, FR, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13083970
   Campinas, SP, Brazil.
CR ANTUNES AC, 2001, J MATER SCI-MATER EL, V12, P69
   BAUR WH, 1956, ACTA CRYSTALLOGR, V9, P515
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BOYS SF, 1970, MOL PHYS, V19, P553
   BUENO PR, 2000, J APPL PHYS, V88, P6545
   CALATAYUD M, 1999, SURF SCI, V430, P213
   CASSIASANTOS MR, 2001, J EUR CERAM SOC, V21, P161
   CATLOW CRA, 1990, NATURE, V347, P243
   CAVICCHI R, 1990, J VAC SCI TECHNOL  2, V8, P2347
   CHANG SC, 1980, J VAC SCI TECHNOL, V17, P366
   COX DF, 1988, PHYS REV B, V38, P2072
   COX PA, 1982, SURF SCI, V123, P179
   DURAND P, 1975, THEOR CHIM ACTA, V38, P283
   GERCHER VA, 1995, SURF SCI, V322, P177
   GOBBY PL, 1976, P 13 C PHYS SEM AMST
   GODIN TJ, 1993, PHYS REV B, V47, P6518
   GREENWOOD NN, 1994, CHEM ELEMENTS
   HAINES J, 1997, PHYS REV B, V55, P11144
   HENRICH VE, 1994, SURFACE SCI METAL OX
   JONES FH, 1997, SURF SCI, V376, P367
   KAWABE T, 2000, SURF SCI, V448, P101
   KAWAZOE Y, 2001, MATER DESIGN, V22, P61
   KOHL D, 1989, SENSOR ACTUATOR, V18, P71
   KOJALJ A, 1999, J MOL GRAPH MODEL, V17, P176
   LEE C, 1988, PHYS REV B, V37, P785
   LINDAN PJD, 2000, CHEM PHYS LETT, V328, P325
   MANASSIDIS I, 1995, SURF SCI, V339, P258
   MARKOVITS A, 1997, J MOL CATAL A-CHEM, V119, P195
   MELLEFRANCO M, 2000, SURF SCI, V461, P54
   MISHRA KC, 1995, PHYS REV B, V51, P13972
   MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
   NAGASAWA Y, 1999, SURF SCI, V435, P226
   OVIEDO J, 2000, SURF SCI, V467, P35
   PISANI C, 1999, J MOL STRUC-THEOCHEM, V463, P125
   POWELL MJD, 1970, NUMERICAL METHODS NO
   RANTALA TT, 1999, SURF SCI, V420, P103
   ROBERTSON J, 1979, J PHYS C SOLID STATE, V12, P4767
   SAUER J, 1989, CHEM REV, V89, P199
   SAUNDERS VR, 1998, CRYSTAL98 USERS MANU
   SENSATO FR, 2001, J MOL STRUC-THEOCHEM, V541, P69
   SHEN GL, 1992, VACUUM, V43, P1129
   SHERWOOD PMA, 1990, PHYS REV B, V41, P10151
   SLATER B, 1999, J PHYS CHEM B, V103, P10644
   SLATER B, 2000, CHEM COMMUN, P1235
   SZUBER J, 2000, SENSOR ACTUAT B-CHEM, V70, P177
   TAFT CA, 2000, RECENT RES DEV QUANT, V1
   THEMLIN JM, 1990, PHYS REV B, V42, P11914
   THEMLIN JM, 1992, PHYS REV B, V46, P2460
   YAMAGUCHI Y, 1998, INT J QUANTUM CHEM, V69, P669
   YAMAGUCHI Y, 1999, INT J QUANTUM CHEM, V74, P423
   YAMAGUCHI Y, 2000, CHEM PHYS LETT, V316, P477
   YAMAZOE N, 1991, SENSOR ACTUAT B-CHEM, V5, P7
NR 52
TC 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD JUN 10
PY 2002
VL 511
IS 1-3
BP 408
EP 420
PG 13
SC Chemistry, Physical
GA 569CY
UT ISI:000176584000048
ER

PT J
AU Dos Santos, HF
   Rocha, WR
   De Almeida, WB
TI On the evaluation of thermal corrections to gas phase ab initio
   relative energies: implications to the conformational analysis study of
   cyclooctane
SO CHEMICAL PHYSICS
LA English
DT Article
DE ab initio; DFT; thermal correction; conformational population; low
   frequency modes
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-BASIS SETS; MECHANICS CALCULATIONS;
   ELECTRON-DIFFRACTION; ORGANIC-MOLECULES; APPROXIMATION; ATOMS;
   EXCHANGE; MINIMUM; SPECTRA
AB In this paper we present an investigation of the influence of the
   thermal correction on the conformational population for the boat-chair
   (BC) and CROWN forms of the cyclooctane molecule, calculated using
   quantum mechanical ab initio Hartree-Fock (HF), MP2, MP4SDQ, CCSD and
   density functional methods (B3LYP, BLYP, BP86) in conjunction with
   various basis sets. A previous experimental gas phase electron
   diffraction study pointed out that the BC is either the exclusive or at
   least the strongly predominant form in gas phase at room temperature.
   We therefore analyzed the performance of various levels of calculation
   for the evaluation of the relative conformational population and also
   the role played by the thermal correction to gas phase calculated
   relative energies. It turns out that the thermal correction is very
   sensitive to the presence of low frequency modes that are indeed
   internal rotations and need to be treated separately, in what the
   cyclooctane molecule is concerned. Once internal rotations were
   considered, it can be seen that the HF level of calculation produces
   very satisfactory values for thermal correction, compared to MP2.
   Therefore, it can be used in single-point energy calculations employing
   a high correlated level of theory (MP4SDQ, CCSD), leading to a quite
   trustable Gibbs free energy difference data. When thermal energies are
   not corrected for low frequency internal rotation modes, a range of
   contrasting results is obtained by varying both the quantum mechanical
   approach and the basis set. (C) 2002 Elsevier Science B.V. All rights
   reserved.
C1 LQC MM, BR-31270970 Belo Horizonte, MG, Brazil.
   UFMG, ICEx, Dept Quim, BR-31270970 Belo Horizonte, MG, Brazil.
   NEQC, BR-36036330 Juiz de Fora, MG, Brazil.
   UFJF, ICE, Dept Quim, BR-36036330 Juiz de Fora, MG, Brazil.
RP De Almeida, WB, LQC MM, BR-31270970 Belo Horizonte, MG, Brazil.
CR ALMENNINGEN A, 1966, ACTA CHEM SCAND, V20, P2689
   ANET FAL, 1973, J AM CHEM SOC, V95, P4424
   ANET FAL, 1974, FORTSCHR CHEM FORSCH, V45, P169
   AYALA PY, 1998, J CHEM PHYS, V108, P2315
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P1372
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BRECKNELL DJ, 1985, J MOL STRUCT THEOCHE, V124, P343
   BURGI HB, 1968, HELV CHIM ACTA, V51, P1514
   BURKERT U, 1982, MOL MECH
   CHANG G, 1989, J AM CHEM SOC, V111, P4379
   CHUANG YY, 2000, J CHEM PHYS, V112, P1221
   DEALMEIDA VB, 2000, QUIM NOVA, V23, P600
   DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
   DOBLER M, 1966, HELV CHIM ACTA, V49, P2492
   DOROFEEVA OV, 1985, J PHYS CHEM-US, V89, P252
   DOROFEEVA OV, 1990, J STRUCT CHEM, V31, P153
   DOSSANTOS HF, 2002, IN PRESS THEORET CHE
   DUARTE HA, 2000, J CHEM PHYS, V113, P4206
   DUARTE HA, 2001, ANN 11 BRAZ S THEOR
   DUNNING TH, 1976, MODERN THEORETICAL C, V3, P1
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   EGMOND JV, 1969, TETRAHEDRON, V25, P2693
   ELIEL EL, 1965, CONFORMATIONAL ANAL
   FERGUSON DM, 1992, J COMPUT CHEM, V13, P525
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GORDON MS, 1980, CHEM PHYS LETT, V76, P163
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
   HARIHARAN PC, 1974, MOL PHYS, V27, P2309
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HENRICKSON JB, 1964, J AM CHEM SOC, V86, P4854
   KRISHNAN R, 1980, J CHEM PHYS, V72, P650
   LEE C, 1988, PHYS REV B, V37, P785
   LIPTON M, 1988, J COMPUT CHEM, V9, P343
   MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
   MCQUARRIE DA, 1997, PHYSICAL CHEM MOL AP
   MCQUARRIE DA, 1999, MOL THERMODYNAMICS
   MEIBOOM S, 1977, J CHEM PHYS, V66, P4041
   MOLLER C, 1934, PHYS REV, V46, P618
   PAKES PW, 1981, J PHYS CHEM-US, V85, P2476
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   ROCHA WR, 1998, J COMPUT CHEM, V19, P524
   ROUNDS TC, 1978, VIB SPECTRA STRUCT, V7, P238
   SAUNDERS M, 1987, J AM CHEM SOC, V109, P3150
   SRINIVASAN R, 1971, TETRAHEDRON, V27, P1009
   STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
   TRUHLAR DG, 1971, J MOL SPECTROSC, V38, P415
   TRUHLAR DG, 1991, J COMPUT CHEM, V12, P266
   WOON DE, 1993, J CHEM PHYS, V98, P1358
NR 50
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD JUN 15
PY 2002
VL 280
IS 1-2
BP 31
EP 42
PG 12
SC Physics, Atomic, Molecular & Chemical
GA 566UY
UT ISI:000176447700003
ER

PT J
AU Junqueira, GMA
   Rocha, WR
   De Almeida, WB
   Dos Santos, HF
TI Theoretical analysis of the oxocarbons: The role played by the solvent
   and counter-ions in the electronic spectrum of the deltate ion
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID DIFFERENTIAL-OVERLAP TECHNIQUE; MONTE-CARLO; INTERMEDIATE NEGLECT;
   CROCONATE DIANION; SPECTROSCOPY; WATER; TRANSITION; FORMALDEHYDE;
   COMPLEXES; LITHIUM
AB The structure and spectroscopic properties of the deltate anion are
   calculated in the gas phase using ab initio quantum chemical methods
   and in aqueous solution through a sequential Monte Carlo-quantum
   mechanical procedure. The effects of the solvent and counter-ions on
   the electronic spectrum are analyzed, showing that both should be
   included in the calculation in order to reproduce the observed UV
   spectrum. For the smallest cyclic oxocarbon, the deltate anion, the
   calculated electronic transitions were 254 and 246 nm considering the
   [Li-2(C3O3)(H2O)(20)] species. This is in accordance with the expected
   behavior for the oxocarbon series, predicting absorption bands close to
   200 nm for the deltate anion.
C1 Univ Fed Juiz de Fora, ICE, Dept Quim, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
   Univ Fed Minas Gerais, ICEx, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, ICE, Dept Quim, NEQC, Campus
   Martelos, BR-36036330 Juiz De Fora, MG, Brazil.
CR 1992, HDB CHEM PHYSICS
   AIHARA J, 1981, J AM CHEM SOC, V103, P1633
   ALLEN MP, 1987, COMPUTER SIMULATION
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
   COUTINHO K, DICE MONTE CARLO PRO
   COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
   COUTINHO K, 2000, J CHEM PHYS, V113, P9132
   DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
   DEOLIVEIRA LFC, 1999, J MOL STRUCT, V510, P97
   DORY M, 1994, J CHEM SOC FARADAY T, V90, P2319
   DUMESTRE F, 1998, J CHEM SOC DA, V24, P4131
   EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
   EGGERDING D, 1975, J AM CHEM SOC, V97, P207
   FABRE PL, 2000, ELECTROCHIM ACTA, V45, P2697
   FARNELL L, 1981, J MOL STRUCT, V76, P1
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GLICK MD, 1964, INORG CHEM, V3, P1712
   GLICK MD, 1966, INORG CHEM, V5, P289
   GONCALVES NS, 1996, ACTA CRYSTALLOGR C 3, V52, P622
   HA TK, 1986, J MOL STRUCT, V137, P183
   HEAD JD, 1986, CHEM PHYS LETT, V131, P359
   ITO M, 1963, J AM CHEM SOC, V85, P2580
   JORGENSEN WL, BOSS VERSION 3 5 BIO
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   JUNQUEIRA GMA, 2001, PHYS CHEM CHEM PHYS, V3, P3499
   LOPES JGS, 2001, SPECTROCHIM ACTA A, V57, P399
   METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
   PUEBLA C, 1986, J MOL STRUCT THEOCHE, V137, P171
   RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
   ROCHA WR, 2001, CHEM PHYS LETT, V127, P335
   SANTOS PS, 1991, J MOL STRUCT, V243, P223
   SCHLEYER PV, 2000, J ORG CHEM, V65, P426
   SEITZ G, 1992, CHEM REV, V92, P1227
   TAKAHASHI M, 1978, CHEM PHYS, V35, P293
   TORII H, 1995, J MOL STRUCT THEOCHE, V334, P15
   WEST R, 1960, J AM CHEM SOC, V82, P6204
   WEST R, 1963, J AM CHEM SOC, V85, P2577
   WEST R, 1963, J AM CHEM SOC, V85, P2586
   WEST R, 1979, J AM CHEM SOC, V101, P1710
   WEST R, 1981, J AM CHEM SOC, V103, P5073
   ZERNER MC, ZINDO SEMIEMPIRICAL
   ZERNER MC, 1980, J AM CHEM SOC, V102, P589
   ZHAO B, 1992, CAN J CHEM, V70, P135
NR 44
TC 4
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
   ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2002
VL 4
IS 12
BP 2517
EP 2523
PG 7
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 563FY
UT ISI:000176246700006
ER

PT J
AU de Paiva, R
   Alves, JLA
   Nogueira, RA
   de Oliveira, C
   Alves, HWL
   Scolfaro, LMR
   Leite, JR
TI Theoretical study of the AlxGa1-xN alloys
SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
   TECHNOLOGY
LA English
DT Article
DE GaN; AlN; AlGaN; alloys; effective masses
ID ALUMINUM NITRIDE; ZINCBLENDE GAN; SEMICONDUCTORS; ALN
AB In this work we use a first-principles method based on the density
   functional theory, the full-potential linear augmented plane-wave
   method (FPLAPW), in order to calculate the electronic structures of the
   Al(x)Gal(1-x)N alloys in the cubic modification. We adopt a model which
   allows the simulation of the composition x = 0.0, 0.25, 0.50, 0.75 and
   1.0. We obtain the equilibrium lattice parameters, the bulk moduli, the
   formation energies, the miscibility curves and the effective masses of
   the conduction and valence bands in the [100], [111] and [110]
   directions. The results can be used in the parameterization of theories
   based on effective hamiltonians. To our knowledge, this is the first
   time such a systematic ab initio study of effective masses of these
   semiconductor alloys is accomplished. (C) 2002 Elsevier Science B.V.
   All rights reserved.
C1 UFMG, Dept Fis, BR-13081970 Belo Horizonte, MG, Brazil.
   FUNREI, Dept Ciencias Nat, BR-36300000 Sao Joao Del Rei, MG, Brazil.
   USP, LNMS, Dept Fis Mat & Mecan, BR-05389970 Sao Paulo, Brazil.
RP de Paiva, R, UFMG, Dept Fis, CP 702, BR-13081970 Belo Horizonte, MG,
   Brazil.
CR ALBANESI EA, 1993, PHYS REV B, V48, P17841
   BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CHEN AB, 1996, SEMICONDUCTOR ALLOYS
   FAN WJ, 1996, J APPL PHYS, V79, P188
   FANCIULLI M, 1993, PHYS REV B, V48, P15144
   GERLICH D, 1986, J PHYS CHEM SOLIDS, V47, P437
   MIWA K, 1993, PHYS REV B, V48, P7897
   NAKAMURA S, 1997, BLUE LASER DIODE
   SUZUKI M, 1995, PHYS REV B, V52, P8132
   WEI SH, 1988, PHYS REV B, V37, P8958
   WETTLING W, 1984, SOLID STATE COMMUN, V50, P33
   WIMMER E, 1981, PHYS REV B, V24, P864
   WRIGHT AF, 1995, PHYS REV B, V51, P7866
   WU YF, 1996, APPL PHYS LETT, V69, P1438
   YEH CY, 1992, PHYS REV B, V46, P10086
   YEH CY, 1994, PHYS REV B, V50, P2715
NR 17
TC 3
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5107
J9 MATER SCI ENG B-SOLID STATE M
JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
PD MAY 30
PY 2002
VL 93
IS 1-3
BP 2
EP 5
PG 4
SC Materials Science, Multidisciplinary; Physics, Condensed Matter
GA 560NY
UT ISI:000176089200002
ER

PT J
AU de Oliveira, LFC
   Edwards, HGM
   Velozo, ES
   Nesbitt, M
TI Vibrational spectroscopic study of brazilin and brazilein, the main
   constituents of brazilwood from Brazil
SO VIBRATIONAL SPECTROSCOPY
LA English
DT Article
DE brazilin; brazilein; Brazilwood; FT-Raman spectroscopy
ID HARMONIC FORCE-FIELD; CAESALPINIA-SAPPAN; AB-INITIO; RAMAN-SPECTRA;
   1,4-BENZOQUINONE; NU(2); WOOD; MICE
AB In this work, the vibrational spectra (FT-Raman and infrared spectra)
   of brazilin, the major component of brazilwood Caesalpinia echinata
   (from Bahia, Brazil), and brazilein, the oxidised pigment, are
   investigated. The FT-Raman spectra of the compounds show different
   patterns in the carbonyl stretching region, where brazilein presents a
   Raman feature at 1697 cm(-1) that is tentatively assigned to a coupled
   vibrational mode described by C=O and aromatic C=C stretching. Infrared
   measurements are used to support this assignment. The spectral region
   between 1700 and 1500 cm(-1) is also proposed as a fingerprint for
   brazilin and brazilein. Comparisons with some quinones and polyalcohols
   as parent molecules and other deep red resin pigments such as "dragon's
   blood" are undertaken to assist the vibrational assignment. As a test
   of the spectroscopic protocol for the identification of these pigments
   in natural brazilwoods, an 80-year-old archival specimen of Caesalpinia
   echinata was analysed non-destructively and the feature of brazilein
   shown from the Raman spectrum. (C) 2002 Elsevier Science B.V. All
   rights reserved.
C1 Univ Bradford, Dept Chem & Forens Sci, Bradford BD7 1DP, W Yorkshire, England.
   Univ Fed Juiz De Fora, Dept Quim, Inst Ciencias Exatas, BR-36036330 Juiz De Fora, MG, Brazil.
   Univ Fed Bahia, Fac Farm, BR-41170290 Salvador, BA, Brazil.
   Royal Bot Gardens, Ctr Econ Bot, Richmond TW9 3AE, Surrey, England.
RP de Oliveira, LFC, Univ Bradford, Dept Chem & Forens Sci, Bradford BD7
   1DP, W Yorkshire, England.
CR BAEK NI, 2000, ARCH PHARM RES, V23, P344
   BECKER ED, 1991, J PHYS CHEM-US, V95, P2818
   DEFILIPPS RA, 1998, ARCH NATURAL HIST, V25, P103
   EDWARDS HGM, 2001, IN PRESS SPECTROCH A
   FUKE C, 1985, PHYTOCHEMISTRY, V24, P2403
   HWANG GS, 1998, ARCH PHARM RES, V21, P774
   KHIL LY, 1999, BIOCHEM PHARMACOL, V58, P1705
   KIM DS, 1997, PHYTOCHEMISTRY, V46, P177
   KIM SG, 1998, ARCH PHARM RES, V21, P140
   MATSUNAGA M, 2000, J WOOD SCI, V46, P253
   MOK MS, 1998, ARCH PHARM RES, V21, P769
   NONELLA M, 1997, CHEM PHYS LETT, V280, P91
   OH SR, 1998, PLANTA MED, V64, P140
   PERKIN AG, 1918, NATURAL ORGANIC COLO
   SPOLITI M, 1997, THEOCHEM-J MOL STRUC, V390, P139
   SZABO A, 1999, J MOL STRUCT, V510, P215
   XIE YW, 2000, LIFE SCI, V67, P1913
   YANG KM, 2000, ARCH PHARM RES, V23, P626
   ZHAN CG, 1998, CHEM PHYS, V230, P45
   ZHAN CG, 2000, J MOL STRUC-THEOCHEM, V531, P33
   ZHAO XJ, 1996, CHEM PHYS LETT, V262, P643
NR 21
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0924-2031
J9 VIB SPECTROSC
JI Vib. Spectrosc.
PD APR 26
PY 2002
VL 28
IS 2
BP 243
EP 249
PG 7
SC Chemistry, Analytical; Chemistry, Physical; Spectroscopy
GA 556LV
UT ISI:000175852000004
ER

PT J
AU Venezuela, P
   Dalpian, GM
   da Silva, AJR
   Fazzio, A
TI Vacancy-mediated diffusion in disordered alloys: Ge self-diffusion in
   Si1-xGex
SO PHYSICAL REVIEW B
LA English
DT Article
ID NATIVE POINT-DEFECTS; AB-INITIO; FIRST-PRINCIPLES; BORON-DIFFUSION;
   SILICON; PSEUDOPOTENTIALS; GERMANIUM; SYSTEMS
AB A model is proposed for vacancy mediated diffusion in disordered
   alloys, with particular application to Ge self-diffusion in Si1-xGex.
   We argue that if the vacancies formation energies (VFE) have a strong
   dependence on the configuration of nearest neighbor (NN) atoms, there
   will be preferential diffusion paths for some concentrations. For
   Si1-xGex we show that the VFE vary linearly from 2 to 3 eV as the
   number of NN Ge atoms varies from 4 to 0. Thus, the equilibrium
   population of the various kinds of vacancies changes significantly with
   x, and the diffusion proceeds by paths that do not necessarily resemble
   the concentration of the alloy.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Venezuela, P, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
   Paulo, Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
   BLOCHL PE, 1993, PHYS REV LETT, V70, P2435
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   BRACHT H, 2000, NATURE, V408, P69
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   DORENBOS P, 1987, PHYS REV B, V35, P5766
   FAHEY P, 1989, APPL PHYS LETT, V54, P843
   FAZZIO A, 2000, PHYS REV B, V61, P2401
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   JANOTTI A, 1999, PHYSICA B, V273, P575
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   KOHAN AF, 2000, PHYS REV B, V61, P15019
   KOHN W, 1965, PHYS REV, V140, A1133
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   PUSKA MJ, 1998, PHYS REV B, V58, P1318
   SADIGH B, 1999, PHYS REV LETT, V83, P4341
   URAL A, 1999, PHYS REV LETT, V83, P3454
   VENEZUELA P, 2001, PHYS REV B, V64
   VRIJEN R, 2000, PHYS REV A, V62
   WEI SH, 1990, PHYS REV B, V42, P9622
   WERNER M, 1985, PHYS REV B, V32, P3930
   WINDL W, 1999, PHYS REV LETT, V83, P4345
   ZANGENBERG NR, 2001, PHYS REV LETT, V87
NR 23
TC 10
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2002
VL 65
IS 19
AR 193306
DI ARTN 193306
PG 4
SC Physics, Condensed Matter
GA 556QR
UT ISI:000175860900018
ER

PT J
AU Bussi, G
   Ruini, A
   Molinari, E
   Caldas, MJ
   Puschnig, P
   Ambrosch-Draxl, C
TI Interchain interaction and Davydov splitting in polythiophene crystals:
   An ab initio approach
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SEXITHIOPHENE SINGLE-CRYSTALS; QUANTUM-WIRE STRUCTURES;
   OPTICAL-SPECTRA; OLIGOTHIOPHENES; EXCITATIONS; EMISSION; POLYMERS
AB The crystal-induced energy splitting of the lowest excitonic state in
   polymer crystals, the so-called Davydov splitting Delta, is calculated
   with a first-principles density-matrix scheme. We show that different
   crystalline arrangements lead to significant variations in Delta, from
   below to above the thermal energy k(B)T at room temperature, with
   relevant implications on the luminescence efficiency. This is one more
   piece of evidence supporting the fact that control of interchain
   interactions and solid-state packing is essential for the design of
   efficient optical devices. (C) 2002 American Institute of Physics.
C1 Univ Modena & Reggio Emilia, INFMS3, I-41100 Modena, Italy.
   Univ Modena & Reggio Emilia, Dipartimento Fis, I-41100 Modena, Italy.
   Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
   Karl Franzens Univ Graz, Inst Theoret Phys, A-8010 Graz, Austria.
RP Bussi, G, Univ Modena & Reggio Emilia, INFMS3, Via Campi 213-A, I-41100
   Modena, Italy.
CR CALDAS MJ, 2001, APPL PHYS LETT, V79, P2505
   CORNIL J, 2001, SYNTHETIC MET, V119, P1
   DAVYDOV AS, 1962, THEORY MOL EXCITONS
   GARNIER F, 1998, APPL PHYS LETT, V72, P2087
   GEBAUER W, 1998, CHEM PHYS, V227, P33
   GIGLI G, 2001, APPL PHYS LETT, V78, P1493
   HOHENESTER U, 2001, PHYS REV B, V64
   KOHN W, 1965, PHYS REV, V140, A1133
   KOUKI F, 2000, J CHEM PHYS, V113, P385
   MOLLER S, 2000, PHYS REV B, V61, P15749
   MUCCINI M, 2000, PHYS REV B, V62, P6296
   OELKRUG D, 1996, THIN SOLID FILMS, V284, P267
   PUSCHNIG P, 2001, SYNTHETIC MET, V119, P245
   ROHLFING M, 2000, PHYS REV B, V62, P4927
   ROSSI F, 1996, PHYS REV B, V53, P16462
   ROSSI F, 1996, PHYS REV LETT, V76, P3642
   RUINI A, IN PRESS PHYS REV LE
   SCHON JH, 2000, SCIENCE, V290, P963
   SIEGRIST T, 1998, ADV MATER, V10, P379
   SIRRINGHAUS H, 1998, SCIENCE, V280, P1741
   TALIANI C, 1999, HDB OLIGO POLYTHIOPH, P361
   VANDERHORST JW, 2000, PHYS REV B, V61, P15817
NR 22
TC 12
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 3
PY 2002
VL 80
IS 22
BP 4118
EP 4120
PG 3
SC Physics, Applied
GA 555BB
UT ISI:000175771800012
ER

PT J
AU Hitchcock, AP
   Johnston, S
   Tyliszczak, T
   Turci, CC
   Barbatti, M
   Rocha, AB
   Bielschowsky, CE
TI Generalized oscillator strengths for C 1s excitation of acetylene and
   ethylene
SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
LA English
DT Article
DE generalized oscillator strength; electron scattering; EELS; quadrupole
   transitions
ID INNER-SHELL EXCITATION; IMPACT CORE EXCITATION; ENERGY-LOSS
   SPECTROSCOPY; ELECTRON-IMPACT; C-1S PHOTOIONIZATION; MOMENTUM-TRANSFER;
   SHAPE RESONANCES; MOLECULES; SF6; C2H2
AB The generalized oscillator strength profiles for discrete C 1s excited
   states of C2H2 and C2H4 have been derived from angle-dependent
   inelastic electron scattering cross-sections measured with 1300 eV
   final electron energy. The measured GOS profiles for the strong C
   1s-->pi* transition in each species are compared to theoretical
   calculations computed within the first Born approximation, using
   ab-initio generalized multi structural wave functions. These wave
   functions include relaxation, correlation and hole localization
   effects. Theory predicts large quadrupole contributions to the pi* GOS
   of each species, analogous to those previously reported for computed
   GOS profiles for O 1s-->pi* excitation of CO2. We find good agreement
   between experiment and theory as to the shape of the pi* GOS but, when
   the relative GOS extracted from the experimental data is normalized to
   the optical oscillator strength at K-2=0, the magnitude is in better
   agreement with the GOS computed for only the dipole channel than for
   the sum of the dipole and quadrupole channels. (C) 2002 Elsevier
   Science B.V. All rights reserved.
C1 McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
   Univ Fed Rio de Janeiro, Inst Quim, BR-21910900 Rio De Janeiro, Brazil.
RP Hitchcock, AP, McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
CR BARTH A, 1980, CHEM PHYS, V46, P149
   BETHE H, 1930, ANN PHYS-BERLIN, V5, P325
   BIELSCHOWSKY CE, 1992, PHYS REV A, V45, P7942
   BONHAM RA, 1979, ELECTRON SPECTROSCOP, V3, P127
   BRION CE, 1972, MTP INT REV SCI    1, V5, P55
   BRION CE, 1982, AIP C P, V94, P429
   DEMIRANDA MP, 1993, J MOL STRUCT, V282, P71
   DEMIRANDA MP, 1994, PHYS REV A, V49, P2399
   EUSTATIU IG, 1999, CHEM PHYS LETT, V300, P676
   EUSTATIU IG, 2000, CHEM PHYS, V257, P235
   EUSTATIU IG, 2000, PHYS REV A, V61
   FARREN RE, 1991, CHEM PHYS LETT, V177, P307
   FRANCIS JT, 1994, CAN J PHYS, V72, P879
   FRANCIS JT, 1994, J CHEM PHYS, V101, P10429
   FRANCIS JT, 1995, PHYS REV A, V52, P4665
   FRANCIS JT, 1995, THESIS MCMASTER U
   HENKE BL, 1993, ATOM DATA NUCL DATA, V54, P181
   HITCHCOCK AP, 1977, J ELECTRON SPECTROSC, V10, P317
   HITCHCOCK AP, 1994, J ELECTRON SPECTROSC, V67, P1
   HITCHCOCK AP, 1998, J ELECTRON SPECTROSC, V88, P77
   HITCHCOCK AP, 2000, J ELECTRON SPECTROSC, V112, P9
   INOKUTI M, 1971, REV MOD PHYS, V43, P297
   ITCHKAWITZ BS, 1995, REV SCI INSTRUM 2, V66, P1531
   IWATA S, 1978, JPN J APPL PHYS, V17, P105
   KEMPGENS B, 1997, J CHEM PHYS, V107, P4219
   KEMPGENS B, 1997, PHYS REV LETT, V79, P35
   KEMPGENS B, 1999, SURF SCI, V425, L376
   KILCOYNE ALD, 1993, J CHEM PHYS, V98, P6735
   LASSETTRE EN, 1974, METHODS EXPT PHYSI B, V3, P868
   MCLAREN R, 1987, PHYS REV A, V36, P1683
   ROCHA AB, 2002, J PHYS CHEM A, V106, P181
   TAM WC, 1973, J ELECT SPECTROSC RE, V2, P111
   TAM WC, 1973, J ELECT SPECTROSC RE, V3, P479
   TAM WC, 1974, J ELECT SPECTROSC RE, V3, P269
   TAM WC, 1974, J ELECT SPECTROSC RE, V4, P139
   TAM WC, 1974, J ELECT SPECTROSC RE, V4, P149
   TAM WC, 1974, J ELECT SPECTROSC RE, V4, P77
   TAM WC, 1974, J ELECTRON SPECTROSC, V3, P281
   TRAJMAR S, 1970, ADV CHEM PHYS, V18, P15
   TRONC M, 1979, J PHYS B ATOM MOL PH, V12, P137
   TURCI CC, 1995, PHYS REV A, V52, P4678
   TYLISZCZAK T, 2001, J ELECTRON SPECTROSC, V114, P93
   WIGHT GR, 1976, J PHYS B ATOM MOL PH, V9, P675
NR 43
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0368-2048
J9 J ELECTRON SPECTROSC RELAT PH
JI J. Electron Spectrosc. Relat. Phenom.
PD MAY
PY 2002
VL 123
IS 2-3
BP 303
EP 314
PG 12
SC Spectroscopy
GA 552WM
UT ISI:000175643100017
ER

PT J
AU Ruini, A
   Caldas, MJ
   Bussi, G
   Molinari, E
TI Solid state effects on exciton states and optical properties of PPV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID QUANTUM-WIRE STRUCTURES; AB-INITIO CALCULATION; CONJUGATED POLYMERS;
   POLY(PHENYLENE VINYLENE); EXCITATIONS; ABSORPTION;
   POLY(P-PHENYLENEVINYLENE); SEMICONDUCTORS; SPECTRA; ENERGY
AB We perform ab initio calculations of optical properties for a typical
   semiconductor conjugated polymer, poly-para-phenylenevinylene, in both
   isolated chain and crystalline packing. In order to obtain results for
   excitonic energies and real-space wave functions we explicitly include
   electron-hole interaction within the density-matrix formalism. We find
   that the details of crystalline arrangement crucially affect the
   optical properties, leading to a richer exciton structure and opening
   nonradiative decay channels. This has implications for the optical
   activity and optoelectronic applications of polymer films.
C1 Univ Modena & Reggio Emilia, INFM S, I-41100 Modena, Italy.
   Univ Modena & Reggio Emilia, Dipartimento Fis, I-41100 Modena, Italy.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Ruini, A, Univ Modena & Reggio Emilia, INFM S, Via Campi 213A, I-41100
   Modena, Italy.
CR ALVARADO SF, 1996, PHYS REV LETT, V53, P16462
   BARTH S, 1997, PHYS REV LETT, V79, P4445
   BELJONNE D, 1999, J CHEM PHYS, V111, P2829
   BUSSI G, IN PRESS APPL PHYS L
   CAMPBELL IH, 1996, PHYS REV LETT, V76, P1900
   CAPAZ RB, IN PRESS
   CHANDROSS M, 1997, PHYS REV B, V55, P1486
   CHEN D, 1992, POLYMER, V33, P3116
   CONWELL EM, 1996, SYNTHETIC MET, V83, P101
   CORNIL J, 2001, SYNTHETIC MET, V119, P1
   DACOSTA PG, 1993, PHYS REV B, V48, P1993
   DAVYDOV AS, 1962, THEORY MOL EXCITONS
   ECKHARDT H, 1989, J CHEM PHYS, V91, P1303
   FRIEND RH, 1999, NATURE, V397, P121
   FROLOV SV, 2000, PHYS REV LETT, V85, P2196
   HANKE W, 1979, PHYS REV LETT, V43, P387
   HILL IG, 2000, CHEM PHYS LETT, V327, P181
   HOHENESTER U, 2001, PHYS REV B, V64
   KOHN W, 1965, PHYS REV, V140, A1133
   LENG JM, 1994, PHYS REV LETT, V72, P156
   MARTIN SJ, 1999, PHYS REV B, V59, P15133
   MOSES D, 2000, CHEM PHYS LETT, V316, P356
   MOSES D, 2001, SYNTHETIC MET, V125, P93
   MUCCINI M, 2000, PHYS REV B, V62, P6296
   OGAWA T, 1991, PHYS REV B, V44, P8138
   RINALDI R, 2001, PHYS REV B, V63
   ROHLFING M, 1999, PHYS REV LETT, V82, P1959
   ROSSI F, 1996, PHYS REV B, V53, P16462
   ROSSI F, 1996, PHYS REV LETT, V76, P3642
   ROSSI L, 2001, SYNTHETIC MET, V334, P303
   RUINI A, 2001, SYNTHETIC MET, V119, P257
   SAKAMOTO A, 1992, J PHYS CHEM-US, V96, P1490
   SHAM LJ, 1966, PHYS REV, V144, P708
   TIAN B, 1991, J CHEM PHYS, V95, P3198
   VANDERHORST JW, 1999, PHYS REV LETT, V83, P4413
   WU MW, 1997, PHYS REV B, V56
   YAN M, 1995, PHYS REV LETT, V75, P1992
NR 37
TC 41
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAY 20
PY 2002
VL 88
IS 20
AR 206403
DI ARTN 206403
PG 4
SC Physics, Multidisciplinary
GA 549UY
UT ISI:000175466200034
ER

PT J
AU Boye, S
   Campos, A
   Douin, S
   Fellows, C
   Gauyacq, D
   Shafizadeh, N
   Halvick, P
   Boggio-Pasqua, M
TI Visible emission from the vibrationally hot C2H radical following
   vacuum-ultraviolet photolysis of acetylene: Experiment and theory
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID LASER-INDUCED FLUORESCENCE; POTENTIAL-ENERGY SURFACES; 193.3 NM;
   PHOTODISSOCIATION DYNAMICS; RECURSIVE EVALUATION; STATE DISTRIBUTION;
   ANGULAR MOMENTA; RYDBERG STATES; 121.6 NM; PHOTOCHEMISTRY
AB Photolysis of acetylene has been performed by vacuum-ultraviolet
   excitation with the synchrotron radiation via the Rydberg states
   converging to the first ionization potential (IP) at 11.4 eV. Only the
   visible fluorescence of the ethynyl radical was observed in the (A)
   over tilde (2)Pi-(X) over tilde (2)Sigma(+) system. Excitation of
   several Rydberg states of acetylene over a large energy range between 9
   and 11.4 eV allowed us to observe for the first time the evolution of
   this continuum with increasing Rydberg excitation. Intensity
   calculations based on accurate ab initio potential energy surfaces of
   C2H were performed by using a one-dimensional model accounting for the
   large-amplitude motion of the H atom around the C-C bond and for the
   overall rotation of the radical. These calculations successfully
   reproduce the observed visible continuum (maximum at 500 nm and blue
   side cutoff at 400 nm) and bring new information on the distribution of
   the internal energy deposited in the fragment. For most excited Rydberg
   states, predissociation occurs in a rather low time scale, leaving the
   C2H fragment in the (A) over tilde state, vibrationally hot, mostly
   with significant excitation in the bending mode around the
   isomerization barrier. (C) 2002 American Institute of Physics.
C1 Univ Paris 11, CNRS, Photophys Mol Lab, F-91405 Orsay, France.
   Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil.
   Univ Bordeaux 1, Lab Physicochim Mol, CNRS, UMR 5803, F-33405 Talence, France.
RP Boye, S, Univ Paris 11, CNRS, Photophys Mol Lab, Batiment 210, F-91405
   Orsay, France.
CR ARTHURS AM, 1960, P ROY SOC LOND A MAT, V256, P540
   BALKO BA, 1991, J CHEM PHYS 1, V94, P7958
   BECKER KH, 1971, Z NATURFORSCH A, V26, P1770
   BERGEAT A, 1999, J PHYS CHEM A, V103, P6360
   BOGGIOPASQUA M, 1998, J PHYS CHEM A, V102, P2009
   BOGGIOPASQUA M, 2000, PHYS CHEM CHEM PHYS, V2, P1693
   CAMPOS A, 1999, CHEM PHYS LETT, V314, P91
   CURL RF, 1985, J CHEM PHYS, V82, P3479
   DOUIN S, UNPUB
   DRAINE BT, 1978, ASTROPHYS J, V36, P595
   FILLION JH, 1996, J CHEM PHYS, V105, P22
   FLETCHER TR, 1989, J CHEM PHYS, V90, P871
   GLASSGOLD AE, 1996, ANNU REV ASTRON ASTR, V34, P241
   HAN JC, 1989, J CHEM PHYS, V90, P4000
   HERMAN M, 1981, J MOL SPECTROSC, V85, P449
   HERMAN M, 1982, PHYS SCRIPTA, V25, P275
   HERZBERG G, 1966, MOL SPECTRA MOL STRU, V3
   HSU YC, 1992, CHEM PHYS LETT, V190, P507
   HSU YC, 1996, J CHEM PHYS, V105, P9153
   HUGGINS PJ, 1982, AP J, V252, P201
   HUGGINS PJ, 1984, ASTROPHYS J, V279, P284
   JACKSON WM, 1978, CHEM PHYS LETT, V55, P254
   LAFONT S, 1982, ASTRON ASTROPHYS, V106, P201
   LAI LH, 1996, J PHYS CHEM-US, V100, P6376
   LAURELLE F, UNPUB
   LIEVIN J, 1992, J MOL SPECTROSC, V156, P123
   LOFFLER P, 1996, CHEM PHYS LETT, V252, P304
   LOFFLER P, 1998, J CHEM PHYS, V109, P5231
   NAHON L, 1998, NUCL INSTRUM METH A, V404, P418
   NAKAYAMA T, 1964, J CHEM PHYS, V40, P558
   OKABE H, 1975, J CHEM PHYS, V62, P2782
   OKABE H, 1981, J CHEM PHYS, V75, P2772
   OKABE H, 1983, CAN J CHEM, V61, P850
   OKABE H, 1983, J CHEM PHYS, V78, P1312
   OKABE H, 1985, CHEM PHYS, V92, P67
   SAITO Y, 1984, J CHEM PHYS, V80, P31
   SANDER RK, 1988, J CHEM PHYS, V89, P3495
   SATYAPAL S, 1991, J PHYS CHEM-US, V95, P8004
   SCHULTEN K, 1975, J MATH PHYS, V16, P1961
   SCHULTEN K, 1975, J MATH PHYS, V16, P1971
   SCHULTEN K, 1976, COMPUT PHYS COMMUN, V11, P269
   SEGALL J, 1991, J PHYS CHEM-US, V95, P8078
   SHOKOOHI F, 1989, J CHEM PHYS, V90, P871
   SOME E, 1995, J MOL SPECTROSC, V173, P44
   SUTO M, 1984, J CHEM PHYS, V80, P4824
   TRUONGBACH, 1987, ASTRON ASTROPHYS, V176, P285
   URDAHL RS, 1988, CHEM PHYS LETT, V152, P485
   WANG JH, 1997, J PHYS CHEM A, V101, P6593
   WERNER HJ, MOLPRO PACKAGE AB IN
   WODTKE AM, 1985, J PHYS CHEM-US, V89, P4744
NR 50
TC 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAY 22
PY 2002
VL 116
IS 20
BP 8843
EP 8855
PG 13
SC Physics, Atomic, Molecular & Chemical
GA 549EK
UT ISI:000175431400020
ER

PT J
AU Tostes, JGR
   Dias, JF
   Seidl, PR
   Carneiro, JWD
   Taft, C
TI Steric and electronic contributions to conformational effects on
   chemical shifts of acyclic alcohols
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE DFT/GIAO calculations; chemical shifts; hyperconjugation; acyclic
   alcohols; electronic effects; steric effects
ID AB-INITIO IGLO; C-13; EXCHANGE; CARBON
AB Our calculations on bi- and polycyclic alcohols reveal that the
   Mulliken charge distribution and chemical shift patterns due to
   hyperconjugation of lone pairs on oxygen with neighboring groups break
   down or are attenuated for certain spatial relationships of the
   hydroxyl group. Since in strained ring systems other effects on these
   parameters may be present, we applied a similar analysis to acyclic
   alcohols. Calculations at the B3LYP/6-31G* level on conformers of
   methanol, ethanol, 1- and 2-propanol, 2methyl- l-propanol,
   2-methyl-2-propanol, 2-butanol, 2-methyl-2-butanol, 1- 2- and
   3-pentanol and 2-methyl-3-pentanol, where hyperconjugation may be
   present, reveal steric effects as modifiers of hyperconjugative
   patterns affecting carbon-13 chemical shifts in such alcohols. Contrary
   to what is observed in bi- and policyclic systems, where electrostatic
   effects interfere with effects due to hyperconjugation, these steric
   effects may be the main cause for the attenuation of deshielding of
   nuclei that are subject to hyperconjugation. Electrostatic effects are
   also present but they do not interfere with hyperconjugation by lone
   pairs. Conformational effects fall off sharply after the third carbon
   in the chain. (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Estadual Norte Fluminense, Ctr Ciencias & Tecnol, Lab Ciencias Quim, BR-28015620 Campos dos Goytacazes, RJ, Brazil.
   Inst Mil Engn, Dept Engn Quim, Rio De Janeiro, Brazil.
   Univ Fed Rio de Janeiro, Escola Quim, Rio De Janeiro, Brazil.
   Univ Fed Fluminense, Dept Quim Geral & Inorgan, Niteroi, RJ, Brazil.
   Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil.
RP Tostes, JGR, Univ Estadual Norte Fluminense, Ctr Ciencias & Tecnol, Lab
   Ciencias Quim, Av Alberto Lamego 2000, BR-28015620 Campos dos
   Goytacazes, RJ, Brazil.
CR BARFIELD M, 1995, J AM CHEM SOC, V117, P2862
   BARFIELD M, 1998, MAGN RESON CHEM, V36, S93
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
   DEDIOS AC, 1993, SCIENCE, V260, P1491
   DITCHFIELD R, 1974, MOL PHYS, V27, P789
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   LEE C, 1988, PHYS REV B, V37, P785
   SEIDL PR, UNPUB
   SEIDL PR, 1998, ATUALIDADES FISICO Q, P127
   SEIDL PR, 1998, MAGN RESON CHEM, V36, P261
   SEIDL PR, 1999, J MOL STRUC-THEOCHEM, V488, P151
   SEIDL PR, 2001, J MOL STRUC-THEOCHEM, V539, P163
   TOSTES JGR, 1994, J MOL STRUCT THEOCHE, V306, P101
   TOSTES JR, 1996, THEOCHEM-J MOL STRUC, V388, P85
   WHITESELL JK, 1988, J AM CHEM SOC, V110, P991
   WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 18
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAR 29
PY 2002
VL 580
SI Sp. Iss. SI
BP 75
EP 83
PG 9
SC Chemistry, Physical
GA 546DG
UT ISI:000175256200010
ER

PT J
AU Bauerfeldt, GF
   de Albuquerque, LMM
   Arbilla, G
   da Silva, EC
TI Unimolecular reactions on formaldehyde S0PES
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE H2CO; unimolecular reactions; direct dynamics; variational RRKM rate
   coefficients
ID TRANSITION-STATE; RATE CONSTANTS; PHOTOFRAGMENTATION DYNAMICS; INFRARED
   INTENSITIES; PHOTO-DISSOCIATION; AB-INITIO; ENERGY; DISTRIBUTIONS;
   SURFACE; H2CO
AB The competitive unimolecular reactions of formaldehyde., H2CO --> H-2 +
   CO; H2CO --> trans-HCOH and H2CO --> H + HCO, were comparatively
   studied under the direct dynamics formalism, using Density functional
   and ab initio levels of theory. In addition, the geometric
   isomerization trans-HCOH --> cis-HCOH was evaluated. Calculated
   reaction path properties were used in the determination of
   Rice-Ramsperger-Kassel-Marcus microcanonical rate coefficients. The
   reaction dynamics was evaluated for each individual process based on
   the nuclear displacements in the reaction path and normal coordinate
   analysis. Our results found are in very good agreement with
   experimental barrier heights and quantum yields trends. (C) 2002
   Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, Ctr Tecnol, BR-21949900 Rio De Janeiro, Brazil.
RP Bauerfeldt, GF, Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim,
   Ctr Tecnol, Bloco A Cidade Univ, BR-21949900 Rio De Janeiro, Brazil.
CR BAKER J, 1986, J COMPUT CHEM, V7, P385
   BAMFORD DJ, 1985, J CHEM PHYS, V82, P3032
   BAUERFELDT GF, 1999, THESIS U FEDERAL RIO
   BAUERFELDT GF, 2000, J PHYS CHEM A, V104, P10895
   BAUERFELDT GF, 2001, J MOL STRUCT THEOCHE, V593, P223
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BENSON SW, 1976, THERMOCHEMICAL KINET
   BEYER T, 1973, COMMUN ASS COMPUT MA, V16, P379
   BUTENHOFF TJ, 1990, J CHEM PHYS, V92, P377
   CHANG YT, 1992, J CHEM PHYS, V96, P4341
   DEBARRE D, 1985, J CHEM PHYS, V83, P4476
   DUNCAN JL, 1973, CHEM PHYS LETT, V23, P597
   DUNCAN JL, 1974, MOL PHYS, V28, P1177
   DUNNING TH, 1976, MODERN THEORETICAL C
   DUPUIS M, 1983, J CHEM PHYS, V79, P6167
   FINLAYSONPITTS BJ, 1986, ATMOSPHERIC CHEM FUN
   FRISCH MJ, 1981, J PHYS CHEM-US, V85, P1467
   FRISCH MJ, 1984, J CHEM PHYS, V81, P1882
   FROST W, 1991, J CHEM SOC FARADAY T, V87, P2307
   FROST W, 1991, J PHYS CHEM-US, V95, P3612
   FUKUI K, 1982, PURE APPL CHEM, V54, P1825
   GODDARD JD, 1979, J CHEM PHYS, V70, P5117
   GODDARD JD, 1981, J CHEM PHYS, V75, P3459
   GREEN WH, 1990, CHEM PHYS LETT, V169, P127
   GREENHILL PG, 1986, J PHYS CHEM-US, V90, P3104
   HERZBERG G, 1991, MOL SPECTRA MOL STRU, V3
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   HOUSTON PL, 1976, J CHEM PHYS, V65, P757
   JENSEY FJ, 1998, INTRO COMPUTATIONAL
   JURSIC BS, 1997, THEOCHEM-J MOL STRUC, V418, P11
   LEVINE IN, 1991, QUANTUM CHEM
   LUKHAUS D, 1996, J CHEM PHYS, V104, P3472
   MARTINS LMM, 2000, THESIS U FEDERAL RIO
   MARTINS LMMD, 1998, J PHYS CHEM A, V102, P10805
   MILLER WH, 1979, J AM CHEM SOC, V101, P6810
   MOORE CB, 1983, ANNU REV PHYS CHEM, V34, P525
   POLIK WF, 1990, J CHEM PHYS, V92, P3453
   REISNER DE, 1984, J CHEM PHYS, V80, P5968
   SCUSERIA GE, 1989, J CHEM PHYS, V90, P3629
   SEINFELD JH, 1997, ATMOSPHERIC CHEM PHY
   SILVA AM, 1999, THESIS U FEDERAL RIO
   SILVA AM, 2000, J PHYS CHEM A, V104, P9535
   STANTON JF, 1991, J CHEM PHYS, V94, P404
   TAGAKI K, 1963, J PHYS SOC JPN, V18, P1174
   TANAKA Y, 1977, J MOL SPECTROSC, V64, P429
   TERENTIS AC, 1996, CHEM PHYS LETT, V258, P626
   TROE J, 1977, J CHEM PHYS, V66, P4745
   TROE J, 1984, J PHYS CHEM-US, V88, P4375
   WAYNE RP, 1991, CHEM ATMOSPHERES
   WOON DE, 1993, J CHEM PHYS, V98, P1358
   YAMADA K, 1971, J MOL SPECTROSC, V38, P70
   YEUNG ES, 1973, J CHEM PHYS, V58, P3988
   YU JSK, 1997, CHEM PHYS LETT, V271, P259
   ZHU L, GEN RRKM PROGRAM
NR 54
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAR 29
PY 2002
VL 580
SI Sp. Iss. SI
BP 147
EP 160
PG 14
SC Chemistry, Physical
GA 546DG
UT ISI:000175256200018
ER

PT J
AU Roberto-Neto, O
   Machado, FBC
TI An ab initio study of the Cl(P-2)+C2H6 -> C2H5+HCl abstraction reaction
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE abstraction reaction; ethane; chlorine; ab initio; rate constants
ID DIRECT DYNAMICS CALCULATIONS; TRANSITION-STATE THEORY; HYDROGEN
   ABSTRACTION; PERTURBATION-THEORY; CHLORINE ATOMS; REACTION-RATES; C2H5
   RADICALS; ETHANE; KINETICS; PROPANE
AB Electronic energies, geometries, and harmonic vibration frequencies for
   the reactants, products, and transition state for the Cl(P-3) + C2H6
   --> C2H5 + HCl abstraction reaction were evaluated at the HF and MP2
   levels using several correlation consistent polarized-valence basis
   sets. Single-point calculations at PMP2, MP4, QCISD(T), and CCSD(T)
   levels were also carried out. The values of the forward activation
   energies obtained at the MP4/cc-pVTZ, QCISD(T)/cc-pVTZ, and
   CCSD(T)/cc-pVTZ levels using the MP2/cc-pVTZ structures are equal to
   -0.1, -0.4, and -0.3 kcal/mol, respectively. The experimental value is
   equal to 0.3 +/- 0.2 kcal/mol. We found that the MP2/aug-cc-pVTZ
   adiabatic vibration energy for the reaction (-2.4 kcal/mol) agrees well
   with the experimental value -(2.2-2.6) kcal/mol. Rate constants
   calculated with the zeroth-order interpolated variational transition
   state (IVTST-0) method are in good agreement with experiment. In
   general, the theoretical rate constants differ from experiment by, at
   most, a factor of 2.6. (C) 2002 Elsevier Science B.V. All rights
   reserved.
C1 Ctr Tecn Aeroesp, Inst Estudos Avancados, BR-12228840 Sao Jose Dos Campos, SP, Brazil.
   Ctr Aerosp Technol, Inst Tecnol Aeronaut, Dept Quim, BR-12228900 Sao Jose Dos Campos, SP, Brazil.
RP Roberto-Neto, O, Ctr Tecn Aeroesp, Inst Estudos Avancados, BR-12228840
   Sao Jose Dos Campos, SP, Brazil.
CR ATKINSON R, 1992, J PHYS CHEM REF DATA, V21, P1125
   ATKINSON R, 1992, J PHYS CHEM REF DATA, V21, P1416
   BOTTONI A, 1995, THEOCHEM-J MOL STRUC, V337, P161
   CATELLANO AL, 1981, J AM CHEM SOC, V103, P4262
   CHETTUR G, 1987, J PHYS CHEM-US, V91, P3483
   CHUANG YY, 1999, POLYRATE VERSION 8 1
   CORCHADO JC, 1998, J PHYS CHEM A, V102, P4899
   CORCHADO JC, 2000, J CHEM PHYS, V112, P9375
   DOBBIS O, 1994, J PHYS CHEM-US, V98, P12284
   DUNCAN JL, 1979, J MOL SPECTROSC, V74, P361
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   FOSTER SC, 1989, J PHYS CHEM-US, V93, P5986
   FRISCH MJ, 1980, CHEM PHYS LETT, V75, P66
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GONZALEZLAFONT A, 1991, J CHEM PHYS, V95, P8875
   HERZBERG G, 1945, MOL SPECTRA MOL STRU, V2
   HERZBERG G, 1979, MOL SPECTRA MOL STRU, V4
   JUNGKAMP TPW, 1997, J CHEM PHYS, V107, P1513
   JURSIC BS, 1998, J MOL STRUC-THEOCHEM, V430, P17
   KOBAYASHI Y, 2000, CHEM PHYS LETT, V319, P695
   LAIDLER KJ, 1987, CHEM KINETICS
   LIDE DR, 1994, CRC HDB CHEM PHYSICS
   MARSHALL P, 1999, J PHYS CHEM A, V103, P4560
   MOORE CE, 1971, NATL STAND REF DATA, V2
   PACANSKY J, 1982, J AM CHEM SOC, V104, P415
   PARMAR SS, 1989, J AM CHEM SOC, V111, P57
   PILGRIM JS, 1997, J PHYS CHEM A, V101, P1873
   POPLE JA, 1976, INT J QUANTUM CHEM S, V10, P1
   POPLE JA, 1987, J CHEM PHYS, V87, P5968
   RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P157
   ROBERTONETO O, 1998, J PHYS CHEM A, V102, P4568
   ROBERTONETO O, 1999, J CHEM PHYS, V111, P10046
   ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
   RUDOLPH J, 1996, ATMOS ENVIRON, V30, P1887
   SCHLEGEL HB, 1986, J CHEM PHYS, V84, P4530
   SEARS TJ, 1996, J CHEM PHYS, V104, P781
   SVERDLEY LM, 1974, VIBRATION SPECTRA PO
   TRUHLAR DG, 1971, CHEM PHYS LETT, V9, P269
   TYNDALL GS, 1997, INT J CHEM KINET, V29, P43
   WIGNER E, 1932, Z PHYS CHEM B-CHEM E, V19, P203
NR 40
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAR 29
PY 2002
VL 580
SI Sp. Iss. SI
BP 161
EP 170
PG 10
SC Chemistry, Physical
GA 546DG
UT ISI:000175256200019
ER

PT J
AU Goncalves, PFB
   Stassen, H
TI New approach to free energy of solvation applying continuum models to
   molecular dynamics simulation
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE solvation free energy; molecular dynamics; continuum model; aqueous
   solutions
ID AB-INITIO; AQUEOUS-SOLUTION; SOLVENT; WATER; OPTIMIZATION; PARAMETERS;
   HYDRATION; PROFILES; DOCKING; RADII
AB A new approach to the calculation of the free energy of solvation from
   trajectories obtained by molecular dynamics simulation is presented.
   The free energy of solvation is computed as the sum of three
   contributions originated at the cavitation of the solute by the
   solvent, the solute-solvent nonpolax (repulsion and dispersion)
   interactions, and the electrostatic solvation of the solute. The
   electrostatic term is calculated based on ideas developed for the
   broadly used continuum models, the cavitational contribution from the
   excluded volume by the Claverie-Pierotti model, and the Van der Waals
   term directly from the molecular dynamics simulation. The proposed
   model is tested for diluted aqueous solutions of simple molecules
   containing a variety of chemically important functions: methanol,
   methylamine. water, methanethiol, and dichloromethane. These solutions
   were treated by molecular dynamics simulations using SPC/E water and
   the OPLS force field for the organic molecules. Obtained free energies
   of solvation a-re in very good agreement with experimental data.
C1 Univ Fed Rio Grande Sul, Inst Quim, Grp Quim Teor, BR-91540000 Porto Alegre, RS, Brazil.
RP Stassen, H, Univ Fed Rio Grande Sul, Inst Quim, Grp Quim Teor,
   BR-91540000 Porto Alegre, RS, Brazil.
CR ADAMS DJ, 1974, MOL PHYS, V28, P1241
   ALLEN MP, 1987, COMPUTER SIMULATION
   APOSTOLAKIS J, 1998, J COMPUT CHEM, V19, P21
   BENNAIM A, 1987, SOLUTION THERMODYNAM
   BENNETT CH, 1976, J COMPUT PHYS, V22, P245
   BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
   BONDI A, 1964, J PHYS CHEM-US, V68, P441
   BOTTCHER CFJ, 1973, THEORY ELECT POLARIS
   CABANI S, 1981, J SOLUTION CHEM, V10, P563
   CAFLISCH A, 1997, J COMPUT CHEM, V18, P723
   COLOMINAS C, 1999, J COMPUT CHEM, V20, P665
   COLOMINAS C, 1999, J PHYS CHEM A, V103, P6200
   CRAMER CJ, 1991, J AM CHEM SOC, V113, P8305
   CRAMER CJ, 1999, CHEM REV, V99, P2161
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3901
   FLORIS FM, 1991, J COMPUT CHEM, V12, P784
   FRISCH MJ, 1998, GAUSSIAN98
   GILSON MK, 1995, J COMPUT CHEM, V16, P1081
   GONCALVES PFB, 1999, CHEM PHYS LETT, V304, P438
   GRAY CG, 1984, THEORY MOL FLUIDS, V1
   GUARNIERI F, 1996, J AM CHEM SOC, V118, P5580
   JORGENSEN WL, 1988, J AM CHEM SOC, V110, P1657
   JORGENSEN WL, 1990, J AM CHEM SOC, V112, P4768
   KAMINSKI G, 1994, J PHYS CHEM-US, V98, P13077
   KOLLMAN P, 1993, CHEM REV, V93, P2395
   LIPTON MA, 1996, TETRAHEDRON LETT, V37, P287
   LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
   MAHONEY MW, 2000, J CHEM PHYS, V112, P8910
   MARCHI M, 2001, J CHEM PHYS, V114, P4377
   MAXWELL DS, 1995, J COMPUT CHEM, V16, P984
   MEZEI M, 1993, MOL SIMULAT, V10, P225
   NOSE S, 1984, MOL PHYS, V52, P255
   OROZCO M, 1995, J COMPUT CHEM, V16, P563
   PASCUALAHUIR JL, 1990, J COMPUT CHEM, V11, P1047
   PERLMAN A, 1994, J CHEM PHYS, V98, P1487
   PERLMAN A, 1994, J COMPUT CHEM, V15, P105
   PIEROTTI RA, 1976, CHEM REV, V76, P717
   QIU D, 1997, J PHYS CHEM A, V101, P3005
   REDDY MR, 1998, J COMPUT CHEM, V19, P769
   SENDEROWITZ H, 1995, J AM CHEM SOC, V117, P8211
   SENDEROWITZ H, 1996, J AM CHEM SOC, V118, P2078
   SILLA E, 1990, J MOL GRAPHICS, V8, P168
   SILLA E, 1991, J COMPUT CHEM, V12, P1077
   SMART JL, 1997, J COMPUT CHEM, V18, P1751
   STEWART JJP, MOPAC93 00 MANUAL RE
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STILL WC, 1990, J AM CHEM SOC, V112, P6127
   STRAATSMA TP, 1986, J CHEM PHYS, V85, P6720
   TOMASI J, 1994, CHEM REV, V94, P2027
   WIDOM B, 1963, J CHEM PHYS, V39, P2804
   ZWANZIG RW, 1954, J CHEM PHYS, V22, P1420
NR 51
TC 6
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD MAY
PY 2002
VL 23
IS 7
BP 706
EP 714
PG 9
SC Chemistry, Multidisciplinary
GA 546VH
UT ISI:000175295300003
ER

PT J
AU Pliego, JR
   Riveros, JM
TI Parametrization of the PCM model for calculating solvation free energy
   of anions in dimethyl sulfoxide solutions
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; AB-INITIO; AQUEOUS SOLVATION;
   TRANSITION-STATES; ATOMIC RADII; SOLVENT; IONS; MOLECULES; WATER;
   OPTIMIZATION
AB We report the first parametrization of a continuum model for the
   solvation of anions in DMSO solution. The present parameters used in
   conjunction with the PCM method predict the solvation free energy of 21
   anions in DMSO solution with an average error of -1.2 kcal mol(-1), and
   a S.D. for the average error of only 2.2 kcal mol(-1). This low, value
   of the S.D. shows that the present parametrization is capable of
   predicting accurate differences of the solvation free energies in DMSO
   solution and is reliable for modeling liquid phase chemical reactions.
   (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, SP, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
   Sao Paulo, SP, Brazil.
CR CANCES E, 1997, J CHEM PHYS, V107, P3032
   CHAMBERS CC, 1996, J PHYS CHEM-US, V100, P16385
   CHENG A, 2000, J MOL GRAPH MODEL, V18, P273
   COSSI M, 1996, CHEM PHYS LETT, V255, P327
   CRAMER CJ, 1992, SCIENCE, V256, P213
   CRAMER CJ, 1999, CHEM REV, V99, P2161
   CUCCOVIA IM, 2000, J CHEM SOC PERK T 2, P1896
   CURUTCHET C, 2001, J COMPUT CHEM, V22, P1180
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
   GONCALVES PFB, 1999, CHEM PHYS LETT, V304, P438
   GONZALEZ C, 1998, J PHYS CHEM A, V102, P2732
   HUMMER G, 1998, J PHYS CHEM A, V102, P7885
   LI JB, 1998, CHEM PHYS LETT, V288, P293
   LI JB, 1999, THEOR CHEM ACC, V103, P9
   LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
   LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
   MASSOVA I, 1999, J PHYS CHEM B, V103, P8628
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   MIERTUS S, 1982, CHEM PHYS, V65, P239
   MOHAN V, 1992, J PHYS CHEM-US, V96, P6428
   OROZCO M, 1994, CHEM PHYS, V182, P237
   PLIEGO JR, IN PRESS PHYS CHEM C
   PLIEGO JR, 2000, CHEM PHYS LETT, V332, P597
   PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
   QIU D, 1997, J PHYS CHEM A, V101, P3005
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SITKOFF D, 1996, J PHYS CHEM-US, V100, P2744
   STEFANOVICH EV, 1995, CHEM PHYS LETT, V244, P65
   STILL WC, 1990, J AM CHEM SOC, V112, P6127
   TANTILLO DJ, 1999, J ORG CHEM, V64, P3066
   TOMASI J, 1994, CHEM REV, V94, P2027
   WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
   WIBERG KB, 1995, J PHYS CHEM-US, V99, P9072
NR 34
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 8
PY 2002
VL 355
IS 5-6
BP 543
EP 546
PG 4
SC Physics, Atomic, Molecular & Chemical
GA 547AT
UT ISI:000175310400023
ER

PT J
AU Tormena, CF
   Rittner, R
   Abraham, RJ
TI An NMR, IR and theoretical investigation of the methyl effect on
   conformational isomerism in 3-fluoro-3-methyl-2-butanone and
   1-fluoro-3,3-dimethyl-2-butanone
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE conformational analysis; fluoroketones; NMR; solvation; theoretical
   calculations
ID VIBRATIONAL ASSIGNMENT; ABINITIO CALCULATIONS; INTERNAL-ROTATION;
   SOLVATION; FLUOROACETONE; BARRIERS
AB The solvent dependence of the H-1 and C-13 NMR spectra of
   3-fluoro-3-methyl-2-butanone (FMB) and 1-fluoro-3,3-dimethyl-2-butanone
   (FDMB) was examined and the (4)J(HF), (1)J(CF) and (2)J(CF) couplings
   are reported. Density functional theory (DFT) at the B3LYP/6-311 ++
   G(2df,2p) level with ZPE (zero point energy) corrections was used to
   obtain the conformer geometries. In both FMB and FDMB, the DFT method
   gave only two minima for cis (F-C-C=O, 0degrees) and trans (F-C-C=O,
   180degrees) rotamers. Assuming the cis and trans forms, the observed
   couplings in FM B when analysed by solvation theory gave the energy
   difference E-cis-E-trans of 3.80 kcal mol(-1) (1 kcal = 4.184 kJ) in
   the vapour phase (cf. the DFT value of 3.21 kcal mol(-1)), decreasing
   to 2.6 kcal mol(-1) in CCl4 and to 0.27 kcal mol(-1) in DMSO. In FDMB
   the observed couplings when analysed similarly by solvation theory gave
   E-cis - E-trans = 1.80 kcal mol(-1) in the vapour phase, decreasing to
   0.47 kcal mol(-1) in CCl4 and to - 1.25 kcal mol(-1) in DMSO. The
   introduction of a methyl group geminal to the fluorine atom shifts the
   conformational equilibrium towards the trans rotamer, in contrast to no
   significant effect when the methyl group is introduced at the
   alpha-carbon further from the fluorine atom. Copyright (C) 2002 John
   Wiley Sons, Ltd.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
   Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Rittner, R, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
   BR-13083970 Campinas, SP, Brazil.
CR *CIBA, 1972, CIBA S CARB FLUOR CO
   ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
   ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
   ABRAHAM RJ, 1996, J CHEM SOC PERK  APR, P533
   ABRAHAM RJ, 1999, J CHEM SOC PERK  AUG, P1663
   ABRAHAM RJ, 2001, J CHEM SOC PERK T 2, P815
   BERGMANN ED, 1961, J CHEM SOC, P3452
   BODOT H, 1967, B SOC CHIM FR, P870
   BOGOLYUBSKII AV, 1987, J ORG CHEM USSR, V23, P2027
   COX RA, 1972, CAN J CHEM, V50, P3242
   DURIG JR, 1989, J CHEM PHYS, V90, P6840
   DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
   FORESMAN JB, 1996, EXPLORING CHEM ELECT
   FRISCH MJ, 1998, GAUSSIAN 98
   FRY AJ, 1979, TETRAHEDRON LETT, V36, P3357
   OLIVATO PR, 1996, REV HETEROATOM CHEM, V15, P115
   SAEGEBARTH E, 1970, J CHEM PHYS, V52, P3555
   TAYLOR NF, 1988, ACS S SERIES, V374
   TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
   VANEIJCK BP, 1972, J MOL STRUCT, V11, P67
NR 20
TC 7
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD APR
PY 2002
VL 15
IS 4
BP 211
EP 217
PG 7
SC Chemistry, Organic; Chemistry, Physical
GA 544AB
UT ISI:000175135100004
ER

PT J
AU Antonelli, A
   Justo, JF
   Fazzio, A
TI Interaction of As impurities with 30 degrees partial dislocations in
   Si: An ab initio investigation
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID EXTENDED DEFECTS; SILICON; SEGREGATION; PSEUDOPOTENTIALS
AB We investigated through ab initio total energy calculations the
   interaction of arsenic impurities with the core of a 30degrees partial
   dislocation in silicon. It was found that when an arsenic atom sits in
   a crystalline position near the dislocation core, there is charge
   transfer from the arsenic towards the dislocation core. As a result,
   the arsenic becomes positively charged and the core negatively charged.
   The results indicate that the structural changes around the impurity
   are very small in both environments, namely, the crystal and the
   dislocation core. In this scenario, the interaction between arsenic and
   the core is essentially electrostatic, which eventually leads to
   arsenic segregation. The segregation energy was found to be as large as
   0.5 eV/atom. Additionally, it was found that arsenic pairing inside the
   core is not energetically favorable. (C) 2002 American Institute of
   Physics.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
   Univ Sao Paulo, Escola Politecn, PSI, BR-05424970 Sao Paulo, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Antonelli, A, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
   BR-13083970 Campinas, SP, Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
   ALEXANDER H, 1989, I PHYS C SER, V104, P281
   BACHELET GB, 1982, PHYS REV B, V26, P4199
   BAZANT MZ, 1997, PHYS REV B, V56, P8542
   BERGHOLZ W, 2000, PHYS STATUS SOLIDI B, V222, P5
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   BULATOV VV, 2001, PHILOS MAG A, V81, P1257
   EBERT P, 2001, APPL PHYS LETT, V78, P480
   HIRTH JP, 1982, THEORY DISLOCATIONS
   JUSTO JF, 1998, PHYS REV B, V58, P2539
   JUSTO JF, 1999, PHYSICA B, V274, P473
   JUSTO JF, 2000, PHYS REV LETT, V84, P2172
   JUSTO JF, 2001, SOLID STATE COMMUN, V118, P651
   KAPLAN T, 2000, PHYS REV B, V61, P1674
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   MAITI A, 1996, PHYS REV LETT, V77, P1306
   MAITI A, 1997, APPL PHYS LETT, V70, P336
   PATEL JR, 1966, PHYS REV, V143, P601
   PATEL JR, 1976, PHYS REV B, V13, P3548
   PIZZINI S, 1999, PHYS STATUS SOLIDI A, V171, P123
   SUZUKI T, 1991, DISLOCATION DYNAMICS
NR 21
TC 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAY 1
PY 2002
VL 91
IS 9
BP 5892
EP 5895
PG 4
SC Physics, Applied
GA 542WR
UT ISI:000175069000053
ER

PT J
AU Pliego, JR
   Riveros, JM
TI A theoretical analysis of the free-energy profile of the different
   pathways in the alkaline hydrolysis of methyl formate in aqueous
   solution
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE ab initio calculations; computer chemistry; ester hydrolysis;
   free-energy profile; nucleophilic addition
ID NUCLEOPHILIC DISPLACEMENT-REACTIONS; CARBOXYLIC-ACID ESTERS; GAS-PHASE
   REACTIONS; REACTION FIELD CALCULATIONS; DISCRETE-CONTINUUM MODELS;
   ANION CLUSTERS X-(H2O)N; X = OH; AB-INITIO; MOLECULAR-ENERGIES;
   GAUSSIAN-1 THEORY
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
   Sao Paulo, Brazil.
CR ACHATZ U, 1998, J AM CHEM SOC, V120, P1876
   ALEMAN C, 1998, CHEM PHYS, V232, P151
   AMOVILLI C, 2001, ORGANOMETALLICS, V20, P1310
   ARNOLD ST, 1997, J PHYS CHEM A, V101, P2859
   BAKOWIES D, 1999, J AM CHEM SOC, V121, P5712
   BANDYOPADHYAY P, 2000, J CHEM PHYS, V113, P1104
   BASAIF S, 1989, J AM CHEM SOC, V111, P2647
   BENDER ML, 1956, J AM CHEM SOC, V78, P317
   BENDER ML, 1960, CHEM REV, V60, P53
   BOHME DK, 1981, J AM CHEM SOC, V103, P978
   BOHME DK, 1984, J AM CHEM SOC, V106, P3447
   BRUICE TC, 1968, J AM CHEM SOC, V90, P7136
   CAREY FA, 1990, ADV ORGANIC CHEM A, P465
   CHABINYC ML, 1998, SCIENCE, V279, P1882
   CLAVERIE P, 1978, J PHYS CHEM-US, V82, P405
   CRAMER CJ, 1999, CHEM REV, V99, P2161
   CURTISS LA, 1990, J CHEM PHYS, V93, P2537
   CURTISS LA, 1991, J CHEM PHYS, V94, P7221
   CURTISS LA, 1993, J CHEM PHYS, V98, P1293
   DEPUY CH, 1985, J AM CHEM SOC, V107, P1093
   DEPUY CH, 1990, J AM CHEM SOC, V112, P8650
   ENSING B, 2001, J PHYS CHEM A, V105, P3300
   FERNANDEZ MA, 1999, J ORG CHEM, V64, P6000
   FERNANDO J, 1976, J AM CHEM SOC, V98, P2049
   FLORIAN J, 1998, J PHYS CHEM B, V102, P719
   FLORIS F, 1995, CHEM PHYS, V195, P207
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FREITAS LCG, 1992, J CHEM SOC FARADAY T, V88, P189
   FRINK BT, 1999, J CHEM SOC PERK  NOV, P2397
   FRISCH MJ, 1994, GAUSSIAN 94 REVISION
   GRIMM AR, 1995, MOL PHYS, V86, P369
   GRONERT S, 2001, CHEM REV, V101, P329
   GUTHRIE JP, 1973, J AM CHEM SOC, V95, P6999
   GUTHRIE JP, 1991, J AM CHEM SOC, V113, P3941
   HAEFFNER F, 1999, J MOL STRUC-THEOCHEM, V459, P85
   HENGGE AC, 1994, J AM CHEM SOC, V116, P11256
   HIERL PM, 1986, J AM CHEM SOC, V108, P3142
   HUMPHREYS HM, 1956, J AM CHEM SOC, V78, P521
   JORGENSEN WL, 1987, ACS SYM SER, V353, P200
   LOPEZ X, 1999, J AM CHEM SOC, V121, P5548
   LOWRY TH, 1981, MECH THEORY ORGANIC, P650
   MARCOS ES, 1985, J PHYS CHEM-US, V89, P4695
   MARCOS ES, 1991, J PHYS CHEM-US, V95, P8928
   MARLIER JF, 1993, J AM CHEM SOC, V115, P5935
   NOBES RH, 1982, CHEM PHYS LETT, V89, P497
   OHAIR RAJ, 1994, J AM CHEM SOC, V116, P3609
   PLIEGO JR, 2000, CHEM PHYS LETT, V332, P597
   PLIEGO JR, 2001, CHEM-EUR J, V7, P169
   PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
   PLIEGO JR, 2002, J PHYS CHEM A, V106, P371
   POPLE JA, 1989, J CHEM PHYS, V90, P5622
   POWERS JC, 1965, TETRAHEDRON LETT, P1713
   PRANATA J, 1994, J PHYS CHEM-US, V98, P1180
   RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
   STEFANIDIS D, 1993, J AM CHEM SOC, V115, P6045
   TAKASHIMA K, 1978, J AM CHEM SOC, V100, P6128
   TANTILLO DJ, 1999, J ORG CHEM, V64, P3066
   TOMASI J, 1994, CHEM REV, V94, P2027
   TOPOL IA, 1999, J CHEM PHYS, V111, P10998
   TUNON I, 1993, J PHYS CHEM-US, V97, P5547
   TUNON I, 1995, J PHYS CHEM-US, V99, P3798
   VIGGIANO AA, 1996, J PHYS CHEM-US, V100, P14397
   WILLIAMS A, 1989, ACCOUNTS CHEM RES, V22, P387
   WINCEL H, 1996, J PHYS CHEM-US, V100, P7488
   WINCEL H, 1997, J PHYS CHEM A, V101, P8248
   YANG X, 1991, J AM CHEM SOC, V113, P6766
   YANG X, 1991, J PHYS CHEM-US, V95, P6182
   ZHAN CG, 2000, J AM CHEM SOC, V122, P1522
   ZHAN CG, 2000, J AM CHEM SOC, V122, P2621
   ZHAN CG, 2000, J PHYS CHEM A, V104, P7672
   ZHAN CG, 2001, J PHYS CHEM A, V105, P1296
NR 71
TC 13
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD APR 15
PY 2002
VL 8
IS 8
BP 1945
EP 1953
PG 9
SC Chemistry, Multidisciplinary
GA 543CQ
UT ISI:000175084000020
ER

PT J
AU de Andrade, J
   Boes, ES
   Stassen, H
TI A force field for liquid state simulations on room temperature molten
   salts: 1-ethyl-3-methylimidazolium tetrachloroaluminate
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Letter
ID IONIC LIQUIDS; SOLVENTS
AB A classical force field for the room temperature molten salt
   1-ethyl-3-methylimidazolium tetrachloroaluminate has been developed and
   successfully tested against experimental data (neutron diffraction,
   diffusion constants) by molecular dynamics computer simulation
   corresponding to a temperature of 298 K. The force field parameters for
   the cation have been derived from the AMBER description for the
   protonated amino acid histidine, whereas the AlCl4- parameters have
   been achieved by parametrization of intramolecular terms with van der
   Waals parameters taken from the Literature. All atomic partial charges
   have been obtained from ab initio calculations using the RESP
   methodology.
C1 Univ Fed Rio Grande Sul, Grp Quim Teor, Inst Quim, BR-91540000 Porto Alegre, RS, Brazil.
RP Stassen, H, Univ Fed Rio Grande Sul, Grp Quim Teor, Inst Quim,
   BR-91540000 Porto Alegre, RS, Brazil.
CR AKDENIZ Z, 1999, Z NATURFORSCH A, V54, P180
   ALLEN MP, 1987, COMPUTER SIMULATION
   CARPER WR, 1996, J PHYS CHEM-US, V100, P4724
   CASE DA, 1999, AMBER 6
   CORNELL WD, 1995, J AM CHEM SOC, V117, P5179
   DUDEK MJ, 1998, J COMPUT CHEM, V19, P548
   DUPONT J, 2000, J BRAZIL CHEM SOC, V11, P337
   DYMEK CJ, 1989, INORG CHEM, V28, P1472
   FANNIN AA, 1984, J PHYS CHEM-US, V88, P2614
   FOX T, 1998, J PHYS CHEM B, V102, P8070
   HANKE CH, 2001, MOL PHYS, V99, P807
   LARIVE CK, 1995, J PHYS CHEM-US, V99, P12400
   LYUBARTSEV AP, 2000, COMPUT PHYS COMMUN, V128, P565
   MAYO SL, 1990, J PHYS CHEM-US, V94, P8897
   NOSE S, 1984, MOL PHYS, V52, P525
   PAPPU RV, 1998, J PHYS CHEM B, V102, P9725
   SABOUNGI ML, COMMUNICATION
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   TAKAHASHI S, 1995, INORG CHEM, V34, P2990
   TAKAHASHI S, 1999, Z PHYS CHEM 2, V209, P209
   TOSI MP, 1993, ANNU REV PHYS CHEM, V44, P173
   TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
   WASSERSCHEID P, 2000, ANGEW CHEM INT EDIT, V39, P3772
   WELTON T, 1999, CHEM REV, V99, P2071
NR 24
TC 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD APR 11
PY 2002
VL 106
IS 14
BP 3546
EP 3548
PG 3
SC Chemistry, Physical
GA 542AW
UT ISI:000175022100007
ER

PT J
AU Alves, CN
   da Silva, ABF
   Marti, S
   Moliner, V
   Oliva, M
   Andres, J
   Domingo, LR
TI An AMI theoretical study on the effect of Zn2+ Lewis acid catalysis on
   the mechanism of the cycloaddition between
   3-phenyl-1-(2-pyridyl)-2-propen-1-one and cyclopentadiene
SO TETRAHEDRON
LA English
DT Article
DE AM1 theoretical study; Diels-Alder reaction; Zn2+ Lewis acid catalyst
ID DIELS-ALDER REACTION; AQUEOUS-MEDIA; TRANSITION STRUCTURES; AB-INITIO;
   ACCELERATION; WATER; SELECTIVITY; ALGORITHM; STATES; STEP
AB The mechanism of the Diels-Alder reaction between
   3-phenyl-1-(2-pyridyl)-2-propen-1-one and cyclopentadiene has been
   investigated with the AM1 semiempirical method. Stationary points for
   two reactive channels, endo-cis and exo-cis, have been characterized.
   The role of the Lewis acid catalyst has been modeled taking into
   account the formation of a complex between Zn2+ and the carbonyl oxygen
   atom and the pyridyl nitrogen atom of the
   3-phenyl-1-(2-pyiidyl)-2-propen-1-one system with and without the
   presence of two molecules of water around the cation. The mechanism of
   the uncatalyzed reaction corresponds to a concerted process, but in the
   presence of Lewis acid catalyst the mechanism changes and the reaction
   takes place through a stepwise mechanism. A first step involves the
   nucleophilic attack of the cyclopentadiene in the double bond of the
   dienophile which produces an intermediate. A second step involves the
   closure of the intermediate yielding the corresponding final
   cycloadduct. The inclusion of the Zn2+ catalyst drastically decreases
   the energy barrier associated with the carbon-carbon bond formation of
   the first step in comparison to the concerted process. (C) 2002
   Elsevier Science Ltd. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Naturais, Dept Quim, BR-66075110 Belem, Para, Brazil.
   Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
   Univ Valencia, Dept Quim Organ, Valencia, Spain.
RP da Silva, ABF, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis
   Mol, CP 780, BR-13560970 Sao Carlos, SP, Brazil.
EM alberico@iqsc.sc.usp.br
CR *SEM, 1997, AMPAC 6 0 US MAN
   ALVES CN, 2001, TETRAHEDRON, V57, P6877
   ANDRES J, 1994, J CHEM SOC FARADAY T, V90, P1703
   BAKER J, 1986, J COMPUT CHEM, V7, P385
   BOSNICH B, 1998, ALDRICHIM ACTA, V31, P76
   CARRUTHERS W, 1990, CYCLOADDITION REACTI
   CATIVIELA C, 1996, CHEM SOC REV, V25, P209
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   FLEMING I, 1996, FRONTIER ORBITALS OR
   FRINGUELLI F, 1990, ORG PREP PROCED INT, V22, P131
   FRINGUELLI F, 1993, ACTA CHEM SCAND, V47, P255
   FRINGUELLI F, 2001, EUR J ORG CHEM   FEB, P439
   GARCIA JI, 1998, J AM CHEM SOC, V120, P2415
   GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
   GONZALEZ C, 1991, J CHEM PHYS, V95, P5853
   JORGENSEN WL, 1993, J AM CHEM SOC, V115, P2936
   KAGAN HB, 1992, CHEM REV, V92, P1007
   KUMAR A, 2001, CHEM REV, V101, P1
   LASCHAT S, 1996, ANGEW CHEM INT EDIT, V35, P289
   LI CJ, 1993, CHEM REV, V93, P2023
   MCIVER JW, 1974, ACCOUNTS CHEM RES, V7, P72
   OPPOLZER W, 1984, ANGEW CHEM INT EDIT, V33, P497
   OTTO S, 1995, TETRAHEDRON LETT, V36, P2645
   OTTO S, 1996, J AM CHEM SOC, V118, P7702
   OTTO S, 1998, J AM CHEM SOC, V120, P9517
   PINDUR U, 1993, CHEM REV, V93, P741
   RESSIG HU, 1991, ORGANIC SYNTHESIS HI, P71
   ROBERSON M, 2001, TETRAHEDRON, V57, P907
   SCHLEGEL HB, 1982, J CHEM PHYS, V77, P3676
   SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
   STEWART NC, 1990, SEMIEMPIRICAL MOL OR
   STIPANOVIC RD, 1992, ENV SCI RES, V44, P319
   TANAKA J, 2001, TETRAHEDRON, V57, P899
   TAPIA O, 1984, CHEM PHYS LETT, V109, P471
   TAPIA O, 1994, J CHEM SOC FARADAY T, V90, P2365
   TOGNI A, 1994, ANGEW CHEM INT EDIT, V33, P497
   YATES P, 1960, J AM CHEM SOC, V82, P4436
   ZERNER MC, 1991, SEMIEMPPIRICAL MOL O
NR 38
TC 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0040-4020
J9 TETRAHEDRON
JI Tetrahedron
PD MAR 25
PY 2002
VL 58
IS 13
BP 2695
EP 2700
PG 6
SC Chemistry, Organic
GA 538MV
UT ISI:000174820500024
ER

PT J
AU Fontoura, LAM
   Rigotti, IJD
   Correia, CRD
TI Experimental and theoretical studies on the rotational barrier of
   1-acyl- and 1-alkoxycarbonyl-2-pyrrolines
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE dynamic NMR; computational methods; rotational barrier; enamides and
   enecarbamates
ID INTERNAL-ROTATION; AB-INITIO; BOND; AMIDES; N,N-DIMETHYLFORMAMIDE;
   ISOMERIZATION; RESONANCE; FORMAMIDE; EFFICIENT; ACIDS
AB The conformational equilibrium as a result of the N-carbonyl bond
   rotation of several N-acyl- and N-alkoxycarbonyl-2-pyrrolines have been
   studied. The equilibrium constants and the rotational barriers were
   determined by theoretical methods (AM1, PM3, HF/3-21G( * ) and
   HF/6-31G*) and, experimentally, by dynamic NMR (coalescence
   temperature). The measured rotational barriers for enecarbamates were
   found to be similar to 16 kcal mol(-1) in C6D6 or C6D5NO2, whereas
   slightly higher values were found for enamides in C6D5NO2,. Contrary to
   enamides, the rotational barriers for enecarbamates were not affected
   by changes in the polarity of the solvent employed. (C) 2002 Elsevier
   Science B.V. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, Dept Quim, BR-13083970 Campinas, SP, Brazil.
   CIENTEC R, Fundacao Ciencia & Tecnol, Dept Quim, BR-90010460 Porto Alegre, Brazil.
RP Correia, CRD, Univ Estadual Campinas, Inst Quim, Dept Quim, Caixa
   Postal 6157, BR-13083970 Campinas, SP, Brazil.
CR *WAV, 1998, PC SPART PLUS 1 5
   ABRAHAM RJ, 1988, INTRO NMR SPECTROSCO
   BENNET AJ, 1991, J AM CHEM SOC, V113, P7563
   BINSCH G, 1980, ANGEW CHEM INT EDIT, V19, P411
   BONACORSO HG, 1992, QUIM NOVA, V15, P208
   CARPES MJS, 1997, TETRAHEDRON LETT, V38, P1869
   COSSY J, 1997, SYNTHETIC COMMUN, V27, P2769
   COSTENARO ER, 2001, TETRAHEDRON LETT, V42, P1599
   COX C, 1998, J ORG CHEM, V63, P2426
   DIETER RK, 1996, J ORG CHEM, V61, P4180
   DUFFY EM, 1992, J AM CHEM SOC, V114, P7535
   ELIEL E, 1994, STEREOCHEMISTRY ORGA
   FISCHER G, 2000, CHEM SOC REV, V29, P119
   GUTOWSKY HS, 1956, J CHEM PHYS, V25, P1228
   JEENER J, 1979, J CHEM PHYS, V71, P4546
   KRAUS GA, 1981, J ORG CHEM, V46, P4791
   LAMBERT JB, 1981, ANGEW CHEM INT EDIT, V20, P487
   LAUVERGNAT D, 1997, J AM CHEM SOC, V119, P9478
   LIDE DR, 1993, HDB CHEM PHYSICS, P148
   LIDE DR, 1993, HDB CHEM PHYSICS, P9
   OLIVEIRA DF, 1999, J ORG CHEM, V64, P6646
   OLIVEIRA DF, 1999, TETRAHEDRON LETT, V40, P2083
   OZAWA T, 1997, MAGN RESON CHEM, V35, P323
   PHILLIPS WD, 1955, J CHEM PHYS, V23, P1363
   POHLIT AM, 1997, HETEROCYCLES, V45, P2321
   SHANANATIDI H, 1970, J PHYS CHEM-US, V74, P961
   SOUZA WF, 1996, J PHYS ORG CHEM, V9, P179
   SUGISAKI CH, 1998, TETRAHEDRON LETT, V39, P3413
   VASSILEV NG, 1999, J MOL STRUCT, V484, P39
   WANG QP, 1991, J AM CHEM SOC, V113, P5757
   WIBERG KB, 1992, J AM CHEM SOC, V114, P831
   WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
   WOODBREY JC, 1962, J AM CHEM SOC, V84, P12
NR 33
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD MAY 30
PY 2002
VL 609
IS 1-3
BP 73
EP 81
PG 9
SC Chemistry, Physical
GA 538ZV
UT ISI:000174845700010
ER

PT J
AU Terrazos, LA
   Petrilli, HM
   Marszalek, M
   Saitovitch, H
   Silva, PRJ
   Blaha, P
   Schwarz, K
TI Electric field gradients at Ta in Zr and Hf inter-metallic compounds
SO SOLID STATE COMMUNICATIONS
LA English
DT Article
DE metals; electronic band structure; NQR; electric field gradients
ID PERTURBED-ANGULAR-CORRELATION; TA-181
AB Here we calculate the electric field gradient (EFG) at the nucleus of
   the substitutional Ta impurity site in Zr2T and Hf2T (T = Cu, Ag, Au,
   and Pd) C11(b), inter-metallic compounds. We use the ab initio FP-LAPW
   method as embodied in the Wien97 code in a super-cell approach and
   include lattice relaxations around the impurity. Our results are
   compared with EFG values inferred from measurements of the quadrupole
   coupling constants at the Ta-111 probe in these compounds performed
   with the time differential perturbed angular correlation (TDPAC)
   technique. We also performed EFG calculations for the pure
   inter-metallic compounds. Through the comparison of theoretical and
   experimental EFGs in these cases, we elucidate the role played by the
   Ta probe in the TDPAC measurements of Hf and Zr compounds. Our results
   show that, although the EFGs at the Hf site are very similar to the
   EFGs at the Ta impurity, there is no direct correlation between the Zr
   and Ta EFGs. (C) 2002 Elsevier Science Ltd. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland.
   Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
   Vienna Tech Univ, Inst Mat Chem, A-1060 Vienna, Austria.
RP Petrilli, HM, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
   Paulo, Brazil.
CR AKAI H, 1990, PROG THEOR PHYS SUPP, P11
   BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
   BLAHA P, 1999, WIEN97 CODE
   BUTZ T, 1983, PHYS LETT A, V97, P217
   DAMONTE LC, 1989, PHYS REV B, V39, P12492
   DEMELLO LA, 1993, J PHYS-CONDENS MAT, V5, P8935
   FEIOCK FD, 1969, PHYS REV, V187, P39
   MARSZALEK M, 1994, II28 INP
   MENDOZAZELIS LA, 1986, PHYS REV B, V34, P2982
   PERDEW JP, 1992, PHYS REV B, V15, P13214
   PETRILLI HM, 1991, PHYS REV B, V44, P10493
   PETRILLI HM, 1998, PHYS REV B, V57, P11190
   VILLARS P, 1991, PEARSONS HDB CRYSTAL
   WODNIECKA B, 1995, J ALLOY COMPD, V219, P132
   WODNIECKI P, 1996, Z NATURFORSCH A, V51, S437
NR 15
TC 7
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-1098
J9 SOLID STATE COMMUN
JI Solid State Commun.
PY 2002
VL 121
IS 9-10
BP 525
EP 529
PG 5
SC Physics, Condensed Matter
GA 537HQ
UT ISI:000174753200016
ER

PT J
AU Capelle, K
   Vignale, G
TI Nonuniqueness and derivative discontinuities in density-functional
   theories for current-carrying and superconducting systems
SO PHYSICAL REVIEW B
LA English
DT Article
ID STRONG MAGNETIC-FIELDS
AB Current-carrying and superconducting systems can be treated within
   density-functional theory if suitable additional density variables (the
   current density and the superconducting order parameter, respectively!
   are included in the density-functional formalism. Here we show that the
   corresponding conjugate potentials (vector and pair potentials,
   respectively) are not uniquely determined by the densities. The
   Hohenberg-Kohn theorem of these generalized density-functional theories
   is thus weaker than the original one. We give explicit examples and
   explore some consequences.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
   Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
RP Capelle, K, Univ Sao Paulo, Inst Quim Sao Carlos, Caixa Postal 780,
   BR-13560970 Sao Carlos, SP, Brazil.
CR ARGAMAN N, 2000, AM J PHYS, V68, P69
   CAPELLE K, 2001, PHYS REV LETT, V86, P5546
   ESCHRIG H, 2001, SOLID STATE COMMUN, V118, P123
   HOHENBERG P, 1964, PHYS REV, V136, B864
   KOHN W, 1965, PHYS REV, V140, A1133
   KOHN W, 1989, J PHYS-PARIS, V50, P2601
   KOHN W, 1999, REV MOD PHYS, V71, P1253
   KURTH S, 1999, PHYS REV LETT, V83, P2628
   LEE AM, 1999, PHYS REV A, V59, P209
   OLIVEIRA LN, 1988, PHYS REV LETT, V60, P2430
   PERDEW JP, 1982, PHYS REV LETT, V49, P1691
   PERDEW JP, 1983, PHYS REV LETT, V51, P1884
   TEMMERMAN WM, 1996, PHYS REV LETT, V76, P307
   TINKHAMM, 1996, INTRO SUPERCONDUCTIV
   VIGNALE G, 1987, PHYS REV LETT, V59, P2360
   VIGNALE G, 1988, PHYS REV B, V37, P10685
   VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
NR 17
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 15
PY 2002
VL 65
IS 11
AR 113106
DI ARTN 113106
PG 4
SC Physics, Condensed Matter
GA 533UH
UT ISI:000174548400006
ER

PT J
AU Tormena, CF
   Amadeu, NS
   Ritter, R
   Abraham, RJ
TI Conformational analysis in N-methylfluoroamides. A theoretical, NMR and
   IR investigation
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID SOLVATION; ISOMERISM
AB Theoretical calculations plus the solvent dependence of the H-1, C-13
   NMR and IR spectra were used to determine the conformational
   equilibrium in N-methyl-2-fluoroacetamide (NMFA) and
   N-methyl-2-fluoropropionamide (NMFP). Ab initio calculations were used
   to identify the stable rotamers and obtain their geometries and the
   application of solvation theory on the (1)J(CF) coupling constant gave
   the conformer populations in the solvents studied. In NMFA ab initio
   calculations at the CBS-Q level yielded only two stable rotamers, the
   cis and trans, with DeltaE(cis-trans) = 19.7 kJ mol(-1). The presence
   of two conformers was confirmed by the FTIR spectra. Assuming these
   forms, the observed couplings when analysed by solvation theory gave
   DeltaE = 21.3 kJ mol(-1) in the vapour phase, decreasing to 8.9 kJ
   mol(-1) in CDCl3 and to 0.8 kJ mol(-1) in DMSO. For NMFP the B3LYP
   calculations at the 6-311++g(2df,2p) level gave only the trans rotamer
   as stable, while the gauche form was a plateau in the potential energy
   surface. However the FTIR spectra clearly showed the presence of two
   conformers. A minimum for the gauche rotamer was only found when the
   SCRF (self consistent reaction field) routine was included in the
   theoretical calculations. The equilibrium in NMFP was therefore
   analysed by solvation theory in terms of the trans and gauche rotamers
   to give DeltaE(gauche-trans) = 15.9 kJ mol(-1) in the vapour phase,
   decreasing to 10.8 kJ mol(-1) in CCl4 and to 0.5 kJ mol(-1) in DMSO.
C1 Univ Estadual Campinas, Inst Quim, Phys Organ Chem Lab, BR-13083970 Campinas, SP, Brazil.
   Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Abraham, RJ, Univ Estadual Campinas, Inst Quim, Phys Organ Chem Lab, CP
   6154, BR-13083970 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
   ABRAHAM RJ, 1996, J CHEM SOC PERK  APR, P533
   ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
   ABRAHAM RJ, 1999, J CHEM SOC PERK  AUG, P1663
   ABRAHAM RJ, 1999, PROG NUCL MAG RES SP, V35, P85
   ABRAHAM RJ, 2001, J CHEM SOC PERK T 2, P815
   ABRAMSON KH, 1966, CAN J CHEM, V44, P1685
   BANKS JW, 1999, J CHEM SOC PERK  NOV, P2409
   BANKS JW, 2000, J FLUORINE CHEM, V102, P235
   FORESMAN JB, 1996, EXPLORING CHEM ELECT, P155
   FRISCH MJ, 1998, GAUSSIAN98 REVISION
   OHAGAN D, 1997, CHEM COMMUN     0407, P645
   PHAN HV, 1990, J MOL STRUCT THEOCHE, V209, P333
   TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
   TORMENA CF, 2002, J PHYS ORG CHEM, V15, P211
   VOET D, 1995, BIOCHEMISTRY, CH9
NR 16
TC 10
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 1472-779X
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2002
IS 4
BP 773
EP 778
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 533UQ
UT ISI:000174549100012
ER

PT J
AU Esteves, PM
   Ramirez-Solis, A
   Mota, CJA
TI The nature of superacid electrophilic species in HF/SbF5: A density
   functional theory study
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID HYDROGEN-DEUTERIUM EXCHANGE; PROTOLYSIS DEUTEROLYSIS; SINGLE BONDS;
   SYSTEM; ALKANES
AB A density functional theory study at the B3LYP/6-31++G** + RECP(Sb)
   level of the HF/SbF5 superacid system was carried out. The geometries
   of possible electrophilic species, such as H2F+.Sb2F11- and
   H3F2+.Sb2F11-, were calculated and correspond with available
   experimental results. Calculations of different equilibrium reactions
   involving HF and SbF5 allowed the relative concentration of the most
   energetically favorable species present in 1:1 HF/SbF5 solutions to be
   estimated. These species are H+.Sb2F11-, H2F+.Sb2F11-, H3F2+.Sb2F11-,
   and H4F3+-Sb2F11-, which correspond to 36.9, 16.8, 36.9, and 9.4%,
   respectively. Calculations of the acid strength of the electrophilic
   species were also performed and indicated that, for the same anion, the
   acid strength increases with the solvation degree. The entropic term
   also plays a significant role in proton-transfer reactions in superacid
   systems.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
   Univ Autonoma Estado Morelos, Fac Ciencias, Dept Fis, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
   Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR BERGNER A, 1993, MOL PHYS, V80, P1431
   BONNET B, 1975, HEBD SEANCES ACAD SC, V281, P1011
   BONNET B, 1980, INORG CHEM, V19, P785
   CULMANN JC, 1990, J AM CHEM SOC, V112, P4057
   CULMANN JC, 1999, NEW J CHEM, V23, P863
   ESTEVES PM, 2000, J BRAZIL CHEM SOC, V11, P345
   ESTEVES PM, 2001, J PHYS CHEM B, V105, P4331
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GILLESPIE RJ, 1966, J CHEM SOC A, P1170
   HOOGEVEEN H, 1968, RECL TRAV CHIM PAY B, V87, P1295
   HYMAN HH, 1961, J PHYS CHEM-US, V65, P123
   JOST R, 1988, REV CHEM INTERMED, V9, P171
   KIM D, 2000, J PHYS CHEM B, V104, P10074
   MOOTZ D, 1988, ANGEW CHEM INT EDIT, V27, P391
   MOOTZ D, 1988, ANGEW CHEM, V100, P424
   MOOTZ D, 1991, Z NATURFORSCH B, V46, P1659
   OLAH GA, 1971, J AM CHEM SOC, V93, P1251
   OLAH GA, 1973, J AM CHEM SOC, V95, P4960
   OLAH GA, 1985, SUPERACIDS
   TOUITI D, 1986, J CHEM SOC P2, P1793
NR 20
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD MAR 20
PY 2002
VL 124
IS 11
BP 2672
EP 2677
PG 6
SC Chemistry, Multidisciplinary
GA 531UM
UT ISI:000174435700058
ER

PT J
AU Erben, MF
   Della Vedova, CO
   Romano, RM
   Boese, R
   Oberhammer, H
   Willner, H
   Sala, O
TI Anomeric and mesomeric effects in methoxycarbonylsulfenyl chloride,
   CH3OC(O)SCl: An experimental and theoretical study
SO INORGANIC CHEMISTRY
LA English
DT Article
ID GAS-PHASE STRUCTURE; METHYL THIOLFLUOROFORMATE; CONFORMATIONAL
   PROPERTIES; MONOTHIOFORMIC ACID; SPECTRUM
AB The molecular structure and conformational properties of
   methoxycarbonylsulfenyl chloride, CH3OC(O)SCl, were determinated in the
   gas and solid phases by gas electron diffraction, low-temperature X-ray
   diffraction, and vibrational spectroscopy. Furthermore, quantum
   chemical calculations were performed. Experimental and theoretical
   methods result in structures with a planar C-O-C(O)-S-Cl skeleton. The
   electron diffraction intensities are reproduced best with a mixture of
   72(8)% syn and 28(8)% anti conformers (S-Cl bond
   synperiplanar/antiperiplanar with respect to C=O bond) and the O-CH3
   bond synperiplanar with respect to the C=O bond. The syn form is the
   preferred form and becomes the exclusive form in the crystalline solid
   at low temperature. This experimental result is reproduced very well by
   Hartree-Fock approximation and by density functional theory at
   different levels of theory but not by the MP2/6-31 1G* method, which
   overestimates the value of AGO between the syn and anti conformers. The
   results are discussed in terms of anomeric effects and a natural bond
   orbital (NBO) calculation, Photolysis of matrix-isolated CH3OC(O)SCl
   with broad-band UV-visible irradiation produces an interconversion of
   the conformers, and the concomitant decomposition leads to formation of
   OCS and CO molecules.
C1 Natl Univ La Plata, Fac Ciencias Exactas, Dept Quim, CEQUINOR,CONICET, RA-1900 La Plata, Argentina.
   Natl Univ La Plata, Lab Serv Ind & Sistema Cientif, RA-1900 La Plata, Argentina.
   Univ Essen Gesamthsch, Inst Anorgan Chem, D-45117 Essen, Germany.
   Univ Tubingen, Inst Phys & Theoret Chem, D-7400 Tubingen, Germany.
   Univ Duisburg Gesamthsch, D-47048 Duisburg, Germany.
   Univ Sao Paulo, Inst Quim, Sao Paulo, Brazil.
RP Della Vedova, CO, CC 962, RA-1900 La Plata, Argentina.
CR *SIEM, 1991, SHELTX PLUS VERS SGI
   BOESE R, 1994, ORGANIC CRYSTAL CHEM, P20
   BRODALLA D, 1985, J APPL CRYSTALLOGR, V18, P316
   CAMINATI W, 1981, J MOL SPECTROSC, V90, P15
   CAMINATI W, 1981, J MOL SPECTROSC, V90, P303
   CAMINATI W, 1981, J MOL SPECTROSC, V90, P315
   CROWDER GA, 1973, APPL SPECTROSC, V27, P440
   DELLAVEDOVA CO, 1989, J RAMAN SPECTROSC, V20, P483
   DELLAVEDOVA CO, 1991, J RAMAN SPECTROSC, V22, P291
   DELLAVEDOVA CO, 1993, INORG CHEM, V32, P948
   FRISCH MJ, 1998, GAUSSIAN 98
   GOBBATO KI, 1996, INORG CHEM, V35, P6152
   HAMILTON WC, 1965, ACTA CRYSTALLOGR, V18, P502
   HEDBERG L, 1993, J MOL SPECTROSC, V160, P117
   HOCKING WH, 1977, Z NATURFORSCH A, V32, P1108
   KIRBY AJ, 1983, ANOMERIC EFFECT RELA
   LARSON JR, 1978, J AM CHEM SOC, V100, P5713
   MACK HG, 1991, J PHYS CHEM-US, V95, P4238
   MACK HG, 1992, J MOL STRUCT, V265, P347
   MACK HG, 1992, J PHYS CHEM-US, V96, P9215
   NOE EA, 1977, J AM CHEM SOC, V99, P2803
   OBERHAMMER H, 1976, MOL STRUCTURES DIFFR, V4, P24
   OBERHAMMER H, 1981, J MOL STRUCT, V70, P273
   ROMANO RM, UNPUB
   ROMANO RM, 2001, J AM CHEM SOC, V123, P12623
   ROMANO RM, 2001, J AM CHEM SOC, V123, P5794
   WILLNER H, 1984, Z NATURFORSCH B, V39, P314
NR 27
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD MAR 11
PY 2002
VL 41
IS 5
BP 1064
EP 1071
PG 8
SC Chemistry, Inorganic & Nuclear
GA 528TM
UT ISI:000174259300009
ER

PT J
AU Okulik, NB
   Sosa, LG
   Esteves, PM
   Mota, CJA
   Jubert, AH
   Peruchena, NM
TI Ab initio topological analysis of the electronic density in n-butonium
   cations and their van der Waals complexes
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID POTENTIAL-ENERGY SURFACE; ISOBUTONIUM CATIONS; CH5+
AB In this work, the topology of the ab initio electronic density charge,
   using the theory of atoms in molecules (AIM). developed by Bader, is
   studied for the n-C4H11 species, the protonated n-butane. The
   electronic delocalization that operates through the sigma bonds in
   saturated molecules and specifically in protonated alkanes is studied
   by means of analysis of the charge density and the bond critical
   points. This analysis is used in order to establish a relationship
   among the parameters that determine the stability order found for the
   different species and relate them with the carbonium ions structure.
   Comparing these results with the i-C4H11 allow us to study the nature
   of the 3c-2e bonds in alkanes in greater detail, permitting the
   description on the a basicity and reactivity scales in terms of
   structural parameters of the carbonium ions.
C1 UNNE, Fac Agroind, RA-3700 Peia R Saenz Pena, Chaco, Argentina.
   UNNE, Fac Ciencias Exactas Nat & Agrim, Dept Quim, Area Quim Fis, RA-3400 Corrientes, Argentina.
   Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
   UNLP, Fac Ciencias Exactas, Ctr Quim Inorgan, CEQUINOR,CONICET, RA-1900 La Plata, Argentina.
RP Okulik, NB, UNNE, Fac Agroind, Cte Fernandez 755, RA-3700 Peia R Saenz
   Pena, Chaco, Argentina.
CR BADER RFW, 1990, ATOMS MOL QUANTUM TH
   CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
   ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
   ESTEVES PM, 1998, TOP CATAL, V6, P163
   ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
   ESTEVES PM, 2000, J PHYS CHEM A, V104, P6233
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   HIRAOKA K, 1993, CHEM PHYS LETT, V207, P178
   HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P371
   KLIEGERKONIG W, 1982, J COMPUT CHEM, V3, P317
   KOCK W, 1989, J AM CHEM SOC, V11, P3479
   MARX D, 1995, NATURE, V375, P216
   MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
   OKULIK N, 1999, J PHYS CHEM A, V103, P8491
   OKULIK N, 2000, J PHYS CHEM A, V104, P7586
   OLAH GA, 1968, J AM CHEM SOC, V90, P2726
   OLAH GA, 1969, J AM CHEM SOC, V91, P3261
   OLAH GA, 1972, J AM CHEM SOC, V94, P807
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
   OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
   PALLIS J, 1970, PURE MATH, V14, P223
   POPELIER PLA, 1999, ATOMS MOL INTRO
   RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
   SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
   SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
   SIEBER S, 1993, J AM CHEM SOC, V115, P259
NR 26
TC 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD FEB 28
PY 2002
VL 106
IS 8
BP 1584
EP 1595
PG 12
SC Chemistry, Physical
GA 527ME
UT ISI:000174189200014
ER

PT J
AU Legoas, SB
   Galvao, DS
   Rodrigues, V
   Ugarte, D
TI Origin of anomalously long interatomic distances in suspended gold
   chains
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID TRANSMISSION ELECTRON-MICROSCOPY; QUANTIZED CONDUCTANCE; POINT-CONTACT;
   MECHANISMS; MOLECULES; NANOWIRES; SIGNATURE; CLUSTERS; SURFACES; ATOMS
AB The discovery of long bonds in gold atom chains has represented a
   challenge for physical interpretation. In fact, interatomic distances
   frequently attain 3.0-3.6 Angstrom values, and distances as large as
   5.0 Angstrom may be occasionally observed. Here we studied gold chains
   by transmission electron microscopy and performed theoretical
   calculations using cluster ab initio density functional formalism. We
   show that the insertion of two carbon atoms is required to account for
   the longest bonds, while distances above 3 Angstrom may be due to a
   mixture of clean and one C atom contaminated bonds.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
   Lab Nacl Luz Sincrotron, BR-13084971 Campinas, SP, Brazil.
RP Legoas, SB, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
   BR-13083970 Campinas, SP, Brazil.
CR *WAV INC, TIT
   AGRAIT N, 1993, PHYS REV B, V47
   DASILVA EZ, 2001, PHYS REV LETT, V87
   DELLEY B, 1990, J CHEM PHYS, V92, P508
   DELLEY B, 2000, J CHEM PHYS, V113, P7756
   HABERLEN OD, 1994, INT J QUANTUM CHEM Q, V28, P595
   HABERLEN OD, 1997, J CHEM PHYS, V106, P5189
   HAKKINEN H, 1999, J PHYS CHEM B, V103, P8814
   KIZUKA T, 1997, PHYS REV B, V55, R7398
   KIZUKA T, 1998, PHYS REV LETT, V81, P4448
   KIZUKA T, 2001, JPN J APPL PHYS 2, V40, L71
   KOIZUMI H, 2001, ULTRAMICROSCOPY, V88, P17
   KONDO Y, 1999, B AM PHYS SOC, V44, P312
   KRANS JM, 1995, NATURE, V375, P767
   LANDMAN U, 1990, SCIENCE, V248, P454
   LANDMAN U, 1996, PHYS REV LETT, V77, P1362
   MULLER CJ, 1992, PHYSICA C, V191, P485
   OHNISHI H, 1998, NATURE, V395, P780
   OKAMOTO M, 1999, PHYS REV B, V60, P7808
   OLESEN L, 1994, PHYS REV LETT, V72, P2251
   PACCHIONI G, 1994, CHEM PHYS, V184, P125
   PASCUAL JI, 1993, PHYS REV LETT, V71, P1852
   PYYKKO P, 1991, ANGEW CHEM INT EDIT, V30, P604
   REIMER L, 1997, SPRINGER SERIES OPTI
   RODRIGUES V, CONDMAT0201156
   RODRIGUES V, IN PRESS PHYS REV B
   RODRIGUES V, IN PRESS
   RODRIGUES V, 2000, PHYS REV LETT, V85, P4124
   RODRIGUES V, 2001, EUR PHYS J D, V16, P395
   RODRIGUES V, 2001, PHYS REV B, V63
   RUBIOBOLLINGER G, 2001, PHYS REV LETT, V87
   SANCHEZPORTAL D, 1999, PHYS REV LETT, V83, P3884
   SORENSEN MR, 1998, PHYS REV B, V57, P3283
   TAKAI Y, 2001, PHYS REV LETT, V87
   VANRUITENBEEK JM, 2000, CLUSTER SERIES
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
   WANG Y, 1991, PHYS REV B, V43, P8911
   YANSON AI, 1998, NATURE, V395, P783
   YU BD, 1997, PHYS REV B, V56
NR 39
TC 30
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 18
PY 2002
VL 88
IS 7
AR 076105
DI ARTN 076105
PG 4
SC Physics, Multidisciplinary
GA 524PB
UT ISI:000174021100051
ER

PT J
AU Biswas, PK
TI Effect of H- ion formation on positronium-hydrogen elastic scattering
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
ID CLOSE-COUPLING APPROXIMATION; STATIC-EXCHANGE MODEL; ATOM SCATTERING;
   ELECTRON-EXCHANGE; CHANNEL FRAMEWORK; HELIUM; MOLECULES; ANNIHILATION;
   COLLISIONS; HYDRIDE
AB Positronium-hydrogen scattering has been reinvestigated considering the
   charge-transfer rearrangement channel Ps + H--> e(+) + H- in the
   coupled-channel formalism. The virtual effects of this rearrangement
   channel on scattering length, PsH binding energy, and low-energy (0-10
   eV) elastic cross sections are evaluated and H- formation cross
   sections are reported for energies up to 100 eV. Results indicate that
   the inclusion of such a rearrangement channel could be of significant
   importance in obtaining a converged description of PsH scattering in
   any ab initio coupled-channel model.
C1 Inst Tecnol Aeronaut, CTA, Dept Fis, BR-12228900 Sao Jose Dos Campos, SP, Brazil.
RP Biswas, PK, Inst Tecnol Aeronaut, CTA, Dept Fis, BR-12228900 Sao Jose
   Dos Campos, SP, Brazil.
CR ADHIKARI SK, 1999, PHYS REV A, V59, P2058
   ADHIKARI SK, 1999, PHYS REV A, V59, P4829
   ADHIKARI SK, 2000, J PHYS B-AT MOL OPT, V33, L761
   ADHIKARI SK, 2001, J PHYS B-AT MOL OPT, V34, L187
   BARKER MI, 1968, J PHYS B ATOM MOL PH, V1, P1109
   BARKER MI, 1969, J PHYS B ATOM MOL PH, V2, P730
   BASU A, 2001, PHYS REV A, V63
   BISWAS PK, IN PRESS NUCL INST B
   BISWAS PK, 1998, J PHYS B-AT MOL OPT, V31, P3147
   BISWAS PK, 1998, J PHYS B-AT MOL OPT, V31, P5404
   BISWAS PK, 1998, J PHYS B-AT MOL OPT, V31, L315
   BISWAS PK, 1998, J PHYS B-AT MOL OPT, V31, L737
   BISWAS PK, 1999, PHYS REV A, V59, P363
   BISWAS PK, 2000, CHEM PHYS LETT, V129, P317
   BISWAS PK, 2000, J PHYS B-AT MOL OPT, V33, P1575
   BISWAS PK, 2000, NUCL INSTRUM METH B, V171, P135
   BISWAS PK, 2000, PHYS REV A, V61
   BISWAS PK, 2000, RADIAT PHYS CHEM, V58, P443
   BLACKWOOD JE, 1999, PHYS REV A, V60, P4454
   CAMPBELL CP, 1998, PHYS REV LETT, V80, P5097
   CANTER KF, 1975, PHYS REV A, V12, P375
   CHANDRASEKHAR S, 1944, ASTROPHYS J, V100, P176
   DRACHMAN RJ, 1970, J PHYS B ATOM MOL PH, V3, P1657
   DRACHMAN RJ, 1975, PHYS REV A, V12, P885
   DRACHMAN RJ, 1976, PHYS REV A, V14, P894
   DRACHMAN RJ, 1979, PHYS REV A, V19, P1900
   FRASER PA, 1961, P PHYS SOC LOND, V78, P329
   FROLOV AM, 1997, PHYS REV A, V55, P2662
   GARNER AJ, 1996, J PHYS B-AT MOL OPT, V29, P5961
   GARNER AJ, 1998, NUCL INSTRUM METH B, V143, P155
   GARNER AJ, 2000, J PHYS B ATOM MOL PH, V31, P329
   GHOSH AS, COMMUNICATION
   GHOSH AS, 1982, PHYS REP, V87, P313
   HARA S, 1975, J PHYS B ATOM MOL PH, V8, L472
   HILL RN, 1977, PHYS REV LETT, V38, P643
   HO YK, 1978, PHYS REV A, V17, P1675
   HO YK, 1986, PHYS REV A, V34, P609
   HO YK, 1992, HYPERFINE INTERACT, V73, P109
   KERNOGHAN AA, 1995, J PHYS B-AT MOL OPT, V28, P1079
   LARICCHIA G, 1996, HYPERFINE INTERACT, V100, P71
   MANDAL P, 1975, J PHYS B ATOM MOL PH, V8, P2377
   MASSEY HSW, 1954, P PHYS SOC A, V67, P695
   MCALINDEN MT, 1996, CAN J PHYS, V74, P434
   NAGASHIMA Y, 1998, J PHYS B-AT MOL OPT, V31, P329
   PAGE BAP, 1976, J PHYS B ATOM MOL PH, V9, P1111
   RAY H, 1996, J PHYS B-AT MOL OPT, V29, P5505
   RAY H, 1997, J PHYS B-AT MOL OPT, V30, P3745
   RAY H, 1999, PHYS LETT A, V252, P316
   RAY H, 2000, J PHYS B-AT MOL OPT, V33, P4285
   SARKA NK, 1999, J PHYS B-AT MOL OPT, V32, P1657
   SARKAR NK, 1997, J PHYS B-AT MOL OPT, V30, P4591
   SCHRADER DM, 1992, PHYS REV LETT, V69, P57
   SINHA PK, 1997, J PHYS B-AT MOL OPT, V30, P4643
   SINHA PK, 1998, PHYS REV A, V58, P242
   SINHA PK, 2000, J PHYS B-AT MOL OPT, V33, P2579
   SKALSEY M, 1998, PHYS REV LETT, V80, P3727
   ZAFAR N, 1996, PHYS REV LETT, V76, P1595
NR 57
TC 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS-B-AT MOL OPT PHYS
JI J. Phys. B-At. Mol. Opt. Phys.
PD DEC 14
PY 2001
VL 34
IS 23
BP 4831
EP 4844
PG 14
SC Physics, Atomic, Molecular & Chemical; Optics
GA 522HQ
UT ISI:000173890700026
ER

PT J
AU Seidl, PR
   Carneiro, JWD
   Tostes, JGR
   Dias, JF
   Pinto, PSS
   Costa, VEU
   Taft, CA
TI Conformational effects on NMR chemical shifts of half-cage alcohols
   calculated by GIAO-DFT
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE NMR; chemical shifts; hyperconjugation; DFF-GIAO; half-cage alcohols;
   conformational effects
ID SHIELDING TENSORS; BETA-SUBSTITUENT; ABINITIO IGLO; AB-INITIO; C-C;
   C-13; HYPERCONJUGATION; METHYL; PENTACYCLODODECANE; DEPENDENCIES
AB Half-cage compounds have played an important role in the investigation
   of the way steric compression affects physical and chemical properties
   of organic molecules. Recent theoretical studies of half-cage alcohols
   have also shown that rotation around the carbon-oxygen bond of the
   hydroxyl group leads to low-energy conformers in which hyperconjugation
   affects bond lengths, bond angles, and charge distribution on carbon
   and hydrogen atoms in its vicinity while charge distribution is also
   affected by electrostatic effects. Chemical shifts are also sensitive
   to such variations, but we found that in smaller model systems steric
   effects may strongly attenuate those due to hyperconjugation so we
   optimized geometries for low energy rotamers of 'outside' and 'inside'
   half-cage alcohols, where these effects can be separated, and
   calculated their respective hydrogen and carbon-13 chemical shifts by
   gauge-independent atomic orbital (GIAO) methods at the 133LYP/6-31G(d)
   level. Results are compared to those obtained for the corresponding
   norbornyl alcohols as well as for the half-cage hydrocarbon. Carbon-13
   chemical shifts respond more strongly to effects owing to
   hyperconjugation while hydrogen chemical shifts are more sensitive to
   electrostatic effects due to the proximity of the hydroxyl group. (C)
   2002 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Escola Quim, BR-21949900 Rio De Janeiro, RJ, Brazil.
   Univ Fed Fluminense, Dept Quim Geral & Inorgan, BR-24020150 Niteroi, RJ, Brazil.
   Univ Estadual Norte Fluminense, Ctr Ciencias & Tecnol, Lab Ciencias Quim, BR-28015620 Sao Jose Dos Campos, RJ, Brazil.
   Inst Militar Engn, Dept Engn Quim, BR-22290270 Rio De Janeiro, RJ, Brazil.
   Univ Fed Rio Grande Sul, Inst Quim, BR-91509900 Porto Alegre, RS, Brazil.
   Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil.
RP Seidl, PR, Univ Fed Rio de Janeiro, Escola Quim, Cidade Univ,
   BR-21949900 Rio De Janeiro, RJ, Brazil.
CR ABRAHAM RJ, 1997, J CHEM SOC P2, P1751
   ABRAHAM RJ, 1999, PROG NUCL MAG RES SP, V35, P85
   ADCOCK W, 1999, MAGN RESON CHEM, V37, P167
   ANET FAL, 1965, J AM CHEM SOC, V87, P5249
   ANET FAL, 1965, J AM CHEM SOC, V87, P5250
   ANET FAL, 1979, J AM CHEM SOC, V101, P5449
   AXT M, 1996, MAGN RESON CHEM, V34, P929
   BARFIELD M, 1990, J AM CHEM SOC, V112, P4747
   BARFIELD M, 1993, J AM CHEM SOC, V115, P6916
   BARFIELD M, 1993, NUCLEAR MAGNETIC SHI, P523
   BARFIELD M, 1997, J AM CHEM SOC, V119, P8699
   BARFIELD M, 1998, MAGN RESON CHEM, V36, P93
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BIRD CW, 1961, J AM CHEM SOC, V84, P4809
   BRUCK P, 1960, CHEM IND-LONDON, P405
   CARNEIRO JWD, 1985, ANAIS ASS BRAS QUIM, V36, P32
   CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
   COSTA VEU, 1998, TETRAHEDRON-ASYMMETR, V9, P2579
   COSTA VEU, 2000, J MOL STRUCT, V519, P37
   DEDIOS AC, 1993, J AM CHEM SOC, V115, P9768
   DEDIOS AC, 1993, SCIENCE, V260, P1491
   DEDIOS AC, 1994, J AM CHEM SOC, V116, P11485
   DEDIOS AC, 1994, J AM CHEM SOC, V116, P453
   DEDIOS AC, 1994, J AM CHEM SOC, V116, P7784
   DELLA EW, 2000, MAGN RESON CHEM, V38, P395
   DITCHFIELD R, 1974, MOL PHYS, V27, P789
   ERMER O, 1985, J AM CHEM SOC, V107, P2330
   FORSYTH DA, 1986, J AM CHEM SOC, V108, P2157
   FRISCH MJ, 1995, GAUSSIAN 94W
   HOUK KN, 1993, J AM CHEM SOC, V115, P4170
   HOWE RK, 1972, J ORG CHEM, V94, P2171
   HRICOVINI M, 1997, J PHYS CHEM A, V101, P9756
   JIAO D, 1993, MAGN RESON CHEM, V31, P75
   KIVELSON D, 1961, J AM CHEM SOC, V83, P2938
   KUPKA T, 2000, MAGN RESON CHEM, V38, P149
   LAMBERT JB, 1992, J AM CHEM SOC, V114, P10246
   LEE C, 1988, PHYS REV B, V37, P785
   MARCHAND AP, 1982, STEREOCHEMICAL APPL
   PAULING L, 1960, NATURE CHEM BOND, P309
   PERALTA JE, 1999, MAGN RESON CHEM, V37, P31
   RAUK A, 1996, J AM CHEM SOC, V118, P3761
   SEIDL PR, 1990, J MOL STRUCT THEOCHE, V204, P183
   SEIDL PR, 1998, ATUALIDADES FISICO Q, P127
   SEIDL PR, 1998, MAGN RESON CHEM, V36, P261
   SEIDL PR, 1999, J MOL STRUC-THEOCHEM, V488, P151
   SEIDL PR, 2001, J MOL STRUC-THEOCHEM, V539, P163
   SMITH WB, 1999, MAGN RESON CHEM, V37, P110
   SOLOWAY SB, 1960, J AM CHEM SOC, V82, P5195
   TOLBERT LM, 1990, J AM CHEM SOC, V112, P9519
   TOSTES JGR, IN PRESS
   TOSTES JR, 1996, THEOCHEM-J MOL STRUC, V388, P85
   WEBB GA, 1996, ENCY MAGN RESON, V7, P4307
   WINSTEIN S, 1965, J AM CHEM SOC, V87, P5247
   WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 55
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAR 1
PY 2002
VL 579
BP 101
EP 107
PG 7
SC Chemistry, Physical
GA 523GT
UT ISI:000173946200012
ER

PT J
AU Klautau, AB
   Frota-Pessoa, S
TI Magnetism of Co clusters embedded in Cu(001) surfaces: an ab initio
   study
SO SURFACE SCIENCE
LA English
DT Article
DE cobalt; copper; surface defects; clusters; magnetic surfaces;
   metal-metal magnetic heterostructures
ID FE IMPURITIES; REAL-SPACE; ELECTRONIC-STRUCTURE; TRANSITION; CU(100);
   GROWTH; NANOSTRUCTURES; EXCHANGE; MOMENTS; METALS
AB We report calculations of electronic structure and magnetic properties
   of Co clusters (up to 50 atoms) embedded in Cu(0 0 1) surfaces,
   performed using the first-principles linear muffin tin orbital-atomic
   sphere approximation method, implemented directly in real space. Co
   agglomerates of different sizes and shapes are considered in order to
   investigate the influence of the local environment around the Co sites
   to the magnetism in this class of systems. We find that the magnitude
   of the Co moments is mainly governed by two factors: the position of
   the site relative to the Cu(0 0 1) surface layer and the number of Cu
   neighbors. The results show moment enhancement for sites located above
   the surface and/ or placed substitutionally in the surface layer, due
   to their reduced coordination numbers. For sites with the same
   coordination number, the moment tends to decrease as the number of Cu
   neighbors increases. As a consequence, in Co agglomerates, the magnetic
   moment decreases considerably as one goes from more central sites to
   those close to the grain boundary at the Co-Cu interface. (C) 2001
   Published by Elsevier Science B.V.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
RP Klautau, AB, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
   Sao Paulo, SP, Brazil.
CR ALDEN M, 1992, PHYS REV B, V46, P6303
   ANDERSEN OK, 1975, PHYS REV B, V12, P3060
   ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571
   ANDERSEN OK, 1985, HIGHLIGHTS CONDENSED, P2571
   BEER N, 1984, ELECT STRUCTURE COMP
   BINASCH G, 1989, PHYS REV B, V39, P4828
   BRUNO P, 1991, PHYS REV LETT, V67, P1602
   BRUNO P, 1995, PHYS REV B, V52, P411
   CLEMENS W, 1992, SOLID STATE COMMUN, V81, P739
   DEBOER FR, 1985, COHESION METALS, V1
   DRITTLER B, 1991, SOLID STATE COMMUN, V79, P31
   FASSBENDER J, 1997, SURF SCI, V383, L742
   FERNANDO GW, 1988, PHYS REV B, V38, P3016
   FORTAPESSOA S, 2001, HYPERFINE INTERACT, V133, P207
   FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
   FROTAPESSOA S, 1993, PHYS REV LETT, V71, P4206
   HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215
   HERGERT W, 1999, J MAGN MAGN MATER, V198, P233
   HJORTSTAM O, 1996, PHYS REV B, V53, P9204
   IZQUIERDO J, 2001, PHYS REV B, V63
   KIEF MT, 1993, PHYS REV B, V47, P10785
   KIM SK, 2000, SURF SCI, V453, P47
   KLAUTAU AB, 1998, J MAGN MAGN MATER, V186, P223
   KLAUTAU AB, 1999, PHYS REV B, V60, P3421
   KOHL U, 1998, SURF SCI, V407, P104
   KORZHAVYI PA, 1999, PHYS REV B, V59, P11693
   LANG P, 1994, SOLID STATE COMMUN, V92, P755
   LI C, 1990, J MAGN MAGN MATER, V83, P51
   NOGUEIRA RN, 2001, PHYS REV B, V63, P2405
   NOUVERTNE F, 1999, PHYS REV B, V60, P14382
   PAPANIKOLAOU N, 1992, PHYS REV B, V46, P10858
   PEDERSEN MO, 1997, SURF SCI, V387, P86
   PEDUTO PR, 1991, PHYS REV B, V44, P13283
   PEDUTO PR, 1997, BRAZ J PHYS, V27, P574
   PENTCHEVA R, 2000, PHYS REV B, V61, P2211
   PETRILLI HM, 1993, PHYS REV B, V48, P7148
   SKRIVER HL, 1991, PHYS REV B, V43, P9538
   STEPANYUK VS, 1997, J MAGN MAGN MATER, V165, P271
   STEPANYUK VS, 1997, SURF SCI, V377, P495
   STEPANYUK VS, 1999, PHYS REV B, V59, P1681
   SZUNYOGH L, 1998, PHYS REV B, V57, P8838
   VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
   WILDBERGER K, 1995, PHYS REV LETT, V75, P509
   WU RQ, 1992, J MAGN MAGN MATER, V116, P202
   ZIMMERMANN CG, 1999, PHYS REV LETT, V83, P1163
NR 45
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD JAN 20
PY 2002
VL 497
IS 1-3
BP 385
EP 397
PG 13
SC Chemistry, Physical
GA 519QP
UT ISI:000173737200039
ER

PT J
AU Barbosa, KO
   Machado, WVM
   Assali, LVC
TI First-principles studies of Ti impurities in SiC
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE transition metals; silicon carbide; ab initio methods
AB In this work we perform a theoretical investigation on the atomic
   structure, atomic geometry, and formation energy of isolated
   substitutional and interstitial Ti impurities in cubic silicon carbide
   (3C-SiC). using the spill-polarized full-potential linearized augmented
   plane wave method. For each configuration, the atoms around the
   impurity site are allowed to relax without any constraints, following
   the damped Newton dynamics scheme. The overall structural stability is
   analyzed in the light of the electronic structure and the bonding
   features. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, BR-05315970 Sao Paulo, Brazil.
RP Assali, LVC, Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, CP 66318,
   BR-05315970 Sao Paulo, Brazil.
CR BAUMHAUER H, 1912, Z KRISTALLOGR, V50, P33
   BEELER F, 1990, PHYS REV B, V41, P1603
   BLAHA P, 1999, WIEN97 FULL POTENTIA
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   JEPPS NW, 1983, J CRYST GROWTH CHARA, V7, P259
   KOHN W, 1965, PHYS REV, V140, A1133
   LEBEDEV AA, 1999, SEMICONDUCTORS+, V33, P107
   MADELUNG O, 1982, NUMERICAL DATA FUNCT, V17
   MULLER STG, 1995, SILICON CARBIDE RELA
   PASLOVSKY L, 1993, J LUMIN, V55, P167
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   SINGH DJ, 1994, PLANEWAVES PSEUDOPOT
   SON NT, 1994, APPL PHYS LETT, V65, P2687
   VERMA AP, 1966, POLYMORPHISM POLYTYP
NR 14
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD DEC
PY 2001
VL 308
BP 726
EP 729
PG 4
SC Physics, Condensed Matter
GA 518GV
UT ISI:000173660100182
ER

PT J
AU Ahuja, R
   da Silva, AF
   Persson, C
   Osorio-Guillen, JM
   Pepe, I
   Jarrendahl, K
   Lindquist, OPA
   Edwards, NV
   Wahab, Q
   Johansson, B
TI Optical properties of 4H-SiC
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID SIC POLYTYPES; N-TYPE; POWER APPLICATIONS; BRILLOUIN-ZONE; SPECIAL
   POINTS; BAND; SYSTEMS; DEVICES
AB The optical band gap energy and the dielectric functions of n-type
   4H-SiC have been investigated experimentally by transmission
   spectroscopy and spectroscopic ellipsometry and theoretically by an ab
   initio full-potential linear muffin-tin-orbital method. We present the
   real and imaginary parts of the dielectric functions, resolved into the
   transverse and longitudinal photon moment a, and we show that the
   anisotropy is small in 4H-SiC. The measurements and the calculations
   fall closely together in a wide range of energies. (C) 2002 American
   Institute of Physics.
C1 Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, SE-75121 Uppsala, Sweden.
   Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil.
   Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden.
   Motorola Inc, Semicond Prod Sector, Mesa, AZ 85202 USA.
   Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden.
RP Ahuja, R, Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, POB
   530, SE-75121 Uppsala, Sweden.
CR ADOLPH B, 1997, PHYS REV B, V55, P1422
   AHUJA R, 1997, PHYS REV B, V55, P4999
   ANDERSEN OK, 1975, PHYS REV B, V12, P3060
   ARAUJO CM, 2000, PHYS REV B, V62, P12882
   CHADI DJ, 1973, PHYS REV B, V8, P5747
   COYKE WJ, 1969, MAT RES B, V4, P141
   EDMONDS AR, 1974, ANGULAR MOMENTUM QUA
   EDWARDS NV, IN PRESS SURF SCI LE
   FROYEN S, 1989, PHYS REV B, V39, P3168
   GASHE T, 1993, THESIS UPPSALA U
   HARRIS GL, 1995, PROPERTIES SILICON C
   HEDIN L, 1971, J PHYS C SOLID STATE, V4, P2064
   JANSSON R, 2000, PHYS STATUS SOLIDI B, V218, R1
   JANZEN E, 1997, MAT SCI ENG B-SOLID, V46, P203
   LIMPIJUMNONG S, 1999, PHYS REV B, V59, P12890
   LINDQUIST OPA, 2000, MATER SCI FORUM, V338, P575
   LINDQUIST OPA, 2001, APPL PHYS LETT, V78, P2751
   MORKOC H, 1994, J APPL PHYS, V76, P1363
   OPPENEER PM, 1992, PHYS REV B, V45, P10924
   PALMOUR JW, 1993, PHYSICA B, V185, P461
   PERSSON C, 1998, J APPL PHYS, V83, P266
   PERSSON C, 1998, P 7 INT C SIL CARB 3, V264
   PERSSON C, 1999, J APPL PHYS, V86, P4419
   PERSSON C, 1999, PHYS REV B, V60, P16479
   PRICE DL, 1989, PHYS REV B, V39, P4945
   SKRIVER HL, 1984, LMTO METHOD
   TREW RJ, 1991, P IEEE, V79, P598
   WAHAB Q, 2000, APPL PHYS LETT, V76, P2725
   WILLS JM, UNPUB
   WILLS JM, 1987, PHYS REV B, V36, P3809
   ZANGOOIE S, 2000, J APPL PHYS, V87, P8497
   ZHUKOVA II, 1968, FIZ TVERD TELA, V10, P1097
   ZOLLNER S, 1999, J APPL PHYS, V85, P8353
NR 33
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2002
VL 91
IS 4
BP 2099
EP 2103
PG 5
SC Physics, Applied
GA 516LB
UT ISI:000173553800052
ER

PT J
AU Tabata, A
   Teles, LK
   Scolfaro, LMR
   Leite, JR
   Kharchenko, A
   Frey, T
   As, DJ
   Schikora, D
   Lischka, K
   Furthmuller, J
   Bechstedt, F
TI Phase separation suppression in InGaN epitaxial layers due to biaxial
   strain
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID RESONANT RAMAN-SCATTERING; INXGA1-XN
AB Phase separation suppression due to external biaxial strain is observed
   in InxGa1-xN alloy layers by Raman scattering spectroscopy. The effect
   is taking place in thin epitaxial layers pseudomorphically grown by
   molecular-beam epitaxy on unstrained GaN(001) buffers. Ab initio
   calculations carried out for the alloy free energy predict and Raman
   measurements confirm that biaxial strain suppress the formation of
   phase-separated In-rich quantum dots in the InxGa1-xN layers. Since
   quantum dots are effective radiative recombination centers in InGaN, we
   conclude that strain quenches an important channel of light emission in
   optoelectronic devices based on pseudobinary group-III nitride
   semiconductors. (C) 2002 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Gesamthsch Paderborn, D-33095 Paderborn, Germany.
   Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743 Jena, Germany.
   Univ Estadual Paulista, BR-17033360 Bauva, SP, Brazil.
RP Leite, JR, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
   Sao Paulo, Brazil.
CR CHICHIBU S, 1996, APPL PHYS LETT, V69, P4188
   CHICHIBU S, 1997, APPL PHYS LETT, V70, P2822
   KARPOV SY, 1998, MRS INTERNET J N S R, V3
   LEMOS V, 2000, PHYS REV LETT, V84, P3666
   ODONNELL KP, 1999, PHYS REV LETT, V82, P237
   SILVEIRA E, 1999, APPL PHYS LETT, V75, P3602
   SINGH R, 1997, APPL PHYS LETT, V70, P1089
   TABATA A, 1996, J APPL PHYS 1, V79, P4137
   TELES LK, 2000, PHYS REV B, V62, P2475
   WANG T, 2001, APPL PHYS LETT, V78, P2617
   ZUNGER A, 1994, HDB CRYSTAL GROWTH, V3, P998
NR 11
TC 24
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 4
PY 2002
VL 80
IS 5
BP 769
EP 771
PG 3
SC Physics, Applied
GA 517NW
UT ISI:000173617700022
ER

PT J
AU Correa, RJ
   Mota, CJA
TI Theoretical study of protonation of butene isomers on acidic zeolite:
   the relative stability among primary, secondary and tertiary alkoxy
   intermediates
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID HARTREE-FOCK CALCULATIONS; SOLID ACIDS; SKELETAL ISOMERIZATION;
   AB-INITIO; ELECTROSTATIC POTENTIALS; HYDROCARBON CONVERSION; SN2-SN1
   SPECTRUM; DEUTERATED ZSM-5; MOLECULAR-MODELS; LINEAR BUTENES
AB A density functional theory (DFT) study of the protonation of
   but-1-ene, (E)-but-2-ene and isobutene over a cluster representing the
   zeolite acid site (HT3) was carried out. At the B3LYP=6-31+G** level of
   calculation all the reactions were exothermic, with respect to the
   isolated reactants, in forming an alkoxy species. Formation of a
   pi-complex involving the double bond and the acidic proton was the
   first step and shows a small dependence with the olefin structure. The
   proton transfer involves a transition state with carbenium ion like
   character, which is reflected in the calculated DeltaH(double dagger),
   being higher for the but-1-ene (to afford the 1-butoxy intermediate)
   and lower for the isobutene (to afford the tert-butoxy intermediate).
   However, the stability of the alkoxy formed shows a different trend.
   The tert-butoxy was computed to be only 1.5 kcal mol(-1) lower in
   energy than the pi-complex between isobutene and HT3 at the
   B3LYP/6-31+G** level of calculation, but the reaction becomes
   endothermic by 2.5 kcal mol(-1) when computed at B3LYP/6-311++G**. The
   calculated order of stability among the alkoxy species was 2-butoxy >
   1-butoxy > tert-butoxy. These results show that electronic effects
   dominate DeltaH(double dagger), which is associated with the kinetics
   of the protonation process, while steric effects play a major role in
   the stability of the alkoxy, which in turn is related to the
   thermodynamics of protonation.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, BR-21949900 Rio De Janeiro, Brazil.
RP Mota, CJA, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Cidade
   Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR ARONSON MT, 1989, J AM CHEM SOC, V111, P840
   BENTLEY TW, 1976, J AM CHEM SOC, V98, P7658
   BENTLEY TW, 1981, J AM CHEM SOC, V103, P5466
   BORONAT M, 1998, J PHYS CHEM A, V102, P982
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   BUTLER AC, 1993, CATAL TODAY, V18, P443
   CHANG CD, 1983, HYDROCARBONS METHANO
   CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
   CORMA A, 1993, CATAL REV, V35, P483
   CORMA A, 1995, CHEM REV, V95, P559
   ESTEVES PM, 1997, MOL ENG, V7, P429
   ESTEVES PM, 1999, THESIS FEDERAL U RIO
   FRASH MV, 1997, J PHYS CHEM B, V101, P5346
   FRASH MV, 1998, J PHYS CHEM B, V102, P2232
   FRASH MV, 1999, TOP CATAL, V9, P191
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   HAW JF, 1989, J AM CHEM SOC, V111, P2052
   HAW JF, 1996, ACCOUNTS CHEM RES, V29, P259
   ISHIKAWA H, 1999, J PHYS CHEM B, V103, P5681
   KAZANSKY VB, 1991, ACCOUNTS CHEM RES, V24, P379
   KAZANSKY VB, 1996, APPL CATAL A-GEN, V146, P225
   KONDO JN, 1998, CATAL LETT, V53, P215
   KONDO JN, 1998, J PHYS CHEM B, V102, P2259
   KONDO JN, 1999, J PHYS CHEM B, V103, P8538
   LAZO ND, 1991, J PHYS CHEM-US, V95, P9420
   MOTA CJA, 1996, APPL CATAL A-GEN, V146, P181
   NIVARTHY GS, 2000, MICROPOR MESOPOR MAT, V35, P75
   OLAH GA, 1998, ONIUM IONS, CH3
   PINE LA, 1984, J CATAL, V85, P466
   RAO P, 1996, OIL GAS J, V94, P56
   RIGBY AM, 1997, J CATAL, V170, P1
   RIGBY AM, 1997, J MOL CATAL A-CHEM, V126, P61
   SAUER J, 1989, CHEM REV, V89, P199
   SAUER J, 1994, ADV MOL EL, V2, P111
   SCHERZER J, 1989, CATAL REV SCI ENG, V31, P215
   SEDRAN UA, 1994, CATAL REV, V36, P405
   SINCLAIR PE, 1998, J CHEM SOC FARADAY T, V94, P3401
   SOMMER J, 1994, J AM CHEM SOC, V116, P5491
   SOMMER J, 1995, J AM CHEM SOC, V117, P1135
   STEPANOV AG, 1992, CATAL LETT, V13, P407
   VENUTO PB, 1979, FLUID CATALYTIC CRAC
   VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13713
NR 42
TC 13
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2002
VL 4
IS 2
BP 375
EP 380
PG 6
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 514MX
UT ISI:000173444900030
ER

PT J
AU Pliego, JR
   Riveros, JM
TI Theoretical study of the gas-phase reaction of fluoride and chloride
   ions with methyl formate
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID NUCLEOPHILIC DISPLACEMENT-REACTIONS; CYCLOTRON RESONANCE SPECTROSCOPY;
   INFRARED MULTIPLE-PHOTON; RELATIVE STABILITY; FLOWING AFTERGLOW;
   HYDROGEN-BONDS; NEGATIVE-IONS; ANIONS; COMPLEXES; PHOTODETACHMENT
AB The potential energy surface of the gas-phase reaction between halide
   ions (F- and Cl-) and methyl formate has been investigated by ab initio
   calculations. For F-, two pathways have been observed at thermal
   energies and identified in the calculations: (1) a-elimination of CO to
   yield a fluoride-methanol adduct, the so-called Riveros reaction that
   has found wide application in gas-phase ion chemistry, and (2) S(N)2
   displacement of HCOO-. The first reaction is shown to proceed by the
   initial formation of a loose complex followed by formal abstraction of
   a formyl hydrogen to yield a three-body complex that dissociates into
   the final products. The S(N)2 reaction initially involves formation of
   a loose complex with the fluoride attached to the methyl group of the
   ester. The first pathway is calculated to go through a lower energy
   local transition state than the corresponding S(N)2 reaction but the
   transition states are located below the energy of the reagents. Both
   ion-neutral complexes can interconvert via formation of a stable
   tetrahedral intermediate. The product distribution was estimated via a
   simple RRKM calculation that predicts 92% of alpha-elimination and 8%
   Of S(N)2 reaction. This prediction is in excellent agreement with
   measurements carried out by FT-ICR. This product distribution is
   predicted to remain essentially unchanged for the reaction with DCOOCH3
   in agreement with experimental observations. A similar analysis of the
   corresponding Cl- + HCOOCH3 reaction reveals that a-elimination has a
   substantial activation energy (well above the reagents) accounting for
   the failure to observe this reaction even though it is exothermic.
   These calculations also reveal that for the Cl- system, the tetrahedral
   intermediate is not a stable intermediate in agreement with previous
   experimental data on related systems.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
   Sao Paulo, Brazil.
CR ASUBIOJO OI, 1979, J AM CHEM SOC, V101, P3715
   BAER S, 1989, J AM CHEM SOC, V111, P4097
   BAER S, 1992, J AM CHEM SOC, V114, P5733
   BERNASCONI CF, 1990, J AM CHEM SOC, V112, P9044
   BLAIR LK, 1973, J AM CHEM SOC, V95, P1057
   BLAKE JF, 1987, J AM CHEM SOC, V109, P3856
   BOGDANOV B, 1999, INT J MASS SPECTROM, V185, P707
   BOTSCHWINA P, 1997, BER BUNSEN PHYS CHEM, V101, P387
   CALDWELL G, 1984, J AM CHEM SOC, V106, P4660
   CHABINYC ML, 1998, J AM CHEM SOC, V120, P10863
   CHABINYC ML, 1998, SCIENCE, V279, P1882
   CHABINYC ML, 2000, J AM CHEM SOC, V122, P8739
   DEPUY CH, 1985, J AM CHEM SOC, V107, P1093
   DEPUY CH, 2000, INT J MASS SPECTROM, V200, P79
   DODD JA, 1991, J AM CHEM SOC, V113, P5942
   FERNANDO J, 1976, J AM CHEM SOC, V98, P2049
   FRINK BT, 1999, J CHEM SOC PERK  NOV, P2397
   FRISCH MJ, 1994, GAUSSIAN 94 VERSION
   GRONERT S, 2001, CHEM REV, V101, P329
   HASE WL, 1994, SCIENCE, V266, P998
   ISOLANI PC, 1975, CHEM PHYS LETT, V33, P361
   JOHLMAN CL, 1985, J AM CHEM SOC, V107, P327
   JOSE SM, 1977, NOUV J CHIM, V1, P113
   LARSON JW, 1983, J AM CHEM SOC, V105, P2944
   LIM KF, 1991, J CHEM PHYS, V94, P7164
   MALLARD WG, 2000, 69 NIST
   MCIVER RT, 1989, ANAL CHEM, V61, P491
   MIHALICK JE, 1996, J AM CHEM SOC, V118, P12424
   MOINI M, 1989, INT J MASS SPECTROM, V87, P29
   MORAES PRP, 2000, J AM CHEM SOC, V122, P10133
   NIXDORF A, 2000, INT J MASS SPECTROM, V195, P533
   PEIRIS DM, 1996, INT J MASS SPECTROM, V159, P169
   PLIEGO JR, 2001, CHEM-EUR J, V7, P169
   REMPEL DL, 1986, INT J MASS SPECTROM, V70, P163
   RIVEROS JM, 1973, J AM CHEM SOC, V95, P4066
   RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
   SILVA MLP, 1995, INT J MASS SPECTROM, V30, P733
   TAKASHIMA K, 1978, J AM CHEM SOC, V100, P6128
   TAKASHIMA K, 1998, MASS SPECTROM REV, V17, P409
   UECHI GT, 1992, J AM SOC MASS SPECTR, V3, P734
   VANDERWEL H, 1986, INT J MASS SPECTROM, V72, P145
   VANDERWEL H, 1988, RECL TRAV CHIM PAY B, V107, P479
   WILBUR JL, 1994, J AM CHEM SOC, V116, P5839
   WILBUR JL, 1994, JAM CHEM SOC, V116, P12125
   WLADKOWSKI BD, 1994, J CHEM PHYS, V100, P2058
   YANG YJ, 1997, J PHYS CHEM A, V101, P2371
   ZHAN CG, 2000, J AM CHEM SOC, V122, P1522
   ZHU L, 1993, GEN RRKM PROGRAM
NR 48
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JAN 17
PY 2002
VL 106
IS 2
BP 371
EP 378
PG 8
SC Chemistry, Physical
GA 513AN
UT ISI:000173355900021
ER

PT J
AU Chaudhuri, P
   Canuto, S
TI An ab initio study of the peptide bond formation between alanine and
   glycine: electron correlation effects on the structure and binding
   energy
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE peptide bond; ab initio; electron correlation effects;
   density-functional theory; structure and properties
ID DENSITY-FUNCTIONAL APPROXIMATION; AQUEOUS-SOLUTION; CONFORMERS;
   DIPEPTIDES; GEOMETRIES; ABINITIO; H2O-HCN; MODELS; MP2; GAS
AB Ab initio methods are used to analyze the structure, energetics and
   binding energy of the four possible dipeptides that can be formed from
   alanine and glycine in gas phase. The structures of the peptides are
   optimized using Hartree-Fock, second-order Moller-Plesset perturbation
   theory and density functional methods (DFT). The effect of electron
   correlation is analyzed with special emphasis on the calculated binding
   energies. Single-point energy calculations are performed with CCSD(T)
   on MP2 geometries to get some additional information on the correlation
   effects. Electron correlation effects and zero-point vibrational energy
   corrections increase the binding energy. At the highest level, CCSD(T),
   we find that the binding energies for alanylalanine, alanylglycine,
   glycylalanine and glycylglycine are 4.86, 5.09, 5.61 and 5.89 kcal/mol,
   respectively. These numerical results suggest that glycine donates the
   OH group easier than alanine. A comparison between the Moller-Plesset
   and DFT in different basis sets is made and gives indication of the
   usefulness of these methods for bio-molecules and peptide formation.
   Two functionals, B3LYP and B3P86 with different basis sets differing by
   the systematic inclusion of diffuse and polarization functions, are
   used in the DFT method. The results obtained using both functionals
   with a basis that includes both diffuse and polarization functions are
   in reasonable agreement with the Moller-Plesset results. However,
   without including zero-point corrections, some DFT results lead to
   non-bonding of the peptide molecule. (C) 2002 Elsevier Science B.V. All
   rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1997
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BENEDETTI E, 1977, PEPTIDES
   BOHM HJ, 1991, J AM CHEM SOC, V113, P7129
   CHANDRA AK, 1998, CHEM PHYS, V232, P299
   COREY RB, 1953, P ROY SOC LONDON   B, V141, P10
   CORNELL WD, 1997, THEOCHEM-J MOL STRUC, V392, P101
   CSASZAR AG, 1992, J AM CHEM SOC, V114, P9568
   CSASZAR AG, 1996, J PHYS CHEM-US, V100, P3541
   CSASZAR AG, 1999, PROG BIOPHYS MOL BIO, V71, P243
   DEPROFT F, 1996, CHEM PHYS LETT, V250, P393
   FRISCH MJ, 1998, GAUSSIAN 98 REV A 7
   GODFREY PD, 1993, J AM CHEM SOC, V115, P9687
   GODFREY PD, 1995, J AM CHEM SOC, V117, P2019
   GOULD IR, 1994, J AM CHEM SOC, V116, P9250
   GRONERT S, 1995, J AM CHEM SOC, V117, P2071
   GUTOWSKY HS, 1992, J CHEM PHYS, V96, P5808
   HEADGORDON T, 1991, J AM CHEM SOC, V113, P5989
   JAKLI I, 2000, J COMPUT CHEM, V21, P626
   JANSEN JH, 1991, J AM CHEM SOC, V113, P7917
   LEE C, 1988, PHYS REV B, V37, P785
   MARSH RE, 1967, ADV PROTEIN CHEM, V22, P249
   NOVOA JJ, 1995, J PHYS CHEM-US, V99, P15837
   PERCZEL A, 1991, J AM CHEM SOC, V113, P6256
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PETTITT BM, 1985, CHEM PHYS LETT, V121, P194
   POPLE JA, 1987, J CHEM PHYS, V87, P5968
   RAMACHANDRAN GN, 1968, ADVANCES PROTEIN CHE, V23, P284
   RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
   ROTERMAN IK, 1989, J BIOMOL STRUCT DYN, V7, P421
   SCARSDALE JN, 1983, J AM CHEM SOC, V105, P3438
   SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
   SHIOTANI M, 2000, J AM CHEM SOC, V122, P207
   VISHVESHWARA S, 1977, J AM CHEM SOC, V99, P422
   WONG MW, 1996, CHEM PHYS LETT, V256, P391
NR 35
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JAN 31
PY 2002
VL 577
IS 2-3
BP 267
EP 279
PG 13
SC Chemistry, Physical
GA 514FQ
UT ISI:000173428400018
ER

PT J
AU Avery, MA
   Alvim-Gaston, M
   Rodrigues, CR
   Barreiro, EJ
   Cohen, FE
   Sabnis, YA
   Woolfrey, JR
TI Structure-activity relationships of the antimalarial agent artemisinin.
   6. The development of predictive in vitro potency models using CoMFA
   and HQSAR methodologies
SO JOURNAL OF MEDICINAL CHEMISTRY
LA English
DT Article
ID MOLECULAR-FIELD ANALYSIS; SOLUBLE DIHYDROARTEMISININ DERIVATIVES;
   QINGHAOSU ARTEMISININ; TRICYCLIC ANALOGS; IN-VITRO; PEROXIDIC
   ANTIMALARIALS; HEPATIC-METABOLISM; AB-INITIO; DRUG; MECHANISM
AB Artemisinin (1) is a unique sesquiterpene peroxide occurring as a
   constituent of Artemisia annua L. Because of the effectiveness of
   Artemisinin in the treatment of drug-resistant Plasmodium falciparum
   and its rapid clearance of cerebral malaria, development of clinically
   useful semisynthetic drugs for severe and complicated malaria
   (artemether, artesunate) was prompt. However, recent reports of fatal
   neurotoxicity in animals with dihydroartemisinin derivatives such as
   artemether have spawned a renewed effort to develop nontoxic analogues
   of artemisinin. In our effort to develop more potent, less neurotoxic
   agents for the oral treatment of drug-resistant malaria, we utilized
   comparative molecular field analysis (CoMFA) and hologram QSAR (HQSAR),
   beginning with a series of 211 artemisinin analogues with known in
   vitro antimalarial activity. CoMFA models were based on two
   conformational hypotheses: (a) that the X-ray structure of artemisinin
   represents the bioactive shape of the molecule or (b) that the
   hemin-docked conformation is the bioactive form of the drug. In
   addition, we examined the effect of inclusion or exclusion of racemates
   in the partial least squares (pls) analysis. Databases derived from the
   original 211 were split into chiral (n = 157), achiral (n = 34), and
   mixed databases (n = 191) after leaving out a test set of 20 compounds.
   HQSAR and CoMFA models were compared in terms of their potential to
   generate robust QSAR models. The r(2) and q(2) (cross-validated r(2))
   were used to assess the statistical quality of our models. Another
   statistical parameter, the ratio of the standard error to the activity
   range (s/AR), was also generated. CoMFA and HQSAR models were developed
   having statistically excellent properties, which also possessed good
   predictive ability for test set compounds. The best model was obtained
   when racemates were excluded from QSAR analysis. Thus, CoMFA of the n =
   157 database gave excellent predictions with outstanding statistical
   properties. HQSAR did an outstanding job in statistical analysis and
   also handled predictions well.
C1 Univ Mississippi, Sch Pharm, Thad Cochran Natl Ctr Nat Prod Res, Dept Med Chem, University, MS 38677 USA.
   Univ Mississippi, Dept Chem, University, MS 38677 USA.
   UFRJ, Dept Farmacos, Fac Farm, LASSBio, BR-21944910 Rio De Janeiro, Brazil.
   Univ Calif San Francisco, Dept Cellular Mol Pharmacol, San Francisco, CA 94143 USA.
RP Avery, MA, Univ Mississippi, Sch Pharm, Thad Cochran Natl Ctr Nat Prod
   Res, Dept Med Chem, University, MS 38677 USA.
CR ACTON N, 1993, J MED CHEM, V36, P2552
   ALVIMGASTON M, 1999, 217 ACS NAT M AN CA
   AVERY MA, 1990, J CHEM SOC CHEM COMM, P1487
   AVERY MA, 1990, TETRAHEDRON LETT, V31, P1799
   AVERY MA, 1993, J MED CHEM, V36, P4264
   AVERY MA, 1994, TETRAHEDRON, V50, P957
   AVERY MA, 1995, J MED CHEM, V38, P5038
   AVERY MA, 1996, J MED CHEM, V39, P1885
   AVERY MA, 1996, J MED CHEM, V39, P4149
   AVERY MA, 1999, ADV MED CH, V4, P125
   AVERY MA, 2000, BIOL ACT NAT PROD, P121
   BHATTACHARYA AK, 1999, HETEROCYCLES, V51, P1681
   BLOODWORTH AJ, 1995, TETRAHEDRON LETT, V36, P7551
   BOUKOUVALAS J, 2000, COMMUNICATION
   BROSSI A, 1988, J MED CHEM, V31, P645
   BUTLER AR, 1998, FREE RADICAL RES, V28, P471
   CRAMER RD, 1988, J AM CHEM SOC, V110, P5959
   CRAMER RD, 1988, QUANT STRUCT-ACT REL, V7, P18
   CUMMING JN, 1997, ADV PHARMACOL, V37, P253
   DAI LX, 1999, CHEMTRACTS, V12, P687
   DONG YX, 1999, J MED CHEM, V42, P1477
   DOWEYKO AM, 1997, 213 ACS NAT M SAN FR
   GRACE JM, 1999, XENOBIOTICA, V29, P703
   GU J, 1999, J MOL STRUC-THEOCHEM, V491, P57
   HARALDSON CA, 1997, BIOORG MED CHEM LETT, V7, P2357
   HAWLEY SR, 1998, ANTIMICROB AGENTS CH, V42, P682
   HAYNES RK, 1996, TETRAHEDRON LETT, V37, P257
   HAYNES RK, 1997, ACCOUNTS CHEM RES, V30, P73
   HERITAGE TW, 1999, MOL HOLOGRAM QSAR RA, P212
   HU YL, 1992, BIOORG CHEM, V20, P148
   JEFFORD CW, 1993, HELV CHIM ACTA, V76, P2775
   JEFFORD CW, 1993, PERSPECTIVES MED CHE, P459
   JEFFORD CW, 1997, ADV DRUG RES, V29, P271
   JIANG HL, 1994, ACTA PHARM SINIC, V15, P481
   JUNG M, 1990, J MED CHEM, V33, P1516
   KAMCHONWONGGPAISAN S, 1996, GEN PHARMACOL, V27, P587
   KLAYMAN DL, 1985, SCIENCE, V228, P1049
   KUBINYI H, 1993, 3D QSAR DRUG DESIGN
   LESKOVAC V, 1991, COMP BIOCHEM PHYS C, V99, P383
   LIN AJ, 1987, J MED CHEM, V30, P2147
   LIN AJ, 1990, J MED CHEM, V33, P2610
   LIN AJ, 1997, J MED CHEM, V40, P1396
   LISGARTEN JN, 1998, J CHEM CRYSTALLOGR, V28, P539
   LIU C, 1999, HUAXUE JINZHAN, V11, P41
   LUNDSTEDT T, 1997, COMPUTER ASSISTED LE
   MEKONNEN B, 1997, TETRAHEDRON LETT, V38, P731
   MESHNICK SR, 1993, ANTIMICROB AGENTS CH, V37, P1108
   MESHNICK SR, 1994, T ROY SOC TROP MED H, V88, P31
   MESHNICK SR, 1996, PARASITOL TODAY, V12, P79
   MILHOUS WK, 1985, ANTIMICROB AGENTS CH, V27, P525
   NGUYENCONG V, 1996, EUR J MED CHEM, V31, P797
   ODOWD H, 1999, TETRAHEDRON, V55, P3625
   ONEILL PM, 1999, TETRAHEDRON LETT, V40, P9133
   PAITAYATAT S, 1997, J MED CHEM, V40, P633
   PANDEY AV, 1999, J BIOL CHEM, V274, P19383
   POSNER GH, 1992, J MED CHEM, V35, P2459
   POSNER GH, 1995, HETEROATOM CHEM, V6, P105
   POSNER GH, 1995, J AM CHEM SOC, V117, P5885
   POSNER GH, 1996, J AM CHEM SOC, V118, P3537
   POSNER GH, 1996, TETRAHEDRON LETT, V37, P815
   POSNER GH, 1998, TETRAHEDRON LETT, V39, P2273
   PU YM, 1995, J MED CHEM, V38, P4120
   ROBERT A, 1998, CHEM SOC REV, V27, P273
   SHUKLA KL, 1995, J MOL GRAPH MODEL, V13, P215
   SMITH SL, 1998, NEUROTOXICOLOGY, V19, P557
   SVENSSON USH, 1999, BRIT J CLIN PHARMACO, V48, P528
   TANG Y, 1996, INDIAN J CHEM B, V35, P325
   TONMUNPHEAN S, 1998, J COMPUT AID MOL DES, V12, P397
   TONMUNPHEAN S, 1998, THEOCHEM-J MOL STRUC, V454, P87
   TREGOVA A, 1996, BRIT J PHARMACOL, V119, P336
   VATTANAVIBOON P, 1998, MOL PHARMACOL, V53, P492
   VROMAN JA, 1999, CURR PHARM DESIGN, V5, P101
   VYAS N, IN PRESS ANTIMICROB
   WOOLFREY JR, 1998, J COMPUT AID MOL DES, V12, P165
   WOOLFREY JR, 1999, 217 ACS NAT M AN CA
   WU J, 1991, PROG NAT SCI, V1, P72
   WU WM, 1998, J AM CHEM SOC, V120, P13002
   WU WM, 1998, J AM CHEM SOC, V120, P3316
   WU YL, 1999, PURE APPL CHEM, V71, P1139
NR 79
TC 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-2623
J9 J MED CHEM
JI J. Med. Chem.
PD JAN 17
PY 2002
VL 45
IS 2
BP 292
EP 303
PG 12
SC Chemistry, Medicinal
GA 513YJ
UT ISI:000173408400007
ER

PT J
AU Borin, AC
TI The A(1)Pi-X-1 Sigma(+) transition in NiC
SO CHEMICAL PHYSICS
LA English
DT Article
DE nickel carbide; A(1)II excited electronic state and radiative
   lifetimes; A(1)II-X-1 Sigma(-) transition dipole moment; spectroscopic
   properties; multireference configuration interaction
ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS;
   ELECTRONIC-TRANSITIONS; RADIATIVE LIFETIMES; DIATOMIC-MOLECULES; METAL
   HYDRIDES; SCF METHOD; AB-INITIO; STATES; MOMENTS
AB The multireference configuration interaction (MRCI) method, based on
   complete-active-space self-consistent-field wave functions, has been
   employed to study the X(1)Sigma (+) and A(1)Pi states of NiC. Potential
   energy curves, dipole moments, and transition dipole moment functions
   (TDM) have been computed over a wide range of internuclear separations,
   Based on these results, the Franck-Condon factors and radiative
   lifetimes for several vibrational levels of the A(1)Pi state were
   computed. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Borin, AC, Univ Sao Paulo, Inst Quim, Av Prof Lineu Prestes 748,
   BR-05508900 Sao Paulo, Brazil.
CR ADAM AG, 1997, J MOL SPECTROSC, V181, P24
   ALLEN MD, 1996, ASTROPHYS J 2, V472, L57
   ANDERSSON K, 1992, CHEM PHYS LETT, V191, P507
   BALFOUR WJ, 1995, J CHEM PHYS, V103, P4046
   BARNES M, 1995, J CHEM PHYS, V103, P8360
   BAUSCHLICHER CW, 1988, THEOR CHIM ACTA, V74, P479
   BAUSCHLICHER CW, 1989, J CHEM PHYS, V91, P2399
   BAUSCHLICHER CW, 1995, MODERN ELECT STRUCTU
   BORIN AC, 1995, CHEM PHYS, V190, P43
   BORIN AC, 1996, CHEM PHYS LETT, V262, P80
   BORIN AC, 2000, CHEM PHYS LETT, V322, P149
   BRUGH DJ, 1997, J CHEM PHYS, V107, P9772
   CHONG DP, 1986, J CHEM PHYS, V84, P5606
   CHONG DP, 1986, J CHEM PHYS, V85, P2850
   COTTON FA, 1988, ADV INORGANIC CHEM C
   COWAN RD, 1976, J OPT SOC AM, V66, P1010
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   HARRISON JF, 2000, CHEM REV, V100, P679
   KITAURA K, 1982, J MOL STRUCT, V88, P119
   KNOWLES PJ, 1985, CHEM PHYS LETT, V115, P259
   KNOWLES PJ, 1988, CHEM PHYS LETT, V145, P514
   LARSSON M, 1983, ASTRON ASTROPHYS, V128, P291
   MACLAGAN RGAR, 1997, J CHEM PHYS, V106, P1491
   MARIAN CM, 1989, J CHEM PHYS, V91, P3589
   MARTIN RL, 1983, J PHYS CHEM-US, V87, P750
   MARTINHO JA, 1990, CHEM REV, V90, P629
   MEUNIER B, 1992, CHEM REV, V92, P1411
   PARTRIDGE H, 1995, QUANTUM MECH ELECT S
   ROOS BO, 1996, ADV CHEM PHYS, V93, P219
   SAUVAL AJ, 1978, ASTRON ASTROPHYS, V62, P295
   SHIM I, 1989, Z PHYS D ATOM MOL CL, V12, P373
   SHIM I, 1999, CHEM PHYS LETT, V303, P87
   SIEGBAHN PEM, 1987, ADV CHEM PHYS, P333
   WACHTERS AJH, 1969, RJ584 IBM
   WACHTERS AJH, 1970, J CHEM PHYS, V52, P1033
   WALCH SP, 1983, J CHEM PHYS, V78, P4597
   WALCH SP, 1985, J CHEM PHYS, V83, P5351
   WERNER HJ, MOLPRO IS PACKAGE AB
   WERNER HJ, 1982, J CHEM PHYS, V76, P3144
   WERNER HJ, 1985, J CHEM PHYS, V82, P5053
   WERNER HJ, 1987, ADV CHEM PHYS, P1
   WERNER HJ, 1988, J CHEM PHYS, V89, P5803
   WHEELER JC, 1989, ANNU REV ASTRON ASTR, V27, P279
   WHITING EE, 1980, J MOL SPECTROSC, V80, P249
   WING RF, 1977, ASTROPHYS J, V216, P659
   WOON DE, 1993, J CHEM PHYS, V98, P1358
   ZEMKE WT, 1981, QCPE, V4, P79
NR 47
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD DEC 15
PY 2001
VL 274
IS 2-3
BP 99
EP 108
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 507FE
UT ISI:000173015700003
ER

PT J
AU Rivelino, R
   Canuto, S
TI Theoretical study of mixed hydrogen-bonded complexes: H2O center dot
   center dot center dot HCN center dot center dot center dot H2O and H2O
   center dot center dot center dot HCN center dot center dot center dot
   HCN center dot center dot center dot H2O
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID AB-INITIO CALCULATIONS; INTERMOLECULAR INTERACTIONS; QUANTUM-CHEMISTRY;
   CYANIDE POLYMERS; MATRIX-ISOLATION; CLUSTERS; WATER; SPECTRA;
   COOPERATIVITY; SPECTROSCOPY
AB Mixed hydrogen-bonded clusters H2O . . . HCN, HCN . . .H2O, H2O . . .
   HCN . . .H2O, and H2O . . . HCN . . . HCN . . .H2O are studied by using
   ab initio calculations. The optimized structures and harmonic
   vibrational frequencies are obtained at the DFT/B3LYP and MBPT/MP2
   levels with the 6-311++G(d,p) basis set. To investigate electron
   correlation effects on the binding energies, single-point calculations
   are also performed using the CCSD(T) method with the optimized MP2
   geometric,,. The complexation energies are obtained for these systems
   including correction for basis set superposition error. In addition,
   the cooperative effects in the properties of the complexes are
   investigated quantitatively. We found a cooperativity contribution of
   around 10% relative to the total interaction energy of the complex H2O
   . . . HCN . . .H2O. In the case of H2O . . . HCN . . . HCN . . .H2O,
   the binding energy of the HCN . . . HCN is ca. 8 kJ/mol stronger in the
   mixed tetramer than in the corresponding isolated dimer. The effects of
   higher-order electron correlation are found to be mild, with MP2 giving
   a well-balanced result. Cooperative effects are predicted either by MP2
   or by B3LYP in hydrogen bond distances and dipole moments of the
   clusters. In contrast, the B3LYP functional fails to account fur the
   out-of-plane bend angle in H2O . . . HCN, which is well-described by
   the MP2 method.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, POB 66318, BR-05315970 Sao Paulo,
   Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BENTWOOD RM, 1980, J MOL SPECTROSC, V84, P391
   BOYS SF, 1970, MOL PHYS, V19, P553
   CABALEIROLAGO EM, 1999, J PHYS CHEM A, V103, P6468
   CABALEIROLAGO EM, 2000, J MOL STRUC-THEOCHEM, V498, P21
   CHALASINSKI G, 1994, CHEM REV, V94, P1723
   CRUZAN JD, 1996, SCIENCE, V271, P59
   DELBENE JE, 1995, J PHYS CHEM-US, V99, P10705
   FILLERYTRAVIS AJ, 1984, P ROY SOC LOND A MAT, V396, P405
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GOTTLIEB CA, 2000, J CHEM PHYS, V113, P1910
   GUTOWSKY HS, 1992, J CHEM PHYS, V96, P5808
   HARRIS DC, 1989, SYMMETRY SPECTROSCOP
   HEIKKILA A, 1999, J PHYS CHEM A, V103, P2945
   HEIKKILA AT, 2000, J PHYS CHEM A, V104, P6637
   JEFFREY GA, 1977, J AM CHEM SOC, V99, P609
   JEFFREY GA, 1991, HYDROGEN BONDING BIO
   LEE C, 1988, PHYS REV B, V37, P785
   LIEBMAN SA, 1994, ADV SPACE RES, V15, P71
   MASELLA M, 1998, J CHEM SOC FARADAY T, V94, P2745
   MATTHEWS CN, 1992, ORIGINS LIFE, V21, P421
   MEOTNER M, 1989, J PHYS CHEM-US, V93, P3663
   RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
   RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
   SAMUELS AC, 1998, THEOCHEM-J MOL STRUC, V427, P199
   SCHEINER S, 1997, HYDROGEN BONDING THE
   SMITH DMA, 1998, CHEM PHYS LETT, V288, P609
   STEINER T, 1990, J AM CHEM SOC, V112, P6184
   SUM AK, 2000, J PHYS CHEM A, V104, P1121
   TSHEHLA TM, 1994, B POL ACAD SCI-CHEM, V42, P397
   TURI L, 1993, J PHYS CHEM-US, V97, P7899
   VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
   VIGOUROUX C, 2000, J MOL SPECTROSC, V202, P1
   XANTHEAS SS, 1994, J CHEM PHYS, V100, P7523
NR 35
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 20
PY 2001
VL 105
IS 50
BP 11260
EP 11265
PG 6
SC Chemistry, Physical
GA 505ZN
UT ISI:000172945600014
ER

PT J
AU Silva, THA
   Oliveira, AB
   Dos Santos, HF
   De Almeida, WB
TI Conformational analysis of epiquinine and epiquinidine
SO STRUCTURAL CHEMISTRY
LA English
DT Article
DE conformational analysis; antimalarial; epiquinine; epiquinidine
ID POLARIZABLE CONTINUUM MODEL; CINCHONA ALKALOIDS; PLASMODIUM-FALCIPARUM;
   ANTIMALARIAL ACTIVITY; COMBINED NMR
AB The conformational potential energy surfaces for the epiquinine and
   epiquinidine molecules were analyzed in gas phase and water solution
   using semiempirical and ab initio levels of theory. The results
   obtained showed that the main conformation of the nonactive threo
   epimers is distinct from those observed for the active parent compounds
   quinine and quinidine. This result might be used, on a qualitative way,
   to understand the loss of activity of the threo epimers and allow
   selecting important conformations to be considered in molecular
   modeling quantitative studies addressing the drug-receptor interactions.
C1 UFMG, ICEx, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
   Univ Fed Minas Gerais, Fac Farm, Dept Prod Farmaceut, Belo Horizonte, MG, Brazil.
   Univ Fed Juiz de Fora, ICE, Dept Quim, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
RP De Almeida, WB, UFMG, ICEx, Dept Quim, LQCMM, BR-31270901 Belo
   Horizonte, MG, Brazil.
CR ALLINGER NL, 1997, PCMODEL 1993 SERENA
   BARONE V, 1997, J CHEM PHYS, V107, P3210
   COSSI M, 1996, CHEM PHYS LETT, V255, P327
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DIJKSTRA GDH, 1989, J AM CHEM SOC, V111, P8069
   DIJKSTRA GDH, 1989, RECL TRAV CHIM PAY B, V108, P195
   DIJKSTRA GDH, 1990, J ORG CHEM, V55, P6121
   FERREIRA EI, 1993, REV FORM BIOQUIM, V29, P1
   FRISCH MJ, 1998, GAUSSIAN 98
   HOLTJE HD, 1996, MOL MODELING BASIC P
   KARLE JM, 1992, ACTA CRYSTALLOGR C, V48, P1975
   KARLE JM, 1992, ANTIMICROB AGENTS CH, V36, P1538
   KARLE JM, 1993, EXP PARASITOL, V76, P345
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   MIERTUS S, 1982, CHEM PHYS, V65, P239
   OLEKSYN BJ, 1992, J PHARM SCI, V81, P122
   PRAKASH O, 1988, INDIAN J CHEM B, V27, P950
   PRELOG V, 1954, HELV CHIM ACTA, V37, P1634
   SILVA THA, 1997, BIOORGAN MED CHEM, V5, P353
   SILVA THA, 1997, STRUCT CHEM, V8, P95
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STEWART JP, 1990, MOPAC VERSION 6 0
NR 22
TC 4
PU KLUWER ACADEMIC/PLENUM PUBL
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1040-0400
J9 STRUCT CHEM
JI Struct. Chem.
PD DEC
PY 2001
VL 12
IS 6
BP 431
EP 437
PG 7
SC Chemistry, Multidisciplinary
GA 500QK
UT ISI:000172638100002
ER

PT J
AU de Koning, M
   Antonelli, A
   Yip, S
TI Single-simulation determination of phase boundaries: A dynamic
   Clausius-Clapeyron integration method
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID FREE-ENERGY CALCULATIONS; SOLID-FLUID COEXISTENCE; MOLECULAR-DYNAMICS;
   MELTING CURVE; NONEQUILIBRIUM MEASUREMENTS; STRUCTURAL-PROPERTIES;
   MODEL SYSTEMS; PURE THEORY; ARGON; EQUILIBRIUM
AB We present a dynamic implementation of the Clausius-Clapeyron
   integration (CCI) method for mapping out phase-coexistence boundaries
   through a single atomistic simulation run. In contrast to previous
   implementations, where the reversible path of coexistence conditions is
   generated from a series of independent equilibrium simulations, dynamic
   Clausius-Clapeyron integration (d-CCI) explores an entire coexistence
   boundary in a single nonequilibrium simulation. The method gives
   accurately the melting curve for a system of particles interacting
   through the Lennard-Jones potential. Furthermore, we apply d-CCI to
   compute the melting curve of an ab initio pair potential for argon and
   verify earlier studies on the effects of many-body interactions and
   quantum effects in the melting of argon. The d-CCI method shows to be
   effective in both applications, giving converged coexistence curves
   spanning a wide range of thermodynamic states from relatively short
   nonequilibrium simulations. (C) 2001 American Institute of Physics.
C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
   Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
   MIT, Dept Nucl Engn, Cambridge, MA 02139 USA.
RP de Koning, M, Lawrence Livermore Natl Lab, L-371, Livermore, CA 94550
   USA.
CR AGRAWAL R, 1995, MOL PHYS, V85, P23
   AGRAWAL R, 1995, MOL PHYS, V85, P43
   AGRAWAL R, 1995, PHYS REV LETT, V74, P122
   ALLEN MP, 1989, COMPUTER SIMULATION
   AMON LM, 2000, J CHEM PHYS, V113, P3573
   BOEHLER R, 1996, PHYS REV B, V53, P556
   CROOKS GE, 1998, J STAT PHYS, V90, P1481
   DEKONING M, 1999, PHYS REV LETT, V83, P3973
   DEKONING M, 2000, COMPUT SCI ENG, V2, P88
   ERMAKOVA E, 1995, J CHEM PHYS, V102, P4942
   FRENKEL D, 1984, J CHEM PHYS, V81, P3188
   FRENKEL D, 1996, UNDERSTANDING MOL SI
   HARDY WH, 1971, J CHEM PHYS, V54, P1005
   HENDRIX DA, 2001, J CHEM PHYS, V114, P5974
   HITCHCOCK MR, 1999, J CHEM PHYS, V110, P11433
   HUNTER JE, 1993, J CHEM PHYS, V99, P6856
   JARZYNSKI C, 1997, PHYS REV E A, V56, P5018
   JARZYNSKI C, 1997, PHYS REV LETT, V78, P2690
   KOFKE DA, 1993, J CHEM PHYS, V98, P4149
   KOFKE DA, 1993, MOL PHYS, V78, P1331
   KOFKE DA, 1999, MONTE CARLO METHODS, V105
   LUTSKO JF, 1989, PHYS REV B, V40, P2841
   MARTYNA GJ, 1992, J CHEM PHYS, V97, P2635
   MARTYNA GJ, 1994, J CHEM PHYS, V101, P4177
   MEIJER EJ, 1997, J CHEM PHYS, V106, P4678
   MILLER MA, 2000, J CHEM PHYS, V113, P7035
   PHILLPOT SR, 1989, PHYS REV B, V40, P2831
   POLSON JM, 1999, J CHEM PHYS, V111, P1501
   REINHARDT WP, 1992, J CHEM PHYS, V97, P1599
   SOLCA J, 1997, CHEM PHYS, V224, P253
   SOLCA J, 1998, J CHEM PHYS, V108, P4107
   STRACHAN A, 1999, PHYS REV B, V60, P15084
   STURGEON JB, 2000, PHYS REV B, V62, P14720
   WOON DE, 1993, CHEM PHYS LETT, V204, P29
   YOUNG DA, 1984, J CHEM PHYS, V81, P2789
NR 35
TC 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
   MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD DEC 22
PY 2001
VL 115
IS 24
BP 11025
EP 11035
PG 11
SC Physics, Atomic, Molecular & Chemical
GA 501KE
UT ISI:000172683200003
ER

PT J
AU Nasar, RS
   Cerqueira, M
   Longo, E
   Varela, JA
   Beltran, A
TI Experimental and theoretical study of the ferroelectric and
   piezoelectric behavior of strontium-doped PZT
SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
LA English
DT Article
DE calculations-aiPI; ferroelectrics; piezoelectrics; PZT
ID SOLID-SOLUTIONS; X-RAY; CERAMICS
AB Theoretical data using ab initio perturbed ion calculation were
   compared with ferroelectric and piezoelectric experimental data of
   strontium doped PZT. Various concentrations of SrO in PZT at constant
   temperature and sintering time were carried out. Experimental results,
   such as the remanent polarization, P-R of 6.9-8.9 muC/Cm-2, the
   coercive field, E-C of 6.6-7.8 kVcm, and the planar coupling factor, Kp
   of 0.45-0.53, were compared with the energy of Zr4+ and Ti4+ ion
   dislocation and the lattice interaction energy which show that
   strontium increment in PZT alter the energies and increase the values
   of piezoelectric and ferroelectric variables. Calculations of lattice
   energy of the rhombohedral phase show that a phase non-stability is
   coincident with increasing experimental values of the P-R, E-C and Kp.
   (C) 2001 Elsevier Science Ltd. All rights reserved.
C1 UFRN, Dept Quim, BR-59072970 Natal, RN, Brazil.
   UFSCar, Dept Quim, Lab Interdisciplinar Eletroqulmica & Ceram, BR-13565905 Sao Carlos, SP, Brazil.
   UNESP, Inst Quim, BR-14800900 Araraquara, SP, Brazil.
   Univ Jaume, Dept Ciencies Expt, Castello, Spain.
RP Nasar, RS, UFRN, Dept Quim, Caixa Postal 1662, BR-59072970 Natal, RN,
   Brazil.
CR ARIGUR P, 1974, SOLID STATE COMMUN, V15, P1077
   ATKINS PW, 1994, PHYSICAL CHEM, P446
   BENGUIGUI L, 1976, SOLID STATE COMMUN, V19, P979
   BERNARD J, 1971, PIEZOELECTRIC CERAMI
   CADY WG, 1971, PIEZOELECTRICITY
   CERQUEIRA M, 1997, J MATER SCI, V32, P2381
   CHANDLER D, 1987, INTRO STAT MECH
   GALASSO FS, 1969, STRUCTURE PROPERTIES
   HAERTLING GH, 1986, CERAMIC MAT ELECT
   HAERTLING GH, 1986, CERAMIC MAT ELECT, P168
   HOWARD CJ, 1991, J MATER SCI, V26, P127
   ISOPOV VA, 1975, SOLID STATE COMMUN, V17, P1331
   ISOPOV VA, 1976, SOV PHYS-SOLID STATE, V18, P529
   JAFFE B, 1971, PIEZOELECTRIC CERAMI
   KAKEGAWA K, 1977, SOLID STATE COMMUN, V24, P769
   KANAI H, 1994, J AM CERAM SOC, V77
   KIRBY K, 1993, ENCY APPL PHYSICS, V6, P45
   KULCSAR F, 1959, J AM CERAM SOC, V42, P49
   LAL R, 1988, BRIT CERAM TRANS J, V87, P99
   LINES EM, 1977, PRINCIPLES APPL FERR
   MABUD SA, 1980, J APPL CRYSTALLOGR, V13, P211
   NASAR RS, 1999, J MATER SCI, V34, P3659
   SAHA SK, 1992, AM CERAM SOC BULL, V71, P1424
   SAWAGUCHI E, 1953, J PHYS SOC JPN, V8, P615
   YAMAMOTO T, 1992, AM CERAM SOC BULL, V71, P978
   ZHANG QM, 1994, J APPL PHYS, V1, P75
NR 26
TC 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0955-2219
J9 J EUR CERAM SOC
JI J. European Ceram. Soc.
PD FEB
PY 2002
VL 22
IS 2
BP 209
EP 218
PG 10
SC Materials Science, Ceramics
GA 498RE
UT ISI:000172523600009
ER

PT J
AU Critchley, ADJ
   King, GC
   Kreynin, P
   Lopes, MCA
   McNab, IR
   Yencha, AJ
TI TPEsCO spectra of HCl2+ and DCl2+: experiment and theory
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID PHOTOELECTRONS COINCIDENCE SPECTROSCOPY; INITIO CI CALCULATIONS;
   DOUBLY-CHARGED IONS; AB-INITIO; INFRARED-SPECTRUM; MOLECULES; DYNAMICS;
   N-2(2+); PREDISSOCIATION; CHLORIDE
AB Vibrationally resolved threshold photoelectrons in coincidence (TPEsCO)
   spectra of the X(3)Sigma (-) and a(1)Delta states of HCl2+ and DCl2+
   are compared with ab initio simulations. The four resonances observed
   in the TPEsCO spectra of both the X(3)Sigma (-) and a(1)Delta states of
   HCl2+ are assigned as three quasi-bound vibrational levels and one
   continuum resonance with an energy greater than the potential barrier
   maximum. The four clearly identified resonances observed in Cl2+ the
   TPEsCO spectra of both the X(3)Sigma (-) and a(1)Delta states of DCl2+
   are assigned as quasi-bound vibrational levels. (C) 2001 Elsevier
   Science B.V. All rights reserved.
C1 Univ Newcastle Upon Tyne, Dept Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England.
   Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England.
   Univ Fed Juiz de Fora, ICE, Dept Fis, BR-36036330 Juiz De Fora, MG, Brazil.
   SUNY Albany, Dept Chem, Albany, NY 12222 USA.
RP McNab, IR, Univ Newcastle Upon Tyne, Dept Phys, Newcastle Upon Tyne NE1
   7RU, Tyne & Wear, England.
CR ABUSEN R, 1998, J CHEM PHYS, V108, P1761
   BENNETT FR, 1995, CHEM PHYS, V190, P53
   BENNETT FR, 1996, CHEM PHYS LETT, V250, P40
   BENNETT FR, 1996, CHEM PHYS LETT, V251, P405
   BENNETT FR, 1999, MOL PHYS, V97, P35
   CHANDRA N, 1999, EUR PHYS J D, V6, P457
   COX SG, 2001, UNPUB PCCP
   CRITCHLEY ADJ, 2001, THESIS U NEWCASTLE U
   EDVARDSSON D, 1996, CHEM PHYS LETT, V256, P341
   ELLINGSEN K, 2000, PHYS REV A, V6203, P2505
   FURUHASHI O, 2001, CHEM PHYS LETT, V337, P97
   HOCHLAF M, 1988, CHEM PHYS, V234, P249
   HRUSAK J, 2001, CHEM PHYS LETT, V338, P189
   LARSSON M, 1993, COMMENTS AT MOL PHYS, V29, P39
   LEROY RJ, 1989, COMPUT PHYS COMMUN, V52, P383
   LEROY RJ, 1993, CP329R U WAT CHEM PH
   LEROY RJ, 1996, CP555R U WAT CHEM PH
   LUNDQVIST M, 1996, J PHYS B-AT MOL OPT, V29, P499
   MARTIN PA, 1994, J CHEM PHYS, V100, P4766
   MCCONKEY AG, 1994, J PHYS B ATOM MOL PH, V27, P271
   MULLIN AS, 1992, J CHEM PHYS, V96, P3636
   PRICE SD, 1997, J CHEM SOC FARADAY T, V93, P2451
   SUNDSTROM G, 1994, CHEM PHYS LETT, V218, P17
   SVENSSON S, 1989, PHYS REV A, V40, P4369
   WERNER HJ, MOLPRO
   YENCHA AJ, 1999, CHEM PHYS LETT, V315, P37
NR 26
TC 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD NOV 23
PY 2001
VL 349
IS 1-2
BP 79
EP 83
PG 5
SC Physics, Atomic, Molecular & Chemical
GA 500AL
UT ISI:000172603600013
ER

PT J
AU Bezerra, EF
   Souza, AG
   Freire, VN
   Mendes, J
   Lemos, V
TI Strong interface localization of phonons in nonabrupt InN/GaN
   superlattices
SO PHYSICAL REVIEW B
LA English
DT Article
ID RESONANT RAMAN-SCATTERING; QUANTUM-WELL STRUCTURES; EPITAXIAL LAYERS;
   OPTICAL PHONONS; AB-INITIO; GAN; SPECTROSCOPY; INN; MICROSTRUCTURES;
   DYNAMICS
AB The Raman spectra of zinc-blende InN/GaN superlattices were calculated
   assuming the existence of an inter-face region with thickness delta
   varying from one to three monolayers. The acoustic branches are weakly
   affected by interfacing, but the optical branches can present frequency
   shifts up to 60 cm(-1). A downward shift is observed for the higher
   frequency and an upward shift for the lower frequency modes. As a
   consequence, the Raman peaks collapse together in the middle frequency
   range giving rise to a most prominent structure in the spectrum, for
   delta = 3. These effects are tracked to the localization of atomic
   displacements at the direct and inverse interface regions. The
   localization effects are strong in the InN/GaN superlattices because of
   the wide gap observed in the phonon density of states for both
   constituent materials.
C1 Univ Fed Ceara, Ctr Ciencias, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil.
RP Lemos, V, Univ Fed Ceara, Ctr Ciencias, Dept Fis, Caixa Postal
   6030,Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil.
EM volia@fisica.ufc.br
CR BECHSTEDT F, 2000, PHYS REV B, V62, P8003
   BEHR D, 1997, APPL PHYS LETT, V70, P363
   BEZERRA EF, 2000, PHYS REV B, V61, P13060
   BOGUSLAWSKI P, 2000, PHYS REV B, V61, P10820
   BUNGARO C, 2000, PHYS REV B, V61, P6720
   GIEHLER M, 1995, APPL PHYS LETT, V67, P733
   JUSSERAND B, 1989, TOP APPL PHYS, V66, P49
   KACZMARCZYK G, 2000, APPL PHYS LETT, V76, P2122
   KARCH K, 1998, PHYS REV B, V57, P7043
   KISIELOWSKI C, 1997, JPN J APPL PHYS 1, V36, P6932
   LEMOS V, 1996, J BRAZIL CHEM SOC, V7, P471
   LEMOS V, 1998, RADIAT EFF DEFECT S, V146, P187
   LEOSSON K, 2000, PHYS REV B, V61, P10322
   NAKAMURA S, 1997, BLUE LASER DIODE GAN
   NAKAMURA S, 1999, SEMICOND SCI TECH, V14, R27
   SAMSON B, 1992, PHYS REV B, V46, P2375
   SIEGLE H, 1995, SOLID STATE COMMUN, V96, P943
   SILVA MAA, 1996, J RAMAN SPECTROSC, V27, P257
   SILVA MAA, 1996, PHYS REV B, V53, P15871
   TABATA A, 1999, APPL PHYS LETT, V74, P362
   TABATA A, 1999, APPL PHYS LETT, V75, P1095
   TABATA A, 1999, SEMICOND SCI TECH, V14, P318
   TSEN KT, 1991, J APPL PHYS, V70, P418
   TSEN KT, 1996, J RAMAN SPECTROSC, V27, P277
NR 24
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 15
PY 2001
VL 6420
IS 20
AR 201306
DI ARTN 201306
PG 4
SC Physics, Condensed Matter
GA 497PL
UT ISI:000172464600014
ER

PT J
AU Venezuela, P
   Dalpian, GM
   da Silva, AJR
   Fazzio, A
TI Ab initio determination of the atomistic structure of SixGe1-x alloy
SO PHYSICAL REVIEW B
LA English
DT Article
ID RANDOM SEMICONDUCTOR ALLOYS; LENGTH MISMATCH; BOND LENGTHS;
   CRYSTALLINE; SIGE; PSEUDOPOTENTIALS; SUPERLATTICES; SIMULATION;
   RELAXATION; PARAMETERS
AB We have performed systematical ab initio studies of the structural
   properties of SixGe1-x alloy. To simulate the disordered alloy we use
   supercells where the Si and Ge atoms are randomly placed with the
   constraint that the pair correlation functions agree with their values
   for a perfect random alloy within a given tolerance. We obtain that the
   Si-Si, Si-Ge, and Ge-Ge bond lengths dependence with composition varies
   only slightly for the different kinds of bonds, with topological
   rigidity parameters between 0.6 and 0.7.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Venezuela, P, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
   Paulo, Brazil.
CR 1999, SEMICOND SEMIMET, V56
   AUBRY JC, 1999, PHYS REV B, V59, P12872
   BACHELET GB, 1982, PHYS REV B, V26, P4199
   BERNARD JE, 1991, PHYS REV B, V44, P1663
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   CAI Y, 1992, PHYS REV B, V46, P15872
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   DEGIRONCOLI S, 1991, PHYS REV LETT, V66, P2116
   DISMUKES JP, 1964, J PHYS CHEM-US, V68, P3021
   HOHENBERG P, 1964, PHYS REV, V136, B864
   KELIRES PC, 1989, PHYS REV LETT, V63, P1164
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   KOHN W, 1965, PHYS REV, V140, A1133
   LEGOUES FK, 1991, PHYS REV LETT, V66, P2903
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   MOONEY PM, 2000, ANNU REV MATER SCI, V30, P335
   MOUSSEAU N, 1992, PHYS REV B, V46, P15887
   MURNAGHAN FD, 1944, P NATL ACAD SCI USA, V30, P244
   PAUL D, 2000, PHYS WORLD, V13, P27
   PAULING L, 1967, NATURE CHEM BOND
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   RIDGWAY MC, 1999, PHYS REV B, V60, P10831
   RIEGER MM, 1993, PHYS REV B, V48, P14276
   STRINGFELLOW GB, 1973, J PHYS CHEM SOLIDS, V34, P1749
   THEODOROU G, 1994, PHYS REV B, V50, P18355
   VEGARD L, 1921, Z PHYS, V5, P17
   WEI SH, 1990, PHYS REV B, V42, P9622
   WEIDMANN MR, 1992, PHYS REV B, V45, P8388
NR 28
TC 16
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 15
PY 2001
VL 64
IS 19
BP art. no.
EP 193202
AR 193202
PG 4
SC Physics, Condensed Matter
GA 494WB
UT ISI:000172307900005
ER

PT J
AU dos Santos, AS
   Masili, M
   De Groote, JJ
TI Binding energies of excitons trapped by ionized donors in semiconductors
SO PHYSICAL REVIEW B
LA English
DT Article
ID HYPERSPHERICAL ADIABATIC APPROACH; 3-ELECTRON ATOMIC SYSTEMS; HELIUM
   ATOM; POTENTIAL CURVES; BOUND EXCITONS; STATES; FORMALISM; IMPURITY;
   HYDROGEN
AB Using the hyperspherical adiabatic approach in a coupled-channel
   calculation, we present precise binding energies of excitons trapped by
   impurity donors in semiconductors within the effective-mass
   approximation. Energies for such three-body systems are presented as a
   function of the relative electron-hole mass sigma in the range 1 less
   than or equal to1/sigma less than or equal to6, where the
   Born-Oppenheimer approach is not efficiently applicable. The
   hyperspherical approach leads to precise energies using the intuitive
   picture of potential curves and nonadiabatic couplings in an ab initio
   procedure. We also present an estimation for a critical value of sigma
   (sigma (crit)) for which no bound state can be found. Comparisons are
   given with results of prior work by other authors.
C1 Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
   Assoc Escolas Reunidas, BR-13563470 Sao Carlos, SP, Brazil.
   Univ Estadual Paulista, Inst Quim Araraquara, BR-14801970 Araraquara, SP, Brazil.
RP dos Santos, AS, Univ Sao Paulo, Inst Fis Sao Carlos, Caixa Postal 369,
   BR-13560970 Sao Carlos, SP, Brazil.
CR ABRAMOWITIZ M, 1965, HDB MATH FUNCTIONS
   BAO CG, 1994, FEW-BODY SYST, V16, P47
   BARTLETT JH, 1937, PHYS REV, V51, P661
   CANCIO AC, 1993, PHYS REV B, V47, P13246
   CLARK CW, 1980, PHYS REV A, V21, P1786
   COELHO HT, 1991, PHYS REV A, V43, P6379
   COELHO HT, 1992, PHYS REV A, V46, P5443
   DAS TK, 1994, PHYS REV A, V50, P3521
   DEGROOTE JJ, 1992, PHYS REV B, V46, P2101
   DEGROOTE JJ, 1998, J PHYS B-AT MOL OPT, V31, P4755
   DEGROOTE JJ, 1998, PHYS REV B, V58, P10383
   DEGROOTE JJ, 2000, PHYS REV A, V62
   ELKOMOSS SG, 1975, PHYS REV B, V11, P2222
   FANO U, 1976, PHYS TODAY, V29, P32
   FOCK VA, 1954, IZV AN SSSR FIZ, V18, P161
   FROST AA, 1964, J CHEM PHYS, V41, P482
   GELTLER TH, 1968, PHYS REV, V172, P110
   GREENE CH, 1981, PHYS REV A, V23, P661
   GREENE CH, 1984, PHYS REV A, V30, P2161
   GREENE CH, 1986, PHYS REV A, V22, P149
   HAYNES JR, 1960, PHYS REV LETT, V4, P361
   HOPFIELD JJ, 1964, P 7 INT C PHYS SEM P, P725
   HORNOS JE, 1986, PHYS REV A, V33, P2212
   JIANG TF, 1990, SOLID STATE COMMUN, V74, P899
   LAMPERT MA, 1958, PHYS REV LETT, V1, P450
   LIN CD, 1988, PHYS REV A, V37, P2749
   LIN CD, 1995, PHYS REP, V257, P1
   MACEK J, 1968, J PHYS B ATOM MOL PH, V1, P831
   MASILI M, 1995, PHYS REV A, V52, P3362
   MASILI M, 2000, J PHYS B-AT MOL OPT, V33, P2641
   MORISHITA T, 1997, PHYS REV A, V56, P3559
   MORISHITA T, 1998, J PHYS B-AT MOL OPT, V31, L209
   MORISHITA T, 1998, PHYS REV A, V57, P4268
   MORISHITA T, 1999, PHYS REV A, V59, P1835
   PARK YS, 1966, PHYS REV, V143, P512
   SHARMA RR, 1967, PHYS REV, V153, P823
   SKETTRUP T, 1971, PHYS REV B-SOLID ST, V4, P512
   SMIRNOV YF, 1977, SOV J PART NUCL, V8, P344
   STARACE AF, 1979, PHYS REV A, V19, P1629
   STEBE B, 1988, P 4 INT C SUP MICR M
   SUFFCZYNSKI M, 1967, PHYS LETT A, V24, P453
   SUFFCZYNSKI M, 1989, PHYS REV B, V40, P6250
   TANG JZ, 1992, PHYS REV A, V46, P2437
   THOMAS DG, 1960, PHYS REV LETT, V5, P505
   THOMAS DG, 1962, PHYS REV, V128, P2135
   WANG YD, 1993, PHYS REV A, V48, P2058
   YANG XZ, 1995, PHYS REV A, V52, P2029
   YANG XZ, 1996, PHYS REV LETT, V76, P3096
   ZHEN Z, 1986, PHYS REV A, V34, P838
NR 49
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 15
PY 2001
VL 64
IS 19
BP art. no.
EP 195210
AR 195210
PG 9
SC Physics, Condensed Matter
GA 494WB
UT ISI:000172307900078
ER

PT J
AU Capelle, K
   Vignale, G
   Gyorffy, BL
TI Spin currents and spin dynamics in time-dependent density-functional
   theory
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MAGNETISM; SYSTEMS
AB We derive and analyze the equation of motion for the spin degrees of
   freedom within time-dependent spin-density-functional theory (TD-SDFT).
   The results are (i) a prescription for obtaining many-body corrections
   to the single-particle spin currents from the Kohn-Sham equation of
   TD-SDFT, (ii) the existence of an exchange-correlation (xc) torque
   within TD-SDFr, (iii) a prescription for calculating, from TD-SDFT, the
   torque exerted by spin currents on the spin magnetization, (iv) a novel
   exact constraint on approximate. xc functionals, and (v) the discovery
   of serious deficiencies of popular approximations to TD-SDFT when
   applied to spin dynamics.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil.
   Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
   Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
RP Capelle, K, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol,
   Caixa Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR ANTROPOV VP, 1995, PHYS REV LETT, V75, P729
   ANTROPOV VP, 1999, J MAGN MAGN MATER, V200, P148
   AWSCHALOM DD, 1999, J MAGN MAGN MATER, V200, P130
   BECKE AD, 1997, J CHEM PHYS, V107, P8554
   BURKE K, 1998, LECT NOTES PHYSICS, V500
   CAPELLE K, 1997, PHYS REV LETT, V78, P1872
   DOBSON JF, 1994, PHYS REV LETT, V73, P2244
   DREIZLER RM, 1990, DENSITY FUNCTIONAL T
   EDWARDS DM, 1984, J MAGN MAGN MATER, V45, P151
   EGUES JC, 1998, PHYS REV LETT, V80, P4578
   FIEDERLING R, 1999, NATURE, V402, P787
   GEBAUER R, 2000, PHYS REV B, V61, P6459
   GROSS EKU, 1996, TOPICS CURRENT CHEM, V181
   HALILOV SV, 1998, PHYS REV B, V58, P293
   HESSLER P, 1999, PHYS REV LETT, V82, P378
   JOUBERT DP, 1998, LECT NOTES PHYSICS, V500
   KATINE JA, 2000, PHYS REV LETT, V84, P3149
   LIFSHITZ EM, 1980, COURSE THEORETICAL P, V9
   NIU Q, 1998, PHYS REV LETT, V80, P2205
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   PRINZ GA, 1998, SCIENCE, V282, P1660
   RUNGE E, 1984, PHYS REV LETT, V52, P997
   SANDRATSKII LM, 1998, ADV PHYS, V47, P91
   SLONCZEWSKI JC, 1996, J MAGN MAGN MATER, V159, L1
   STAUNTON JB, 1992, PHYS REV LETT, V69, P371
   STICHT J, 1989, J PHYS-CONDENS MAT, V1, P8155
   STOCKS GM, 1998, PHILOS MAG B, V78, P665
   VIGNALE G, 1995, PHYS REV LETT, V74, P3233
NR 28
TC 12
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 12
PY 2001
VL 8720
IS 20
AR 206403
DI ARTN 206403
PG 4
SC Physics, Multidisciplinary
GA 492TD
UT ISI:000172182900035
ER

PT J
AU Gozzo, FC
   Eberlin, MN
TI Primary and secondary kinetic isotope effects in proton (H+/D+) and
   chloronium ion (35Cl(+)/37Cl(+)) affinities
SO JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
ID COLLISION-INDUCED DISSOCIATION; QUADRUPOLE MASS SPECTROMETERS;
   GAS-PHASE ACIDITIES; ELECTRON-AFFINITIES; CLUSTER IONS; THERMOCHEMICAL
   DETERMINATIONS; BOUND HETERODIMERS; ATTACHMENT SITES; BOND-ENERGIES;
   AB-INITIO
AB The Cooks' kinetic method and tandem-in-space pentaquadrupole QqQqQ
   mass spectrometry were used to measure primary and secondary kinetic
   isotope effects (KIEs) in H+ and Cl+ (X+) affinity for a series of A/A'
   isotopomeric pairs. Gaseous, isotopomeric, and loosely bound dimers
   [A...chi (+)...A] were formed in combinations in which chi = H+, D+,
   Cl-35(+) or Cl-37(+) and A/A' = acetonitrile/acetonitrile-d(3),
   acetonitrile/acetonitrile-N-15, acetonitrile-d(3)/acetonitrile-N-15,
   acetone/acetone-d(6), acetone/acetone-O-18, acetone-d(6)/acetone-O-18,
   pyridine/pyridine-d(5), pyridine/pyridine-N-15,
   pyridine-d(5)/pyridine-N-15, or 3-(Cl-35)chloropyridine/3-(Cl-37)
   chloropyridine. Under nearly the same experimental conditions, the
   dimers were mass-selected and then dissociated by low-energy collisions
   with argon, yielding AX(+) and A'X+ as the fragment ions. KIEs were
   measured from the changes in ion affinities of the neutrals (AXI) as
   estimated by the AX(+)/A'X+ abundance ratios. Using [A...H+(D+)... ']
   and [A...Cl-35(+)(Cl-37(+))...A'] dimers and by comparing their extent
   of dissociation tinder nearly identical collision-induced dissociation
   conditions, the kinetic method was also applied, for the first time, to
   measure primary KIEs of the central ion as well as their influence on
   secondary KIEs. Becke3LYP/6311++G(2df,2p) calculations were found to
   provide Delta(Delta ZPE)s for the competitive dissociation reactions
   that accurately predict the nature (normal or inverse) of the measured
   KIEs. Copyright (C) 2001 John Wiley & Sons, Ltd.
C1 Univ Estadual Campinas, Inst Chem, UNICAMP, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, Univ Estadual Campinas, Inst Chem, UNICAMP, CP 6154,
   BR-13083970 Campinas, SP, Brazil.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BOAND G, 1983, J AM CHEM SOC, V105, P2203
   BURINSKY DJ, 1984, J AM CHEM SOC, V106, P2770
   CERDA BA, 1996, J AM CHEM SOC, V118, P11884
   CERDA BA, 1998, J AM CHEM SOC, V120, P2437
   CHEN G, 1996, J AM SOC MASS SPECTR, V7, P619
   CHENG XH, 1993, J AM CHEM SOC, V115, P4844
   COOKS RG, 1998, ACCOUNTS CHEM RES, V31, P379
   COOKS RG, 1999, J MASS SPECTROM, V34, P85
   DANG TT, 1993, INT J MASS SPECTROM, V123, P171
   DERRICK PJ, 1983, MASS SPECTROM REV, V2, P285
   DRAHOS L, 1999, J MASS SPECTROM, V34, P79
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GRESE RP, 1990, J AM SOC MASS SPECTR, V1, P172
   GUO JH, 1999, ANGEW CHEM INT EDIT, V38, P1755
   HANLEY L, 1988, J PHYS CHEM-US, V92, P5803
   JARROLD MF, 1987, J CHEM PHYS, V86, P3876
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
   MA SG, 1997, INT J MASS SPECTROM, V163, P89
   MA SG, 1998, J MASS SPECTROM, V33, P943
   MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
   MCLUCKEY SA, 1983, INT J MASS SPECTROM, V52, P165
   NORRMAN K, 1999, INT J MASS SPECTROM, V182, P381
   NOURSE BD, 1991, INT J MASS SPECTROM, V106, P249
   OHAIR RAJ, 1994, ORG MASS SPECTROM, V29, P151
   SCHABES M, 1992, J CRUSTACEAN BIOL, V12, P1
   SCHROETER K, 1998, EUR J ORG CHEM   APR, P565
   SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
   SHEN WY, 1997, RAPID COMMUN MASS SP, V11, P71
   STOCKIGT D, 1995, INT J MASS SPECTROM, V150, P1
   TAO WA, 1999, ANAL CHEM, V71, P4427
   TAO WA, 2001, ANAL CHEM, V73, P1692
   TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
   VEKEY K, 1997, ANAL CHEM, V69, P1700
   WANG F, 1998, INT J MASS SPECTROM, V180, P195
   WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
   WONG PSH, 1997, J ORGANOMET CHEM, V539, P131
   WRIGHT LG, 1982, INT J MASS SPECTROM, V42, P115
   YANG SS, 1995, J MASS SPECTROM, V30, P807
   YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
   ZAKETT D, 1978, J PHYS CHEM-US, V82, P2359
NR 44
TC 11
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 1076-5174
J9 J MASS SPECTROMETRY
JI J. Mass Spectrom.
PD OCT
PY 2001
VL 36
IS 10
BP 1140
EP 1148
PG 9
SC Chemistry, Organic; Biophysics; Spectroscopy
GA 488MV
UT ISI:000171941000008
ER

PT J
AU Hillebrand, S
   Segala, M
   Buckup, T
   Correia, RRB
   Horowitz, F
   Stefani, V
TI First hyperpolarizability in proton-transfer benzoxazoles:
   computer-aided design, synthesis and study of a new model compound
SO CHEMICAL PHYSICS
LA English
DT Article
DE nonlinear optics; QSPR; hyper-Rayleigh scattering; Stokes shift;
   excited state intramolecular proton transfer; fluorescence
ID NONLINEAR-OPTICAL-PROPERTIES; MOLECULES; CHROMOPHORES; DYES;
   DERIVATIVES; COPOLYMERS; DEPENDENCE; POLYMERS; ESIPT
AB With regard to second-order nonlinear optics (NLO) applications, a new
   class of 2-(2'-hydroxyphenyl)benzoxazoles (HBO) was designed for a
   combination of high first hyperpolarizability, fl, with good
   photothermal stability, in association with a fast excited state
   intramolecular proton transfer (ESIPT) mechanism. Semi-empirical
   optimization of molecular structures and ab initio calculations of
   dipole moments were performed. Clear evidence was found that conditions
   such as conjugation efficiency and electron donor/acceptor strength
   cannot be evaluated separately, due to structural changes in molecular
   spatial distribution. Experimentally, a new fluorescent molecule of the
   HBO family, 2(2'-hydroxy-4'-aminophenyl)-6-nitrobenzoxazole (BO6), was
   synthesized, purified and characterized, including solvent environments
   of distinct polarities. Hyper-Rayleigh scattering, UV-Vis absorption
   and emission spectroscopy, differential scanning calorimetry and
   thermogravimetric analysis of BO6 show a significant beta (213.4 +/-
   25.7 x 10(-30) esu in acetone, at 1064 nm) and thermal stability up to
   270 degreesC. Such results, in this first study of ESIPT dyes for
   second-order NLO to our best knowledge, indicate that the HBO family
   well deserves further attention towards promising application
   materials. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio Grande Sul, Inst Quim, Dept Quim Organ, Lab Novos Mat Organ, BR-91501970 Porto Alegre, RS, Brazil.
   Univ Fed Rio Grande Sul, Ctr Biotecnol Estado Rio Sul, BR-91501970 Porto Alegre, RS, Brazil.
   Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
   Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
RP Stefani, V, Univ Fed Rio Grande Sul, Inst Quim, Dept Quim Organ, Lab
   Novos Mat Organ, Av Bento Goncalves 9500,Caixa Postal 15003,
   BR-91501970 Porto Alegre, RS, Brazil.
CR BHAWALKAR JD, 1996, REP PROG PHYS, V59, P1041
   CAMPO LF, 2000, MACROMOL RAPID COMM, V21, P832
   CENTORE R, 1999, J POLYM SCI POL CHEM, V37, P603
   CLAYS K, 1991, PHYS REV LETT, V66, P2980
   COSTA TMH, IN PRESS J MAT CHEM
   COSTA TMH, 1997, J NON-CRYST SOLIDS, V221, P157
   DELAIRE JA, 2000, CHEM REV, V100, P1817
   DOMINGUES NS, 1997, J CHEM SOC PERK  SEP, P1861
   GARNER R, 1966, J CHEM SOC, P1980
   HOROWITZ F, 2001, J NONCRYST SOLIDS, V284, P79
   HUYSKENS FL, 1998, J CHEM PHYS, V108, P8161
   KANIS DR, 1994, CHEM REV, V94, P195
   KARNA SP, 1991, J COMPUT CHEM, V12, P487
   KONIG K, 2000, SINGLE MOL, V1, P41
   KURTZ HA, 1990, J COMPUT CHEM, V11, P82
   MARDER SR, 1997, NATURE, V388, P845
   MORDZINSKI A, 1982, CHEM PHYS LETT, V90, P122
   MOURA GLC, 1996, CHEM PHYS LETT, V257, P639
   PARK KH, 1998, POLYMER, V39, P7061
   PRASAD PN, 1991, INTRO NONLINEAR OPTI
   PREMVARDHAN L, 1998, CHEM PHYS LETT, V296, P521
   SEGALA M, 1999, J CHEM SOC PERK  JUN, P1123
   SEKINO H, 1986, J CHEM PHYS, V85, P976
   SHANG XM, 1998, J OPT SOC AM B, V15, P854
   SHEAR JB, 1999, ANAL CHEM, V71, A598
   STEFANI V, 1992, DYES PIGMENTS, V20, P97
   STEWART JJP, 1994, MOPAC93 MANUAL REV N
   TSUNEKAWA T, 1992, J PHYS CHEM-US, V96, P10268
   VOGEL A, 1978, VOGELS PRACTICAL ORG
   WURTHNER F, 1993, CHEM PHYS, V173, P305
NR 30
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD NOV 1
PY 2001
VL 273
IS 1
BP 1
EP 10
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 486PW
UT ISI:000171827000001
ER

PT J
AU Furtado, EA
   Milas, I
   Lins, JOMDA
   Nascimento, MAC
TI The dehydrogenation reaction of light alkanes catalyzed by zeolites
SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH
LA English
DT Article
ID MOLECULAR-DYNAMICS; ELECTROPHILIC REACTIONS; ISOBUTANE CRACKING;
   HYDROXYL-GROUPS; ACIDIC ZEOLITE; AB-INITIO; SILICALITE; METHANE;
   SIMULATION; ACTIVATION
AB The several steps of the dehydrogenation reactions of ethane, propane
   and isobutane were studied by theoretical methods. Molecular dynamics
   simulation techniques have been used to study diffusion of the alkanes
   through the zeolite HZMS-5 framework. Adsorption energies were computed
   by the methods of molecular mechanics, molecular dynamics and
   Monte-Carlo. Molecular dynamics was also used to determine the
   preferred adsorption sites of the alkanes in silicalite and HZMS-5. The
   mechanism of the chemical reactions at the zeolite's acid site was
   investigated at the DFT(B3LYP) level of calculation using 6-31G** and
   6-311G** basis sets, and 3 and 5 T cluster models to represent the
   zeolite. GIAO/B3LYP calculations were performed on the 3 and 5 T
   alkyalkoxides and the results were compared with experimental C-13 NMR
   data.
C1 Univ Fed Rio de Janeiro, Dept Quim Fis, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Dept Quim Fis, Inst Quim,
   Cidade Univ,CT Bloco A,Sala 412, BR-21949900 Rio De Janeiro, Brazil.
CR *SCHROD INC, 1998, JAGUAR 3 5
   ALEEN MP, 1987, COMPUTER SIMULATION
   ARONSON MT, 1989, J AM CHEM SOC, V111, P840
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
   BLASZKOWSKI SR, 1996, J PHYS CHEM-US, V100, P3463
   CARO J, 1985, J CHEM SOC FARAD T 1, V81, P2541
   CORMA A, 1994, J CATAL, V145, P171
   CUSUMANO JA, 1992, IUPAC CHEM 21 CENTUR
   CZJZEK M, 1992, J PHYS CHEM-US, V96, P1535
   DUBSKY J, 1979, J MOL CATAL, V6, P321
   DUMONT D, 1995, ZEOLITES, V15, P650
   ESTEVES PM, 1999, THESIS U FEDERAL DO
   EVLETH EM, 1996, J PHYS CHEM-US, V100, P11368
   FRISCH MJ, 1995, GAUSSIAN94 REVISION
   HAW JF, 1989, J AM CHEM SOC, V111, P2052
   HUFFON JR, 1995, MICROPOROUS MATER, V5, P39
   JEANVOINE Y, 1998, J PHYS CHEM B, V102, P5573
   JIRAK Z, 1980, J PHYS CHEM SOLIDS, V41, P1089
   JOBIC H, 1992, ZEOLITES, V12, P146
   JUNE RL, 1990, J PHYS CHEM-US, V94, P1508
   JUNE RL, 1990, J PHYS CHEM-US, V94, P8232
   JUNE RL, 1992, J PHYS CHEM-US, V96, P1051
   KAZANSKY VB, 1996, APPL CATAL A-GEN, V146, P225
   KERR GT, 1989, SCI AM, V261, P100
   KRAMER GJ, 1993, J AM CHEM SOC, V115, P2887
   LINS JOMDL, 1996, THEOCHEM-J MOL STRUC, V371, P237
   MAYO SL, 1990, J PHYS CHEM-US, V94, P8897
   METROPOLIS N, 1953, J CHEM PHYS, V21, P1081
   MORTIER WJ, 1976, J CATAL, V45, P367
   NARBESHUBER TF, 1997, J CATAL, V172, P127
   NICHOLAS JB, 1993, J PHYS CHEM-US, V97, P4149
   NOVAK AK, 1991, J PHYS CHEM-US, V95, P848
   OLAH GA, 1971, J AM CHEM SOC, V93, P1251
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
   OLSON DH, 1969, J CATAL, V13, P221
   OLSON DH, 1981, J PHYS CHEM-US, V85, P2238
   OMALLEY PJ, 1988, J PHYS CHEM-US, V92, P3005
   RIBEIRO FR, 1984, ZEOLITES SCI TECHNOL
   RICHARDS RE, 1987, LANGMUIR, V3, P335
   SCHRODER KP, 1992, CHEM PHYS LETT, V188, P320
   SMIT B, 1994, SCIENCE, V264, P1118
   STACH H, 1986, ZEOLITES, V6, P74
   STEFANADIS C, 1991, J MOL CATAL, V67, P363
   SWOPE WC, 1994, J PHYS CHEM-US, V98, P12938
   TITILOYE JO, 1991, J PHYS CHEM-US, V95, P4038
   VANBEEST BWH, 1990, PHYS REV LETT, V64, P1955
   VANBEKKUM H, 1991, STUDIES SURFACE SCI, V58, P12
   VAUGHN DEW, 1988, CHEM ENG PROG, V84, P25
   VETRIVEL R, 1989, J CHEM SOC FARAD T 2, V85, P497
   VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13719
   WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
   ZARDKOOHI M, 1987, J AM CHEM SOC, V109, P5278
   ZYGMUNT SA, 2000, J PHYS CHEM B, V104, P1944
NR 54
TC 7
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA PO BOX 10 11 61, D-69451 BERLIN, GERMANY
SN 0031-8965
J9 PHYS STATUS SOLIDI A-APPL RES
JI Phys. Status Solidi A-Appl. Res.
PD SEP 16
PY 2001
VL 187
IS 1
BP 275
EP 288
PG 14
SC Physics, Condensed Matter
GA 480JJ
UT ISI:000171458000033
ER

PT J
AU Castellano, EE
   Piro, OE
   Caram, JA
   Mirifico, MV
   Aimone, SL
   Vasini, EJ
   Marquez-Lucero, A
   Glossman-Mitnik, D
TI Crystallographic study and molecular orbital calculations of
   thiadiazole derivatives. Part 3: 3,4-diphenyl-1,2,5-thiadiazoline
   1,1-dioxide, 3,4-diphenyl-1,2,5-thiadiazolidine 1,1-dioxide and
   4-ethoxy-5-methyl-3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE 1,2,5-thiadiazole 1,1-dioxide derivatives; ab initio MO calculations;
   single-crystal X-ray diffraction; DFT; sensitivity analysis
ID DENSITY-FUNCTIONAL THEORY; SOFT ACIDS; CHEMICAL-REACTIVITY;
   CRYSTAL-STRUCTURE; GAS-PHASE; HARDNESS; BASES; ELECTROREDUCTION;
   ELECTROCHEMISTRY; DESCRIPTORS
AB Single-crystal X-ray diffraction studies are reported for
   3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide (I),
   3,4-diphenyl-1,2,5-thiadiazolidine 1,1-dioxide(II) and
   4-ethoxy-5-methyl-3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide (III).
   Ab initio MO calculations on the electronic structure, conformation and
   reactivity of these compounds are also reported and compared with the
   X-ray results. A charge sensitivity analysis is performed on the
   results applying concepts derived from density functional theory,
   obtaining several sensitivity coefficients such as the molecular
   energy, net atomic charges, global and local hardness, global and local
   softness and Fukui functions. With these results and the analysis of
   the dipole moment and the total electron density and electrostatic
   potential maps, several conclusions have been inferred about the
   preferred sites of chemical reaction of the studied compounds. (C) 2001
   Elsevier Science B.V. All rights reserved.
C1 LAQUICOM, CIMAV, Chihuahua 31109, Chih, Mexico.
   Univ Sao Paulo, Dept Fis, Inst Fis & Quim Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
   Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, RA-1900 La Plata, Argentina.
   Consejo Nacl Invest Cient & Tecn, PROFIMO, RA-1900 La Plata, Argentina.
   Natl Univ La Plata, INIFTA, CONICET, RA-1900 La Plata, Argentina.
RP Glossman-Mitnik, D, LAQUICOM, CIMAV, Miguel de Cervantes 120,Complejo
   Ind Chihuahua, Chihuahua 31109, Chih, Mexico.
CR AIMONE SL, 2000, J PHYS ORG CHEM, V13, P277
   AIMONE SL, 2000, TETRAHEDRON LETT, V41, P3531
   AMATO JS, 1982, J AM CHEM SOC, V104, P1375
   BACHRACH SM, 1994, REV COMPUTATIONAL CH, V5
   BAETEN A, 1994, J MOL STRUCT THEOCHE, V306, P203
   BAETEN A, 1995, CHEM PHYS LETT, V235, P17
   BAKER RJ, 1980, J ORG CHEM, V45, P482
   BUSING WR, 1957, ACTA CRYSTALLOGR, V10, P180
   CALDERON CE, 1979, ACTA CRYSTALLOGR B, V35, P2795
   CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P2296
   CARAM JA, 1994, ELECTROCHIM ACTA, V39, P939
   CASTELLANO EE, 1998, J PHYS ORG CHEM, V11, P91
   CASTELLANO EE, 2001, J MOL STRUCT, V562, P157
   CROMER DT, 1974, INT TABLES CRYSTALLO, V4, P71
   CROMER DT, 1974, INT TABLES XRAY CRYS, V4, P149
   DEPROFT F, 1994, J PHYS CHEM-US, V98, P5227
   ESTEBANCALDERON C, 1982, ACTA CRYSTALLOGR B, V38, P1340
   FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
   FOCESFOCES C, 1975, ACTA CRYSTALLOGR B, V31, P2310
   FOCESFOCES C, 1977, ACTA CRYSTALLOGR B, V33, P910
   FRENZ AB, 1983, ENRAFNONIUS STRUCTUR
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   FUKUI K, 1973, THEORY ORIENTATION S
   GAZQUEZ JL, 1994, J PHYS CHEM-US, V98, P4591
   GAZQUEZ JL, 1998, THEORET COMPUT CHEM, V5, P135
   GLOSSMAN MD, 1995, THEOCHEM-J MOL STRUC, V330, P385
   GLOSSMAN MD, 1996, ATUALIDADES FISICOQU
   GLOSSMAN MD, 1997, THEOCHEM-J MOL STRUC, V390, P67
   JOHNSON CK, 1965, ORNL3794 ORTEP
   LANGENAEKER W, 1992, J MOL STRUCT THEOCHE, V259, P317
   LANGENAEKER W, 1995, J PHYS CHEM-US, V99, P6424
   LIPKOWITZ KB, 1990, REV COMPUTATIONAL CH, V1
   MIRIFICO MV, 1991, ELECTROCHIM ACTA, V36, P167
   MIRIFICO MV, 1991, INT J CHEM KINET, V23, P197
   MIRIFICO MV, 1993, J PHYS ORG CHEM, V6, P341
   MIRIFICO MV, 1995, AN QUIM, V91, P557
   MITNIK DG, 2001, INT J QUANTUM CHEM, V81, P105
   MITNIK DG, 2001, J MOL STRUC-THEOCHEM, V535, P39
   MITNIK DG, 2001, J MOL STRUC-THEOCHEM, V536, P41
   MITNIK DG, 2001, J MOL STRUC-THEOCHEM, V538, P201
   MULLEN K, 1998, ELECT MAT OLIGOMER A
   MULLIKEN RS, 1934, J CHEM PHYS, V2, P782
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P2338
   NALWA HS, 1997, HDB ORGANIC CONDUCTI
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PARR RG, 1995, ANNU REV PHYS CHEM, V46, P701
   PEARSON RG, 1963, J AM CHEM SOC, V85, P3533
   PEARSON RG, 1966, SCIENCE, V151, P172
   PEARSON RG, 1987, J CHEM EDUC, V64, P561
   POLITZER P, 1981, CHEM APPL ATOMIC MOL
   ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
   ROY RK, 1998, J PHYS CHEM A, V102, P3746
   ROY RK, 1998, J PHYS CHEM A, V102, P7035
   SALZNER U, 1997, J COMPUT CHEM, V18, P1943
   SHELDRICK GM, 1976, SHELX PROGRAM CRYSTA
   SHELDRICK GM, 1990, ACTA CRYSTALLOGR A, V46, P467
   SHELDRICK GM, 1993, SHELXL 93 PROGRAM CR
   SVARTMAN EL, 1999, CAN J CHEM, V77, P511
   WEINSTOCK LM, 1984, COMPREHENSIVE HETERO, V6
   YANG W, 1986, J AM CHEM SOC, V108, P5708
   ZHOU Z, 1988, TETRAHEDRON LETT, V29, P4843
NR 63
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD OCT 3
PY 2001
VL 597
IS 1-3
BP 163
EP 175
PG 13
SC Chemistry, Physical
GA 478GG
UT ISI:000171335000018
ER

PT J
AU Ellena, J
   Goeta, AE
   Howard, JAK
   Punte, G
TI Role of the hydrogen bonds in nitroanilines aggregation: Charge density
   study of 2-methyl-5-nitroaniline
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID X-RAY-DIFFRACTION; INTERMOLECULAR INTERACTIONS; ELECTRON-DENSITY;
   TOPOLOGICAL ANALYSIS; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURE;
   DIHYDROGEN BOND; 100 K; HYPERPOLARIZABILITIES; UREA
AB The electron charge distribution of 2-Methyl-5-nitroaniline has been
   studied from high-resolution singlecrystal X-ray data at 100 K, and ab
   initio calculations which include X-ray structure factors computed from
   a superposition of ab initio molecular electron densities. Using the
   Hansen and Coppens' rigid pseudoatom multipolar model refinements were
   performed on both the experimental and the theoretical X-ray data sets
   from which, molecular atomic charges and dipolar moments were obtained.
   To understand the nature and the magnitude of the intermolecular
   interactions. the Atoms in Molecules theory was used to investigate the
   topology of the electron density of the in-crystal, both experimental
   interacting as well as theoretical noninteracting, and in-vacuum
   molecules. A meticulous analysis of the topological properties of the
   experimental charge density and of its Laplacian indicates, contrary to
   expectations, a two center character of the N-(HO)-O-. . . synthons
   that induce the known polar chain formation in nitroanilines and the
   presence of a C-methyl-H-O interaction further strengthening the
   chains. It also shows the attractive nature of the rather strong
   C-(HO)-O-. . . interactions that help the head-to-tail arrangement of
   the chains. They build two intermolecular six membered hydrogen bonded
   rings, embracing a N-(HO)-O-. . . interaction, that originate
   centrosymmetric dimers which impair the macroscopic second harmonic
   generation of the title compound. The authenticity of a previously
   proposed closed shell C-aryl-H(. . .)pi interaction between adjacent
   chains has been confirmed. The latter has not been observed in
   m-nitroaniline, 2-methyl-4-aniline or other related compounds with
   chains built from similar N-(HO)-O-. . . synthons and assembled
   head-to-head. Crystallization causes a molecular electric dipolar
   moment higher than that of the free molecule, the latter being
   coincident with the experimental value in solution, and with the one
   calculated from the refinement of the theoretical X-ray data. It also
   induces changes in the charge density distribution and its topology,
   and an enhancement of the intramolecular conjugation that can be
   related to a molecular aggregation mechanism ruled by the N-(HO)-O-. .
   . synthon. These findings strongly point to the existence of
   cooperative effects.
C1 Univ Durham, Dept Chem, Durham DH1 3LE, England.
   Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, IFLP & LANADI, RA-1900 La Plata, Argentina.
   Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
RP Goeta, AE, Univ Durham, Dept Chem, South Rd, Durham DH1 3LE, England.
CR *SIEM AN XRAY INST, 1996, SAINT DAT RED SOFTW
   *SIEM AN XRAY INST, 1996, SMART DAT COLL SOFTW
   AAKEROY CB, 1997, ACTA CRYSTALLOGR B 4, V53, P569
   ABRAMOV YA, 2000, ACTA CRYSTALLOGR A 6, V56, P585
   ABRAMOV YA, 2000, J MOL STRUC-THEOCHEM, V529, P27
   ALLEN FH, 1999, NEW J CHEM, P25
   BADER RFW, 1990, ATOMS MOL QUANTUM TH
   BADER RFW, 1998, J PHYS CHEM A, V102, P7314
   BARON M, 1997, COMMUNICATION
   BERNSTEIN J, 1994, STRUCTURE CORRELATIO, V2, P432
   BIRKEDAL H, 1999, ACTA CRYSTALLOGR A, V55, P117
   BLESSING RH, 1987, CRYSTALLOGR REV, V1, P3
   BLUDSKY O, 1996, J CHEM PHYS, V105, P11042
   BOSSHHARD C, 1995, ADV NONLINEAR OPTICS, V1
   BURGI H, 1994, STRUCTURAL CORRELATI
   CHEN LR, 1995, ACTA CRYSTALLOGR B 6, V51, P1081
   CLEMENTI E, 1974, ATOM DATA NUCL DATA, V14, P177
   COPPENS P, 1982, ELECT DISTRIBUTIONS
   COPPENS P, 1997, XRAY CHARGE DENSITIE, P271
   COSIER J, 1986, J APPL CRYSTALLOGR, V19, P105
   CREMER D, 1975, J AM CHEM SOC, V97, P1354
   DANIEL C, 1990, CHEM PHYS LETT, V171, P209
   DESIRAJU GR, 1997, CHEM COMMUN     0821, P1475
   ELLENA J, 1996, J CHEM CRYSTALLOGR, V26, P319
   ELLENA J, 1998, THESIS EXACTAS U NAC
   ELLENA J, 1999, ACTA CRYSTALLOGR B 2, V55, P209
   ESPINOSA E, 1999, ACTA CRYSTALLOGR B 4, V55, P563
   ETTER MC, 1990, ACCOUNTS CHEM RES, V23, P120
   FEIL D, 1991, APPL CHARGE DENSITY
   FERRETTI V, 1993, J PHYS CHEM-US, V97, P13568
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GATTI C, 1994, J CHEM PHYS, V101, P10686
   GOETA AE, 2000, CHEM MATER, V12, P3342
   GOPAL R, 1980, CAN J CHEM, V58, P658
   HAMADA T, 1996, J PHYS CHEM-US, V100, P8777
   HANSEN NK, 1978, ACTA CRYSTALLOGR A, V34, P909
   HEHRE WJ, 1969, J CHEM PHYS, V51, P2657
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HIRSHFELD FL, 1976, ACTA CRYSTALLOGR A, V32, P239
   HOWARD ST, 1992, J CHEM PHYS, V97, P5616
   HUYSKENS F, 1998, J PHYS CHEM-US, V108, P8
   ISAACS ED, 2000, J PHYS CHEM SOLIDS, V61, P403
   JEFFREY G, 1997, INTRO HYDROGEN BONDI
   KIRSCHBAUM K, 1997, J APPL CRYSTALLOGR 4, V30, P514
   KLOOSTER WT, 1999, J AM CHEM SOC, V121, P6337
   KOCH U, 1995, J PHYS CHEM-US, V99, P9747
   KORITSANSZKY T, 1997, COMPUTER PROGRAM PAC
   LAIDIG KE, 1994, COMMUNICATION
   LEVINE BF, 1979, J APPL PHYS, V50, P2523
   LIPSCOMB GF, 1981, J CHEM PHYS, V75, P1509
   MARK TCW, 1965, ACTA CRYSTALLOGR, V18, P68
   MASUNOV A, 1999, J PHYS CHEM A, V103, P178
   MASUNOV A, 2000, J PHYS CHEM B, V104, P806
   MOTHERWELL WDS, 2000, ACTA CRYSTALLOGR B 5, V56, P857
   NOVOA JJ, 2000, CHEM PHYS LETT, V318, P345
   PANUNTO TW, 1987, J AM CHEM SOC, V109, P7786
   PLATTS JA, 1996, J CHEM PHYS, V105, P4668
   POPELIER PLA, 1998, J PHYS CHEM A, V102, P1873
   ROZAS I, 1997, J PHYS CHEM A, V101, P9457
   ROZAS I, 1998, J PHYS CHEM A, V102, P9925
   SARMA JARP, 1995, CHEM MATER, V7, P1843
   SAUNDERS VR, 1998, CRYSTAL98 USERS MANU
   SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
   SHARMA CVK, 1994, J CHEM SOC P2, P2345
   SHELDRICK GM, 1995, XPREP SHELXTL 5 04 V
   SHELDRICK GM, 1997, SADABS EMPIRICAL ABS
   SIM F, 1993, J PHYS CHEM-US, V97, P1158
   SPACKMAN MA, 1999, ACTA CRYSTALLOGR A 1, V55, P30
   STEWART Y, 1991, NATO ASI SERIES B, V259
   SU ZW, 1992, ACTA CRYSTALLOGR A, V48, P188
   TANG TH, 1996, CAN J CHEM, V74, P1162
   TRUEBLOOD KN, 1961, ACTA CRYSTALLOGR, V14, P1009
   TURI L, 1996, J PHYS CHEM-US, V100, P9638
   VOLKOV A, 2000, ACTA CRYSTALLOGR A 3, V56, P252
   VOLKOV A, 2000, ACTA CRYSTALLOGR A 4, V56, P332
   VRIES RY, 2000, ACTA CRYSTALLOGR B, V56, P118
   YUFIT DS, 2000, J CHEM SOC PERK T 2, P249
   ZAVODNIK V, 1999, ACTA CRYSTALLOGR B 1, V55, P45
   ZHANG Y, 1999, CHEM COMMUN, P2425
NR 79
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 27
PY 2001
VL 105
IS 38
BP 8696
EP 8708
PG 13
SC Chemistry, Physical
GA 476EW
UT ISI:000171214100014
ER

PT J
AU Ueno, LT
   Ornellas, FR
TI Theoretical investigation of the initial steps of the adsorption of N
   atoms on Si(100)-2x1
SO SURFACE SCIENCE
LA English
DT Letter
DE density functional calculations; surface chemical reaction; silicon;
   nitrogen atom; silicon nitride
ID SILICON-NITRIDE FORMATION; AB-INITIO; CERAMIC MATERIALS; MICROWAVE
   PLASMA; NH3; SURFACE; POWDER; FILMS; SPECTROSCOPY; DIFFRACTION
AB Structural, energetics, and mechanistics aspects of initial steps of
   the reaction of a N atom with Si(1 0 0)-2 x 1 modeled by the Si9H12 + N
   system are reported. Hybrid density functional B3LYP calculations
   predict a barrierless first step leading to an adsorbate where N is
   bound to one of the dimer Si. Two possible activated routes for
   internal rearrangements were found, with that leading to the
   incorporation of Si below the first layer predicted to be kinetically
   dominant (98%) under the experimental conditions. This structure and
   frequency calculations are consistent with the experimental finding of
   a planar NSi3 moeity and with the experimental SiN asymmetric
   stretching frequency of the NSi3 groups. (C) 2001 Elsevier Science B.V.
   All rights reserved.
C1 Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05513970 Sao Paulo, SP, Brazil.
RP Ornellas, FR, Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, CP
   26077, BR-05513970 Sao Paulo, SP, Brazil.
CR ALDINGER F, 1987, ANGEW CHEM INT EDIT, V26, P371
   BAUMVOL IJR, 1995, PHYS STATUS SOLIDI B, V192, P253
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BIROT M, 1995, CHEM REV, V95, P1443
   BJORKQVIST M, 1997, SURF SCI, V394, L155
   BOZSO F, 1986, PHYS REV LETT, V57, P1185
   ERBETTA D, 2000, J CHEM PHYS, V113, P10744
   FATTAL E, 1997, J PHYS CHEM B, V101, P8658
   FRANCL MM, 1982, J CHEM PHYS, V77, P3654
   FRISCH MJ, 1998, GAUSSIAN 98
   HAMERS RJ, 1988, J VAC SCI TECHNOL A, V6, P508
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
   HECKINGBOTTOM R, 1973, SURF SCI, V36, P594
   HERMAN IP, 1989, CHEM REV, V89, P1323
   HUBBARD CR, 1975, J APPL CRYSTALLOGR, V8, P45
   KONECNY R, 1997, J PHYS CHEM B, V101, P10983
   LANGE H, 1991, ANGEW CHEM INT EDIT, V30, P1579
   LEE C, 1988, PHYS REV B, V37, P785
   LEE WC, 1997, J MATER RES, V12, P805
   LIU YC, 1997, APPL SURF SCI, V121, P233
   MONTEIRO OR, 1996, J MATER SCI, V31, P6029
   ORNELLAS FR, 1996, J PHYS CHEM-US, V100, P10919
   ORNELLAS FR, 1996, J PHYS CHEM-US, V100, P16155
   ORNELLAS FR, 1997, B CHEM SOC JPN, V70, P2057
   ORNELLAS FR, 1997, J CHEM PHYS, V106, P151
   PAN JS, 1996, VACUUM, V47, P1495
   PARK KH, 1992, J CHEM PHYS, V97, P2742
   PENG CY, 1996, J COMPUT CHEM, V17, P49
   RUHONG Z, 1991, SURF SCI, V249, P129
   SEGAL D, 1997, J MATER CHEM, V7, P1297
   STEFANOV BB, 1997, SURF SCI, V389, L1159
   TANAKA S, 1987, SURF SCI, V191, L756
   UENO LT, IN PRESS
   UENO LT, 2001, J BRAZIL CHEM SOC, V12, P99
   WATANABE T, 1998, J ELECTROCHEM SOC, V145, P4252
NR 35
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD SEP 10
PY 2001
VL 490
IS 3
BP L637
EP L643
PG 7
SC Chemistry, Physical
GA 473XW
UT ISI:000171075300003
ER

PT J
AU Rocha, WR
   De Almeida, KJ
   Coutinho, K
   Canuto, S
TI The electronic spectrum of N-methylacetamide in aqueous solution: a
   sequential Monte Carlo/quantum mechanical study
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CIRCULAR-DICHROISM CALCULATIONS; AMIDE-I MODE; FAR-ULTRAVIOLET;
   HYDROGEN-BOND; AB-INITIO; WATER; TRANSITION; LIQUID; SPECTROSCOPY;
   CHROMOPHORE
AB Sequential Monte Carlo/quantum mechanical (S-MC/QM) calculations are
   performed to study the solvent effects on the electronic transitions of
   N-methylacetamide (NMA) in aqueous solution. Full quantum mechanical
   INDO/CIS calculations are performed in the super-molecular clusters
   generated by Monte Carlo (MC) simulation. The largest calculation
   involves the ensemble average of 75 quantum mechanical results obtained
   with the NMA solute surrounded by 150 water solvent molecules. After
   extrapolation to the bulk limit we find that the n --> pi* transition
   suffers a blue shift of 1755 cm(-1) upon solvation and the pi --> pi*
   transition undergoes a red shift of 1180 cm(-1), in good agreement with
   the experimental findings. (C) 2001 Published by Elsevier Science B.V.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Fed Juiz Fora, ICE, Dept Quim, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
   Univ Fed Minas Gerais, Dept Quim, ICEx, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
   Univ Mogi Cruzes, CCET, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 20516, BR-05315970 Sao Paulo,
   Brazil.
CR AKIYAMA M, 1999, SPECTROCHIM ACTA A, V56, P137
   ALLEN MP, 1987, COMPUTER SIMULATION
   BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
   BESLEY NA, 1998, J PHYS CHEM A, V102, P10791
   BESLEY NA, 2000, J MOL STRUC-THEOCHEM, V506, P161
   CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
   CLARK LB, 1995, J AM CHEM SOC, V117, P7974
   COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
   COUTINHO K, 1997, MONTE CARLO PROGRAM
   COUTINHO K, 2000, J CHEM PHYS, V112, P9874
   FILLAUX F, 1976, CHEM PHYS LETT, V39, P547
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   FURER VL, 1997, J MOL STRUCT, V435, P151
   GUO H, 1994, J PHYS CHEM-US, V98, P7104
   HAN WG, 1996, J PHYS CHEM-US, V100, P3942
   HIRST JD, 1997, J PHYS CHEM A, V101, P4821
   HIRST JD, 1998, J CHEM PHYS, V109, P782
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   JORGENSEN WL, 1988, J AM CHEM SOC, V110, P4212
   KAYA K, 1967, THEOR CHIM ACTA, V7, P124
   KITANO M, 1973, B CHEM SOC JPN, V46, P384
   LUDWIG R, 1997, J PHYS CHEM A, V101, P8861
   NIELSEN EB, 1967, J PHYS CHEM-US, V71, P2297
   RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
   ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
   ROSENHECK K, 1961, P NATL ACAD SCI USA, V47, P1775
   SCHWEITZERSTENNER R, 1998, J PHYS CHEM A, V102, P118
   SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P12190
   SIELER G, 1997, J AM CHEM SOC, V119, P1720
   TORII H, 1998, J PHYS CHEM B, V102, P309
   VANHOLDE KE, 1998, PRINCIPLES PHYSICAL
   WOODY RW, 1995, METHOD ENZYMOL, V246, P34
   WOODY RW, 1999, J CHEM PHYS, V111, P2844
   WOODY RW, 1999, J PHYS CHEM B, V103, P8984
   ZERNER MC, ZINDO SEMIEMPIRICAL
NR 35
TC 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 7
PY 2001
VL 345
IS 1-2
BP 171
EP 178
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 473UK
UT ISI:000171066300027
ER

PT J
AU Carneiro, JWD
   Taft, CA
   Silva, CHTDE
   Tostes, JGR
   Seidl, PR
   Pinto, PSD
   Costa, VEU
   Alifantes, J
TI Ab initio and density functional study of the
   5-pentacyclo[6.2.1.1(3,6).0(2,7).0(4,10)]dodecyl cation. A symmetrical
   mu-hydride bridged carbocation
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID HALF-CAGE PENTACYCLODODECANE; 2-NORBORNYL CATION; FREQUENCIES;
   DERIVATIVES; EXCHANGE
AB MP2/6-31g(d,p) and B3LYP/6-31g(d,p) calculations for the
   pentacyclo[6.2.1.1(3,6).0(2,7).0(4,10)]dodecyl cation reveal two minima
   on the potential energy surface. The most stable minimum is the
   g-hydride bridged cation 2. The second minimum is the two-electron
   three-center bonded structure 3. At MP2/6-31g(d,p) 2 is only 0.2
   kcal/mol more stable than 3, but at B3LYP/6-31g(d,p) this energy
   difference increases to 3.3 kcal/mol. The energy difference between 2
   and 3 is only 3.8 kcal/mol. Solvent effect does not affect these
   numbers significantly. This low energy barrier may account for the
   product distribution observed on solvolysis of pentacyclic derivatives.
   (C) 2001 Elsevier Science B.V. All rights reserved.
C1 CBPF, Dept Mat Condensada, BR-22290180 Rio De Janeiro, Brazil.
   Univ Fed Fluminense, Inst Quim, Dept Quim Geral & Inorgan, BR-24020150 Niteroi, RJ, Brazil.
   Univ Estadual Norte Fluminense, Lab Ciecias Quim, Ctr Ciencias & Tecnol, BR-28015620 Sao Jose Dos Campos, RJ, Brazil.
   Univ Fed Rio de Janeiro, Escola Quim, Dept Proc Organ, BR-21949900 Rio De Janeiro, Brazil.
   Inst Militar Engn, Dept Engn Quim, BR-22290270 Rio De Janeiro, Brazil.
   Univ Fed Rio Grande Sul, Inst Quim, Dept Quim Organ, BR-91509900 Porto Alegre, RS, Brazil.
RP Taft, CA, CBPF, Dept Mat Condensada, Rua Dr Xavier Sigaud 150,
   BR-22290180 Rio De Janeiro, Brazil.
CR BATTISTE MA, 1977, J CHEM SOC CHEM COMM, P941
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BIRD CW, 1980, TETRAHEDRON, V36, P525
   BRUCK P, 1960, CHEM IND-LONDON, P405
   BUZEK P, 1991, J CHEM SOC CHEM COMM, P671
   CHOW TJ, 1998, J PHYS ORG CHEM, V11, P871
   COSTA VEU, 1998, TETRAHEDRON-ASYMMETR, V9, P2579
   COSTA VEU, 2000, J MOL STRUCT, V519, P37
   DEVRIES L, 1960, J AM CHEM SOC, V82, P5363
   ERMER O, 1985, J AM CHEM SOC, V107, P2330
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FRANCL MM, 1982, J CHEM PHYS, V77, P3654
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   HARIHARAN PC, 1972, CHEM PHYS LETT, V16, P217
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HOWE RK, 1972, J ORG CHEM, V37, P1473
   LEE C, 1988, PHYS REV B, V37, P785
   MOLLER C, 1934, PHYS REV, V46, P618
   PERERA SA, 1996, J AM CHEM SOC, V118, P7849
   SCHLEYER PV, 1989, J AM CHEM SOC, V111, P5475
   SCHLEYER PV, 1993, ANGEW CHEM INT EDIT, V32, P1606
   SCHREINER PR, 1995, J AM CHEM SOC, V117, P2663
   SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
   SEIDL PR, 1990, J MOL STRUCT THEOCHE, V204, P183
   SIEBER S, 1993, J AM CHEM SOC, V115, P259
   SOLOWAY SB, 1960, J AM CHEM SOC, V82, P5377
   SORENSEN TS, 1997, STABLE CARBOCATION C, CH4
   TAFT CA, 1996, CHEM PHYS LETT, V248, P158
NR 29
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 7
PY 2001
VL 345
IS 1-2
BP 189
EP 194
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 473UK
UT ISI:000171066300030
ER

PT J
AU Fonseca, TL
   Castro, MA
   Cunha, C
   Amaral, OAV
TI Ab initio polarizabilities calculations of singly charged polyacetylene
   oligomers
SO SYNTHETIC METALS
LA English
DT Article
DE polarizability; polyacetylene oligomers; charged soliton
ID VARIATIONAL PERTURBATIONAL TREATMENT; STATIC FIRST HYPERPOLARIZABILITY;
   NONLINEAR-OPTICAL PROPERTIES; CONJUGATED CHAINS;
   LINEAR-POLARIZABILITIES; ELECTRON CORRELATION; LOCAL VIEW; POLYENES;
   SOLITONS; ABINITIO
AB We present results for the static longitudinal linear polarizability
   and second-order hyperpolarizability of small polyacetylene chains
   bearing positively and negatively charged solitons, obtained through
   the second-order Moller-Plesset perturbation theory (MP2) method.
   Hartree-Fock (HF) calculations for these properties was performed only
   for negatively charged chains. The standard 6-31G basis set was used in
   all calculations. Our ab initio calculations showed that, regarding
   singly charged structures, only the second hyperpolarizability is
   affected by the ionization state. For both, positive and negative
   structures, it is shown that the electron correlation effect enhances
   the linear polarizability, and even more markedly the second
   hyperpolarizabilities. (C) 2001 Elsevier Science B.V. All rights
   reserved.
C1 Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
RP Fonseca, TL, Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
CR BOUDREAUX DS, 1983, PHYS REV B, V28, P6927
   CHAMPAGNE B, 1997, J CHEM PHYS, V107, P5433
   DEMELO CP, 1987, CHEM PHYS LETT, V140, P537
   DEMELO CP, 1988, J CHEM PHYS, V88, P2558
   DEMELO CP, 1988, J CHEM PHYS, V88, P2567
   DEMELO CP, 1996, CHEM PHYS LETT, V28, P261
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GESKIN VM, 1998, J CHEM PHYS, V109, P6163
   GESKIN VM, 1999, SYNTHETIC MET, V101, P488
   HURST GJB, 1988, J CHEM PHYS, V89, P385
   JACQUEMIN D, 1998, CHEM PHYS LETT, V284, P24
   JACQUEMIN D, 1998, THEOCHEM-J MOL STRUC, V425, P69
   MADER SR, 1994, SCIENCE, V265, P632
   MCLEAN AD, 1967, J CHEM PHYS, V47, P1927
   MEYERS F, 1994, J AM CHEM SOC, V116, P10703
   PRASAD P, 1991, INTRO NONLINEAR OPTI
   ROBINS KA, 1995, SYNTHETIC MET, V71, P1671
   SILVA DA, 1999, SYNTHETIC MET, V102, P1584
   TOTO JL, 1995, CHEM PHYS LETT, V245, P660
   TOTO JL, 1995, J CHEM PHYS, V102, P8048
   TOTO TT, 1995, CHEM PHYS LETT, V244, P59
   VILLAR HO, 1988, J CHEM PHYS, V88, P2859
   VILLAR HO, 1988, PHYS REV B, V37, P2520
   VILLESUZANNE A, 1992, J CHEM PHYS, V96, P495
NR 24
TC 5
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD AUG 22
PY 2001
VL 123
IS 1
BP 11
EP 15
PG 5
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
   Polymer Science
GA 472EH
UT ISI:000170970200002
ER

PT J
AU Junqueira, GMA
   Rocha, WR
   De Almeida, WB
   Dos Santos, HF
TI Theoretical analysis of the oxocarbons: structure and spectroscopic
   properties of croconate ion and its coordination compound with lithium
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID DIFFERENTIAL-OVERLAP TECHNIQUE; INTERMEDIATE NEGLECT; MONTE-CARLO;
   TRANSITION; COMPLEXES; DIANIONS; FORMALDEHYDE; WATER
AB Ab initio methods were used in conjunction with Monte Carlo simulation
   to analyze the structure and spectroscopic properties of the croconate
   ion in the gas phase and in aqueous solution. The infrared and Raman
   spectra were calculated and band assignments were made showing a good
   agreement with experiment. The electronic spectrum of the croconate ion
   was calculated in the gas phase and in aqueous solution, using a
   sequential Monte Carlo/quantum mechanical approach, taking into account
   the solvent and counter ion effects. The electronic spectrum for the
   free croconate ion in aqueous solution showed two transitions at 479
   and 468 nm when the first solvation shell is considered. These
   transitions were not sensitive to additional solvent molecules beyond
   the first solvation shell. The experimental electronic spectrum was
   only reproduced when the combined effects of the solvent and counter
   ion were taken into account. The calculated spectrum for the
   cis-[Li-2(C5O5)(H2O)(21)] complex showed two transitions at 383 and 365
   nm, in agreement with the experimental observations of 372 and 351 nm.
   These results strongly suggest that in order to reproduce the
   experimental electronic spectrum of the oxocarbons in solution, we must
   take into account the combined effects of the solvent and the counter
   ions. A new proposal for the interaction of Li+ with the croconate
   anion in solution, based on the theoretical electronic spectra, is also
   discussed.
C1 Univ Fed Juiz de Fora, ICR, Dept Quim, NEQC, BR-36036330 Juiz de Fora, MG, Brazil.
   Univ Fed Minas Gerais, ICEx, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, ICR, Dept Quim, NEQC, Campus
   Martelos, BR-36036330 Juiz de Fora, MG, Brazil.
CR 1992, HDB CHEM PHYSICS
   AIHARA J, 1981, J AM CHEM SOC, V103, P1633
   ALLEN MP, 1987, COMPUTER SIMULATION
   BECKE AD, 1986, PHYS REV B, V33, P8822
   BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
   COUTINHO K, DICE MONTE CARLO PRO
   COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
   COUTINHO K, 2000, J CHEM PHYS, V113, P9132
   DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
   DORY M, 1994, J CHEM SOC FARADAY T, V90, P2319
   DOSSANTOS HF, UNPUB
   DUMESTRE F, 1998, J CHEM SOC DALT 1221, P4131
   EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
   EGGERDING D, 1975, J AM CHEM SOC, V97, P207
   FABRE PL, 2000, ELECTROCHIM ACTA, V45, P2697
   FARNELL L, 1981, J MOL STRUCT, V76, P1
   FRISCH MJ, 1998, GAUSSIAN 98
   GLICK MD, 1964, INORG CHEM, V3, P1712
   GLICK MD, 1966, INORG CHEM, V5, P289
   GONCALVES NS, 1996, ACTA CRYSTALLOGR C 3, V52, P622
   HA TK, 1986, J MOL STRUCT, V137, P183
   HEAD JD, 1986, CHEM PHYS LETT, V131, P359
   ITO M, 1963, J AM CHEM SOC, V85, P2580
   JORGENSEN WL, 1995, BOSS VERSION 3 5 BIO
   METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
   PUEBLA C, 1986, J MOL STRUCT THEOCHE, V137, P171
   RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
   ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
   SANTOS PS, 1991, J MOL STRUCT, V243, P223
   SCHLEYER PV, 2000, J ORG CHEM, V65, P426
   SEITZ G, 1992, CHEM REV, V92, P1227
   TAKAHASHI M, 1978, CHEM PHYS, V35, P293
   TORII H, 1995, J MOL STRUCT THEOCHE, V334, P15
   WEST R, 1960, J AM CHEM SOC, V82, P6204
   WEST R, 1963, J AM CHEM SOC, V85, P2577
   WEST R, 1963, J AM CHEM SOC, V85, P2586
   WEST R, 1981, J AM CHEM SOC, V103, P5073
   ZERNER MC, ZINDO SEMIEMPIRICAL
   ZERNER MC, 1980, J AM CHEM SOC, V102, P589
   ZHAO B, 1992, CAN J CHEM, V70, P135
NR 42
TC 8
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2001
VL 3
IS 17
BP 3499
EP 3505
PG 7
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 471BW
UT ISI:000170907800004
ER

PT J
AU Almeida, AL
   Martins, JBL
   Longo, E
   Furtado, NC
   Taft, CA
   Sambrano, JR
   Lester, WA
TI Theoretical study of MgO(001) surfaces: Pure, doped with Fe, Ca, and
   Al, and with and without adsorbed water
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE MgO; ab initio; water adsorption; Fe; Ca; Al; theoretical study
ID TEMPERATURE-PROGRAMMED DESORPTION; LARGE CLUSTER-MODELS;
   MAGNESIUM-OXIDE; MGO SURFACES; AB-INITIO; MGO(100) SURFACE; ZNO
   SURFACES; DISSOCIATIVE ADSORPTION; HYDROGEN MOLECULE; PROPYLENE-OXIDE
AB Ab initio calculations of large cluster models have been performed in
   order to study water adsorption at the five-fold coordinated adsorption
   site on pure Mg(001) and MgO(001) surfaces doped with Fe, Ca, and Al.
   The geometric parameters of the adsorbed water molecule have been
   optimized preparatory to analysis of binding energies, charge transfer,
   preferential sites of interaction, and bonding distances. We have used
   Mulliken population analysis methods in order to analyze charge
   distributions and the direction of charge transfer. We have also
   investigated energy gaps, HOMO energies, and SCF orbital energies as
   well as the acid-base properties of our cluster model. Numerical
   results are compared, where possible, with experiment and interpreted
   in the framework of various analytical models. (C) 2001 John Wiley &
   Sons, Inc.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290180 Rio De Janeiro, Brazil.
   Univ Estado Bahia, Dept Ciencias Exatas & Terra, BR-41195001 Salvador, BA, Brazil.
   Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
   Univ Fed Sao Carlos, Dept Quim, BR-3565905 Sao Carlos, SP, Brazil.
   Univ Estadual Paulista, Dept Matemat, BR-17033360 Sao Paulo, Brazil.
   Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
   Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
   Estatist, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil.
CR AHDJOUDI J, 1999, CATAL TODAY, V50, P54
   ALMEIDA AL, 1998, J CHEM PHYS, V109, P367
   ALMEIDA AL, 1998, THEOCHEM-J MOL STRUC, V426, P199
   ALMEIDA AL, 1999, INT J QUANTUM CHEM, V71, P153
   ANCHELL JL, 1996, J PHYS CHEM-US, V100, P1831
   CHACONTAYLOR MR, 1996, J PHYS CHEM-US, V100, P7610
   COLBOURN EA, 1982, SURF SCI, V117, P571
   COLBOURN EA, 1983, SURF SCI, V126, P550
   COLUCCIA S, 1979, J CHEM SOC FARAD T 1, V75, P1769
   COLUCCIA S, 1987, SPECTROCHIM ACTA A, V43, P1573
   DELEEUW NH, 1995, J PHYS CHEM-US, V99, P17219
   DERCOLE A, 1999, J CHEM PHYS, V111, P9743
   DUNSKI H, 1994, J CATAL, V146, P166
   DURIEZ C, 1990, SURF SCI, V230, P123
   FRISCH MJ, 1995, GAUSSIAN 94
   GATES BC, 1992, CATALYTIC CHEM
   GERSON AR, 1999, PHYS CHEM CHEM PHYS, V1, P4889
   GONIAKOWSKI J, 1995, SURF SCI, V323, P129
   GONIAKOWSKI J, 1995, SURF SCI, V330, P337
   GONIAKOWSKI J, 1995, SURF SCI, V340, P191
   HENRICH E, 1984, SURFACE SCI METAL OX
   ILLAS F, 1999, CHEM PHYS LETT, V306, P202
   ITO T, 1991, J PHYS CHEM-US, V95, P4476
   JONES CF, 1984, J CHEM SOC FARAD T 1, V80, P2609
   KOBAYASHI H, 1990, J PHYS CHEM-US, V94, P7206
   KOBAYASHI H, 1994, J PHYS CHEM-US, V98, P5487
   KURODA Y, 1988, J CHEM SOC F1, V84, P2421
   LANGEL W, 1994, PHYS REV LETT, V73, P504
   LINTULUOTO M, 1999, SURF SCI, V429, P133
   LONGO E, 1985, ADV CERAM, V10, P592
   LONGO E, 1985, LANGMUIR, V1, P456
   LONGO E, 1987, HIGH TECH CERAMICS, P399
   MARTINS JBL, 1976, J MOL STRUCT THEOCHE, V363, P249
   MARTINS JBL, 1993, INT J QUANTUM CHEM, V27, P643
   MARTINS JBL, 1994, THEOCHEM-J MOL STRUC, V109, P19
   MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
   MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P347
   MARTINS JBL, 1995, THEOCHEM-J MOL STRUC, V335, P167
   MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
   MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V397, P147
   MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V398, P457
   MARTINS JBL, 1998, INT J QUANTUM CHEM, V70, P367
   MCCARTHY MI, 1996, J PHYS CHEM-US, V100, P16989
   MITAMURA T, 1998, NIPPON KAGAKU KA MAR, P174
   PAVAO AC, 1994, PHYS REV B, V50, P1868
   PAVAO AC, 1995, SURF SCI, V323, P340
   PICAUD S, 1993, CHEM PHYS LETT, V209, P340
   RODRIGUEZ JA, 1999, J CHEM PHYS, V111, P8077
   ROSSI PF, 1991, LANGMUIR, V7, P2677
   SCAMEHORN CA, 1993, J CHEM PHYS, V99, P2786
   SCAMEHORN CA, 1994, J CHEM PHYS, V101, P1547
   SHINOHARA Y, 1998, NIPPON KAGAKU KA OCT, P643
   VULLIERMET N, 1998, COLLECT CZECH CHEM C, V63, P1447
   WADT WR, 1985, J CHEM PHYS, V82, P284
NR 54
TC 4
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD SEP 20
PY 2001
VL 84
IS 6
BP 705
EP 713
PG 9
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA 470RF
UT ISI:000170884400012
ER

PT J
AU Toma, HE
   Rocha, RC
TI Linkage isomerization reactions
SO CROATICA CHEMICA ACTA
LA English
DT Review
DE linkage isomerism; reaction mechanism; kinetics
ID OXIME-IMINE LIGANDS; NORMAL-COORDINATE ANALYSIS; AROMATIC NITROGEN
   HETEROCYCLES; DIMETHYL-SULFOXIDE COMPLEXES; INTERSTRAND CROSS-LINKING;
   DENSITY-FUNCTIONAL THEORY; BASE-CATALYZED NITRITO; RAY
   CRYSTAL-STRUCTURE; III AMMINE COMPLEXES; OXYGEN-ATOM TRANSFER
AB Linkage isomerization reactions have been reviewed from the aspect of
   the kinetics and mechanisms involved, focusing on selected cases of
   direct formation, as well as on electrochemical, photochemical, thermal
   and pH-induced generation of linkage isomers.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Toma, HE, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
   Sao Paulo, Brazil.
CR ABRUNA HD, 1981, INORG CHEM, V20, P1481
   ADAMO C, 1994, CHEM PHYS LETT, V223, P54
   AKHTER FM, 1994, CHEM LETT, P171
   AKHTER FM, 1996, B CHEM SOC JPN, V69, P643
   AKHTER FMD, 1994, CHEM LETT, P2393
   ALBERT A, 1948, J CHEM SOC, P2240
   ALESSIO E, 1993, INORG CHEM, V32, P5756
   ALESSIO E, 1995, INORG CHEM, V34, P4716
   ALLGEIER AM, 1998, ANGEW CHEM INT EDIT, V37, P894
   ALY MM, 1985, POLYHEDRON, V4, P1301
   ALY MM, 1993, J MOL STRUCT, V293, P75
   ALY MM, 1994, POLYHEDRON, V13, P1907
   ALY MM, 1994, SPECTROCHIM ACTA A, V50, P835
   ALY MM, 1995, MONATSH CHEM, V126, P173
   ALY MM, 1996, REV INORG CHEM, V16, P315
   ALY MM, 1998, J COORD CHEM, V43, P89
   ALY MM, 1998, TRANSIT METAL CHEM, V23, P361
   ALY MM, 1999, J COORD CHEM, V47, P505
   ANDREASEN LV, 1999, INORG CHIM ACTA, V295, P153
   ANGEL RL, 1990, INORG CHEM, V29, P20
   ANGUS PM, 1991, INORG CHEM, V30, P4806
   ANGUS PM, 1993, INORG CHEM, V32, P450
   ANGUS PM, 1993, INORG CHEM, V32, P5285
   ANGUS PM, 1994, INORG CHEM, V33, P1569
   ANGUS PM, 1994, INORG CHEM, V33, P477
   ANGUS PM, 1996, INORG CHEM, V35, P7196
   ANGUS PM, 1998, INORG CHIM ACTA, V268, P85
   APPLETON TG, 1992, INORG CHEM, V31, P4410
   ARPALAHTI J, 2000, EUR J INORG CHEM MAY, P1007
   AUGE P, 1997, TRANSIT METAL CHEM, V22, P91
   BAGHLAF AO, 1987, POLYHEDRON, V6, P205
   BAI ZP, 1988, B CHEM SOC JPN, V61, P1959
   BAI ZP, 1995, POLYHEDRON, V14, P2071
   BAILEY RA, 1971, COORDINATION CHEM RE, V6, P407
   BALAHURA RJ, 1974, CAN J CHEM, V52, P1762
   BALAHURA RJ, 1976, COORDIN CHEM REV, V20, P109
   BALT S, 1983, J CHEM SOC DA, P1739
   BARTRAM ME, 1988, J VAC SCI TECHNOL A, V6, P782
   BASOLO F, 1960, J AM CHEM SOC, V82, P1001
   BASOLO F, 1962, INORG CHEM, V1, P1
   BASOLO F, 1963, J AM CHEM SOC, V85, P1700
   BASOLO F, 1966, J AM CHEM SOC, V88, P1576
   BASOLO F, 1967, MECH INORGANIC REACT, P293
   BATISTA AA, 1980, AN ACAD BRAS CIENC, V52, P703
   BAUMANN F, 1997, CHEM COMMUN     0107, P35
   BENNETT MA, 1998, J ORGANOMET CHEM, V571, P139
   BERAN G, 1970, J CHEM SOC CHEM COMM, P1354
   BERGLUND J, 1994, INORG CHEM, V33, P3346
   BIGNOZZI CA, 1994, J CHEM SOC DA, P2391
   BLACKMAN A, 1993, ADV HETEROCYCL CHEM, V58, P123
   BLESA MA, 1976, J CHEM SOC DA, P1196
   BLESA MA, 1977, J CHEM SOC DA, P845
   BOLDYREVA E, 1994, BER BUNSEN PHYS CHEM, V98, P738
   BOLDYREVA E, 1997, ACTA CRYSTALLOGR B 3, V53, P394
   BOLDYREVA EV, 1985, THERMOCHIM ACTA, V92, P109
   BOLDYREVA EV, 1993, J STRUCT CHEM, V34, P602
   BOLDYREVA EV, 1998, ACTA CRYSTALLOGR  10, V54, P1378
   BOLDYREVA EV, 1998, ACTA CRYSTALLOGR B 6, V54, P798
   BOLDYREVA EV, 1998, J STRUCT CHEM+, V39, P343
   BOLDYREVA EV, 1998, J STRUCT CHEM+, V39, P762
   BOND AM, 1997, ORGANOMETALLICS, V16, P2787
   BORGHI EB, 1981, J INORG NUCL CHEM, V43, P1849
   BOUDVILLAIN M, 1997, BIOCHEMISTRY-US, V36, P2925
   BOZOGLIAN F, 1998, POLYHEDRON, V17, P3551
   BRADIC Z, 1974, J CHEM SOC DA, P344
   BRADIC Z, 1975, J CHEM SOC DA, P353
   BRAUNSTEIN P, 1999, J ORGANOMET CHEM, V580, P66
   BROCK CP, 1984, ACTA CRYSTALLOGR B, V40, P595
   BROWN DA, 1982, J ORGANOMET CHEM, V234, C52
   BROWN LD, 1971, INORG CHEM, V10, P2117
   BUCHANAN BE, 1990, INORG CHEM, V29, P3263
   BUCKINGHAM DA, 1993, AUST J CHEM, V46, P503
   BUCKINGHAM DA, 1994, COORDIN CHEM REV, V135, P587
   BUCKLEY RC, 1972, INORG CHEM, V11, P1723
   BURMEISTER JL, 1964, INORG CHEM, V3, P1587
   BURMEISTER JL, 1966, COORDIN CHEM REV, V1, P205
   BURMEISTER JL, 1968, COORDIN CHEM REV, V3, P225
   BURMEISTER JL, 1971, INORG CHEM, V10, P2032
   BUSCHMANN WE, 1999, CHEM-EUR J, V5, P3019
   CALABRO DC, 1981, INORG CHIM ACTA, V53, L47
   CALLIGARIS M, 1995, J CHEM SOC DA, P1653
   CARBALLO R, 1996, J ORGANOMET CHEM, V525, P49
   CARDUCCI MD, 1997, J AM CHEM SOC, V119, P2669
   CHEN Y, 1997, INORG CHEM, V36, P818
   CHEVALIER AA, 1991, J CHEM SOC DA, P1959
   CHIN CS, 2000, ORGANOMETALLICS, V19, P638
   CHOU MH, 1992, INORG CHEM, V31, P5347
   CHOU MY, 1994, J BIOL CHEM, V269, P18821
   CINI R, 1996, INORG CHIM ACTA, V251, P111
   COLLMAN JP, 1965, INORG CHEM, V4, P1273
   COLOMBIER C, 1996, NUCLEIC ACIDS RES, V24, P4519
   COPPENS P, 1998, J CHEM SOC DALT 0321, P865
   COSMANO RJ, 1975, THERMOCHIM ACTA, V13, P127
   COYER MJ, 1994, INORG CHEM, V33, P716
   CUN L, 1990, INORG CHEM, V29, P2937
   CURTIS NJ, 1983, AUST J CHEM, V36, P1495
   CURTIS NJ, 1983, J AM CHEM SOC, V105, P5347
   CUSUMANO M, 1978, INORG CHIM ACTA, V30, P29
   DACUNHA CJ, 1999, INORG CHEM, V38, P5399
   DALBIES R, 1994, P NATL ACAD SCI USA, V91, P8147
   DALBIES R, 1995, NUCLEIC ACIDS RES, V23, P949
   DANON J, 1967, J MOL STRUCT, V1, P127
   DARENSBOURG DJ, 1996, INORG CHEM, V35, P4764
   DAROCHA ZN, 1997, ADV CHEM SER, V253, P297
   DAS D, 1998, J CHEM SOC DALT 1207, P3987
   DEACON GB, 1968, J AM CHEM SOC, V90, P493
   DELMEDICO A, 1994, INORG CHEM, V33, P1583
   DELMEDICO A, 1995, INORG CHEM, V34, P1507
   DELMEDICO A, 1998, INORG CHIM ACTA, V281, P126
   DEMADIS KD, 1998, INORG CHEM, V37, P3610
   DEMADIS KD, 1998, INORG CHEM, V37, P838
   DIXON NE, 1983, INORG CHEM, V22, P4038
   DULEPOV VE, 1994, REACT KINET CATAL L, V53, P289
   EICHELE K, 1994, INORG CHEM, V33, P2766
   ELLIS WR, 1982, INORG CHEM, V21, P834
   ELTABL AS, 1998, POL J CHEM, V72, P519
   EPPS LA, 1972, J CHEM SOC CHEM COMM, P109
   ERTEM G, 1997, J AM CHEM SOC, V119, P7197
   FAIRLIE DP, 1985, INORG CHEM, V24, P3199
   FAIRLIE DP, 1988, INORG CHIM ACTA, V150, P81
   FAIRLIE DP, 1989, INORG CHEM, V28, P1983
   FAIRLIE DP, 1990, INORG CHEM, V29, P3145
   FAIRLIE DP, 1991, INORG CHEM, V30, P1564
   FAIRLIE DP, 1994, INORG CHEM, V33, P6425
   FAIRLIE DP, 1997, INORG CHEM, V36, P1020
   FAIRLIE DP, 1997, INORG CHEM, V36, P1029
   FAIRLIE DP, 1997, INORG CHEM, V36, P2242
   FAIRLIE DP, 1999, INORG CHIM ACTA, V290, P133
   FERRARO JR, 1978, INORG CHIM ACTA, V26, L15
   FERRER S, 1992, J CHEM SOC DALT 1021, P3029
   FOMITCHEV DV, 1996, INORG CHEM, V35, P7021
   FOMITCHEV DV, 1999, CHEM COMMUN, P2013
   FOMITCHEV DV, 1999, COMMENT INORG CHEM A, V21, P131
   FRASER RTM, 1967, ADV CHEM SER, V62, P295
   FROHLING CDW, 1997, J CHEM SOC DALT 1121, P4411
   FULTZ WC, 1980, INORG CHIM ACTA LETT, V45, L271
   FURLANI C, 1980, INORG CHIM ACTA LETT, V44, L313
   GASWICK D, 1978, J INORG NUCL CHEM, V40, P437
   GIBNEY SC, 1999, INORG CHEM, V38, P2898
   GIRAUDPANIS MJ, 2000, PHARMACOL THERAPEUT, V85, P175
   GOODGAME DM, 1968, SPECTROCHIM ACTA A, V24, P1254
   GORDON CM, 1991, J PHYS CHEM-US, V95, P2889
   GRENTHE I, 1979, INORG CHEM, V18, P1109
   GRENTHE I, 1979, INORG CHEM, V18, P1869
   GUO ZJ, 1999, ANGEW CHEM INT EDIT, V38, P1513
   GUTTERMAN DF, 1969, J AM CHEM SOC, V91, P3105
   GUTTMAN A, 1996, ELECTROPHORESIS, V17, P412
   HAIM A, 1966, J AM CHEM SOC, V88, P434
   HALL JH, 1990, INORG CHEM, V29, P3806
   HARMAN WD, 1988, J AM CHEM SOC, V110, P2439
   HARMAN WD, 1988, J AM CHEM SOC, V110, P5403
   HARMAN WD, 1989, INORG CHEM, V28, P2411
   HASSEL RL, 1974, INORG CHIM ACTA, V8, P155
   HEYNS AM, 1989, SPECTROCHIM ACTA A, V45, P905
   HITCHMAN MA, 1982, COORDIN CHEM REV, V42, P55
   HOHMAN WH, 1974, J CHEM EDUC, V51, P553
   HORROCKS WD, 1982, INORG CHEM, V21, P3270
   HOUSE JE, 1993, INORG CHEM, V32, P1053
   HUBBARD JL, 1993, INORG CHEM, V32, P3333
   HUBBARD JL, 1993, INORG CHEM, V32, P4670
   HUBINGER S, 1991, INORG CHEM, V30, P3707
   HUBINGER S, 1993, INORG CHEM, V32, P2394
   HUNT CT, 1982, INORG CHEM, V21, P1242
   IENGO E, 1999, J CHEM SOC DALTON, P3361
   ILAN Y, 1983, INORG CHEM, V22, P1655
   ILAN Y, 1986, INORG CHEM, V25, P2350
   IYENGAR RR, 1975, J INORG NUCL CHEM, V37, P75
   JACKSON WG, 1980, INORG CHEM, V19, P904
   JACKSON WG, 1980, REARRANGEMENTS GROUN, V2, P273
   JACKSON WG, 1981, J CHEM EDUC, V58, P734
   JACKSON WG, 1982, AUST J CHEM, V35, P1561
   JACKSON WG, 1982, J CHEM SOC CHEM COMM, P70
   JACKSON WG, 1991, J CHEM EDUC, V68, P903
   JACKSON WG, 1993, INORG CHEM, V32, P445
   JACKSON WG, 1994, INORG CHEM, V33, P1921
   JACOBSON SE, 1973, INORG CHEM, V12, P717
   JANIK MBL, 1999, J BIOL INORG CHEM, V4, P645
   JOHNSON A, 1993, INORG CHIM ACTA, V210, P151
   JOHNSON DA, 1975, INORG NUCL CHEM LETT, V11, P23
   JOHNSON DA, 1979, INORG CHEM, V18, P3273
   JOHNSON KA, 1973, INORG CHEM, V12, P124
   JORGENSEN SM, 1893, Z ANORG ALLG CHEM, V5, P169
   JURETIC R, 1979, J CHEM SOC DA, P2029
   JURISSON S, 1998, INORG CHEM, V37, P1922
   KAKISHITA T, 1994, KOBUNSHI RONBUNSHU, V51, P59
   KAKOTI M, 1993, POLYHEDRON, V12, P783
   KAMINSKAIA NV, 1997, INORG CHEM, V36, P5917
   KAMINSKAIA NV, 1998, INORG CHEM, V37, P4302
   KARGOL JA, 1980, INORG CHEM, V19, P1515
   KASPARKOVA J, 1999, BIOCHEMISTRY-US, V38, P10997
   KATZ NE, 1993, INORG CHEM, V32, P5391
   KAUFFMAN GB, 1973, COORDINATION CHEM RE, V11, P161
   KERN JM, 2000, INORG CHEM, V39, P1555
   KHAN AR, 1995, INORG CHIM ACTA, V234, P109
   KIRK AD, 1995, INORG CHEM, V34, P1536
   KOB NE, 1994, TRANSIT METAL CHEM, V19, P31
   KOHLE O, 1996, INORG CHEM, V35, P4779
   KOJIMA M, 1994, B CHEM SOC JPN, V67, P869
   KOJIMA M, 1996, B CHEM SOC JPN, V69, P2889
   KOJIMA M, 1997, J CHROMATOGR A, V789, P273
   KOLIS SP, 1996, ORGANOMETALLICS, V15, P245
   KOLLE U, 1991, ANGEW CHEM INT EDIT, V30, P956
   KRUMM M, 1993, INORG CHEM, V32, P700
   KUBOTA M, 1992, ACTA CRYSTALLOGR B, V48, P627
   KULASINGAM GC, 1968, J CHEM SOC A, P254
   KUNZE U, 1985, CHEM BER, V118, P227
   LACEY MJ, 1974, J CHEM SOC DA, P1215
   LACEY MJ, 1978, AUST J CHEM, V31, P1449
   LANGE I, 1997, Z ANORG ALLG CHEM, V623, P1665
   LAUER JL, 1972, INORG CHEM, V11, P907
   LAY PA, 1991, ADV INORG CHEM RAD, V37, P219
   LEE YA, 1999, INORG CHEM, V38, P531
   LEIGH GL, 1990, NOMENCLATURE INORGAN, P98
   LEISING RA, 1996, INORG CHIM ACTA, V245, P167
   LELJ F, 1995, THEOR CHIM ACTA, V91, P199
   LIM BS, 1998, INORG CHEM, V37, P4898
   LINDNER E, 1972, CHEM BER, V105, P1032
   LINDNER E, 1973, CHEM BER, V106, P404
   LINDNER E, 1975, CHEM BER, V108, P291
   LIVOREIL A, 1997, J AM CHEM SOC, V119, P12114
   MACARTNEY DH, 1981, INORG CHEM, V20, P748
   MACARTNEY DH, 1981, J CHEM SOC DA, P1780
   MACATANGAY AV, 1999, INORG CHEM, V38, P5091
   MALIN JM, 1977, J CHEM EDUC, V54, P385
   MARES M, 1978, INORG CHIM ACTA, V27, P153
   MARES M, 1982, INORG CHIM A-ARTICLE, V60, P123
   MASCIOCCHI N, 1994, INORG CHEM, V33, P2579
   MASLAK P, 1991, J AM CHEM SOC, V113, P1062
   MASSAFERRO A, 1992, AN QUIM-INT, V88, P230
   MATSUBARA T, 1979, INORG CHEM, V18, P1956
   MILNE C, 1996, CAN J CHEM, V74, P1889
   MIYOSHI K, 1983, INORG CHEM, V22, P1839
   MROZINSKI J, 1992, POLYHEDRON, V11, P2867
   MURATA M, 1998, COORDIN CHEM REV, V174, P109
   MURATI I, 1978, J CHEM SOC DA, P500
   MURMANN RK, 1956, J AM CHEM SOC, V78, P4886
   MYERS WH, 1992, J AM CHEM SOC, V114, P5684
   NAKAMOTO K, 1958, J AM CHEM SOC, V80, P4817
   NICHOLSON RS, 1964, ANAL CHEM, V36, P706
   NORBURY AH, 1975, J INORG NUCL CHEM, V37, P2133
   NORITAKE M, 1992, BER BUNSEN PHYS CHEM, V96, P857
   NOVIKOV PB, 1998, J STRUCT CHEM+, V39, P333
   NUNES FS, 1994, INORG CHEM, V33, P3111
   NUNES FS, 1999, J COORD CHEM, V47, P251
   OGINO H, 1984, CHEM LETT, P561
   OKEYA S, 1978, INORG CHIM ACTA, V30, L319
   ONYSZCHUK M, 1983, J ORGANOMET CHEM, V249, C9
   OOYAMA D, 1995, INORG CHEM, V34, P6024
   OOYAMA D, 1996, CHEM LETT, P759
   OOYAMA D, 1997, B CHEM SOC JPN, V70, P2141
   PALMER BJ, 1993, J PHOTOCH PHOTOBIO A, V72, P243
   PALMER DA, 1978, INORG CHIM ACTA, V30, P83
   PARAC TN, 1996, J AM CHEM SOC, V118, P5946
   PARAC TN, 1998, INORG CHEM, V37, P2141
   PARAC TN, 1999, J AM CHEM SOC, V121, P3127
   PAUL P, 1992, CAN J CHEM, V70, P2461
   PAVLOVIC D, 1973, J CHEM SOC DA, P602
   PAVLOVIC D, 1976, J CHEM SOC DA, P2406
   PAVLOVIC D, 1982, ACTA PHARM JUGOSL, V32, P153
   PHILLIPS WM, 1990, J CHEM EDUC, V67, P267
   PIAO LH, 1996, POLYHEDRON, V15, P3107
   PIAO LH, 1997, POLYHEDRON, V16, P3033
   PIKE RD, 1993, ORGANOMETALLICS, V12, P1416
   PODBEREZSKAYA NV, 1991, J STRUCT CHEM, V32, P693
   PREETZ W, 1995, Z ANORG ALLG CHEM, V621, P725
   PURCELL WL, 1983, INORG CHEM, V22, P1205
   RAEHM L, 1999, CHEM-EUR J, V5, P3310
   REDDY KB, 1991, INORG CHEM, V30, P596
   REGUERA E, 1998, POLYHEDRON, V17, P2353
   REIN FN, 2001, J COORD CHEM, V53, P99
   REN T, 1993, J AM CHEM SOC, V115, P11341
   RICCIERI P, 1997, INORG CHIM ACTA, V255, P229
   RIEVAJ M, 1992, B SOC CHIM BELG, V101, P671
   RIEVAJ M, 1993, COLLECT CZECH CHEM C, V58, P1371
   RIEVAJ M, 1993, COLLECT CZECH CHEM C, V58, P328
   RIEVAJ M, 1993, COLLECT CZECH CHEM C, V58, P530
   RIEVAJ M, 1994, INORG CHIM ACTA, V216, P113
   RIEVAJ M, 1995, INORG CHIM ACTA, V228, P153
   RINDERMANN W, 1982, INORG CHIM ACTA, V61, P173
   ROCHA RC, 1998, TRANSIT METAL CHEM, V23, P13
   ROHDE JU, 1997, Z ANORG ALLG CHEM, V623, P1774
   ROHDE JU, 1998, Z ANORG ALLG CHEM, V624, P1319
   RUILE S, 1997, INORG CHIM ACTA, V261, P129
   RUILE S, 1998, NEW J CHEM, V22, P25
   RUTHERFORD PE, 1980, SPECTROSC LETT, V13, P427
   SADO M, 1996, POLYHEDRON, V15, P103
   SAMATH SA, 1992, POLYHEDRON, V11, P33
   SAMATH SA, 1994, INDIAN J CHEM A, V33, P779
   SANO M, 1991, J AM CHEM SOC, V113, P2327
   SANO M, 1994, INORG CHEM, V33, P705
   SANO M, 1996, B CHEM SOC JPN, V69, P977
   SATO Y, 2000, ANAL CHEM, V72, P1207
   SAUVAGE JP, 1998, ACCOUNTS CHEM RES, V31, P611
   SAWAI H, 1996, J BIOMOL STRUCT DYN, V13, P1043
   SCHMIDT RR, 1980, CHEM BER, V113, P2891
   SEKI H, 1997, J PHYS CHEM A, V101, P8174
   SEMRAU M, 1996, Z ANORG ALLG CHEM, V622, P1953
   SILVA DO, 1994, CAN J CHEM, V72, P1705
   SLOAN TE, 1968, INORG CHEM, V7, P1268
   SMITH MK, 2000, EUR J INORG CHEM JUN, P1365
   SNOW MR, 1972, ACTA CRYSTALLOGR B, V28, P1908
   SOVAGO I, 1995, J CHEM SOC DA, P489
   STARK GA, 1997, ORGANOMETALLICS, V16, P2909
   STOCHEL G, 1992, INORG CHEM, V31, P5480
   SUH MP, 1996, J AM CHEM SOC, V118, P777
   SULLIVAN TR, 1977, J CHEM SOC DA, P1460
   SZECSY AP, 1982, J AM CHEM SOC, V104, P3063
   TAKI T, 1997, FEBS LETT, V418, P219
   TAUBE H, 1991, PURE APPL CHEM, V63, P651
   THIELE G, 1980, Z ANORG ALLG CHEM, V464, P255
   THOMPSON DW, 1999, J CHEM SOC DALTON, P3729
   TIMONOVA IN, 1987, J STRUCT CHEM, V28, P518
   TOMA HE, 1973, INORG CHEM, V12, P1039
   TOMA HE, 1973, INORG CHEM, V12, P2080
   TOMA HE, 1973, INORG CHEM, V12, P2084
   TOMA HE, 1974, INORG CHEM, V13, P1772
   TOMA HE, 1978, J CHEM SOC DA, P1610
   TOMA HE, 1982, AN ACAD BRAS CIENC, V54, P315
   TOMA HE, 1982, J AM CHEM SOC, V104, P7509
   TOMA HE, 1982, POLYHEDRON, V1, P429
   TOMA HE, 1983, CAN J CHEM, V61, P2520
   TOMA HE, 1985, J CHEM SOC DA, P2469
   TOMA HE, 1989, AN ACAD BRAS CIENC, V61, P131
   TOMA HE, 1989, POLYHEDRON, V8, P941
   TOMA HE, 1991, J COORD CHEM, V24, P1
   TOMA HE, 1993, ELECTROCHIM ACTA, V38, P975
   TOMA HE, 2000, AN ACAD BRAS CIENC, V72, P1
   TOMITA A, 1994, INORG CHEM, V33, P5825
   TREADWAY JA, 1999, INORG CHEM, V38, P2267
   VAUDO AF, 1971, J AM CHEM SOC, V93, P6698
   VIROVETS AV, 1994, J STRUCT CHEM, V35, P236
   VOGT JU, 1995, Z ANORG ALLG CHEM, V621, P1033
   WALKER R, 1980, J CHEM EDUC, V57, P789
   WANG R, 1992, J AM CHEM SOC, V114, P1964
   WATSON AA, 1995, INORG CHEM, V34, P3087
   WEI HH, 1984, INORG CHEM, V23, P624
   WERNER A, 1907, BER DTSCH CHEM GES 1, V40, P765
   WIENKEN M, 1993, J CHEM SOC DA, P3349
   WOON TC, 1992, INORG CHEM, V31, P4069
   WOON TC, 1993, INORG CHEM, V32, P2190
   YAMAGUCHI A, 1958, J AM CHEM SOC, V80, P527
   YAMANARI K, 1993, J CHEM SOC DALTON, P403
   YAMANARI K, 1996, J CHEM SOC DALT 0207, P305
   YAMAZAKI S, 1986, POLYHEDRON, V5, P1183
   YEH A, 1982, INORG CHEM, V21, P2542
   ZHU NY, 1994, ANGEW CHEM INT EDIT, V33, P2090
   ZHU NY, 1997, CHEM BER-RECL, V130, P1241
   ZMIKIC A, 1975, CROAT CHEM ACTA, V47, P117
NR 348
TC 7
PU CROATIAN CHEMICAL SOC
PI ZAGREB
PA MARULICEV TRG 19/II, 41001 ZAGREB, CROATIA
SN 0011-1643
J9 CROAT CHEM ACTA
JI Croat. Chem. Acta
PD AUG
PY 2001
VL 74
IS 3
SI Sp. Iss. SI
BP 499
EP 528
PG 30
SC Chemistry, Multidisciplinary
GA 469JN
UT ISI:000170810900004
ER

PT J
AU Baierle, RJ
   Fagan, SB
   Mota, R
   da Silva, AJR
   Fazzio, A
TI Electronic and structural properties of silicon-doped carbon nanotubes
SO PHYSICAL REVIEW B
LA English
DT Article
ID AB-INITIO CALCULATIONS; LARGE SYSTEMS; BORON; CLUSTERS; MICROTUBULES;
   CONDUCTANCE; FULLERENES; NITROGEN; DEFECTS
AB Predictions of the electronic and structural properties of silicon
   substitutional doping in carbon nanotubes are presented using
   first-principles calculations based on the density-functional theory. A
   large outward displacement of the Si atom and its nearest-neighbor
   carbon atoms is observed. For the two tubes studied [metallic (6,6) and
   semiconducting ( 10,0)] the formation energies of the substitutional
   defects are obtained around 3.1 eV/atom. In the doped metallic nanotube
   case a resonant state appears about 0.7 eV above the Fermi level,
   whereas for the semiconductor tube, the silicon introduces an empty
   level at approximately 0.6 eV above the top of the valence band.
C1 Ctr Univ Franciscano, Dept Ciencias Exatas, BR-97010032 Santa Maria, RS, Brazil.
   Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Baierle, RJ, Ctr Univ Franciscano, Dept Ciencias Exatas, BR-97010032
   Santa Maria, RS, Brazil.
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
   BILLAS IML, 1999, J CHEM PHYS, V111, P6787
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CHARLIER JC, 1996, PHYS REV B, V53, P11108
   CHICO L, 1996, PHYS REV LETT, V76, P971
   CHOI HJ, 2000, PHYS REV LETT, V84, P2917
   FAGAN SB, 2000, PHYS REV B, V61, P9994
   FU CC, 2001, PHYS REV B, V63
   FYE JL, 1997, J PHYS CHEM A, V101, P1836
   GOLBERG D, 2000, CARBON, V38, P2017
   HAMADA N, 1992, PHYS REV LETT, V68, P1579
   IIJIMA S, 1991, NATURE, V354, P56
   KIMURA T, 1996, CHEM PHYS LETT, V256, P269
   MIYAMOTO Y, 1996, PHYS REV LETT, V76, P2121
   ORDEJON P, 1996, PHYS REV B, V53
   PELLARIN M, 1999, J CHEM PHYS, V110, P6927
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   RAY C, 1998, PHYS REV LETT, V80, P5365
   SAITO R, 1992, APPL PHYS LETT, V60, P2204
   SAITO R, 1996, PHYS REV B, V53, P2044
   SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
   SANKEY OF, 1989, PHYS REV B, V40, P3979
   STEPHAN O, 1994, SCIENCE, V266, P1683
   SUENAGA K, 1997, SCIENCE, V278, P653
   TANS SJ, 1997, NATURE, V386, P474
   TERRONES M, 1996, CHEM PHYS LETT, V257, P576
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   XIE RH, 1999, CHEM PHYS LETT, V310, P379
NR 28
TC 24
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 15
PY 2001
VL 6408
IS 8
BP art. no.
EP 085413
AR 085413
PG 4
SC Physics, Condensed Matter
GA 466AW
UT ISI:000170623000096
ER

PT J
AU Dorfman, S
   Liubich, V
   Fuks, D
   Mundim, KC
TI Simulations of decohesion and slip of the Sigma(3) < 111 > grain
   boundary in tungsten with non-empirically derived interatomic
   potentials: the influence of boron interstitials
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID EMBEDDED-ATOM-METHOD; ELECTRONIC-STRUCTURE; INTERGRANULAR COHESION;
   MOLECULAR-DYNAMICS; TRANSITION-METALS; VACANCY-FORMATION; PAIR
   POTENTIALS; ALLOYS; IMPURITIES; IRON
AB Monte Carlo atomistic simulations of the properties Of Sigma (3) < 111
   > grain boundaries in W are carried out. We demonstrate the influence
   of boron additive on the resistance of the grain boundary with respect
   to different shifts. The interatomic potentials used in these
   simulations are obtained from ab initio total-energy calculations.
   These calculations are performed in the framework of density functional
   theory in the coherent potential approximation. A recursion procedure
   for extracting A-B-type interatomic potentials is suggested.
C1 Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
   Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel.
   Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
RP Dorfman, S, Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa,
   Israel.
CR ACKLAND GJ, 1990, PHYS REV B, V41, P10324
   ANDERSON PM, 1987, P 34 SAG ARM MAT RES, P619
   AREAS EPG, 1995, J PHYS CHEM-US, V99, P14882
   BADALYAN DA, 1970, SOV PHYS-SOLID STATE, V12, P346
   BAKER I, 1998, INTERMETALLICS, V6, P177
   BAZANT MZ, 1996, MAT THEORY SIMULATIO, P48
   BAZANT MZ, 1996, PHYS REV LETT, V77, P4370
   BROVMAN EG, 1974, SOV PHYS USP, V17, P125
   CARLSSON AE, 1983, PHYS REV B, V27, P2101
   CARLSSON AE, 1985, PHYS REV B, V32, P4866
   CARLSSON AE, 1991, PHYS REV B, V44, P6590
   CHEN NX, 1994, PHYS LETT A, V195, P135
   CHISHOLM MF, 1998, PHYS REV LETT, V81, P132
   CONNOLLY JWD, 1983, PHYS REV B, V27, P5169
   DAVIDOV G, 1995, PHYS REV B, V51, P13059
   DAW MS, 1984, PHYS REV B, V29, P6443
   DEFONTAINE D, 1994, SOLID STATE PHYS, V47, P33
   DEKONING M, 1998, PHYS REV B, V58, P12555
   DORFMAN S, 1998, INT J QUANTUM CHEM, V70, P1067
   DORFMAN S, 2000, J PHYS-CONDENS MAT, V12, P4175
   ELLIS DE, 1999, PHILOS MAG B, V79, P1615
   FAULKNER JS, 1982, PROG MATER SCI, V27, P1
   FINNIS MW, 1984, PHILOS MAG A, V50, P45
   FOILES SM, 1986, PHYS REV B, V33, P7983
   FOREMAN AJE, 1992, PHILOS MAG A, V66, P655
   FUKS D, 1994, PHYS REV B, V50, P16340
   FUKS DL, 1977, PHYS MET METALLOGR, V43, P139
   GE XJ, 1999, J APPL PHYS, V85, P3488
   GIFKINS RC, 1994, MATER CHARACT, V32, P59
   GRUJICIC M, 1997, INT J REFRACT MET H, V15, P341
   GUTTMANN M, 1979, INTERFACIAL SEGREGAT, P261
   JUSTO JF, 1998, PHYS REV B, V58, P2539
   KAUFMAN L, 1970, COMPUTER CALCULATION
   KHACHATURYAN AG, 1983, THEORY STRUCTURAL TR
   KRASKO GL, 1990, SOLID STATE COMMUN, V76, P247
   KRASKO GL, 1991, SOLID STATE COMMUN, V79, P113
   KRASKO GL, 1993, SCRIPTA METALL MATER, V28, P1543
   KRASKO GL, 1994, INT J REFRACT MET H, V12, P251
   KRASKO GL, 1997, MAT SCI ENG A-STRUCT, V234, P1071
   KRIVOGLAZ MA, 1964, THEORY ORDER DISORDE
   KURTZ RJ, 1999, PHILOS MAG A, V79, P665
   LIUBICH V, 1999, MATER T JIM, V40, P132
   MAHAN GD, 1981, MANY PARTICLE PHYSIC
   MAIER K, 1979, PHILOS MAG A, V40, P701
   MESCALL JF, 1987, P 34 SAG ARM MAT RES, P287
   MOLL N, 1995, PHYS REV B, V52, P2550
   MOLTENI C, 1996, PHYS REV LETT, V76, P1284
   MORET MA, 1998, J COMPUT CHEM, V19, P647
   MUKERJEE AK, 1993, MAT SCI TECHNOL, V6, P407
   MUNDIM KC, 1996, INT J QUANTUM CHEM, V58, P373
   MUNDY JN, 1978, PHYS REV B, V18, P6566
   PAVAROVA KB, 1987, IZV ACAD NAUK SSSR M, V1, P134
   PAVAROVA KB, 1990, IZV ACAD NAUK SSSR M, V1, P76
   RICE JR, 1989, MAT SCI ENG A-STRUCT, V107, P23
   RUBAN AV, 1995, PHYS REV B, V51, P12958
   SCHMIDT C, 1995, PHYS REV LETT, V75, P2160
   SHAOJUN L, 1998, PHYS REV B, V58, P9705
   TOLSTOBROV YO, 1987, FIZIKA KHIMIYA OBRAB, V21, P121
   WEI X, 1994, SURF SCI, V301, P371
   WU R, 1993, PHYS REV B, V47, P6885
   WU RQ, 1992, J MATER RES, V7, P2403
   WU RQ, 1994, PHYS REV B, V50, P75
   WU RQ, 1994, SCIENCE, V265, P376
   ZHANG WQ, 1997, J APPL PHYS, V82, P578
NR 64
TC 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD AUG 6
PY 2001
VL 13
IS 31
BP 6719
EP 6740
PG 22
SC Physics, Condensed Matter
GA 466UD
UT ISI:000170663800015
ER

PT J
AU Okulik, NB
   Diez, RP
   Jubert, AH
   Esteves, PM
   Mota, CJA
TI A topological study of the transition states of the hydrogen exchange
   and dehydrogenation reactions of methane on a zeolite cluster
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID AB-INITIO; MECHANISM; ALKANES; PROTON; CD4
AB The transition states of the hydrogen exchange and dehydrogenation
   reactions of methane on a zeolite acid site are studied within the
   framework of the density functional theory and the atoms-in-molecules
   theory. The transition state for the hydrogen exchange reaction is
   found to be characterized by a slightly ionic interaction between a
   distorted CH5+ structure and the negatively charged zeolite. No free
   carbocation is found. The dehydrogenation reaction presents a
   transition state in which three different fragments can be well
   identified, namely, an almost planar CH3+ structure, a H-2
   pseudomolecule, and the negatively charged zeolite. The interaction
   between the fragments can be described as a closed-shell one, typical
   of rather ionic systems.
C1 Natl Univ La Plata, Fac Ciencias Exactas, Ctr Quim Inorgan, CEQUINOR,Dept Quim, RA-1900 La Plata, Argentina.
   UNNE, Fac Agroind, Dept Quim, RA-3700 Pena, Chaco, Argentina.
   Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Diez, RP, Natl Univ La Plata, Fac Ciencias Exactas, Ctr Quim Inorgan,
   CEQUINOR,Dept Quim, CC 962, RA-1900 La Plata, Argentina.
CR BADER RFW, 1990, ATOMS MOL QUANTUM TH
   BADER RFW, 1998, J PHYS CHEM A, V102, P7314
   BAKER J, 1987, J COMPUT CHEM, V8, P563
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BLASZKOWKI SR, 1994, J PHYS CHEM-US, V98, P11332
   BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
   BLASZKOWSKI SR, 1997, TOP CATAL, V4, P145
   BLIEGERKONIG FW, 1982, J COMPUT CHEM, V3, P317
   BORONAT M, 1998, J PHYS CHEM A, V102, P9863
   COLLARD K, 1977, INT J QUANTUM CHEM, V12, P623
   CORMA A, 1995, CHEM REV, V95, P559
   CREMER D, 1983, J AM CHEM SOC, V105, P5069
   ESTEVES PM, 1999, J PHYS CHEM B, V103, P10417
   EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
   FRISCH MJ, 1995, GAUSSIAN 94
   HOHENBERG P, 1965, PHYS REV A, V140, P1133
   KAZANSKY VB, 1994, CATAL LETT, V28, P211
   KRAMER GJ, 1993, NATURE, V363, P529
   KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
   LEE C, 1988, PHYS REV B, V37, P785
   LINS JOMDL, 1996, THEOCHEM-J MOL STRUC, V371, P237
   PARR RG, 1989, DENSITY FUNCTIONAL T
   POPELIER PLA, 1999, ATOMS MOL INTRO
   RIGBY AM, 1997, J CATAL, V170, P1
   VANSANTEN RA, 1995, CHEM REV, V95, P637
   VANSANTEN RA, 1997, CATAL TODAY, V38, P377
   WANG LS, 1993, CATAL LETT, V21, P35
NR 27
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUL 26
PY 2001
VL 105
IS 29
BP 7079
EP 7084
PG 6
SC Chemistry, Physical
GA 457TH
UT ISI:000170152600015
ER

PT J
AU Pliego, JR
   Riveros, JM
TI The cluster-continuum model for the calculation of the solvation free
   energy of ionic species
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID STATISTICAL PERTURBATION-THEORY; PERIODIC BOUNDARY-CONDITIONS;
   SELF-CONSISTENT-FIELD; AB-INITIO; MOLECULAR-DYNAMICS; HYDROXIDE ION;
   AQUEOUS SOLVATION; LIQUID WATER; THERMODYNAMIC INTEGRATION; POTENTIAL
   FUNCTIONS
AB A hybrid approach using a combination of explicit solvent molecules and
   the isodensity polarizable continuum model (IPCM) method is proposed
   for the calculation of the solvation thermodynamic properties of ions.
   This model, denominated cluster-continuum, has been applied to the
   calculation of the solvation free energy of 14 univalent ions, mainly
   organic species, and compared with the results obtained with the IPCM,
   polarizable continuum solvation model (PCM), and SM5.42R continuum
   methods. The average error in our calculated solvation free energies
   with respect to experimental data is 8.7 kcal mol(-1). However, the
   great merit of our model resides in the homogeneous treatment for
   different ions, resulting in a standard deviation of only 2.9 kcal
   mol(-1) for the average error. Our results suggest that the
   cluster-continuum model must be superior to the IPCM, PCM, and SM5.42R
   methods for studying chemical reactions in the liquid phase, because
   these continuum methods present a standard deviation of similar to8
   kcal mol(-1) for the average error for the species studied in this
   work. The model can also be used to calculate the solvation entropy of
   ions. Predicted solvation entropies for five ionic species are in good
   agreement with available experimental data.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Pliego, JR, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05508900
   Sao Paulo, Brazil.
CR ALEMAN C, 1999, CHEM PHYS LETT, V302, P461
   ALLEN MP, 1989, COMPUTER SIMULATION
   AQVIST J, 1990, J PHYS CHEM-US, V94, P8021
   AQVIST J, 1994, J PHYS CHEM-US, V98, P8253
   AQVIST J, 1996, J PHYS CHEM-US, V100, P9512
   ASHBAUGH HS, 1997, J CHEM PHYS, V106, P8135
   BANDYOPADHYAY P, 2000, J CHEM PHYS, V113, P1104
   BENNAIM A, 1978, J PHYS CHEM-US, V82, P792
   CARLSON HA, 1993, J COMPUT CHEM, V14, P1240
   CHABAN GM, 1999, J CHEM PHYS, V111, P1823
   CHAMBERS CC, 1996, J PHYS CHEM-US, V100, P16385
   CHIPOT C, 1994, J PHYS CHEM-US, V98, P11362
   CLAVERIE P, 1978, J PHYS CHEM-US, V82, P405
   CONSTANCIEL R, 1984, THEOR CHIM ACTA, V65, P1
   COSSI M, 1996, CHEM PHYS LETT, V255, P327
   CRAMER CJ, 1992, SCIENCE, V256, P213
   CRAMER CJ, 1999, CHEM REV, V99, P2161
   DARDEN T, 1998, J CHEM PHYS, V109, P10921
   FLORIAN J, 1997, J PHYS CHEM B, V101, P5583
   FLORIS F, 1995, CHEM PHYS, V195, P207
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FREITAS LCG, 1992, J CHEM SOC FARADAY T, V88, P189
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
   GRIMM AR, 1995, MOL PHYS, V86, P369
   HUMMER G, 1996, J PHYS CHEM-US, V100, P1206
   HUMMER G, 1997, J PHYS CHEM B, V101, P3017
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   JORGENSEN WL, 1987, J PHYS CHEM-US, V91, P6083
   JORGENSEN WL, 1989, CHEM PHYS, V129, P193
   JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
   JORGENSEN WL, 1993, J COMPUT CHEM, V14, P195
   KOLLMAN P, 1993, CHEM REV, V93, P2395
   LANGLET J, 1988, J PHYS CHEM-US, V92, P1617
   LI J, 1999, GAMESOL VERSION 2 2
   LI JB, 1998, CHEM PHYS LETT, V288, P293
   MARCOS ES, 1991, J PHYS CHEM-US, V95, P8928
   MARCUS Y, 1986, J CHEM SOC FARAD T 1, V82, P233
   MARRONE TJ, 1994, J PHYS CHEM-US, V98, P8256
   MEZEI M, 1987, J CHEM PHYS, V86, P7084
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   MIERTUS S, 1982, CHEM PHYS, V65, P239
   PLIEGO JR, 2000, CHEM PHYS LETT, V332, P597
   PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
   PLIEGO JR, 2000, J PHYS CHEM B, V104, P5155
   RICK SW, 1994, J AM CHEM SOC, V116, P3949
   SAKANE S, 1998, J PHYS CHEM B, V102, P5673
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SINGH UC, 1987, J AM CHEM SOC, V109, P1607
   STEFANOVICH EV, 1995, CHEM PHYS LETT, V244, P65
   STRAATSMA TP, 1986, J CHEM PHYS, V85, P6720
   STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
   TISSANDIER MD, 1998, J PHYS CHEM A, V102, P7787
   TOMASI J, 1994, CHEM REV, V94, P2027
   TOPOL IA, 1999, J CHEM PHYS, V111, P10998
   TUNON I, 1993, J PHYS CHEM-US, V97, P5547
   TUNON I, 1995, J PHYS CHEM-US, V99, P3798
   WONG MW, 1991, J AM CHEM SOC, V113, P4776
   WOOD RH, 1995, J CHEM PHYS, V103, P6177
NR 59
TC 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 2
PY 2001
VL 105
IS 30
BP 7241
EP 7247
PG 7
SC Chemistry, Physical
GA 457TJ
UT ISI:000170152700015
ER

PT J
AU Persson, C
   da Silva, AF
   Ahuja, R
   Johansson, B
TI Effective electronic masses in wurtzite and zinc-blende GaN and AlN
SO JOURNAL OF CRYSTAL GROWTH
LA English
DT Article
DE computer simulation; crystal structure; nitrides; semiconducting III-V
   materials
ID GENERALIZED GRADIENT APPROXIMATION; LOCAL-DENSITY APPROXIMATION;
   OPTICAL BAND-GAP; GALLIUM NITRIDE; EPITAXIAL-GROWTH; HEXAGONAL GAN; 001
   SILICON; THIN-FILMS; ENERGY; AIN
AB The effective electron and hole masses are fundamental quantities of
   semiconductors, used in numerous analyses of experiments and
   theoretical investigations. We present calculations of the band
   structure near the band edges in intrinsic GaN and AIN, both for the
   wurtzite and the zinc-blende polytypes. We have utilized a
   full-potential linearized augmented plane wave method within the
   density functional theory and with two different exchange-correlation
   potentials. The lattice parameters have been determined by a
   minimization of the total energy, whereupon the crystal-field
   splitting, the spin-orbit splitting, and the effective electron and
   hole masses have been calculated. The calculated effective masses are
   in good agreement with available experimental values. We show the
   importance of performing a fully relativistic calculation. For
   instance, the hole mass in cubic AIN is a very large and negative
   quantity if the spin-orbit coupling is excluded, whereas the fully
   relativistic calculation gives a relatively small and positive value.
   (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Uppsala, Dept Phys, SE-75121 Uppsala, Sweden.
   Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil.
RP Persson, C, Univ Uppsala, Dept Phys, Box 530, SE-75121 Uppsala, Sweden.
CR BACHELET GB, 1985, PHYS REV B, V31, P879
   BECHSTEDT F, 1988, PHYS REV B, V38, P7710
   BLAHA P, 1999, WIEN97 FULL POTENTIA
   CUNNINGHAM RD, 1972, J LUMIN, V5, P21
   DRECHSLER M, 1995, JPN J APPL PHYS, V34, P1178
   HARRISON WA, 1980, ELECT STRUCTURE PROP
   KHAN MA, 1993, APPL PHYS LETT, V62, P1786
   KIM K, 1997, PHYS REV B, V56, P7363
   KOHN W, 1965, PHYS REV, V140, A1133
   KOHN W, 1986, PHYS REV B, V33, P4331
   KOSICKI BB, 1970, PHYS REV LETT, V24, P1421
   LAX B, 1955, PHYS REV, V100, P1650
   LEI T, 1991, APPL PHYS LETT, V59, P944
   LEI T, 1992, J APPL PHYS, V71, P4933
   MONEMAR B, 1974, PHYS REV B, V10, P676
   NAKAMURA S, 1995, JPN J APPL PHYS, V34, L1332
   PAISLEY MJ, 1989, J VAC SCI TECHNOL A, V7, P701
   PERDEW JP, 1992, PHYS REV B, V45, P13244
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   PERRY PB, 1978, APPL PHYS LETT, V33, P319
   PERSSON C, 1997, J APPL PHYS, V82, P5496
   PERSSON C, 1999, J APPL PHYS, V86, P5036
   PERSSON C, 1999, THESIS LINKOPING
   PERSSON C, 2001, J CRYST GROWTH, V231, P407
   PERSSON C, 2001, PHYS REV B, V6403
   PETROV I, 1992, APPL PHYS LETT, V60, P2491
   RAMIREZFLORES G, 1994, PHYS REV B, V50, P8433
   SCHULZ H, 1977, SOLID STATE COMMUN, V23, P815
   SHAN W, 1995, APPL PHYS LETT, V66, P985
   SINGH DJ, 1994, PLANEWAVES PSEUDOPOT
   STAMPFL C, 1999, PHYS REV B, V59, P5521
   STEUBE M, 1997, APPL PHYS LETT, V71, P948
   STRIFE S, 1992, J VAC SCI TECHNOL B, V10, P1237
   SUZUKI M, 1995, PHYS REV B, V52, P8132
   VOLM D, 1996, PHYS REV B, V53, P16543
   WITOWSKI AM, 1999, APPL PHYS LETT, V75, P4154
   YEO YC, 1998, J APPL PHYS, V83, P1429
   YIM WM, 1973, J APPL PHYS, V44, P292
NR 38
TC 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-0248
J9 J CRYST GROWTH
JI J. Cryst. Growth
PD OCT
PY 2001
VL 231
IS 3
BP 397
EP 406
PG 10
SC Crystallography
GA 459GB
UT ISI:000170241700012
ER

PT J
AU Perottoni, CA
   da Jornada, JAH
TI The carbon analogues of type-I silicon clathrates
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; DIAMOND-LIKE MATERIALS; VALENCE BASIS-SETS;
   HIGH-PRESSURE; STRUCTURAL-PROPERTIES; AB-INITIO; THERMAL-CONDUCTIVITY;
   ELASTIC PROPERTIES; HARTREE-FOCK; SI
AB In this paper we present a survey on the structure and equation of
   state for some silicon clathrates and their carbon analogues, as
   obtained by means of ab initio calculations within the Hartree-Fock
   approximation. We restrict our consideration to type-I clathrates,
   namely M-x(Si, C)(46), With M = Na, Ba. The insertion of guest species
   into the carbon clathrate cages promotes a significant increase in the
   host volume, thus reducing the bulk modulus for these compounds. In
   spite of that, the estimated hardness for C-46, Of about 61 GPa,
   constitutes an exceptionally large value for a structure with such an
   open framework. The issue of electronic charge transference from the
   guest species to the host framework and the stability of carbon and
   silicon clathrates relative to the diamond phase are also discussed.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
   INMETRO, BR-25250020 Duque De Caxias, RJ, Brazil.
RP Perottoni, CA, Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto
   Alegre, RS, Brazil.
CR ADAMS GB, 1992, SCIENCE, V256, P1792
   ADAMS GB, 1994, PHYS REV B, V49, P8048
   ANDERSON OL, 1963, J PHYS CHEM SOLIDS, V24, P909
   BENEDEK G, 1995, CHEM PHYS LETT, V244, P339
   BENEDEK G, 1995, NUOVO CIMENTO D, V17, P97
   BERNASCONI M, 2000, PHYS REV B, V61, P12869
   BETTINGER HF, 1998, CHEM COMMUN, V7, P769
   BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
   BLAKE NP, 1999, J CHEM PHYS, V111, P3133
   BRUNET F, 2000, PHYS REV B, V61, P16550
   BRYAN JD, 1999, PHYS REV B, V60, P3064
   BUNDY FP, 1961, J CHEM PHYS, V35, P383
   CATTI M, 1999, PHYS CHEM MINER, V26, P389
   CLERC DG, 1998, J MATER SCI LETT, V17, P1461
   CLERC DG, 1999, J PHYS CHEM SOLIDS, V60, P103
   CROS C, 1965, CR HEBD ACAD SCI, V260, P4764
   CROS C, 1990, INORGANIC REACTIONS, V17, P209
   DONG JJ, 1999, J PHYS-CONDENS MAT, V11, P6129
   DONG JJ, 2000, J APPL PHYS, V87, P7726
   DOVERSI R, 1996, CRYSTAL95 USERS MANU
   GILAT G, 1966, PHYS REV, V144, P390
   GILLET P, 1999, PHYS REV B, V60, P14660
   GORDON MS, 1982, J AM CHEM SOC, V104, P2797
   HAGAN M, 1962, CLATHRATE INCLUSION
   HASHIN Z, 1962, J MECH PHYS SOLIDS, V10, P335
   HASHIN Z, 1962, J MECH PHYS SOLIDS, V10, P343
   HU JZ, 1984, SOLID STATE COMMUN, V51, P263
   IVERSEN BB, 2000, J SOLID STATE CHEM, V149, P455
   KAHN D, 1997, PHYS REV B, V56, P13898
   KASPER JS, 1965, SCIENCE, V150, P1713
   KAWAJI H, 1995, PHYS REV LETT, V74, P1427
   MENON M, 1997, PHYS REV B, V56, P12290
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   MORIGUCHI K, 2000, PHYS REV B, V61, P9859
   MULLER A, 1995, ANGEW CHEM INT EDIT, V34, P2328
   MURNAGHAN FD, 1944, P NATL ACAD SCI USA, V50, P697
   NESPER R, 1993, ANGEW CHEM INT EDIT, V32, P701
   NOLAS GS, 1998, APPL PHYS LETT, V73, P178
   NOLAS GS, 2000, PHYS REV B, V61, P3845
   OKADA Y, 1984, J APPL PHYS, V56, P314
   OKEEFFE M, 1998, PHIL MAG LETT, V78, P21
   ORLANDO R, 1990, J PHYS-CONDENS MAT, V2, P7769
   PANDEY R, 1996, J PHYS-CONDENS MAT, V8, P3993
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   POWELL HM, 1948, J CHEM SOC, V61
   PRENCIPE M, 1995, PHYS REV B, V51, P3391
   RAMACHANDRAN GK, 1999, PHYS REV B, V60, P12294
   SAITO S, 1995, PHYS REV B, V51, P2628
   SAITO S, 1997, P 1 S AT SCAL SURF I, P47
   SANMIGUEL A, 1999, PHYS REV LETT, V83, P5290
   SEKKAL W, 1999, MAT SCI ENG B-SOLID, V64, P123
   TOWLER M, UNPUB
   TSE JS, 2000, PHYS REV LETT, V85, P114
   YAMANAKA S, 1995, EUR J SOL STATE INOR, V32, P799
   YAMANAKA S, 1995, FULLERENE SCI TECHN, V3, P21
NR 55
TC 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD JUL 2
PY 2001
VL 13
IS 26
BP 5981
EP 5998
PG 18
SC Physics, Condensed Matter
GA 455EW
UT ISI:000170015400018
ER

PT J
AU da Silva, AJR
   Dalpian, GM
   Janotti, A
   Fazzio, A
TI Two-atom structures of Ge on Si(100): Dimers versus adatom pairs
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SI AD-DIMERS; SCANNING-TUNNELING-MICROSCOPY; HOMOEPITAXIAL GROWTH;
   SI(001); DYNAMICS; SURFACE; ENERGETICS; DIFFUSION; SILICON; GE(001)
AB We present an ab initio study of the properties of structures composed
   of two and four Ge atoms adsorbed on the troughs of the Si(100)
   surface, and we conclude that these structures are all composed of
   dimers, with a chemical bonding between the adatoms. We compare our
   calculated local density of states with scanning tunneling microscope
   (STM) images, and we show that these Ge dimers adsorbed on the troughs
   between the substrate dimer rows can be identified with the adatom
   pairs observed experimentally. We also show that the local buckling of
   the substrate dimers can give rise to similar structures with very
   different STM images.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Janotti, A, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR BEDROSSIAN PJ, 1995, PHYS REV LETT, V74, P3648
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   BOROVSKY B, 1997, PHYS REV LETT, V78, P4229
   BROCKS G, 1996, PHYS REV LETT, V76, P2362
   DALPIAN GM, IN PRESS SURF SCI
   DALPIAN GM, 1999, PHYSICA B, V273, P589
   DALPIAN GM, 2001, PHYS REV B, V63
   GALEA TM, 2000, PHYS REV B, V62, P7206
   KHARE SV, 1999, PHYS REV B, V60, P4458
   LEIFELD O, 1999, PHYS REV LETT, V82, P972
   LU ZY, 2000, PHYS REV LETT 1, V85, P5603
   QIN XR, 1997, SCIENCE, V278, P1444
   SWARTZENTRUBER BS, 1996, PHYS REV LETT, V76, P459
   TERSOFF J, 1985, PHYS REV B, V31, P805
   VANWINGERDEN J, 1997, PHYS REV B, V55, P4723
   WOLKOW RA, 1995, PHYS REV LETT, V74, P4448
   WULFHEKEL W, 1997, PHYS REV LETT, V79, P2494
   YAMASAKI T, 1996, PHYS REV LETT, V76, P2949
   ZANDVLIET HJW, 2000, PHYS REV LETT, V84, P1523
   ZHANG ZY, 1995, PHYS REV LETT, V74, P3644
   ZHANG ZY, 1997, ANNU REV MATER SCI, V27, P525
   ZHANG ZY, 1997, SCIENCE, V276, P377
NR 22
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUL 16
PY 2001
VL 8703
IS 3
AR 036104
DI ARTN 036104
PG 4
SC Physics, Multidisciplinary
GA 454UF
UT ISI:000169989600034
ER

PT J
AU Resende, SM
   Ornellas, FR
TI Radiative and predissociative lifetimes of the A (2)Sigma(+) state
   (v(')=0,1) of SH and SD: A highly correlated theoretical investigation
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID CONFIGURATION-INTERACTION CALCULATIONS; GAUSSIAN-BASIS SETS; MOLECULAR
   CALCULATIONS; A2-SIGMA+ STATE; ELECTRONIC-STRUCTURE; ROW ATOMS;
   PHOTODISSOCIATION; SPECTROSCOPY; SPECTRUM; NM
AB Doublet and quartet states of the HS radical correlating with
   H(S-2)+S(P-3,D-1,S-1) were investigated by ab initio calculations, at
   the CASSCF-MRCI/aug-cc-pV5Z level of theory. Molecular parameters and
   spectroscopic constants obtained for both the ground (X (2)Pi) and the
   first excited (A (2)Sigma (+)) states represent the best overall
   theoretical description of this system to date. Transition moments,
   transition probabilities, and radiative and predissociative lifetimes
   were also determined for the X (2)Pi -A (2)Sigma (+) system. The values
   calculated for the radiative lifetimes of the A state show that
   previous results were too large. Theoretical predissociative lifetimes,
   although quite sensitive to the region of crossing of the potential
   energy curves, reproduce the experimental trends. (C) 2001 American
   Institute of Physics.
C1 Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05513970 Sao Paulo, Brazil.
RP Resende, SM, Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, Caixa
   Postal 26077, BR-05513970 Sao Paulo, Brazil.
CR ASHWORTH SH, 1992, J MOL SPECTROSC, V153, P41
   BAUSCHLICHER CW, 1987, J CHEM PHYS, V87, P4665
   BECKER KH, 1972, J PHOTOCHEM, V1, P177
   BECKER KH, 1974, BER BUNSEN PHYS CHEM, V78, P1157
   BERNATH PF, 1983, J MOL SPECTROSC, V98, P20
   BORIN AC, 1993, J CHEM PHYS, V98, P8761
   BROWN JM, 1972, MOL PHYS, V23, P635
   BRUNA PJ, 1987, MOL PHYS, V61, P1359
   CONTINETTI RE, 1991, CHEM PHYS LETT, V182, P400
   DAVIDSON ER, 1974, WORLD QUANTUM CHEM
   DAVIES PB, 1978, MOL PHYS, V36, P1005
   DUNNING TH, 1971, J CHEM PHYS, V55, P716
   FEDOROV DG, 2000, J CHEM PHYS, V112, P5611
   FINLAYSONPITTS BJ, 2000, CHEM UPPER LOWER ATM
   FRIEDL RR, 1983, J CHEM PHYS, V79, P4227
   FURLANI TR, 1985, J CHEM PHYS, V82, P5577
   HERZBERG G, 1950, MOL SPECTRA MOL STRU, V1, P315
   HIRST DM, 1982, MOL PHYS, V46, P427
   JOHNS JWC, 1961, CAN J PHYS, V39, P210
   KAWASAKI M, 1989, J CHEM PHYS, V91, P6758
   KING HF, 1988, J COMPUT CHEM, V9, P771
   KLISCH E, 1996, ASTROPHYS J 1, V473, P1118
   KNOWLES PJ, 1985, CHEM PHYS LETT, V115, P259
   KNOWLES PJ, 1988, CHEM PHYS LETT, V145, P514
   LANGHOFF SR, 1974, INT J QUANTUM CHEM, V8, P61
   LANGHOFF SR, 1982, J CHEM PHYS, V77, P1379
   LEROY RJ, 1989, COMPUT PHYS COMMUN, V52, P383
   LOGE GW, 1988, J CHEM PHYS, V89, P7167
   MACHADO FBC, 1991, J CHEM PHYS, V94, P7237
   MANAA MR, 1995, INT J QUANTUM CHEM Q, V29, P577
   MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
   MEERTS WL, 1974, ASTROPHYS J, V187, L45
   MOORE CE, 1971, ATOMIC ENERGY LEVELS, V1, P35
   MORINO I, 1995, J MOL SPECTROSC, V170, P171
   MORLEY GP, 1993, J CHEM SOC FARADAY T, V89, P3865
   ORNELLAS FR, 1985, J CHEM PHYS, V82, P379
   PATHAK CM, 1969, J MOL SPECTROSC, V32, P157
   RAM RS, 1995, J MOL SPECTROSC, V172, P34
   RAMSAY DA, 1952, J CHEM PHYS, V20, P1920
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCHNIEDER L, 1990, J CHEM PHYS, V92, P7027
   SENEKOWITSCH J, 1985, J CHEM PHYS, V83, P4661
   TANIMOTO M, 1973, MOL PHYS, V25, P1193
   TIEE JJ, 1983, J CHEM PHYS, V79, P130
   TYNDALL GS, 1991, INT J CHEM KINET, V23, P483
   UBACHS W, 1983, CHEM PHYS LETT, V101, P1
   UEHARA H, 1970, J MOL SPECTROSC, V36, P158
   WERNER HJ, 1985, J CHEM PHYS, V82, P5053
   WERNER HJ, 1988, J CHEM PHYS, V89, P5803
   WHEELER MD, 1997, J CHEM PHYS, V107, P7591
   WINKEL RJ, 1984, CAN J PHYS, V62, P1420
   WOON DE, 1993, J CHEM PHYS, V98, P1358
   YAMAMURA I, 2000, ASTROPHYS J, V528, L33
   ZEMKE WT, 1981, QCPE, V4, P79
NR 54
TC 6
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD AUG 1
PY 2001
VL 115
IS 5
BP 2178
EP 2187
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 453QQ
UT ISI:000169927700025
ER

PT J
AU Miron, C
   Simon, M
   Morin, P
   Nanbu, S
   Kosugi, N
   Sorensen, SL
   de Brito, AN
   Piancastelli, MN
   Bjorneholm, O
   Feifel, R
   Bassler, M
   Svensson, S
TI Nuclear motion driven by the Renner-Teller effect as observed in the
   resonant Auger decay to the (X)over-tilde(2)Pi electronic ground state
   of N2O+
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID EXCITED-STATES; MOLECULES; DISSOCIATION; SCATTERING; SPECTRUM; CO2;
   SPECTROSCOPY; EDGE
AB High-resolution Auger spectroscopy applied under resonant Auger Raman
   conditions is shown to be a powerful tool for characterizing complex
   potential energy surfaces in core-excited systems. Using the example of
   N-t 1s(-1)pi*-->(X) over tilde (2)Pi resonant Auger transition in
   nitrous oxide we emphasize the interplay between the nuclear motion and
   the electronic decay. We show how the choice of excitation energy
   allows selection of core-excited species of different geometries. The
   nuclear dynamics of these species are mapped by measuring the resonant
   Auger decay spectra. In addition to the changes in vibrational
   structure observed for the resonant Auger decay spectra, a strong
   influence of nuclear motion on the electronic decay is revealed,
   inducing the so-called "dynamical Auger emission." The experimental
   results are supported by ab initio quantum chemical calculations
   restricted to a linear geometry of the core-excited state. (C) 2001
   American Institute of Physics.
C1 Univ Paris Sud, LURE, F-91898 Orsay, France.
   CENS, CEA, DRECAM, SPAM LFP, F-91191 Gif Sur Yvette, France.
   Inst Mol Sci, Okazaki, Aichi 4448585, Japan.
   Univ Lund, Dept Synchrotron Radiat Res, S-22100 Lund, Sweden.
   Lab Nacl Luz Sincrotron, BR-13083970 Campinas, SP, Brazil.
   Univ Roma Tor Vergata, Dept Chem Sci & Technol, I-00133 Rome, Italy.
   Univ Uppsala, Dept Phys, S-75121 Uppsala, Sweden.
RP Miron, C, Univ Paris Sud, LURE, Bat 209D,BP 34, F-91898 Orsay, France.
CR ADACHI J, 1997, J CHEM PHYS, V107, P4919
   ADACHI JI, 1995, J CHEM PHYS, V102, P7369
   BASSLER M, IN PRESS NUCL INST B
   BRAMLEY MJ, 1993, J CHEM PHYS, V99, P8519
   COLBERT DT, 1992, J CHEM PHYS, V96, P1982
   DEMMEL JW, 1997, APPL NUMERICAL LINEA
   GELMUKHANOV F, 1996, PHYS REV A, V54, P379
   GOLDFIELD EM, 1998, COMPUT PHYS COMMUN, V98, P1
   GRITLI H, 1993, CHEM PHYS, V178, P223
   HUZINAGA S, 1984, GAUSSIAN BASIS SETS
   KIVIMAKI A, 1993, PHYS REV LETT, V71, P4307
   KOSUGI N, 1980, CHEM PHYS LETT, V74, P490
   KOSUGI N, 1987, THEOR CHIM ACTA, V72, P149
   KUKK E, 2000, PHYS REV A, V62
   LEBRUN T, 1993, J CHEM PHYS, V98, P2534
   LEHOUCQ RB, 1997, ARPACK
   LILL JV, 1982, CHEM PHYS LETT, V89, P483
   MA Y, 1991, PHYS REV A, V44, P1848
   MIRON C, UNPUB
   MIRON C, 1998, J ELECTRON SPECTROSC, V93, P95
   MORIN P, 2000, PHYS REV A
   PIANCASTELLI MN, 2000, J ELECTRON SPECTROSC, V107, P1
   PIANCASTELLI MN, 2000, J PHYS B-AT MOL OPT, V33, P1819
   SIMON M, 1997, PHYS REV LETT, V79, P3857
   SORENSEN DC, 1992, SIAM J MATRIX ANAL A, V13, P357
   TANAKA S, 1998, PHYS REV A, V57, P3437
   TENNYSON J, 1982, J CHEM PHYS, V77, P4061
   UEDA K, 1999, PHYS REV LETT, V83, P3800
   UEDA K, 2000, PHYS REV LETT, V85, P3129
   WIGHT GR, 1974, J ELECTRON SPECTROSC, V3, P191
   YANG CY, 1997, J CHEM PHYS, V107, P7773
NR 31
TC 9
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUL 8
PY 2001
VL 115
IS 2
BP 864
EP 869
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 448ZW
UT ISI:000169660700035
ER

PT J
AU Justo, JF
   Antonelli, A
   Fazzio, A
TI Dislocation core properties in semiconductors
SO SOLID STATE COMMUNICATIONS
LA English
DT Article
DE semiconductor; dislocations and disclinations; electronic band
   structure; electronic states (localized)
ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS; SILICON; MOBILITY;
   PSEUDOPOTENTIALS; VELOCITIES; CRYSTALS; GAAS; INAS
AB Using ab initio calculations, we computed the core reconstruction
   energies of {111} 30 degrees partial dislocations in zinc-blende
   semiconductors. Our results show a direct correlation between core
   reconstruction energies and the experimental activation energies for
   the velocity of 60 degrees dislocations. The electronic structure of
   unreconstructed dislocation cores comprises a half-filled band, which
   splits up in bonding and antibonding levels upon reconstruction. The
   levels in the electronic gap come from the core of beta dislocations,
   while the levels related to or dislocations lie on the valence band.
   (C) 2001 Elsevier Science Ltd. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Justo, JF, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
   ALEXANDER H, 1989, I PHYS C SER, V104, P281
   BAZANT MZ, 1997, PHYS REV B, V56, P8542
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   BULATOV VV, 1997, PHYS REV LETT, V79, P5042
   CAI W, 2000, PHYS REV LETT, V84, P3346
   CAR R, 1985, PHYS REV LETT, V55, P2471
   CHOI SK, 1977, JPN J APPL PHYS, V16, P737
   CHOI SK, 1978, JPN J APPL PHYS, V17, P329
   DUESBERY MS, 1991, CRIT REV SOLID STATE, V17, P1
   HIRTH JP, 1982, THEORY DISLOCAIONS
   IMAI M, 1983, PHILOS MAG A, V47, P599
   JUSTO JF, 1998, PHYS REV B, V58, P2539
   JUSTO JF, 1999, J APPL PHYS, V86, P4249
   JUSTO JF, 2000, PHYS REV LETT, V84, P2172
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   OMRI M, 1990, PHILOS MAG A, V62, P203
   SUZUKI T, 1991, DISLOCATION DYNAMICS
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   YONENAGA I, 1989, J APPL PHYS, V65, P85
   YONENAGA I, 1993, J APPL PHYS, V73, P1681
   YONENAGA I, 1996, APPL PHYS LETT, V69, P1264
   YONENAGA I, 1998, J APPL PHYS, V84, P4209
NR 24
TC 12
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-1098
J9 SOLID STATE COMMUN
JI Solid State Commun.
PY 2001
VL 118
IS 12
BP 651
EP 655
PG 5
SC Physics, Condensed Matter
GA 445NL
UT ISI:000169463900011
ER

PT J
AU Lopes, KC
   Pereira, FS
   Ramos, MN
   de Araujo, RCMU
TI An ab-initio study of the C3H6-HX, C2H4-HX and C2H2-HX hydrogen-bonded
   complexes with X=F or CI
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE ab-initio study; hydrogen bond; infrared spectrum; vibrational
   properties
ID QUADRUPOLE COUPLING-CONSTANTS; ROTATIONAL SPECTRUM;
   MOLECULAR-STRUCTURE; INFRARED-SPECTROSCOPY; FLUORIDE DIMER; HF COMPLEX;
   ACETYLENE; CYCLOPROPANE; GEOMETRY; ABINITIO
AB MP2/6-31G** ab-initio molecular orbital calculations have been
   performed to obtain geometries, H-bond energies and vibrational
   properties of the C3H6-HX, C2H4-HX and C2H2-HX H-bonded complexes with
   X=F or Cl. The more pronounced effects on the structural parameters of
   the isolated molecules due to complexation are verified to the CC and
   HX bond lengths, which are directly involved in the H-bond formation.
   They are increased after complexation. The calculated H-bond lengths
   for the hydrogen complexes for X=F are shorter than those for x-Cl by
   about 0.55 Angstrom whereas the corresponding experimental value is
   0.58 Angstrom. The H-bond energies are essentially determined by the
   nature of the proton donor molecule. For X-F, the AE mean value is 20
   kJ/mol, whereas it is approximately 14.5 kJ/mol for X=Cl. The H-bond
   energies including zero-point corrections show a good correlation with
   the H-bond lengths. The more pronounced effect on the normal modes of
   the isolated molecules after complexation occurs to the H-X stretching
   mode. The HX stretching frequency is shifted downward, whereas its IR
   intensity is much enhanced upon H-bond formation. The new vibrational
   modes arising from complexation show several interesting features. (C)
   2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901 Recife, PE, Brazil.
   Univ Fed Paraiba, Dept Quim, BR-58036300 Joao Pessoa, Paraiba, Brazil.
RP Ramos, MN, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901
   Recife, PE, Brazil.
CR ALDRICH PD, 1981, J CHEM PHYS, V75, P2126
   ARAUJO RCMU, 1995, SPECTROCHIM ACTA A, V51, P821
   ARAUJO RCMU, 1996, THEOCHEM-J MOL STRUC, V366, P233
   ARAUJO RCMU, 1998, J BRAZIL CHEM SOC, V9, P499
   BRYANT GW, 1988, J CHEM SOC F2, V84, P1443
   BUCKINGHAM AD, 1988, CHEM REV, V88, P963
   BUXTON LW, 1981, J CHEM PHYS, V75, P2681
   CHANDRA AK, 1995, CHEM PHYS LETT, V247, P95
   CRAW JS, 1991, J CHEM SOC FARADAY T, V87, P1293
   DASILVA JBP, 1997, SPECTROCHIM ACTA A, V53, P733
   FRISCH MJ, 1992, GAUSSIAN 92 REVISION
   GUSSONI M, 1987, CHEM PHYS LETT, V142, P515
   JUCKS KW, 1987, J CHEM PHYS, V86, P4341
   KUKOLICH SG, 1983, J CHEM PHYS, V78, P4832
   LEGON AC, 1981, J CHEM PHYS, V75, P625
   LEGON AC, 1982, J AM CHEM SOC, V104, P1486
   LEGON AC, 1986, CHEM REV, V86, P635
   MCDONALD SA, 1980, J AM CHEM SOC, V102, P2892
   MOOTZ D, 1992, J AM CHEM SOC, V114, P5887
   READ WG, 1982, J CHEM PHYS, V76, P2238
   SHEA JA, 1982, J CHEM PHYS, V76, P4857
   SOPER PD, 1982, J CHEM PHYS, V76, P292
   TANG TH, 1990, J MOL STRUCT THEOCHE, V207, P319
NR 23
TC 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUN
PY 2001
VL 57
IS 7
BP 1339
EP 1346
PG 8
SC Spectroscopy
GA 441EK
UT ISI:000169217900001
ER

PT J
AU Capelle, K
   Vignale, G
TI Nonuniqueness of the potentials of spin-density-functional theory
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DERIVATIVE DISCONTINUITIES; ELECTRON-DENSITIES; ORBITAL ENERGIES; SHAM
AB It is shown that, contrary to widely held beliefs, the potentials of
   spin-density-functional theory (SDFT) are not unique functionals of the
   spin densities. Explicit tramples of distinct sets of potentials with
   the same ground-stale densities are constructed. These findings imply
   that the zero-temperature exchange-correlation energy is not always a
   differentiable functional of the spin density. As a consequence,
   various types of applications of SDFT must be critically reexamined.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
   Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
RP Capelle, K, Univ Sao Paulo, Inst Quim Sao Carlos, Caixa Postal 780,
   BR-13560970 Sao Carlos, SP, Brazil.
CR ARYASETIAWAN F, 1988, PHYS REV B, V38, P2974
   ESCHRIG H, 2001, SOLID STATE COMMUN, V118, P123
   GORLING A, 1992, PHYS REV A, V46, P3753
   GORLING A, 1994, PHYS REV A, V50, P196
   GRABO T, 1998, STRONG COULOMB CORRE
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   HOLAS A, 1991, PHYS REV A, V44, P5521
   KOHN W, 1965, PHYS REV, V140, A1133
   KURTH S, 1999, PHYS REV LETT, V83, P2628
   LEE AM, 1999, PHYS REV A, V59, P209
   LEVY M, 1990, ADV QUANTUM CHEM, V21, P69
   OLIVER GL, 1979, PHYS REV A, V20, P397
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PERDEW JP, 1982, PHYS REV LETT, V49, P1691
   PERDEW JP, 1983, PHYS REV LETT, V51, P1884
   RAJAGOPAL AK, 1980, ADV CHEM PHYS, V41, P59
   VANLEEUWEN R, 1994, PHYS REV A, V49, P2421
   VIGNALE G, UNPUB
   VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
   WANG Y, 1993, PHYS REV A, V47, R1591
   ZHAO QS, 1994, PHYS REV A, V50, P2138
NR 21
TC 23
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 11
PY 2001
VL 86
IS 24
BP 5546
EP 5549
PG 4
SC Physics, Multidisciplinary
GA 441PV
UT ISI:000169239500035
ER

PT J
AU Lopes, KC
   Pereira, FS
   de Araujo, RCMU
   Ramos, MN
TI An ab initio study of the structural and vibrational properties of the
   C3H6-HCN, C2H4-HCN and C2H2-HCN hydrogen-bonded complexes
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE hydrogen bond; infrared spectrum; ab initio study
ID QUADRUPOLE COUPLING-CONSTANTS; ROTATIONAL SPECTRUM;
   MOLECULAR-STRUCTURE; INFRARED-SPECTRA; CYCLOPROPANE-HCN; FLUORIDE
   DIMER; HF COMPLEX; ACETYLENE; GEOMETRY; SPECTROSCOPY
AB MP2/6-311+ +G(**) ab initio molecular orbital calculations have been
   performed to obtain the molecular properties of the C3H6-HCN, C2H4-HCN
   and C2H2-HCN H-bonded complexes. The more pronounced effects on the
   structural parameters of the isolated molecules due to complexation are
   verified by the CC and H-CN bond lengths which are directly involved in
   the H-bond formation. They are increased after complexation. The
   calculated H-bond lengths are in excellent agreement with the
   experimental ones. The H-bond energies after inclusion of the
   zero-point contributions are -8.7, -7.6 and -9.0 kJ mol(-1) for the
   C2H2-HCN, C2H2-HCN and C3H6-HCN complexes, respectively. These values
   are in very good agreement with the approximate experimental binding
   energies obtained from the well depth using a Lennard-Jones 6-12
   potential. The more pronounced effect on the normal modes of the
   isolated molecules after complexation occurs in the H-X stretching
   mode. The H-X stretching frequency is shifted downward whereas its IR
   intensity is much enhanced upon H-bond formation. (C) 2001 Elsevier
   Science B,V. All rights reserved.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901 Recife, PE, Brazil.
   Univ Fed Paraiba, Dept Quim, BR-58036300 Joao Pessoa, Paraiba, Brazil.
RP Ramos, MN, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901
   Recife, PE, Brazil.
CR ALDRICH PD, 1981, J CHEM PHYS, V75, P2126
   ANDREWS L, 1982, J CHEM PHYS, V76, P5767
   ARAUJO RCMU, 1995, SPECTROCHIM ACTA A, V51, P821
   ARAUJO RCMU, 1996, THEOCHEM-J MOL STRUC, V366, P233
   ARAUJO RCMU, 1998, J BRAZIL CHEM SOC, V9, P499
   BUCKINGHAM AD, 1988, CHEM REV, V88, P963
   BUXTON LW, 1981, J CHEM PHYS, V75, P2681
   CAMPBELL EJ, 1981, J CHEM PHYS, V74, P813
   CHANDRA AK, 1995, CHEM PHYS LETT, V247, P95
   CRAW JS, 1991, J CHEM SOC FARADAY T, V87, P1293
   DAYTON DC, 1988, CHEM PHYS LETT, V153, P285
   FRISCH MJ, 1992, GAUSSIAN 92 REVISION
   GUSSONI M, 1987, CHEM PHYS LETT, V142, P515
   KUKOLICH SG, 1983, J CHEM PHYS, V78, P4832
   LEGON AC, 1981, J CHEM PHYS, V75, P625
   LEGON AC, 1982, J AM CHEM SOC, V104, P1486
   LOPES KC, 2000, IN PRESS SPECTROCH A
   MCDONALD SA, 1980, J AM CHEM SOC, V102, P2892
   MOOTZ D, 1992, J AM CHEM SOC, V114, P5887
   READ WG, 1982, J CHEM PHYS, V76, P2238
   SHEA JA, 1982, J CHEM PHYS, V76, P4857
   SOPER PD, 1982, J CHEM PHYS, V76, P292
NR 22
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD MAY 30
PY 2001
VL 565
SI Sp. Iss. SI
BP 417
EP 420
PG 4
SC Chemistry, Physical
GA 441NC
UT ISI:000169235600070
ER

PT J
AU Dalpian, GM
   Fazzio, A
   da Silva, AJR
TI Adsorption of monomers on semiconductors and the importance of surface
   degrees of freedom
SO PHYSICAL REVIEW B
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; SI(100) SURFACE; AB-INITIO;
   HOMOEPITAXIAL GROWTH; FILM GROWTH; SI ADATOM; DIFFUSION; SI(001); GE;
   BINDING
AB We study, through first-principles calculations based on the density
   functional theory, the adsorption of the Ge monomer on the Si(100)
   surface. We use this particular system to draw attention to the general
   fact that in semiconductors, one cannot talk about the adsorption sites
   and adsorption energies for a monomer without including in the
   description the local substrate configuration. As a consequence, for a
   given position of the monomer on the surface, there can be many local
   minima that differ basically in the substrate local configuration.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Dalpian, GM, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   BROCKS G, 1991, PHYS REV LETT, V66, P1729
   BROCKS G, 1992, SURF SCI, V269, P860
   DALPIAN GM, 1999, PHYSICA B, V273, P589
   KAXIRAS E, 1996, COMP MATER SCI, V6, P158
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   KUBBY JA, 1996, SURF SCI REP, V26, P61
   LIU SD, 2000, PHYS REV B, V61, P4421
   MILMAN V, 1994, PHYS REV B, V50, P2663
   MILMAN V, 1996, THIN SOLID FILMS, V272, P375
   MO YW, 1991, PHYS REV LETT, V66, P1998
   MO YW, 1991, SURF SCI, V248, P313
   MO YW, 1992, SURF SCI, V268, P275
   QIN XR, 1997, SCIENCE, V278, P1444
   QIN XR, 1998, PHYS REV LETT, V81, P2288
   RAMSTAD A, 1995, PHYS REV B, V51, P14504
   SAVAGE DE, 1999, SEMICONDUCT SEMIMET, V56, P49
   SMITH AP, 1995, J CHEM PHYS, V102, P1044
   SWARTZENTRUBER BS, 1997, PHYS REV B, V55, P1322
   TERAKURA K, 1997, SURF SCI, V386, P207
   VANWINGERDEN J, 1997, PHYS REV B, V55, P4723
   WOLKOW RA, 1995, PHYS REV LETT, V74, P4448
   YAMASAKI T, 1996, PHYS REV LETT, V76, P2949
   ZANDVLIET HJW, 2000, PHYS REV LETT, V84, P1523
   ZHANG QM, 1995, PHYS REV LETT, V75, P101
   ZHANG ZY, 1997, ANNU REV MATER SCI, V27, P525
   ZHANG ZY, 1997, SCIENCE, V276, P377
NR 28
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2001
VL 6320
IS 20
AR 205303
DI ARTN 205303
PG 4
SC Physics, Condensed Matter
GA 436LK
UT ISI:000168937200050
ER

PT J
AU Freitas, MP
   Rittner, R
   Tormena, CF
   Abraham, RJ
TI Conformational analysis of 2-bromocyclohexanone. A combined NMR, IR,
   solvation and theoretical approach
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE 2-bromocyclohexanone; conformational analysis; NMR; IR; solvation;
   density functional theory
ID COUPLING-CONSTANTS; ORGANIC-MOLECULES; ISOMERISM
AB An improved method of conformational analysis using H-1 and C-13 NMR,
   IR, theoretical calculations and solvation theory is reported for
   2-bromocyclohexanone, used here as a model compound. The solvent
   dependence of the (3)J(HH), (1)J(CH) and (1)J(CD) NMR coupling
   constants and the associated changes in the IR first overtone carbonyl
   band intensities together with theoretical calculations allow the
   direct determination of the conformational equilibria without recourse
   to model compounds. Calculations with the Gaussian 98 program at the
   HF/6-31 g(d,p) and B3LYP/6-31 + g(d,p) levels together with solvation
   theory gave the conformer free energy difference (E-eq - E-ax) in
   different solvents. The observed couplings, when analyzed by solvation
   theory and utilizing DFT geometries, gave a value of E-eq - E-ax of
   1.15 kcal mol(-1) in the vapor phase, decreasing to 0.6 kcal mol(-1) in
   CCl4 and to -0.5 kcal mol(-1) in DMSO solution (1 kcal = 4.184 kJ). The
   axial percentage changes from 74% (in CCl4) to 30% (in DMSO), and these
   are in good agreement with infrared data (nu (C=O), first overtone),
   despite the uncertainties of the latter method. The results illustrate
   the advantages of the joint application of these techniques, which
   represents an improved approach to the study of the conformational
   equilibria of substituted cyclohexanones. Copyright (C) 2001 John Wiley
   & Sons, Ltd.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
   Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Rittner, R, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
   BR-13083970 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1974, INT ROTATION MOL, CH13
   ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
   ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
   ABRAHAM RJ, 1996, J CHEM SOC PERK  APR, P533
   ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
   ABRAHAM RJ, 1999, J CHEM SOC PERK  AUG, P1663
   ALLINGER J, 1958, TETRAHEDRON, V2, P64
   ALLINGER NL, 1960, J AM CHEM SOC, V82, P5876
   ALLINGER NL, 1966, J AM CHEM SOC, V88, P4495
   ANDERSON JE, 1997, J CHEM SOC PERK  DEC, P2633
   BASSO EA, 1993, J ORG CHEM, V58, P7865
   BEDOUKIAN PZ, 1945, J AM CHEM SOC, V67, P1430
   CHEN CY, 1965, J CHEM SOC, P3700
   EISENSTEIN O, 1974, TETRAHEDRON, V30, P1717
   ELIEL EL, 1968, J AM CHEM SOC, V90, P682
   EPIOTIS ND, 1973, J AM CHEM SOC, V95, P3087
   FORESMAN JB, 1956, EXPLORING CHEM ELECT, V78, P3369
   FORESMAN JB, 1993, EXPLORING CHEM ELECT
   FRASER RR, 1995, CAN J CHEM, V73, P88
   FRISCH MJ, 1998, GAUSSIAN 98
   GARBISCH EW, 1964, J AM CHEM SOC, V86, P1780
   KUMLER WD, 1956, J AM CHEM SOC, V78, P3369
   MORGON NH, 1995, QUIM NOVA, V18, P44
   OLIVATO PR, 1998, J CHEM SOC PERK  JAN, P109
   PAN YH, 1967, CAN J CHEM, V45, P2943
   RAUK A, 1994, ORBITAL INTERACTION
   RITTNER R, 1988, MAGN RESON CHEM, V26, P51
   WEAST RC, 1985, HDB CHEM PHYSICS
   WOLFE S, 1967, J CHEM SOC CHEM COMM, P872
   WOLFE S, 1990, CAN J CHEM, V68, P1051
NR 30
TC 10
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD JUN
PY 2001
VL 14
IS 6
BP 317
EP 322
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 437RZ
UT ISI:000169008500001
ER

PT J
AU Casanovas, J
   Namba, AM
   Leon, S
   Aquino, LB
   da Silva, GVJ
   Aleman, C
TI Calculated and experimental NMR chemical shifts of
   p-menthane-3,9-diols. A combination of molecular dynamics and quantum
   mechanics to determine the structure and the solvent effects
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID SPIN COUPLING-CONSTANTS; AB-INITIO METHODS; PERTURBATION-THEORY;
   SHIELDING TENSORS; BASIS-SETS; SIMULATIONS
AB NMR chemical shifts have been experimentally measured and theoretically
   estimated for all the carbon atoms of (LR,3S,4S,8S)-p-menthane-3,9-diol
   in chloroform solution. Theoretical estimations were performed using a
   combination of molecular dynamics simulations and quantum mechanical
   calculations. Molecular dynamics simulations were used to obtain the
   most populated conformations of the (1R,3S:4S,8S)-p-menthane-3,9-diol
   as well as the distribution of the solvent molecules around it. Quantum
   mechanical calculations of NMR chemical shifts were performed on the
   most relevant conformations employing the GIAO-DFT formalism. A special
   emphasis was put in evaluating the effects of the surrounding solvent
   molecules. For this purpose, supermolecule calculations were performed
   on complexes constituted by the solute and n chloroform molecules,
   where n ranges from 3 to 16. An excellent agreement with experimental
   data has been obtained following this computational strategy.
C1 Univ Lleida, Escola Univ Politecn, Dept Quim, Lleida 25001, Spain.
   Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Quim, BR-14040901 Ribeirao Preto, Brazil.
   Univ Bologna, Dipartimento Chim G Ciamician, I-40126 Bologna, Italy.
   Univ Politecn Catalunya, ETS Enginyers Ind Barcelona, Dept Engn Quim, E-08028 Barcelona, Spain.
RP Casanovas, J, Univ Lleida, Escola Univ Politecn, Dept Quim, C Jaume II
   69, Lleida 25001, Spain.
CR ALEMAN C, 1999, CHEM PHYS LETT, V302, P461
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684
   BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
   CARMICHAEL I, 1993, J PHYS CHEM-US, V97, P1789
   CASANOVAS J, 1999, MAT SCI ENG B-SOLID, V68, P16
   CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
   CHESNUT DB, 1996, REV COMPUTATIONAL CH, V8, P245
   DEV S, 1985, TERPENOIDS HDB
   DITCHFIELD R, 1972, J CHEM PHYS, V56, P5688
   DITCHFIELD R, 1974, MOL PHYS, V27, P789
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   HANSEN AE, 1985, J CHEM PHYS, V82, P5035
   HEHRE WJ, 1969, J CHEM PHYS, V51, P2657
   HELGAKER T, 1999, CHEM REV, V99, P293
   HNYK D, 1992, INORG CHEM, V31, P2464
   JAMESON CJ, 1996, ANNU REV PHYS CHEM, V47, P135
   JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
   KRISHNAN R, 1978, INT J QUANTUM CHEM, V14, P91
   KUTZELNIGG W, 1980, ISRAEL J CHEM, V19, P193
   KUTZELNIGG W, 1990, NMR BASIC PRINCIPLES, V23, P165
   LAWS DD, 1995, J AM CHEM SOC, V117, P9542
   LEE C, 1988, PHYS REV B, V37, P785
   MALKIN VG, 1996, CHEM-EUR J, V2, P452
   MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
   NAMBA AM, 2000, IN PRESS J COMPUT AI
   NAMBA AM, 2000, TETRAHEDRON, V56, P6089
   PEARLMAN DA, 1995, AMBER 4 1
   PECUL M, 1998, CHEM PHYS, V234, P111
   RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327
   SCHRECKENBACH G, 1998, THEOR CHEM ACC, V99, P71
   STANTON JF, 1996, CHEM PHYS LETT, V262, P183
   SULZBACH HM, 1994, J AM CHEM SOC, V116, P3967
   TOMASI J, 1994, CHEM REV, V94, P2027
   WEINER SJ, 1986, J COMPUT CHEM, V7, P230
   WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 36
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD JUN 1
PY 2001
VL 66
IS 11
BP 3775
EP 3782
PG 8
SC Chemistry, Organic
GA 435ZD
UT ISI:000168911300017
ER

PT J
AU Ryde, U
   Olsson, MHM
   Roos, BO
   Borin, AC
TI A theoretical study of the copper-cysteine bond in blue copper proteins
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
DE density functional theory; entatic state theory; protein strain;
   solvation effects; reorganisation energy
ID 2ND-ORDER PERTURBATION-THEORY; SIMPLE COMPUTATIONAL MODEL; MOLECULAR
   WAVE-FUNCTIONS; ANO BASIS-SETS; ELECTRONIC-STRUCTURE; SPECTROSCOPIC
   PROPERTIES; CONTINUUM APPROXIMATION; REDUCTION POTENTIALS; NITRITE
   REDUCTASE; SPECTRAL FEATURES
AB The accuracy of theoretical calculations on models of the blue copper
   proteins is investigated using density functional theory (DFT) Becke's
   three-parameter hybrid method with the Lee-Yang-Parr correlation
   functional (B3LYP) and medium-sized basis sets. Increasing the basis
   set to triple-zeta quality with f-type functions on all heavy atoms and
   enlarging the model [up to Cu(imidazole-CH3)(2)(SC2H5) (CH3SC2H5)(0/+)]
   has only a limited influence on geometries and relative energies.
   Comparative calculations with more accurate wave-function-based methods
   (second-order Moller-Plesset perturbation theory, complete-active-space
   second-order perturbation theory, coupled-cluster method, including
   single and double replacement amplitudes and in addition triple
   replacement perturbatively) and a variety of basis sets on smaller
   models indicate that the DFT/B3LYP approach gives reliable results with
   only a small basis set dependence, whereas the former methods strongly
   depend on the size of the basis sets. The effect of performing the
   geometry optimizations in a continuum solvent is quite small, except
   for the flexible Cu-S-Met bond. The results of this study confirm the
   earlier results that neither the oxidized nor the reduced copper site
   in the blue proteins is strained to any significant degree tin energy
   terms) by the protein surrounding.
C1 Univ Lund, Dept Theoret Chem, S-22100 Lund, Sweden.
   Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, SP, Brazil.
RP Ryde, U, Univ Lund, Dept Theoret Chem, POB 124, S-22100 Lund, Sweden.
CR ADMAN ET, 1991, ADV PROTEIN CHEM, V42, P145
   ADMAN ET, 1995, J BIOL CHEM, V270, P27458
   ANDERSSON K, 1990, J PHYS CHEM-US, V94, P5483
   ANDERSSON K, 1992, J CHEM PHYS, V96, P1218
   ANDERSSON K, 1997, MOLCAS VERSION 4 0
   BARONE V, 1997, J CHEM PHYS, V107, P3210
   BARONE V, 1998, J PHYS CHEM A, V102, P1995
   BAUSCHLICHER CW, 1995, CHEM PHYS LETT, V246, P40
   BECKE AD, 1988, PHYS REV A, V38, P3098
   DEKERPEL JOA, 1998, J PHYS CHEM B, V102, P4638
   EICHKORN K, 1995, CHEM PHYS LETT, V240, P283
   FLORIS F, 1989, J COMPUT CHEM, V10, P616
   FLORIS FM, 1991, J COMPUT CHEM, V12, P784
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GEWIRTH AA, 1987, INORG CHEM, V26, P1133
   GEWIRTH AA, 1988, J AM CHEM SOC, V110, P3811
   GRAY HB, 1983, COMMENTS INORG CHEM, V2, P203
   GRAY HB, 2000, J BIOL INORG CHEM, V5, P551
   GUCKERT JA, 1995, J AM CHEM SOC, V117, P2817
   GUSS JM, 1992, ACTA CRYSTALLOGR B, V48, P190
   HEHRE WJ, 1986, AB INITIO MOL ORBITA, P133
   HERTWIG RH, 1997, CHEM PHYS LETT, V268, P345
   HOLM RH, 1996, CHEM REV, V96, P2239
   HONIG B, 1995, SCIENCE, V268, P1144
   LACROIX LB, 1996, J AM CHEM SOC, V118, P7755
   LACROIX LB, 1998, J AM CHEM SOC, V120, P9621
   LARSSON S, 1995, J PHYS CHEM-US, V99, P4860
   MALMSTROM BG, 1965, OXIDASES RELATED RED, V1, P207
   MALMSTROM BG, 1994, EUR J BIOCHEM, V223, P711
   MALMSTROM BG, 1998, CURR OPIN CHEM BIOL, V2, P286
   MARCUS RA, 1985, BIOCHIM BIOPHYS ACTA, V811, P265
   MESSERSCHMIDT A, 1998, STRUCT BOND, V90, P37
   NAR H, 1991, J MOL BIOL, V218, P427
   OLSSON MHM, 1998, J BIOL INORG CHEM, V3, P109
   OLSSON MHM, 1998, PROTEIN SCI, V7, P2659
   OLSSON MHM, 1999, J BIOL INORG CHEM, V4, P654
   PENFIELD KW, 1985, J AM CHEM SOC, V107, P4519
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PERIOTTI RA, 1976, CHEM REV, P717
   PIERLOOT K, 1995, THEOR CHIM ACTA, V90, P87
   PIERLOOT K, 1997, J AM CHEM SOC, V119, P218
   PIERLOOT K, 1998, J AM CHEM SOC, V120, P13156
   RODGERS KK, 1991, J AM CHEM SOC, V113, P9419
   ROOS BO, 1987, AB INITIO METHODS QU, V2, P399
   ROOS BO, 1996, ADV CHEM PHYS, V93, P219
   RYDE U, 1996, J MOL BIOL, V261, P586
   RYDE U, 1999, BIOPHYS J, V77, P2777
   RYDE U, 2000, IN PRESS INT J QUANT
   RYDE U, 2000, J BIOL INORG CHEM, V5, P565
   RYDE U, 2001, THEORETICAL BIOCH PR, P1
   SCHAFER A, 1994, J CHEM PHYS, V100, P5829
   SHARP KA, 1990, ANNU REV BIOPHYS BIO, V19, P301
   SHEPARD WEB, 1990, J AM CHEM SOC, V112, P7817
   SLATER JC, 1974, QUANTUM THEORY MOL S, V4
   SOLOMON EI, 1996, INORG CHIM ACTA, V243, P67
   SYKES AG, 1991, ADV INORG CHEM RAD, V36, P377
   TOMASI J, 1994, CHEM REV, V94, P2027
   TREUTLER O, 1995, J CHEM PHYS, V102, P346
   VALLEE BL, 1968, P NATL ACAD SCI USA, V59, P498
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
   WARSHEL A, 1991, COMPUTER MODELLING C
   WIDMARK PO, 1990, THEOR CHIM ACTA, V77, P291
   WILLIAMS RJP, 1995, EUR J BIOCHEM, V234, P363
NR 63
TC 22
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD MAY
PY 2001
VL 105
IS 6
BP 452
EP 462
PG 11
SC Chemistry, Physical
GA 433ZA
UT ISI:000168789600008
ER

PT J
AU Ruini, A
   Rossi, F
   Hohenester, U
   Molinari, E
   Capaz, RB
   Caldas, MJ
TI Ab-initio study of Coulomb-correlated optical properties in conjugated
   polymers
SO SYNTHETIC METALS
LA English
DT Article
DE density functional calculations; optical absorption;
   poly(phenylenevinylene)
ID QUANTUM-WIRE STRUCTURES; EXCITATIONS; POLYTHIOPHENE
AB The spatial extension and binding energy of excitons in semiconducting
   conjugated polymers are still the subject of a great debate. We address
   this problem through first-principles calculations (within DFT-LDA,
   plane-waves and ab-initio pseudopotentials), which allow to include
   electron-hole correlation effects in a fully three-dimensional approach
   through the density-matrix formalism. We show results for the
   correlated optical spectrum and the exciton wavefunctions of
   single-chain poly(para)phenylene-vinylene (PPV), that support the
   picture of a strongly bound anisotropic exciton localized over similar
   to 4-5 monomers.
C1 Univ Modena & Reggio Emilia, Dipartimento Fis, Modena, Italy.
   Politecn Torino, Dipartimento Fis, Turin, Italy.
   Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil.
   Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
CR ALVARADO SF, 1998, PHYS REV LETT, V81, P1082
   AXT VM, 1998, REV MOD PHYS, V70, P145
   CONWELL EM, 1997, PHYS REV LETT, V78, P4301
   FRIEND RH, 1999, NATURE, V397, P121
   KOHLER A, 1998, NATURE, V392, P903
   MARTIN SJ, 1999, PHYS REV B, V59, P15133
   OSTERBACKA R, 1999, PHYS REV B, V60, P11253
   ROHLFING M, 1999, PHYS REV LETT, V82, P1959
   ROSSI F, 1996, PHYS REV B, V53, P16462
   ROSSI F, 1996, PHYS REV LETT, V76, P3642
   VANDERHORST JW, 1999, PHYS REV LETT, V83, P4413
   VANDERHORST JW, 2000, PHYS REV B, V61, P15817
   YAN M, 1995, PHYS REV LETT, V75, P1992
NR 13
TC 4
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD MAR 15
PY 2001
VL 119
IS 1-3
SI Sp. Iss. SI
BP 257
EP 258
PG 2
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
   Polymer Science
GA 433EC
UT ISI:000168741500112
ER

PT J
AU Del Nero, J
   de Melo, CP
TI Semiempirical and ab initio investigation of defects in PPV oligomers
SO SYNTHETIC METALS
LA English
DT Article
DE poly(phenylenevinylene); semiempirical methods; ab initio; absorption
   spectra
AB We report a theoretical study of the excited states and other
   electronic properties of para-phenylenevinylene oligomers and related
   compounds which present conformational defects. Our results reveal the
   existence of different electronic delocalization patterns for the
   lowest singlet and triplet structures of these molecules. A similar
   behavior is also observed for the corresponding bond lengths.
C1 Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil.
RP de Melo, CP, Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE,
   Brazil.
CR *QCEP, 1993, MOPAC PROGR VERS 7 0, P455
   BELJONNE D, 1999, J CHEM PHYS, V111, P2829
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
   HEAD JD, 1985, CHEM PHYS LETT, V122, P264
   HEAD JD, 1986, CHEM PHYS LETT, V131, P59
   KOLLER A, 1998, NATURE, V392, P903
   SARICIFLCI NS, 1997, PRIMARY PHOTOEXCITAT
NR 9
TC 8
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD MAR 15
PY 2001
VL 121
IS 1-3
SI Sp. Iss. SI
BP 1741
EP 1742
PG 2
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
   Polymer Science
GA 434TD
UT ISI:000168831200303
ER

PT J
AU Esteves, PM
   Ramirez-Solis, A
   Mota, CJA
TI DFT calculations on the protonation of alkanes on HF/SbF5 superacids
   using cluster models
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID THEORETICAL AB-INITIO; ELECTROPHILIC REACTIONS; MOLECULAR-STRUCTURES;
   DEUTERIUM EXCHANGE; CH5+; DIFFRACTION; CATIONS; SYSTEM; STORY
AB Calculations at B3LYP/6-31++G** + RECP (Sb) level have been performed
   for the protonation of C-H and C-C bonds of methane, ethane, propane,
   and isobutane by models of the liquid superacid media HF/SbF5. The
   antimony atoms were dealt with by relativistic effective core
   potentials. The species H2F+. Sb2F11- was considered as the model
   electrophile. The transition states for the protonation of the C-H
   bonds (H/H exchange) are similar to an H-carbonium ion interacting with
   the anion moiety. The enthalpies of activation for WH exchange of
   alkanes were calculated in the range of 19 to 21 kcal/mol. For the
   protonation of the C-C bond, the enthalpy of activation strongly
   depends on the structure of the hydrocarbon being attacked, and was
   always higher than the enthalpy of activation for H/H exchange. This
   suggests the existence of steric demand for the C-C protonation.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
   Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
   Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
   BERGNER A, 1993, MOL PHYS, V80, P1431
   BOO DW, 1993, CHEM PHYS LETT, V211, P358
   BOO DW, 1995, J CHEM PHYS, V103, P520
   BRUNVOLL J, 1980, ACTA CHEM SCAND A, V34, P733
   CARNEIRO JWM, 1994, J AM CHEM SOC, V11, P3483
   ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
   ESTEVES PM, 1998, TOP CATAL, V6, P163
   ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
   ESTEVES PM, 1999, J PHYS CHEM B, V103, P10417
   ESTEVES PM, 2000, J BRAZIL CHEM SOC, V11, P345
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   HELMINGER P, 1971, PHYS REV A, V3, P122
   HIRAOKA K, 1991, CHEM PHYS LETT, V184, P271
   HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P371
   HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P703
   KIM D, 2000, J PHYS CHEM B, V104, P10074
   KONAKA S, 1970, B CHEM SOC JPN, V43, P1693
   LATAJKA Z, 1994, J CHEM PHYS, V101, P9793
   MINKWITZ R, 1998, INORG CHEM, V37, P4662
   MOOTZ D, 1988, ANGEW CHEM INT EDIT, V27, P391
   MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
   MULLER H, 1997, J CHEM PHYS, V106, P1863
   OHLBERG SM, 1959, J AM CHEM SOC, V81, P811
   OLAH GA, 1968, J AM CHEM SOC, V90, P2726
   OLAH GA, 1972, J AM CHEM SOC, V94, P807
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
   OLAH GA, 1973, J AM CHEM SOC, V95, P4960
   OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
   PENG CY, 1996, J COMPUT CHEM, V17, P49
   SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
   SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
   SCHREINER PR, 2000, ANGEW CHEM INT EDIT, V39, P3239
   SOMMER J, 1994, J AM CHEM SOC, V116, P5491
   SONDAG H, 1982, J MOL SPECTROSC, V91, P91
   WAN B, 1996, INT J MASS SPECTROM, V159, P209
   WHITE ET, 1999, SCIENCE, V284, P135
NR 38
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5647
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD MAY 17
PY 2001
VL 105
IS 19
BP 4331
EP 4336
PG 6
SC Chemistry, Physical
GA 434FE
UT ISI:000168803800042
ER

PT J
AU Miotto, R
   Srivastava, GP
   Miwa, RH
   Ferraz, AC
TI A comparative study of dissociative adsorption of NH3, PH3, and AsH3 on
   Si(001)-(2x1)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; GENERALIZED-GRADIENT APPROXIMATION;
   DENSITY-FUNCTIONAL THEORY; MOLECULAR-BEAM EPITAXY; AB-INITIO; SI(100)
   SURFACE; PHOTOELECTRON DIFFRACTION; FIRST-PRINCIPLES; PHOTOEMISSION;
   PHOSPHINE
AB Using a first-principles pseudopotential method we have studied the
   adsorption and dissociation of NH3, PH3, and AsH3 on the Si(001)-(2x1)
   surface. Apart from the existence of a barrier for the adsorption of
   the precursor state for arsine, we observe that the global behavior for
   the chemisorption of the XH3 molecules considered in this work is as
   follows: the gas phase XH3 adsorbs molecularly to the electrophilic
   surface Si atom and then dissociates into XH2 and H, bonded to the
   electrophilic and nucleophilic surface silicon dimer atoms,
   respectively. The energy barrier, corresponding to a thermal
   activation, is much smaller than the usual growth temperature,
   indicating that all three molecules will be observed in their
   dissociated states at room temperature. All adsorbed systems are
   characterized by elongated Si-Si dimers that are (almost) symmetric in
   the dissociative case but asymmetric in the molecular case. According
   to our first-principles calculations, all XH3 and XH2 systems retain
   the pyramidal geometry observed for the gas molecules. Our calculated
   vibrational spectra further support the dissociative model for the XH3
   molecules considered here. (C) 2001 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
   Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Miotto, R, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
   Sao Paulo, Brazil.
CR BATER C, 2000, SURF INTERFACE ANAL, V29, P208
   BISCHOFF JL, 1991, SURF SCI, V248, L240
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   BOZSO F, 1986, PHYS REV LETT, V57, P1185
   BOZSO F, 1988, PHYS REV B, V38, P3937
   CAKMAK M, 1999, PHYS REV B, V60, P5497
   CAKMAK M, 2000, PHYS REV B, V61, P10216
   CAO PL, 1994, J PHYS-CONDENS MAT, V6, P6103
   CHO JH, 2000, PHYS REV B, V62, P1607
   COLAIANNI ML, 1994, J VAC SCI TECHNOL A, V12, P2995
   COPEL M, 1989, PHYS REV LETT, V63, P632
   DRESSER MJ, 1989, SURF SCI, V218, P75
   FATTAL E, 1997, J PHYS CHEM B, V101, P8658
   FIUJISAWA M, 1989, PHYS REV B, V39, P12918
   FRANCO N, 1997, J PHYS-CONDENS MAT, V9, P8419
   FRANCO N, 1997, PHYS REV LETT, V79, P673
   HAMERS RJ, 1987, PHYS REV LETT, V59, P2071
   HAMERS RJ, 1996, APPL SURF SCI, V107, P25
   HARTMANN JM, 2000, SEMICOND SCI TECH, V15, P362
   HIROSE R, 1999, SURF SCI, V430, L540
   HLIL EK, 1987, PHYS REV B, V35, P5913
   IZUMI A, 1997, APPL PHYS LETT, V71, P1371
   JENKINS SJ, 1994, J PHYS-CONDENS MAT, V6, P8781
   JOHNSON AL, 1988, LANGMUIR, V4, P277
   KIPP L, 1994, PHYS REV B, V50, P5448
   KIPP L, 1995, PHYS REV B, V52, P5843
   KITTEL C, 1996, INTRO SOLID STATE PH
   LARSSON CUS, 1991, SURF SCI, V241, P353
   LEE SH, 1998, PHYS REV B, V58, P4903
   LIDE DR, 1995, HDB CHEM PHYSICS
   LIN DS, 1999, SURF SCI, V424, P7
   LIN DS, 2000, PHYS REV B, V61, P2799
   LOH ZH, 2000, J CHEM PHYS, V112, P2444
   MAITY N, 1995, APPL PHYS LETT, V66, P1909
   MIOTTO R, 1998, PHYS REV B, V58, P7944
   MIOTTO R, 1999, PHYS REV B, V59, P3008
   MORIARTY NW, 1992, SURF SCI, V265, P168
   NACTHIGAL P, 1996, J CHEM PHYS, V104, P148
   PENEV E, 1999, J CHEM PHYS, V110, P3986
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   PILLING MJ, 1995, REACTION KINETICS
   QIU M, 1997, J PHYS-CONDENS MAT, V9, P6543
   SHAN J, 1996, J PHYS CHEM-US, V100, P4961
   SRIVASTAVA GP, 1990, PHYSICS PHONONS
   SRIVASTAVA GP, 1997, REP PROG PHYS, V60, P561
   TAKAOKA T, 1998, SURF SCI, V412, P30
   TROMP RM, 1992, PHYS REV LETT, V68, P954
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   TSUKIDATE Y, 1999, APPL SURF SCI, V151, P148
   WANG YJ, 1994, J PHYS CHEM-US, V98, P5966
   WANG YJ, 1994, PHYS REV B, V50, P4534
   WIDJAJA Y, 2000, J PHYS CHEM B, V104, P2527
   WOODRUFF DP, 1994, REP PROG PHYS, V57, P1029
   XIE MH, 1998, SURF SCI, V397, P164
   YOO DS, 1995, J APPL PHYS, V78, P4988
   YU ML, 1984, J VAC SCI TECHNOL A, V2, P446
   YU ML, 1986, J APPL PHYS, V59, P4032
   ZHOU RH, 1991, SURF SCI, V249, P129
NR 58
TC 17
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 1
PY 2001
VL 114
IS 21
BP 9549
EP 9556
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 434BF
UT ISI:000168794700041
ER

PT J
AU Serra, RM
   Ramos, PB
   de Almeida, NG
   Jose, WD
   Moussa, HY
TI Engineering arbitrary motional ionic states through realistic
   intensity-fluctuating laser pulses
SO PHYSICAL REVIEW A
LA English
DT Article
ID TRAPPED ION; PROJECTION SYNTHESIS; QUANTUM STATES; RADIATION-FIELD;
   DECOHERENCE; GENERATION; CAVITY; ATOM; SUPERPOSITIONS; MANIPULATION
AB We present a reliable scheme for engineering arbitrary motional ionic
   states through an adaptation of the projection synthesis technique for
   trapped-ion phenomena. Starting from a prepared coherent motional
   state, the Wigner function of the desired state is thus sculpted from a
   Gaussian distribution. The engineering process has also been developed
   to take into account the errors arising from intensity fluctuations in
   the exciting-laser pulses required for manipulating the electronic and
   vibrational states of the trapped ion. To this end, a recently
   developed phenomenological-operator approach that allows for the
   influence of noise will be applied. This approach furnishes a
   straightforward technique to estimate the fidelity of the prepared
   state in the presence of errors, precluding the usual extensive ab
   initio calculations. The results obtained here by the phenomenological
   approach, to account for the effects of noise in our engineering
   scheme, can be directly applied to any other process involving
   trapped-ion phenomena.
C1 Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
   Univ Estadual Santa Cruz, Dept Ciencias Exatas & Tecnol, BR-45650000 Bahia, Brazil.
RP Serra, RM, Univ Fed Sao Carlos, Dept Fis, POB 676, BR-13565905 Sao
   Carlos, SP, Brazil.
CR BARNETT SM, 1996, PHYS REV LETT, V76, P4148
   BASEIA B, 1997, PHYS LETT A, V231, P331
   BROBNY G, 1998, PHYS REV A, V58, P2481
   BRUNE M, 1992, PHYS REV A, V45, P5193
   BRUNE M, 1996, PHYS REV LETT, V77, P4887
   CHUANG IL, 1998, NATURE, V393, P143
   DAKNA M, 1999, PHYS REV A, V59, P1658
   DALIBARD J, 1992, PHYS REV LETT, V68, P580
   DEALMEIDA NG, 2000, J OPT B-QUANTUM S O, V2, P792
   DEALMEIDA NG, 2000, PHYS REV A, V62
   DEMATOS RL, 1996, PHYS REV LETT, V76, P608
   DIFIDIO C, 2000, PHYS REV A, V62
   DUM R, 1992, PHYS REV A, V45, P4879
   FEYNMAN RP, 1957, J APPL PHYS, V28, P49
   FEYNMAN RP, 1996, FEYNMAN LECT COMPUTA
   FREYBERGER M, 1995, PHYS REV A, V51, P3347
   GARRAWAY BM, 1994, PHYS REV A, V49, P535
   ITANO WM, 1997, QUANTPH9702038
   JAMES DF, 1998, PHYS REV LETT, V81, P3417
   JOSE WD, 2000, J OPT B-QUANTUM S O, V2, P306
   KNEER B, 1996, PHYS REV A, V55, P2096
   LAW CK, 1996, PHYS REV LETT, V76, P1055
   LEIBFRIED D, 1996, PHYS REV LETT, V77, P4281
   LEIBFRIED D, 1997, J MOD OPTIC, V44, P2485
   MEEKHOF DM, 1996, PHYS REV LETT, V76, P1796
   MEEKHOF DM, 1997, BRAZ J PHYS, V27, P178
   MONROE C, 1995, PHYS REV LETT, V75, P4714
   MONROE C, 1996, SCIENCE, V272, P1131
   MOUSSA MHY, 1998, PHYS LETT A, V245, P335
   MOYACESSA H, 1999, PHYS REV A, V59, P2920
   MURAO M, 1998, PHYS REV A, V58, P663
   MYATT CJ, 2000, NATURE, V403, P269
   NIELSEN MA, 2000, QUANTUM COMPUTATION
   PARKINS AS, 1993, PHYS REV LETT, V71, P3095
   POYATOS JF, 1996, PHYS REV LETT, V77, P4728
   PRESKILL J, UNPUB
   ROOS C, 1999, PHYS REV LETT, V83, P4713
   SCHNEIDER S, 1998, PHYS REV A, V57, P3748
   SCHNEIDER S, 1999, PHYS REV A, V59, P3766
   SERRA RM, 2000, PHYS REV A, V62
   SOLANO E, 1999, PHYS REV A, V59, P2539
   STEINBACH J, 1996, PHYS REV A, V54, P5113
   VARCOE BTH, 2000, NATURE, V403, P743
   VOGEL K, 1993, PHYS REV LETT, V71, P1816
   WINELAND DJ, 1992, PHYS REV A, V46, R6797
   WINELAND DJ, 1994, PHYS REV A, V50, P67
   WINELAND DJ, 1998, J RES NATL INST STAN, V103, P259
   ZENG HP, 1999, PHYS REV A, V59, P2174
NR 48
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD MAY
PY 2001
VL 63
IS 5
AR 053813
DI ARTN 053813
PG 15
SC Physics, Atomic, Molecular & Chemical; Optics
GA 430RJ
UT ISI:000168589100115
ER

PT J
AU Carneiro, JWD
   de Oliveira, CDB
   Passos, FB
   Aranda, DAG
   de Souza, PRN
   Antunes, OAC
TI Host-guest interactions and their role in enantioselective
   hydrogenation of alpha-keto esters - An analysis of model systems
SO JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL
LA English
DT Article
DE heterogeneous; enantioselective; catalysis; mechanisms; calculations
ID CINCHONA-MODIFIED PLATINUM; ETHYL PYRUVATE; HETEROGENEOUS CATALYSIS;
   PI-STACKING; KETOESTERS; ADSORPTION; COMPLEXES; SOLVENTS; PT(111);
   DESIGN
AB The interaction between cinchonidine and methyl pyruvate has been
   proposed as the key step leading to enantiodifferentiation in the
   enantioselective hydrogenation of alpha -ketoesters, In the present
   work, we employ ab initio MP2/6-31G(d) and MP2/6-31G(d,p) methods to
   carry out an analysis of the most relevant kind of interactions
   operating in representative model systems. These interactions are
   discussed in terms of orbital superposition and dipolar interaction.
   When approaching H2CO to NH3 at distances lower than 3.4 Angstrom,
   orbital superposition is the predominant interaction, while at
   distances above 3.4 Angstrom, both orbital superposition and dipolar
   interactions may contribute to stabilization, with a small prevalence
   of dipolar interactions. The stabilization energy at large distances
   (above 4.5 Angstrom) is very small (about 0.5 kcal mol(-1)), probably
   not enough to be responsible for the enantiodifferentiation process.
   Semiempirical calculations on the parent systems were also unable to
   reveal any special interaction which could be attributed to the
   enantiodifferentiation process. (C) 2001 Elsevier Science B.V. All
   rights reserved.
C1 Univ Fed Fluminense, Inst Quim, Dept Quim Geral & Inorgan, BR-24021150 Niteroi, RJ, Brazil.
   Univ Fed Fluminense, Escola Engn, Dept Engn Quim, BR-24210230 Niteroi, RJ, Brazil.
   Fed Univ Rio De Janeiro, Ctr Technol, Escola Quim, Lab Termodinam & Cinet Aplicada, BR-21945970 Rio De Janeiro, Brazil.
   Fed Univ Rio De Janeiro, Ctr Tecnol, Inst Quim, BR-21945970 Rio De Janeiro, Brazil.
RP Carneiro, JWD, Univ Fed Fluminense, Inst Quim, Dept Quim Geral &
   Inorgan, Outeiro Sao Joao Batista S-N, BR-24021150 Niteroi, RJ, Brazil.
CR BAIKER A, 1997, J MOL CATAL A-CHEM, V115, P473
   BERRY RS, 1980, PHYSICAL CHEM, CH10
   BLASER HU, 1991, J MOL CATAL, V68, P215
   BLASER HU, 1997, CATAL TODAY, V37, P441
   BORSZEKY K, 1997, TETRAHEDRON-ASYMMETR, V8, P3745
   BURGI T, 1998, J AM CHEM SOC, V120, P12920
   BURGI T, 2000, CATAL LETT, V66, P109
   BURGI T, 2000, J CATAL, V194, P445
   BURGI T, 2000, J PHYS CHEM B, V104, P5953
   CIEPLAK AS, 1994, STRUCTURE CORRELATIO, V1
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   EVANS T, 1999, SURF SCI, V436, L691
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   JORGENSEN WL, 1990, J AM CHEM SOC, V112, P4768
   KIM EK, 1993, J AM CHEM SOC, V115, P3091
   KOZMUTZA C, 1991, J MOL STRUCT THEOCHE, V233, P139
   KURITA Y, 1994, J COMPUT CHEM, V15, P1013
   MADDALUNO JF, 1994, J ORG CHEM, V59, P793
   MARGITFALVI JL, 1999, J MOL CATAL A-CHEM, V139, P81
   MARGITFALVI JL, 2000, APPL CATAL A-GEN, V191, P177
   SCHURCH M, 1998, J CATAL, V173, P187
   SCHWALM O, 1994, INT J QUANTUM CHEM, V52, P191
   SCHWENKE DW, 1985, J CHEM PHYS, V82, P2418
   SLIPSZENKO JA, 1998, J CATAL, V179, P267
   STEWART JJP, 1994, MOPAC 93 MANUAL VERS
NR 26
TC 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1381-1169
J9 J MOL CATAL A-CHEM
JI J. Mol. Catal. A-Chem.
PD MAY 14
PY 2001
VL 170
IS 1-2
BP 235
EP 243
PG 9
SC Chemistry, Physical
GA 431BY
UT ISI:000168613100026
ER

PT J
AU Beltran, A
   Andres, J
   Calatayud, M
   Martins, JBL
TI Theoretical study of ZnO (10(1)over-bar-0) and Cu/ZnO (10(1)over-bar-0)
   surfaces
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID AB-INITIO; ELECTRONIC-STRUCTURE; TOTAL ENERGIES; HARTREE-FOCK;
   ADSORPTION; CLUSTER; H-2; CO; ZNO(10(1)OVER-BAR0); DISSOCIATION
AB Periodic HF/6-31G and a hybrid density functional, B3LYP/6-31G.
   calculations have been carried out in order to determine the geometric
   and electronic structure of bulk ZnO. The lattice parameters, bulk
   modulus, charge distribution and band structure are reported. Surface
   energy and charge distribution of the ZnO (10(1) over bar 0) surface
   are obtained, while top site adsorption of Cu atoms on Zn or O atoms on
   the ZnO (10(1) over bar 0) surface are considered. Optimized distances,
   charge transfers. vibrational frequencies and binding energies
   associated with both types of adsorption processes are calculated. The
   theoretical results are compared with previous theoretical studies and
   available experimental data. (C) 2001 Elsevier Science B.V. All rights
   reserved.
C1 Univ Jaume 1, Dept Ciencies Expt, E-12071 Castello, Spain.
   Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
RP Beltran, A, Univ Jaume 1, Dept Ciencies Expt, Campus Riu Sec, E-12071
   Castello, Spain.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BIRCH F, 1978, J GEOPHYS RES, V83, P1257
   BORODKO Y, 1999, APPL CATAL A-GEN, V186, P355
   BOYS SF, 1970, MOL PHYS, V19, P553
   CALATAYUD M, UNPUB SURF SCI
   CALATAYUD M, 1999, SURF SCI, V430, P213
   CASARIN M, 1998, INORG CHEM, V37, P5490
   CASARIN M, 1999, APPL SURF SCI, V142, P192
   DUKE CB, 1989, J VAC SCI TECHNOL  2, V7, P2030
   FUJITANI T, 2000, APPL CATAL A-GEN, V191, P111
   GILLAN MJ, 1997, J CHEM SOC FARADAY T, V106, P135
   GREENWOOD NM, 1994, CHEM ELEMENTS
   HEAD JD, 1997, INT J QUANTUM CHEM, V65, P827
   HILL NA, 2000, PHYS REV B, V62, P8802
   HYDE BG, 1989, INORGANIC CRYSTAL ST
   JACOBSEN J, 1995, PHYS REV B, V52, P14954
   JAFFE JE, 1993, PHYS REV B, V48, P7903
   JAFFE JE, 1994, PHYS REV B, V49, P11153
   JEDRECY N, 2000, SURF SCI, V460, P136
   LEE C, 1988, PHYS REV B, V37, P785
   LU X, 1998, CHEM PHYS LETT, V291, P445
   LU X, 1999, J PHYS CHEM B, V103, P1089
   MARKOVITS A, 1996, SURF SCI, V365, P649
   MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
   MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V397, P147
   MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V398, P457
   PERSSON P, 2000, CHEM PHYS LETT, V321, P302
   PISANI C, 1988, HARTREE FOCK AB INIT, V48
   PISANI C, 1996, QUANTUM MECHANICAL A, V67
   POWELL MJD, 1970, NUMERICAL METHODS NO
   RASOLOV VA, 1998, J CHEM PHYS, V109, P1223
   SAUNDERS VR, 1999, CRYSTAL98 USERS MANU
   SCHROER P, 1994, PHYS REV B, V49, P17092
   WANDER A, 2000, SURF SCI, V457, L342
   ZAPOL P, 1999, SURF SCI, V422, P1
NR 35
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 27
PY 2001
VL 338
IS 4-6
BP 224
EP 230
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 430TN
UT ISI:000168591800002
ER

PT J
AU Ramos, LE
   Teles, LK
   Scolfaro, LMR
   Castineira, JLP
   Rosa, AL
   Leite, JR
TI Structural, electronic, and effective-mass properties of silicon and
   zinc-blende group-III nitride semiconductor compounds
SO PHYSICAL REVIEW B
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; GENERALIZED GRADIENT APPROXIMATION;
   VALENCE-BAND SPLITTINGS; DOPING QUANTUM-WELLS; GALLIUM NITRIDE;
   ZINCBLENDE GAN; V NITRIDES; CUBIC GAN; HIGH-PRESSURE; OPTICAL GAIN
AB The electronic band structures of silicon and the zinc-blende-type
   III-N semiconductor compounds BN, AlN, GaN, and InN are calculated by
   using the self-consistent full potential linear augmented plane wave
   method within the local-density functional approximation. Lattice
   constant, bulk modulus, and cohesive energy are obtained from full
   relativistic total-energy calculations for Si and for the nitrides.
   Band structures and total density of states (DOS) are presented. The
   role played by relativistic effects on the bulk band structures and DOS
   is discussed. In order to provide important band structure-derived
   properties, such as effective masses and Luttinger parameters, the ab
   initio band structure results are linked with effective-mass theory.
   Electron, heavy-, light-, and split-off-hole effective masses, as well
   as spin-orbit splitting energies an extracted from the band-structure
   calculations. By using the Luttinger-Kohn 6x6 effective-mass
   Hamiltonian we derive the corresponding Luttinger parameters for the
   materials. A comparison with other available theoretical results and
   experimental data is made.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Ramos, LE, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
   Sao Paulo, Brazil.
CR AHN D, 1996, J APPL PHYS, V79, P7731
   ALVES JLA, 1997, MAT SCI ENG B-SOLID, V50, P57
   BALSLEV I, 1965, PHYS LETTERS NETHERL, V19, P6
   BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
   BLAHA P, 1999, WIEN97 FULL POTENTIA
   CHENG TS, 1995, APPL PHYS LETT, V66, P1509
   CHRISTENSEN NE, 1994, PHYS REV B, V50, P4397
   DESCLAUX JP, 1969, COMPUT PHYS COMMUN, V1, P216
   DESCLAUX JP, 1975, COMPUT PHYS COMMUN, V9, P31
   DEXTER RN, 1954, PHYS REV, V96, P223
   DEXTER RN, 1956, PHYS REV, V104, P637
   DUGDALE DJ, 2000, PHYS REV B, V61, P12933
   EDGAR JH, 1994, PROPERITES GROUP 3 N
   ENDERLEIN R, 1997, FUNDAMENTALS SEMICON
   ENDERLEIN R, 1998, PHYS STATUS SOLIDI B, V206, P623
   FAN WJ, 1996, J APPL PHYS, V79, P188
   FANCIULLI M, 1993, PHYS REV B, V48, P15144
   FIORENTINI V, 1993, PHYS REV B, V47, P13353
   GUPTA VK, 1999, J VAC SCI TECHNOL B, V17, P1246
   HARBEKE G, 1982, LANDOLDTBORNSTEIN, V17
   HARIMA H, 1999, APPL PHYS LETT, V74, P191
   HARRISON WA, 1989, ELECT STRUCTURE PROP
   KIM K, 1996, PHYS REV B, V53, P16310
   KIM K, 1997, PHYS REV B, V56, P7363
   KOELLING DD, 1977, J PHYS C SOLID STATE, V10, P3107
   LAWAETZ P, 1971, PHYS REV B-SOLID ST, V4, P3460
   LEI T, 1992, J APPL PHYS, V71, P4933
   LEMOS V, 2000, PHYS REV LETT, V84, P3666
   LIMA AP, 1999, J CRYST GROWTH, V201, P396
   LUTTINGER JM, 1955, PHYS REV, V97, P869
   MURNAGHAN FD, 1944, P NATL ACAD SCI USA, V30, P244
   NAKAMURA S, 1997, BLUE LASER DIODE
   NAKAMURA S, 1999, SEMICOND SCI TECH, V14, R27
   NOVAK P, UNPUB DISTRIBUTED WI
   OKUBO S, 1998, J CRYST GROWTH, V190, P452
   ORTON JW, 1998, REP PROG PHYS, V61, P1
   PAISLEY MJ, 1989, J VAC SCI TECHNOL A, V7, P701
   PALUMMO M, 1994, EUROPHYS LETT, V26, P607
   PANKOVE JI, 1998, SEMICOND SEMIMET, V50
   PAULUS B, 1997, J PHYS-CONDENS MAT, V9, P2745
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   PERSSON C, 1996, PHYS REV B, V54, P10257
   PERSSON C, 1998, J PHYS-CONDENS MAT, V10, P10549
   PETROV I, 1992, APPL PHYS LETT, V60, P2491
   PICKETT WE, 1988, PHYS REV B, V38, P1316
   PUGH SK, 1998, P 2J INT C PHYS SEM
   PUGH SK, 1999, SEMICOND SCI TECH, V14, P23
   RAMIREZFLORES G, 1994, PHYS REV B, V50, P8433
   RODRIGUES SCP, 2000, APPL PHYS LETT, V76, P1015
   ROSA AL, 1998, PHYS REV B, V58, P15675
   SCHIKORA D, 1996, PHYS REV B, V54, P8381
   SCHWARZ K, 1996, LECT NOTES CHEM, V67, P139
   SINGH DJ, 1994, PLANE WAVES PSEUDOPO
   SIPAHI GM, 1996, PHYS REV B, V53, P9930
   SITAR Z, 1992, J MATER SCI LETT, V11, P261
   STADELE M, 1997, PHYS REV LETT, V79, P2089
   STADELE M, 1999, PHYS REV B, V59, P10031
   STAMPFL C, 1999, PHYS REV B, V59, P5521
   STRITE S, 1993, J CRYST GROWTH, V127, P204
   SUZUKI M, 1995, PHYS REV B, V52, P8132
   SUZUKI M, 1996, APPL PHYS LETT, V69, P3378
   TABATA A, 1996, J APPL PHYS 1, V79, P4137
   TABATA A, 1999, APPL PHYS LETT, V74, P362
   TABATA A, 1999, APPL PHYS LETT, V75, P1095
   TADJER A, 1999, J PHYS CHEM SOLIDS, V60, P419
   UENO M, 1992, PHYS REV B, V45, P10123
   UENO M, 1994, PHYS REV B, V49, P14
   VANSCHILFGAARDE M, 1997, J CRYST GROWTH, V178, P8
   VOGEL D, 1997, PHYS REV B, V55, P12836
   WEI SH, 1996, APPL PHYS LETT, V69, P2719
   WENTZCOVITCH RM, 1986, PHYS REV B, V34, P1071
   WRIGHT AF, 1994, PHYS REV B, V50, P2159
   WRIGHT AF, 1995, PHYS REV B, V51, P7866
   XU YN, 1991, PHYS REV B, V44, P7787
   YEO YC, 1998, J APPL PHYS, V83, P1429
NR 75
TC 23
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD APR 15
PY 2001
VL 63
IS 16
AR 165210
DI ARTN 165210
PG 10
SC Physics, Condensed Matter
GA 426HH
UT ISI:000168343400047
ER

PT J
AU Abraham, RJ
   Tormena, CF
   Rittner, R
TI Conformational analysis. Part 35. NMR, solvation and theoretical
   investigation of rotational isomerism in methyl fluoroacetate and
   methyl difluoroacetate
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID COUPLING-CONSTANTS
AB The solvent and temperature dependence of the C-13 NMR spectra of
   methyl fluoroacetate (MFA) and methyl difluoroacetate (MDFA) are
   reported and the (1)J(CF) coupling analysed in terms of the conformer
   couplings and energies. Density Functional Theory (DFT) calculations
   were used to obtain the conformer geometries and solvation theory gave
   the solvent dependence of the conformer energies. In MFA the DFT method
   at the B3LYP/6-311+G(d,p) level gave only two energy minima for the cis
   (F-C-C=O 0 degrees) and trans (F-C-C=O 180 degrees) conformers of ca.
   equal energy. The gauche conformer was not a minimum in the energy
   surface. The FTIR spectra of MFA support this result as two resolved
   carbonyl bands are observed whose relative intensity changes markedly
   with solvent polarity. Assuming only these forms, the observed coupling
   when analysed by solvation theory leads to the energy difference
   (E-cis-epsilonE(trans)) between the cis and trans conformers of 0.90
   kcal mol(-1) in the vapour phase, decreasing to 0.41 kcal mol(-1) in
   CCl4 and -0.71 kcal mol(-1) in DMSO. In MDFA the DFT calculations gave
   two minima for the cis (H-C-C=O 0 degrees) and gauche (H-C-C=O 141.9
   degrees) conformers with an energy difference (E-cis-E-gauche) of 0.2
   kcal mol(-1). The FTIR spectra of MDFA support this result as in the
   non-polar solvent (CCl4) two resolved bands are observed but in
   solvents of medium and high polarity the carbonyl absorption appears as
   a single band. Assuming only the two forms, the observed coupling when
   analysed by solvation theory leads to the energy difference
   (E-cis-E-gauche) between the cis and gauche conformers of 0.0 kcal
   mol(-1) in the vapour phase, increasing to 0.46 kcal mol(-1) in CCl4
   and 1.12 kcal mol(-1) in DMSO.
C1 Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
   Univ Estadual Campinas, Inst Quim, BR-13038970 Campinas, SP, Brazil.
RP Rittner, R, Univ Liverpool, Dept Chem, POB 147, Liverpool L69 3BX,
   Merseyside, England.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
   ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
   ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
   ABRAHAM RJ, 1996, J CHEM SOC PERK  APR, P533
   ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
   ABRAHAM RJ, 1999, J CHEM SOC PERK  AUG, P1663
   ABRAHAM RJ, 2000, J CHEM SOC PERK T 2, P2382
   BANKS JW, 1999, J CHEM SOC PERK  NOV, P2409
   BOTCHER CJF, 1952, THEORY ELECT POLARIS
   BROWN TL, 1962, SPECTROCHIM ACTA, V18, P1615
   CHIURDOGLU G, 1971, CONFORMATION ANAL, P219
   ELIEL EL, 1994, STEREOCHEMISTRY ORGA
   FORESMAN JB, 1993, EXPLORING CHEM ELECT
   HARRINGTON PE, 1999, J ORG CHEM, V64, P4025
   HEHRE WH, 1986, AB INITIO MOL ORBITA
   MEYER M, 1992, CHEM BR, V9, P785
   OLIVATO PR, 1992, CAN J APPL SPECTROSC, V33, P37
   PHAN HV, 1990, J MOL STRUCT THEOCHE, V209, P333
   PITTMAN CU, 1980, MACROMOLECULES, V13, P1031
   THIBAUDEAU C, 1998, J ORG CHEM, V63, P4967
   TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
   VANDERVEKEN BJ, 1993, J MOL STRUCT, V293, P55
   VOGEL AI, 1962, PRACTICAL ORGANIC CH
NR 23
TC 12
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 1472-779X
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2001
IS 5
BP 815
EP 820
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 428NZ
UT ISI:000168468900025
ER

PT J
AU Esteves, PM
   Alberto, GGP
   Ramirez-Solis, A
   Mota, CJA
TI Ab initio study of the adamantonium cations: the protonated adamantane
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID HYDROGEN-DEUTERIUM EXCHANGE; POTENTIAL-ENERGY SURFACE; PROTOLYSIS
   DEUTEROLYSIS; ELECTROPHILIC REACTIONS; SINGLE BONDS; SUPERACIDS;
   MECHANISM; ALKANES
AB The molecular structure and energetics of the adamantonium ions were
   computed at the MP2(full)/6-31G** level. Three structures were found to
   represent the adamantonium cations, respectively: the 1-H-adamantonium
   (1). 2-H-adamantonium (2), and C-adamantonium ions (3). This study
   revealed that, upon protonation, adamantane can also produce two van
   der Waals complexes: one formed by the weak interaction of the
   1-adamantyl cation and H-2 (4) and the other formed by the interaction
   of the 2-adamantyl cation and H-2 (5). The stability order is predicted
   to be 5 > 3 > 4 > 1 > 2, Given the size and complexity of this
   molecule, the quantum zero point energy (ZPE) and finite temperature
   (298 K) corrections were estimated from previously calculated values
   for the isobutonium (for protonation of tertiary C-H and C-C bonds) and
   the proponium cations (for protonation of the secondary C-H bond). The
   calculated proton affinity of adamantane was estimated as 175.7
   kcal/mol.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, BR-21949900 Rio De Janeiro, Brazil.
   Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Cidade
   Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
   ESTEVES PM, 1998, TOP CATAL, V6, P163
   ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
   ESTEVES PM, 2000, J BRAZIL CHEM SOC, V11, P345
   ESTEVES PM, 2000, J PHYS CHEM A, V104, P6233
   FRISCH MJ, 1995, GAUSSIAN 94
   HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
   LIDE DR, 1994, CRC HDB CHEM PHYSICS
   MARCH J, 1992, ADV ORG CHEM, P172
   MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
   OLAH GA, 1970, J AM CHEM SOC, V92, P1259
   OLAH GA, 1971, J AM CHEM SOC, V93, P1251
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
   OLAH GA, 1973, J AM CHEM SOC, V95, P4960
   OLAH GA, 1985, SUPERACIDS
   PRAKASH GKS, 1997, STABLE CARBOCATION C
   SCHLEYER PV, 1989, J CHEM SOC CHEM COMM, P1098
   SCHLEYER PV, 1997, STABLE CARBOCATION C, P47
   SCHLEYER PVR, 1980, J AM CHEM SOC, V102, P683
NR 19
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAY 3
PY 2001
VL 105
IS 17
BP 4308
EP 4311
PG 4
SC Chemistry, Physical
GA 428BT
UT ISI:000168441800019
ER

PT J
AU Sensato, FR
   Filho, OT
   Longo, E
   Sambrano, JR
   Andres, J
TI Theoretical analysis of the energy levels induced by oxygen vacancies
   and the doping process (Co, Cu and Zn) on SnO2 (110) surface models
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE tin oxide; clusters; surface electronic phenomena; surface defects;
   B3LYP hybrid functional
ID REDUCED SNO2(110) SURFACE; ZINC-OXIDE CERAMICS; DENSITY-FUNCTIONAL
   THEORY; ELECTRONIC-STRUCTURE; DIOXIDE CHEMISORPTION; CRYSTAL PHASES;
   TIN DIOXIDE; TIO2; ADSORPTION; VARISTORS
AB Density functional calculation at B3LYP level was employed to study the
   surface oxygen vacancies and the doping process of Co, Cu and Zn on
   SnO2 (110) surface models. Large clusters, based on (SnO2)(15) models,
   were selected to simulate the oxidized (Sn15O30), half-reduced
   (Sn15O29) and the reduced (Sn15O28) surfaces. The doping process was
   considered on the reduced surfaces: Sn13Co2O28, Sn13Cu2O28 and
   Sn13Zn2O28. The results are analyzed and discussed based on a
   calculation of the energy levels along the bulk band gap region,
   determined by a projection of the monoelectron level structure on to
   the atomic basis set and by the density of states. This procedure
   enables one to distinguish the states coming from the bulk, the oxygen
   vacancies and the doping process, On passing from an oxidized to a
   reduced surface, missing bridge oxygen atoms generate electronic levels
   along the band gap region, associated with 5s/5p of four-/five-fold Sn
   and 2p of in-plane O centers located on the exposed surface, which is
   in agreement with previous theoretical and experimental investigations.
   The formation energy of one and two oxygen vacancies is 3.0 and 3.9 eV,
   respectively. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
   Univ Estadual Paulista, Dept Matemat, BR-17030360 Bauru, SP, Brazil.
   Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
RP Sensato, FR, Univ Fed Sao Carlos, Dept Quim, CP 676, BR-13565905 Sao
   Carlos, SP, Brazil.
CR ANTUNES SRM, 1995, THEOCHEM-J MOL STRUC, V357, P153
   BAUR WH, 1956, ACTA CRYSTALLOGR, V9, P515
   BECKE AD, 1993, J CHEM PHYS, V98, P1372
   BUENO PR, 1996, J MATER SCI LETT, V15, P2048
   CALATAYUD M, 1999, SURF SCI, V430, P213
   CAMARGO AC, 1996, J ANDRES CHEM PHYS, V212, P2541
   CATLOW CRA, 1990, NATURE, V347, P243
   CATLOW CRA, 1993, J SOLID STATE CHEM, V106, P13
   CATLOW CRA, 1994, J MATER CHEM, V4, P781
   CHIANG L, 1997, PHYSICAL CERAMIC, P110
   COHEN ML, 1997, INT J QUANTUM CHEM, V61, P603
   COX DF, 1988, PHYS REV B, V38, P2072
   DEFRESART E, 1981, SOLID STATE COMMUN, V37, P13
   DEFRESART E, 1982, APPL SURF SCI, V11, P259
   DOBROVOLSKII YA, 1992, SOV ELECTROCHEM, V28, P1277
   DOBROVOLSKII YA, 1993, RUSS J ELECTROCHEM+, V29, P1313
   DOBROVOLSKII YA, 1995, INORG CHEM, V40, P1553
   EGDELL RG, 1995, J MATER CHEM, V5, P499
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GERCHER VA, 1994, SURF SCI, V312, P106
   GERCHER VA, 1995, SURF SCI, V322, P177
   GOBBY PL, 1976, 13 C PHYS SEM
   GODIN TJ, 1993, PHYS REV B, V47, P6518
   GONIAKOWSKI J, 1996, PHYS REV B, V53, P957
   GONIAKOWSKI J, 1996, SURF SCI, V350, P145
   HERMANSSON K, 1994, UUICB19500
   HUZINAGA S, 1984, GAUSSIAN BASIS SETS
   INADA M, 1971, JPN J APPL PHYS, V10, P736
   INADA M, 1978, JPN J APPL PHYS, V17, P1
   INADA M, 1979, JPN J APPL PHYS, V18, P1439
   IVANOV I, 1981, PHYS REV B, V24, P7275
   JARZEBSKI ZM, 1976, J ELECTROCHEM SOC, V123, C199
   LEE C, 1988, PHYS REV B, V37, P785
   LU X, 1998, CHEM PHYS LETT, V291, P445
   MANASSIDIS I, 1995, SURF SCI, V339, P258
   MARTINS JBL, 1995, THEOCHEM-J MOL STRUC, V335, P167
   MASUYAMA T, 1968, JPN J APPL PHYS, V7, P1294
   MATSUOKA M, 1971, JPN J APPL PHYS, V10, P736
   MUNNIX S, 1983, PHYS REV B, V27, P7624
   MUNNIX S, 1986, PHYS REV B, V33, P4136
   ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
   PENNEWISS J, 1990, MATER LETT, V9, P219
   PIANARO SA, 1994, APPL PATENT
   PIANARO SA, 1995, J MATER SCI LETT, V14, P692
   PIANARO SA, 1998, J MATER SCI-MATER EL, V9, P159
   RANTALA T, 1998, SENSOR ACTUAT B-CHEM, V47, P59
   RANTALA TS, 1994, PHYS SCR T, V54, P152
   RANTALA TS, 1994, SENSOR ACTUAT B-CHEM, V18, P716
   RANTALA TS, 1996, CSC NEWS, V8, P23
   RANTALA TT, 1999, SURF SCI, V420, P103
   RINALDI D, 1992, J COMPUT CHEM, V13, P675
   RIVAIL JL, 1976, CHEM PHYS, V18, P233
   RIVAIL JL, 1985, J MOL STRUCT THEOCHE, V120, P387
   ROBERTSON J, 1979, J PHYS C SOLID STATE, V12, P4767
   SAMBRANO JR, 1997, INT J QUANTUM CHEM, V65, P625
   SAUER J, 1989, CHEM REV, V89, P199
   SENSATO FR, 1997, THEOCHEM-J MOL STRUC, V394, P259
   SHERWOOD PMA, 1990, PHYS REV B, V41, P10151
   SKAFIDAS PD, 1994, SENSOR ACTUAT B-CHEM, V18, P124
   TAPIA O, 1975, MOL PHYS, V29, P1653
   TATEWAKI H, 1980, J COMPUT CHEM, V1, P205
   WONG MW, 1991, J AM CHEM SOC, V113, P4776
   YAMAGUCHI Y, 1998, INT J QUANTUM CHEM, V69, P669
   YAMAGUCHI Y, 2000, CHEM PHYS LETT, V316, P477
   YAMAOKA N, 1983, AM CERAM SOC BULL, V62, P698
   YAN MF, 1982, APPL PHYS LETT, V40, P536
   YANG SL, 1995, J MATER RES, V10, P345
   ZYUBINA TS, 1995, RUSS J ELECTROCHEM+, V31, P1280
NR 68
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAY 31
PY 2001
VL 541
BP 69
EP 79
PG 11
SC Chemistry, Physical
GA 427CJ
UT ISI:000168387000008
ER

PT J
AU Basso, EA
   Oliveira, PR
   Caetano, J
   Schuquel, ITA
TI Semiempirical and ab initio calculations versus dynamic NMR on
   conformational analysis of cyclohexyl-N,N-dimethylcarbamate
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE conformational analysis; theoretical calculations; cyclohexane
   derivative; dynamic NMR
AB Axial-equatorial conformational proportions for cyclohexyl-N,N-dimethyl
   carbamate have been measured, for the first time, by the Eliel method,
   H-1 and C-13 dynamic nuclear magnetic resonance (DNMR). The results
   were compared against those determined by theoretical calculations. By
   the Eliel method at least five experimentally independent measureables
   were used in CCl4, CDCl3 and CD3CN. The H-1 and C-13 low temperature
   experiments were performed in CF2Br2/CD2Cl2. Semiempirical methods
   MNDO, AM1 and PM3 and ab initio molecular orbital calculations at the
   HF/STO-3G and HF/6-31G(d,p) levels have been performed on the axial and
   equatorial conformers populations. All applied methods correctly
   predict the equatorial conformer preference over the axial one. The
   resulting equatorial preferences determined by NMR data and theoretical
   calculations are in good agreement.
C1 Univ Estadual Maringa, Dept Quim, BR-87020900 Maringa, Parana, Brazil.
RP Basso, EA, Univ Estadual Maringa, Dept Quim, Av Colombo 5790,
   BR-87020900 Maringa, Parana, Brazil.
CR BASSO EA, 1993, J ORG CHEM, V58, P7865
   BOBRANSKII BR, 1941, J APPL CHEM-USSR, V14, P524
   CAREY FA, 1996, ORGANIC CHEM, P102
   COX C, 1998, J ORG CHEM, V63, P2426
   DODRELL DM, 1982, J MAGN RESON, V48, P323
   ELIEL EL, 1959, CHEM IND-LONDON, P568
   ELIEL EL, 1965, CONFORMATIONAL ANAL
   ELIEL EL, 1968, J AM CHEM SOC, V90, P682
   ELIEL EL, 1994, STEREOCHEMISTRY ORGA
   FRISCH MJ, 1995, GAUSSIAN 94 DEV VERS
   HARRIS RK, 1986, NUCL MAGNETIC RESONA, P108
   HIRSCH JA, 1967, TOP STEREOCHEM, V1, P199
   JENSEN FR, 1968, J AM CHEM SOC, V90, P3251
   JENSEN FR, 1971, ADVANCES ALICYCLIC C, V3, P139
   JORDAN EA, 1986, TETRAHEDRON, V42, P93
   KARPLUS M, 1959, J CHEM PHYS, P30
   KARPLUS M, 1963, J AM CHEM SOC, V85, P2870
   LEMIEUX RU, 1958, J AM CHEM SOC, V80, P6098
   WAYLAND BB, 1966, J AM CHEM SOC, V88, P2455
   WIBERG KB, 1999, J ORG CHEM, V64, P2085
NR 20
TC 6
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PY 2001
VL 12
IS 2
BP 215
EP 222
PG 8
SC Chemistry, Multidisciplinary
GA 424ZF
UT ISI:000168263300015
ER

PT J
AU Rodrigues, SCP
   Sipahi, GM
   Scolfaro, LMR
   Leite, JR
TI Exchange-correlation effects on the hole miniband structure and
   confinement potential in zinc-blende AlxGa1-xN/GaN superlattices
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; DOPING QUANTUM-WELLS; ALGAN/GAN
   SUPERLATTICES; BAND-STRUCTURE; HETEROSTRUCTURES; SEMICONDUCTORS;
   TRANSPORT
AB We present valence band-structure calculations for undoped and p-doped
   cubic AlxGa1-xN/GaN superlattices (SLs), in which the coupling between
   the heavy hole, light-hole, and spin-orbit-split-hole bands and strain
   effects due to lattice mismatch are taken into account, The
   calculations are performed within a self-consistent approach to the k.p
   theory by means of a full six-band Luttinger- Kohn Hamiltonian.
   Exchange-correlation effects within the two-dimensional hole gas are
   included in the calculations in the local density approximation.
   Results for hole minibands and potential profiles are shown as
   functions of the SL period. It is shown that exchange and correlation
   play an important role in the correct description of the systems.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Rodrigues, SCP, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
   Paulo, Brazil.
CR AS DJ, 2000, APPL PHYS LETT, V76, P13
   EDGAR JH, 1994, PROPERTIES GROUP 3 N
   ENDERLEIN R, 1997, PHYS REV LETT, V79, P3712
   ENDERLEIN R, 1998, PHYS REV LETT, V80, P3160
   FAN WJ, 1996, J APPL PHYS, V80, P3471
   FREY T, 2001, IN PRESS J APPL PHYS
   GOEPFERT ID, 2000, J APPL PHYS, V88, P2030
   HSU L, 1999, APPL PHYS LETT, V74, P2405
   KOZODOY P, 1999, APPL PHYS LETT, V74, P3681
   KUMAKURA K, 1999, JPN J APPL PHYS 2, V38, L1012
   KUMAKURA K, 2000, JPN J APPL PHYS 1, V39, P2428
   MARQUES M, 2001, IN PRESS P 25 INT C
   ORTON JW, 1998, REP PROG PHYS, V61, P1
   PANKOVE JI, 1998, SEMICONDUCTORS SEMIM, V50
   PARKER CA, 1999, APPL PHYS LETT, V75, P2776
   RAMOS LE, 2001, IN PRESS PHYS REV B, V63
   RODRIGUES SCP, 2000, APPL PHYS LETT, V76, P1015
   RODRIGUES SCP, 2000, IPAP CONFERENCE SER, V1, P74
   ROSA AL, 1998, PHYS REV B, V58, P15675
   SAXLER A, 1999, APPL PHYS LETT, V74, P2023
   SIPAHI GM, 1996, PHYS REV B, V53, P9930
   VANDEWALLE CG, 1997, APPL PHYS LETT, V70, P2577
   WRIGHT AF, 1997, J APPL PHYS, V82, P2833
   WU J, 1999, J CRYST GROWTH, V197, P73
NR 24
TC 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD APR 9
PY 2001
VL 13
IS 14
BP 3381
EP 3387
PG 7
SC Physics, Condensed Matter
GA 425BV
UT ISI:000168269200012
ER

PT J
AU Dardenne, LE
   Werneck, AS
   Neto, MO
   Bisch, PM
TI Reassociation of fragments using multicentered multipolar expansions:
   Peptide junction treatments to investigate electrostatic properties of
   proteins
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE multicentered multipolar expansions; reassociation of fragments;
   electrostatic properties of proteins; peptide junction; ab initio
   calculations
ID MOLECULAR CHARGE-DISTRIBUTION; ACID SIDE-CHAINS; ATOMIC CHARGES; POINT
   CHARGES; SOLVENT; MODELS; PAPAIN; INHIBITORS; SURFACES; ENERGIES
AB We report an analysis of three schemes for fragment reassociation using
   multicentered multipolar expansions derived from ab initio quantum wave
   functions at the Hartree-Fock/6-31G* LCAO level, two of them involving
   single-bond partitioning in the peptide bond region, and the third one
   using a partially overlapping procedure based on a methodology proposed
   by Vigne-Maeder(21) (OME-overlap of multipolar expansions-reassociation
   method). The effects of different peptide junction treatments in the
   derivation of molecular electrostatic potentials and molecular electric
   fields of three peptide sequences are discussed. The results show that
   the OME reassociation method gives a better and a more homogeneous
   description of both the potential and the electric field than the other
   two treatments. We conclude that the OME method is the most indicated
   for studies involving electrostatic properties of proteins. Our results
   also indicate that the use of multicentered multipolar expansions
   coupled to the OME treatment is the best choice in protein studies
   including solvent effects using, for example, a continuum boundary
   method to solve the linearized Poisson-Boltzmann equation. (C) 2001
   John Wiley & Sons, Inc.
C1 UCB, Dept Fis, BR-72030170 Taguatinga, DF, Brazil.
   Univ Fed Rio de Janeiro, Inst Biofis Carlos Chagas Filho, BR-21949900 Rio De Janeiro, Brazil.
   Univ Brasilia, Inst Quim, BR-70910900 Brasilia, DF, Brazil.
RP Werneck, AS, UCB, Dept Fis, EPCT Q-57,Lote 01,Aguas Claras, BR-72030170
   Taguatinga, DF, Brazil.
CR ANGYAN JG, 1994, INT J QUANTUM CHEM, V52, P17
   BELLIDO MN, 1989, J COMPUT CHEM, V10, P479
   CHIPOT C, 1993, J PHYS CHEM-US, V97, P9788
   CHIPOT C, 1993, J PHYS CHEM-US, V97, P9797
   COLONNA F, 1992, J COMPUT CHEM, V13, P1234
   CONNOLLY ML, 1983, SCIENCE, V221, P709
   DAY PN, 1996, J CHEM PHYS, V105, P1968
   FERENCZY GG, 1991, J COMPUT CHEM, V12, P913
   FREITAG MA, 2000, J CHEM PHYS, V112, P7300
   GOLDBLUM A, 1979, INT J QUANTUM CHEM, V15, P121
   GRESH N, 1984, THEOR CHIM ACTA, V66, P1
   GRESH N, 1997, BIOPOLYMERS, V41, P145
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
   HODGKIN EE, 1987, INT J QUANTUM CHEM, V14, P105
   JEZIORSKI B, 1994, CHEM REV, V94, P1887
   JUFFER AH, 1991, J COMPUT PHYS, V97, P144
   LANGLET J, 1988, J PHYS CHEM-US, V92, P1617
   LAVERY R, 1983, INT J QUANTUM CHEM, V24, P353
   LEWIS SD, 1981, BIOCHEMISTRY-US, V20, P48
   MERZ KM, 1992, J COMPUT CHEM, V13, P749
   MURRAY JS, 1998, INT J QUANTUM CHEM, V70, P1137
   NAKAMURA H, 1996, Q REV BIOPHYS, V29, P1
   NARAYSZABO G, 1997, COMPUTATIONAL APPROA
   PORT GNJ, 1973, FEBS LETT, V31, P70
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCHRODER E, 1993, FEBS LETT, V315, P38
   SHARP KA, 1990, ANNU REV BIOPHYS BIO, V19, P301
   SINGH UC, 1984, J COMPUT CHEM, V5, P129
   STONE AJ, 1981, CHEM PHYS LETT, V83, P233
   STONE AJ, 1985, MOL PHYS, V56, P1047
   VIGNEMAEDER F, 1987, CHEM PHYS LETT, V133, P337
   VIGNEMAEDER F, 1988, J CHEM PHYS, V88, P4934
   WARSHEL A, 1981, ACCOUNTS CHEM RES, V14, P284
   WERNECK AS, 1998, THEOCHEM-J MOL STRUC, V427, P15
   YOUNG L, 1997, J COMPUT CHEM, V18, P522
NR 35
TC 4
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD MAY
PY 2001
VL 22
IS 7
BP 689
EP 701
PG 13
SC Chemistry, Multidisciplinary
GA 424WW
UT ISI:000168257800002
ER

PT J
AU de Souza, GGB
   Rocco, MLM
   Boechat-Roberty, HM
   Lucas, CA
   Borges, I
   Hollauer, E
TI Valence electronic excitation of the SiF4 molecule: generalized
   oscillator strength for the 5t(2)-> 6a(1) transition and ab initio
   calculation
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
ID SAC-CI THEORIES; CROSS-SECTIONS; EXCITED-STATES; PHOTOABSORPTION
   SPECTRA; SPECTROSCOPY; PHOTOELECTRON; IONIZATION; SCATTERING; ARGON;
   SICL4
AB The electronic excitation of the silicon tetrafluoride (SiF4) molecule
   has been studied using the angle-resolved electron energy-loss
   technique, at 1.0 keV incident electron energy, in the 0-50 eV energy
   range with an angular range of 1.5 degrees -20.0 degrees. The absolute
   generalized oscillator strength (GOS) for the 5t(2) --> 6a(1)
   electronic transition, located at 13.0 eV, has been determined. A
   minimum has been observed in the GOS for this transition at K-2 = 1.4
   au. We have also determined the absolute elastic and inelastic
   differential cross sections at I keV. In order to help in the
   interpretation of the experimental results, ab initio calculations have
   been performed for the vertical valence transitions and ionization
   energies for the SiF4 molecule. Configuration-interaction calculations,
   including single and double excitations (CI-SD) and the
   symmetry-adapted-cluster expansion (SAC) were used. The CI-SD approach
   was also employed to obtain the optical oscillator strength for the
   5t(2) --> 6a(1) transition.
C1 Fed Univ Rio De Janeiro, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
   Fed Univ Rio De Janeiro, Observ Valongo, BR-20080090 Rio De Janeiro, Brazil.
   Univ Fed Fluminense, Inst Quim, BR-24020150 Niteroi, RJ, Brazil.
RP de Souza, GGB, Fed Univ Rio De Janeiro, Inst Quim, Cidade Univ,
   BR-21949900 Rio De Janeiro, Brazil.
CR BARTELL LS, 1984, J CHEM PHYS, V81, P3792
   BIELSCHOWSKY CE, 1988, PHYS REV A, V38, P3405
   BOECHATROBERTY HM, 1991, PHYS REV A, V44, P1694
   BOECHATROBERTY HM, 1992, J PHYS B ATOM MOL PH, V25, P4641
   BOECHATROBERTY HM, 1995, REV BRASIL FIS APLIC, V10, P92
   BOECHATROBERTY HM, 1997, J PHYS B-AT MOL OPT, V30, P3369
   BOZEK JD, 1990, CHEM PHYS, V145, P131
   BOZEK JD, 1990, PHYS REV LETT, V65, P2757
   CHEN ZF, 1999, PHYS REV A, V60, P5115
   DEALTI G, 1978, CHEM PHYS, V35, P283
   DEMIRANDA MP, 1994, PHYS REV A, V49, P2399
   DESOUZA GGB, 1989, J CHEM PHYS, V90, P7071
   FANTONI R, 1986, CHEM PHYS LETT, V128, P67
   GUO X, 1992, CHEM PHYS, V161, P453
   HOLLAUER E, 1999, J ELECTRON SPECTROSC, V104, P31
   ISHIKAWA H, 1991, J CHEM PHYS, V94, P6740
   KAMETA K, 1993, J CHEM PHYS, V99, P2487
   KARWASZ GP, 1998, CHEM PHYS LETT, V284, P128
   KING RA, 1996, J CHEM PHYS, V105, P6880
   KUROKI K, 1994, J ELECTRON SPECTROSC, V70, P151
   LASSETTRE EN, 1974, METHODS EXPT PHYSI B, V3, P868
   MICHELS HH, 1993, CHEM PHYS LETT, V207, P389
   MONIRUZZAMAN S, 1999, THIN SOLID FILMS, V337, P27
   MSEZANE AZ, 1994, PHYS REV A, V49, P2405
   NAKATSUJI H, 1979, CHEM PHYS LETT, V67, P334
   NAKATSUJI H, 1981, J CHEM PHYS, V75, P2952
   NAKATSUJI H, 1987, THEOR CHIM ACTA, V71, P201
   NAKATSUJI H, 1990, J CHEM PHYS, V93, P1865
   NAKATSUJI H, 1991, INT J QUANTUM CHEM, V39, P93
   NAKATSUJI H, 1991, J CHEM PHYS, V95, P4296
   OLNEY TN, 1997, CHEM PHYS, V223, P59
   PADMA R, 1992, PHYS REV A, V46, P2513
   ROBINSON EA, 1997, INORG CHEM, V36, P3022
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SUTO M, 1987, J CHEM PHYS, V86, P1152
   TAKAMI M, 1990, J CHEM PHYS, V94, P2204
   TOSSELL JA, 1984, J CHEM PHYS, V80, P813
   YATES BW, 1985, J CHEM PHYS, V83, P4906
NR 38
TC 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS-B-AT MOL OPT PHYS
JI J. Phys. B-At. Mol. Opt. Phys.
PD MAR 28
PY 2001
VL 34
IS 6
BP 1005
EP 1017
PG 13
SC Physics, Atomic, Molecular & Chemical; Optics
GA 422VP
UT ISI:000168140200010
ER

PT J
AU Castellano, EE
   Piro, OE
   Caram, JA
   Mirifico, MV
   Aimone, SL
   Vasini, EJ
   Lucero, AM
   Mitnik, DG
TI Crystallographic study and molecular orbital calculations of
   thiadiazole derivatives. 1. Phenanthro[9,10-c]-1,2,5-thiadiazole
   1,1-dioxide and acenaphtho[1,2-c]-1,2,5-thiadiazole 1,1-dioxide
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE 1,2,5-thiadiazole 1,1-dioxide derivatives; ab initio MO calculations;
   single-crystal X-ray diffraction; density functional theory;
   sensitivity analysis
ID DENSITY-FUNCTIONAL THEORY; 3,4-DIPHENYL-1,2,5-THIADIAZOLE 1,1-DIOXIDE;
   CHEMICAL-REACTIVITY; SOFT ACIDS; CRYSTAL-STRUCTURE; GAS-PHASE;
   HARDNESS; BASES; ELECTROREDUCTION; DESCRIPTORS
AB Single-crystal X-ray diffraction studies are reported for
   phenanthro[9,10-c]-1,2,5-thiadiazole 1,1-dioxide (I) and
   acenaphtho[1,2-c]-1,2,5-thiadiazole 1,1-dioxide (II), Ab initio
   molecular orbital (MO) calculations on the electronic structure,
   conformation and reactivity of I and II an also reported and compared
   with the X-ray results. A charge sensitivity analysis of the studied
   molecules has been performed by resorting to density functional theory
   (DFT), obtaining several sensitivity coefficients such as the molecular
   energy, net atomic charges, global and local hardness, global and local
   softness and Fukui functions. With these results and the analysis of
   the dipole moments and the total electron density maps, several
   conclusions have been inferred about the preferred sites of chemical
   reaction of the studied compounds. (C) 2001 Elsevier Science B.V. All
   rights reserved.
C1 CIMAV, Chihuahua, Mexico.
   Univ Sao Paulo, Dept Fis, Inst Fis & Quim Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
   Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, RA-1900 La Plata, Argentina.
   CONICET, PROFIMO, RA-1900 La Plata, Argentina.
   Univ Nacl La Plata, INIFTA, CONICET, RA-1900 La Plata, Argentina.
RP Mitnik, DG, CIMAV, Miguel de Cervantes 120, Chihuahua, Mexico.
CR AIMONE SL, 2000, J PHYS ORG CHEM, V13, P272
   AIMONE SL, 2000, TETRAHEDRON LETT, V41, P3531
   AMATO JS, 1982, J AM CHEM SOC, V104, P1375
   BACHRACH SM, 1994, REV COMPUTATIONAL CH, V5
   BAETEN A, 1994, J MOL STRUCT THEOCHE, V306, P203
   BAETEN A, 1995, CHEM PHYS LETT, V235, P17
   BAKER RJ, 1980, J ORG CHEM, V45, P482
   CALDERON CE, 1979, ACTA CRYSTALLOGR B, V35, P2795
   CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P1340
   CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P2296
   CARAM JA, 1994, ELECTROCHIM ACTA, V39, P939
   CASTELLANO EE, 1998, J PHYS ORG CHEM, V11, P91
   CROMER DT, 1974, INT TABLES CRYSTALLO, V4, P71
   CROMER DT, 1974, INT TABLES XRAY CRYS, V4, P149
   DEPROFT F, 1994, J PHYS CHEM-US, V98, P5227
   FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
   FOCESFOCES C, 1975, ACTA CRYSTALLOGR B, V31, P2310
   FOCESFOCES C, 1977, ACTA CRYSTALLOGR B, V33, P910
   FRENZ AB, 1983, ENRAF NONIUS STRUCTU
   FRISCH MJ, 1998, GAUSSIAN 98
   FUKUI K, 1973, THEORY ORIENTATION S
   GAZQUEZ JL, 1994, J PHYS CHEM-US, V98, P4591
   GAZQUEZ JL, 1998, THEORET COMPUT CHEM, V5, P135
   GLOSSMAN MD, 1995, THEOCHEM-J MOL STRUC, V330, P385
   GLOSSMAN MD, 1996, ATUALIDADES FISICOQU
   GLOSSMAN MD, 1997, THEOCHEM-J MOL STRUC, V390, P67
   JOHNSON CK, 1965, ORNL3794 ORTEP
   LANGENAEKER W, 1992, J MOL STRUCT THEOCHE, V259, P317
   LANGENAEKER W, 1995, J PHYS CHEM-US, V99, P6424
   LIPKOWITZ KB, 1990, REV COMPUTATIONAL CH, V1
   MIRIFICO MV, 1991, ELECTROCHIM ACTA, V36, P167
   MIRIFICO MV, 1991, INT J CHEM KINET, V23, P197
   MIRIFICO MV, 1993, J PHYS ORG CHEM, V6, P341
   MIRIFICO MV, 1995, AN QUIM, V91, P557
   MULLEN K, 1998, ELECT MAT OLIGOMER A
   MULLIKEN RS, 1934, J CHEM PHYS, V2, P782
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P2338
   NALWA HS, 1997, HDB ORGANIC CONDUCTI
   PARR RG, 1984, J AM CHEM SOC, V106, P4049
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PARR RG, 1995, ANNU REV PHYS CHEM, V46, P701
   PEARSON RG, 1963, J AM CHEM SOC, V85, P3533
   PEARSON RG, 1966, SCIENCE, V151, P172
   PEARSON RG, 1987, J CHEM EDUC, V64, P561
   POLITZER P, 1981, CHEM APPL ATOMIC MOL
   ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
   ROY RK, 1998, J PHYS CHEM A, V102, P3746
   ROY RK, 1998, J PHYS CHEM A, V102, P7035
   SALZNER U, 1997, J COMPUT CHEM, V18, P1943
   SHELDRICK GM, 1974, SHELX PROGRAM CRYSTA
   WEINSTOCK LM, 1984, COMPREHENSIVE HETERO, V6
   YANG W, 1986, J AM CHEM SOC, V108, P5708
   ZHOU Z, 1988, TETRAHEDRON LETT, V29, P4843
NR 55
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD MAY 2
PY 2001
VL 562
IS 1-3
BP 157
EP 166
PG 10
SC Chemistry, Physical
GA 421UA
UT ISI:000168080900017
ER

PT J
AU Milas, I
   Nascimento, MAC
TI A density-functional study of the dehydrogenation reaction of isobutane
   over zeolites
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID AB-INITIO; ELECTROPHILIC REACTIONS; ACIDIC ZEOLITE; CLUSTER-MODELS;
   LIGHT ALKANES; EXCHANGE; CRACKING; ACTIVATION; CARBOCATIONS; TEMPERATURE
AB The dehydrogenation reaction of isobutane over zeolites was
   investigated at the B3LYP/6-31G** and 6-311G** levels of calculation,
   and with T3 and T5 clusters representing the zeolite. The transition
   state (TS) exhibits a carbenium ion-like character, and the activation
   energy, at the best level of theory, is 53.4 kcal/mol. Contrary to what
   has been previously proposed, IRC calculations show that the mechanism
   does not involve the formation of alkoxide, but rather the carbocation
   collapses directly into isobutene while the eliminated proton, restores
   the zeolite's acid site. Increasing the size of the cluster and of the
   basis set does not change the mechanism. (C) 2001 Elsevier Science B.V.
   All rights reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim,
   Cidade Univ,CT Bloco A,Sala 412, BR-21949900 Rio De Janeiro, Brazil.
CR *SCHROD INC, 1998, JAGUAR 3 5
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
   BLASZKOWSKI SR, 1996, J PHYS CHEM-US, V100, P3463
   CORMA A, 1994, J CATAL, V145, P171
   ESTEVES PM, 1999, J PHYS CHEM B, V103, P10417
   ESTEVES PM, 2000, THESIS U FEDERAL RIO
   EVELETH EM, 1996, J PHYS CHEM-US, V100, P11368
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   FURTADO EA, 2000, THESIS U FEDERAL RIO
   GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
   HAW JF, 1989, J AM CHEM SOC, V111, P2052
   JEANVOINE Y, 1998, J PHYS CHEM B, V102, P5573
   KAZANSKY VB, 1989, J CATAL, V119, P108
   KAZANSKY VB, 1996, APPL CATAL A-GEN, V146, P225
   LINS JOMDL, 1996, THEOCHEM-J MOL STRUC, V371, P237
   NARBESHUBER TF, 1995, J CATAL, V157, P388
   NARBESHUBER TF, 1997, J CATAL, V172, P127
   NICHOLAS JB, 1996, J AM CHEM SOC, V118, P4202
   OLAH GA, 1971, J AM CHEM SOC, V93, P1251
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
   RESASCO DE, 1994, CATALYSIS, V11, P379
   SINCLAIR PE, 1998, J CHEM SOC FARADAY T, V94, P3401
   STEFANADIS C, 1991, J MOL CATAL, V67, P363
   VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13719
   ZARDKOOHI M, 1987, J AM CHEM SOC, V109, P5278
   ZYGMUND SA, 2000, PHYS CHEM B, V104, P1944
NR 27
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 13
PY 2001
VL 338
IS 1
BP 67
EP 73
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 423QC
UT ISI:000168187400011
ER

PT J
AU De Almeida, MV
   Figueiredo, RM
   Dos Santos, HF
   Da Silva, AD
   De Almeida, WB
TI Synthesis and theoretical study of azido and amino inositol derivatives
   from L-quebrachitol
SO TETRAHEDRON LETTERS
LA English
DT Article
ID D-3-AZIDO-3-DEOXY-MYO-INOSITOL; ROUTES
AB Some azido and amino inositol derivatives were synthesised from
   L-quebrachitol. The reaction between the mesylated compound and sodium
   azide was studied experimentally. Ab initio quantum mechanical
   calculations were carried out for this process to better understand the
   reaction mechanism. (C) 2001 Elsevier Science Ltd. All rights reserved.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
   Univ Fed Juiz de Fora, ICE, Dept Quim, Juiz De Fora, MG, Brazil.
RP De Almeida, WB, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim
   Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR ACENA JL, 1996, TETRAHEDRON LETT, V37, P105
   ARJONA O, 1995, TETRAHEDRON LETT, V8, P6659
   BRUNN G, 1994, CANCER CHEMOTH PHARM, V35, P71
   CHIDA N, 1990, CHEM LETT, P423
   COSSI M, 1996, CHEM PHYS LETT, V255, P327
   DASILVA ET, 1998, TETRAHEDRON LETT, V39, P6659
   DEALMEIDA WB, 1998, J PHARM SCI, V87, P1101
   HAMADA M, 1974, J ANTIBIOT, V27, P81
   KOZIKOWSKI AP, 1990, J AM CHEM SOC, V112, P4528
   KOZIKOWSKI AP, 1992, J CHEM SOC CHEM COMM, P362
   MANN RL, 1953, ANTIBIOT CHEMOTHER, V3, P1279
   OGAWA S, 1991, CARBOHYD RES, V210, P105
   OLESKER A, 1975, J ANTIBIOT, V28, P491
   PETTIT GR, 1984, J CHEM SOC CHEM COMM, P1693
   PITTENGER RC, 1953, ANTIBIOT CHEMOTHER, V3, P6659
NR 15
TC 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0040-4039
J9 TETRAHEDRON LETT
JI Tetrahedron Lett.
PD APR 9
PY 2001
VL 42
IS 15
BP 2767
EP 2769
PG 3
SC Chemistry, Organic
GA 421EF
UT ISI:000168048600004
ER

PT J
AU Verissimo-Alves, M
   Capaz, RB
   Koiller, B
   Artacho, E
   Chacham, H
TI Polarons in carbon nanotubes
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FIRST-PRINCIPLES; LARGE SYSTEMS; EXCITATIONS; SOLITONS; C-60
AB We use ab initio total-energy calculations to predict the existence of
   polarons in semiconducting carbon nanotubes (CNTs). We find that the
   CNTs' band edge energies vary linearly and the elastic energy increases
   quadratically with both radial and with axial distortions, leading to
   the spontaneous formation of polarons. Using a continuum model
   parametrized by the nb initio calculations, we estimate electron and
   hole polaron lengths, energies, and effective masses and analyze their
   complex dependence on CNT geometry. Implications of polaron effects on
   recently observed electro- and optomechanical behavior of CNTs are
   discussed.
C1 Fed Univ Rio De Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
   Univ Autonoma Madrid, Inst Nicolas Cabrera, Madrid 28049, Spain.
   Univ Autonoma Madrid, Dipartiment Fis Mat Condensada, Madrid 28049, Spain.
   Univ Fed Minas Gerais, Dept Fis, ICEx, BR-30123970 Belo Horizonte, MG, Brazil.
RP Verissimo-Alves, M, Fed Univ Rio De Janeiro, Inst Fis, BR-21945970 Rio
   De Janeiro, Brazil.
CR APPEL J, 1968, SOLID STATE PHYS, V21, P193
   BAUGHMAN RH, 1999, SCIENCE, V284, P1340
   BLASE X, 1994, PHYS REV LETT, V72, P1878
   CHAMON C, 2000, PHYS REV B, V62, P2806
   HARIGAYA K, 1992, PHYS REV B, V45, P13676
   HARIGAYA K, 1993, SYNTHETIC MET, V56, P3202
   HEEGER AJ, 1988, REV MOD PHYS, V60, P781
   HEYD R, 1997, PHYS REV B, V55, P6820
   HOLSTEIN T, 1959, ANN PHYS-NEW YORK, V8, P325
   LAMMERT P, 2000, PHYS REV LETT, V841, P2453
   MAZZONI MSC, 2000, APPL PHYS LETT, V76, P1561
   MAZZONI MSC, 2000, PHYS REV B, V61, P7312
   MINTMIRE JW, 1992, PHYS REV LETT, V68, P631
   ORDEJON P, 1996, PHYS REV B, V53
   PARK CJ, 1999, PHYS REV B, V60, P10656
   PEIERLS RE, 1955, QUANTUM THEORY SOLID
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   SAITO R, 1992, PHYS REV B, V46, P1804
   SAITO R, 1998, PHYSIAL PROPERTIES C
   SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
   SANCHEZPORTAL D, 1999, PHYS REV B, V59, P12678
   TROULLIER N, 1991, PHYS REV B, V43, P2006
   WANG N, 2000, NATURE, V408, P51
   YANG L, 1999, PHYS REV B, V60, P13874
   ZHANG Y, 1999, PHYS REV LETT, V82, P3472
NR 25
TC 29
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD APR 9
PY 2001
VL 86
IS 15
BP 3372
EP 3375
PG 4
SC Physics, Multidisciplinary
GA 421CZ
UT ISI:000168045700039
ER

PT J
AU Barbatti, M
   Jalbert, G
   Nascimento, MAC
TI The structure and the thermochemical properties of the H-3(+)(H-2)(n)
   clusters (n=8-12)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID PROTONATED HYDROGEN CLUSTERS; CONDENSED-PHASE; MONTE-CARLO; IONS;
   ABINITIO; ENERGIES; STABILITIES; ENERGETICS; N=1-9
AB Ab initio calculations were performed for the H-3(+)(H-2)(n) clusters
   (n=8-12), including complete optimization of several isomers of the
   n=10 cluster. Binding energies, enthalpies, and ionization potentials
   are calculated. Well defined patterns of chromism are predicted for the
   H-2 collective vibrations and for the H-3(+) breathing vibrations. The
   calculations for the n > 10 clusters allow us to understand their shell
   structure in terms of concentric spheres of H-2 molecules. The first
   and second shells have occupation numbers equal to 3 and 6,
   respectively, while for the third shell, this number is within the
   range 12-15. (C) 2001 American Institute of Physics.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
   Univ Fed Rio de Janeiro, Inst Quim, BR-21945970 Rio De Janeiro, Brazil.
RP Barbatti, M, Univ Fed Rio de Janeiro, Inst Fis, CP 68528, BR-21945970
   Rio De Janeiro, Brazil.
CR BARBATTI M, UNPUB J CHEM PHYS
   BARBATTI M, 2000, J CHEM PHYS, V113, P4230
   BARBATTI M, 2001, J CHEM PHYS, V114, P2213
   BOYS SF, 1970, MOL PHYS, V19, P553
   CHAN MC, 2000, J PHYS CHEM A, V104, P3775
   CLAMPIT R, 1969, NATURE, V223, P815
   DAVY R, 1999, MOL PHYS, V97, P1263
   FARIZON B, 1999, PHYS REV B, V60, P3821
   FARIZON M, 1991, CHEM PHYS LETT, V177, P451
   HERZBERG G, 1950, MOL SPECTRA MOL STRU, V1
   HIRAOKA K, 1987, J CHEM PHYS, V87, P4048
   HOKWANG, 1994, REV MOD PHYS, V66, P671
   HUBER H, 1980, CHEM PHYS LETT     2, V70, P353
   IGNACIO EW, 1998, CHEM PHYS LETT, V287, P563
   KACZOROWSKA M, 2000, J CHEM PHYS, V113, P3615
   KEMPER PR, 1998, J PHYS CHEM A, V102, P8590
   KRISHNAN R, 1980, J CHEM PHYS, V72, P650
   LOUC S, 1998, PHYS REV A, V58, P3802
   MCCALL BJ, 1998, SCIENCE, V279, P1910
   MULLER H, 2000, PHYS CHEM CHEM PHYS, V2, P2061
   NAGASHIMA U, 1992, J PHYS CHEM-US, V96, P4294
   NELLIS WJ, 2000, SCI AM           MAY, P60
   OKUMURA M, 1988, J CHEM PHYS, V88, P79
   PANG T, 1994, CHEM PHYS LETT, V228, P555
   PAUL W, 1995, INT J MASS SPECTROM, V149, P373
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SILVERA IF, 1980, REV MOD PHYS, V52, P393
   STICH I, 1997, J CHEM PHYS, V107, P9482
   STICH I, 1997, PHYS REV LETT, V78, P3669
   VANLUMIG A, 1978, INT J MASS SPECTROM, V27, P197
   WEIR ST, 1996, PHYS REV LETT, V76, P1860
   WRIGHT LR, 1982, J CHEM PHYS, V77, P1938
   YAMAGUCHI Y, 1983, J CHEM PHYS, V78, P4074
NR 33
TC 9
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD APR 22
PY 2001
VL 114
IS 16
BP 7066
EP 7072
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 420ZQ
UT ISI:000168036900013
ER

PT J
AU Rocha, AB
   Bielschowsky, CE
TI Intensity of the n -> pi* symmetry-forbidden electronic transition in
   acetone by direct vibronic coupling mechanism
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID METHYL INTERNAL-ROTATION; SUPERSONIC NOZZLE BEAM;
   CONFIGURATION-INTERACTION; AB-INITIO; SPECTRA
AB Absolute absorption intensities were calculated for the symmetry dipole
   forbidden n --> pi* transition in acetone. An analysis of the
   distribution per normal modes is performed and the results are compared
   with a recent calculation. Vibronic coupling mechanism is taken into
   account in a way that is different from the traditional Herzberg-Teller
   perturbation approach. In the present method the electronic transition
   moment is directly expanded in power series of the vibration normal
   coordinates. This approach was recently used for the equivalent n -->
   pi* transition in formaldehyde presenting an excellent agreement with
   the experimental results. (C) 2001 Elsevier Science B.V. All rights
   reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fis Qim, BR-21949900 Rio De Janeiro, Brazil.
RP Bielschowsky, CE, Univ Fed Rio de Janeiro, Inst Quim, Dept Fis Qim,
   Cidade Univ,CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR BABA M, 1983, CHEM PHYS LETT, V103, P93
   BABA M, 1985, J CHEM PHYS, V82, P3938
   BAUSCHLICHER CW, 1980, J CHEM PHYS, V72, P880
   HERZBERG G, 1933, Z PHYS CHEM B-CHEM E, V21, P410
   HERZBERG G, 1991, ELECTRO SPECTRA ELEC
   JOHNSON WC, 1975, J CHEM PHYS, V63, P2144
   LEY H, 1931, Z PHYS CHEM B-CHEM E, V12, P132
   LIAO DW, 1999, J CHEM PHYS, V111, P205
   MEBEL AM, 1997, CHEM PHYS LETT, V274, P281
   MUCMURRY HL, 1941, J CHEM PHYS, V9, P231
   MURRELL JN, 1956, P PHYS SOC LOND A, V69, P245
   NOYES WA, 1934, J CHEM PHYS, V2, P717
   PAUZAT F, 1980, MOL PHYS, V39, P375
   POPLE JA, 1957, J CHEM PHYS, V27, P1270
   ROCHA AB, 2000, CHEM PHYS, V253, P51
   ROCHA AB, 2001, J MOL STRUC-THEOCHEM, V539, P145
   ROCHE M, 1974, J CHEM PHYS, V60, P1193
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
   STRICKLER SJ, 1982, J PHYS CHEM-US, V86, P448
   WORDEN EF, 1966, SPECTROCHIM ACTA, V22, P21
   ZIEGLER L, 1974, J CHEM PHYS, V60, P3558
NR 22
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 6
PY 2001
VL 337
IS 4-6
BP 331
EP 334
PG 4
SC Physics, Atomic, Molecular & Chemical
GA 420BP
UT ISI:000167984300016
ER

PT J
AU Gomez, JA
   Guenzburger, D
TI Influence of conduction electrons on the magnetism of cobalt grains in
   a copper matrix studied by density-functional theory
SO PHYSICAL REVIEW B
LA English
DT Article
ID CO GRANULAR ALLOYS; GIANT MAGNETORESISTANCE; PARTICLE-SIZE;
   GROUND-STATE; CU; IMPURITIES; SYSTEMS; CLUSTERS; SPIN; MOLECULES
AB Electronic structure calculations in the local spin-density
   approximation were performed for clusters of 79 atoms embedded in a Cu
   matrix. The discrete variational method was employed. Cobalt grains of
   up to 55 atoms surrounded by Cu were considered; the lattice parameter
   of Cu was used for the calculations. Local magnetic moments and
   hyperfine fields were obtained for all the clusters. The results show
   that the local magnetic moments at the Co atom sites have oscillatory
   behavior with a tendency to increase in the direction of the grain
   boundaries. The magnitude of the contact contribution to the hyperfine
   field at the Co atom sites also has oscillatory behavior but with a
   tendency to decrease from the center to the surface of the grains. This
   is due to a tendency of alignment of the 4s moment with the 3d moment.
   Dipolar contributions to the hyperfine field were also calculated for
   the cobalt atoms at the boundary of the grains. The highest magnitude
   of this contribution was 4.2 T, Found for the grain with 13 Co atoms.
   Charge oscillations on Co are observed from the center to the surface.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
RP Guenzburger, D, Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150,
   BR-22290180 Rio De Janeiro, Brazil.
EM diana@cat.cbpf.br
CR ABRAGAM A, 1961, PRINCIPLES NUCL MAGN
   ALLIA P, 1994, J APPL PHYS 2, V76, P6817
   ALLIA P, 1999, J MAGN MAGN MATER, V196, P56
   ALLIA P, 1999, J MAGN MAGN MATER, V203, P76
   BERKOWITZ AE, 1992, PHYS REV LETT, V68, P3745
   BRASPENNING PJ, 1984, PHYS REV B, V29, P703
   CEPERLEY D, 1978, PHYS REV B, V18, P3126
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CHUANYUN X, 1997, PHYS REV B, V55, P3677
   CONROY H, 1967, J CHEM PHYS, V47, P5307
   CRANGLE J, 1955, PHILOS MAG, V46, P499
   DELLEY B, 1982, J CHEM PHYS, V76, P1949
   DRITTLER B, 1989, PHYS REV B, V39, P6334
   DUNN JH, 1995, J PHYS C SOLID STATE, V7, P1111
   EASTHAM DA, 1997, J PHYS-CONDENS MAT, V9, L497
   ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
   ELLIS DE, 1970, PHYS REV           B, V2, P2887
   ELLIS DE, 1999, ADV QUANTUM CHEM, V34, P51
   FUJIMA N, 1999, J PHYS SOC JPN, V68, P586
   HASELGROVE CB, 1961, MATH COMPUT, V15, P323
   KUZMINSKI M, 1999, IEEE T MAGN 1, V35, P2853
   KUZMINSKI M, 1999, J MAGN MAGN MATER, V205, P7
   LI ZQ, 1993, PHYS REV B, V47, P13611
   MALINOWSKA M, 1999, J MAGN MAGN MATER, V198, P599
   MIURA K, 1994, PHYS REV B, V50, P10335
   MORUZZI VL, 1986, J MAGN MAGN MATER, V54, P955
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
   NOGUEIRA RN, IN PRESS PHYS REV B
   NOGUEIRA RN, 1996, PHYS REV B, V53, P15071
   NOGUEIRA RN, 1999, HYPERFINE INTERACT, V120, P131
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PODLOUCKY R, 1980, PHYS REV B, V22, P5777
   POHORILYI AN, 1999, J MAGN MAGN MATER, V196, P43
   PORTIS AM, 1960, J APPL PHYS, V31, S205
   SAMANT MG, 1994, PHYS REV LETT, V72, P1112
   SATO H, 1996, J MAGN MAGN MATER, V152, P109
   SINNECKER EHCP, 2000, J MAGN MAGN MATER, V218, L132
   SRIVASTAVA P, 1998, PHYS REV B, V58, P5701
   STOHR J, 1997, J PHYS IV 1, V7, P47
   STOHR J, 1999, J MAGN MAGN MATER, V200, P470
   TISHER M, 1995, PHYS REV LETT, V75, P1602
   TSUNODA M, 1998, J APPL PHYS 2, V83, P7004
   UEDA Y, 1996, JPN J APPL PHYS 1, V35, P3414
   UIMIN MA, 1998, PHYS STATUS SOLIDI A, V165, P337
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
   XIAO JQ, 1992, PHYS REV LETT, V68, P3749
   XING L, 1993, PHYS REV B, V48, P4156
   XING L, 1993, PHYS REV B, V48, P6728
NR 49
TC 11
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD APR 1
PY 2001
VL 6313
IS 13
AR 134404
DI ARTN 134404
PG 10
SC Physics, Condensed Matter
GA 418MB
UT ISI:000167895000054
ER

PT J
AU Fagan, SB
   Mota, R
   Baierle, RJ
   Paiva, G
   da Silva, AJR
   Fazzio, A
TI Stability investigation and thermal behavior of a hypothetical silicon
   nanotube
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE nanotubes; electronic structure; silicon; ab initio; Monte Carlo
ID CARBON NANOTUBES; TUBULES; BORON
AB dEven though silicon nanotubes have never been observed, this paper
   attempts to establish the theoretical similarities and differences
   between Si and C structures. Through the use of two alternative
   theoretical approaches, the first principles calculations and empirical
   potential, the electronic and structural properties of this
   hypothetical material are examined. The first principles calculations
   are based on the density-functional theory and it is shown that
   depending on their chiralities and diameters, the silicon nanotubes may
   present metallic (armchair) or semiconductor (zigzag and mixed)
   behaviors, similar to carbon structures. It is shown that the gap
   decreases in inverse proportion to the diameter, thus approaching zero
   for planar graphite, as was expected. In the second alternative
   approach, the Monte Carlo simulations are used with the Tersoff's
   empirical potential to present a systematic study on the thermal
   behavior of these new structures, It is shown that similarities like
   band structures and density of states are observed between the C and Si
   nanotubes. Nevertheless, there are relevant discrepancies in the
   thermal stabilities and energy differences between the cohesive
   energies per atom for the two tubes, compared with the corresponding
   bulks, implying the very improbable structure of the silicon nanotubes.
   (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
   Ctr Univ Franciscano, Dept Ciencias Exatas, BR-97919032 Santa Maria, RS, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Mota, R, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
   Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
   BLASE X, 1994, PHYS REV LETT, V72, P1878
   BLOCKSTEDT M, 1997, COMPUT PHYS COMMUN, V107, P187
   CAR R, 1985, PHYS REV LETT, V55, P2471
   CHOPRA NG, 1995, SCIENCE, V269, P966
   DAI HJ, 1998, APPL PHYS LETT, V73, P1508
   ESTEFARJANI K, 1999, APPL PHYS LETT, V74, P79
   FAGAN SB, 2000, PHYS REV B, V61, P9994
   HAMADA N, 1992, PHYS REV LETT, V68, P1579
   HAMMERSLEY JM, 1979, MONTE CARLO METHODS
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   IIJIMA S, 1991, NATURE, V354, P54
   KLEYNMAN L, 1982, PHYS REV LETT, V48, P1425
   KOHN W, 1965, PHYS REV, V140, A1133
   MINTMIRE JW, 1992, PHYS REV LETT, V68, P631
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   ODUM TW, 1998, NATURE, V391, P62
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   ROBERTSON DH, 1992, PHYS REV B, V45, P12592
   ROTHLISBERGER U, 1994, PHYS REV LETT, V72, P665
   STEPHAN O, 1994, SCIENCE, V266, P1683
   TANS SJ, 1997, NATURE, V386, P474
   TERSOFF J, 1986, PHYS REV LETT, V56, P632
   TERSOFF J, 1988, PHYS REV B, V37, P6991
   WENGSIEH Z, 1995, PHYS REV B, V51, P11229
   WILDOER JWG, 1998, NATURE, V391, P59
   YAKOBSON BI, 1997, AM SCI, V85, P324
NR 27
TC 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 101
EP 106
PG 6
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500013
ER

PT J
AU Oliveira, KMT
   Trsic, M
TI Comparative theoretical study of the electronic structures and
   electronic spectra of Fe2+-, Fe+3-porphyrin and free base porphyrin
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE porphyrin; Iron II; Iron III; ZINDO; electronic spectra; electronic
   structure
ID DENSITY-FUNCTIONAL CALCULATIONS; DIFFERENTIAL-OVERLAP TECHNIQUE;
   TRANSITION-METAL COMPLEXES; VAPOR ABSORPTION SPECTRA; SPIN FERROUS
   PORPHYRIN; AB-INITIO CALCULATIONS; INTERMEDIATE NEGLECT; IRON(II)
   PORPHINE; GROUND-STATE; PERTURBATION-THEORY
AB The Intermediate Neglect of Differential Overlap quantum chemical
   procedure, with configuration interaction, as implemented in the ZINDO
   program, was employed for a theoretical calculation of Fe2+-porphyrin,
   Fe3+-porphyrin and free base porphyrin. The ground states for the first
   two species were found to be, at the HF level, a triplet and a
   quadruplet, respectively. The geometries, electronic charge
   distribution and energy levels, as well as theoretical UV/Vis spectra,
   for the three species are shown. The calculated wavelengths were good
   agreement with the experimental values of the electronic spectra of
   Fe2+-porphyrin, Fe3+-porphyrin and free base porphyrin. (C) 2001
   Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560250 Sao Carlos, SP, Brazil.
RP Trsic, M, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol,
   POB 780, BR-13560250 Sao Carlos, SP, Brazil.
CR ALMLOF J, 1974, INT J QUANT, V8, P915
   ANDERSON WP, 1986, INORG CHEM, V25, P2728
   ANDERSON WP, 1991, INT J QUANTUM CHEM, V39, P31
   AZUMI R, 1995, LANGMUIR, V11, P4056
   BACON AD, 1976, THESIS U GUELPH
   BACON AD, 1979, THEOR CHIM ACTA, V53, P21
   BAKER JD, 1990, CHEM PHYS LETT, V175, P192
   BARALDI I, 1995, THEOCHEM-J MOL STRUC, V333, P121
   BATINICHABERLE I, 1999, INORG CHEM, V38, P4011
   BATTLE AM, 1993, J PHOTOCH PHOTOBIO B, V20, P5
   BENHUR E, 1995, PHOTOCHEM PHOTOBIOL, V62, P383
   BOCA R, 1992, COORDIN CHEM REV, V118, P246
   BONNETT R, 1995, CHEM SOC REV, V24, P19
   BORISSEVITCH IE, 2000, IN PRESS J PORPH PHT
   BOSSA M, 1990, J MOL STRUC-THEOCHEM, V210, P267
   BYRN MP, 1991, J AM CHEM SOC, V113, P6549
   CHEM BML, 1972, J AM CHEM SOC, V94, P4144
   CHOE YK, 1998, CHEM PHYS LETT, V295, P380
   CHOE YK, 1999, J CHEM PHYS, V111, P3837
   COLLMAN JP, 1975, J AM CHEM SOC, V97, P2676
   COLLMAN JP, 1990, ORGANIC SUPERCONDUCT, P359
   DARWENT JR, 1982, COORDIN CHEM REV, V44, P833
   DELLEY B, 1991, PHYSICA B, V172, P185
   DHANASEKARAN T, 1999, J PHYS CHEM A, V103, P7742
   EATON W, 1981, METHODS ENZYMOLOGY, V76
   EDWARDS L, 1970, J MOL SPECTROSC, V35, P90
   EDWARDS L, 1971, J MOL SPECTROSC, V38, P16
   EDWARDS WD, 1983, INT J QUANTUM CHEM, V23, P1407
   EDWARDS WD, 1986, J AM CHEM SOC, V108, P2196
   FORESMAN JB, 1992, J PHYS CHEM-US, V96, P135
   GANTCHEV TG, 1993, INT J QUANTUM CHEM, V46, P191
   GHOSH A, 1994, J PHYS CHEM-US, V98, P11004
   GOFF H, 1977, J AM CHEM SOC, V99, P3641
   GOFF H, 1980, J AM CHEM SOC, V102, P31
   GOUTERMAN M, 1963, J MOL SPECTROSC, V11, P108
   GOUTERMAN M, 1977, PORPHYRINS, V3, CH1
   GRATZEL M, 1983, ENERGY RESOURCES THR, CH3
   GRINSTAFF MW, 1995, INORG CHEM, V34, P4896
   GUILLEMOT M, 1995, J CHEM SOC CHEM COMM, P2093
   HANN RA, 1990, LANGMUIRBLODGETT FIL
   HIRAO K, 1992, CHEM PHYS LETT, V190, P374
   HIRAO K, 1992, CHEM PHYS LETT, V196, P397
   HIRAO K, 1992, INT J QUANTUM CHEM S, V26, P517
   HIRAO K, 1993, CHEM PHYS LETT, V201, P59
   KITAGAWA T, 1979, CHEM PHYS LETT, V63, P443
   KUHN H, 1949, J CHEM PHYS, V17, P1198
   LI L, 1999, SPECTROSC SPECT ANAL, V19, P297
   LONGUETHIGGINS HC, 1950, J CHEM PHYS, V18, P1174
   MAGGIORA GM, 1973, J AM CHEM SOC, V95, P6555
   MASTHAY MB, 1986, J CHEM PHYS, V84, P3901
   MATSUZAWA N, 1995, J PHYS CHEM-US, V99, P7698
   MERCHAN M, 1994, CHEM PHYS LETT, V226, P27
   MOMICCHIOLI F, 1983, CHEM PHYS, V82, P229
   MURREL NJ, 1972, SEMI EMPIRICAL SELF
   NAGASHIMA U, 1986, J CHEM PHYS, V85, P4524
   OBARA S, 1982, J CHEM PHYS, V77, P3155
   ORTI E, 1988, J CHEM PHYS, V89, P1009
   ORTI E, 1990, J CHEM PHYS, V92, P1228
   PETKE JD, 1978, J MOL SPECTROSC, V71, P64
   PLATT JR, 1954, J CHEM PHYS, V22, P1448
   POPLE JA, 1965, J CHEM PHYS, V43, P5136
   POPLE JA, 1965, J CHEM PHYS, V43, S129
   POPLE JA, 1966, J CHEM PHYS, V44, P3289
   POPLE JA, 1967, J CHEM PHYS, V47, P2026
   POPLE JA, 1970, APPROXIMATE MOL ORBI
   RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
   ROHMER MM, 1985, CHEM PHYS LETT, V116, P44
   ROUSSEAU R, 1994, J MOL STRUCT, V317, P287
   ROWLINGS DC, 1985, INT J QUANTUM CHEM, V28, P773
   SERRANOANDRES L, 1998, CHEM PHYS LETT, V295, P195
   SIMPSON WT, 1949, J CHEM PHYS, V17, P1218
   SOARES LD, 1996, SPECTROCHIM ACTA A, V52, P1245
   SONTUM SF, 1983, J CHEM PHYS, V79, P2881
   SUTTER JR, 1974, INORG CHEM, V13, P2764
   TRSIC M, 1999, J MOL STRUCT THEOCHE, V464, P289
   VALENTI V, 1988, INORG CHIM ACTA, V148, P191
   VANGISBERGEN SJA, 1999, J CHEM PHYS, V111, P2499
   WALKER A, 1993, BIOL MAGN RESON, V12, P132
   WALUK J, 1991, J AM CHEM SOC, V113, P5511
   WASIELEWSKI MR, 1992, CHEM REV, V92, P435
   WEISS C, 1965, J MOL SPECTROSC, V16, P415
   WHITE A, 1998, PRINCIPLES BIOCH
   WHITTEN DG, 1993, SPECTRUM-J STATE GOV, V6, P1
   ZERNER M, 1966, THEOR CHIM ACTA, V4, P44
   ZERNER MC, 1966, THESIS HARVARD U
   ZERNER MC, 1980, INT J QUANTUM CHEM, V18, KI4
   ZERNER MC, 1980, J AM CHEM SOC, V102, P589
   ZWAANS R, 1995, THEOCHEM-J MOL STRUC, V339, P153
NR 88
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 107
EP 117
PG 11
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500014
ER

PT J
AU Seidl, PR
   Tostes, JGR
   Carneiro, JWD
   Taft, CA
   Dias, JF
TI Stereo-electronic effects on carbon-13 and hydrogen chemical shifts of
   bicyclic alcohols
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE DFT/GIAO calculations; chemical shifts; hyperconjugation;
   exo-2-norborneol; endo-2-norborneol; electronic effects
ID NMR; EXCHANGE
AB Since the 1990s ab initio calculations have become affordable and
   accurate enough to be useful in the problem of correct assignment in
   high field, multipulse NMR spectroscopy as well as in the understanding
   the relationships between chemical shifts and molecular structure.
   Density functional theory (DFT) methods enable accurate calculations to
   be made on systems that cannot easily be treated by standard methods
   beyond Hartree-Fock, such as large organic molecules. In order to probe
   the effects of rotation about the C-O bond using the DFT/GIAO method,
   we calculated chemical shifts for the three minima obtained by a
   complete rotation of the C-O bond of exo- and endo-2-norborneol. Our
   results show that conformational effects leading to chemical shift
   differences of almost 4 ppm for carbon-13 and 1 ppm for hydrogen may be
   observed. These are interpreted in terms of steric and electronic
   effects. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 UFRJ, Escola Quim, Dept Proc Organ, BR-21949900 Rio De Janeiro, Brazil.
   ENF, Lab Ciencias Quim, BR-28015620 Campos, RJ, Brazil.
   IME, Dept Engn Quim, BR-22290180 Rio De Janeiro, Brazil.
   Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
   UFF, Dept Quim Geral & Inorgan, BR-24020150 Niteroi, RJ, Brazil.
RP Seidl, PR, UFRJ, Escola Quim, Dept Proc Organ, BR-21949900 Rio De
   Janeiro, Brazil.
CR ABRAHAM RJ, 1989, MAGN RESON CHEM, V27, P1074
   BARFIELD M, 1995, J AM CHEM SOC, V117, P2862
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   DITCHFIELD R, 1974, MOL PHYS, V27, P789
   FRISCH MJ, 1995, GAUSSIAN 94W
   HOUK KN, 1993, J AM CHEM SOC, V115, P4170
   KUPKA T, 1999, MAGN RESON CHEM, V37, P421
   LEE C, 1988, PHYS REV B, V37, P785
   SEIDL PR, UNPUB
   SEIDL PR, 1998, MAGN RESON CHEM, V36, P261
   SEIDL PR, 1999, J MOL STRUC-THEOCHEM, V488, P151
   TOSTES JGR, 1994, J MOL STRUCT THEOCHE, V306, P101
   WHITESELL JK, 1987, STEREOCHEMICAL ANAL
   WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 15
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 163
EP 169
PG 7
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500021
ER

PT J
AU Mundim, KC
   Malbouisson, LAC
   Dorfman, S
   Fuks, D
   Van Humbeeck, J
   Liubich, V
TI Diffusion properties of tungsten from atomistic simulations with ab
   initio potentials
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE diffusion; tungsten; vacancy; interatomic potentials; non-empirical
   calculations
ID VACANCY SOLID-SOLUTION; BCC TRANSITION-METALS; SELF-DIFFUSION;
   ARRHENIUS PLOT; FORCES
AB The results of atomistic simulations of migration and formation
   energies of mono- and di-vacancies in bulk tungsten are presented in
   our paper. The interatomic potential for tungsten was extracted with
   the recursive procedure from ah initio calculations of the cohesive
   energy. A stochastic molecular dynamics using a generalized simulated
   annealing procedure was employed in the simulations. Calculated values
   of mono- and di-vacancies energy parameters are in a good agreement
   with experimental data and with the results of other calculations. (C)
   2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
   Technion Israel Inst Technol, Fac Phys, IL-32000 Haifa, Israel.
   Katholieke Univ Leuven, Dept Mat Engn, Louvain, Belgium.
   Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel.
RP Mundim, KC, Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
CR ANDERSEN OK, 1975, PHYS REV B, V12, P3060
   BAZANT MZ, 1996, MRS P 48 MAT RES SOC
   BAZANT MZ, 1996, PHYS REV LETT, V77, P4370
   BERNER A, 1999, APPL SURF SCI, V144, P677
   BOKSHTEIN BS, 1974, THERMODYNAMICS KINET
   CARLSSON AE, 1980, PHILOS MAG A, V41, P241
   CARLSSON AE, 1991, PHYS REV B, V44, P6590
   DAVIDOV G, 1995, PHYS REV B, V51, P13059
   DORFMAN S, 1993, Z PHYS B CON MAT, V91, P225
   EFTAXIAS K, 1985, PHYS REV B, V32, P5462
   FUKS D, 1994, PHYS REV B, V50, P16340
   FUKS D, 1994, Z PHYS B CON MAT, V95, P189
   FUKS D, 1996, INT J QUANTUM CHEM, V57, P881
   GILDER HM, 1975, PHYS REV B, V11, P4916
   KIRKALDY JS, 1987, DIFFUSION CONDENSED
   KITTEL C, 1976, INTRO SOLID STATE PH
   KOEHLER U, 1987, PHYS STATUS SOLIDI B, V144, P243
   KOEHLER U, 1988, PHILOS MAG A, V58, P769
   MAIER K, 1979, PHILOS MAG A, V40, P701
   MARINOPOULOS AG, 1995, PHILOS MAG A, V72, P1311
   MEHRER H, 1969, PHYS STATUS SOLIDI, V35, P313
   MEHRER H, 1970, PHYS STATUS SOLIDI, V39, P647
   MEHRER H, 1978, J NUCL MATER, V69, P38
   MEHRER H, 1990, DIFFUSION SOLID META, V26
   MOLL N, 1995, PHYS REV B, V52, P2550
   MUNDY JN, 1978, PHYS REV B, V18, P6566
   NEUMANN G, 1985, P C SPONS AT TRANSP, V1
   NEUMANN G, 1990, PHILOS MAG A, V61, P563
   PETERSON NL, 1978, COMMENTS SOLID STATE, V8, P107
   PETERSON NL, 1978, PROPERTIES ATOMIC DE, P3
   SANCHEZ JM, 1975, PHYS REV LETT, V35, P227
   SEEGER A, 1970, VACANCIES INTERSTIT, P1
   SIMMONS G, 1971, SINGLE CRYSTAL ELAST
   SKIVER HL, 1984, LMTO METHOD
   VAROTSOS P, 1985, PHYS REV B, V31, P8263
   VAROTSOS PA, 1986, THERMODYNAMICS POINT
   WASZ ML, 1992, J PHYS CHEM SOLIDS, V53, P629
   XU W, 1994, SURF SCI, V301, P371
   XU W, 1994, SURF SCI, V319, P45
NR 39
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 191
EP 197
PG 7
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500024
ER

PT J
AU Bauerfeldt, GF
   Arbilla, G
   da Silva, EC
TI Theoretical study and rate constants for the unimolecular isomerization
   of YONO (Y = F, Cl and Br)
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE halogen nitrites; trans-cis isomerization;
   Rice-Ramsperger-Kassel-Marcus rate constants
ID AB-INITIO CHARACTERIZATION; NITROSYL HYPOFLUORITE; ATMOSPHERIC
   CHEMISTRY; VIBRATIONAL-SPECTRA; MATRIX REACTIONS; NO2 MOLECULES;
   ISOMERS; ROTATION; ATOMS
AB This work introduces the theoretical study of cis-trans isomerization
   reactions of the halogenated nitrites FONO, CIONO and BrONO. The direct
   dynamics methodology has been employed. Geometries have been optimized
   and a saddle point located for each process. Critical energies have
   been determined as 10.93, 10.17 and 9.92 kcal/mol for the trans-cis
   isomerization reactions of FONO, CIONO and BrONO. respectively.
   Thermodynamics of the equilibrium trans-YONO = cis-YONO has been
   investigated and high-pressure unimolecular rate constants calculated
   for a range of temperature of 223-323 K. A trend has been observed in
   geometric parameters and thermodynamic data when comparing FONO, CIONO
   and BrONO conformers. (C) 2001 Elsevier Science B.V. All rights
   reserved.
C1 Univ Fed Rio de Janeiro, Ctr Tecnol, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Arbilla, G, Univ Fed Rio de Janeiro, Ctr Tecnol, Inst Quim, Dept Quim
   Fis, Bloco A,Cidade Univ, BR-21949900 Rio De Janeiro, Brazil.
CR BAUERFELDT GF, UNPUB
   BAUERFELDT GF, 1999, THESIS U FEDERAL RIO
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BEYER T, 1973, COMMUN ASS COMPUT MA, V16, P379
   CARDENASJIRON GI, 1994, CHEM PHYS LETT, V222, P8
   CARDENASJIRON GI, 1995, J PHYS CHEM-US, V99, P12730
   DIBBLE TS, 1995, J PHYS CHEM-US, V99, P1919
   DIXON DA, 1992, J PHYS CHEM-US, V96, P1018
   FINLAYSONPITTS BJ, 1986, ATMOSPHERIC CHEM FIN
   FORST W, 1973, THEORY UNIMOLECULAR
   FRANCISCO JS, 1994, J PHYS CHEM-US, V98, P5644
   FRANCISCO JS, 1994, J PHYS CHEM-US, V98, P5650
   FRANCISCO JS, 1995, J PHYS CHEM-US, V99, P13422
   FUKUI K, 1982, PURE APPL CHEM, V54, P1825
   GILBERT RG, 1990, THEORY UNIMOLECULAR
   GUAN YH, 1989, CHEM PHYS, V139, P147
   GUHA S, 1997, J PHYS CHEM A, V101, P5347
   GUHA S, 1998, J PHYS CHEM A, V102, P2072
   HISATSUNE IC, 1968, J PHYS CHEM-US, V72, P269
   HISATSUNE IC, 1968, J PHYS CHEM-US, V72, P269
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   JANOWSKI B, 1977, BER BUNSEN PHYS CHEM, V81, P1262
   KAWASHIMA Y, 1979, CHEM PHYS LETT, V63, P119
   LEE TJ, 1994, CHEM PHYS LETT, V228, P583
   LEE TJ, 1994, J PHYS CHEM-US, V98, P111
   LEE TJ, 1996, J PHYS CHEM-US, V100, P51
   MCGRAW GE, 1966, J CHEM PHYS, V45, P1392
   MCLEAN AD, 1980, J CHEM PHYS, V72, P639
   MILLER CE, 1997, J CHEM PHYS, V107, P2300
   ROBINSON PJ, 1972, UNIMOLECULAR REACTIO
   SMARDZEWSKI RR, 1974, J CHEM PHYS, V60, P2980
   STEINFELD JI, 1998, CHEM KINETICS DYNAMI
   TEVAULT DE, 1977, J CHEM PHYS, V67, P3777
   TEVAULT DE, 1979, J PHYS CHEM-US, V83, P2217
   TRUHLAR DG, 1995, GEN TRANSITION STATE, V4
   WAYNE RP, 1991, CHEM ATMOSPHERE
NR 36
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 223
EP 232
PG 10
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500027
ER

PT J
AU Longo, RL
   Nunes, RL
   Bieber, LW
TI On the origin of the regioselective hydrolysis of a naphthoquinone
   diacetate: A molecular orbital study
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE regioselectivity; MO calculations; solvent effects
ID BASIS-SETS; 1ST-ROW ELEMENTS; ABINITIO
AB The regioselectivity found in the mild basic hydrolysis of the
   2,5-dimethyl-1,4-naphthohydroquinone diacetate (Nunes, R. L.; Bieber,
   L. W.; Longo, R. L. J. Nat. Prod. 1999, 62, 1600) has been studied with
   ab initio and semiempirical molecular orbital methods. In the gas phase
   (isolated systems), these methods were not able to provide results that
   could explain the observed selectivity. However, when the solvent
   effects were included in the AM1 method using the discrete solvation
   model it was possible to establish that this selectivity is due to the
   relative stability of the tetrahedral intermediates and their
   transitions states. The origin of this relative stability and thus of
   the observed selectivity is due to the repulsive interactions between
   the 2-methyl substituent in the naphthalene ring and the methyl group
   in the 4-acetate substituent, as well as their hindrance towards the
   hydration of the ionic group in the tetrahedral intermediates.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
RP Longo, RL, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540
   Recife, PE, Brazil.
CR BAKER BR, 1942, J AM CHEM SOC, V64, P1100
   BENDER ML, 1960, CHEM REV, V60, P53
   BENDER ML, 1967, J AM CHEM SOC, V89, P1211
   BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
   BLAKE JF, 1987, J AM CHEM SOC, V109, P3856
   CAREY FA, 1987, ORGANIC CHEM, P798
   CLARK T, 1983, J COMPUT CHEM, V4, P294
   CLARK T, 1985, HDB COMPUTATIONAL CH
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   FREITAS LCG, 1992, J CHEM SOC FARADAY T, V88, P189
   GRANT HN, 1963, HELV CHIM ACTA, V46, P415
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   INGOLD C, 1969, STRUCTURE MECH ORGAN
   MADURA JD, 1986, J AM CHEM SOC, V108, P2517
   MARCH J, 1992, ADV ORGANIC CHEM
   NUNES RL, 1999, J NAT PRODUCTS, V62, P1600
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
   STEWART JJP, 1989, J COMPUT CHEM, V10, P210
   STEWART JJP, 1993, MOPAC 9300 MANUAL
   WILBUR JL, 1994, J AM CHEM SOC, V116, P5839
NR 22
TC 4
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PY 2001
VL 12
IS 1
BP 52
EP 56
PG 5
SC Chemistry, Multidisciplinary
GA 401HV
UT ISI:000166922900006
ER

PT J
AU Orellana, W
   Ferraz, AC
TI Ab initio study of substitutional nitrogen in GaAs
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ALLOYS; PSEUDOPOTENTIALS; IMPURITIES; ENERGETICS; DEFECT; GROWTH
AB We investigate the atomic geometry, formation energies, and electronic
   structure of nitrogen occupying both arsenic and gallium sites in GaAs
   (N-As and N-Ga) using first-principles total-energy calculations. We
   find that both neutral defects induce impurity-like empty levels in the
   band gap acting as acceptors. While N-As shows a s-like a(1) level in
   the middle of the band gap, N-Ga shows a p-like t(2) level close to the
   bottom of the conduction band. The gap level of N-As gives theoretical
   support for the experimentally observed band-edge redshift on the GaAsN
   alloy for a N concentration similar to3%. Strong inward relaxations
   preserving the T-d symmetry characterize the N-As equilibrium geometry
   in all the charge states investigated. In contrast, N-Ga exhibits a
   structural metastability in neutral charge state and Jahn-Teller
   off-center distortions in negative charge states forming a negative-U
   center. Formation energies of competing N-As and N-Ga defects are also
   discussed. (C) 2001 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Orellana, W, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR BELLAICHE L, 1996, PHYS REV B, V54, P17568
   CALDAS MJ, 1990, PHYS REV LETT, V65, P2046
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   DABROWSKI J, 1989, PHYS REV B, V40, P10391
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   KOHN W, 1965, PHYS REV, V140, A1133
   KOHN W, 1985, PHYS REV, P2471
   LIU X, 1990, APPL PHYS LETT, V56, P1451
   LOUIE SG, 1982, PHYS REV B, V26, P1738
   MAKIMOTO T, 1995, APPL PHYS LETT, V67, P688
   MATTILA T, 1998, PHYS REV B, V58, P1367
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   ORELLANA W, 1999, APPL PHYS LETT, V74, P2984
   ORELLANA W, 2000, PHYS REV B, V61, P5326
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   SHIMA T, 1999, APPL PHYS LETT, V74, P2675
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   WEI SH, 1996, PHYS REV LETT, V76, P664
   WEYERS M, 1992, JPN J APPL PHYS, V31, P853
   WEYERS M, 1993, APPL PHYS LETT, V62, P1396
   WOLFORD DJ, 1984, P 17 INT C PHYS SEM, P627
   ZHANG SB, 1991, PHYS REV LETT, V67, P2339
NR 22
TC 8
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 26
PY 2001
VL 78
IS 9
BP 1231
EP 1233
PG 3
SC Physics, Applied
GA 405GK
UT ISI:000167151000021
ER

PT J
AU Miwa, RH
   Srivastava, GP
TI Atomic geometry, electronic structure and image state for the
   Si(111)-In(4 x 1) nanowire
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; many body and quasi-particle theories;
   surface electronic phenomena (work function; surface potential, surface
   states etc.); indium; self-assembly; single crystal surfaces
ID INVERSE-PHOTOEMISSION; POTENTIAL STATES; SURFACE-BARRIER;
   METAL-SURFACES; MODEL; RECONSTRUCTION; SPECTROSCOPY; DIFFRACTION;
   DISPERSION; CHAINS
AB We have performed a detailed theoretical study of the atomic geometry,
   electronic structure, and dispersion of the most tightly bound (n = 1)
   image state for the Si(111)-In(4 x 1) nanowire system. The calculations
   were performed using ab initio pseudopotentials, based on the local
   density approximation and a first-order energy correction for its
   asymptotic classical-image behaviour. The calculated atomic geometry,
   within the structural model proposed by Bunk et ai. [Phys. Rev. B 59
   (1999) 12228], agrees well with their X-ray diffraction studies, and
   the electronic band structure calculations confirm the
   quasi-one-dimensional semimetallic behaviour, in agreement with
   previous photoemission studies. The anisotropic dispersion of the image
   state measured in a recent inverse photoemission study by Hill and
   McLean [Phys. Rev. Lett. 82 (1999) 2155] is verified, and an
   explanation based on the calculated surface corrugation potential is
   presented. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Exeter, Sch Phys, Dept Phys, Exeter EX4 4QL, Devon, England.
   Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Srivastava, GP, Univ Exeter, Sch Phys, Dept Phys, Stocker Rd, Exeter
   EX4 4QL, Devon, England.
CR ABUKAWA T, 1995, SURF SCI, V325, P33
   BUNK O, 1999, PHYS REV B, V59, P12228
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   EGUILUZ AG, 1992, PHYS REV LETT, V68, P1359
   GARCIA N, 1985, PHYS REV LETT, V54, P591
   GONZE X, 1991, PHYS REV B, V44, P8503
   HEDIN L, 1969, SOLID STATE PHYS, V23, P1
   HILL IG, 1997, PHYS REV B, V56, P15725
   HILL IG, 1999, PHYS REV LETT, V82, P2155
   HIMPSEL FJ, 1992, APPL SURF SCI, V56, P160
   JENNINGS PJ, 1988, PHYS REV B, V37, P6113
   JONES RO, 1984, PHYS REV B, V29, P6474
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   KRAFT J, 1997, PHYS REV B, V55, P5384
   LANDER JJ, 1965, J APPL PHYS, V36, P1706
   LANG ND, 1973, PHYS REV           B, V7, P3541
   MCLEAN AB, 1989, PHYS REV B, V40, P8425
   NAKAMURA N, 1991, SURF SCI, V256, P129
   NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
   OSGOOD RM, 1998, SOLID STATE PHYS, V51, P1
   PANDEY KC, 1981, PHYS REV LETT, V47, P1913
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   SARANIN AA, 1997, PHYS REV B, V56, P1017
   SILKIN VM, 1999, PHYS REV B, V60, P7820
   SMITH NV, 1985, PHYS REV B, V32, P3549
   SMITH NV, 1991, SURF SCI, V247, P133
   STEVENS JL, 1993, PHYS REV B, V47, P1453
   STRAUB D, 1986, PHYS REV B, V33, P2256
   WEINERT M, 1985, PHYS REV LETT, V55, P2055
   YANG S, 1991, PHYS REV B, V43, P2025
   YEOM HW, 1999, PHYS REV LETT, V82, P4898
NR 31
TC 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD FEB 10
PY 2001
VL 473
IS 1-2
BP 123
EP 132
PG 10
SC Chemistry, Physical
GA 404EA
UT ISI:000167083400013
ER

PT J
AU Leitao, AA
   Neto, JAC
   Pinhal, NM
   Bielschowsky, CE
   Vugman, NV
TI Pulsed EPR and ab initio calculation on [Ni(CN)(4)](3-) in NaCl and KCl
   host lattices
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID ELECTRON-SPIN-RESONANCE; F-CENTERS; CRYSTALS; IMPURITY; CLUSTER; DEFECTS
AB Paramagnetic 3d(9) [Ni(CN)(4)](3-) complexes, with the unpaired
   electron in a d(x2-y2) orbital, have been generated from diamagnetic
   Ni(II) 3d(8) cyanide complexes in KCl or NaCl host lattices. The
   magnetic and quadrupolar hyperfine interactions with the four N-14,
   hidden in the CW-EPR (continuous wave electron paramagnetic ressonance)
   line width, are revealed by pulsed EPR and ENDOR (electron nuclear
   double resonance) angular variation studies. Ab initio embedded UMP2
   cluster calculations, which take into account short- and long-range
   crystal interactions, confirm the unpaired electron orbital assignment
   and are in agreement with the measured hyperfine values. The trend of
   N-14 A(iso) values (7.7 MHz for NaCl and 6.8 MHz for KCI) is given by
   the Ni-CN distance, modified in each host lattice. Small asymmetry
   factors (about 0.04) for the N-14 quadrupolar tensor are obtained both
   in experiment and in theory. The experimental lines and the
   calculations indicate spin density at the cations of both lattices.
   Experimental and theoretical data indicate that lattice chlorine ions
   near the Ni atom, in axial positions, are not chemically coordinated to
   Ni. Spin density on these ions arises only from spin polarization of
   their valence orbitals and of the valence orbitals of the complex.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21910240 Rio De Janeiro, Brazil.
   Univ Fed Rio de Janeiro, Inst Quim, BR-21910240 Rio De Janeiro, Brazil.
RP Vugman, NV, Univ Fed Rio de Janeiro, Inst Fis, BR-21910240 Rio De
   Janeiro, Brazil.
CR AACHI JI, 1993, B CHEM SOC JPN, V66, P3314
   ALABDALLA A, 1998, J CHEM PHYS, V108, P2005
   BERRONDO M, 1995, INT J QUANTUM CHEM Q, V29, P253
   CHEN W, 1994, J CHEM PHYS, V101, P5957
   CHIPMAN DM, 1991, J PHYS CHEM-US, V95, P4702
   EVJEN HM, 1932, PHYS REV, V39, P675
   FRISCH JM, 1995, GAUSSIAN 94 REVISION
   GAULD JW, 1997, J PHYS CHEM A, V101, P1352
   HARRISON WA, 1989, ELECT STRUCTURE PROP, CH8
   HAY PJ, 1985, J CHEM PHYS, V82, P299
   JAIN SC, 1973, CHEM PHYS LETT, V21, P150
   KNIGHT LB, 1996, J CHEM PHYS, V105, P5672
   LEITAO AA, 2000, CHEM PHYS LETT, V321, P269
   MACKEY JH, 1969, TEH FU ESR METAL COM, P33
   MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
   MIYOSHI E, 1998, THEOCHEM-J MOL STRUC, V451, P81
   MOLLER C, 1934, PHYS REV, V46, P618
   PENNER GH, 1996, CHEM PHYS LETT, V261, P665
   PINHAL NM, 1985, J PHYS C SOLID STATE, V18, P6273
   PUCHINA AV, 1998, SOLID STATE COMMUN, V106, P285
   SCHWEIGER A, 1982, STRUCT BONDING BERLI, V51, P1
   SOUSA C, 1993, J COMPUT CHEM, V14, P680
   VAIL JM, 1998, PHYS REV B, V57, P764
   VUGMAN NV, 1990, PHYS REV B, V42, P9837
   WINTER NW, 1987, J CHEM PHYS, V86, P3549
   WINTER NW, 1987, J CHEM PHYS, V87, P2945
   ZANETTE SI, 1976, J CHEM PHYS, V64, P3381
NR 27
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JAN 25
PY 2001
VL 105
IS 3
BP 614
EP 619
PG 6
SC Chemistry, Physical
GA 402RE
UT ISI:000167001300014
ER

PT J
AU Laali, KK
   Okazaki, T
   Kumar, S
   Galembeck, SE
TI Substituent effects and charge delocalization mode in chrysenium,
   benzo[c]phenanthrenium, and benzo[g]chrysenium cations: A stable ion
   and electrophilic substitution study
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID POLYCYCLIC AROMATIC-HYDROCARBONS; DIOL EPOXIDE METABOLITES; AM1
   CALCULATIONS; CARCINOGEN BENZO<G>CHRYSENE; ANTI-DIOL; REGION;
   4H-CYCLOPENTA<DEF>CHRYSENE; DERIVATIVES
AB The first series of persistent carbocations derived from mono- and
   disubstituted chrysenes Ch (5-methyl- 3, 2-methoxy- 19,
   2-methoxy-11-methyl- 20, 2-methoxy-5-methyl- 21, and
   9-methyl-4H-cyclopenta[def] chrysene 22), monosubstituted benzo[c]
   phenanthrenes BcPh (3-methoxy- 23, 3-hydroxy- 24), and monosubstituted
   benzo[g]chrysenes BgCh (12-methoxy- 25; 12-hydroxy- 26) were generated
   in FSO3H/SO2CIF or FSO3H-SbF5 (4:1)/SO2CIF and studied by
   low-temperature NMR at 500 MHz. The methoxy and methyl substituents
   direct the protonation to their respective ortho positions. Whereas
   parent Ch 1 is protonated at C-6/C-12, 3 is protonated at C-6 (3aH(+))
   and at C-12 (3bH(+)) with the latter being the thermodynamic cation.
   The 2-methoxy-Ch 19 is protonated at C-1 to give two conformationally
   distinct carboxonium ions (19aH(+)/19bH(+)). In the disubstituted Ch
   derivatives 20 and 21, the 2-methoxy overrides the 5-methyl and the
   predominant carbocations formed are via attack ortho to methoxy. For
   the methano derivative 22 (Me at C-9), a 3:1 mixture of 22aH(+)/22bH(+)
   is formed. For parent BcPh 13, nitration and benzoylation are directed
   to C-5. With 3-methoxy-BcPh 23, the site of attack moves to C-4 thus
   producing two conformationally distinct carboxonium ions
   (23aH(+)/23bH(+)), whereas conventional nitration gave a 2:1 mixture of
   23aNO(2) and 23bNO(2). In 3-hydroxy-BcPh 24, the carboxonium ion 24H(+)
   is exclusively formed. For parent BgCh 16, protonation, nitration, and
   benzoylation are all directed to C-10 (16H(+), 16NO(2), 16COPh), but
   presence of OMe or OH substituent at C-12 changes the site of attack to
   C-11. Charge delocalization mode is probed based on magnitude of Delta
   delta Cs-13 and conformational aspects via NOED experiments. Complete
   NMR data are also reported for several benzoylation/nitration products.
   Using ab initio/GIAO (and NICS), the NMR chemical shifts (and
   aromaticity) in model carbocations A-D were evaluated. This work
   represents the first direct study of the carbocations derived from the
   methyl-, methoxy-/hydroxy-derivatives of three important classes of
   bay-region and fjord-region PAHs whose diol-epoxides extensively bind
   to DNA. It also extends the available data on electrophilic chemistry
   of BcPh and BgCh.
C1 Kent State Univ, Dept Chem, Kent, OH 44242 USA.
   SUNY Coll Buffalo, Great Lakes Ctr Environm Res & Educ, Buffalo, NY 14222 USA.
   USP, FFCLRP, Dept Quim, LAMMOL, Sao Paulo, Brazil.
RP Laali, KK, Kent State Univ, Dept Chem, Kent, OH 44242 USA.
CR AGRAWAL SK, 1987, J AM CHEM SOC, V109, P2497
   BAX A, 1985, J ORG CHEM, V50, P3029
   BHATT T, 1990, POLYCYCL AROMAT COMP, V1, P55
   BHATT TS, 1982, CARCINOGENESIS, V3, P667
   BUSHMAN DR, 1989, J ORG CHEM, V54, P3533
   CATTERALL FS, 2000, MUTAT RES-GEN TOX EN, V465, P85
   CHANG HF, 1999, J ORG CHEM, V64, P9051
   COOMBS MM, 1987, CYCLOPENTA A PHENANT, CH6
   DAI W, 1995, J ORG CHEM, V60, P4905
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   HARVEY RG, 1985, ACS S SERIES, V283, CH3
   HARVEY RG, 1991, POLYCYCLIC AROMATIC, CH3
   HARVEY RG, 1997, POLYCYCLIC AROMATIC, CH2
   HECHT SS, 1985, ACS S SERIES, V283, CH5
   HERNDON WC, 1988, ADV CHEM SERIES, V217
   HOFFMAN RE, 1993, J MAGN RESON SER A, V102, P1
   KISELYOV AS, 1995, J ORG CHEM, V60, P6123
   KISELYOV AS, 1995, J ORG CHEM, V60, P6129
   KISELYOV AS, 1995, TETRAHEDRON LETT, V36, P4005
   KUMAR S, 1988, J CHEM SOC P1, P3157
   KUMAR S, 1997, J ORG CHEM, V62, P8535
   LAALI KK, 1994, J CHEM SOC P2, P1303
   LAALI KK, 1997, J CHEM SOC PERK  NOV, P2207
   LAALI KK, 1997, J ORG CHEM, V62, P4023
   LAALI KK, 1997, J ORG CHEM, V62, P5804
   LAALI KK, 1997, J ORG CHEM, V62, P7752
   LAALI KK, 1998, J ORG CHEM, V63, P7280
   LAALI KK, 2000, J CHEM SOC PERK T 2, P211
   LAALI KK, 2000, J ORG CHEM, V65, P7399
   LAKSHMAN MK, 1994, SYNTHETIC COMMUN, V24, P2973
   MIRSADEGHI S, 1989, J ORG CHEM, V54, P3091
   NEWMAN MS, 1949, J ORG CHEM, V14, P375
   REDDY VP, 1992, J FLUORINE CHEM, V56, P195
   SAROBE M, 1997, J CHEM SOC PERK  APR, P703
   SCHLEYER PV, 1996, J AM CHEM SOC, V118, P6317
   SZELIGA J, 1999, CHEM RES TOXICOL, V12, P347
   UTERMOEHLEN CM, 1987, J ORG CHEM, V52, P5574
   WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 38
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD FEB 9
PY 2001
VL 66
IS 3
BP 780
EP 788
PG 9
SC Chemistry, Organic
GA 401TF
UT ISI:000166943800020
ER

PT J
AU Barba, D
   Jandl, S
   Nekvasil, V
   Marysko, M
   Divis, M
   Martin, AA
   Lin, CT
   Cardona, M
   Wolf, T
TI Infrared transmission study of crystal-field excitations in
   Sm1+xBa2-xCu3O6+y
SO PHYSICAL REVIEW B
LA English
DT Article
ID SINGLE-CRYSTALS; INTERMETALLIC COMPOUNDS; NDBA2CU3O7-DELTA;
   SUPERCONDUCTORS; TRANSITIONS; YBA2CU3O7-X; GRADIENT; SYSTEMS; ND2CUO4;
   SM
AB Absorption bands, corresponding to the crystal-field (CF) excitations
   of the Sm3+ ions in SmBa2Cu3O6, have been observed by infrared
   transmission spectroscopy and assigned to transitions from the lowest
   energy levels of the H-6(5/2) multiplet to the excited multiplets
   H-6(7/2), H-6(9/2), H-6(11/2), H-6(13/2), F-6(7/2), and F-6(9/2) Of
   Sm3+ ions on the regular D-4h-symmetry sites and the C-4v-symmetry Pa
   sites. A set of the CF parameters that fits the levels in the regular
   sites and reproduces the magnetic susceptibility anisotropy has been
   derived. The CF interaction parameters in the Sm/Ba sites have been
   modeled by combining the superposition model and an ab initio method
   based on the density-functional calculations.
C1 Univ Sherbrooke, Dept Phys, Ctr Rech Proprietes Elect Mat Avances, Sherbrooke, PQ J1K 2R1, Canada.
   Acad Sci Czech Republ, Inst Phys, Prague 16253 6, Czech Republic.
   Charles Univ, Dept Electron Syst, Prague 12116 2, Czech Republic.
   Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany.
   Inst Festkorperphys, D-76021 Karlsruhe, Germany.
   IP&D Univap Sao Jose dos Campos, Inst Pesquisa & Desenvolvimento, BR-12244000 Sao Jose Dos Campos, Brazil.
RP Barba, D, Univ Sherbrooke, Dept Phys, Ctr Rech Proprietes Elect Mat
   Avances, Sherbrooke, PQ J1K 2R1, Canada.
CR BARBA D, UNPUB
   BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
   COEHOORN R, 1991, J APPL PHYS 2B, V69, P5590
   DIVIS M, 1998, PHYSICA C, V301, P23
   FARNETH WE, 1989, PHYS REV B, V39, P6594
   GUILLAUME M, 1994, J PHYS-CONDENS MAT, V6, P7963
   GUILLAUME M, 1995, PHYS REV LETT, V74, P3423
   HARLEY R, 1987, SPECTROSCOPY SOLIDS
   HEYEN ET, 1991, PHYS REV LETT, V67, P144
   JANDL S, 1996, PHYS REV B, V53, P8632
   JANDL S, 1998, J LUMIN, V78, P197
   JANDL S, 1999, PHYSICA C, V314, P189
   LIKODIMOS V, 1996, PHYS REV B, V54, P12342
   LIN CT, 1996, PHYSICA C, V272, P285
   MARTIN AA, 1998, PHYS REV B, V58, P14211
   MARTIN AA, 1999, PHYS REV B, V59, P6528
   MESOT J, 1997, J SUPERCOND, V10, P623
   MORRISON CA, 1982, HDB PHYSICS CHEM RAR
   NAROZHNYI VN, 1999, PHYSICA C, V312, P233
   NEKVASIL V, 1995, J ALLOY COMPD, V225, P578
   NEWMAN DJ, 1989, REP PROG PHYS, V52, P699
   NOVAK P, 1996, PHYS STATUS SOLIDI B, V198, P729
   NUGROHO AA, IN PRESS J MAGN MAGN
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   PICKETT WE, 1989, REV MOD PHYS, V61, P433
   RICHTER M, 1998, J PHYS D APPL PHYS, V31, P1017
   RUF T, 1992, PHYS REV B, V46, P11792
   SCHWARZ K, 1990, PHYS REV B, V42, P2051
   STRACH T, 1996, PHYS REV B, V54, P4276
   WALLACE WE, 1977, STRUCT BOND, V33, P1
   WELLS JPR, 1999, PHYS REV B, V60, P3849
   WOLF T, 1989, J CRYST GROWTH, V96, P1010
   WYBOURNE BG, 1965, SPECTROSCOPIC PROPER
   YANG KN, 1989, PHYS REV B, V40, P10963
NR 34
TC 11
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD FEB 1
PY 2001
VL 6305
IS 5
AR 054528
DI ARTN 054528
PG 10
SC Physics, Condensed Matter
GA 399PB
UT ISI:000166820600123
ER

PT J
AU Moraes, LAB
   Eberlin, MN
TI Ketalization of gaseous acylium ions
SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
LA English
DT Article
ID DISTONIC RADICAL CATIONS; GAS-PHASE REACTIONS; MOLECULE REACTIONS;
   MASS-SPECTROMETRY; DIMETHYLCHLORINIUM ION; CHARGED ELECTROPHILES;
   METHOXYMETHYL CATION; CYCLIC ACETALS; SUBSTITUTION; ALCOHOLS
AB A novel reaction of gaseous acylium ions: ketalization with diols and
   analogs, has been systematically studied via pentaquadrupole MS2 and
   MS3 experiments and ab initio calculations. A variety of alpha,beta
   -diols and their amino, thiol, ether, and thioether analogs have been
   tested for reactivity, mechanism evaluation, site selectivity, and for
   the effects of alpha- and beta -interfunctional separation. As for
   condensed-phase ketalization of neutral carbonyl compounds followed by
   hydrolysis, gaseous acylium ions are chemically deactivated in the form
   of cyclic ionic ketals by ketalization, and are efficiently released
   via on-line collision-induced dissociation. Ketalization of acylium
   ions is shown to identify and structurally characterize alpha,beta
   -diols and their analogs, and to distinguish regioisomers.
   Diastereomers can also be distinguished, as illustrated for cis and
   trans 1,2-diaminocyclohexane. The MS2 and MS3 data together with
   O-18-labeling and ab initio calculations establish for acylium ion
   ketalization a mechanism of anchimeric assistance with participation of
   the neighboring acyl group. (C) 2001 American Society for Mass
   Spectrometry.
C1 Univ Estadual Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Moraes, LAB, Univ Estadual Campinas, Inst Chem, CP 6154, BR-13083970
   Campinas, SP, Brazil.
CR ALTALIB M, 1990, ORG PREP PROCED INT, V22, P1
   ATTINA M, 1983, J AM CHEM SOC, V105, P1122
   BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR
   BURGERS PC, 1982, CAN J CHEM, V60, P2246
   CAREY FA, 1990, ADV ORGANIC CHEM
   CARVALHO M, 1998, CHEM-EUR J, V4, P1161
   CARVALHO MC, 1997, J MASS SPECTROM, V32, P1137
   CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
   COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
   CREASER CS, 1994, J CHEM SOC CHEM COMM, V1677
   CREASER CS, 1998, EUR MASS SPECTROM, V4, P103
   EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
   EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
   EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
   EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
   EICHMANN ES, 1993, J AM SOC MASS SPECTR, V4, P97
   EICHMANN ES, 1993, ORG MASS SPECTROM, V28, P665
   FREITAS MA, 1997, J ORG CHEM, V62, P6112
   FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GRANDINETTI F, 1996, CHEM-EUR J, V2, P495
   HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
   HECK AJR, 1993, ORG MASS SPECTROM, V28, P245
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KIM JK, 1973, J AM CHEM SOC, V95, P2184
   KIM JK, 1982, J AM CHEM SOC, V104, P4624
   KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
   MAQUESTIAU A, 1984, SPECTROSCOPY, V3, P173
   MCLAFFERTY FW, 1993, INTERPRETATION MASS
   MORAES LAB, UNPUB J MASS SPECTRU
   MORAES LAB, 1977, J CHEM SOC P2, P2105
   MORAES LAB, 1996, J ORG CHEM, V61, P8726
   MORAES LAB, 1997, J ORG CHEM, V62, P5096
   MORAES LAB, 1998, J AM CHEM SOC, V120, P11136
   MORAES LAB, 2000, J AM SOC MASS SPECTR, V11, P697
   OHAIR RAJ, 1995, J ORG CHEM, V60, P1990
   OHAIR RAJ, 1998, J AM SOC MASS SPECTR, V9, P1275
   OHAIR RAJ, 1999, INT J MASS SPECTROM, V22, P1275
   OHAIR RAJ, 2000, ORG LETT, V2, P2567
   OLAH GA, 1964, FRIEDEL CRAFTS RELAT, V3
   OLAH GA, 1976, CARBONIUM IONS
   OLAH GA, 1985, SUPERACIDS
   PAU JK, 1978, J AM CHEM SOC, V100, P3838
   RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SHARIFI M, 1999, J MASS SPECTROM, V190, P253
   SHOWLER AJ, 1967, CHEM REV, V67, P427
   SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
   SPARRAPAN R, 2000, J MASS SPECTROM, V35, P189
   STIRK KM, 1992, CHEM REV, V92, P1649
   SULZLE D, 1992, CHEM BER-RECL, V125, P279
   THOMPSON RS, 1999, P 47 ASMS C MASS SPE
   TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
   VAIS V, 1999, J MASS SPECTROM, V34, P755
   WANG F, 1999, J ORG CHEM, V64, P3213
   WUTS PGM, 1991, COMPREHENSIVE ORGANI, V9
   WYSOCKI VH, 1985, J ORG CHEM, V50, P1287
   YAMDAGNI R, 1973, J AM CHEM SOC, V95, P3504
   YANG SS, 1995, J MASS SPECTROM, V30, P807
   YATES BF, 1986, TETRAHEDRON, V42, P6225
NR 60
TC 11
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 USA
SN 1044-0305
J9 J AMER SOC MASS SPECTROM
JI J. Am. Soc. Mass Spectrom.
PD FEB
PY 2001
VL 12
IS 2
BP 150
EP 162
PG 13
SC Chemistry, Analytical; Chemistry, Physical; Spectroscopy
GA 399NF
UT ISI:000166818700003
ER

PT J
AU Schmidt, TM
   Justo, JF
   Fazzio, A
TI Stacking fault effects in pure and n-type doped GaAs
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; DX CENTERS; AB-INITIO; SEMICONDUCTORS;
   PSEUDOPOTENTIALS; DEFECTS
AB Using ab initio total-energy calculations, we investigate the effects
   of stacking faults on the properties of dopants in pure and n-type
   doped GaAs. We find that the Si impurity segregates towards a GaAs
   stacking fault. A Si atom at a Ga site in the stacking fault, in either
   a neutral or a negative charge state, is energetically favorable as
   compared to a Si atom at a Ga site in a crystalline environment by as
   much as 0.2 eV. We also find that a Si impurity in the stacking fault
   cannot occupy metastable positions, as occurs in the formation of DX
   centers. Thus, stacking faults can prevent the formation of DX-like
   centers in GaAs. (C) 2001 American Institute of Physics.
C1 Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Schmidt, TM, Univ Fed Uberlandia, Dept Ciencias Fis, CP 593,
   BR-38400902 Uberlandia, MG, Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
   ANTONELLI A, 1999, PHYS REV B, V60, P4711
   BACHELET GB, 1982, PHYS REV B, V26, P4199
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   CHADI DJ, 1988, PHYS REV LETT, V61, P873
   HIRTH JP, 1982, THEORY DISLOCATIONS
   JONES R, 1993, PHYS STATUS SOLIDI A, V137, P389
   JUSTO JF, 1999, PHYSICA B, V273, P473
   JUSTO JF, 2000, PHYS REV LETT, V84, P2172
   KACKELL P, 1998, PHYS REV B, V58, P1326
   KAPLAN T, 2000, PHYS REV B, V61, P1674
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   MAITI A, 1996, PHYS REV LETT, V77, P1306
   MAITI A, 1997, APPL PHYS LETT, V70, P336
   MALLOY KJ, 1993, SEMICONDUCT SEMIMET, V38, P235
   MIWA RH, 1999, APPL PHYS LETT, V74, P1999
   SCHMIDT TM, 1996, PHYS REV B, V53, P1315
   STAMPFL C, 1998, PHYS REV B, V57, P15052
NR 18
TC 6
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 12
PY 2001
VL 78
IS 7
BP 907
EP 909
PG 3
SC Physics, Applied
GA 398TN
UT ISI:000166772600019
ER

PT J
AU Alves, CN
   Romero, OAS
   da Silva, ABF
TI A theoretical study of the intramolecular hetero Dials-Alder
   cycloaddition reactions of azoalkenes
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Hartree-Fock; density functional theory; Diels-Alder cycloaddition;
   transition structures; azoalkenes
ID TRANSITION STRUCTURES; REACTIVITY; CATALYSIS
AB Ab initio Hartree-Fock and density functional theory calculations were
   performed to study transition geometries in intramolecular Diels-Alder
   cycloaddition reactions of azoalkene compounds. The Hartree-Fock (HF)
   calculations were formed at the RHF/3-21G level and the density
   functional theory (DFT) calculations were performed with the B3LYP
   functional and 6-31G* basis set. The order of the reactivity of
   azoalkenes with different substituents in intramolecular hetero
   Diels-Alder reactions was predicted from the frontier orbital energies,
   and calculations of the reaction barriers were performed. The HF and
   DFT calculations generated transition geometries with a very small
   degree of asynchronicity, The DFT results are in full agreement with
   experimental evidence and show the capability of this level of DFT
   calculation to predict the reactivity of intramolecular hetero
   Diels-Alder cycloaddition correctly. (C) 2001 Elsevier Science B.V. All
   rights reserved.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil.
   Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, BR-66075110 Belem, Para, Brazil.
RP da Silva, ABF, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis
   Mol, CP 780, BR-13560970 Sao Carlos, SP, Brazil.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BOGER DL, 1987, HETERO DIELSALDER ME
   BROWN FK, 1985, TETRAHEDRON LETT, V26, P2297
   DOMINGO LR, 1997, J ORG CHEM, V62, P1662
   FUKUI K, 1982, ANGEW CHEM INT EDIT, V21, P801
   GILCHRIST TL, 1987, J CHEM SOC PERK T 1, P2511
   GONZALEZ J, 1992, J ORG CHEM, V57, P3031
   HEHRE WJ, 1986, UNPUB AB INITIO MOL
   HOUK KN, 1992, ANGEW CHEM INT EDIT, V31, P682
   HOUK KN, 1995, ACCOUNTS CHEM RES, V28, P81
   JURSIC BS, 1994, J MOL STRUCT THEOCHE, V315, P85
   JURSIC BS, 1995, J CHEM SOC PERK T, V2, P1223
   JURSIC BS, 1995, J MOL STRUCT THEOCHE, V331, P215
   LEE C, 1988, PHYS REV B, V37, P785
   MCCARRICK MA, 1992, J AM CHEM SOC, V114, P1499
   MCCARRICK MA, 1993, J ORG CHEM, V58, P3330
   POPLE JA, 1998, GAUSSIAN 98
   ROUSH WR, 1981, J AM CHEM SOC, V103, P5200
NR 18
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JAN 15
PY 2001
VL 535
BP 165
EP 169
PG 5
SC Chemistry, Physical
GA 396JR
UT ISI:000166633100018
ER

PT J
AU Barbatti, M
   Jalbert, G
   Nascimento, MAC
TI The effects of the presence of an alkaline atomic cation in a molecular
   hydrogen environment
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID BINDING-ENERGIES; CLUSTERS; GEOMETRIES; LI
AB Ab initio calculations were performed for X+(H-2)(n) clusters [X=Li, Na
   (n=1-7) and K (n=1-3)]. For n=1-6, the equilibrium geometries
   correspond to spherically symmetrical distributions of H-2 units around
   the X+. The binding energies and the geometric parameters indicate that
   the seventh H-2 unit opens a new shell of ligands for the cluster with
   X=Li but not for X=Na. (C) 2001 American Institute of Physics.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
   Univ Fed Rio de Janeiro, Inst Quim, BR-21945970 Rio De Janeiro, Brazil.
RP Barbatti, M, Univ Fed Rio de Janeiro, Inst Fis, CP 68528, BR-21945970
   Rio De Janeiro, Brazil.
CR BARBATTI M, 2000, J CHEM PHYS, V113, P4230
   BAUSCHLICHER CW, 1992, J PHYS CHEM-US, V96, P2475
   BLAUDEAU JP, 1997, J CHEM PHYS, V107, P5016
   BOYS SF, 1970, MOL PHYS, V19, P553
   BUSHNELL JE, 1994, J PHYS CHEM-US, V98, P2044
   CURTISS LA, 1988, J PHYS CHEM-US, V92, P894
   DAVY R, 1999, MOL PHYS, V97, P1263
   FALCETTA MF, 1993, J PHYS CHEM-US, V97, P1011
   FARIZON B, 1999, PHYS REV B, V60, P3821
   GOBET F, UNPUB
   GORA RW, 1999, J PHYS CHEM A, V103, P9138
   HERZBERG G, 1950, MOL SPECTRA MOL STRU, V1
   IGNACIO EW, 1998, CHEM PHYS LETT, V287, P563
   KRISHNAN R, 1980, J CHEM PHYS, V72, P650
   MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
   PANG T, 1994, CHEM PHYS LETT, V228, P555
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
   STICH I, 1997, PHYS REV LETT, V78, P3669
   SWITALSKI JD, 1974, J CHEM PHYS, V60, P2252
   WU CH, 1979, J CHEM PHYS, V71, P783
NR 21
TC 8
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 1
PY 2001
VL 114
IS 5
BP 2213
EP 2218
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 397CQ
UT ISI:000166676100034
ER

PT J
AU Olivato, PR
   Ruiz, R
   Zukerman-Schpector, J
   Dal Colle, M
   Distefano, G
TI Comparative spectroscopic and theoretical studies on the conformation
   of some alpha-diethoxyphosphoryl carbonyl compounds and their
   alpha-ethylsulfonyl analogues
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID ELECTRONIC INTERACTION; INTRAMOLECULAR INTERACTIONS;
   PHOTOELECTRON-SPECTROSCOPY; IR SPECTROSCOPY; AB-INITIO; DERIVATIVES;
   SULFONES; ACETOPHENONES; SPECTRA; ORBITALS
AB Comparative nu (CO) IR analysis of beta -carbonylphosphonates
   [XC(O)CH2P(O)(OR)(2): X = Me 1, Ph 2, OEt 3, NEt2 4 and SEt 5; R = Et]
   (series I) and beta -carbonylsulfones [XC(O)CH2SO2R: X = Me 6, Ph 7,
   OEt 8, NEt2 9 and SEt 10; R = Et] (series II) along with ab initio
   6-31G** calculations on 1a and 6a (R = Me) suggest the existence of
   only a single gauche conformer for series I. The negative carbonyl
   frequency shifts for both series follow approximately the
   electron-affinities of the pi*(CO) orbital of the parent compounds
   MeC(O)X 11-15. The less positive asymmetric sulfonyl frequency shifts
   (Delta nu (SO2)) for II in relation to the phosphoryl frequency shifts
   (Delta nu (PO)) for I and the larger negative carbonyl frequency shifts
   for II with respect to the corresponding values for I are in line with
   the upfield C-13 NMR chemical shifts of the carbonyl carbon for II
   compared to I. These trends agree with the shorter O-(SO2)...C-(CO)
   contact in comparison with the O-(PO)...C-(CO) one and are discussed in
   terms of O-1p--> pi*(CO) charge transfer and electrostatic
   interactions, which are stronger for series II than for I, indicating
   that the sulfonyl oxygen atom is a better electron donor than the
   phosphoryl oxygen atom. Intrinsic geometrical parameters of O=S CH2 and
   O=P-CH2 moieties seem to be responsible for this behaviour as indicated
   by X-ray study and ab initio calculations of dialkyl
   (methylsulfonyl)methylphosphonate MeSO2CH2P(O)(OR)(2) (R = Et 18, Me
   18a).
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
   Univ Fed Sao Carlos, Dept Quim, BR-13560 Sao Carlos, SP, Brazil.
   Univ Ferrara, Dipartmento Chim, I-44100 Ferrara, Italy.
RP Olivato, PR, Univ Sao Paulo, Inst Quim, CP 26077, BR-05513970 Sao
   Paulo, Brazil.
CR 1998, 18 INT S ORG CHEM SU
   ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
   BALSIGER RW, 1959, J ORG CHEM, V24, P434
   BOROWITZ IJ, 1967, J ORG CHEM, V32, P1723
   CHARDIN A, 1996, J CHEM SOC PERK  JUN, P1047
   CHATTOPADHYAY S, 1981, J ELECTRON SPECTR RE, V24, P27
   DALCOLLE M, 1995, J PHYS CHEM-US, V99, P15011
   DISTEFANO G, UNPUB
   DISTEFANO G, 1991, J CHEM SOC P2, P1195
   DISTEFANO G, 1996, J CHEM SOC PERK  AUG, P1661
   FARRUGIA LJ, 2000, WINGX WINDOWS PROGRA
   FRISCH MJ, 1998, GAUSSIAN 98
   GIORDAN JC, 1985, J AM CHEM SOC, V107, P5600
   HANSH C, 1995, EXPLORING QSAR HYDRO
   JONES D, 1994, J CHEM SOC P2, P1651
   LIU HJ, 1991, CAN J CHEM, V69, P934
   MARTIN HD, 1986, J ELECTRON SPECTROSC, V41, P385
   MULLER C, 1973, TETRAHEDRON, V29, P3973
   NARDELLI M, 1995, J APPL CRYSTALLOGR, V28, P659
   OLIVATO PR, UNPUB
   OLIVATO PR, 1985, PHOSPHORUS SULFUR, V24, P225
   OLIVATO PR, 1987, PHOSPHORUS SULFUR, V33, P135
   OLIVATO PR, 1989, PHOSPHORUS SULFUR, V44, P9
   OLIVATO PR, 1990, PHOSPHORUS SULFUR, V47, P391
   OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
   OLIVATO PR, 1992, MAGN RESON CHEM, V30, P81
   OLIVATO PR, 1996, REV HETEROATOM CHEM, V15, P115
   OLIVATO PR, 1997, PHOSPHORUS SULFUR, V130, P155
   OLIVATO PR, 1998, 18 INT S ORG CHEM SU, P214
   OLIVATO PR, 1998, J CHEM SOC PERK  JAN, P109
   OLIVATO PR, 1999, PHOSPHORUS SULFUR, V153, P353
   OLIVATO PR, 2000, ACTA CRYSTALLOGR B 1, V56, P112
   OLIVATO PR, 2000, PHOSPHORUS SULFUR, V156, P255
   OLIVEIRA JE, 1980, THESIS U SAO PAULO B
   POSNER GH, 1972, J ORG CHEM, V37, P3547
   PUDOVIK AN, 1956, ZH OBSHCH KHIM, V26, P1431
   SCHMIDT H, 1975, TETRAHEDRON, V31, P1287
   SHELDRICK GM, 1997, SHELXL97 PROGRAM REF
   SOLOUKI B, 1975, CHEM BER, V108, P897
   SPEZIALE AJ, 1958, J ORG CHEM, V23, P1883
   TOSSELL JA, 1985, INORG CHEM, V24, P1100
   ZSONAI L, 1995, ZORTEP MOL GRAPHICS
NR 42
TC 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 1472-779X
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD JAN
PY 2001
IS 1
BP 97
EP 102
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 395VF
UT ISI:000166601400015
ER

PT J
AU Pliego, JR
   Riveros, JM
TI The gas-phase reaction between hydroxide ion and methyl formate: A
   theoretical analysis of the energy surface and product distribution
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE ab initio calculations; gas-phase reactions; hydrolysis
ID S(N)2 NUCLEOPHILIC-SUBSTITUTION; BASE-CATALYZED-HYDROLYSIS;
   DISPLACEMENT-REACTIONS; ESTER HYDROLYSIS; AB-INITIO; MECHANISM;
   KINETICS; RESONANCE; ABINITIO; CLUSTERS
AB The potential energy surface for the prototype solvent-free ester
   hydrolysis reaction: OH-+HCOOCH3-> products has been characterized by
   high level ab initio calculations of MP4/6311 + G(2df,2p)//MP2/6-31 +
   G(d) quality. These calculations reveal that the approach of an OH- ion
   leads to the formation of two distinct ion-molecule complexes: 1) the
   MS1 species with the hydroxide ion hydrogen bonded to the methyl group
   of the ester, and 2) the MS4 moiety resulting from proton abstraction
   of the formyl hydrogen by the hydroxide ion and formation of a
   three-body complex of water, methoxide ion and carbon monoxide. The
   first complex reacts to generate formate anion and methanol products
   through the well known B(AC)2 and S(N)2 mechanisms. RRKM calculations
   predict that these pathways will occur with a relative contribution of
   85% and 15% at 298.15 K, in excellent agreement with experimentally
   measured Values of 87 % and 13 %, respectively. The second complex
   reacts by loss of carbon monoxide to yield the water-methoxide complex
   through a single minimum potential surface and is the preferred pathway
   in the gas-phase. This water-methoxide adduct can further dissociate if
   the reactants have excess energy. These results provide clear evidence
   that the preferred pathways for ester hydrolysis in solution are
   dictated by solvation of the hydroxide ion.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Pliego, JR, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
   Sao Paulo, Brazil.
CR *GAUSS INC, 1995, GAUSS 94 REV D 2
   ASUBIOJO OI, 1979, J AM CHEM SOC, V101, P3715
   BAER T, 1996, UNIMOLECULAR REACTIO
   BAKOWIES D, 1999, J AM CHEM SOC, V121, P5712
   BARTMESS JE, 1981, J AM CHEM SOC, V103, P1338
   BENDER ML, 1960, CHEM REV, V60, P53
   BICKELHAUPT FM, 1996, CHEM-EUR J, V2, P196
   BLAIR LK, 1973, J AM CHEM SOC, V95, P1057
   COMISAROW M, 1977, CAN J CHEM, V55, P171
   CORDES EH, 1974, CHEM REV, V74, P581
   DEJAEGERE A, 1994, J CHEM SOC FARADAY T, V90, P1763
   DEPUY CH, 1983, J AM CHEM SOC, V105, P2480
   DEPUY CH, 1985, J AM CHEM SOC, V107, P1093
   EWIG CS, 1986, J AM CHEM SOC, V108, P4774
   FERNANDO J, 1976, J AM CHEM SOC, V98, P2049
   FINK BT, 1999, J CHEM SOC P2, P2397
   GRAUL ST, 1994, J AM CHEM SOC, V116, P3875
   HAEFFNER F, 1999, J MOL STRUC-THEOCHEM, V459, P85
   HASE WL, 1994, SCIENCE, V266, P998
   HUMPHREYS HM, 1956, J AM CHEM SOC, V78, P521
   ISOLANI PC, 1975, CHEM PHYS LETT, V33, P362
   JENCKS WP, 1964, PROGR PHYS ORG CHEM, V2, P63
   JENCKS WP, 1980, ACCOUNTS CHEM RES, V13, P161
   JOHLMAN CL, 1985, J AM CHEM SOC, V107, P327
   JORGENSEN WL, 1987, ACS SYM SER, V353, P200
   MADURA JD, 1986, J AM CHEM SOC, V108, P2517
   MEOTNER M, 1986, J AM CHEM SOC, V108, P6189
   OLMSTEAD WN, 1977, J AM CHEM SOC, V99, P4219
   PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
   PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
   PLIEGO JR, 1999, PCCP PHYS CHEM CH PH, V1, P1031
   PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
   PRANATA J, 1994, J PHYS CHEM-US, V98, P1180
   TAKASHIMA K, 1978, J AM CHEM SOC, V100, P6128
   TAKASHIMA K, 1983, J CHEM SOC CHEM COMM, P1255
   VANDERWEL H, 1988, RECL TRAV CHIM PAY B, V107, P479
   WANG HB, 1994, J AM CHEM SOC, V116, P9644
   WANG HB, 1997, J AM CHEM SOC, V119, P3093
   WIBERG KB, 1987, J AM CHEM SOC, V109, P5935
   XANTHEAS SS, 1995, J AM CHEM SOC, V117, P10373
   ZHAN CG, 2000, J AM CHEM SOC, V122, P1522
   ZHAN CG, 2000, J AM CHEM SOC, V122, P2621
   ZHU L, 1993, GEN RRKM PROGRAM
NR 43
TC 11
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA PO BOX 10 11 61, D-69451 BERLIN, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD JAN 5
PY 2001
VL 7
IS 1
BP 169
EP 175
PG 7
SC Chemistry, Multidisciplinary
GA 392PH
UT ISI:000166419500017
ER

PT J
AU de Almeida, NG
   Ramos, PB
   Serra, RM
   Moussa, MY
TI Phenomenological-operator approach to introduce damping effects on
   radiation field states
SO JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS
LA English
DT Article
DE radiation field states; damping effects; cavity field
ID ARBITRARY QUANTUM STATES; PODOLSKY-ROSEN CHANNELS; EXPERIMENTAL
   REALIZATION; PROJECTION SYNTHESIS; TELEPORTATION; ENTANGLEMENT;
   GENERATION; ATOM; SUPERPOSITIONS; PHOTONS
AB In this paper we propose an approach to deal with radiation field
   states which incorporates damping effects at zero temperature. By using
   some well known results on dissipation of a cavity-field state,
   obtained by standard ab initio methods, it was possible to infer,
   through a phenomenological way, the explicit form for the evolution of
   the state vector for the whole system: the cavity field plus reservoir.
   This proposal turns out to be extremely convenient for accounting for
   the influence of the reservoir over the cavity field. To illustrate the
   universal applicability of our approach we consider the attenuation
   effects on cavity-field states engineering. The main concern of the
   present phenomenological approach consists in furnishing a
   straightforward technique to estimate the fidelity resulting from
   processes in cavity QED phenomena. A proposal to maximize the fidelity
   of the process is presented.
C1 Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
RP de Almeida, NG, Univ Fed Sao Carlos, Dept Fis, CP 676, BR-13565905 Sao
   Carlos, SP, Brazil.
CR BELL JS, 1964, PHYSICS, V1, P195
   BENNETT CH, 1993, PHYS REV LETT, V70, P1895
   BOSCHI D, 1998, PHYS REV LETT, V80, P1121
   BOSE S, 1997, PHYS REV A, V56, P4175
   BOUWMEESTER D, 1997, NATURE, V390, P575
   BRANNING D, 1999, PHYS REV LETT, V83, P955
   BRUNE M, 1992, PHYS REV A, V45, P5193
   BRUNE M, 1996, PHYS REV LETT, V77, P4887
   CHUANG IL, 1998, NATURE, V393, P143
   CIRAC JI, 1997, PHYS REV LETT, V78, P3221
   DAKNA M, 1999, PHYS REV A, V59, P1658
   DALIBARD J, 1992, PHYS REV LETT, V68, P580
   DUM R, 1992, PHYS REV A, V45, P4879
   EINSTEIN A, 1935, PHYS REV, V47, P777
   FURUSAWA A, 1998, SCIENCE, V282, P706
   GHERI KM, 1998, PHYS REV A, V58, P2627
   JANSZKY J, 1995, PHYS REV A, V51, P4191
   KRAUSE J, 1987, PHYS REV A, V36, P4547
   LO HK, 1997, PHYS REV LETT, V78, P3410
   MANDEL L, 1995, OPTICAL COHERENCE QU
   MAYES D, 1996, QUANTPH9603015
   MOUSSA MHY, 1996, PHYS REV A, V54, P4661
   MOUSSA MHY, 1997, PHYS REV A, V55, P3287
   MOUSSA MHY, 1998, PHYS LETT A, V238, P223
   NUSSENZVEIG P, COMMUNICATION
   PARKINS AS, 1993, PHYS REV LETT, V71, P3095
   PEGG DT, 1998, PHYS REV LETT, V81, P1604
   PELLIZZARI T, 1997, PHYS REV LETT, V79, P5242
   SCULLY MO, 1997, QUANTUM OPTICS
   SHOR PW, 1994, P 35 ANN S FDN COMP, P124
   VIDIELLABARRANCO A, 1998, PHYS REV A, V58, P3349
   VILLASBOAS CJ, 1999, PHYS REV A, V60, P2759
   VOGEL K, 1993, PHYS REV LETT, V71, P1816
   WEINDINGER M, 1999, PHYS REV LETT, V82, P3795
   ZHENG SB, 1998, OPT COMMUN, V154, P290
NR 35
TC 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1464-4266
J9 J OPT B-QUANTUM SEMICL OPT
JI J. Opt. B-Quantum Semicl. Opt.
PD DEC
PY 2000
VL 2
IS 6
BP 792
EP 798
PG 7
SC Physics, Applied; Optics
GA 389LL
UT ISI:000166239300015
ER

PT J
AU Pliego, JR
   Riveros, JM
TI New values for the absolute solvation free energy of univalent ions in
   aqueous solution
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID GIBBS FREE-ENERGY; AB-INITIO; PROTON AFFINITIES; CONTINUUM MODEL;
   GAS-PHASE; THERMODYNAMICS; PHOTOIONIZATION; MOLECULES; HYDRATION;
   SOLVENTS
AB The absolute solvation free energy of 30 univalent ions, mainly organic
   species, has been calculated from experimental and theoretical data on
   proton affinities, aqueous acidity constants, solvation free energy of
   neutral species, and the new value for the absolute solvation free
   energy of the proton determined by Tissandier et al. [J. Phys. Chem. A
   102 (1998) 7787]. Our new values reveal considerable differences with
   previous compilations, and should be taken into consideration for
   comparison with liquid simulation results and in the development of
   implicit solvation models. (C) 2000 Elsevier Science B.V. All rights
   reserved.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, SP, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
   Sao Paulo, SP, Brazil.
CR ALBERT A, 1984, DETERMINATION IONIZA
   AUE DH, 1976, J AM CHEM SOC, V98, P318
   BARTMESS JE, 1979, J AM CHEM SOC, V101, P6046
   BENNAIM A, 1978, J PHYS CHEM-US, V82, P792
   BENNAIM A, 1984, J CHEM PHYS, V81, P2016
   BERKOWITZ J, 1994, J PHYS CHEM-US, V98, P2744
   COE JV, 1994, CHEM PHYS LETT, V229, P161
   COSSI M, 1996, CHEM PHYS LETT, V255, P327
   CRAMER CJ, 1992, SCIENCE, V256, P213
   CRAMER CJ, 1999, CHEM REV, V99, P2161
   FLORIAN J, 1997, J PHYS CHEM B, V101, P5583
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
   HILLEBRAND C, 1996, J PHYS CHEM-US, V100, P9698
   HINE J, 1975, J ORG CHEM, V40, P292
   LANGLET J, 1988, J PHYS CHEM-US, V92, P1617
   LITORJA M, 1998, J ELECTRON SPECTROSC, V97, P131
   MARCUS Y, 1985, ION SOLVATION
   MARCUS Y, 1991, J CHEM SOC FARADAY T, V87, P2995
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   MIERTUS S, 1982, CHEM PHYS, V65, P239
   NG CY, 1977, J CHEM PHYS, V67, P4235
   PLIEGO JR, 1997, J CHEM SOC FARADAY T, V93, P1881
   PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
   PLIEGO JR, 2000, J PHYS CHEM B, V104, P5155
   STEFANOVICH EV, 1995, CHEM PHYS LETT, V244, P65
   SZULEJKO JE, 1993, J AM CHEM SOC, V115, P7839
   TAWA GJ, 1998, J CHEM PHYS, V109, P4852
   TISSANDIER MD, 1998, J PHYS CHEM A, V102, P7787
   WONG MW, 1991, J AM CHEM SOC, V113, P4776
NR 30
TC 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD DEC 29
PY 2000
VL 332
IS 5-6
BP 597
EP 602
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 389JY
UT ISI:000166235900027
ER

PT J
AU Nunes, RW
   Vanderbilt, D
TI Models of core reconstruction for the 90 degrees partial dislocation in
   semiconductors
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID ELECTRONIC-STRUCTURE; SILICON; KINKS; MOTION
AB We compare the models that have been proposed in the literature for the
   atomic structure of the 90 degrees partial dislocation in the homopolar
   semiconductors, silicon, diamond, and germanium. In particular, we
   examine the traditional single-period and our recently proposed
   double-period core structures. Ab initio and tight-binding results on
   the core energies are discussed, and the geometries are compared in the
   light of the available experimental information about dislocations in
   these systems. The double-period geometry is found to be the
   ground-state structure for all three materials. We address
   boundary-condition issues that have been recently raised concerning
   these results. The structures of point excitations (kinks, solitons,
   and kink-soliton complexes) in the two geometries are also reviewed.
C1 Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil.
   Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
RP Nunes, RW, Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte,
   MG, Brazil.
CR ALEXANDER H, 1991, MATERIALS SCI TECHNO, V4, P249
   BATSON PE, 1999, PHYS REV LETT, V83, P4409
   BENNETTO J, 1997, PHYS REV LETT, V79, P245
   BIGGER JRK, 1992, PHYS REV LETT, V69, P2224
   BLASE X, 2000, PHYS REV LETT, V84, P5780
   BULATOV VV, 1997, PHYS REV LETT, V79, P5042
   CHELIKOWSKY JR, 1984, PHYS REV B, V30, P694
   DUESBERY MS, 1991, CRIT REV SOLID STATE, V17, P1
   HANSEN LB, 1995, PHYS REV LETT, V75, P4444
   HEGGIE M, 1983, PHILOS MAG B, V48, P365
   HEGGIE M, 1983, PHILOS MAG B, V48, P379
   HEGGIE M, 1987, I PHYS C SER, V87, P367
   HEGGIE MI, 1993, PHYS STATUS SOLIDI A, V138, P383
   HIRSCH PB, 1985, MATER SCI TECH SER, V1, P666
   JONES R, 1979, J PHYS-PARIS S6, V40, P33
   JONES R, 1980, PHILOS MAG B, V42, P213
   JONES R, 1993, PHYS STATUS SOLIDI A, V138, P369
   KOLAR HR, 1996, PHYS REV LETT, V77, P4031
   LEHTO N, 1998, PHYS REV LETT, V80, P5568
   LODGE KW, 1989, PHILOS MAG A, V60, P643
   MARKLUND S, 1979, PHYS STATUS SOLIDI B, V92, P83
   MARKLUND S, 1983, J PHYS-PARIS, V44, P25
   NUNES RW, 1996, PHYS REV LETT, V77, P15417
   NUNES RW, 1996, THESIS RUTGERS U NJ
   NUNES RW, 1998, PHYS REV B, V57, P10388
   NUNES RW, 1998, PHYS REV B, V58, P12563
   NUNES RW, 2000, PHYS REV LETT, V85, P3540
   OBERG S, 1995, PHYS REV B, V51, P13138
NR 28
TC 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD DEC 11
PY 2000
VL 12
IS 49
BP 10021
EP 10027
PG 7
SC Physics, Condensed Matter
GA 386BC
UT ISI:000166039400002
ER

PT J
AU Justo, JF
   Fazzio, A
   Antonelli, A
TI Dislocation core reconstruction in zinc-blende semiconductors
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID 90-DEGREES PARTIAL DISLOCATION; DENSITY-FUNCTIONAL THEORY;
   MOLECULAR-DYNAMICS; SILICON; MOBILITY; GAAS; PSEUDOPOTENTIALS;
   VELOCITIES; CRYSTALS; INAS
AB Using ab initio total-energy calculations, we computed core
   reconstruction energies of partial dislocations in zinc-blende
   semiconductors. The reconstruction energy of 30 degrees partials was
   found to scale almost linearly with the experimental activation energy
   of 60 degrees dislocations. The electronic structure of a dislocation
   shows that in an unreconstructed core, the gap states comprise a
   half-filled one-dimensional band, which splits up into bonding and
   antibonding states upon reconstruction. The energy states which lie in
   the electronic gap come from the core of beta -partials, while those
   related to alpha -partials remain resonant in the valence band.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
   Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Justo, JF, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   SP, Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
   ALEXANDER H, 1989, I PHYS C SER, V104, P281
   BAZANT MZ, 1997, PHYS REV B, V56, P8542
   BENNETTO J, 1997, PHYS REV LETT, V79, P245
   BIGGER JRK, 1992, PHYS REV LETT, V69, P2224
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   BULATOV VV, 1995, PHILOS MAG A, V72, P453
   CAR R, 1985, PHYS REV LETT, V55, P2471
   CHOI SK, 1977, JPN J APPL PHYS, V16, P737
   CHOI SK, 1978, JPN J APPL PHYS, V17, P329
   DUESBERY MS, 1991, CRIT REV SOLID STATE, V17, P1
   HIRTH JP, 1982, THEORY DISLOCATIONS
   IMAI M, 1983, PHILOS MAG A, V47, P599
   JUSTO JF, 1998, PHYS REV B, V58, P2539
   JUSTO JF, 1999, J APPL PHYS, V86, P4249
   JUSTO JF, 2000, PHYS REV LETT, V84, P2172
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   OMRI M, 1990, PHILOS MAG A, V62, P203
   SITCH P, 1994, PHYS REV B, V50, P17717
   SUZUKI T, 1991, DISLOCATION DYNAMICS
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   YONENAGA I, 1989, J APPL PHYS, V65, P85
   YONENAGA I, 1993, J APPL PHYS, V73, P1681
   YONENAGA I, 1996, APPL PHYS LETT, V69, P1264
   YONENAGA I, 1998, J APPL PHYS, V84, P4209
NR 26
TC 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD DEC 11
PY 2000
VL 12
IS 49
BP 10039
EP 10044
PG 6
SC Physics, Condensed Matter
GA 386BC
UT ISI:000166039400004
ER

PT J
AU Prudente, FV
   Costa, LS
   Acioli, PH
TI Correlation function quantum Monte Carlo studies of rovibrational
   excited states in molecules
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Review
ID POTENTIAL-ENERGY SURFACES; CONSISTENT-FIELD APPROACH; QUASI-ADIABATIC
   CHANNELS; ELECTRONIC GROUND-STATE; AB-INITIO CALCULATIONS;
   VIBRATIONAL-STATES; VARIATIONAL CALCULATIONS; WAVE-FUNCTIONS;
   TRIATOMIC-MOLECULES; HYDROGEN-PEROXIDE
AB In this paper we review the correlation function quantum Monte Carlo
   (CFQMC) method. We describe the functional forms and the optimization
   of trial basis functions used to treat the vibrational and rotational
   motions. We discuss selected applications to di-, tri- and tetra-atomic
   molecules. Our main goal is to discuss the potentiality of the CFQMC
   method in the study of rovibrational excited states of polyatomic
   molecules. In particular, we focus our discussion on the generation of
   the trial basis functions for ground and excited states, and the
   guiding function used to perform the multidimensional integral sampling
   required by the method.
C1 Univ Coimbra, Dept Quim, P-3049 Coimbra, Portugal.
   Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil.
RP Prudente, FV, Univ Coimbra, Dept Quim, P-3049 Coimbra, Portugal.
CR ACIOLI PH, 1999, J CHEM PHYS, V111, P6311
   ACIOLI PH, 1999, J MOL STRUC-THEOCHEM, V464, P145
   ACIOLI PH, 2000, CHEM PHYS LETT, V321, P121
   ALEXANDER SA, 1991, J CHEM PHYS, V95, P6622
   ANDERSON JB, 1975, J CHEM PHYS, V63, P1499
   ANDERSON JB, 1995, INT REV PHYS CHEM, V14, P85
   ANTIKAINEN J, 1995, J CHEM PHYS, V102, P1270
   ASSARAF R, 2000, PHYS REV E B, V61, P4566
   BACIC Z, 1989, ANNU REV PHYS CHEM, V40, P469
   BENTLEY JA, 1992, J CHEM PHYS, V97, P4255
   BERNU B, 1990, J CHEM PHYS, V93, P552
   BIANCHI R, 1991, CHEM PHYS LETT, V184, P343
   BLUME D, 1996, J CHEM PHYS, V105, P8666
   BLUME D, 1997, J CHEM PHYS, V107, P9067
   BLUME D, 1997, PHYS REV E B, V55, P3664
   BLUME D, 1998, MATH COMPUT SIMULAT, V47, P133
   BLUME D, 1999, J CHEM PHYS, V110, P5789
   BLUME D, 2000, J CHEM PHYS, V112, P2218
   BLUME D, 2000, J CHEM PHYS, V112, P8053
   BOWMAN JM, 1986, ACCOUNTS CHEM RES, V19, P202
   BRAMLEY MJ, 1993, J CHEM PHYS, V99, P8519
   BRESSANINI D, 1999, ADV CHEM PHYS, V105, P37
   BROUDE S, 1999, CHEM PHYS LETT, V299, P437
   BROWN WR, 1995, J CHEM PHYS, V103, P9721
   BUCH V, 1992, J CHEM PHYS, V97, P726
   CAFFAREL M, 1988, J CHEM PHYS, V88, P1100
   CAFFAREL M, 1989, J CHEM PHYS, V90, P990
   CARNEY GD, 1976, J MOL SPECTROSC, V61, P371
   CARNEY GD, 1986, J CHEM PHYS, V84, P3921
   CARTER S, 1998, J CHEM PHYS, V108, P4397
   CARTER S, 1998, THEOR CHEM ACC, V100, P191
   CARTER S, 1999, J CHEM PHYS, V110, P8417
   CEPERLEY DM, MONTE CARLO METHODS
   CEPERLEY DM, 1988, J CHEM PHYS, V89, P6316
   CEPERLEY DM, 1996, ADV CHEM PHYS, V93, P1
   CHOI SE, 1992, J CHEM PHYS, V97, P7031
   COKER DF, 1986, MOL PHYS, V58, P1113
   COKER DF, 1987, J PHYS CHEM-US, V91, P2513
   COSTA LS, 2000, PHYS REV A, V61
   DYKSTRA CE, 1979, J CHEM PHYS, V70, P1
   DYKSTRA CE, 1997, J COMPUT CHEM, V18, P702
   FEMLEY JA, 1991, J MOL SPECTROSC, V150, P597
   GOMEZ MA, 1998, J CHEM PHYS, V109, P8783
   GREGORY JK, 1995, J CHEM PHYS, V102, P7817
   GREGORY JK, 1996, J CHEM PHYS, V105, P6626
   GRIMES RM, 1986, J CHEM PHYS, V85, P4749
   HALONEN L, 1982, MOL PHYS, V47, P1097
   HAMMOND BL, 1994, MONTE CARLO METHODS
   HANDY NC, 1981, CHEM PHYS LETT, V79, P118
   IOSUE JL, 1999, CHEM PHYS LETT, V301, P275
   JAQUET R, 1998, J CHEM PHYS, V108, P2837
   JENSEN P, 1989, J MOL SPECTROSC, V133, P438
   JONES MD, 1997, PHYS REV E B, V55, P6202
   KONNIN SE, 1990, COMPUTATIONAL PHYSIC
   KOPUT J, 1999, CHEM PHYS LETT, V301, P1
   KUHN B, 1999, J CHEM PHYS, V111, P2565
   KUPPERMANN A, 1994, ADV MOL VIBRATIONS B, V2, P117
   KWON Y, 1996, PHYS REV B, V53, P7377
   KWON YK, 1994, PHYS REV B, V50, P1684
   LEHOUCQ RB, 1998, COMPUT PHYS COMMUN, V109, P15
   LEWERENZ M, 1994, MOL PHYS, V81, P1075
   LIU K, 1996, NATURE, V381, P501
   MACDONALD JKL, 1933, PHYS REV, V43, P830
   MAESSEN B, 1984, J PHYS CHEM-US, V88, P6420
   MARTIN JML, 1998, J PHYS CHEM A, V102, P1394
   METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
   MURRELL JN, 1984, MOL POTENTIAL ENERGY
   MUSSA HY, 1998, J CHEM PHYS, V109, P10885
   NETO JJS, 1994, THEOR CHIM ACTA, V89, P415
   NETO JJS, 1998, BRAZ J PHYS, V28, P1
   NIGHTINGALE MP, 1996, PHYS REV B, V54, P1001
   NIGHTINGALE MP, 1998, PHYS REV LETT, V80, P1007
   NIGHTINGALE MP, 1998, PHYSICA A, V251, P211
   NIGHTINGALE MP, 1999, ADV CHEM PHYS, V105, P65
   PAPOUSEK D, 2000, MOL VIBRATIONAL ROTA
   PARTRIDGE H, 1997, J CHEM PHYS, V106, P4618
   POLYANSKY OL, 1997, SCIENCE, V277, P346
   POLYANSKY OL, 2000, MOL PHYS, V98, P261
   PRESS WH, 1986, NUMERICAL RECIPES
   PRUDENTE FV, 1998, CHEM PHYS LETT, V287, P585
   PRUDENTE FV, 1998, J CHEM PHYS, V109, P8801
   PRUDENTE FV, 1999, CHEM PHYS LETT, V302, P249
   PRUDENTE FV, 1999, CHEM PHYS LETT, V302, P43
   QUACK M, 1991, CHEM PHYS LETT, V183, P187
   QUACK M, 1991, J CHEM PHYS, V95, P28
   RAMAKRISHNA MV, 1990, J CHEM PHYS, V93, P6738
   RAMALHO JPP, 1991, CHEM PHYS LETT, V184, P53
   RATNER MA, 1986, J PHYS CHEM-US, V90, P20
   REINER DE, 1984, J CHEM PHYS, V80, P5968
   REYNOLDS PJ, 1982, J CHEM PHYS, V77, P5593
   SANDLER P, 1996, J CHEM PHYS, V105, P10387
   SANDLER P, 1997, J CHEM PHYS, V107, P5022
   SCHMIDT KE, MONTE CARLO METHODS
   SCHMIDT KE, 1992, MONTE CARLO METHODS, V3
   SCHWENKE DW, 1996, J PHYS CHEM-US, V100, P2867
   SEVERSON MW, 1999, J CHEM PHYS, V111, P10866
   SILVA WB, UNPUB
   SILVA WB, 2000, THESIS U BRASILIA
   SUHM MA, 1991, PHYS REP, V204, P293
   SUN H, 1990, J CHEM PHYS, V92, P603
   TENNYSON J, 1995, COMPUT PHYS COMMUN, V86, P175
   TENNYSON J, 2000, THEORETICAL HIGH RES
   THIRUMALAI D, 1983, J CHEM PHYS, V79, P5063
   TOPPER RQ, 1999, ADV CHEM PHYS, V105, P117
   UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719
   UMRIGAR CJ, 1993, J CHEM PHYS, V99, P2865
   WATSON JKG, 1968, MOL PHYS, V15, P479
   WITHNALL R, 1985, J PHYS CHEM-US, V89, P3261
   ZARE RN, ANGULAR MOMENTUM
NR 109
TC 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS-B-AT MOL OPT PHYS
JI J. Phys. B-At. Mol. Opt. Phys.
PD NOV 28
PY 2000
VL 33
IS 22
BP R285
EP R313
PG 29
SC Physics, Atomic, Molecular & Chemical; Optics
GA 387CE
UT ISI:000166101900003
ER

PT J
AU Amalvy, JI
   Asua, JM
   Leite, CAP
   Galembeck, F
TI Elemental mapping by ESI-TEM, during styrene emulsion polymerization
SO POLYMER
LA English
DT Article
DE latex particles; seeded emulsion polymerization; styrene
ID PARTICLE MORPHOLOGY; LATEX-PARTICLES; CLUSTER DYNAMICS; SYSTEMS
AB The elemental distribution in latex particles during the ab-initio and
   seeded emulsion polymerization of styrene was studied by electron
   spectroscopy imaging, in an analytical transmission electron
   microscope. Surface anchoring effect, chain migration and the extent of
   burying of the sulfate groups from the initiator were investigated by
   comparing the distributions of the different elements. (C) 2000
   Elsevier Science Ltd. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, Dept Chem, BR-13083970 Campinas, SP, Brazil.
   Ctr Invest & Desarrollo Tecnol Pinturas, CIDEPINT, Buenos Aires, DF, Argentina.
   Univ Pais Vasco, Fac Ciencias Quim, Dept Quim Aplicada, Grp Ingn Quim, E-20080 San Sebastian, Spain.
   Univ Pais Vasco, Inst Polymer Mat, POLYMAT, E-20080 San Sebastian, Spain.
RP Galembeck, F, Univ Estadual Campinas, Inst Quim, Dept Chem, Caixa
   Postal 6154, BR-13083970 Campinas, SP, Brazil.
CR AHMED SM, 1980, ORG COAT PLAST CHEM, V43, P120
   CARDOSO AH, 1998, LANGMUIR, V14, P3187
   CHANG HS, 1988, J POLYM SCI POL CHEM, V26, P1207
   CHERN CS, 1987, J POLYM SCI POL CHEM, V25, P617
   GONZALEZORTIZ LJ, 1995, MACROMOLECULES, V28, P3135
   GONZALEZORTIZ LJ, 1996, MACROMOLECULES, V29, P383
   GONZALEZORTIZ LJ, 1996, MACROMOLECULES, V29, P4520
   GRANCIO MR, 1970, J POLYM SCI POL CHEM, V8, P2617
   KAMEL AA, 1981, J DISPER SCI TECHNOL, V2, P315
   KEUSCH P, 1973, J POLYM SCI POL CHEM, V11, P143
   LAU W, 1987, MACROMOLECULES, V20, P457
   LINNE MA, 1988, J MACROMOL SCI PHY B, V27, P181
   NEWBURY DE, 1986, PRINCIPLES ANALYTICA
   OKUBO M, 1990, MAKROMOL CHEM-M SYMP, V35, P307
   PALIT SR, 1962, J POLYM SCI, V58, P1225
   SMITHAM JB, 1973, J COLLOID INTERF SCI, V45, P211
   STONEMASUI JH, 1980, POLYM COLLOIDS, V2, P331
   SU LS, 1995, COLLOID POLYM
   VANDENHUL HJ, 1970, BR POLYM J, V2, P121
   VANDERHOFF JM, 1977, CHARACTERIZATION MET, P365
NR 20
TC 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0032-3861
J9 POLYMER
JI Polymer
PD MAR
PY 2001
VL 42
IS 6
BP 2479
EP 2489
PG 11
SC Polymer Science
GA 384GJ
UT ISI:000165934200022
ER

PT J
AU Gonzalez, L
   Hoki, K
   Kroner, D
   Leal, AS
   Manz, J
   Ohtsuki, Y
TI Selective preparation of enantiomers by laser pulses: From optimal
   control to specific pump and dump transitions
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID VIBRATIONAL-EXCITATION; MOLECULES; SUPERPOSITIONS; DYNAMICS; STATES;
   FIELDS
AB Starting from optimal control, various series of infrared, ultrashort
   laser pulses with analytical shapes are designed in order to drive a
   preoriented molecule from its ground torsional state, which represents
   the coherent superposition of left and right atropisomers, towards a
   single enantiomer. Close analysis of the population dynamics, together
   with the underlying symmetry selection rules for the laser induced
   transitions, yields the mechanism. Namely, the molecule is driven from
   its ground vibrational state towards the coherent superposition of the
   lowest doublet of states via a doublet of excited torsional states with
   opposite symmetries. This pump-and-dump mechanism can be achieved by
   simpler series of analytical laser pulses. This decomposition of the
   optimal pulse into analytical subpulses allows us to design different
   scenarios for the selective preparation of left or right enantiomers.
   Exemplary this is demonstrated by quantum simulations of representative
   wave packets for the torsional motions of the model system, H2POSH, in
   the electronic ground state, based on the ab initio potential energy
   surface, and with ab initio dipole couplings. (C) 2000 American
   Institute of Physics. [S0021-9606(00)00940-5].
C1 Free Univ Berlin, Inst Chem Phys & Theoret Chem, D-14195 Berlin, Germany.
   Tohoku Univ, Grad Sch Sci, Dept Chem, Sendai, Miyagi 9808578, Japan.
   UFMG, ICEX, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil.
RP Gonzalez, L, Free Univ Berlin, Inst Chem Phys & Theoret Chem, Takustr
   3, D-14195 Berlin, Germany.
CR BRUMER P, 1992, ANNU REV PHYS CHEM, V43, P257
   CINA JA, 1994, J CHEM PHYS, V100, P2531
   CINA JA, 1995, SCIENCE, V267, P832
   DOSLIC N, IN PRESS FEMTOCHEMIS
   DOSLIC N, 1998, J PHYS CHEM A, V102, P9645
   FUJIMURA Y, IN PRESS ANGEW CHEM
   FUJIMURA Y, 1999, CHEM PHYS LETT, V306, P1
   FUJIMURA Y, 1999, CHEM PHYS LETT, V310, P578
   HANGGI P, 1999, COMMUNICATION    MAR
   HUND F, 1927, Z PHYS, V43, P805
   KALUZA M, 1994, J CHEM PHYS, V100, P4211
   KOSLOFF R, 1989, CHEM PHYS, V139, P201
   KRAUSE JL, 1995, FEMTOSECOND CHEM, P743
   MAIERLE CS, 1998, J CHEM PHYS, V109, P3713
   MANZ J, 1998, CHEM PHYS LETT, V290, P415
   MARQUARDT R, 1996, Z PHYS D ATOM MOL CL, V36, P229
   OHTSUKI Y, 1998, J CHEM PHYS, V109, P9318
   PARAMONOV GK, 1983, PHYS LETT A, V97, P340
   QUACK M, 1995, FEMTOSECOND CHEM, P781
   RING H, 1998, EUR PHYS J D, V4, P73
   SHAO J, 1997, PHYS REV A, V56, P4397
   SHAO JS, 1997, J CHEM PHYS, V107, P9935
   SHAPIRO M, 1991, J CHEM PHYS, V95, P8658
   SHAPIRO M, 2000, PHYS REV LETT, V84, P1669
   SHI S, 1988, J CHEM PHYS, V88, P6870
   SHI SH, 1990, J CHEM PHYS, V92, P2927
   SOLA IR, 1998, J PHYS CHEM A, V102, P4301
   SUGAWARA M, 1994, J CHEM PHYS, V100, P5646
   WATANABE Y, 1997, CHEM PHYS, V217, P317
NR 29
TC 14
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD DEC 22
PY 2000
VL 113
IS 24
BP 11134
EP 11142
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 382TZ
UT ISI:000165841300032
ER

PT J
AU Denault, JW
   Wang, F
   Cooks, RG
   Gozzo, FC
   Eberlin, MN
TI Structural characterization of clusters formed from alkyl nitriles and
   the methyl cation
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID NUCLEOPHILIC DISPLACEMENT-REACTIONS; ION-MOLECULE REACTIONS; GAS-PHASE;
   KINETIC METHOD; THERMOCHEMICAL DETERMINATIONS; MASS-SPECTROMETRY;
   PROTON AFFINITIES; SN2 REACTIONS; TRANSITION; ETHYLATION
AB Cluster ions composed of the alkyl nitriles, acetonitrile (CH3CN) and
   butyronitrile (C3H7CN), and the methyl cation (CH3+) have been examined
   in an effort to study methyl cation affinities and the intrinsic
   nucleophilicity of these bases. Structural characterization of the
   sas-phase dimeric adduct ions was achieved via multiple stage mass
   spectrometry (MSn) experiments and by quantum mechanical calculations.
   The kinetic method was used as a diagnostic tool in determining the
   structure of the dimeric adduct: the results of tandem mass
   spectrometry (MS2) experiments' are found to provide ratios which
   exclude loosely bonded dimers based on the thermochemistry of the
   constituent monomers, and which are consistent with a mixture of
   noninterconverting covalently bonded structures predicted by ab initio
   calculations. These clusters are bound such that one nitrile is
   N-methylated and the second nitrile is bound covalently to the carbon
   of the methylated cyano group. Collision-induced dissociation of this
   cluster ion results in the loss of a single neutral nitrile whereas
   both N-methylated nitriles should be formed upon dissociation of a
   loosely bound dimer with the greater fragment ion abundance
   corresponding to the nitrile having the higher CH3+ affinity. Ab initio
   calculations show a large barrier between the two isomeric forms of the
   dimeric cluster and this precludes intramolecular methyl cation
   transfer between the nitriles. The effects of fluorine substitution at
   the methyl cation, i.e., CH2F+ and CF3+, on the adducts of the nitriles
   greatly affects the stability order of the methylated nitrile monomers
   and dimeric adducts, and thus the abundance ratios of the MS/MS
   fragments. As the number of fluorine atoms in the cation is increased,
   the methylated nitrile becomes less stable relative to the dimeric
   cluster ion.
C1 Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
   Triangle Pharmaceut, Durham, NC 27707 USA.
   State Univ Campinas, Inst Chem, Campinas, SP, Brazil.
RP Cooks, RG, Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
CR ALVEREZ J, IN PRESS J MASS SPEC
   ARMENTROUT PB, 1999, J MASS SPECTROM, V34, P74
   ATTINA M, 1991, ANGEW CHEM INT EDIT, V30, P1457
   BEAUCHAMP JL, 1974, J AM CHEM SOC, V96, P6243
   BOHME DK, 1981, J AM CHEM SOC, V103, P978
   BRAUMAN JI, 1974, J AM CHEM SOC, V96, P4030
   BRAUMAN JI, 1988, J AM CHEM SOC, V110, P5611
   BURINSKY DJ, 1984, ORG MASS SPECTROM, V19, P539
   BURINSKY DJ, 1988, ORG MASS SPECTROM, V23, P613
   CACACE F, 1997, P NATL ACAD SCI USA, V94, P3507
   CALDWELL G, 1984, J AM CHEM SOC, V106, P959
   CHAMOTROOKE J, 2000, INT J MASS SPECTROM, V195, P385
   CHOWDHURY S, 1988, ORG MASS SPECTROM, V23, P79
   COOKS RG, 1977, J AM CHEM SOC, V99, P1279
   COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
   COOKS RG, 1994, MASS SPECTROM REV, V13, P287
   COOKS RG, 1998, ACCOUNTS CHEM RES, V31, P379
   COOKS RG, 1999, J MASS SPECTROM, V34, P85
   CRAIG SL, 1997, SCIENCE, V276, P1536
   DEAKYNE CA, 1990, J PHYS CHEM-US, V94, P232
   DELIJSER HJP, 1998, J PHYS CHEM A, V102, P5592
   DEPUY CH, 1990, J AM CHEM SOC, V112, P8650
   DERRICK PJ, 1983, MASS SPECTROM REV, V2, P285
   DRAHOS L, 1999, J MASS SPECTROM, V34, P79
   ERVIN KM, 2000, INT J MASS SPECTROM, V195, P271
   FORD GP, 1983, J AM CHEM SOC, V105, P349
   FRISCH MJ, 1995, GAUSSIAN 94
   GLUKHOVTSEV MN, 1994, J PHYS CHEM-US, V98, P13099
   GRAUL ST, 1994, J AM CHEM SOC, V116, P3675
   HALL DG, 1981, J AM CHEM SOC, V103, P2416
   HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
   HOLTZ D, 1970, J AM CHEM SOC, V92, P7484
   HOLTZ D, 1971, NATURE, V231, P204
   HOURIET R, 1987, ORG MASS SPECTROM, V22, P770
   KAYE JA, 1992, ISOTOPE EFFECTS GAS
   KEATING JT, 1970, CARBONIUM IONS
   LEVSEN K, 1978, FUNDAMENTAL ASPECTS
   MA SG, 1997, INT J MASS SPECTROM, V163, P89
   MARZILLI LA, 1999, J MASS SPECTROM, V34, P276
   MCDONALD RN, 1985, J AM CHEM SOC, V107, P4123
   MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
   MCMAHON TB, 1988, J AM CHEM SOC, V110, P7591
   OLAH GA, 1975, HALONIUM IONS
   OLMSTEAD WN, 1977, J AM CHEM SOC, V99, P4219
   PADDONROW MN, 1980, J AM CHEM SOC, V102, P6561
   RAGHAVACHARI K, 1984, J AM CHEM SOC, V106, P3124
   RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
   SCHWARTZ JC, 1990, INT J MASS SPECTROM, V1, P101
   SHAIK S, 1994, J AM CHEM SOC, V116, P262
   SMITH D, 1980, INTERSTELLAR MOL
   SMITH SC, 1993, J CHEM PHYS, V98, P1944
   SPERANZA M, 1980, J AM CHEM SOC, V102, P3115
   WENTHOLD PG, 1996, J AM CHEM SOC, V118, P11865
   WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
   WOOD KV, 1983, J ORG CHEM, V48, P5236
   YANG SS, 1995, J MASS SPECTROM, V30, P807
   YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
NR 57
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 7
PY 2000
VL 104
IS 48
BP 11290
EP 11296
PG 7
SC Chemistry, Physical
GA 380WB
UT ISI:000165725500007
ER

PT J
AU Borin, AC
   Serrano-Andres, L
TI A theoretical study of the absorption spectra of indole and its
   analogs: indene, benzimidazole, and 7-azaindole
SO CHEMICAL PHYSICS
LA English
DT Article
DE indole; indene; benzimidazole; 7-azaindole; absorption spectra; CASPT2
ID EXCITED-STATE PROPERTIES; MOLECULAR WAVE-FUNCTIONS; BAND CONTOUR
   ANALYSIS; ANO BASIS-SETS; ELECTRONIC-SPECTRA; AB-INITIO;
   MICROWAVE-SPECTRUM; PROTEIN-STRUCTURE; SPECTROSCOPY; FLUORESCENCE
AB The complete active space (CAS) SCF method and multiconfigurational
   second-order perturbation theory (CASPT2) have been used to study the
   electronic spectra of indole, indene, benzimidazole, and 7-azaindole.
   Singlet and triplet excited states and transition properties in the
   absorption spectra, such as oscillator strengths and transition moment
   directions, have been computed and the experimental data interpreted in
   order to gain insight into the rich spectroscopy of these compounds,
   which are alternative candidates to indole as biochemical probes in the
   characterization of protein properties. (C) 2000 Elsevier Science B.V.
   All rights reserved.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
   Univ Valencia, Dept Quim Fis, E-46100 Valencia, Spain.
RP Borin, AC, Univ Sao Paulo, Inst Quim, Av Prof Lineu Prestes 748,
   BR-05508900 Sao Paulo, Brazil.
CR ALBINSSON B, 1992, J PHYS CHEM-US, V96, P6204
   ANDERSON BE, 1986, CHEM PHYS LETT, V125, P106
   ANDERSSON K, 1997, MOLCAS VERSION 4 0
   BERDEN G, 1995, J CHEM PHYS, V103, P9596
   BORIN AC, 1999, J MOL STRUC-THEOCHEM, V464, P121
   BORIN AC, 1999, J PHYS CHEM A, V103, P1838
   BULSKA H, 1984, J LUMIN, V29, P65
   CAMINATI W, 1990, J MOL STRUCT, V223, P415
   CANE E, 1991, J MOL SPECTROSC, V148, P123
   CHANG CT, 1974, PHOTOCHEM PHOTOBIOL, V19, P347
   CHEN Y, 1994, J PHYS CHEM-US, V98, P2203
   DEMCHENKO AP, 1986, ULTRAVIOLET SPECTROS
   EVELETH EM, 1970, THEOR CHIM ACTA, V16, P22
   FENDER BJ, 1995, CHEM PHYS LETT, V239, P31
   FUKE K, 1984, J PHYS CHEM-US, V88, P5840
   FUKE K, 1989, J PHYS CHEM-US, V93, P614
   FULSCHER MP, 1997, J AM CHEM SOC, V119, P6168
   HAHN DK, 1997, J PHYS CHEM A, V101, P2686
   HARTFORD A, 1970, J MOL SPECTROSC, V34, P257
   HASSAN KH, 1989, J MOL SPECTROSC, V138, P398
   HUANG YH, 1996, J PHYS CHEM-US, V100, P4734
   ILICH P, 1995, J MOL STRUCT, V354, P37
   JALVISTE E, 1993, CHEM PHYS, V172, P325
   LI YS, 1979, J MOL STRUCT, V51, P171
   MAKI I, 1981, B CHEM SOC JPN, V54, P8
   MALMQVIST PA, 1989, CHEM PHYS LETT, V155, P189
   NEGRERIE M, 1990, J AM CHEM SOC, V112, P7419
   NI T, 1989, J AM CHEM SOC, V111, P457
   PERKAMPUS HH, 1992, UV VIS ATLAS ORGANIC
   PIERLOOT K, 1995, THEOR CHIM ACTA, V90, P87
   PLATT JR, 1949, J CHEM PHYS, V17, P489
   RICE JE, 1994, MULLIKEN VERSION 1 1
   ROOS BO, 1995, QUANTUM MECH ELECT S, V357
   ROOS BO, 1996, ADV CHEM PHYS, V93, P219
   ROOS BO, 1996, J MOL STRUC-THEOCHEM, V388, P257
   RUBIO M, 1994, CHEM PHYS, V179, P395
   SAVIOTTI ML, 1974, P NATL ACAD SCI USA, V71, P4154
   SERRANOANDRES L, 1995, J AM CHEM SOC, V117, P3189
   SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P12190
   SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P12200
   SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P185
   SERRANOANDRES L, 1996, J PHYS CHEM-US, V100, P6484
   SHUKLA MK, 1998, CHEM PHYS, V230, P187
   SLATER LS, 1995, J PHYS CHEM-US, V99, P8572
   SMIRNOV AV, 1997, J PHYS CHEM B, V101, P2758
   SOBOLEWSKI AL, 1999, CHEM PHYS LETT, V315, P293
   STRAMBINI GB, 1995, J AM CHEM SOC, V117, P7646
   TAKEUCHI S, 1998, J PHYS CHEM A, V102, P7740
   TAKIGAWA T, 1966, B CHEM SOC JPN, V39, P2369
   VELINO B, 1992, J MOL SPECTROSC, V152, P434
   WIDMARK PO, 1990, THEOR CHIM ACTA, V77, P291
NR 51
TC 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD DEC 15
PY 2000
VL 262
IS 2-3
BP 253
EP 265
PG 13
SC Physics, Atomic, Molecular & Chemical
GA 380UN
UT ISI:000165722000005
ER

PT J
AU Serrano-Andres, L
   Borin, AC
TI A theoretical study of the emission spectra of indole and its analogs:
   indene, benzimidazole, and 7-azaindole
SO CHEMICAL PHYSICS
LA English
DT Article
DE indole; indene; benzimidazole; 7-azaindole; emission spectra; CASPT2
ID MOLECULAR WAVE-FUNCTIONS; DOUBLE-PROTON-TRANSFER; ANO BASIS-SETS;
   EXCITED-STATE; AB-INITIO; ELECTRONIC-SPECTRA; TRIPLET-STATES;
   GAS-PHASE; SPECTROSCOPY; PHOTOPHYSICS
AB The complete active space (CAS) SCF method and multiconfigurational
   second-order perturbation theory (CASPT2) have been used to study the
   electronic spectra of indole, indene, benzimidazole, and 7-azaindole.
   The paper is focused on the study of the low-lying valence triplet and
   singlet electronic states at the optimized geometries of the excited
   states. The geometries have been optimized by using analytic CASSCF
   derivatives. CASPT2 point calculations have been performed in order to
   obtain band origins and relaxed emission energies. The results are
   analyzed in the context of the complex emission processes, both
   fluorescence and phosphorescence, displayed by the title compounds,
   which can be used as biochemical probes in the characterization of
   protein properties and activity. (C) 2000 Elsevier Science B.V. All
   rights reserved.
C1 Univ Valencia, Dept Quim Fis, E-46100 Valencia, Spain.
   Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Serrano-Andres, L, Univ Valencia, Dept Quim Fis, Av Dr Moliner 50,
   E-46100 Valencia, Spain.
CR ANDERSON BE, 1986, CHEM PHYS LETT, V125, P106
   ANDERSSON K, 1997, MOLCAS VERSION 4 0
   AVOURIS P, 1976, PHOTOCHEM PHOTOBIOL, V24, P211
   BEARPARK MJ, 1997, J PHYS CHEM A, V101, P8395
   BERDEN G, 1995, J CHEM PHYS, V103, P9596
   BICKEL GA, 1989, J CHEM PHYS, V91, P6013
   BORIN AC, 1999, J MOL STRUC-THEOCHEM, V464, P121
   BROCKLEHURST B, 1974, SPECTROCHIM ACTA A, V30, P1807
   BULSKA H, 1980, J AM CHEM SOC, V102, P3259
   BULSKA H, 1984, J LUMIN, V29, P65
   BYRNE JP, 1971, AUST J CHEM, V24, P1107
   CALLIS PR, 1995, CHEM PHYS LETT, V244, P53
   CHAPMAN CF, 1992, J PHYS CHEM-US, V96, P8430
   CHOU PT, 1992, J PHYS CHEM-US, V96, P5203
   DEMCHENKO AP, 1986, ULTRAVIOLET SPECTROS
   EFTINK MR, 1991, FLUORESCENCE TECHNIQ
   FENDER BJ, 1995, CHEM PHYS LETT, V239, P31
   FENDER BJ, 1999, INT J QUANTUM CHEM, V72, P347
   FUKE K, 1984, J PHYS CHEM-US, V88, P5840
   FUKE K, 1989, J PHYS CHEM-US, V93, P614
   FULSCHER MP, 1997, J AM CHEM SOC, V119, P6168
   HAHN DK, 1997, J PHYS CHEM A, V101, P2686
   HARRIGAN ET, 1973, CHEM PHYS LETT, V22, P29
   HASSAN KH, 1989, J MOL SPECTROSC, V138, P398
   HECKMAN RC, 1958, J MOL SPECTROSC, V2, P27
   HUANG YH, 1996, J PHYS CHEM-US, V100, P4734
   ILICH P, 1987, CAN J SPECTROSC, V32, P19
   ILICH P, 1995, J MOL STRUCT, V354, P37
   INGHAM KC, 1971, J AM CHEM SOC, V93, P5023
   JALVISTE E, 1993, CHEM PHYS, V172, P325
   KENDLER S, 1995, CHEM PHYS LETT, V242, P139
   KIM SK, 1990, J PHYS CHEM-US, V94, P3531
   LOUSTAUNEAU P, 1971, J CHIM PHYS PCB, V68, P1675
   LYONS AL, 1978, J AM CHEM SOC, V100, P3177
   MAKI I, 1981, B CHEM SOC JPN, V54, P8
   MALMQVIST PA, 1989, CHEM PHYS LETT, V155, P189
   MERCHAN M, 1999, RECENT ADV MULTIREFE, V4, P161
   NEGRERIE M, 1990, J AM CHEM SOC, V112, P7419
   NEGRERIE M, 1991, J PHYS CHEM-US, V95, P8663
   NEGRERIE M, 1993, J PHYS CHEM-US, V97, P5046
   NI T, 1989, J AM CHEM SOC, V111, P457
   NODA M, 1984, B CHEM SOC JPN, V57, P2376
   PERKAMPUS HH, 1992, UV VIS ATLAS ORGANIC
   PIERLOOT K, 1995, THEOR CHIM ACTA, V90, P87
   RICE JE, 1994, MULLIKEN VERSION 1 1
   ROBEY MJ, 1975, PHOTOCHEM PHOTOBIOL, V21, P363
   ROOS BO, 1995, QUANTUM MECH ELECT S, V357
   ROOS BO, 1996, ADV CHEM PHYS, V93, P219
   ROOS BO, 1996, J MOL STRUC-THEOCHEM, V388, P257
   RUBIO M, 1999, MOL PHYS, V96, P603
   SERRANOANDRES L, 1993, J PHYS CHEM-US, V97, P9360
   SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P185
   SERRANOANDRES L, 1996, J PHYS CHEM-US, V100, P6484
   SERRANOANDRES L, 1998, J CHEM PHYS, V108, P7202
   SHUKLA MK, 1998, CHEM PHYS, V230, P187
   SOBOLEWSKI AL, 1999, CHEM PHYS LETT, V315, P293
   SONG PS, 1969, J AM CHEM SOC, V91, P4892
   STRICKLAND EH, 1970, BIOCHEMISTRY-US, V9, P4914
   SUAREZ ML, 1989, J AM CHEM SOC, V111, P6384
   SWIDEREK P, 1994, J CHEM PHYS, V100, P70
   TAYLOR CA, 1969, P NATL ACAD SCI USA, V63, P253
   VELINO B, 1992, J MOL SPECTROSC, V152, P434
   WERNER HJ, 1998, MOLPRO
   WIDMARK PO, 1990, THEOR CHIM ACTA, V77, P291
   WILKINSON F, 1977, J CHEM SOC FARAD T 2, V73, P222
   WU JQ, 1996, J PHYS CHEM-US, V100, P11496
   ZILBERG S, 1996, J PHYS CHEM-US, V100, P10869
   ZUCLICH J, 1974, J AM CHEM SOC, V96, P710
NR 68
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD DEC 15
PY 2000
VL 262
IS 2-3
BP 267
EP 283
PG 17
SC Physics, Atomic, Molecular & Chemical
GA 380UN
UT ISI:000165722000006
ER

PT J
AU Takahata, Y
   Chong, DP
TI Accurate density-functional calculation of core-electron binding
   energies of some substituted benzenes
SO BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN
LA English
DT Article
ID ZETA BASIS-SET; RAY PHOTOELECTRON-SPECTROSCOPY; GAS; APPROXIMATION;
   DERIVATIVES; PARAMETERS; SPECTRA; BORON
AB The core electron binding energies (CEBE's) of benzene, seven
   monosubstituted benzenes (Ph-X) and one disubstituted benzene
   (p-NH2-C6H4-NO2) were calculated using density-functional theory (DFT).
   The unrestricted generalized transition-state (uGTS) model was
   employed. The DeMon DFT program with a combined functional of Becke's
   exchange (B88) with Perdew's correlation (P86) was used. The average
   absolute deviation of the calculated CEBE's of the title compounds was
   0.3 eV when the cc-pVDZ basis set was used. The "CEBE shift" of the
   ring carbon in Ph-X was calculated while taking the CEBE on the ring
   carbon in Ph-H as a reference. The thus-calculated CEBE shifts agree
   with experiment within the value of the average absolute deviation, 0.1
   eV. The signs and quantitative numerical values of the CEBE shifts are
   very close to the corresponding Hammett sigma constants.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
   Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada.
RP Takahata, Y, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
   BR-13083970 Campinas, SP, Brazil.
CR BECKE AD, 1988, PHYS REV A, V38, P3098
   BROWN RS, 1980, CAN J CHEM, V58, P694
   CAVIGLIASSO G, 1999, CAN J CHEM, V77, P24
   CHAERTON M, 1987, PROG PHYS ORG CHEM, V16, P287
   CHEN PC, 1995, J PHYS CHEM-US, V99, P15023
   CHONG DP, 1995, CHEM PHYS LETT, V232, P486
   CHONG DP, 1995, J CHEM PHYS, V103, P1842
   CHONG DP, 1996, CHEM PHYS LETT, V249, P491
   CLEMENTI E, 1963, J CHEM PHYS, V38, P2686
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   HAMMETT LP, 1937, J AM CHEM SOC, V59, P96
   JANAK JF, 1978, PHYS REV B, V18, P7165
   JOLLY WL, 1984, ATOMIC DATA NUCL DAT, V31, P434
   KENDALL RA, 1992, J CHEM PHYS, V96, P6796
   LINDBERG B, 1975, UUIP910
   LINDBERG B, 1976, CHEM PHYS LETT, V40, P175
   LISTER DG, 1974, J MOL STRUCT, V23, P253
   MADELUNG O, 1987, LANDOLTBORNSTEIN NUM, V15
   OHTA T, 1975, B CHEM SOC JPN, V48, P2017
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PULFER M, 1997, CHEM PHYS, V216, P91
   SADOVA NI, 1976, RUSS J STRUCT CHEM, V17, P954
   SAETHRE LJ, 1991, J PHYS ORG CHEM, V4, P629
   SHISHKOV IF, 1984, RUSS J STRUCT CHEM, V25, P260
   SIEGBAHN K, 1969, ESCA APPL FREE MOL, P104
   SLATER JC, 1972, ADVANCES QUANTUM CHE, V6, P1
   SLAUGHTER AR, 1983, CHEM PHYS LETT, V98, P531
   SOHAR P, 1983, NUCL MAGNETIC RESONA, V2, P187
   SPIESECKE H, 1961, J CHEM PHYS, V35, P731
   STAMANT A, 1990, CHEM PHYS LETT, V169, P387
   TAFT RW, 1987, PROG PHYS ORG CHEM, V16, P1
   WILLIAMS AR, 1975, J CHEM PHYS, V63, P628
NR 32
TC 5
PU CHEMICAL SOC JAPAN
PI TOKYO
PA 1-5 KANDA-SURUGADAI CHIYODA-KU, TOKYO, 101, JAPAN
SN 0009-2673
J9 BULL CHEM SOC JPN
JI Bull. Chem. Soc. Jpn.
PD NOV
PY 2000
VL 73
IS 11
BP 2453
EP 2460
PG 8
SC Chemistry, Multidisciplinary
GA 380KR
UT ISI:000165701500004
ER

PT J
AU da Silva, RS
   Gorelsky, SI
   Dodsworth, ES
   Tfouni, E
   Lever, ABP
TI Synthesis, spectral and redox properties of tetraammine dioxolene
   ruthenium complexes
SO JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
LA English
DT Review
ID TRANSITION-METAL COMPLEXES; QUINONE-RELATED LIGANDS; COMPACT EFFECTIVE
   POTENTIALS; INDUCED VALENCE TAUTOMERISM; EFFECTIVE CORE POTENTIALS;
   CHARGE-TRANSFER SPECTRA; EXPONENT BASIS-SETS; ELECTRON-TRANSFER;
   DINUCLEAR COMPLEXES; CRYSTAL-STRUCTURES
AB A series of species [Ru-III(NH3)(4)(Cat-R)](n+) have been synthesized
   where Cat-R is a catecholate dianion having the substituent R=CO2-,
   CO2H, OMe or H. These so-called parent species were characterized by
   their electronic spectra, FTIR, mass spectrum, cyclic voltammetry and
   EPR. Controlled potential reduction yields
   [Ru-II(NH3)(4)(Cat-R)]((n-1)+) while controlled potential oxidation
   yields [Ru-II(NH3)(4)(Q-R)]((n+1)+) (Q-R=substituted quinone). Density
   Functional Theory (DFT) was primarily used to explore the electronic
   structures of these complexes. Application of the INDO semi-empirical
   model proved less useful. Time dependent density functional response
   theory was used to calculate the electronic spectra of the species with
   R=H. The electronic spectra of the closed shell species are well
   reproduced by the calculations. The physical properties of these
   complexes indicate a charge delocalized system reminiscent of a
   delocalized organic molecule. The simple valence descriptions noted
   above are convenient to use but do not reflect the actual electronic
   structure. The electronic spectra of the parent species are temperature
   dependent. The visible region charge transfer band shifts by about 1500
   cm(-1) to higher energy in acidic media at liquid nitrogen temperature.
   This is interpreted in terms of solvent effects rather than valence
   tautomerism. The electrochemical properties of [Ru-III(NH3)(4)(Cat-R)],
   in aqueous solution, reveal the first example of a reversible and
   stable Ru-quinone species in that medium. The pK(a) values for several
   dioxolene species, with R=CO2-, are derived from a Pourbaix diagram.
C1 York Univ, Dept Chem, N York, ON M3J 1P3, Canada.
   Univ Sao Paulo, Fac Ciencias Farmaceut Ribeirao Preto, BR-14040901 Ribeirao Preto, SP, Brazil.
   Univ Sao Paulo, Dept Quim, Fac Filosofia Ciencias & Letras Ribeirao Pret, BR-14040901 Ribeirao Preto, SP, Brazil.
RP Lever, ABP, York Univ, Dept Chem, 4700 Keele St, N York, ON M3J 1P3,
   Canada.
CR ADAMS DM, 1993, ANGEW CHEM INT EDIT, V32, P880
   ADAMS DM, 1993, ANGEW CHEM, V105, P954
   ADAMS DM, 1993, J AM CHEM SOC, V115, P8221
   ADAMS DM, 1995, ANGEW CHEM INT EDIT, V34, P1481
   ADAMS DM, 1996, J AM CHEM SOC, V118, P11515
   ADAMS DM, 1997, INORG CHEM, V36, P3966
   ALLEN AD, 1967, J AM CHEM SOC, V89, P5595
   ALLEN AD, 1968, CAN J CHEM, V46, P469
   ATTIA AS, 1994, INORG CHIM ACTA, V226, P91
   ATTIA AS, 1995, INORG CHEM, V34, P1172
   ATTIA AS, 1997, INORG CHEM, V36, P6184
   ATTIA AS, 1998, INORG CHEM, V37, P3051
   AUBURN PR, 1990, INORG CHEM, V29, P2551
   AUBURN PR, 1991, INORG CHEM, V30, P3502
   BACHRACH SM, 1994, REV COMPUTATIONAL CH, V5, P177
   BAG N, 1990, J CHEM SOC DA, P1557
   BARTHRAM AM, 1998, CHEM COMMUN     1221, P2695
   BARTHRAM AM, 1998, INORG CHIM ACTA, V267, P1
   BEATTIE JK, 1977, J CHEM SOC DA, P1121
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BENELLI C, 1989, INORG CHIM ACTA, V163, P99
   BERATAN DN, 1989, MOL ELECTRONICS BIOS, P353
   BHATTACHARYA S, 1991, INORG CHEM, V30, P1511
   BIANCHINI C, 1987, INORG CHEM, V26, P3683
   BODINI ME, 1983, INORG CHEM, V22, P126
   BOTTOMLEY F, 1972, J CHEM SOC DA, P2148
   BOTTOMLEY F, 1974, J CHEM SOC DA, P1600
   BRADBURY JR, 1986, INORG CHEM, V25, P4416
   BROO A, 1996, INT J QUANTUM CHEM, P1331
   BROWN DG, 1976, INORG NUCL CHEM LETT, V12, P399
   BROWN DG, 1979, Z NATURFORSCH B, V34, P712
   BUCHANAN RM, 1978, J AM CHEM SOC, V100, P7894
   BUCHANAN RM, 1983, INORG CHEM, V22, P2552
   CANESCHI A, 1998, ANGEW CHEM INT EDIT, V37, P3005
   CARUGO O, 1992, J CHEM SOC DA, P837
   CASIDA ME, 1995, RECENT ADV DENSITY 1, P155
   CASIDA ME, 1996, RECENT DEV APPL MODE, V4
   CASIDA ME, 1998, J CHEM PHYS, V108, P4439
   CASS ME, 1986, INORG CHEM, V25, P3962
   CHAKRAVARTY AR, 1981, INORG CHEM, V20, P3138
   CHENG CP, 1988, J ORGANOMET CHEM, V249, P375
   CHOU MH, 1994, INORG CHEM, V33, P1674
   CHRISTENSEN PA, 1993, TECHNIQUES MECH ELEC, P27
   COHEN AJ, 2000, CHEM PHYS LETT, V316, P160
   CRUTCHLEY RJ, 1990, INORG CHEM, V29, P2576
   CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
   DACUNHA CJ, 1996, INORG CHIM ACTA, V242, P293
   DACUNHA CJ, 1999, INORG CHEM, V38, P5399
   DEI A, 1993, INORG CHEM, V32, P5730
   DODSWORTH ES, 1990, CHEM PHYS LETT, V172, P151
   DUNNING TH, 1977, METHODS ELECT STRUCT, V2
   EBADI M, 1999, INORG CHEM, V38, P467
   FLETCHER NC, 1999, J CHEM SOC DALT 0907, P2999
   FORD PC, 1970, COORDIN CHEM REV, V5, P75
   FRISCH GW, 1998, GAUSSIAN 98
   FUENTEALBA P, 1982, CHEM PHYS LETT, V89, P418
   FUENTEALBA P, 1983, J PHYS B ATOM MOL PH, V16, P1323
   FUENTEALBA P, 1985, J PHYS B ATOM MOL PH, V18, P1287
   FUJITA J, 1956, J CHEM SOC, P3295
   GLEU K, 1935, Z ANORG ALLG CHEM, V237, P335
   GODBOUT N, 1992, CAN J CHEM, V70, P560
   GORELSKY SI, 1998, COORDIN CHEM REV, V174, P469
   GORELSKY SI, 2000, MOMIX PROGRAM
   GRANIFO J, 1996, J CHEM SOC DALT 1207, P4369
   GRESS ME, 1981, INORG CHEM, V20, P1522
   GRIFFITH WP, 1966, J CHEM SOC A, P899
   GRIFFITH WP, 1986, J CHEM SOC DA, P1125
   GUPTA HK, 1987, POLYHEDRON, V6, P1009
   HAGA M, 1986, INORG CHEM, V25, P447
   HAGA M, 1986, J AM CHEM SOC, V108, P7413
   HAMBLEY TW, 1986, INORG CHEM, V25, P4553
   HANSCH C, 1991, CHEM REV, V91, P165
   HARTL F, 1990, INORG CHEM, V29, P1073
   HARTL F, 1991, INORG CHEM, V30, P2402
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   HAY PJ, 1985, J CHEM PHYS, V82, P299
   HILL PL, 1997, INORG CHEM, V36, P5655
   HUSH NS, 1980, CHEM PHYS LETT, V69, P128
   JORGENSON AL, 1998, J ORGANOMET CHEM, V563, P1
   KABACHNIK MI, 1984, RUSS CHEM REV, V5, P37
   KAIM W, 1987, COORDIN CHEM REV, V76, P187
   KESSEL SL, 1980, INORG CHEM, V19, P1170
   KEYES TE, 1998, INORG CHEM, V37, P5925
   KIRKWOOD JG, 1934, J CHEM PHYS, V2, P351
   KONDO M, 1998, J AM CHEM SOC, V120, P455
   KROGHJESPERSEN K, 1987, J AM CHEM SOC, V109, P7025
   KURIHARA M, 1998, B CHEM SOC JPN, V71, P867
   KURIHARA M, 1998, B CHEM SOC JPN, V71, C867
   LAHIRI GK, 1987, INORG CHEM, V26, P3359
   LAHIRI GK, 1987, INORG CHEM, V26, P4324
   LEE C, 1988, PHYS REV B, V37, P785
   LEVER ABP, 1984, INORGANIC ELECT SPEC, P205
   LEVER ABP, 1988, J AM CHEM SOC, V110, P8076
   LEVER ABP, 1993, COORDIN CHEM REV, V125, P317
   LYNCH MW, 1981, J AM CHEM SOC, V103, P3961
   LYNCH MW, 1982, J AM CHEM SOC, V104, P6982
   LYNCH MW, 1984, J AM CHEM SOC, V106, P2041
   MAGERS KD, 1980, INORG CHEM, V19, P492
   MARCH FC, 1971, CAN J CHEM, V49, P3590
   MASUI H, 1991, INORG CHEM, V30, P2402
   MASUI H, 1993, INORG CHEM, V32, P258
   MASUI H, 2000, INORG CHEM, V39, P141
   MATSUBARA T, 1976, INORG CHEM, V15, P1107
   MATSUMOTO K, 1996, J AM CHEM SOC, V118, P3597
   METCALFE RA, 1996, INORG CHEM, V35, P7741
   METCALFE RA, 1997, INORG CHEM, V36, P4762
   METCALFE RA, 1999, J CHEM SOC DALTON, P2653
   MITRA KN, 1998, CHEM COMMUN     0821, P1685
   MITRA KN, 1998, J CHEM SOC DALT 0907, P2901
   MURAKAMI Y, 1963, B CHEM SOC JPN, V36, P669
   NAKAMOTO K, 1986, INFRARED RAMAN SPECT, P191
   NICHOLSON RS, 1964, ANAL CHEM, V36, P706
   OHYOSHI A, 1979, B CHEM SOC JPN, V52, P3105
   PAVANIN LA, 1985, INORG CHEM, V24, P4444
   PEARL GM, 1999, J AM CHEM SOC, V121, P399
   PELL SD, 1984, INORG CHEM, V23, P385
   PIERPONT CG, 1981, COORDIN CHEM REV, V38, P45
   PIERPONT CG, 1988, PURE APPL CHEM, V60, P1331
   PIERPONT CG, 1995, INORG CHEM, V34, P4281
   RAMADAN RM, 1999, TRANSIT METAL CHEM, V24, P193
   RICHARDSON DE, 1979, INORG CHEM, V18, P2216
   RIEGER PH, 1994, COORDIN CHEM REV, V135, P203
   ROBINSON EA, 1999, INORG CHEM, V38, P4128
   ROUX C, 1996, INORG CHEM, V35, P2846
   RUIZ D, 1998, CHEM COMMUN, P208
   RYBA O, 1965, COLLECT CZECH CHEM C, V30, P2157
   RYBA O, 1968, COLLECT CZECH CHEM C, V33, P26
   SHIMANOUCHI T, 1964, INORG CHEM, V3, P1805
   SHIN YK, 1996, J PHYS CHEM-US, V100, P8157
   SHIN YK, 1997, INORG CHEM, V36, P3190
   SHUKLA AD, 1999, INORG CHIM ACTA, V285, P89
   SILVA RS, 1995, INORG CHIM ACTA, V235, P427
   SOFEN SR, 1979, INORG CHEM, V18, P234
   STALLINGS MD, 1981, INORG CHEM, V20, P2655
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
   STEVENS WJ, 1992, CAN J CHEM, V70, P612
   STOLL H, 1984, J CHEM PHYS, V81, P2732
   STORRIER GD, 1998, J CHEM SOC DALT 0421, P1351
   STORRIER GD, 1999, INORG CHEM, V38, P559
   STRATMANN RE, 1998, J CHEM PHYS, V109, P8218
   STUFKENS DJ, 1988, INORG CHEM, V27, P953
   STYNES HC, 1971, INORG CHEM, V10, P2304
   SZABO A, 1996, MODERN QUANTUM CHEM, P85
   SZYMANSKI HA, 1967, INTERPRETED INFRARED, V3, P23
   THOMPSON JS, 1985, INORG CHEM, V24, P3167
   TREITEL IM, 1969, J AM CHEM SOC, V91, P6512
   VETTER KJ, 1967, ELECTROCHEMICAL KINE, P483
   VONSZENTPALY L, 1982, CHEM PHYS LETT, V93, P555
   WADT WR, 1985, J CHEM PHYS, V82, P284
   WILSON HW, 1974, SPECTROCHIM ACTA   A, V30, P2141
   WISHART JF, 1986, INORG CHEM, V25, P3318
   WONG MW, 1991, J AM CHEM SOC, V113, P4776
   WONG MW, 1991, J CHEM PHYS, V95, P8991
   WONG MW, 1992, J AM CHEM SOC, V114, P1645
   WONG MW, 1992, J AM CHEM SOC, V114, P523
   ZENG J, 1995, J PHYS CHEM-US, V99, P10459
   ZENG J, 1996, J AM CHEM SOC, V118, P2059
   ZENG J, 1996, J PHYS CHEM-US, V100, P19292
   ZERNER MC, 1998, ZINDO PROGRAM VERSIO
NR 159
TC 12
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 1470-479X
J9 J CHEM SOC DALTON TRANS
JI J. Chem. Soc.-Dalton Trans.
PY 2000
IS 22
BP 4078
EP 4088
PG 11
SC Chemistry, Inorganic & Nuclear
GA 374EC
UT ISI:000165330600019
ER

PT J
AU Levin, Y
TI Crystallization of hard spheres under gravity
SO PHYSICA A
LA English
DT Article
ID DENSITY FUNCTIONAL THEORY
AB We present a simple argument to account for crystallization of hard
   spheres under the action of a gravitational field. The paper attempts
   to bridge the gap between two communities of scientists, one working on
   granular materials and the other on inhomogeneous liquid state theory.
   (C) 2000 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
RP Levin, Y, Univ Fed Rio Grande Sul, Inst Fis, Caixa Postal 15051,
   BR-91501970 Porto Alegre, RS, Brazil.
CR ALDER BJ, 1957, J CHEM PHYS, V27, P1208
   BAUS M, 1985, MOL PHYS, V55, P653
   BIBEN T, 1993, EUROPHYS LETT, V71, P665
   CARNAHAN NF, 1969, J CHEM PHYS, V51, P635
   CHANDLER D, UNPUB
   CLEMENT E, 1991, EUROPHYS LETT, V16, P133
   ENSKOG D, 1922, VETENSKAPSAKED HANDL, V63, P5
   HAYAKAWA H, 1997, PHYS REV LETT, V78, P2764
   HONG DC, 1999, PHYSICA A, V271, P192
   NORDHOLM S, 1980, AUST J CHEM, V33, P2139
   PERRIN J, 1910, J PHYSIQUE, V9, P5
   QUINN PV, CONDMAT0005196
   RAMAKRISHNAN TV, 1979, PHYS REV B, V19, P2775
   SELLITTO M, UNPUB
   TARAZONA P, 1984, MOL PHYS, V52, P81
   TARAZONA P, 1985, PHYS REV A, V31, P2672
   WOLF P, 1997, FRICTION ARCHING CON
NR 17
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD NOV 15
PY 2000
VL 287
IS 1-2
BP 100
EP 104
PG 5
SC Physics, Multidisciplinary
GA 372HE
UT ISI:000165227600007
ER

PT J
AU Dos Santos, HF
   De Oliveira, LFC
   Dantas, SO
   Santos, PS
   De Almeida, WB
TI Quantum mechanical investigation of the tautomerism in the azo dye
   Sudan III
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE tautomerism; Sudan III bis-azo; ab initio (HF and MP2)
ID RAMAN EXCITATION PROFILES; MOLECULAR-ORBITAL METHODS;
   DIFFERENTIAL-OVERLAP TECHNIQUE; GAUSSIAN-TYPE BASIS; TRANS-AZOBENZENE;
   BASIS-SETS; AB-INITIO; CONFORMATIONAL-ANALYSIS; INTERMEDIATE NEGLECT;
   ELECTRON CORRELATION
AB The tautomerism in Sudan ill bis-azo dye has been analyzed using ab
   initio Hartee-Fock [HF] and second-order Moller-Plesset perturbatim
   theory [MP2] and density functional (B3LYP) methods. Gas-phase and
   solution calculations were performed to investigate the solvent effect
   on the azo (OH) --> hydrazone (NH) tautomeric equilibrium. The azo (OH)
   tautomer was found to be preferred in gas phase at the HF level of
   theory. The inclusion of the electronic correlation (MP2) shifted the
   equilibrium toward the hydrazone (NH) form. The NH isomer was also
   found to be more favorable in the gas phase according to the B3LYP
   results. In solution the equilibrium is shifted toward the NH tautomer
   as the dielectric constant of the medium increases. The energy barrier
   for the intramolecular proton transference was calculated and the value
   found suggested a strong hydrogen bond. The B3LYP and MP2 activation
   Gibbs free energies were very close and much lower than the HF value.
   The ultraviolet/visible electronic spectra for the minima and
   transition state (TS) structures were calculated and compared with the
   experimental data. The theoretical band positions obtained considering
   the TS geometry were found to best agree with the experimental data.
   (C) 2000 John Wiley & Sons, Inc.
C1 Univ Fed Juiz de Fora, NEQC, Dept Quim, Inst Ciencias Exatas, BR-36036330 Juiz De Fora, MG, Brazil.
   Univ Fed Juiz de Fora, NEEM, Dept Quim, Inst Ciencias Exatas, BR-36036330 Juiz De Fora, MG, Brazil.
   Univ Fed Juiz de Fora, Inst Ciencias Exatas, Dept Fis, Juiz De Fora, MG, Brazil.
   Univ Sao Paulo, Inst Quim, Lab Expectroscopia Mol, BR-05508 Sao Paulo, Brazil.
   Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Quim, Belo Horizonte, MG, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, NEQC, Dept Quim, Inst Ciencias
   Exatas, BR-36036330 Juiz De Fora, MG, Brazil.
CR ARMSTRONG DR, 1995, J PHYS CHEM-US, V99, P17825
   BARNES AJ, 1985, SPECTROCHIM ACTA A, V41, P629
   BASTIANSEN O, 1949, ACTA CHEM SCAND, V3, P408
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BELL S, 1998, J RAMAN SPECTROSC, V29, P447
   BERSHTEIN IY, 1972, RUSS CHEM REV, V41, P97
   BERTOLASI V, 1991, J AM CHEM SOC, V113, P4917
   BERTOLASI V, 1993, J CHEM SOC P2, V2, P2223
   BERTOLASI V, 1994, ACTA CRYSTALLOGR B 5, V50, P617
   BERTOLASI V, 1994, NEW J CHEM, V18, P251
   BERTOLASI V, 1995, ACTA CRYSTALLOGR B 6, V51, P1004
   BIANCALANA A, 1992, J RAMAN SPECTROSC, V23, P155
   BIANCALANA A, 1993, J RAMAN SPECTROSC, V24, P43
   BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
   BIRCH EJ, 1998, J AGR FOOD CHEM, V46, P5332
   BISWAS N, 1995, CHEM PHYS LETT, V236, P24
   BISWAS N, 1997, J PHYS CHEM A, V101, P5555
   BOUWSTRA JA, 1983, ACTA CRYSTALLOGR C, V39, P1121
   CATALIOTTI RS, 1985, J RAMAN SPECTROSC, V16, P251
   CATALIOTTI RS, 1985, J RAMAN SPECTROSC, V16, P258
   CLARK RJH, 1991, ADV MAT SCI SPECTROS
   DEALMEIDA WB, 1998, J CHEM SOC DA, V15, P2531
   DEALMEIDA WB, 1998, J PHARM SCI, V87, P1101
   DEOLIVEIRA LFC, UNPUB
   DEOLIVEIRA LFC, 1997, J RAMAN SPECTROSC, V28, P53
   DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
   DOBBS KD, 1987, J COMPUT CHEM, V8, P880
   DOSSANTOS HF, IN PRESS THEOCHEM
   DOSSANTOS HF, UNPUB QUIM NOVA
   DOSSANTOS HF, 1998, J PHARM SCI, V87, P190
   DOSSANTOS HF, 1998, THEOR CHEM ACC, V99, P301
   EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   FUJITA S, 1988, CANCER RES, V48, P254
   GORDON MS, 1980, CHEM PHYS LETT, V76, P163
   GRANGER CT, 1969, ACTA CRYSTALLOGR B, V25, P1962
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
   HARIHARAN PC, 1974, MOL PHYS, V27, P209
   HEAD JD, 1986, CHEM PHYS LETT, V131, P359
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HOUBEN JL, 1982, J RAMAN SPECTROSC, V13, P15
   KIM Y, 1999, J PHYS CHEM A, V103, P6632
   KOLLMAN P, 1993, CHEM REV, V93, P2395
   KUDER JE, 1972, TETRAHEDRON, V28, P1973
   LORRIAUX JL, 1979, J RAMAN SPECTROSC, V8, P81
   LUNAK S, 1994, CHEM PHYS, V184, P255
   MOLLER C, 1934, PHYS REV, V46, P618
   MONAHAN AR, 1972, CHEM PHYS LETT, V17, P510
   OLIVIERI AC, 1989, J AM CHEM SOC, V111, P5525
   ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
   PAVA RP, 1987, J CHEM PHYS, V87, P3758
   POULAIN N, 1998, J POLYM SCI POL CHEM, V36, P3035
   RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
   SAEBO S, 1989, CHEM PHYS LETT, V154, P83
   SOURISSEAU C, 1994, J RAMAN SPECTROSC, V25, P477
   SOUZA JD, UNPUB
   SUZUKI H, 1967, ELECT ABSORPTION SPE, CH23
   TECKLENBURG MMJ, 1997, J RAMAN SPECTROSC, V28, P755
   TOMASI J, 1994, CHEM REV, V94, P2027
   TRAETTEBERG M, 1977, J MOL STRUCT, V39, P231
   VARGA Z, 1998, PATHOL INT, V48, P912
   ZERNER MC, 1980, J AM CHEM SOC, V102, P589
NR 63
TC 7
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD NOV-DEC
PY 2000
VL 80
IS 4-5
BP 1076
EP 1086
PG 11
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA 370DP
UT ISI:000165108300056
ER

PT J
AU de Moraes, PRP
   Linnert, HV
   Aschi, M
   Riveros, JM
TI Experimental and theoretical characterization of long-lived triplet
   state CH3CH2S+ cations
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID ION-MOLECULE REACTIONS; POTENTIAL-ENERGY SURFACES; GAS-PHASE REACTIONS;
   G2 AB-INITIO; NEUTRALIZATION-REIONIZATION; METHOXYMETHYL CATION;
   FRAGMENTATION PROCESSES; IONIZATION ENERGIES; UNIMOLECULAR DECAY;
   PROTON AFFINITIES
AB Gas-phase [C2H5S](+) ions obtained by electron impact ionization from
   CH3SC2H5 at 13 eV undergo three distinct low-pressure ion/molecule
   reactions with the parent neutral: proton transfer, charge transfer,
   and hydride abstraction. The kinetics of these reactions studied by
   FT-ICR techniques clearly suggests the [C2H5S](+) species to be a
   mixture of isomeric ions. While proton transfer and hydride abstraction
   are consistent with CH3CHSH+ and CH3SCH2+ reagent ions, the observed
   charge transfer strongly argues for the presence of thioethoxy cation,
   CH3CH2S+, predicted to be stable only in the triplet state. Charge
   transfer reactions only occur with substrates having an IE below 8.8 eV
   and thus yield an upper limit for he recombination energy of the
   CH3CH2S+ ions. Studies using CD3SC2H5 show that charge-transfer
   reactions are promoted by cations originating from a sulfur-methyl
   carbon bond cleavage. Ab initio calculations at several levels of
   theory predict that CH3CH2S+ ions are only stable in the triplet state.
   Calculations along the fragmentation pathway of the molecular ion
   reveal the tendency to generate triplet CH3CH2S+ ions upon cleavage of
   the sulfur-methyl carbon bond. Calculations were also carried out to
   determine the lifetime of triplet CH3CH2S+ using nonadiabatic RRKM
   theory. The exothermic or near thermoneutral spin-forbidden
   unimolecular isomerizations and dissociations were first characterized
   at different levels of theory, and the minimum energy crossing points
   (MECPs) for all the channels were identified at the CCSD(T) level. The
   probability for surface hopping was then estimated from the spin-orbit
   matrix elements. The calculated unimolecular dissociation rate
   constants predict that triplet CH3CH2S+ ions with less than 10 kcal
   mol(-1) of internal energy and at any level of rotational excitation
   should be long-lived, and strongly support the experimental
   observations.
C1 Univ Sao Paulo, Inst Chem, BR-05513970 Sao Paulo, Brazil.
   Univ Rome La Sapienza, Dipartimento Chim, I-00185 Rome, Italy.
RP Riveros, JM, Univ Sao Paulo, Inst Chem, Caisa Postal 26077, BR-05513970
   Sao Paulo, Brazil.
CR APELOIG Y, 1988, J CHEM SOC P2, P625
   ASCHI M, 1998, CHEM COMMUN     0307, P531
   ASCHI M, 1999, J CHEM PHYS, V111, P6759
   AUDIER HE, 1994, ORG MASS SPECTROM, V29, P176
   AUDIER HE, 1997, J MASS SPECTROM, V32, P201
   AUE DH, 1980, J AM CHEM SOC, V102, P5151
   BAKER J, 1993, CHEM PHYS LETT, V213, P257
   BARRIENTOS C, 1999, CHEM PHYS LETT, V306, P168
   BORTOLINI O, 1999, TETRAHEDRON LETT, P6073
   BRODBELT J, 1991, ANAL CHEM, V63, P1205
   BROER WJ, 1979, ORG MASS SPECTROM, V14, P543
   BRONSTRUP M, 1998, EUR J INORG CHEM OCT, P1529
   BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR, P276
   BUTKOVSKAYA NI, 1999, J PHYS CHEM A, V103, P6921
   BUTLER JJ, 1983, J AM CHEM SOC, V105, P3451
   CACACE F, 1999, SCIENCE, V285, P81
   CASERIO MC, 1982, J ORG CHEM, V47, P2940
   CHEUNG YS, 1998, J ELECTRON SPECTROSC, V97, P115
   CHIU SW, 1997, THEOCHEM-J MOL STRUC, V397, P87
   CHIU SW, 1998, THEOCHEM-J MOL STRUC, V452, P97
   CHIU SW, 1999, J MOL STRUC-THEOCHEM, V490, P109
   CURTISS LA, 1992, J CHEM PHYS, V97, P6766
   CURTISS LA, 1995, J CHEM PHYS, V102, P3292
   DARGEL TK, 1999, INT J MASS SPECTROM, V187, P925
   DEMARE GR, 1983, B SOC CHIM BELG, V92, P553
   DUNBAR RC, 1973, J AM CHEM SOC, V95, P7200
   FILSAK G, 1999, J MASS SPECTROM, V34, P601
   FLAMMANG R, 1994, J AM CHEM SOC, V116, P2005
   FLAMMANG R, 1999, CHEM PHYS LETT, V300, P183
   FREITAS MA, 1998, INT J MASS SPECTROM, V175, P107
   FRISCH MJ, 1995, GAUSSIAN 94
   GAUMANN T, 1990, HELV CHIM ACTA, V73, P2218
   GAUMANN T, 1991, J AM SOC MASS SPECTR, V2, P372
   GRIFFITHS WJ, 1989, ORG MASS SPECTROM, V24, P849
   HARVEY JN, 1998, THEOR CHEM ACC, V99, P95
   HASE W, 1996, UNIMOLECULAR REACTIO
   HUNTER EPL, 1998, J PHYS CHEM REF DATA, V27, P413
   INGEMANN S, COMMUNICATION
   IRIKURA KK, 1999, J AM CHEM SOC, V121, P7689
   KENDALL RA, 1992, J CHEM PHYS, V96, P6796
   KEYES BG, 1968, J AM CHEM SOC, V90, P5671
   KINTER MT, 1986, J AM CHEM SOC, V108, P1797
   KOGA N, 1985, CHEM PHYS LETT, V119, P371
   KOGA N, 1994, CHEM PHYS LETT, V223, P269
   KOSEKI S, 1995, J PHYS CHEM-US, V99, P12764
   KUHNS DW, 1994, J PHYS CHEM-US, V98, P4845
   LORQUET JC, 1988, J PHYS CHEM-US, V92, P4778
   MA ZX, 1993, CHEM PHYS LETT, V213, P250
   MORGON NH, 1996, J PHYS CHEM-US, V100, P18048
   MORGON NH, 1997, J AM CHEM SOC, V119, P1708
   NAKAMURA H, 1997, ANNU REV PHYS CHEM, V48, P299
   NIBBERING NMM, 1993, CHEM SULFUR CONTAINI, P293
   NIKITIN EE, 1996, ATOMIC MOL OPTICAL P, P561
   NOBES RH, 1984, J AM CHEM SOC, V106, P2774
   OKADA S, 1987, J AM CHEM SOC, V109, P295
   PAU JK, 1978, J AM CHEM SOC, V100, P3838
   POLCE MJ, 1995, J AM SOC MASS SPECTR, V6, P1030
   RIVEROS JM, 1991, RAPID COMMUN MASS SP, V5, P387
   SADILEK M, 1999, INT J MASS SPECTROM, V185, P639
   SADILEK M, 1999, INT J MASS SPECTROM, V187, P639
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1910
   SENA M, 1997, J PHYS CHEM A, V101, P4384
   SHIU SW, 1999, J MOL STRUCT THEOCHE, V468, P21
   SMITH D, 1992, CHEM REV, V92, P1473
   STALEY RH, 1974, J AM CHEM SOC, V96, P1260
   SUMATHI R, 1999, J PHYS CHEM A, V103, P772
   TOMER KB, 1973, J AM CHEM SOC, V95, P5335
   VANAMSTERDAM MW, 1993, ORG MASS SPECTROM, V28, P30
   VANDEGRAAF B, 1977, J AM CHEM SOC, V99, P6806
   VANDEGRAAF B, 1977, J AM CHEM SOC, V99, P6810
   VANDEGRAAF B, 1980, ADV MASS SPECTROM A, V8, P678
   WILSON PF, 1994, INT J MASS SPECTROM, V132, P149
   YARKONY DR, 1995, MODERN ELECT STRUCTU, P642
   YARKONY DR, 1996, ATOMIC MOL OPTICAL P, P357
   ZAPPEY HW, 1992, INT J MASS SPECTROM, V115, P193
   ZAPPEY HW, 1992, J AM SOC MASS SPECTR, V3, P515
NR 76
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 18
PY 2000
VL 122
IS 41
BP 10133
EP 10142
PG 10
SC Chemistry, Multidisciplinary
GA 368FT
UT ISI:000090107600031
ER

PT J
AU De Oliveira, MA
   Duarte, HA
   Pernaut, JM
   De Almeida, WB
TI Energy gaps of alpha,alpha '-substituted oligothiophenes from
   semiempirical, ab initio, and density functional methods
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR-ORBITAL THEORY; EXTENDED BASIS-SETS; ORGANOMETALLIC
   COMPOUNDS; ELECTRONIC-STRUCTURE; THIOPHENE OLIGOMERS;
   VIBRATIONAL-SPECTRA; BIPOLARONIC DEFECT; TRANSITION-METALS;
   2,2'-BITHIOPHENE; POLYTHIOPHENE
AB Energy gaps have been estimated for -OMe and -NO2
   alpha,alpha'-substituted oligothiophenes up to six monomers using
   semiempirical, Hartree-Fock and density functional methods. Scaled
   values calculated using noncorrelated methods are in good agreement
   with the experimental values, and so were nonscaled estimates predicted
   by density functional methods. Error bars are ca. 0.2 eV for all II
   oligothiophenes studied. The influence of the quality of the basis set
   on the energy estimates is discussed. The discrepancy observed for the
   -OMe- and -NO2-substituted sexithiophene result with respect to the
   experimental value is discussed and has been attributed to a charge
   transfer in the molecule. The Delta SCF approach has been found to be
   an alternative way to estimate energy gaps for molecular systems where
   Koopmans' theorem may not provide good results. Implications for
   predictions of HOMO-LUMO gaps of pi-conjugated systems are discussed
   and analyzed in terms of designing new materials with controlled
   properties.
C1 Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol, BR-31270 Belo Horizonte, MG, Brazil.
   Univ Fed Minas Gerais, ICEx, Lab Novos Mat, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, UFJF, ICE, Dept Quim, Campus Univ, Juiz de Fora, MG,
   Brazil.
CR BECKE AD, 1993, J CHEM PHYS, V98, P1372
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BECKER RS, 1995, PURE APPL CHEM, V67, P9
   BINNING RC, 1990, J COMPUT CHEM, V11, P1206
   BOLIVARMARINEZ LE, 1996, J PHYS CHEM-US, V100, P11029
   BREAS J, 1985, J CHEM PHYS, V82, P3811
   BREDAS JL, 1984, PHYS REV B, V29, P6761
   BREDAS JL, 1985, J CHEM PHYS, V82, P3808
   BREDAS JL, 1991, CONJUGATED POLYM NOV
   CASIDA ME, 1996, DEMON SOFTWARE DEMON
   DEOLIVEIRA MA, 2000, PHYS CHEM CHEM PHYS, V2, P3373
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DIRAC PAM, 1930, P CAMB PHILOS SOC, V26, P376
   DOBBS KD, 1986, J COMPUT CHEM, V7, P359
   DOBBS KD, 1987, J COMPUT CHEM, V8, P861
   DOBBS KD, 1987, J COMPUT CHEM, V8, P880
   DUARTE HA, IN PRESS J CHEM PHYS
   EHRENDORFER C, 1994, J PHYS CHEM-US, V98, P7492
   EHRENDORFER C, 1995, J MOL STRUCT, V349, P417
   EHRENDORFER C, 1995, J PHYS CHEM-US, V99, P5341
   EHRENDORFER C, 1995, VIB SPECTROSC, V8, P293
   FICHOU D, 1990, SYNTHETIC MET, V39, P243
   FORNI A, 1997, J PHYS CHEM A, V101, P4437
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GARCIA P, 1993, J PHYS CHEM-US, V97, P513
   GORDON MS, 1980, CHEM PHYS LETT, V76, P163
   GUNNARSSON O, 1976, PHYS REV B, V13, P4274
   IRLE S, 1995, J CHEM PHYS, V98, P7492
   JANAK JF, 1978, PHYS REV B, V18, P7165
   KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
   KOFRANEK M, 1992, J MOL STRUCT THEOCHE, V259, P181
   LAHTI PM, 1987, MACROMOLECULES, V20, P2023
   LEE C, 1988, PHYS REV B, V37, P785
   LEVY M, 1999, PHYS REV A, V59, P1687
   MULLEN K, 1999, ELECT MAT OLIGOMER A
   NALWA HS, 1997, ORGANIC CONDUCTIVE M
   ORTI E, 1995, J PHYS CHEM-US, V99, P4955
   PERNAUT JM, 1994, J CHIM PHYS PCB, V91, P433
   QUATTROCCHI C, 1993, CHEM PHYS LETT, V208, P120
   RONCALI J, 1992, CHEM REV, V92, P711
   SAMDAL S, 1993, SYNTHETIC MET, V59, P259
   SCOTHEIM TA, 1998, HDB CONDUCTING POLYM
   SLATER JC, 1951, PHYS REV, V81, P385
   SLATER JC, 1974, QUANTUM THEORY MOL S, V4
   STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
   STEWART JJP, MOPAC 93 MANUAL
   VIRUELA PM, 1998, INT J QUANTUM CHEM, V70, P303
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
NR 48
TC 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 7
PY 2000
VL 104
IS 35
BP 8256
EP 8262
PG 7
SC Chemistry, Physical
GA 359HC
UT ISI:000089604600013
ER

PT J
AU Tormena, CF
   Rittner, R
   Abraham, RJ
   Basso, EA
   Pontes, RM
TI Conformational analysis. Part 33. An NMR, solvation and theoretical
   investigation of conformational isomerism in
   N,N-dimethylfluoroacetamide and N,N-dimethyl-alpha-fluoropropionamide
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID INTERNAL-ROTATION; VIBRATIONAL ASSIGNMENT; ABINITIO CALCULATIONS;
   BARRIERS; STABILITY; CHLORIDE; FLUOROACETONE; SPECTRA; RAMAN
AB The solvent and temperature dependence of the H-1 and C-13 NMR spectra
   of N,N-dimethylfluoroacetamide (DMFA) and
   N,N-dimethyl-alpha-fluoropropionamide (DMFP) are reported and the
   (5)J(CF), (1)J(CF) and (4)J(CF) couplings analysed by solvation theory.
   Density function theory (DFT) at the B3LYP/6-311+G(d,p) level with ZPE
   (zero point energy) corrections was used to obtain the conformer
   geometries. In DMFA, the DFT method gave only two minima for the cis
   (F-C-C=O, 0 degrees) and gauche (F-C-C=O, 140.6 degrees) rotamers. The
   trans rotamer was not a minimum in the energy surface. Assuming only
   the cis and gauche forms, the observed couplings when analysed by
   solvation theory gave the energy difference (E-cis - E-g) of 2.5 kcal
   mol(-1) in the vapour phase, (cf. the ab initio value of 2.3 kcal
   mol(-1)) decreasing to 0.87 kcal mol(-1) in CCl4 and to -1.29 kcal
   mol(-1) in DMSO. In DMFP the ab initio calculations gave three minima;
   the cis (F-C-C=O, 30.4 degrees), gauche-1 (F-C-C=O, 144.7 degrees) and
   gauche-2 (F-C-C=O, -124.1 degrees) rotamers with (E-cis - E-g2) equal
   to 2.5 kcal mol(-1) and (E-g1 - E-g2) equal to 0.3 kcal mol(-1). The
   observed couplings were analysed by solvation theory assuming one
   "average" gauche conformer to give (E-cis - E-g(AV)) equal to 2.1 kcal
   mol(-1) in the vapour phase, decreasing to 0.83 kcal mol(-1) in CCl4
   and to -1.11 kcal mol(-1) in DMSO.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
   Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
   Univ Estadual Maringa, Dept Quim, BR-87020900 Maringa, Parana, Brazil.
RP Rittner, R, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
   BR-13083970 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
   ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
   ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
   ABRAHAM RJ, 1996, J CHEM SOC PERK  APR, P533
   ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
   ABRAMSON KH, 1966, CAN J CHEM, V44, P1685
   BANKS JW, 1999, J CHEM SOC PERK  NOV, P2409
   DURIG JR, 1989, J CHEM PHYS, V90, P6840
   DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
   DURIG JR, 1991, J MOL STRUCT, V242, P179
   DURIG JR, 1991, J RAMAN SPECTROSC, V22, P141
   EWING DF, 1972, J CHEM SOC P2, P701
   FORESMAN JB, 1993, EXPLORING CHEM ELECT
   KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P3572
   KLAPSTEIN D, 1988, CAN J SPECTROSC, V33, P161
   PHAN HV, 1993, SPECTROCHIM ACTA A, V49, P1967
   PITTMAN CU, 1980, MACROMOLECULES, V13, P1031
   ROSS BD, 1985, J PHYS CHEM-US, V89, P836
   SAEGEBARTH E, 1967, J CHEM PHYS, V46, P3088
   SAEGEBARTH E, 1970, J CHEM PHYS, V52, P3555
   SAUNDERS BC, 1948, J CHEM SOC, P1773
   TAKEUCHI Y, 1991, J CHEM SOC PERK  JAN, P49
   TORMENA CF, 2000, THESIS U ESTADUAL CA
   VANEIJCK BP, 1972, J MOL STRUCT, V11, P67
   WAYLAND BB, 1966, J AM CHEM SOC, V88, P2455
NR 25
TC 18
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 1470-1820
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2000
IS 10
BP 2054
EP 2059
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 358HU
UT ISI:000089553200009
ER

PT J
AU Cuccovia, IM
   da Silva, MA
   Ferraz, HMC
   Pliego, JR
   Riveros, JM
   Chaimovich, H
TI Revisiting the reactions of nucleophiles with arenediazonium ions:
   dediazoniation of arenediazonium salts in aqueous and micellar
   solutions containing alkyl sulfates and alkanesulfonates and an ab
   initio analysis of the reaction pathway
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID COUNTERION SELECTIVITY; ARYL CATIONS; TETRAFLUOROBORATE;
   2-METHYLBENZENEDIAZONIUM; 3-METHYLBENZENEDIAZONIUM; DECOMPOSITION;
   MECHANISM; RATES; WATER; MODEL
AB Dediazoniation of 2,4,6-trimethylbenzenediazonium tetrafluoroborate,
   1-ArN2BF4 (for the z-Ar compounds described in this paper, z refers to
   the length of the carbon chain of the substituent at C4 of the benzene
   ring), in aqueous solutions containing sodium methyl sulfate, NaMeSO4,
   or sodium methanesulfonate, NaMeSO3, yields 2,4,6-trimethylphenol,
   1-ArOH, 2,4,6-trimethylphenyl methyl sulfate, 1-ArOSO3Me and
   2,4,6-trimethylphenyl methanesulfonate, 1-ArO3SMe, respectively. The
   relative yields of 1-ArO3SMe or 1-ArOSO3Me and 1-ArOH depend on the
   NaMeSO4 or NaMeSO3 concentrations.
   4-n-Hexadecyl-2,6-dimethylbenzenediazonium tetrafluoroborate,
   16-ArN2BF4, was used to determine the local head group concentration in
   sodium dodecyl sulfate and sodium dodecanesulfonate micelles by
   chemical trapping comparing the relative product yields with those
   obtained in water using the short chain analogs.
   Ab initio calculations of the spontaneous dediazoniation of
   phenyldiazonium ion in the gas phase, as well as in aqueous solution
   with, or without, added MeSO3-, yield potential energy surfaces for the
   reaction. For this model the calculated and experimental values of the
   spontaneous dediazoniation rate constants in aqueous solution, as well
   as the product composition, were similar to those obtained with
   1-ArN2+. These results suggest that in aqueous solution nucleophiles
   can only compete with water if a diazonium ion . nucleophile complex is
   formed prior to N-2 loss. Calculations show that the addition of
   nucleophiles to the arenediazonium ion occurs without a saddle point in
   the potential energy surface, suggesting that the free phenyl cation is
   not an obligatory intermediate in aqueous solutions.
C1 Univ Sao Paulo, Inst Quim, Dept Bioquim, BR-05508900 Sao Paulo, Brazil.
   Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05508900 Sao Paulo, Brazil.
RP Cuccovia, IM, Univ Sao Paulo, Inst Quim, Dept Bioquim, Av Prof Lineu
   Prestes 748, BR-05508900 Sao Paulo, Brazil.
CR AMBROZ HB, 1979, CHEM SOC REV, V8, P353
   BERGSTROM RG, 1976, J AM CHEM SOC, V98, P3301
   BRAVODIAZ C, 1998, LANGMUIR, V14, P5098
   BRAVODIAZ C, 1999, LANGMUIR, V15, P282
   BUNCEL E, 1978, BIOORG CHEM, V7, P1
   BUNTON CA, 1951, J CHEM SOC, P1872
   CANNING PSJ, 1999, J CHEM SOC PERK T 2, P2735
   CHALKLEY GR, 1970, J CHEM SOC C, P682
   CHAUDHURI A, 1993, J AM CHEM SOC, V115, P8362
   CORREIA VR, 1992, J AM CHEM SOC, V114, P2144
   CROSSLEY ML, 1940, J AM CHEM SOC, V62, P1400
   CUCCOVIA IM, 1997, LANGMUIR, V13, P5032
   CUCCOVIA IM, 1997, LANGMUIR, V13, P647
   DAS PK, 1999, LANGMUIR, V15, P981
   EDWARDS JO, 1962, J AM CHEM SOC, V84, P16
   FENDLER JH, 1975, CATALYSIS MICELLAR M
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FRISCH MJ, 1995, GAUSSIAN 94
   GARCIAMEIJIDE MC, 1998, INT J CHEM KINET, V30, P31
   GLASER R, 1995, J ORG CHEM, V60, P7518
   GUTHRIE JP, 1973, CAN J CHEM, V51, P3494
   HEGARTY AF, 1978, CHEM DIAZONIUM DIA 2
   KICE JL, 1966, J AM CHEM SOC, V88, P5242
   KURZ JL, 1962, J PHYS CHEM-US, V66, P2239
   LEWIS ES, 1962, J AM CHEM SOC, V84, P3847
   LEWIS ES, 1969, J AM CHEM SOC, V91, P419
   LOUGHLIN JA, 1990, COLLOID SURFACE, V48, P123
   LOWRY TH, 1987, MECH THEORY ORGANIC, P367
   NESMEYANOV AN, 1957, TETRAHEDRON, V1, P145
   PAZOLLORENTE R, 1999, INT J CHEM KINET, V31, P73
   PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
   PLIEGO JR, 1999, PCCP PHYS CHEM CH PH, V1, P1031
   ROMSTED LS, 1998, J AM CHEM SOC, V120, P10046
   SAUNDERS KH, 1985, AROMATIC DIAZO COMPO
   SCAIANO JC, 1983, J PHOTOCHEM, V23, P269
   SCHALES O, 1941, J BIOL CHEM, V140, P879
   SOLDI V, 2000, LANGMUIR, V16, P59
   SWAIN CG, 1975, J AM CHEM SOC, V97, P783
   SWAIN CG, 1975, J AM CHEM SOC, V97, P796
   ZOLLINGER H, 1994, DIAZO CHEM, V1
NR 40
TC 13
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 1470-1820
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2000
IS 9
BP 1896
EP 1907
PG 12
SC Chemistry, Organic; Chemistry, Physical
GA 356CM
UT ISI:000089426800021
ER

PT J
AU Martins, JBL
   Taft, CA
   Lie, SK
   Longo, E
TI Lateral interaction of CO and H-2 molecules on ZnO surfaces: an AM1
   study
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE ZnO surface; (ZnO)(60) clusters; CO and H-2 adsorption; AM1
   semi-empirical model
ID LARGE CLUSTER-MODELS; ROOM-TEMPERATURE; ZINC-OXIDE; AB-INITIO;
   POTENTIAL DEPENDENCE; METHANOL SYNTHESIS; BASIS-SET; ADSORPTION;
   HYDROGEN; PHOTOELECTRON
AB We have studied the effects of lateral interactions for CO and H-2
   adsorbed on large (ZnO)(60) cluster models. The calculations were
   performed with the AM1 semi-empirical method. The geometric parameters
   of the adsorbed molecules were fully optimized. CO interacts with the
   zinc cation located at the site having the lowest coordination at the
   edge sites between the (0001) and (10 (1) over bar 0) surfaces, The
   binding energy is increased as we increase the number of adsorbed CO
   molecules on the ZnO surface. For H-2 molecular interaction, the
   calculated energy gaps and ionization potentials are modified relative
   to the bare cluster. We have analyzed the optimized geometric
   parameters, charge transfer as well as the density of states and
   compared our results with available experimental data such as density
   of states, vibrational frequencies, adsorption energies and surface
   charge. (C) 2000 Elsevier Science B.V. All rights reserved.
C1 Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
   Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290180 Rio De Janeiro, Brazil.
   Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil.
   Univ Fed Sao Carlos, Dept Quim, BR-13560905 Sao Carlos, SP, Brazil.
RP Martins, JBL, Univ Brasilia, Inst Quim, Caixa Postal 04478, BR-70919970
   Brasilia, DF, Brazil.
CR ABRAHAMS SC, 1969, ACTA CRYSTALLOGR B, V25, P1233
   ALMEIDA AL, 1998, J CHEM PHYS, V109, P3671
   ALMEIDA AL, 1998, THEOCHEM-J MOL STRUC, V426, P199
   ANDERSON AB, 1986, J AM CHEM SOC, V108, P1385
   BOCCUZZI F, 1978, J CATAL, V51, P150
   BOCCUZZI F, 1978, J CATAL, V51, P160
   BOCCUZZI F, 1996, J PHYS CHEM-US, V100, P3617
   BOLIS V, 1989, J CHEM SOC FARAD T 1, V85, P855
   CHANG CC, 1973, J PHYS CHEM-US, V77, P2634
   DAMICO KL, 1983, J AM CHEM SOC, V105, P6380
   DENT AL, 1969, J PHYS CHEM-US, V73, P3772
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   FUBINI B, 1982, J CHEM SOC F1, V78, P153
   GAY RR, 1980, J AM CHEM SOC, V102, P6752
   GHIOTTI G, 1993, SURF SCI A, V287, P228
   GRIFFIN GL, 1982, J CHEM PHYS, V77, P3751
   HUSSAIN G, 1987, SPECTROCHIM ACTA A, V43, P1631
   HUSSAIN G, 1990, J CHEM SOC FARADAY T, V86, P1615
   KLIER K, 1982, ADV CATAL, V31, P243
   LAI WJ, 1992, J MOL STRUCT THEOCHE, V257, P217
   LAVALLEY JC, 1994, SURF SCI, V315, P112
   LIN JY, 1991, J AM CHEM SOC, V113, P8312
   MARTINS JBL, 1994, J MOL STRUCT, V303, P19
   MARTINS JBL, 1995, THEOCHEM, V330, P301
   MARTINS JBL, 1995, THEOCHEM, V330, P347
   MARTINS JBL, 1995, THEOCHEM-J MOL STRUC, V335, P167
   MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
   MARTINS JBL, 1996, THEOCHEM-J MOL STRUC, V363, P249
   MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V397, P147
   MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V398, P457
   MARTINS JBL, 1998, INT J QUANTUM CHEM, V70, P367
   MAVRIDIS A, 1989, J AM CHEM SOC, V111, P2482
   MINOT C, 1996, SURF SCI, V346, P283
   MINOT C, 1998, THEOCHEM-J MOL STRUC, V424, P119
   MOLLER PJ, 1995, SURF SCI, V323, P102
   PELTIER F, 1996, J CHIM PHYS PCB, V93, P1376
   SCARANO D, 1992, SURF SCI, V276, P281
   SENSATO FR, 1997, THEOCHEM-J MOL STRUC, V394, P259
   SHANNO DF, 1985, J OPTIMIZ THEORY APP, V46, P87
   SOLOMON EI, 1993, CHEM REV, V93, P2623
   STEWART JP, 1983, QCPE B, V3, P43
   ZHANPEISOV NU, 1994, J STRUCT CHEM, V35, P9
NR 42
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD AUG 25
PY 2000
VL 528
BP 161
EP 170
PG 10
SC Chemistry, Physical
GA 355DN
UT ISI:000089370600017
ER

PT J
AU de Almeida, NG
   Napolitano, R
   Moussa, MHY
TI Phenomenological-operator approach to dissipation in cavity quantum
   electrodynamics
SO PHYSICAL REVIEW A
LA English
DT Article
ID PODOLSKY-ROSEN CHANNELS; EXPERIMENTAL REALIZATION; TELEPORTATION;
   STATE; DECOHERENCE; METER
AB We present a phenomenological-operator approach to describe energy
   dissipation in cavity QED phenomena. This approach, developed for an
   absolute-zero and a thermal environment, considerably simplifies the
   introduction of the inevitable errors due to the environmental degrees
   of freedom when describing processes involving dispersive atom-field
   interactions. The main result in the present work consists in
   furnishing a straightforward technique to estimate the fidelity
   resulting from dispersive atom-field interactions, precluding the
   necessity of performing the usually extensive ab initio calculations.
   Furthermore, we expect that the present work can help us account for
   dissipation in resonant atom-field interactions and even help us
   achieve a general phenomenological approach to estimate the effects of
   dissipation in whichever system. To illustrate the universal
   applicability of the present technique, we calculate the fidelity of a
   mesoscopic quantum superposition state engineered in a lossy cavity,
   considering also the excited-state spontaneous decay of the required
   atom. For the case of a stable atomic excited state, the fidelity
   computed here is in agreement with a recently announced exact
   calculation.
C1 Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Paulo, Brazil.
   Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Paulo, Brazil.
RP de Almeida, NG, Univ Fed Sao Carlos, Dept Fis, Via Washington Luis,Km
   235, BR-13565905 Sao Paulo, Brazil.
CR ALMEIDA NG, UNPUB
   BENNETT CH, 1993, PHYS REV LETT, V70, P1895
   BOSCHI D, 1998, PHYS REV LETT, V80, P1121
   BOUWMEESTER D, 1997, NATURE, V390, P575
   BRIEGEL HJ, QUANTPH9712027
   BRIEGEL HJ, 1998, PHYS REV LETT, V81, P5932
   BRUNE M, 1992, PHYS REV A, V45, P5193
   BRUNE M, 1996, PHYS REV LETT, V76, P1800
   BRUNE M, 1996, PHYS REV LETT, V77, P4887
   CALDEIRA AO, 1983, ANN PHYS-NEW YORK, V149, P374
   CALDEIRA AO, 1983, PHYSICA A, V121, P587
   CHUANG IL, 1998, NATURE, V393, P143
   CIRAC JI, 1997, PHYS REV LETT, V78, P3221
   DEALMEIDA NG, IN PRESS PHYS REV A
   DEOLIBEIRA MC, IN PRESS PHYS REV A
   FURUSAWA A, 1998, SCIENCE, V282, P706
   HOLLAND MJ, 1991, PHYS REV LETT, V67, P1716
   MAITRE X, 1997, PHYS REV LETT, V79, P769
   MOLLOW BR, 1967, PHYS REV, V160, P1076
   MOLLOW BR, 1967, PHYS REV, V160, P1097
   MOUSSA MHY, 1996, PHYS REV A, V54, P4661
   MOUSSA MHY, 1997, PHYS REV A, V55, P3287
   PELLIZZARI T, 1997, PHYS REV LETT, V79, P5242
   SCULLY MO, 1997, QUANTUM OPTICS
   SHOR PW, 1994, P 35 ANN S FDN COMP, P124
   VANENK SJ, 1997, PHYS REV LETT, V79, P5178
   VITALI D, 1997, PHYS REV LETT, V79, P2442
   VITALI D, 1999, PHYS REV A, V59, P4178
   VONNEUMANN J, 1995, MATH FDN QUANTUM MEC
NR 29
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD SEP
PY 2000
VL 62
IS 3
AR 033815
DI ARTN 033815
PG 9
SC Physics, Atomic, Molecular & Chemical; Optics
GA 353CD
UT ISI:000089255400094
ER

PT J
AU Miotto, R
   Srivastava, GP
   Ferraz, AC
TI Effects of gradient and non-linear core corrections on structural and
   electronic properties of GaN bulk and (001) surfaces
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE density functional calculations; pseudopotential; surface relaxation;
   surface states
ID MOLECULAR-BEAM EPITAXY; DENSITY-FUNCTIONAL CALCULATIONS; GROUP-III
   NITRIDES; GALLIUM NITRIDE; VALENCE-BAND; 3D STATES; AB-INITIO;
   BETA-GAN; GAAS; SEMICONDUCTORS
AB We have investigated the effects of density gradient and non-linear
   core corrections, within the first-principles pseudopotential method,
   on structural and electronic properties of GaN bulk and (0 0 1)
   surfaces. We find that the combined use of the generalized gradient
   approximation and non-linear core correction for exchange and
   correlation (NGGA) produces important changes in structural properties.
   The calculated bulk valence band electronic structure shows much better
   agreement with experiment when the NGGA scheme is used than when the Ga
   3d electrons are considered explicitly as a part of the valence shell.
   We have discussed the atomic structure and chemical bonding on the
   gallium terminated (1 x 1), (2 x 2), c(2 x 2) and (1 x 4) cubic-GaN(0 0
   1) surface reconstructions, and find that the most stable of these,
   viz. the (1 x 4) structure, is characterised by a linear Ga tetramer
   with an energy gain of 0.29 eV per (1 x 1) cell over the
   unreconstructed (1 x 1) structure in agreement with previous results by
   Neugebauer and coworkers. (C) 2000 Elsevier Science B.V. All rights
   reserved.
C1 Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Miotto, R, Univ Exeter, Sch Phys, Stocker Rd, Exeter EX4 4QL, Devon,
   England.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   BRANDT O, 1995, PHYS REV B, V52, R2253
   BRANDT O, 1996, PHYS REV B, V54, P4432
   BYKHOVSKI AD, 1996, APPL PHYS LETT, V69, P2397
   DERKELLEN SB, 1996, PHYS REV B, V54, P11187
   DING SA, 1996, J VAC SCI TECHNOL  1, V14, P819
   EDGAR JH, 1994, EMIS DATAREVIEW SERI
   ENGLEL GE, 1990, PHYS REV B, V41, P7876
   FEUILLET G, 1997, APPL PHYS LETT, V70, P1025
   FIORENTINI V, 1993, PHYS REV B, V47, P13353
   GARCIA A, 1993, PHYS REV B, V47, P6751
   GROSSNER U, 1998, PHYS REV B, V58, R1722
   HUNT RW, 1993, PHYSICA B, V185, P415
   JENKINS SJ, 1994, J PHYS-CONDENS MAT, V6, P8781
   KARCH K, 1998, PHYS REV B, V57, P7043
   LAMBRECHT WRL, 1994, PHYS REV B, V50, P14155
   LEE GD, 1995, PHYS REV B, V52, P1459
   LIU H, 1993, J APPL PHYS, V74, P6124
   LOUIE SG, 1982, PHYS REV B, V26, P1738
   LU WC, 1993, J PHYS-CONDENS MAT, V5, P875
   MIN BJ, 1992, PHYS REV B, V45, P1159
   MIOTTO R, 1998, PHYS REV B, V58, P7944
   MIOTTO R, 1999, PHYS REV B, V59, P3008
   NAKAMURA S, 1994, APPL PHYS LETT, V64, P1687
   NEUGEBAUER J, 1994, PHYS REV B, V50, P8067
   NEUGEBAUER J, 1998, PHYS REV LETT, V80, P3092
   NORTHRUP JE, 1996, PHYS REV B, V53, P10477
   ORTON JW, 1998, REP PROG PHYS, V61, P1
   PAISLEY MJ, 1989, J VAC SCI TECHNOL A, V7, P701
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   QTEISH A, 1991, PHYS REV B, V43, P4229
   RAMIREZFLORES G, 1994, PHYS REV B, V50, P8433
   SHIRLEY EL, 1997, PHYS REV B, V56, P6648
   STADELE M, 1999, PHYS REV B, V59, P10031
   STAGARESCU CB, 1996, PHYS REV B, V54, P17335
   STAMPFL C, 1999, PHYS REV B, V59, P5521
   STRASSER T, 1997, PHYS REV B, V56, P13326
   TROULLIER N, 1991, PHYS REV B, V43, P1993
   VOGEL D, 1997, PHYS REV B, V55, P12836
   WANG Y, 1991, PHYS REV B, V43, P8911
   WEAST RC, 1978, HDB CHEM PHYSICS
   YANG H, 1996, PHYS STATUS SOLIDI B, V194, P109
NR 44
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD OCT
PY 2000
VL 292
IS 1-2
BP 97
EP 108
PG 12
SC Physics, Condensed Matter
GA 353YX
UT ISI:000089304000012
ER

PT J
AU Esteves, PM
   Ramirez-Solis, A
   Mota, CJA
TI A theoretical study of alkane protonation in HF/SbF5 superacid system
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE superacid; carbonium ions; alkane; DFT
ID AB-INITIO; ELECTROSTATIC POTENTIALS; ELECTROPHILIC REACTIONS; DEUTERIUM
   EXCHANGE; CARBONIUM-IONS; CH5+; CARBOCATIONS; CHEMISTRY; DENSITY; ENERGY
AB Ab initio calculations for the protonation of the C-H and C-C bonds of
   methane, ethane, propane and isobutane by a superacid moiety was
   carried out. For the C-H protonation (H/H exchange) the transition
   state resembles an H-carbonium ion coordinated with the superacid. The
   activation energy for the H/H exchange was about 16 kcal.mol(-1), at
   B3LYP/6-31++G"* + RECP (Sb) level, regardless the type of C-H bond
   being protonated. For the C-C protonation the activation energy depends
   on the structure of the hydrocarbon and was always higher than the
   activation energy for C-H protonation, indicating a higher steric
   demand.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
   Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Esteves, PM, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim,
   Cidade Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
   BERGNER A, 1993, MOL PHYS, V80, P1431
   BERKESSEL A, 1995, ANGEW CHEM INT EDIT, V34, P2247
   BISCHOF PK, 1975, J AM CHEM SOC, V97, P2278
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
   CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
   COLLINS SJ, 1994, CHEM PHYS LETT, V228, P246
   COLLINS SJ, 1996, J CHEM SOC FARADAY T, V92, P4347
   DYCZMONS V, 1970, CHEM PHYS LETT, V5, P361
   ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
   ESTEVES PM, 1998, TOP CATAL, V6, P163
   ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
   ESTEVES PM, 1999, J PHYS CHEM B, V103, P10417
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   HIRAO K, 1984, CHEM PHYS, V89, P237
   HOGEVEEN H, 1967, RECL TRAV CHIM PAY B, V86, P1313
   HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P371
   HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P703
   KIM SJ, 1993, J PHYS CHEM-US, V97, P12232
   KOHLER HJ, 1978, CHEM PHYS LETT, V58, P175
   KOLBUSZEWSKI M, 1996, J CHEM PHYS, V105, P3649
   MARX D, 1995, NATURE, V375, P216
   MOTA CJA, 1992, J AM CHEM SOC, V114, P1121
   MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
   MULLER H, 1997, J CHEM PHYS, V106, P1863
   OLAH GA, 1968, J AM CHEM SOC, V90, P2726
   OLAH GA, 1972, J AM CHEM SOC, V94, P807
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
   OLAH GA, 1973, J AM CHEM SOC, V95, P4960
   OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
   POIRIER RA, 1982, J MOL STRUCT THEOCHE, V88, P343
   RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
   SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
   SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
   SCUSERIA GE, 1993, NATURE, V366, P512
   SOMMER J, 1994, J AM CHEM SOC, V116, P5491
NR 37
TC 8
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD JUL-AUG
PY 2000
VL 11
IS 4
BP 345
EP 348
PG 4
SC Chemistry, Multidisciplinary
GA 354NY
UT ISI:000089337600003
ER

PT J
AU Duarte, HA
   Dos Santos, HF
   Rocha, WR
   De Almeida, WB
TI Improved quantum mechanical study of the potential energy surface for
   the bithiophene molecule
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID GAUSSIAN-BASIS SETS; AB-INITIO; ORBITAL METHODS; CONDUCTING POLYMERS;
   ORGANIC-MOLECULES; EXCHANGE-ENERGY; POLYTHIOPHENE; ATOMS;
   2,2'-BITHIOPHENE; APPROXIMATION
AB The potential energy surface (PES) for the 2,2'-bithiophene molecule
   was investigated using Hartree-Fock, correlated MP2, MP4(SDQ), CCSD,
   and density functional theory levels. Distinct basis sets ranging from
   double-zeta to triple-zeta quality, with polarization functions added
   on all atoms, were employed as well as the Dunning correlated
   consistent polarized valence double-zeta (cc-pVDZ) basis set. Single
   point configuration interaction CISD calculations were also performed
   using the cc-pVDZ basis set. Harmonic frequency calculations were
   performed for the unambiguous characterization of the stationary points
   located on the PES and also to calculate thermal Gibbs free energy
   corrections. Regarding the structural predictions we found that the
   B3LYP/6-311G** and MP2/cc-pVDZ fully optimized geometries exhibit the
   best agreement with the gas phase electron diffraction data. The
   calculated B3LYP/6-311G**, MP2/cc-pVDZ and experimental torsional angle
   for the syn-gauche structure are, respectively, 37.4 degrees (B3LYP),
   39.9 degrees (MP2), and 36 degrees +/- 5 degrees (expt.) with the
   corresponding values for the anti-gauche form being, respectively,
   150.3 degrees (B3LYP), 146.0 degrees (MP2), and 148 degrees +/- 3
   degrees (expt.). The relative energy between the two minima and
   torsional barriers are sensitive both to the size of the basis set and
   the level of the quantum mechanical method used. Therefore, larger
   basis sets are needed to assess the ability of the DFT approach for
   describing torsional barriers. The MP4(SDQ) and CCSD relative energy
   results, reported in this work, can be considered as the most reliable
   torsional potential data available for the 2,2'-bithiophene molecule.
   Our results indicate that the experimentally estimated relative energy
   value for the two equilibrium structures present on the PES for the
   bithiophene molecule, and consequently the relative abundance of the
   anti-gauche species, is somewhat underestimated. By comparison with
   MP4(SDQ) and CCSD results we have shown that single point DFT/6-311G**
   calculations using HF/6-31G* geometries is the most computationally
   efficient procedure to study bithiophene like systems, with energy
   barriers agreeing within 2 kJ/mol. (C) 2000 American Institute of
   Physics. [S0021-9606(00)31634-8].
C1 Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
   Univ Fed Minas Gerais, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
   Univ Fed Juiz de Fora, Lab Quim Coumputac & Modelagem Mol, BR-36036330 Juiz De Fora, MG, Brazil.
   Univ Fed Juiz de Fora, Dept Quim, ICE, BR-36036330 Juiz De Fora, MG, Brazil.
RP Duarte, HA, Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol,
   BR-31270901 Belo Horizonte, MG, Brazil.
CR ALMLOF J, 1987, J CHEM PHYS, V86, P4070
   ALMLOF J, 1988, J PHYS CHEM-US, V92, P3029
   BAUERLE P, 1993, ANGEW CHEM INT EDIT, V32, P76
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P1372
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BRUCKNER S, 1988, MAKROMOL CHEM, V189, P961
   CHADWICK JE, 1994, J PHYS CHEM-US, V98, P3631
   CLARK T, 1983, J COMPUT CHEM, V4, P294
   DEALMEIDA WB, 2000, QUIMICA NOVA
   DEOLIVEIRA MA, 2000, PHYS CHEM CHEM PHYS, V2, P3373
   DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
   DUNNING TH, 1976, MODERN THEORETICAL C, V3, P1
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   EHRENDORFER C, 1994, J PHYS CHEM-US, V98, P7492
   FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
   FRISCH MJ, 1995, GAUSSIAN 94
   GARNIER F, 1989, ANGEW CHEM INT EDIT, V28, P513
   GORDON MS, 1980, CHEM PHYS LETT, V76, P163
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
   HARIHARAN PC, 1974, MOL PHYS, V27, P209
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HOROWITZ G, 1994, SYNTHETIC MET, V62, P245
   HOTTA S, 1993, ADV MATER, V5, P896
   KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
   KRISHNAN R, 1980, J CHEM PHYS, V72, P650
   LEE C, 1988, PHYS REV B, V37, P785
   LEVINE IN, 1991, QUANTUM CHEM
   MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
   MO Z, 1985, MACROMOLECULES, V18, P1972
   MOLLER C, 1934, PHYS REV, V46, P618
   ORTI E, 1995, J PHYS CHEM-US, V99, P4955
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PATIL AO, 1988, CHEM REV, V88, P183
   PERDEW JP, 1986, PHYS REV B, V33, P8800
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PROYNOV EI, 1995, INT J QUANTUM CHEM S, V29, P61
   RADOM L, 1970, J AM CHEM SOC, V92, P4786
   RONCALI J, 1992, CHEM REV, V92, P711
   SAEBO S, 1989, CHEM PHYS LETT, V154, P83
   SAMDAL S, 1993, SYNTHETIC MET, V59, P259
   STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
   SZABO A, 1996, MODERN QUANTUM CHEM
   VIRUELA PM, 1998, INT J QUANTUM CHEM, V70, P303
   WESSLING B, 1991, ADV MATER, V3, P507
   WOON DE, 1993, J CHEM PHYS, V98, P1358
   YAMAMOTO T, 1992, MACROMOLECULES, V25, P1214
NR 47
TC 23
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD SEP 8
PY 2000
VL 113
IS 10
BP 4206
EP 4215
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 349GC
UT ISI:000089034900034
ER

PT J
AU Barbatti, M
   Jalbert, G
   Nascimento, MAC
TI Isomeric structures and energies of H-n(+) clusters (n=13, 15, and 17)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID HYDROGEN CLUSTERS; VIBRATIONAL FREQUENCIES; ENERGETICS; ABINITIO; IONS;
   STABILITIES
AB Ab initio calculations have been performed for the H-n(+) clusters
   (n=3-17; odd) at Moller-Plesset second order (MP2)/6-311G(mp),
   Moller-Plesset complete fourth order (MP4)/6-311G(mp), and
   coupled-cluster single-double-triple [CCSD(T)/6-311G(1p)] levels of
   calculations. Such hydrogen clusters are constituted by an H-3(+) core
   in which H-2 units are bound. In order to understand the features of
   these bindings, enthalpy and entropy variations upon cluster formation,
   binding energies, and charge distributions have been computed, and a
   molecular orbital analysis, based on localized orbital, was performed.
   Our results show that the way the first three H-2 units bind to the
   H-3(+) core is fundamentally different from the others, providing an
   explanation for the binding energies observed for these molecules. For
   the H-13(+), H-15(+), and H-17(+) clusters, the way in which the
   external H-2 units are distributed around the H-3(+) plane leads to the
   formation of different isomers with very close energies, but with a
   rotational barrier large enough to inhibit the interconversions. (C)
   2000 American Institute of Physics. [S0021-9606(00)31434-9].
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
   Univ Fed Rio de Janeiro, Inst Quim, BR-21945970 Rio De Janeiro, Brazil.
RP Barbatti, M, Univ Fed Rio de Janeiro, Inst Fis, CP 68528, BR-21945970
   Rio De Janeiro, Brazil.
CR BOYS SF, 1970, MOL PHYS, V19, P553
   CENCEK W, 1998, J CHEM PHYS, V108, P2831
   EDMISTON C, 1963, REV MOD PHYS, V35, P457
   FARIZON B, 1999, PHYS REV B, V60, P3821
   FARIZON M, 1991, CHEM PHYS LETT, V177, P451
   FARIZON M, 1992, J CHEM PHYS, V96, P1325
   FRISCH MJ, 1998, GAUSSIAN 98
   HERZBERG G, 1950, MOL SPECTRA MOL STRU, V1
   HIRAOKA K, 1989, CHEM PHYS LETT, V157, P467
   HUBER H, 1980, CHEM PHYS LETT     2, V70, P353
   IGNACIO EW, 1998, CHEM PHYS LETT, V287, P563
   KOLOS W, 1975, J MOL SPECTROSC, V54, P303
   LOUC S, 1998, PHYS REV A, V58, P3802
   NAGASHIMA U, 1992, J PHYS CHEM-US, V96, P11
   OKUMURA M, 1988, J CHEM PHYS, V88, P79
   PANG T, 1994, CHEM PHYS LETT, V228, P555
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
   STICH I, 1997, PHYS REV LETT, V78, P3669
   VANLUMIG A, 1978, INT J MASS SPECTROM, V27, P197
   WRIGHT LR, 1982, J CHEM PHYS, V77, P1938
   YAMABE S, 1978, CHEM PHYS LETT, V56, P546
   YAMAGUCHI Y, 1983, J CHEM PHYS, V78, P4074
NR 23
TC 21
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD SEP 8
PY 2000
VL 113
IS 10
BP 4230
EP 4237
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 349GC
UT ISI:000089034900036
ER

PT J
AU Ribeiro, MCC
   Almeida, LCJ
TI Validating a polarizable model for the glass-forming liquid
   Ca0.4K0.6(NO3)(1.4) by ab initio calculations
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID ORBITAL ELECTRONEGATIVITY METHOD; MOLECULAR-DYNAMICS SIMULATIONS;
   MODIFIED PARTIAL EQUALIZATION; DENSITY-FUNCTIONAL THEORY; IONIC
   SYSTEMS; FLUCTUATING CHARGE; ATOMIC CHARGES; NEUTRON-DIFFRACTION;
   QUANTUM-CHEMISTRY; FORCE-FIELDS
AB Ab initio calculations have been performed in order to investigate a
   recently proposed polarizable model [M. C. C. Ribeiro, Phys. Rev. B 61,
   3297 (2000)] for molecular dynamics (MD) simulation of the molten salt
   Ca0.4K0.6(NO3)(1.4). On the basis of the electronegativity equalization
   method, polarization effects in the MD simulations have been introduced
   by a fluctuating charge (FC) model for the nitrate ion. Partial charges
   in the nitrate ion are obtained by ab initio calculations at several
   levels of theory, and compared with previously proposed models for MD
   simulations of nitrate melts. Charge fluctuation is achieved in the ab
   initio calculations by using positive probe charges placed around a
   nitrate ion. The parameters of the FC model are corroborated by
   comparison of the ab initio partial charges with the ones obtained
   directly by the electronegativity equalization method. Simulated
   annealing of a cluster including two double-charged cations and two
   nitrate ions shows that very different structures are obtained
   depending on whether the FC model or its nonpolarizable counterpart is
   considered. Ab initio calculations show that the structure of this
   cluster is strongly dependent on polarization effects in the nitrate
   ions. (C) 2000 American Institute of Physics. [S0021- 9606(00)52235-1].
C1 Univ Sao Paulo, Inst Quim, Lab Espectroscopia Mol, BR-05513970 Sao Paulo, Brazil.
RP Ribeiro, MCC, Univ Sao Paulo, Inst Quim, Lab Espectroscopia Mol, CP
   26077, BR-05513970 Sao Paulo, Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
   ALMLOF J, 1979, CHEM PHYS LETT, V61, P79
   ANGELL CA, 1993, J PHYS CONDENS MATT, V11, A75
   BALAWENDER R, 1997, INT J QUANTUM CHEM, V61, P499
   BANKS JL, 1999, J CHEM PHYS, V110, P741
   BOLDYREV AI, 1993, J CHEM PHYS, V98, P4745
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   BUCKINGHAM AD, 1988, CHEM REV, V88, P963
   CIOSLOWSKI J, 1993, J AM CHEM SOC, V115, P1084
   CIOSLOWSKI J, 1993, J CHEM PHYS, V99, P5151
   DEOLIVEIRA AE, 1999, J PHYS CHEM A, V103, P4918
   FRISCH MJ, 1998, GAUSSIAN 98
   GAPINSKI J, 1999, J CHEM PHYS, V110, P2312
   GOTZE W, 1999, J PHYS CONDENS MATT, V11, A1
   GRIMSDITCH M, 1989, PHYS REV LETT, V62, P2616
   HUTCHINSON F, 1999, J CHEM PHYS, V111, P2028
   ITSKOWITZ P, 1997, J PHYS CHEM A, V101, P5687
   JEMMER P, 1999, J CHEM PHYS, V111, P2038
   KARTINI E, 1995, CAN J PHYS, V73, P748
   KARTINI E, 1996, PHYS REV B, V54, P6292
   KATO T, 1988, J CHEM PHYS, V89, P3211
   KATO T, 1988, J CHEM PHYS, V89, P7471
   KATO T, 1990, J CHEM PHYS, V92, P5506
   KATO T, 1993, J CHEM PHYS, V99, P3966
   LEBON MJ, 1997, Z PHYS B CON MAT, V103, P433
   LI JB, 1998, J PHYS CHEM A, V102, P1820
   LIU YP, 1998, J CHEM PHYS, V108, P4739
   MADDEN PA, 1996, CHEM SOC REV, V25, P339
   MEZEI F, 1999, J PHYS-CONDENS MAT, V11, A341
   MITCHELL PJ, 1993, J PHYS-CONDENS MAT, V5, P1031
   MORTIER WJ, 1985, J AM CHEM SOC, V107, P829
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   NALEWAJSKI RF, 1985, J PHYS CHEM-US, V89, P2831
   NO KT, 1990, J PHYS CHEM-US, V94, P4732
   NO KT, 1990, J PHYS CHEM-US, V94, P4740
   PARR RG, 1978, J CHEM PHYS, V68, P3801
   PERDEW JP, 1982, PHYS REV LETT, V49, P1691
   PROBST M, 1995, INT J QUANTUM CHEM, V29, P559
   RAPPE AK, 1991, J PHYS CHEM-US, V95, P3358
   RIBEIRO MCC, UNPUB
   RIBEIRO MCC, 1998, J CHEM PHYS, V109, P9859
   RIBEIRO MCC, 1999, J CHEM PHYS, V110, P11445
   RIBEIRO MCC, 2000, PHYS REV B, V61, P3297
   RICCI M, 1993, J CHEM PHYS, V98, P4892
   RICK SW, 1994, J CHEM PHYS, V101, P6141
   SANGSTER MJL, 1976, ADV PHYS, V25, P247
   SEN S, 1998, PHYS REV B, V58, P8379
   SIGNORINI GF, 1990, J CHEM PHYS, V92, P1294
   SPRIK M, 1991, J PHYS CHEM-US, V95, P2283
   STERN HA, 1999, J PHYS CHEM B, V103, P4730
   STONE AJ, 1996, THEORY INTERMOLECULA
   STORER JW, 1995, J COMPUT AID MOL DES, V9, P87
   SZABO A, 1982, MODERN QUANTUM CHEM
   TANG KT, 1984, J CHEM PHYS, V80, P3726
   TOUFAR H, 1995, J PHYS CHEM-US, V99, P13876
   TOUFAR H, 1996, J PHYS CHEM-US, V100, P15383
   VANGENECHTEN KA, 1987, J CHEM PHYS, V86, P5063
   VELDERS GJM, 1992, THEOR CHIM ACTA, V84, P195
   VELIYULIN E, 1999, J PHYS-CONDENS MAT, V11, P8773
   WANG YB, 1996, J NONCRYST SOLIDS, V205, P221
   WIBERG KB, 1992, J PHYS CHEM-US, V96, P671
   WILSON M, 1993, J PHYS-CONDENS MAT, V5, P2687
   WILSON M, 1996, PHYS REV LETT, V77, P4023
   WILSON M, 1999, MOL PHYS, V96, P867
   WINKLER R, 1997, J CHEM PHYS, V106, P7714
   YAMAGUCHI T, 1986, MOL PHYS, V58, P349
   YORK DM, 1996, J CHEM PHYS, V104, P159
NR 67
TC 11
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD SEP 15
PY 2000
VL 113
IS 11
BP 4722
EP 4731
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 351DC
UT ISI:000089139900028
ER

PT J
AU Batista, H
   Carpenter, GB
   Srivastava, RM
TI Synthesis and molecular structure of
   N-[3-(p-bromophenyl)-1,2,4-oxadiazol-5-yl]methylphthalimide. III.
SO JOURNAL OF CHEMICAL CRYSTALLOGRAPHY
LA English
DT Article
DE 1,2,4-oxadiazole; crystal structure; phthalimide derivative; AM1
   method; STO-3G basis set
AB The synthesis, spectroscopic studies and crystal structure of the title
   compound is described. The crystallographic studies showed that the
   p-bromophenyl group is very nearly coplanar with the 1,2,4-oxadiazole
   ring. The nearly planar phthalimide group makes an angle of about 98
   degrees with the bromophenyloxadiazole plane. Semi-empirical (AM1) and
   ab initio (STO-3G, 6-31G) molecular orbital calculations have been
   carried out for this compound and a comparison of bond angles, bond
   lengths and torsion angles has been made with the experimental values,
   which are remarkably close to each other. This compound crystallizes in
   the monoclinic space group P2(1)/c with a = 13.6299(2), b = 13.9836(2),
   c = 8.4817(2) Angstrom, beta = 101.9070(10)degrees, V = 1581.79(5)
   Angstrom(3), and Z = 4.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
   Brown Univ, Dept Chem, Providence, RI 02912 USA.
RP Srivastava, RM, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540
   Recife, PE, Brazil.
CR ANTUNES R, 1996, HETEROCYCL COMMUN, V2, P247
   ANTUNES R, 1998, BIOORG MED CHEM LETT, V8, P3071
   LOBANOV V, 1996, MOPAC 6 0 32 BIT MIC
   MORI K, 1994, ACTA CRYSTALLOGR C, V50, P807
   SHELDRICK GM, 1996, SADABS EMPIRICAL ABS
   STEWART JJP, 1990, MOPAC MANUAL
NR 6
TC 5
PU KLUWER ACADEMIC/PLENUM PUBL
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1074-1542
J9 J CHEM CRYSTALLOGRAPHY
JI J. Chem. Crystallogr.
PD FEB
PY 2000
VL 30
IS 2
BP 131
EP 134
PG 4
SC Crystallography; Spectroscopy
GA 351PW
UT ISI:000089168200010
ER

PT J
AU Iglesias, RS
   Goncalves, PFB
   Livotto, PR
TI Semi-empirical study of a set of 2-(2 '-hydroxyphenyl)benzazoles using
   the polarizable continuum model
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID INTRAMOLECULAR PROTON-TRANSFER; EXCITED-STATE PROTON; TRIPLET-STATES;
   AB-INITIO; 2-(2-HYDROXYPHENYL)BENZOTHIAZOLE; BENZOTHIAZOLE;
   SPECTROSCOPY; FEMTOSECOND; ROTAMERISM; SOLVENT
AB A set of molecules (2-(2'-hydroxyphenyl)benzoxazol (HBO),
   2-(2'-hydroxyphenyl benzothiazole (HBT) and
   2-(2'-hydroxyphenyl)benzimidazole (HBI)) exhibiting excited-state
   intramolecular proton transfer was studied using the polarizable
   continuum model in low-polar, non-protic solvents (chloroform and
   carbon tetrachloride), combined with the AM1 semi-empirical molecular
   orbital method in both gaseous and condensed phase. The heats of
   formations (Delta H-f) are lowered by the solvent effect, especially in
   chloroform. The increase in the solvent polarity causes an enlargement
   of the Stokes shift between absorption and emission. (C) 2000 Published
   by Elsevier Science B.V.
C1 Univ Fed Rio Grande Sul, Inst Quim, Grp Quim, BR-91509900 Porto Alegre, RS, Brazil.
RP Livotto, PR, Univ Fed Rio Grande Sul, Inst Quim, Grp Quim, Av Bento
   Goncalves 9500, BR-91509900 Porto Alegre, RS, Brazil.
CR ALSOUFI W, 1990, CHEM PHYS LETT, V174, P609
   BARBARA PF, 1980, J AM CHEM SOC, V102, P5631
   BARBARA PF, 1989, J PHYS CHEM-US, V29, P93
   BREWER WE, 1990, J PHYS CHEM-US, V94, P1915
   CHOU PT, 1992, CHEM PHYS LETT, V195, P586
   DAS K, 1992, CHEM PHYS LETT, V198, P443
   DAS K, 1994, J PHYS CHEM-US, V98, P9126
   DEWAR MJS, 1985, J AM CHEM SOC, P389
   ELSAESSER T, 1986, CHEM PHYS LETT, V128, P231
   ELSAESSER T, 1987, CHEM PHYS LETT, V140, P293
   ENCHEV V, 1994, INDIAN J CHEM B, V33, P336
   ENGELAND TA, 1992, CHEM PHYS, V163, P43
   FREY W, 1991, J PHYS CHEM-US, V95, P10391
   GRELLMANN KH, 1989, CHEM PHYS, V136, P201
   IGLESIAS RS, 2000, THESIS UFRGS PORTO A
   ITOH M, 1985, J AM CHEM SOC, V107, P1561
   LAERMER F, 1988, CHEM PHYS LETT, V148, P119
   LAVTCHIEVA L, 1993, J PHYS CHEM-US, V97, P306
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   MORDZINSKI A, 1982, CHEM PHYS LETT, V90, P122
   MORDZINSKI A, 1986, J PHYS CHEM-US, V90, P5503
   NEGRE M, 1992, CHEM PHYS LETT, V196, P27
   POTTER CAS, 1988, CHEM PHYS LETT, V153, P7
   POTTER CAS, 1994, J CHEM SOC FARADAY T, V90, P59
   RIOS MA, 1995, J PHYS CHEM-US, V99, P12456
   RIOS MA, 1998, J PHYS CHEM A, V102, P1560
   STEWART JJP, 1993, MOPAC 93 00 MANUAL R
   TOMASI J, 1994, CHEM REV, V94, P2027
   WILLIAMS DL, 1970, J PHYS CHEM-US, V74, P4473
   WOOLFE GJ, 1983, CHEM PHYS, V77, P213
NR 30
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 1
PY 2000
VL 327
IS 1-2
BP 23
EP 28
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 349QC
UT ISI:000089056300005
ER

PT J
AU Olivato, PR
   Guerrero, SA
   Rittner, R
TI Conformational and electronic interaction studies of alpha-substituted
   carbonyl compounds. XV. alpha-(arylsulfinyl)-p-substituted acetophenones
SO PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS
LA English
DT Article
DE conformational studies; electronic interactions; IR and C-13 NMR
   spectroscopies; alpha-(p-phenylsulfinyl)-p-substituted acetophenones
ID ULTRAVIOLET PHOTOELECTRON-SPECTROSCOPY; KETONES
AB The V-CO IR analysis of alpha-(p-phenylsulfinyl)-p-substituted
   acetophenones X-phi C(O)CH2S(O) phi-Y 1-8, being X and Y = NO2, H and
   OMe substituents, supported by ab initio calculations of the
   alpha-methylsulfinyl/acetophenone (model compound) along with the X-ray
   geometrical data for 1, 7 and 8, indicates the existence of the cis(2)
   and gauche rotamers for compounds 1-4 and 6. Compounds 5, 7 and 8
   present another less stable and more polar cis(1) rotamer. The cis(2)
   rotamer concentration for 4 (ca. 97% in CCl4) is reduced to ca. 50% for
   2, 3, 5-7 and to ca. 20% for 1 and 8. This behavior is discussed in
   terms of O-(CO)(delta-)-S-(SO)(delta+) charge transfer and Coulombic
   interactions, which stabilize the cis(1) rotamer, and the
   pi(CO)/sigma*(C-S), pi*(CO)/n(s) and pi*(CO)/sigma(C-S) orbital
   interactions, which stabilize the gauche rotamers. The progressive more
   negative carbonyl cis(2) shifts (Delta v(c)), when X varies from NO2 to
   H and to OMe for the same Y, along with the unexpected NAE values of
   the alpha-methylene carbon chemical shifts for compounds 1-8 give
   further support for the existence of a strong intramolecular complex
   between C=O and S=O dipoles which stabilizes the cis(2) rotamer. The
   progressive more negative carbonyl gauche shifts (Delta v(g)), when X
   varies from NO2 to H and to OMe for the same Y, is in line with the
   higher contribution of the interaction pi(CO)/sigma*(C-S), which
   stabilizes the gauche rotamer of the title compounds.
C1 Univ Sao Paulo, Inst Quim, BR-05599970 Sao Paulo, Brazil.
   Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Olivato, PR, Univ Sao Paulo, Inst Quim, Caixa Postal 26-077,
   BR-05599970 Sao Paulo, Brazil.
CR 1976, SADTLER STANDARD NMR
   1996, 17 INT S ORG CHEM SU
   BELLAMY LJ, 1975, ADV INFRARED GROUP F, P141
   BELLAMY LJ, 1975, ADV INFRARED GROUP F, P143
   BONFADA E, 1989, THESIS U SAO PAULO B
   BUENO E, 1996, THESIS U SAO PAULO B
   DALCOLLE M, 1995, J PHYS CHEM-US, V99, P1511
   DEWAR MJS, 1962, HYPERCONJUGATION
   DISTEFANO G, 1987, J CHEM SOC P2, P1459
   DISTEFANO G, 1991, J CHEM SOC P2, P1195
   DISTEFANO G, 1996, J CHEM SOC PERK  AUG, P1661
   DUDDECK H, 1980, TETRAHEDRON, V36, P3009
   GASET A, 1968, B SOC CHIM FR, P4108
   GHERSETTI S, 1963, GAZZ CHIM ITAL, V89, P1001
   HANSCH C, 1979, SUBSTITUENTS CONSTAN
   KENNEY WJ, 1961, J AM CHEM SOC, V83, P4019
   LAMM B, 1970, ACTA CHEM SCAND, V24, P561
   LUMBROSO H, 1989, J MOL STRUCT, V212, P113
   MCALDUFF EJ, 1980, CAN J CHEM, V58, P622
   MONDINO MG, 1996, THESIS U SAO PAULO B
   OLIVATO PR, IN PRESS ACTA CRYSTA
   OLIVATO PR, 1987, PHOSPHORUS SULFUR, V33, P135
   OLIVATO PR, 1988, SPECTROCHIM ACTA A, V44, P677
   OLIVATO PR, 1989, PHOSPHORUS SULFUR, V44, P9
   OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
   OLIVATO PR, 1992, PHOSPHORUS SULFUR, V66, P207
   OLIVATO PR, 1997, PHOSPHORUS SULFUR, V130, P155
   OLIVATO PR, 1998, J CHEM SOC PERK  JAN, P109
   RITTNER R, 1985, QUIM NOVA, V8, P170
   STOTHERS JB, 1972, CARBON 13 NMR SPECTR, P286
NR 30
TC 4
PU GORDON BREACH SCI PUBL LTD
PI READING
PA C/O STBS LTD, PO BOX 90, READING RG1 8JL, BERKS, ENGLAND
SN 1042-6507
J9 PHOSPHOR SULFUR SILICON
JI Phosphorus Sulfur Silicon Relat. Elem.
PY 2000
VL 156
BP 255
EP 277
PG 23
SC Chemistry, Inorganic & Nuclear
GA 344YL
UT ISI:000088788600020
ER

PT J
AU Okulik, N
   Peruchena, N
   Esteves, PM
   Mota, C
   Jubert, AH
TI Ab initio topological analysis of the electronic density in proponium
   cations
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR CHARGE-DISTRIBUTIONS; QUANTUM TOPOLOGY; CARBONIUM-IONS; CH5+;
   CARBOCATIONS; CHEMISTRY; ENERGIES; TERMS
AB Studies performed on proponium cations at the ab initio level show that
   six different stable structures can be characterized: four proponium
   cations and two van der Waals complexes. Among the proponium cations,
   the most stable structure corresponds to the C-proponium ion. Between
   the van der Waals complexes, the most stable one corresponds to the
   structure that results from the interaction between the isopropyl ion
   and the hydrogen molecule. The topology of the electronic density
   charge of the different structures is studied, at ab initio level,
   using the theory of atoms in molecules (AIM) developed by Bader.
C1 UNNE, Fac Agroind, RA-3700 Pcia R Saenz Pena, Chaco, Argentina.
   UNNE, Fac Ciencias Exactas & Nat & Agrimensura, Dept Quim, RA-3400 Corrientes, Argentina.
   Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
   Natl Univ La Plata, Fac Ciencias Exactas, Dept Quim, RA-1900 La Plata, Argentina.
RP Jubert, AH, UNNE, Fac Agroind, Cte Fernandez 755, RA-3700 Pcia R Saenz
   Pena, Chaco, Argentina.
CR BADER RFW, 1979, J AM CHEM SOC, V101, P1389
   BADER RFW, 1979, J CHEM PHYS, V70, P6316
   BADER RFW, 1980, J CHEM PHYS, V73, P2871
   BADER RFW, 1981, ADV QUANTUM CHEM, V14, P6310
   BADER RFW, 1983, J AM CHEM SOC, V105, P5061
   BADER RFW, 1990, ATOMS MOL
   BISCHOF PK, 1975, J AM CHEM SOC, V97, P2278
   CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
   CREMER D, 1983, J AM CHEM SOC, V105, P5069
   DYCZMONS V, 1970, CHEM PHYS LETT, V5, P361
   ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GIANNETTO G, 1986, J CHEM SOC CHEM COMM, P1302
   GILLESPIE RJ, 1972, MOL GEOMETRY
   HAAG WO, 1984, P 8 INT C CAT, P305
   HIRAO K, 1984, CHEM PHYS, V89, P237
   HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P371
   KIM SJ, 1993, J PHYS CHEM-US, V97, P12232
   KLIEGERKONIG W, 1982, J COMPUT CHEM, V3, P317
   KOLBUSZEWSKI M, 1996, J CHEM PHYS, V105, P3649
   MOTA CJA, 1992, J AM CHEM SOC, V114, P1121
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   OKULIK N, 1999, J PHYS CHEM A, V103, P8491
   OLAH GA, 1968, J AM CHEM SOC, V90, P2726
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
   OLAH GA, 1973, CARBOCATIONS ELECTRO
   OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
   POIRIER RA, 1982, J MOL STRUCT THEOCHE, V88, P343
   RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
   SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
   SCUSERIA GE, 1993, NATURE, V366, P512
NR 33
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 17
PY 2000
VL 104
IS 32
BP 7586
EP 7592
PG 7
SC Chemistry, Physical
GA 345RK
UT ISI:000088828800022
ER

PT J
AU Bettega, MHF
TI Low-energy electron scattering by boron trihalides
SO PHYSICAL REVIEW A
LA English
DT Article
ID SCHWINGER MULTICHANNEL; PLASMA CHEMISTRIES; CROSS-SECTIONS; AB-INITIO;
   BCL3; COLLISIONS; PSEUDOPOTENTIALS; SPECTROSCOPY; EXCITATION; SPECTRA
AB We report the integral elastic cross section for low-energy electron
   scattering by the boron trihalides BCl3, BBr3, and BI3. To perform our
   calculations, we employed the Schwinger multichannel method with
   pseudopotentials. We have focused our attention only in the B-2
   irreducible representation, where we found shape resonances for the
   three molecules in a previous static-exchange calculation, at energies
   below 5 eV. We included polarization effects to improve the description
   of the resonances and found that only the resonance for BCl3 remains.
   For BBr3 and BI3, the resonances become bound states.
C1 Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil.
RP Bettega, MHF, Univ Fed Parana, Dept Fis, Caixa Postal 19081,
   BR-81531990 Curitiba, Parana, Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
   BAECK KK, 1997, J CHEM PHYS, V106, P4604
   BAUSCHLICHER CW, 1980, J CHEM PHYS, V72, P880
   BETTEGA MHF, 1993, PHYS REV A, V47, P1111
   BETTEGA MHF, 2000, J CHEM PHYS, V112, P8806
   BETTEGA MHF, 2000, PHYS REV A, V61
   BIEHL H, 1996, MOL PHYS, V87, P1199
   CHO H, 1998, MRS INTERNET J N S R, V3
   CHO H, 1999, J VAC SCI TECHNOL  2, V17, P2202
   DACOSTA SMS, 1998, EUR PHYS J D, V3, P67
   GULLEY RJ, 1998, J PHYS B-AT MOL OPT, V31, P2735
   HEBNER GA, 1999, J VAC SCI TECHNOL A, V17, P3172
   HONG J, 1998, J VAC SCI TECHNOL B, V16, P2690
   HONG J, 1998, J VAC SCI TECHNOL B, V16, P3349
   HONG J, 1999, J VAC SCI TECHNOL  1, V17, P1326
   HOWARD BJ, 1994, J VAC SCI TECHNOL  1, V12, P1259
   HUO WM, 1987, PHYS REV A, V36, P1632
   HUO WM, 1987, PHYS REV A, V36, P1642
   ISAACS WA, 1998, PHYS REV A, V58, P2881
   KEIR RI, 1998, CHEM PHYS LETT, V290, P409
   LEE CH, 1999, J CHEM PHYS, V111, P5056
   LIDE DR, 1998, CRC HDB CHEM PHYSICS
   LIMA MAP, 1990, PHYS REV A, V41, P327
   NATALENSE APP, 1998, PHYS REV LETT, V81, P3832
   PROOST J, 1999, J ELECTROCHEM SOC, V146, P4230
   RESCIGNO TN, 1999, PHYS REV A, V60, P2186
   ROTHE EW, 1980, INORG CHEM, V19, P829
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SHPINKOVA LG, 1999, MOL PHYS, V96, P323
   STOCKDALE JA, 1972, J CHEM PHYS, V56, P3336
   SZMYTKOWSKI C, 1984, CHEM PHYS LETT, V107, P481
   TAKATSUKA K, 1981, PHYS REV A, V24, P2473
   TOSSELL JA, 1986, INT J QUANTUM CHEM, V29, P1117
   VARELLA MTD, 1999, J CHEM PHYS, V111, P6396
   VARELLA MTD, 1999, J PHYS B ATOM MOL PH, V32, P5523
   VARELLA MTD, 1999, PHYS REV A, V60, P3684
   WANG JJ, 1999, PLASMA CHEM PLASMA P, V19, P229
   WINSTEAD C, 1998, PHYS REV A, V57, P3589
NR 38
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD AUG
PY 2000
VL 6202
IS 2
AR 024701
DI ARTN 024701
PG 3
SC Physics, Atomic, Molecular & Chemical; Optics
GA 343CD
UT ISI:000088683400118
ER

PT J
AU De Oliveira, MA
   Dos Santos, HF
   De Almeida, WB
TI Structure and torsional potential of p-phenylthiophene: a theoretical
   comparative study
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; VALENCE BASIS-SETS; GAUSSIAN-TYPE BASIS;
   AB-INITIO; ELECTRONIC-PROPERTIES; CONJUGATED SYSTEMS;
   ORGANIC-MOLECULES; 2ND-ROW ELEMENTS; 2,2'-BITHIOPHENE; POLYTHIOPHENE
AB Quantum chemical calculations employing Hartree-Fock, MP2 and density
   functional (using distinct functionals) approaches were carried out for
   the p-phenylthiophene dimer. The fully optimized stationary points
   located on the potential energy surface were characterized as minima or
   transition state (TS) structures according to harmonic frequency
   analysis. A mixture of syn-gauche and anti-gauche conformers was
   predicted with a relative percentage of ca. 60% and 40%, respectively.
   A TS structure connecting the syn-gauche and anti-gauche minima was
   also determined, with the MP2 energy barrier being ca. 10 kJ mol(-1). A
   six-term truncated Fourier series representation of the potential
   energy for internal rotation was obtained using a fitting procedure to
   the calculated HF/6-31G* and B3LYP/6-31G* partially optimized points.
   Additional fittings were performed with the MP2/6-31G*//HF/6-31G*,
   MP2/6-31G*//B3LYP/6-31G*, B3LYP/6-31G*//HF/6-31G*,
   BLYP/6-31G*//HF/6-31G*, B3P86/6-31G*//HF/6-31G* and
   SVWN/6-31G*//HF/6-31G* single energy points. The energy barriers
   obtained from the fitted curve were compared to the ones calculated
   from the energy differences between fully optimized minima and TS
   structures. The fitted Fourier potential is found to be adequate for
   the description of the internal rotation in the p-phenylthiophene
   dimer. The B3LYP/6-31G*//HF/6-31G* level of calculation seems
   sufficient for studying this class of compounds. The inclusion of the
   phenyl substituent group in the bithiophene, which makes it more easily
   processable, does not alter significantly the energy gap. Therefore,
   the p-phenylthiophene would be expected to exhibit similar conductivity
   to the parent non-substituted bithiophene compound.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
   Univ Fed Juiz de Fora, ICE, Dept Quim, BR-36036330 Juiz De Fora, MG, Brazil.
RP De Oliveira, MA, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim
   Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR 1998, GAUSSIAN DFT SUPPLEM
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P1372
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
   BREDAS JL, 1983, J AM CHEM SOC, V105, P6555
   BREDAS JL, 1983, J CHEM PHYS, V78, P5656
   BREDAS JL, 1985, J CHEM PHYS, V83, P1323
   DEOLIVEIRA MA, UNPUB J CHEM PHYS
   DICESARE N, 1999, J MOL STRUC-THEOCHEM, V467, P259
   DIRAC PAM, 1930, P CAMB PHILOS SOC, V26, P376
   DISTEFANO G, 1993, J PHYS CHEM-US, V97, P3504
   DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
   DORO PC, 1969, TETRAHEDRON LETT, V10, P4179
   DOSSANTOS HF, 1995, ANN 3 BRAZ C POL RIO, P1199
   DUARTE HA, 2000, IN PRESS J CHEM PHYS
   FORREST SR, 1997, CHEM REV, V97, P1736
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GORDON MS, 1980, CHEM PHYS LETT, V76, P163
   GORDON MS, 1982, J AM CHEM SOC, V104, P2797
   GUERRERO DJ, 1994, CHEM MATER, V6, P1437
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
   HARIHARAN PC, 1974, MOL PHYS, V27, P209
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HERNANDEZ V, 1994, J CHEM PHYS, V101, P1369
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   JURIMAE T, 1995, INT J QUANTUM CHEM, V54, P369
   KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
   KOHN W, 1965, PHYS REV, V140, A1133
   LEE C, 1988, PHYS REV B, V37, P785
   MOLLER C, 1934, PHYS REV, V46, P618
   NALWA HS, 1997, HDB ORGANIC CONDUCTI
   ORT E, 1995, J PHYS CHEM-US, V99, P4955
   PADILLACAMPOS L, 1995, THEOCHEM-J MOL STRUC, V330, P223
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PERNAUT JM, 1994, J CHIM PHYS PCB, V91, P433
   PIETRO WJ, 1982, J AM CHEM SOC, V104, P5039
   QUATTROCCHI C, 1993, CHEM PHYS LETT, V208, P120
   RONCALI J, 1992, CHEM REV, V92, P711
   SAEBO S, 1989, CHEM PHYS LETT, V154, P83
   SAMDAL S, 1993, SYNTHETIC MET, V59, P259
   SATO M, 1987, J CHEM SOC CHEM COMM, P1725
   SATO M, 1989, MAKROMOL CHEM, V190, P1233
   SCOTHEIM TA, 1996, HDB CONDUCTING POLYM
   SHIRAKAWA H, 1977, J CHEM SOC CHEM COMM, P578
   SLATER JC, 1974, SELF CONSISTING FIEL, V4
   STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
   STEWART JJP, 1990, J COMPUT AID MOL DES, V5, P1
   VIRUELA PM, 1997, J AM CHEM SOC, V119, P1360
   VIRUELA PM, 1998, INT J QUANTUM CHEM, V70, P303
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
   ZOPPI RA, 1993, QUIM NOVA, V16, P560
NR 52
TC 5
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI PCCP Phys. Chem. Chem. Phys.
PY 2000
VL 2
IS 15
BP 3373
EP 3380
PG 8
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 338FP
UT ISI:000088407700003
ER

PT J
AU Esteves, PM
   Alberto, GGP
   Ramirez-Solis, A
   Mota, CJA
TI The n-butonium cation (n-C4H11+): The potential energy surface of
   protonated n-butane
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID THEORETICAL AB-INITIO; CARBONIUM-IONS; ELECTRONIC-STRUCTURE;
   ELECTROPHILIC REACTIONS; INFRARED-SPECTROSCOPY; MOLECULAR-HYDROGEN;
   SINGLE BONDS; CH5+; C2H7+; REARRANGEMENT
AB The structure and energetics of the n-butonium ion, the protonated form
   of n-butane, were computed at the
   MP4SDTQ(fc)/6-311++G**//MP2(full)/6-31G** level. Eleven stable
   structures were found for the n-butonium ion, following the stability
   order 2-C-n-butonium > 1-C-n-butonium > 2-H-n-butonium >
   1-H-n-butonium. The transition states for intramolecular bond-to-bond
   rearrangement and for decomposition of the carbonium ions into the van
   der Waals complexes were also calculated. The H-n-butonium and the
   1-C-n-butonium ions are higher in energy than the van der Waals
   complexes 13, 14, and 15. The van der Waals complexes between the
   isopropyl cation plus CH4 and the tert-butyl cation plus H-2 are the
   most stable C4H11+ species. It was concluded that the 1-H-n-butonium
   ion prefers to undergo intramolecular rearrangement to the
   1-C-n-butonium ion, whereas the 2-H-n-butonium ion prefers to decompose
   into the van der Waals complex of the sec-butyl cation plus H-2. The
   calculated proton affinity of n-butane (156.7 kcal/mol) agrees well
   with the experimental value of 153.7 kcal/mol. The C4H11+ (b) species,
   formed upon the gas-phase reaction between C2H5+ and ethane, was
   confirmed to be the 2-C-n-butonium cation, and the C4H11+ (a) species
   was confirmed to be the 2-H-n-butonium cation, as proposed by Hiraoka
   and Kebarle (Can. J. Chem. 1980, 58, 2262-2270). The experimental
   activation energy of 9.6 kcal/mol was compared with the value of 12.8
   kcal/mol, computed for the reaction 11 --> 5 through the transition
   state 21.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
   Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
   Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
   BOO DW, 1993, CHEM PHYS LETT, V211, P358
   BOO DW, 1995, J CHEM PHYS, V103, P520
   BOO DW, 1995, SCIENCE, V269, P57
   BOO DW, 1996, INT J MASS SPECTROM, V159, P209
   BUNKER PR, 1996, J MOL SPECTROSC, V176, P297
   CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
   COLLINS SJ, 1996, J CHEM SOC FARADAY T, V92, P4347
   COLLINS SJ, 1998, TOP CATAL, V6, P151
   ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
   ESTEVES PM, 1998, TOP CATAL, V6, P163
   ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
   FIELD FH, 1965, J AM CHEM SOC, V87, P3289
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   FUTRELL JH, 1970, J CHEM PHYS, V52, P3655
   HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
   HIRAOKA K, 1980, CAN J CHEM, V58, P2262
   HIRAOKA K, 1993, CHEM PHYS LETT, V207, P178
   HOUT RF, 1982, J COMPUT CHEM, V3, P234
   KOCK W, 1989, J AM CHEM SOC, V111, P3479
   LIDE DR, 1994, CRC HDB CHEM PHYSICS
   MARX D, 1995, NATURE, V375, P216
   MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
   MULLER H, 1997, J CHEM PHYS, V106, P1863
   OBATA S, 1993, B CHEM SOC JPN, V66, P3271
   OLAH GA, 1971, J AM CHEM SOC, V93, P1259
   OLAH GA, 1973, J AM CHEM SOC, V95, P4960
   OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
   RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
   SAUNDERS M, 1968, J AM CHEM SOC, V90, P6882
   SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
   SCHLOSBERG RH, 1976, J AM CHEM SOC, V98, P7723
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
   SIEBER S, 1993, J AM CHEM SOC, V115, P259
   SISKIN M, 1976, J AM CHEM SOC, V98, P5413
   SOMMER J, 1996, RES CHEM INTERMEDIAT, V22, P753
   TALROZE VL, 1952, DOKL AKAD NAUK SSSR, V86, P909
   YEH LI, 1989, J AM CHEM SOC, V111, P5597
NR 39
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUL 6
PY 2000
VL 104
IS 26
BP 6233
EP 6240
PG 8
SC Chemistry, Physical
GA 332CY
UT ISI:000088057000016
ER

PT J
AU Capelle, K
   Oliveira, LN
TI Density-functional theory for spin-density waves and antiferromagnetic
   systems
SO PHYSICAL REVIEW B
LA English
DT Article
ID GENERALIZED-GRADIENT-APPROXIMATION; HIGH-TEMPERATURE SUPERCONDUCTORS;
   BAND-STRUCTURE CALCULATIONS; STRONG MAGNETIC-FIELDS;
   ELECTRONIC-STRUCTURE; GROUND-STATE; GAMMA-FE; EXCHANGE; MOLECULES;
   CHROMIUM
AB An extension of density-functional theory, designed to treat
   spin-density waves and antiferromagnetic systems, is presented. The
   nonlocal nature of the antiferromagnetic correlations and possible
   noncollinearity in spin space are incorporated via an additional
   fundamental variable, the staggered density, which supplements the spin
   densities of conventional density-functional theory. Inclusion of this
   variable is justified by both physical and methodological
   considerations. We prove the corresponding Hohenberg-Kohn theorem,
   derive the pertinent Kohn-Sham equations, and present several
   approximate functionals depending explicitly on the staggered density.
   As a first test the formalism is applied to two simple model systems, a
   one-dimensional electron gas with a short-range interaction, and the
   three-dimensional electron gas with Coulomb interactions. These
   calculations serve to test the developed formalism, bur also already
   allow us to draw a number of conclusions regarding the stability and
   nature of possible spin-density wave states in homogeneous electron
   systems.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil.
   Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis & Informat, BR-13560970 Sao Carlos, SP, Brazil.
RP Capelle, K, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol,
   Caixa Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR BONEV SA, 1999, B AM PHYS SOC, V44, P105
   BYLANDER DM, 1998, PHYS REV B, V58, P9207
   BYLANDER DM, 1999, PHYS REV B, V59, P6278
   CALAIS JL, 1982, J PHYS C SOLID STATE, V15, P3093
   CAPELLE K, 1999, EUR PHYS J B, V12, P225
   CAPELLE K, 2000, EUROPHYS LETT, V49, P376
   CEPERLEY D, 1978, PHYS REV B, V18, P3126
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CEPERLEY DM, 1984, MONTE CARLO METHODS
   COEY JMD, 1987, CAN J PHYS, V65, P1210
   DEGENNES PG, 1966, SUPERCONDUCTIVITY ME
   DREIZLER RM, 1990, DENSITY FUNCTIONAL T
   FAWCETT E, 1988, REV MOD PHYS, V60, P209
   FAWCETT E, 1994, REV MOD PHYS, V66, P25
   FEDDERS PA, 1966, PHYS REV, V143, P245
   FUKUTOME H, 1981, INT J QUANTUM CHEM, V20, P955
   GOERLING A, 1996, PHYS REV B, V53, P7024
   GRABO T, 1998, STRONG COULOMB CORRE
   GRUNER G, 1994, REV MOD PHYS, V66, P1
   GUNNARSSON O, 1976, PHYS REV B, V13, P4274
   GYGI F, 1991, PHYS REV B, V43, P7609
   GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337
   GYORFFY BL, 1998, PHYS REV B, V58, P1025
   HELLWEGE KH, 1994, LANDOLTBORNSTEIN NEW, V13
   HERRING C, 1966, MAGNETISM, V4
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   ISHIGURO T, 1990, SPRINGER SERIES SOLI, V88
   JONES W, 1973, THEORETICAL SOLID ST, V1
   KLEINMAN L, 1999, PHYS REV B, V59, P3314
   KOHN W, 1965, PHYS REV, V140, A1133
   KOHN W, 1989, J PHYS-PARIS, V50, P2601
   KOSKINEN M, 1997, PHYS REV LETT, V79, P1389
   KOTANI T, 1995, PHYS REV B, V52, P17153
   KOTANI T, 1995, PHYS REV LETT, V74, P2989
   KURTH S, 1999, ELECT CORRELATIONS M
   KURTH S, 1999, PHYS REV LETT, V83, P2628
   LEVY M, 1979, P NATL ACAD SCI USA, V76, P6062
   LEVY M, 1982, PHYS REV A, V26, P1200
   MCWEENY R, 1989, METHODS MOL QUANTUM
   NORDSTROM L, 1996, PHYS REV LETT, V76, P4420
   OLIVEIRA LN, 1988, PHYS REV LETT, V60, P2430
   ORTIZ G, 1999, B AM PHYS SOC, V44, P105
   ORTIZ G, 1999, PHYS REV LETT, V82, P5317
   OVERHAUSER AW, 1960, PHYS REV LETT, V4, P462
   OVERHAUSER AW, 1962, PHYS REV, V128, P1437
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PERDEW JP, 1995, PHYS REV A, V51, P4531
   PERDEW JP, 1997, INT J QUANTUM CHEM, V61, P197
   PERDEW JP, 1998, LECT NOTES PHYSICS, V500
   PERDEW JP, 1999, PHYS REV LETT, V82, P2544
   PLEHN H, 1994, PHYS REV B, V49, P12140
   SANDRATSKII LM, 1998, ADV PHYS, V47, P91
   SHAM LJ, 1985, PHYS REV B, V32, P3876
   SINGH DJ, 1992, PHYS REV B, V46, P11570
   STADELE M, 1997, PHYS REV LETT, V79, P2089
   STICHT J, 1989, J PHYS-CONDENS MAT, V1, P8155
   SUVASINI MB, 1993, PHYS REV B, V48, P1202
   SYKJA B, 1982, J PHYS C SOLID STATE, V15, P3079
   TEMMERMAN WM, 1996, PHYS REV LETT, V76, P307
   TEMMERMAN WM, 1998, ELECT DENSITY FUNCTI, P327
   TSUNODA Y, 1989, J PHYS-CONDENS MAT, V1, P10427
   VIGNALE G, 1987, PHYS REV LETT, V59, P2360
   VIGNALE G, 1988, PHYS REV B, V37, P10685
   VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
   WEINER B, 1998, INT J QUANTUM CHEM, V69, P451
   ZIESCHE P, 1998, COMP MATER SCI, V11, P122
NR 66
TC 9
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 1
PY 2000
VL 61
IS 22
BP 15228
EP 15240
PG 13
SC Physics, Condensed Matter
GA 325AL
UT ISI:000087654100049
ER

PT J
AU Pliego, JR
   Riveros, JM
TI On the calculation of the absolute solvation free energy of ionic
   species: Application of the extrapolation method to the hydroxide ion
   in aqueous solution
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID MONTE-CARLO SIMULATION; PERIODIC BOUNDARY-CONDITIONS; AB-INITIO;
   CONTINUUM ELECTROSTATICS; POTENTIAL FUNCTIONS; LIQUID WATER; GAS-PHASE;
   HYDRATION; CLUSTERS; MODEL
AB The absolute solvation free energy of the hydroxide ion in aqueous
   solution was calculated by Monte Carlo simulation and free energy
   perturbation. We have used the TIP3P model for water and the
   solute-solvent interaction was modeled as an effective two-body
   potential of charge-charge plus Lennard-Jones terms fitted to reproduce
   the interaction energy in the OH-(H2O)(3) and OH-(H2O)(4) ionic
   clusters. The electrostatic contribution to the solvation free energy
   was determined by using solvent boxes having 120, 160, 216, 350, and
   512 water molecules, and the limit for N approaching infinity was
   obtained by an extrapolation procedure. The final solvation free energy
   obtained by considering the Lennard-Jones potential contribution,
   correcting for the cutoff surface potential, and including the surface
   potential of water cluster amounts to -108.0 kcal mol(-1): in very good
   agreement with the experimental value of -105.0 kcal mol(-1). This
   result shows that the extrapolation method coupled with the use of an
   effective two-body potential is a viable and accurate procedure for
   calculating the absolute solvation free energy of ionic species.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, SP, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, SP,
   Brazil.
CR ALLEN MP, 1989, COMPUTER SIMULATION
   AQVIST J, 1990, J PHYS CHEM-US, V94, P8021
   AQVIST J, 1994, J PHYS CHEM-US, V98, P8253
   BENNAIM A, 1978, J PHYS CHEM-US, V82, P792
   BENNAIM A, 1984, J CHEM PHYS, V81, P2016
   CARLSON HA, 1993, J COMPUT CHEM, V14, P1240
   CHIPOT C, 1994, J PHYS CHEM-US, V98, P11362
   CONWAY BE, 1981, IONIC HYDRATION CHEM
   DARDEN T, 1998, J CHEM PHYS, V109, P10921
   DELVALLE CP, 1997, CHEM PHYS LETT, V269, P401
   GAO J, 1986, J AM CHEM SOC, V108, P4784
   GRIMM AR, 1995, MOL PHYS, V86, P369
   HUMMER G, 1996, J PHYS CHEM-US, V100, P1206
   HUMMER G, 1997, J PHYS CHEM B, V101, P3017
   HUNENBERGER PH, 1999, J CHEM PHYS, V110, P1856
   JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
   JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
   JORGENSEN WL, 1988, MOL PHYS, V63, P547
   JORGENSEN WL, 1989, CHEM PHYS, V129, P193
   JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
   JORGENSEN WL, 1993, J COMPUT CHEM, V14, P195
   JORGENSEN WL, 1993, J COMPUT CHEM, V14, P206
   JORGENSEN WL, 1995, BOSS VERSION 3 5 YAL
   KING G, 1989, J CHEM PHYS, V91, P3647
   MARCUS Y, 1985, ION SOLVATION
   MARRONE TJ, 1994, J PHYS CHEM-US, V98, P8256
   MEOTNER M, 1986, J PHYS CHEM-US, V90, P6616
   PAPPALARDO RR, 1996, J PHYS CHEM-US, V100, P11748
   PAUL GJC, 1990, J PHYS CHEM-US, V94, P5148
   PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
   PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
   PLIEGO JR, 1999, PCCP PHYS CHEM CH PH, V1, P1031
   PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
   PRATT LR, 1992, J PHYS CHEM-US, V96, P25
   SAKANE S, 1998, J PHYS CHEM B, V102, P5673
   SOKHAN VP, 1997, MOL PHYS, V92, P625
   STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
   TISSANDIER MD, 1998, J PHYS CHEM A, V102, P7787
   TUNON I, 1995, J PHYS CHEM-US, V99, P3798
   TURKI N, 1998, J CHEM PHYS, V109, P7157
   WOOD RH, 1995, J CHEM PHYS, V103, P6177
   XANTHEAS SS, 1995, J AM CHEM SOC, V117, P10373
NR 42
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5647
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD JUN 1
PY 2000
VL 104
IS 21
BP 5155
EP 5160
PG 6
SC Chemistry, Physical
GA 320WU
UT ISI:000087424500019
ER

PT J
AU Gorelsky, SI
   da Silva, SC
   Lever, ABP
   Franco, DW
TI Electronic spectra of trans-[Ru(NH3)(4)(L)NO](3+/2+) complexes
SO INORGANICA CHIMICA ACTA
LA English
DT Article
DE electronic spectra; ruthenium complexes; nitrosyl-metal complexes; DFT;
   TD-DFT
ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL THEORY; EXTENDED
   BASIS-SETS; COMPACT EFFECTIVE POTENTIALS; EFFECTIVE CORE POTENTIALS;
   EXPONENT BASIS-SETS; ORGANOMETALLIC COMPOUNDS; TRANSITION-METALS;
   EXCITATION-ENERGIES; 1ST-ROW ELEMENTS
AB Density functional theory (DFT) with local, non-local and hybrid
   functionals has been used to obtain the geometry of a series of
   nitrosyl-metal complexes [Ru(NH3)(4)(L)NO](n+), where L = NH3, H2O,
   pyrazine and pyridine (n = 3), Cl- and OH- (n = 2). Based on the
   molecular orbital analysis and the time dependent DFT (TD-DFT)
   calculations, we discuss the electronic structure and the assignment of
   the bands in the electronic spectra of these complexes. (C) 2000
   Elsevier Science S.A. All rights reserved.
C1 York Univ, Dept Chem, Toronto, ON M3J 1P3, Canada.
   Univ Sao Paulo, Inst Quim, BR-13560970 Sao Carlos, SP, Brazil.
RP Lever, ABP, York Univ, Dept Chem, Toronto, ON M3J 1P3, Canada.
CR *HYP INC, 1997, HYPERCHEM WIND REL 5
   BAUERNSCHMITT R, 1996, CHEM PHYS LETT, V256, P454
   BAUERNSCHMITT R, 1998, J AM CHEM SOC, V120, P5052
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BEZERRA CWB, 1999, INORG CHEM, V38, P5660
   BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
   BLAUDEAU JP, 1997, J CHEM PHYS, V107, P5016
   BOTTOMLEY F, 1974, J CHEM SOC DA, V15, P1600
   BRAY MR, 1996, INT J QUANTUM CHEM, V61, P85
   CASIDA ME, 1995, RECENT ADV DENSITY F, V1
   CASIDA ME, 1996, RECENT DEV APPL MODE, V4
   CASIDA ME, 1997, MON KS MODULE RELEAS
   CASIDA ME, 1998, J CHEM PHYS, V108, P4439
   CLARK T, 1983, J COMPUT CHEM, V4, P294
   CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
   DA S, 1998, INORG CHEM, V37, P2670
   DAUL C, 1993, J CHEM PHYS, V98, P4023
   DOBBS KD, 1986, J COMPUT CHEM, V7, P359
   DOBBS KD, 1987, J COMPUT CHEM, V8, P861
   DOBBS KD, 1987, J COMPUT CHEM, V8, P880
   DUNNING TH, 1977, METHODS ELECT STRUCT, V2
   ESTRIN DA, 1996, INORG CHEM, V35, P3897
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   FUENTEALBA P, 1982, CHEM PHYS LETT, V89, P418
   FUENTEALBA P, 1983, J PHYS B ATOM MOL PH, V16, P1323
   FUENTEALBA P, 1985, J PHYS B ATOM MOL PH, V18, P1287
   GODBOUT N, 1992, CAN J CHEM, V70, P560
   GOMES MG, 1998, J CHEM SOC DALT 0221, P601
   GORDON MS, 1982, J AM CHEM SOC, V104, P2797
   GORELSKY SI, 1998, COORDIN CHEM REV, V174, P469
   GORELSKY SI, 1998, RUSS J COORD CHEM, V24, P491
   HAMRA OY, 1998, INORG CHEM, V37, P2033
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   HAY PJ, 1985, J CHEM PHYS, V82, P299
   HOLLAUER E, 1997, J BRAZIL CHEM SOC, V8, P495
   KRISHNAN R, 1980, J CHEM PHYS, V72, P650
   KROGHJESPERSEN K, 1987, J AM CHEM SOC, V109, P7025
   LEE C, 1988, PHYS REV B, V37, P785
   LEVER ABP, 1990, INORG CHEM, V29, P1271
   LEVER ABP, 1999, INORGANIC ELECT STRU, V2, P227
   LOPES LGF, 1998, AUST J CHEM, V51, P865
   MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
   PERDEW JP, 1986, PHYS REV B, V33, P8800
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PROYNOV EI, 1994, CHEM PHYS LETT, V230, P419
   PROYNOV EI, 1994, PHYS REV A, V50, P3766
   PROYNOV EI, 1994, PHYS REV B, V49, P7874
   PROYNOV EI, 1995, CHEM PHYS LETT, V234, P462
   PROYNOV EI, 1995, INT J QUANTUM CHEM S, V29, P61
   PROYNOV EI, 1997, INT J QUANTUM CHEM, V64, P427
   PROYNOV EI, 1998, PHYS REV B, P12616
   SCHREINER AF, 1972, INORG CHEM, V11, P880
   SILVA SC, 1999, SPECTROSC ACTA A, V55, P1515
   STAMANT A, 1992, THESIS U MONTREAL
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
   STEVENS WJ, 1992, CAN J CHEM, V70, P612
   STOLL H, 1984, J CHEM PHYS, V81, P2732
   STRATMANN RE, 1998, J CHEM PHYS, V109, P8218
   SZENTPALY L, 1982, CHEM PHYS LETT, V93, P555
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
   WADT WR, 1985, J CHEM PHYS, V82, P284
   WESTCOTT BL, 1999, INORGANIC ELECT STRU, V2, P403
   WONG MW, 1991, J AM CHEM SOC, V113, P4776
   WONG MW, 1991, J CHEM PHYS, V95, P8991
   WONG MW, 1992, J AM CHEM SOC, V114, P1645
   WONG MW, 1992, J AM CHEM SOC, V114, P523
   ZERNER MC, ZINDO PROGRAM VERSIO
NR 68
TC 41
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0020-1693
J9 INORG CHIM ACTA
JI Inorg. Chim. Acta
PD APR 30
PY 2000
VL 300
BP 698
EP 708
PG 11
SC Chemistry, Inorganic & Nuclear
GA 320WA
UT ISI:000087422800083
ER

PT J
AU de Oliveira, AE
   Haiduke, RLA
   Bruns, RE
TI The infrared fundamental intensities and polar tensor of CF4
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE infrared intensities; atomic polar tensors; electronegativity; G sum
   rule; simple potential model
ID DIPOLE-MOMENT DERIVATIVES; PRINCIPAL COMPONENT ANALYSIS; CORIOLIS
   INTERACTIONS; METHANE; CHLOROFLUOROCARBONS; ENERGIES; FLUORIDE;
   CHARGES; SIGNS
AB Atomic polar tensors of carbon tetrafluoride are calculated from
   experimental fundamental infrared intensities measured by several
   research groups. Quantum chemical calculations using a 6-311 + + G(3d,
   3p) basis set at the Hartree-Fock, Moller-Plesset 2 and Density
   Functional Theory (B3LYP) levels are used to resolve the sign
   ambiguities of the dipole moment derivatives. The resulting carbon mean
   dipole moment derivative, (p) over bar(C) = 2.051 e, is in excellent
   agreement with values estimated by a MP2/6-311 + + G(3d, 3p)
   theoretical calculation, 2.040 e, and by an empirical electronegativity
   model. 2.016 e. The (p) over bar(C) value determined here is also in
   excellent agreement with the one obtained from the CF4 Is carbon
   ionization energy using a simple potential model, 2.059 e. Crawford's G
   intensity sum rule applied to the fundamental intensities of CH4, CH3F,
   CH2F2 and CHF3 results in a prediction of a 1249 km mol(-1) intensity
   sum for CF4 in good agreement with the experimental values of 1328 +/-
   37.9, 1208.0 +/- 54.4 and 1194.8 +/- 7.4 km mol(-1) reported in the
   literature. (C) 2000 Elsevier Science B.V. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP de Oliveira, AE, Univ Estadual Campinas, Inst Quim, CP 6154,
   BR-13083970 Campinas, SP, Brazil.
CR BARROW GM, 1952, P ROY SOC LOND A MAT, V213, P27
   BIARGE JF, 1961, ANALES REAL SOC ES A, V57, P81
   BODE JHG, 1980, J PHYS CHEM-US, V84, P198
   BRUNS RE, 1996, J BRAZIL CHEM SOC, V7, P497
   CIOSLOWSKI J, 1989, J AM CHEM SOC, V111, P8333
   CRAWFORD BL, 1952, J CHEM PHYS, V20, P977
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GOLDEN WG, 1978, J CHEM PHYS, V68, P2081
   GUADAGNINI PH, 1997, J AM CHEM SOC, V119, P4224
   HANNAH RW, 1959, THESIS PURDUE U
   HEICKLEN J, 1961, SPECTROCHIM ACTA, V17, P201
   HUHEEY JE, 1965, J PHYS CHEM-US, V69, P3284
   KIM K, 1980, J CHEM PHYS, V73, P5591
   KIM K, 1987, J QUANT SPECTROSC RA, V37, P107
   KING WT, 1972, J CHEM PHYS, V56, P4440
   KONDO S, 1980, J CHEM PHYS, V73, P5409
   KONDO S, 1981, J CHEM PHYS, V74, P6603
   KONDO S, 1982, J CHEM PHYS, V76, P809
   LEVIN IW, 1970, J CHEM PHYS, V52, P1608
   MCDANIEL AH, 1991, J ATMOS CHEM, V12, P211
   MIZUNO M, 1976, SPECTROCHIM ACTA A, V32, P1077
   NETO BB, 1988, J CHEM PHYS, V89, P1887
   NETO BB, 1989, J PHYS CHEM-US, V83, P1728
   OVEREND J, 1963, INFRARED SPECTROSCOP, P345
   OVEREND J, 1982, VIBRATIONAL INTENSIT, P14
   PERSON WB, 1974, J CHEM PHYS, V61, P1040
   PERSON WB, 1975, J PHYS CHEM-US, V79, P2525
   ROEHL CM, 1995, GEOPHYS RES LETT, V22, P815
   RUSSELL JW, 1966, J CHEM PHYS, V45, P3383
   SAEKI S, 1976, SPECTROCHIM ACTA PT, V32, P403
   SCHATZ PN, 1953, J CHEM PHYS, V21, P1516
   SCHURIN B, 1959, J CHEM PHYS, V30, P1
   SIEGBAHN K, 1971, ESCA APPL FREE MOL
   SUTO E, 1991, J COMPUT CHEM, V12, P885
   SUTO E, 1991, J PHYS CHEM-US, V95, P9716
   VARANASI P, 1988, J GEOPHYS RES, V93, P1666
NR 36
TC 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUN
PY 2000
VL 56
IS 7
BP 1329
EP 1335
PG 7
SC Spectroscopy
GA 319YW
UT ISI:000087374900011
ER

PT J
AU Rivelino, R
   Canuto, S
TI An ab initio study of the hydrogen-bonded H2O : HCN and HCN : H2O
   isomers
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID QUANTUM-CHEMISTRY; CYANIDE; WATER; COMPLEXES; SPECTROSCOPY; MOLECULES;
   SPECTRA
AB Ab initio calculations an performed on the hydrogen bond interaction
   between HCN and water to analyze the structure, binding energy and
   change in vibrational frequencies of the HCN:H2O isomer. After geometry
   optimization, single-point calculations are made with many-body
   perturbation/coupled-cluster theories with different basis sets. At the
   highest level, CCSD(T), we find that the binding energy between HCN and
   water is 3.4 kcal/mol, after correcting for the basis-set-super
   position error. Changes in intra-molecular vibrational frequencies are
   analyzed. (C) 2000 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BENTWOOD RM, 1980, J MOL SPECTROSC, V84, P391
   BERNSTEIN ER, 1990, ATOMIC MOL CLUSTERS
   BOYS SF, 1970, MOL PHYS, V19, P553
   BUCKINGHAM AD, 1988, CHEM REV, V88, P963
   FILLERYTRAVIS AJ, 1984, P ROY SOC LOND A MAT, V396, P405
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GUTOWSKY HS, 1992, J CHEM PHYS, V96, P5808
   HARRIS DC, 1989, SYMMETRY SPECTROSCOP
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   IRVINE WM, 1996, NATURE, V383, P418
   LEE C, 1988, PHYS REV B, V37, P785
   LIEBMAN SA, 1994, ADV SPACE RES, V15, P71
   MATHEWS CN, 1992, ORIGIN LIFE EVOL B, V21, P421
   MEOTNER M, 1989, J PHYS CHEM-US, V93, P3663
   MICHAEL DW, 1984, J CHEM PHYS, V81, P1360
   NOTESCO G, 1997, ICARUS, V126, P336
   PAULING L, 1928, P NATL ACAD SCI USA, V14, P349
   RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
   SCHEINER S, 1997, HYDROGEN BONDING THE
   SCOLES G, 1990, CHEM PHYSICS ATOMIC
   SMITH DA, 1994, ACS S SERIES, V569
   SMITH DMA, 1998, CHEM PHYS LETT, V288, P609
   STONE AJ, 1996, THEORY INTERMOLECULA
   SZCZESNIAK MM, 1984, J CHEM PHYS, V81, P5024
   SZCZESNIAK MM, 1986, J MOL STRUCT THEOCHE, V135, P179
   TSHEHLA TM, 1994, B POL ACAD SCI-CHEM, V42, P397
   TURI L, 1993, J PHYS CHEM-US, V97, P7899
   VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
NR 30
TC 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 19
PY 2000
VL 322
IS 3-4
BP 207
EP 212
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 318EX
UT ISI:000087271900009
ER

PT J
AU Bezerra, EF
   Freire, VN
   Teixeira, AMR
   Silva, MAA
   Freire, PTC
   Mendes, J
   Lemos, V
TI Smooth interface effects on the Raman scattering in zinc-blende AlN/GaN
   superlattices
SO PHYSICAL REVIEW B
LA English
DT Article
ID III NITRIDE SEMICONDUCTORS; QUANTUM-WELLS; CUBIC GAN; LATTICE-DYNAMICS;
   EPITAXIAL LAYERS; OPTICAL PHONONS; AB-INITIO; MODES; SPECTROSCOPY;
   SPECTRA
AB Raman spectra of
   (AlN)(8-delta)/(AlxGa1-xN)(delta)/(GaN)(8-delta)/(AlxGa1-xN)(delta)
   superlattices with interface thickness varying between delta = 0 and
   delta = 3 are calculated. The influence of the nonabrupt interface
   related broadening is described in the complete range of scattering,
   with special attention to the modes giving stronger contribution to the
   Raman intensity. It is shown that the dispersion of folded acoustic
   phonons does not change appreciably with the interface smoothing. For
   delta = 0 the Raman spectra display new peaks due to the enhancement of
   some confined optic modes.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, UNICAMP, BR-13083970 Campinas, SP, Brazil.
RP Lemos, V, Univ Fed Ceara, Dept Fis, Ctr Ciencias, Caixa Postal
   6030,Campus do Pici, BR-60455760 Fortaleza, Ceara, Brazil.
CR AKASAKI I, 1997, JPN J APPL PHYS 1, V36, P5393
   BEHR D, 1997, APPL PHYS LETT, V70, P363
   BELITSKY VI, 1994, PHYS REV B, V49, P8263
   CINGOLANI R, 1997, PHYS REV B, V56, P1491
   DHARMAWARDANA MWC, 1990, PHYS REV B, V41, P5319
   GIEHLER M, 1995, APPL PHYS LETT, V67, P733
   GRILLE H, 1996, J RAMAN SPECTROSC, V27, P201
   HARIMA H, 1999, APPL PHYS LETT, V74, P191
   HOLST J, 1998, APPL PHYS LETT, V72, P1439
   JUSSERAND B, 1989, TOP APPL PHYS, V66, P49
   KARCH K, 1997, PHYS REV B, V56, P7404
   KARCH K, 1998, PHYS REV B, V57, P7043
   LEMOS V, 1995, SUPERLATTICE MICROST, V17, P51
   LEMOS V, 1999, J RAMAN SPECTROSC, V30, P379
   LIU XH, 1996, PHYS REV B, V53, P4699
   MACMILLAN MF, 1996, J APPL PHYS, V80, P2372
   MOHAMMAD SN, 1996, PROG QUANT ELECTRON, V20, P361
   NAKAMURA S, 1997, BLUE LASER DIODE
   PILLA O, 1994, PHYS REV B, V50, P11845
   PLOOG KH, 1997, THIN SOLID FILMS, V306, P231
   RAMIREZFLORES G, 1994, PHYS REV B, V50, P8433
   SAMSON B, 1992, PHYS REV B, V46, P2375
   SIEGLE H, 1995, SOLID STATE COMMUN, V96, P943
   SILVA MAA, 1996, PHYS REV B, V53, P15871
   SMITH M, 1996, APPL PHYS LETT, V69, P2453
   STRIFE S, 1992, J VAC SCI TECHNOL B, V10, P1237
   SUN XL, 1999, APPL PHYS LETT, V74, P2827
   TABATA A, 1999, APPL PHYS LETT, V74, P362
   TABATA A, 1999, APPL PHYS LETT, V75, P1095
   TABATA A, 1999, SEMICOND SCI TECH, V14, P1
   TSEN KT, 1996, J RAMAN SPECTROSC, V27, P277
   WEI GH, 1997, J APPL PHYS, V82, P622
   ZI JA, 1996, J PHYS-CONDENS MAT, V8, P6329
NR 33
TC 11
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2000
VL 61
IS 19
BP 13060
EP 13063
PG 4
SC Physics, Condensed Matter
GA 316GK
UT ISI:000087159100092
ER

PT J
AU Bettega, MHF
   Winstead, C
   McKoy, V
TI Elastic scattering of low-energy electrons by benzene
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID TEMPORARY NEGATIVE-IONS; SELECTION-RULES; VIBRATIONAL-EXCITATION;
   MOLECULE COLLISIONS; RESONANCES; IMPACT
AB We present elastic cross sections obtained from ab initio calculations
   for low-energy electron scattering by benzene, C6H6. The calculations
   employed the Schwinger multichannel method as implemented for parallel
   computers within both the static-exchange and
   static-exchange-polarization approximations. We compare our results
   with other theoretical calculations and with available experimental
   data. In general, agreement is good. (C) 2000 American Institute of
   Physics. [S0021-9606(00)01120-X].
C1 CALTECH, Arthur Amos Noyes Lab Chem Phys, Pasadena, CA 91125 USA.
   Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil.
RP Bettega, MHF, CALTECH, Arthur Amos Noyes Lab Chem Phys, Pasadena, CA
   91125 USA.
CR AFLATOONI K, 1998, J PHYS CHEM A, V102, P6205
   ALLAN M, 1982, HELV CHIM ACTA, V65, P2009
   ALTMANN SL, 1957, P CAMB PHILOS SOC, V53, P343
   AZRIA R, 1975, J CHEM PHYS, V62, P573
   BATTAGLIA MR, 1981, CHEM PHYS LETT, V78, P421
   BAUSCHLICHER CW, 1980, J CHEM PHYS, V72, P880
   BENARFA M, 1990, J ELECTRON SPECTRY R, V50, P117
   BETTEGA MHF, 1993, PHYS REV A, V47, P1111
   CHAO JSY, 1987, J PHYS CHEM-US, V91, P5578
   GALLUP GA, 1986, PHYS REV A, V34, P2746
   GALLUP GA, 1993, J CHEM PHYS, V99, P827
   GERJUOY E, 1955, PHYS REV, V97, P1671
   GIANTURCO FA, 1998, J CHEM PHYS, V108, P6144
   GULLEY RJ, 1998, J PHYS B-AT MOL OPT, V31, P2735
   GULLEY RJ, 1999, COMMUNICATION
   GULLEY RJ, 1999, J PHYS B-AT MOL OPT, V32, L405
   HERZBERG G, 1966, MOL SPECTRA MOL STRU, V3, P999
   JORDAN KD, 1987, CHEM REV, V87, P557
   LEE CH, 1999, J CHEM PHYS, V111, P5056
   LIMA MAP, 1990, PHYS REV A, V41, P327
   MCKOY V, 1998, J VAC SCI TECHNOL A, V16, P324
   MORRISON MA, 1977, PHYS REV A, V15, P2186
   MOZEJKO P, 1996, CHEM PHYS LETT, V257, P309
   NATALENSE APP, 1998, PHYS REV LETT, V81, P3832
   NENNER I, 1975, J CHEM PHYS, V62, P1747
   RESCIGNO TN, MODERN ELECT STRUC 1, V501, P95
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SUEOKA O, 1988, J PHYS B ATOM MOL PH, V21, L631
   TAKATSUKA K, 1981, PHYS REV A, V24, P2473
   TAKATSUKA K, 1984, PHYS REV A, V30, P1734
   VARELLA MTD, 1999, J CHEM PHYS, V111, P6396
   VARELLA MTD, 1999, PHYS REV A, V60, P3684
   WIGNER EP, 1948, PHYS REV, V73, P1002
   WIJNBERG L, 1966, J CHEM PHYS, V44, P3864
   WINSTEAD C, 1996, ADV ATOM MOL OPT PHY, V36, P183
   WINSTEAD C, 1998, PHYS REV A, V57, P3589
   WONG SF, 1975, PHYS REV LETT, V35, P1429
NR 37
TC 17
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAY 22
PY 2000
VL 112
IS 20
BP 8806
EP 8812
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 310WC
UT ISI:000086851200010
ER

PT J
AU Rocha, WR
   De Almeida, WB
TI Carbonyl insertion reaction into the Pt-C bond in heterobimetallic
   Pt(SnCl3)(PH3)(2)(CO)(CH3) compound: Theoretical study
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE Pt(SnCl3)(PH3)(2)(CO)(CH3); heterobimetallic; catalytic species;
   carbonyl insertion reaction; quantum mechanical
ID OLEFIN HYDROFORMYLATION; ABINITIO MO; ASYMMETRIC HYDROFORMYLATION;
   ALKYL MIGRATION; REACTION-PATH; BASIS-SETS; AB-INITIO; COMPLEXES; PD;
   MECHANISM
AB Quantum-mechanical calculations were carried out at the MP4(SDQ)//MP2
   level of theory to determine the energies and reaction mechanism for
   the carbonyl insertion reaction (second step in the olefin
   hydroformylation catalytic cycle), using a heterobimetallic
   Pt(SnCl3)(PH3)(2)(CO)(CH3) compound as a model catalytic species. The
   results show that this reaction proceeds through a three-center
   transition state, with an activation energy of 26.4 kcal/mol, followed
   by an intramolecular rearrangement to the square-planar
   cis-Pt(SnC4)(PH3)(2)(MeCO) metal-acyl product. Analysis of the nature
   of the bonds shows that there is a negligible participation of Be tin
   d-orbitals in the formation of the Pt-Sn bond. (C) 2000 John Wiley &
   Sons, Inc.
C1 UFMG, ICEX, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, UFMG, ICEX, Dept Quim, LQCMM, BR-31270901 Belo
   Horizonte, MG, Brazil.
CR ALBINATI A, 1985, J ORGANOMET CHEM, V295, P239
   ANDERSON GK, 1984, ACCOUNTS CHEM RES, V17, P67
   AUGUSTI R, 1995, P 8 SEM BRAS CAT, V1, P360
   BOTTEGHI C, 1992, QUIM NOVA, V15, P21
   BOTTEGHI C, 1997, QUIM NOVA, V20, P30
   DAROCHA LL, 1998, J MOL CATAL A-CHEM, V132, P213
   DIAS AD, 1997, TETRAHEDRON LETT, V38, P41
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
   GATES BC, 1992, CATALYTIC CHEM
   GOMEZ M, 1991, ORGANOMETALLICS, V10, P4036
   GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
   GUSEVSKAYA E, 1997, J MOL CATAL A-CHEM, V121, P131
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   HEHRE WJ, 1969, J CHEM PHYS, V51, P2657
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HOLLWARTH A, 1993, CHEM PHYS LETT, V208, P237
   KOGA N, 1985, J AM CHEM SOC, V107, P7230
   KOGA N, 1986, J AM CHEM SOC, V108, P6136
   KOGA N, 1991, NEW J CHEM, V15, P749
   KOLLAR L, 1987, J ORGANOMET CHEM, V330, P305
   MATSUBARA T, 1997, ORGANOMETALLICS, V16, P1065
   MOLLER C, 1934, PHYS REV, V46, P618
   NOACK K, 1967, J ORGANOMET CHEM, V10, P101
   OZAWA F, 1981, CHEM LETT, P289
   PARRINELLO G, 1987, J AM CHEM SOC, V109, P7122
   PENG CY, 1993, ISRAEL J CHEM, V33, P449
   PETTIT LD, 1972, Q REV, V56, P2257
   REED AE, 1988, CHEM REV, V88, P899
   ROCHA WR, 1997, INT J QUANTUM CHEM, V65, P643
   ROCHA WR, 1998, ORGANOMETALLICS, V17, P1961
   SAKAKI S, 1983, J AM CHEM SOC, V105, P2280
   SCRIVANTI A, 1986, J ORGANOMET CHEM, V314, P369
   VERSLUIS L, 1989, J AM CHEM SOC, V111, P2018
   YAMAMOTO A, 1986, ORGANOTRANSITION MET
   ZIEGLER T, 1986, J AM CHEM SOC, V108, P612
NR 36
TC 4
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD JUN
PY 2000
VL 21
IS 8
BP 668
EP 674
PG 7
SC Chemistry, Multidisciplinary
GA 310MC
UT ISI:000086831100005
ER

PT J
AU Fagan, SB
   Baierle, RJ
   Mota, R
   da Silva, AJR
   Fazzio, A
TI Ab initio calculations for a hypothetical material: Silicon nanotubes
SO PHYSICAL REVIEW B
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; CARBON NANOTUBES; ELECTRONIC-STRUCTURE;
   MOLECULAR-DYNAMICS; SYSTEMS; TUBULES; BORON
AB Electronic and structural properties of a hypothetical material,
   silicon nanotubes, are examined through first-principles calculations
   based on density functional theory. Even considering that Si nanotubes
   have never been observed, this paper attempts to establish the
   theoretical similarities between Si and C, like band structures and
   density of states, as well as the main differences, especially
   associated with cohesive energies. The band-structure calculations for
   silicon nanotubes show that, similar to carbon structures, depending on
   their chiralities, they may present metallic (armchair) or
   semiconductor (zigzag and mixed) behaviors.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Fagan, SB, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
   Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
   BETHUNE DS, 1993, NATURE, V363, P605
   BLASE X, 1994, PHYS REV LETT, V72, P1878
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   CAR R, 1985, PHYS REV LETT, V55, P2471
   CHOPRA NG, 1995, SCIENCE, V269, P966
   DRESSELHAUS MS, 1992, SOLID STATE COMMUN, V84, P201
   HAMADA N, 1992, PHYS REV LETT, V68, P1579
   HOHENBERG P, 1964, PHYS REV, V136, B864
   IIJIMA S, 1991, NATURE, V354, P54
   IIJIMA S, 1993, NATURE, V363, P603
   KLEYNMAN L, 1982, PHYS REV LETT, V48, P1425
   KOHN W, 1965, PHYS REV, V140, A1133
   MINTMIRE JW, 1992, PHYS REV LETT, V68, P631
   MIYAMOTO Y, 1996, PHYS REV LETT, V76, P2120
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   ODOM TW, 1998, NATURE, V391, P62
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   ROTHLISBERGER U, 1994, PHYS REV LETT, V72, P665
   STEPHAN O, 1994, SCIENCE, V266, P1683
   WENGSIEH Z, 1995, PHYS REV B, V51, P11229
   WILDOER JWG, 1998, NATURE, V391, P59
   YAKOBSON BI, 1997, AM SCI, V85, P324
NR 23
TC 43
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD APR 15
PY 2000
VL 61
IS 15
BP 9994
EP 9996
PG 3
SC Physics, Condensed Matter
GA 306PZ
UT ISI:000086606200039
ER

PT J
AU Pinheiro, JC
   Jorge, FE
   De Castro, EVR
TI An improved generator coordinate Hartree-Fock method applied to the
   choice of contracted Gaussian basis sets for first-row diatomic
   molecules
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE improved generator coordinate Hartree-Fock method; contracted Gaussian
   basis sets; first-row diatomic molecules
ID UNIVERSAL BASIS-SET; CORRELATION-ENERGY; 2ND-ROW ATOMS; MP2 ENERGY;
   EXCHANGE; HYDROGEN
AB Accurate Gaussian basis sets (18s for Li and Be and 20s11p for the
   atoms from B to Ne) for the first-row atoms, generated with an improved
   generator coordinate Hartree-Fock method, were contracted and enriched
   with polarization functions. These basis sets were tested for B-2, C-2,
   BeO, CN-, LiF, N-2, CO, BF, NO+, O-2, and F-2. At the Hartree-Fock
   (HP), second-order Moller-Plesset (MP2), fourth-order Moller-Plesset
   (MP4), and density functional theory (DFT) levels, the dipole moments,
   bond lengths, and harmonic vibrational frequencies were studied, and at
   the MP2, MP4, and DFT levels, the dissociation energies were evaluated
   and compared with the corresponding experimental values and with values
   obtained using other contracted Gaussian basis sets and numerical HF
   calculations. For all diatomic molecules studied, the differences
   between our total energies, obtained with the largest contracted basis
   set [6s5p3d1f], and those calculated with the numerical HF methods were
   always less than 3.2 mhartree. (C) 2000 John Wiley & Sons, Inc.
C1 Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES, Brazil.
   Univ Fed Espirito Santo, Dept Quim, BR-29060900 Vitoria, ES, Brazil.
   Fed Univ Para, Fac Ciencias Exactas & Nat, Dept Quim, BR-66075110 Belem, Para, Brazil.
   Ctr Estudos Panamazonico, BR-66060000 Belem, Para, Brazil.
RP Jorge, FE, Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES,
   Brazil.
CR BECKE AD, 1982, J CHEM PHYS, V76, P6037
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BUNGE CF, 1992, PHYS REV A, V46, P3691
   CHAKRAVORTY SJ, 1989, MODERN TECHNIQUES CO, CH3
   DACOSTA HFM, 1991, CHEM PHYS, V154, P379
   DECASTRO EVR, 1998, J CHEM PHYS, V108, P5225
   DECASTRO EVR, 1999, J C CHEM PHYS, V243, P1
   DINGLE TW, 1989, J COMPUT CHEM, V10, P753
   DUNNING TH, 1997, METHODS ELECT STRUCT
   FRISCH MJ, 1990, CHEM PHYS LETT, V166, P281
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   HEADGORDON M, 1988, CHEM PHYS LETT, V153, P503
   HEADGORDON M, 1994, CHEM PHYS LETT, V220, P122
   HOUK RF, 1982, J COMPUT CHEM, V3, P234
   HUBER KP, 1972, AM I PHYSICS HDB
   HUBER KP, 1979, MOL SPECTRA MOL STRU, V4
   JORGE FE, 1997, CHEM PHYS, V216, P317
   JORGE FE, 1998, CHEM PHYS, V233, P1
   JORGE FE, 1998, J COMPUT CHEM, V19, P858
   JORGE FE, 1999, CHEM PHYS LETT, V302, P454
   KRISHNAN R, 1978, INT J QUANTUM CHEM, V14, P91
   LEE C, 1988, PHYS REV B, V37, P785
   MOHALLEM JR, 1986, INT J QUANTUM CH S20, P45
   MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
   MONCRIEFF D, 1995, J PHYS B ATOM MOL PH, V28, P4555
   NELSON RD, 1967, NATL STANDARDS REFER, V10
   PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
   PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
   PYYKKO P, 1987, MOL PHYS, V60, P597
   RADZIG AA, 1985, REFERENCE DATA ATOMS
   RAFFENETTI RC, 1973, J CHEM PHYS, V58, P4452
   ROBLES J, 1987, CHEM PHYS LETT, V134, P27
   SADLEJ J, 1985, SEMIEMPIRICAL METHOD
   SEMINARIO JM, 1991, INT J QUANTUM CHEM S, V25, P249
NR 34
TC 12
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD MAY 15
PY 2000
VL 78
IS 1
BP 15
EP 23
PG 9
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA 306TW
UT ISI:000086613600003
ER

PT J
AU Rocha, WR
   De Almeida, WB
TI Insertion reaction of propane into Rh-H bond in HRh(CO)(PH3)(2)(C3H6)
   compound: A density functional study
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE propene; insertion reaction; hydroformylation; regioselectivity;
   density functional
ID RHODIUM-CATALYZED HYDROFORMYLATION; TRANSITION-METAL ATOMS; AB-INITIO;
   PROPENE HYDROFORMYLATION; REACTION-PATH; COMPLEXES; LIGANDS;
   TRIPHENYLPHOSPHINE; APPROXIMATION; CHEMISTRY
AB Quantum mechanical calculations at the MP4 (SDQ) level using the
   BP86-optimized geometries were carried out to investigate the energies
   and reaction mechanism for the propene (CH3-(CH)-H-1=CH22) insertion
   reaction into the Rh-H bond, using the cis-HRh(CO)(PH3)(2) compound as
   a model catalytic species. Since the reaction may occur on the branched
   carbon 1 or in the normal carbon 2, which leads to branched and normal
   Rh(alkyl) compounds, respectively, we investigated these two
   mechanisms. The results show that the insertion in the branched carbon
   has an activation energy of 16.2 kcal/mol, and the activation energy
   for the reaction to take place at the normal carbon is 14.3 kcal/mol.
   These activation energies, together with the calculated relative energy
   of the metal-alkyl compounds formed after the insertion considering
   these two pathways, were used to access the regioselectivity on this
   reaction. We found a ratio of normal- and iso-products, n:iso, of
   (96:4), which is in excellent agreement with the experimental
   regioselectity of (95:5). (C) 2000 John Wiley & Sons, Inc.
C1 UFMG, ICEX, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, UFMG, ICEX, Dept Quim, LQCMM, BR-31270901 Belo
   Horizonte, MG, Brazil.
CR BECKE AD, 1988, PHYS REV A, V38, P3098
   BOTTEGHI C, 1992, QUIM NOVA, V15, P21
   BOTTEGHI C, 1997, QUIM NOVA, V20, P30
   BROWN JM, 1987, J CHEM SOC P2, P1597
   CORNILS B, 1994, ANGEW CHEM INT EDIT, V33, P2144
   DORO PC, 1980, CHIM IND-MILAN, V62, P572
   EVANS D, 1968, J CHEM SOC A, P3133
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
   GLADIALI S, 1995, J ORGANOMET CHEM, V491, P91
   GLEICH D, 1998, ORGANOMETALLICS, V17, P4828
   GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
   GONZALEZBLANCO O, 1997, ORGANOMETALLICS, V16, P5556
   GORDON MS, 1996, COORDIN CHEM REV, V147, P87
   GREGORIO G, 1980, CHIMICA IND, V62, P389
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   HEHRE WJ, 1969, J CHEM PHYS, V51, P2657
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HERRMANN WA, 1993, ANGEW CHEM INT EDIT, V32, P1524
   HERRMANN WA, 1997, ANGEW CHEM INT EDIT, V36, P1047
   KOGA N, 1991, CHEM REV, V91, P823
   MATSUBARA T, 1997, ORGANOMETALLICS, V16, P1065
   OSBORN JA, 1966, J CHEM SOC A, P1711
   PENG CY, 1993, ISRAEL J CHEM, V33, P449
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PIDUN U, 1998, CHEM-EUR J, V4, P522
   PIGNOLET LH, 1983, HOMOGENEOUS CATALYSI
   PRUETT RL, 1977, ANN NY ACAD SCI, V295, P239
   ROCHA WR, 1997, INT J QUANTUM CHEM, V65, P643
   SALAHUB DR, 1989, ACS S SERIES, V394
   SCHMID R, 1997, ORGANOMETALLICS, V16, P701
   SIEGBAHN PEM, 1993, J AM CHEM SOC, V115, P5803
   SIEGBAHN PEM, 1996, ADV CHEM PHYS, V93, P333
   STEGMANN R, 1998, ORGANOMETALLICS, V17, P2089
   THATCHENKO I, 1982, COMPREHENSIVE ORGANO, V8
   VEILARD A, 1985, QUANTUM CHEM CHALLEN
   YAGUPSKY G, 1970, J CHEM SOC A, P1392
   ZIEGLER T, 1991, CHEM REV, V91, P649
NR 38
TC 13
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD MAY 15
PY 2000
VL 78
IS 1
BP 42
EP 51
PG 10
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA 306TW
UT ISI:000086613600006
ER

PT J
AU Leitao, AA
   Vugman, NV
   Bielschowsky, CE
TI On the origin of C-13 and N-14 hyperfine interactions in
   [Co(CN)(6)](4-) and [Rh(CN)(6)](4-) complexes in KC1 host lattice
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID EFFECTIVE CORE POTENTIALS; MOLECULAR CALCULATIONS; COUPLING-CONSTANTS;
   BASIS-SETS; AB-INITIO; ABINITIO; MODEL
AB Ab-initio ROHF, PUHF and PUHF-MP2 calculations of C-13 and N-14
   hyperfine interactions for the [Co(CN)(6)](4-) and [Rh(CN)(6)](4-)
   complexes in the KCl host lattice were performed and compared to
   experimental results. The host lattice was represented by a set of 80
   potentials located at the ion positions, leading to a consistent
   picture of the complex electronic structure. A detailed analysis of
   each molecular orbital contribution shows that collective effects are
   very important and must be considered to achieve a realistic
   description of this property. (C) 2000 Elsevier Science B.V. All rights
   reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, BR-21949900 Rio De Janeiro, Brazil.
   Univ Fed Rio de Janeiro, Inst Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Bielschowsky, CE, Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim,
   Cidade Univ,CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR BERRONDO M, 1996, INT J QUANTUM CHEM, V57, P1115
   CARMICHAEL I, 1997, J PHYS CHEM A, V101, P4633
   CHIPMAN DM, 1992, THEOR CHIM ACTA, V82, P93
   EVJEN HM, 1932, PHYS REV, V39, P675
   GAULD JW, 1997, J PHYS CHEM A, V101, P1359
   GUENZBURGER D, 1996, J APPL PHYS 2B, V79, P6429
   HA TK, 1996, J CHEM PHYS, V105, P6385
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   HAY PJ, 1985, J CHEM PHYS, V82, P299
   JEAD JD, 1996, J CHEM PHYS, V104, P3244
   PERERA SA, 1994, J CHEM PHYS, V100, P1425
   PUCHINA AV, 1998, SOLID STATE COMMUN, V106, P285
   RIVASSILVA JF, 1996, J PHYS CHEM SOLIDS, V57, P1705
   SAUER J, 1989, CHEM REV, V89, P199
   SEIJO L, 1996, INT J QUANTUM CHEM, V60, P617
   SHOCK JR, 1975, J MAGN RESON, V18, P157
   SOUSA C, 1993, J COMPUT CHEM, V14, P680
   TEUNISSEN EH, 1995, INT J QUANTUM CHEM, V54, P73
   VUGMAN NV, 1997, J MAGN RESON, V124, P352
   WADT WR, 1985, J CHEM PHYS, V82, P284
   WINTER NW, 1987, J CHEM PHYS, V87, P2945
NR 21
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 28
PY 2000
VL 321
IS 3-4
BP 269
EP 274
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 308FW
UT ISI:000086700700012
ER

PT J
AU Eustatiu, IG
   Tyliszczak, T
   Hitchcock, AP
   Turci, CC
   Rocha, AB
   Bielschowsky, CE
TI Experimental and theoretical study of generalized oscillator strengths
   for C 1s and O 1s excitations in CO2
SO PHYSICAL REVIEW A
LA English
DT Article
ID ELECTRON-ENERGY-LOSS; INTRAMOLECULAR BOND LENGTHS; ABSORPTION
   FINE-STRUCTURE; IMPACT CORE EXCITATION; SHELL SHAPE RESONANCES; FAST
   CHARGED-PARTICLES; INELASTIC-COLLISIONS; MOMENTUM-TRANSFER; LEVEL
   EXCITATION; LOSS SPECTRA
AB Electron-energy-loss spectra of CO2 in the region of C 1 s and O 1 s
   excitations have been recorded over a wide range of momentum transfer
   (K), (2 a.u.(-2)<K-2<70a.u.(-2)). The dipole-forbidden transition to
   the (C 1 s sigma(g)(-1),sigma(g)(*)) (1)Sigma (+)(g) state in CO2 is
   detected for the first time, to our knowledge. A detailed analysis,
   with careful consideration of minimization of systematic experimental
   errors, has been used to convert the measured relative cross sections
   to absolute, momentum-transfer-dependent, generalized oscillator
   strength (GOS) profiles for all resolved C 1 s and O 1 s transitions of
   CO2. Theoretical results for the GOS, computed within the first Born
   approximation, were obtained with ab initio configuration interaction
   wave functions for the C 1 s transitions and with ab initio generalized
   multistructural wave functions for the O 1 s transitions. These wave
   functions include relaxation, correlation, and hole localization
   effects. Theory predicts large quadrupole contributions to the GOS for
   O 1 s excitations. In addition the computed GOS for O 1 s-->ns sigma
   and np sigma Rydberg states clearly show oscillations arising from
   interference between localized core excitations. Overall there is good
   agreement between the experimental and theoretical results, indicating
   that the first Born approximation holds to a surprisingly large
   momentum transfer for the core excitations studied.
C1 McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
   Univ Fed Rio de Janeiro, Inst Quim, BR-21910 Rio De Janeiro, Brazil.
RP Eustatiu, IG, McMaster Univ, Dept Chem, 1280 Main St W, Hamilton, ON
   L8S 4M1, Canada.
CR AEBI P, 1992, PHYS REV B, V45, P13579
   BARBIERI RS, 1992, PHYS REV A, V45, P7929
   BARTH A, 1985, J PHYS B ATOM MOL PH, V18, P867
   BETHE H, 1930, ANN PHYS-BERLIN, V5, P325
   BIELSCHOWSKY CE, 1988, PHYS REV A, V38, P3405
   BIELSCHOWSKY CE, 1992, PHYS REV A, V45, P7942
   BONHAM RA, 1974, J ELECT SPECTROSC RE, V3, P85
   BONHAM RA, 1993, J PHYS B ATOM MOL PH, V26, P3363
   BOZEK JD, 1995, PHYS REV A, V51, P4563
   CAMILLONI R, 1983, EXAFS NEAR EDGE STRU, P174
   CAMILLONI R, 1984, LECTURE NOTES CHEM, V35, P172
   CAMILLONI R, 1987, J PHYS B ATOM MOL PH, V20, P1839
   CHUNG S, 1975, PHYS REV A, V12, P1340
   DAASCH WR, 1982, J CHEM PHYS, V76, P6031
   DAROCHA AB, 1998, PHYS REV A, V57, P4394
   DEMIRANDA MP, 1993, J MOL STRUCT, V282, P71
   DEMIRANDA MP, 1994, PHYS REV A, V49, P2399
   DEMIRANDA MP, 1995, J PHYS B-AT MOL OPT, V28, L15
   DILLON MA, 1975, J CHEM PHYS, V62, P2373
   EUSTATIU IG, IN PRESS CHEM PHYS
   EUSTATIU IG, 1999, CHEM PHYS LETT, V300, P676
   FOCK JH, 1984, CHEM PHYS, V83, P377
   FRANCIS JT, 1995, PHYS REV A, V52, P4665
   GIANTURCO FA, 1972, J CHEM PHYS, V57, P840
   GUNNELIN K, 1998, PHYS REV A, V57, P864
   HARRISON I, 1987, J ELECTRON SPECTROSC, V43, P155
   HITCHCOCK AP, UNPUB
   HITCHCOCK AP, 1987, J CHEM PHYS, V87, P3253
   HITCHCOCK AP, 1990, PHYSICA SCRIPTA T, V31, P159
   INOKUTI M, 1971, REV MOD PHYS, V43, P297
   INOKUTI M, 1978, REV MOD PHYS, V50, P23
   JOLLY WL, 1984, ATOM DATA NUCL DATA, V31, P7
   KARLE J, 1961, J CHEM PHYS, V35, P963
   KIM YK, 1968, PHYS REV, V175, P176
   KOSUGI N, 1996, J ELECTRON SPECTROSC, V79, P351
   LASSETTRE EN, 1964, J CHEM PHYS, V40, P1242
   LASSETTRE EN, 1965, J CHEM PHYS, V43, P4479
   LASSETTRE EN, 1970, J CHEM PHYS, V52, P2797
   LEE JS, 1975, J CHEM PHYS, V4, P1609
   LUCHESE RR, 1982, PHYS REV A, V26, P1406
   MA Y, 1991, PHYS REV A, V44, P1848
   MASSEY HSW, 1932, P R SOC LOND A-CONTA, V135, P258
   MATSUZAWA M, 1969, J CHEM PHYS, V51, P4705
   MCLAREN R, 1987, PHYS REV A, V36, P1683
   NATOLI CR, 1983, EXAFS NEAR EDGE STRU, P43
   PADIAL N, 1981, PHYS REV A, V23, P218
   PIANCASTELLI MN, 1987, J CHEM PHYS, V87, P3255
   READ FH, 1965, P PHYS SOC LOND, V85, P71
   RESCIGNO TN, 1979, J CHEM PHYS, V70, P3390
   RESCIGNO TN, 1985, LECT NOTES CHEM, V35, P215
   ROBERTY HMB, 1991, PHYS REV A, V44, P1694
   ROCHA AB, IN PRESS CHEM PHYS
   ROCHA AB, 1999, CHEM PHYS, V243, P9
   SCHMIDBAUER M, 1995, PHYS REV A, V52, P2095
   SCHNEERSON VL, 1997, SURF SCI, V375, P340
   SETTE F, 1984, J CHEM PHYS, V81, P4906
   SHAM TK, 1989, PHYS REV A, V40, P652
   SHAW DA, 1982, J PHYS B ATOM MOL PH, V15, P1785
   SHAW DA, 1983, P 13 ICPEAC BERL, P278
   SHEEHY JA, 1989, J CHEM PHYS, V91, P1796
   SILVERMAN SM, 1964, J CHEM PHYS, V40, P1265
   SIVKOV VN, 1984, OPT SPEKTROSK, V57, P160
   SODHI RNS, 1984, J ELECTRON SPECTROSC, V34, P363
   SWICK DA, 1960, REV SCI INSTRUM, V31, P525
   SWICK DA, 1961, J CHEM PHYS, V35, P2257
   TRONC M, 1979, J PHYS-PARIS, V40, L323
   TURCI CC, 1995, PHYS REV A, V52, P4678
   WATANABE N, 1997, PHYS REV LETT, V78, P4910
   WIGHT GR, 1974, J ELECTRON SPECTROSC, V3, P191
   YING JF, 1993, PHYS REV A, V47, P5
   YING JF, 1994, J CHEM PHYS, V101, P7311
NR 71
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD APR
PY 2000
VL 6104
IS 4
AR 042505
DI ARTN 042505
PG 14
SC Physics, Atomic, Molecular & Chemical; Optics
GA 301ME
UT ISI:000086313300041
ER

PT J
AU Bettega, MHF
TI Elastic scattering of low-energy electrons by boron trihalides
SO PHYSICAL REVIEW A
LA English
DT Article
ID AB-INITIO; PLASMA; EXCITATION; BCL3; PSEUDOPOTENTIALS; SPECTROSCOPY;
   GENERATION; IMPACT; BBR3
AB We used the Schwinger multichannel method with pseudopotentials
   [Bettega et nl., Phys. Rev. A 47, 1111 (1993)] to study elastic
   scattering of low-energy electrons by the boron trihalides BCl3, BBr3,
   and BI3, at the static-exchange approximation. We calculated elastic
   integral, differential, and momentum transfer cross section from 5 to
   50 eV. In particular, our integral cross section fur BCl3 agrees in
   shape with results of previous calculations by Isaacs et al. [Phys.
   Rev. A 58, 2881 (1998)]. The symmetry decomposition of the integral
   cross section in the C-2v group is also presented. We discuss the
   existence of shape resonances for energies above 5 eV at the A(1), B-1,
   B-2, and A(2) symmetries. We also investigated the low-energy cross
   section for the B-2 symmetry for these three molecules. For BCl3 our
   B-2 cross section shows good agreement with the results of Isaacs et al.
C1 Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil.
RP Bettega, MHF, Univ Fed Parana, Dept Fis, Caixa Postal 19081,
   BR-81531990 Curitiba, Parana, Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
   BAECK KK, 1997, J CHEM PHYS, V106, P4604
   BETTEGA MHF, 1993, PHYS REV A, V47, P1111
   BETTEGA MHF, 1996, INT J QUANTUM CHEM, V60, P821
   BETTEGA MHF, 1998, J PHYS B-AT MOL OPT, V31, P2091
   BETTEGA MHF, 1998, J PHYS B-AT MOL OPT, V31, P4419
   BETTEGA MHF, 1998, PHYS REV A, V57, P4987
   BIEHL H, 1996, MOL PHYS, V87, P1199
   CHO H, 1998, MRS INTERNET J N S R, V3
   DACOSTA SMS, 1998, EUR PHYS J D, V3, P67
   GULLEY RJ, 1998, J PHYS B-AT MOL OPT, V31, P2735
   HONG J, 1998, J VAC SCI TECHNOL B, V16, P2690
   HONG J, 1998, J VAC SCI TECHNOL B, V16, P3349
   ISAACS WA, 1998, PHYS REV A, V58, P2881
   KEIR RI, 1998, CHEM PHYS LETT, V290, P409
   LIDE DR, 1998, CRC HDB CHEM PHYSICS
   LIMA MAP, 1990, PHYS REV A, V41, P327
   MCKOY V, 1998, J VAC SCI TECHNOL A, V16, P324
   NATALENSE APP, 1998, PHYS REV LETT, V81, P3832
   NATALENSE APP, 1999, PHYS REV A, V59, P879
   SHPINKOVA LG, 1999, MOL PHYS, V96, P323
   STOCKDALE JA, 1972, J CHEM PHYS, V56, P3336
   TAKATSUKA K, 1981, PHYS REV A, V24, P2473
   TOSSELL JA, 1986, INT J QUANTUM CHEM, V29, P1117
   VARELLA MTD, 1999, J CHEM PHYS, V110, P2452
   WANG JJ, 1999, PLASMA CHEM PLASMA P, V19, P229
NR 26
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD APR
PY 2000
VL 6104
IS 4
AR 042703
DI ARTN 042703
PG 6
SC Physics, Atomic, Molecular & Chemical; Optics
GA 301ME
UT ISI:000086313300044
ER

PT J
AU Fuks, D
   Mundim, K
   Liubich, V
   Dorfman, S
TI Nonempirical simulations of Sigma(3)< 111 > tungsten grain boundary
   with boron atoms
SO SURFACE REVIEW AND LETTERS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES; ALLOYS; APPROXIMATION;
   OPTIMIZATION; IMPURITIES; ALUMINUM; FEAL
AB We perform the atomistic simulations of the properties of the
   Sigma(3)[111] grain boundary in W and demonstrate the influence of
   boron additive on the resistance of the grain boundary with respect to
   different shifts. The interatomic potentials used in these simulations
   are obtained from ab initio total energy calculations. These
   calculations are carried out in the framework of density functional
   theory in the coherent potential approximation. The recursion procedure
   to extract A-B type interatomic potentials is suggested.
C1 Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
   Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel.
   Technion Israel Inst Technol, Fac Phys, IL-32000 Haifa, Israel.
RP Fuks, D, Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
CR ABRIKOSOV IA, 1998, PHYS REV B, V57, P14164
   ANDERSEN OK, 1975, PHYS REV B, V12, P3060
   ANTONOV VN, 1996, PHYS REV B, V53, P15631
   AREAS EPG, 1995, J PHYS CHEM-US, V99, P14882
   BAKER I, 1998, INTERMETALLICS, V6, P177
   BAZANT MZ, 1996, MRS P, V48
   BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
   CARLSSON AE, 1980, PHILOS MAG A, V41, P241
   CHRISTENSEN A, 1997, PHYS REV B, V56, P5822
   CHUANG TH, 1991, MAT SCI ENG A-STRUCT, V141, P169
   CONNOLLY JWD, 1983, PHYS REV B, V27, P5169
   DAVIDOV G, 1995, PHYS REV B, V51, P13059
   ELLIS DE, 1995, ELECT DENSITY FUNCTI
   ELLIS DE, 1998, INT J QUANTUM CHEM, V70, P1085
   ERIKSSON O, 1989, PHYS REV B, V40, P9519
   FAULKNER JS, 1982, PROG MATER SCI, V27, P1
   FELSER C, 1998, PHYS REV B, V57, P1510
   FRANCZKIEWICZ A, 1998, MAT SCI ENG A-STRUCT, V258, P108
   FUKS D, 1994, PHYS REV B, V50, P16340
   GRUJICIC M, 1997, INT J REFRACT MET H, V15, P341
   KAUFMAN L, 1970, COMPUTER CALCULATION
   KITTEL C, 1976, INTRO SOLID STATE PH
   KRASKO GL, 1993, INT J REFRACTORY HAR, V12, P251
   KRASKO GL, 1997, MAT SCI ENG A-STRUCT, V234, P1071
   LANDA AI, 1997, MATER RES SOC S P, V440, P467
   LIU CT, 1989, SCRIPTA METALL, V23, P875
   MAIER K, 1979, PHILOS MAG A, V40, P701
   MIRBT S, 1997, PHYS REV B, V55, P67
   MORET MA, 1998, J COMPUT CHEM, V19, P647
   MUNDIM KC, 1996, INT J QUANTUM CHEM, V58, P373
   MUNDY JN, 1978, PHYS REV B, V18, P6566
   POVAROVA KB, 1990, RUSSIAN METALLURGY M, V1, P74
   RUBAN AV, 1995, PHYS REV B, V51, P12958
   RUBAN AV, 1997, PHYS REV B, V55, P8801
   SIMMONS G, 1971, SINGLE CRYSTAL ELAST
   SOB M, 1997, MAT SCI ENG A-STRUCT, V234, P1075
   TOLSTOBROV YO, 1987, FIZIKA KHIMIYA OBRAB, V21, P121
NR 37
TC 5
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 912805, SINGAPORE
SN 0218-625X
J9 SURF REV LETTERS
JI Surf. Rev. Lett.
PD OCT
PY 1999
VL 6
IS 5
BP 705
EP 718
PG 14
SC Materials Science, Multidisciplinary; Physics, Atomic, Molecular &
   Chemical; Physics, Condensed Matter
GA 300LQ
UT ISI:000086254800019
ER

PT J
AU Fink, RF
   Sorensen, SL
   de Brito, AN
   Ausmees, A
   Svensson, S
TI The resonant Auger electron spectrum of C 1s(-1)pi(*) excited ethene: A
   combined theoretical and experimental investigation
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID TIME-DEPENDENT FORMULATION; VIBRATIONAL FINE-STRUCTURE; CORE-LEVEL
   PHOTOEMISSION; AB-INITIO CALCULATION; NUCLEAR-DYNAMICS;
   SYMMETRY-BREAKING; HOLE LOCALIZATION; TRANSITION RATES; X-RAY; ETHYLENE
AB The resonant Auger electron spectrum for ethene has been calculated
   with an ab initio approach using configuration-interaction energies and
   wave functions for the intermediate core-excited and final states. The
   transition rates were determined by the "one-center approximation." The
   role of vibrational relaxation on the line shapes was described by a
   moment method which considers the case of symmetric core holes and
   their localization due to the vibrational relaxation of the
   core-excited state. The core hole localization is investigated in some
   detail and is found to be extremely efficient in the C 1s(-1)pi*
   excited state of ethene. Another property of the core-excited state is
   found to be the polarization of the valence electron density toward the
   core hole. We demonstrate this by using three different symmetric
   configuration interaction representations and one nonsymmetric
   Hartree-Fock representation for this state. A modified improved virtual
   orbitals method is described and employed to obtain virtual orbitals
   which give a compact description of this effect. The theoretical
   spectra obtained in this way are compared with a measured spectrum and
   assignment of the structures in the spectrum to electronic
   configurations is made. We find strong configuration mixing in the
   higher excited final states which is evidence for the breakdown of the
   one-particle picture. (C) 2000 American Institute of Physics.
   [S0021-9606(00)31213-2].
C1 Univ Lund, Inst Phys, Dept Synchrotron Radiat Res, S-22100 Lund, Sweden.
   Ruhr Univ Bochum, Chair Theoret Chem, D-44780 Bochum, Germany.
   Univ Brasilia, Dept Phys, BR-70910900 Brasilia, DF, Brazil.
   Univ Uppsala, Dept Phys, S-75121 Uppsala, Sweden.
   Lab Nacl Luz Sincrotron, BR-13083360 Campinas, SP, Brazil.
   Univ Tartu, Inst Phys, EE-51014 Tartu, Estonia.
RP Sorensen, SL, Univ Lund, Inst Phys, Dept Synchrotron Radiat Res, Box
   118, S-22100 Lund, Sweden.
CR AGREN H, 1981, J CHEM PHYS, V75, P1267
   AGREN H, 1992, ADV QUANTUM CHEM, V23, P1
   AHLRICHS R, 1989, CHEM PHYS LETT, V162, P165
   AKSELA S, 1992, REV SCI INSTRUM 2B, V63, P1252
   AKSELA S, 1994, REV SCI INSTRUM, V65, P831
   AKSELA S, 1995, REV SCI INSTRUM, V66, P1
   ANDERSEN JN, 1997, CHEM PHYS LETT, V269, P371
   BOTTING SK, 1997, PHYS REV A, V56, P3666
   BOZEK J, 1998, PHYS REV A, V57, P157
   CEDERBAUM LS, 1993, J CHEM PHYS, V98, P9691
   CEDERBAUM LS, 1993, J CHEM PHYS, V99, P5871
   CEDERBAUM LS, 1995, J CHEM PHYS, V103, P562
   DEBRITO AN, 1992, EUROPHYS LETT, V20, P205
   DEMIRANDA MP, 1994, J CHEM PHYS, V101, P5500
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   FINK R, 1995, J ELECTRON SPECTROSC, V76, P295
   FINK R, 1997, J CHEM PHYS, V106, P4038
   FINK RF, 1998, PHYS REV A, V58, P1988
   GADEA FX, 1991, PHYS REV LETT, V66, P883
   GELMUKHANOV FK, 1977, CHEM PHYS LETT, V46, P133
   GREEN TA, 1987, PHYS REV B, V36, P6112
   GUNNELIN K, 1999, PHYS REV LETT, V83, P1315
   HASER M, 1989, J COMPUT CHEM, V10, P104
   HEINZMANN R, 1976, THEOR CHIM ACTA, V42, P33
   HOLLAND DMP, 1997, CHEM PHYS, V219, P91
   JUG K, 1993, MATH CHEM
   KELLER C, 1998, PHYS REV LETT, V80, P1774
   KEMPGENS B, 1995, CHEM PHYS LETT, V246, P347
   KOPPE HM, 1995, J CHIN CHEM SOC-TAIP, V42, P255
   KOPPEL H, 1984, ADV CHEM PHYS, V57, P59
   KOPPEL H, 1997, J CHEM PHYS, V106, P4415
   LARKINS FP, 1994, NUCL INSTRUM METH B, V87, P215
   LIEGENER CM, 1985, CHEM PHYS, V92, P97
   MA Y, 1989, PHYS REV LETT, V63, P2044
   MARTENSSON N, 1995, APPL SYNCHROTRON RAD
   MARTIN JML, 1996, CHEM PHYS LETT, V248, P336
   MATTHEW JAD, 1975, SURF SCI, V53, P716
   MCGUIRE EJ, 1969, PHYS REV, V185, P1
   OHRENDORF E, 1989, J CHEM PHYS, V91, P1734
   OSBORNE SJ, 1994, SYNCH RAD NEWS, V7, P25
   PAHL E, 1996, Z PHYS D ATOM MOL CL, V38, P215
   PIANCASTELLI MN, 1997, J PHYS B-AT MOL OPT, V30, P5677
   RYE RR, 1978, J CHEM PHYS, V69, P1504
   SCHIMMELPFENNIG B, 1995, J ELECTRON SPECTROSC, V74, P173
   SCHINKE R, 1993, PHOTODISSOCIATION DY
   SIEGBAHN H, 1975, CHEM PHYS LETT, V35, P330
   SORENSEN SL, 1998, PHYS REV A, V58, P1879
   THOMAS TD, 1998, J CHEM PHYS, V109, P1041
   THOMPSON M, 1976, ANAL CHEM, V48, P1336
   WASILEWSKI J, 1989, INT J QUANTUM CHEM, V36, P503
   WASILEWSKI J, 1991, INT J QUANTUM CHEM, V39, P649
   WURTH W, 1995, APPL SYNCHROTRON RAD
   WURTH W, 1997, APPL PHYS A-MATER, V65, P597
   WURTH W, 1998, J ELECT SPECTROSC RE, V93, P135
   ZAHRINGER K, 1992, PHYS REV A, V45, P318
   ZAHRINGER K, 1992, PHYS REV A, V46, P5643
NR 56
TC 10
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD APR 15
PY 2000
VL 112
IS 15
BP 6666
EP 6677
PG 12
SC Physics, Atomic, Molecular & Chemical
GA 301EV
UT ISI:000086297000020
ER

PT J
AU Goncalves, CP
   Mohallem, JR
TI Ab initio isotope simulated dynamics in the adiabatic approximation
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; EXCESS PROTON; WATER; D2O
AB We present, for the first time, ab initio simulated molecular dynamics
   within the adiabatic approximation. The tests are made for H-2(+) and
   its isotopomers. We show that the farces on the nuclei can be
   calculated with sufficient accuracy to distinguish among the
   isotopomers. We also show that there are two regions where these forces
   are non-negligible, compared to those of Born-Oppenheimer: at large
   nuclear distances and near the equilibrium positions. (C) 2000 Elsevier
   Science B.V. All rights reserved.
C1 Univ Fed Minas Gerais, ICEX, Dept Fis, Lab Atomos & Mol Especiais, BR-31270123 Belo Horizonte, MG, Brazil.
RP Mohallem, JR, Univ Fed Minas Gerais, ICEX, Dept Fis, Lab Atomos & Mol
   Especiais, POB 702, BR-31270123 Belo Horizonte, MG, Brazil.
CR BORN M, 1927, ANN PHYS-BERLIN, V84, P457
   CAR R, 1985, PHYS REV LETT, V55, P2471
   CHACHAM H, 1990, MOL PHYS, V70, P391
   FOIS ES, 1994, CHEM PHYS LETT, V223, P411
   KOLOS W, 1969, ACTA PHYS ACAD SCI H, V27, P241
   LOBAUGH J, 1996, J CHEM PHYS, V104, P2056
   MOHALLEM JR, 1999, J PHYS B-AT MOL OPT, V32, P3805
   PAULING L, 1935, INTRO QUANTUM MECH
   PAVESE M, 1997, J CHEM PHYS, V107, P7428
   SCHWARTZ BJ, 1996, J CHEM PHYS, V105, P6997
   SHIGETA Y, 1998, INT J QUANTUM CHEM, V70, P659
   SVISHCHEV IM, 1994, J PHYS CHEM-US, V98, P728
   TACHIKAWA M, 1999, MOL PHYS, V96, P1207
   VANGUNSTEREN WF, 1990, ANGEW CHEM INT EDIT, V29, P992
NR 14
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAR 31
PY 2000
VL 320
IS 1-2
BP 118
EP 122
PG 5
SC Physics, Atomic, Molecular & Chemical
GA 299RG
UT ISI:000086211200020
ER

PT J
AU Miwa, RH
   Ferraz, AC
TI Adsorption process, atomic geometry, electronic structure and stability
   of Si(001)/Te surface
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; growth; silicon; surface relaxation
   and reconstruction
ID DENSITY-FUNCTIONAL THEORY; SI(100) SURFACE; GROUND-STATE; GROWTH; TE;
   TELLURIUM; RESTORATION; INTERFACE; CDTE; GE
AB The adsorption process, atomic geometry, electronic structure and
   energetics of a Si(001) surface covered by Te atoms have been studied
   using first-principles total-energy calculations. Our findings indicate
   that the Te atoms adsorb in the 'bridge' site on the surface Si dimer
   bond, in agreement with recent experimental results. We have also
   verified that the Si dimers (underneath adsorbed Te atoms) do not
   dissociate, The subsequent atomic exchange between the adsorbed Te atom
   and the surface Si atom, giving rise to an interdiffusion process of Te
   atoms towards Si substrate, is not an exothermic process. We have
   considered a number of possible coverages of Te atoms on Si(001)
   surface and our results indicate that for a coverage of one monolayer
   (1 ML). the Si(001)/Te-(1 x 1) surface represents the energetically
   more stable configuration. For a coverage of 2/3 hit, we have verified
   the formation of Te-Si-Te mixed trimers, in a (3 x 1) reconstructed
   surface. At 1/3 ML coverage, we have obtained the formation of Si
   dimers with a single Te atom at the surface, in a (3 x 1)
   reconstruction. Finally, for a coverage of 1/2 ML, we have obtained the
   formation of Si-Te mixed dimers, in a (2 x 1) reconstructed surface,
   but the calculated formation energy indicates that this atomic
   configuration is not energetically favourable. (C) 2000 Elsevier
   Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
   Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Ferraz, AC, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   SP, Brazil.
CR BENNETT MR, 1996, SURF SCI, V360, P187
   BENNETT MR, 1997, SURF SCI, V380, P178
   BRINGANS RD, 1989, PHYS REV B, V39, P12985
   BURGESS SR, 1996, APPL SURF SCI, V104, P152
   CAR R, 1985, PHYS REV LETT, V55, P2471
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CHADI DJ, 1973, PHYS REV B, V8, P5747
   DINARDO S, 1995, SURF SCI, V331, P569
   GONZE X, 1991, PHYS REV B, V44, P8503
   HIGUCHI S, 1992, J APPL PHYS, V71, P4277
   HOHENBERG P, 1964, PHYS REV, V136, B864
   KAXIRAS E, 1991, PHYS REV B, V43, P6824
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   KOHN W, 1965, PHYS REV, V140, A1133
   KRUGER P, 1993, PHYS REV B, V47, P1898
   MIWA RH, UNPUB
   MIWA RH, 1998, J PHYS-CONDENS MAT, V10, P5739
   MIWA RH, 1998, SURF SCI, V415, P20
   NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
   PAPAGEORGOPOULOS A, 1997, PHYS REV B, V55, P4435
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   SANTUCCI S, 1996, SURF SCI, V352, P1027
   SPORKEN R, 1992, J VAC SCI TECHNOL B, V10, P1405
   SPORKEN R, 1998, APPL SURF SCI, V123, P462
   STUMPF R, 1994, COMPUT PHYS COMMUN, V79, P447
   TAMIYA K, 1998, SURF SCI, V408, P268
   WIANE F, 1999, APPL SURF SCI, V260, P475
   YOSHIKAWA SA, 1994, SURF SCI, V321, L183
NR 28
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD MAR 20
PY 2000
VL 449
IS 1-3
BP 180
EP 190
PG 11
SC Chemistry, Physical
GA 296ZN
UT ISI:000086056800023
ER

PT J
AU Silva, CO
   da Silva, EC
   Nascimento, MAC
TI Ab initio calculations of absolute pK(a) values in aqueous solution II.
   Aliphatic alcohols, thiols, and halogenated carboxylic acids
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; DENSITY-FUNCTIONAL THEORY; MOLLER-PLESSET;
   FREE-ENERGIES; SOLVATION; IMPLEMENTATION; ACIDITIES
AB A thermodynamical cycle is proposed to calculate absolute pK(a) values
   for Bronsted acids in aqueous solution. The polarizable continuum model
   (PCM) was used to describe the solvent, and absolute pK(a) values were
   computed for different classes of organic compounds: aliphatic
   alcohols, thiols, and halogenated derivatives of carboxylic aliphatic
   acids. The model furnishes pK(a) values in good agreement with the
   experimental results for some classes of compounds. For the cases where
   appreciable deviations are, observed, we have tried to establish a
   correlation among the neglected components of Delta G(solv) resulting
   from the model adopted, the level of calculation employed, and the
   pK(a) deviations relative to the experimental results.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis,
   CT,Bloco A,Sala 412,Cidade Univ Ilha Fundao, BR-21949900 Rio De
   Janeiro, Brazil.
CR ADAMO C, 1997, J COMPUT CHEM, V18, P1993
   AMOVILLI C, 1998, ADV QUANTUM CHEM, V32, P227
   ANDZELM J, 1995, J CHEM PHYS, V103, P9312
   BALLINGER P, 1959, J AM CHEM SOC, V81, P1050
   BALLINGER P, 1960, J AM CHEM SOC, V82, P795
   BARONE V, 1997, J CHEM PHYS, V107, P3210
   BARTMESS JE, 1997, J AM CHEM SOC, V99, P4163
   BAUSCHLICHER CW, 1995, J CHEM PHYS, V103, P1788
   BENNAIM A, 1984, J CHEM PHYS, V81, P2016
   BENNAIM A, 1987, SOLVATION THERMODYNA, CH1
   BORDWELL FG, 1988, ACCOUNTS CHEM RES, V21, P456
   CABANI S, 1981, J SOLUTION CHEM, V10, P563
   CAMMI R, 1995, J COMPUT CHEM, V16, P1449
   CHEN JL, 1994, J PHYS CHEM-US, V98, P11059
   COOKSON RF, 1974, CHEM REV, V74, P5
   COSSI M, 1996, CHEM PHYS LETT, V255, P327
   CRAMER CJ, 1992, SCIENCE, V256, P213
   CURTISS LA, 1993, J CHEM PHYS, V98, P1293
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   JORGENSEN WL, 1989, J AM CHEM SOC, V111, P4190
   LIM C, 1991, J PHYS CHEM-US, V95, P5610
   MARCH J, 1992, ADV ORGANIC CHEM REA
   MCEWEN WK, 1936, J AM CHEM SOC, V58, P1124
   MENNUCCI B, 1997, J PHYS CHEM B, V101, P10506
   MURTO J, 1964, ACTA CHEM SCAND, V18, P1043
   NETTO JDM, 1996, J PHYS CHEM-US, V100, P15105
   REEVE W, 1979, CAN J CHEM, V57, P2747
   SCHUURMANN G, 1996, QUANT STRUCT-ACT REL, V15, P121
   SCHUURMANN G, 1997, QUANTITATIVE STRUCTU, V7, P225
   SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
   SILVA CO, IN PRESS J PHYS CH A
   STEWART R, 1985, PROTON APPL ORGANIC, V46
NR 32
TC 48
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAR 23
PY 2000
VL 104
IS 11
BP 2402
EP 2409
PG 8
SC Chemistry, Physical
GA 296LF
UT ISI:000086025300033
ER

PT J
AU Olivato, PR
   Guerrero, SA
   Zukerman-Schpector, J
TI Preferred conformation in the solid state of some
   alpha-(p-phenylsulfinyl)-p-substituted acetophenones
SO ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE
LA English
DT Article
ID SUBSTITUTED CARBONYL-COMPOUNDS; ELECTRONIC INTERACTION
AB Information on the geometrical structures of
   alpha-(p-phenylsulfinyl)-p-substituted acetophenones
   X-PhC(O)CH2S(O)Ph-Y [X = OMe, Y = H (1); X = NO2, Y = OMe (2); X = OMe,
   Y = NO2 (3); IUPAC names: (1) 4-methoxyphenyl phenylsulfinylmethyl
   ketone; (2) 4 - nitrophenyl 4-methoxyphenylsulfinyl-methyl ketone; (3)
   4-methoxyphenyl 4-nitrophenyl-sulfinylmethyl ketone] have been obtained
   from X-ray diffraction analyses. A comparison of these results with
   those previously obtained from X-ray diffraction and ab initio
   computations of alpha-methylsulfinylacetophenone, PhC(O)CH2S(O)Me,
   indicated that (1) and (2) adopt in the crystal a cis(1) conformation
   and (3) assumes a quasi-gauche geometry. The stabilization of these
   conformations in the crystal is discussed in terms of the dipole moment
   coupling Coulombic and intramolecular charge transfer interactions
   between the oppositely charged atoms of the C=O and S=O dipoles. The
   p-substituted benzene ring is quasi-coplanar with the sulfinyl group
   for (1) and (3), but is quasi-perpendicular for (2), Conjugation and
   repulsion between the sulfinyl sulfur lone pair and the pi-benzene ring
   seem to be responsible for the observed geometries.
C1 Univ Sao Paulo, Inst Quim, BR-05599970 Sao Paulo, Brazil.
   UFSCar, DQ, Lab Cristalog Estereodinam & Modelagem Mol, BR-13565905 Sao Carlos, SP, Brazil.
RP Olivato, PR, Univ Sao Paulo, Inst Quim, CP 26077, BR-05599970 Sao
   Paulo, Brazil.
CR 1989, CAD 4 SOFTWARE VERSI
   BELLAMY LJ, 1978, ADV INFRARED GROUP F
   DISTEFANO G, 1996, J CHEM SOC PERK  AUG, P1661
   FAIR CK, 1990, MOIEN INTERACTIVE IN
   KATRITZKY AR, 1989, CHEM REV, P639
   LAMM B, 1970, ACTA CHEM SCAND, V24, P561
   NARDELLI M, 1995, J APPL CRYSTALLOGR, V28, P659
   OLIVATO PR, J CHEM SOC P2, V109, P98
   OLIVATO PR, 1992, PHOSPHORUS SULFUR, V66, P207
   OLIVATO PR, 1997, PHOSPHORUS SULFUR, V130, P155
   SHELDRICK GM, 1990, ACTA CRYSTALLOGR A, V46, P467
   SHELDRICK GM, 1997, SHELXL 97 PROGRAM RE
   ZSOLNAI L, 1995, ZORTOP
NR 13
TC 7
PU MUNKSGAARD INT PUBL LTD
PI COPENHAGEN
PA 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK
SN 0108-7681
J9 ACTA CRYSTALLOGR B-STRUCT SCI
JI Acta Crystallogr. Sect. B-Struct. Sci.
PD FEB
PY 2000
VL 56
PN Part 1
BP 112
EP 117
PG 6
SC Crystallography
GA 295CV
UT ISI:000085949900012
ER

PT J
AU Moraes, LAB
   Eberlin, MN
TI The gas-phase Meerwein reaction
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE epoxides; thioepoxides; acylium ions; thioacylium ions; ion-molecule
   reactions; mass spectroscopy
ID ION-MOLECULE REACTIONS; ACYLIUM IONS; MASS-SPECTROMETRY; CYCLIC
   ACETALS; CATIONS; TRANSACETALIZATION; SUBSTITUTION; KETALS; 3D
AB A systematic investigation of a novel epoxide and thioepoxide ring
   expansion reaction promoted by gaseous acylium and thioacylium ions is
   reported. As ab initio calculations predict, and O-18-labeling and MS3
   pentaquadrupole experiments demonstrate, the reaction proceeds by
   initial O(S)-acylation of the (thio)epoxides followed by rapid
   intramolecular nucleophilic attack that results in
   three-to-five-membered ring expansion, and forms cyclic
   1,3-dioxolanylium, 1,3-oxathiolanylium, or 1,3-dithiolanylium ions.
   This gas-phase reaction is analogous to a condensed-phase reaction long
   since described by H. Meerwein (Chem. Ber. 1955, 67, 374), and is
   termed as "the gas-phase Meerwein reaction"; it occurs often to great
   extents or even exclusively, but in some cases, particularly for the
   most basic (thio)epoxides and the most acidic (thio)acylium ions,
   proton transfer (eventually hydride abstraction) competes efficiently,
   or even dominates. When (thio)epoxides react with (thio)acylium ions,
   the reaction promotes O(S)-scrambling; when epoxides react with
   thioacylium ions and the adducts are dissociated, it promotes S/O
   replacement. An analogous four-to-six-membered ring expansion also
   occurs predominantly in reactions of trimethylene oxide with acylium
   and thioacylium ions.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, UNICAMP, Inst Chem, CP6154, BR-13083970 Campinas, SP,
   Brazil.
CR ATTINA M, 1983, J AM CHEM SOC, V105, P1122
   BARDILI B, 1985, LIEBIGS ANN CHEM, P275
   BERSIN T, 1937, CHEM BER, V70, P2167
   BOGERT MT, 1933, J AM CHEM SOC, V55, P3741
   CAREY FA, 1983, ADV ORGANIC CHEM
   CARVALHO M, 1998, CHEM-EUR J, V4, P1161
   CARVALHO MC, 1997, J CHEM SOC PERK  NOV, P2347
   CARVALHO MC, 1997, J MASS SPECTROM, V32, P1137
   CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
   CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
   EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
   EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
   EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
   EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KIM JK, 1982, J AM CHEM SOC, V104, P4624
   KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
   KUMAKURA M, 1978, J PHYS CHEM-US, V82, P639
   MACCONNELL WV, 1965, J ORG CHEM, V28, P822
   MEERWEIN H, 1925, LIEBIGS ANN CHEM, V444, P221
   MEERWEIN H, 1937, J PRAKTISCHE CHEMIE, V147, P257
   MEERWEIN H, 1955, ANGEW CHEM, V67, P374
   MEERWEIN H, 1965, METHODEN ORGANISCHEN, V6, P329
   MORAES LAB, 1996, J ORG CHEM, V61, P8726
   MORAES LAB, 1997, J CHEM SOC PERK  OCT, P2105
   MORAES LAB, 1997, J ORG CHEM, V62, P5096
   MORAES LAB, 1998, J AM CHEM SOC, V120, P11136
   OLAH GA, 1976, CARBONIUM IONS, V5
   OLAH GA, 1998, ONIUM IONS
   OLIN JF, 1930, J AM CHEM SOC, V52, P3322
   RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
   RICKBORN B, 1991, COMPREHENSIVE ORGANI, V3
   SANDER M, 1966, CHEM REV, V66, P297
   SCHRODER D, 1990, ANGEW CHEM INT EDIT, V29, P910
   SCHRODER D, 1990, ANGEW CHEM, V102, P925
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
   STALEY RH, 1977, J AM CHEM SOC, V99, P5964
   TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
   VANDERPLAS HC, 1973, RING TRANSFORMATIONS, V1
   WANG F, 1999, ANGEW CHEM INT EDIT, V38, P386
   WANG F, 1999, ANGEW CHEM, V111, P399
   WILLIAMSON BL, 1998, EUR MASS SPECTROM, V4, P103
   WILLIAMSON KL, 1961, J ORG CHEM, V26, P4563
NR 44
TC 12
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA MUHLENSTRASSE 33-34, D-13187 BERLIN, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD MAR 3
PY 2000
VL 6
IS 5
BP 897
EP 905
PG 9
SC Chemistry, Multidisciplinary
GA 292VF
UT ISI:000085815200017
ER

PT J
AU Pliego, JR
   Riveros, JM
TI Ab initio study of the hydroxide ion-water clusters: An accurate
   determination of the thermodynamic properties for the processes
   nH(2)O+OH--> HO-(H2O)(n) (n=1-4)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID GAS-PHASE; VIBRATIONAL SPECTROSCOPY; MOLECULAR-ENERGIES; GAUSSIAN-2
   THEORY; OH; SOLVATION; ABINITIO; ADDITIVITY; HYDRATION; COMPLEXES
AB Clusters of hydroxide ion, HO-(H2O)(n=1-4), have been studied by high
   level ab initio calculations in order to better understand the first
   coordination shell of OH- ions. Geometry optimizations were performed
   at Hartree-Fock, density functional theory and second order
   Moller-Plesset perturbation theory levels using the 6-31+G(d,p) basis
   set. Single point energy calculations were carried out on the optimized
   geometries using the more extended 6-311+G(2df,2p) basis set and a
   higher level of electron correlation, namely fourth-order
   Moller-Plesset perturbation theory. For the n=1-3 clusters, only
   structures with the hydroxide ion hydrogen bonded to all waters
   molecules were considered. For the n=4 cluster, three minima were
   found; the most stable species has all four waters directly bound to
   the hydroxide ion, while the other two clusters have only three waters
   in the first coordination shell. In addition, the transition state
   connecting the cluster containing four waters in the first coordination
   shell to the species having three waters in the coordination shell was
   characterized. The barrier for this rearrangement is very low (1.82
   kcal/mol), and we predict this process to occur on the picosecond time
   scale. The thermodynamic properties (enthalpy, entropy and Gibbs free
   energy) for the formation of the clusters have been calculated for all
   the species (including the fully deuterated clusters). Comparison of
   our calculations with experimental data reveals good agreement in the
   free energy. Nevertheless, our ab initio results suggest that for the n
   > 1 clusters, both -Delta H-0 and -Delta S-0 are larger than those
   reported from experiment and new experiments may be necessary to obtain
   accurate experimental values. (C) 2000 American Institute of Physics.
   [S0021-9606(00)30909-6].
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Pliego, JR, Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
CR ARSHADI M, 1970, J PHYS CHEM-US, V74, P1483
   AYOTTE P, 1998, J PHYS CHEM A, V102, P3067
   BRYCE RA, 1999, J PHYS CHEM A, V103, P4094
   CHOI JH, 1998, J PHYS CHEM A, V102, P503
   CURTISS LA, 1991, J CHEM PHYS, V94, P7221
   CURTISS LA, 1992, J CHEM PHYS, V96, P9030
   DELBENE JE, 1988, J PHYS CHEM-US, V92, P2874
   DELVALLE CP, 1997, CHEM PHYS LETT, V269, P401
   FELLER D, 1992, J CHEM PHYS, V96, P6104
   FRISCH MJ, 1995, GAUSSIAN 94
   GAO J, 1986, J AM CHEM SOC, V108, P4784
   GRIMM AR, 1995, MOL PHYS, V86, P369
   KEBARLE P, 1977, ANNU REV PHYS CHEM, V28, P445
   MEOTNER M, 1986, J PHYS CHEM-US, V90, P6616
   NEWTON MD, 1971, J AM CHEM SOC, V93, P4271
   NOBES RH, 1982, CHEM PHYS LETT, V89, P497
   PAUL GJC, 1990, J PHYS CHEM-US, V94, P5184
   PAYZANT JD, 1971, CAN J CHEM, V49, P3308
   PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
   PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
   PLIEGO JR, 1999, PCCP PHYS CHEM CH PH, V1, P1031
   POPLE JA, 1989, J CHEM PHYS, V90, P5622
   ROHLFING CM, 1983, J CHEM PHYS, V78, P2498
   ROOS BO, 1976, THEOR CHIM ACTA, V42, P77
   SAPSE AM, 1984, INT J QUANTUM CHEM, V26, P223
   SZCZESNIAK MM, 1982, J CHEM PHYS, V77, P4586
   TAKASHIMA K, 1998, MASS SPECTROM REV, V17, P409
   TUCKERMAN M, 1995, J CHEM PHYS, V103, P150
   TUNON I, 1995, J PHYS CHEM-US, V99, P3798
   TURKI N, 1998, J CHEM PHYS, V109, P7157
   XANTHEAS SS, 1995, J AM CHEM SOC, V117, P10373
   YANG X, 1990, J PHYS CHEM-US, V94, P8500
NR 32
TC 28
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAR 1
PY 2000
VL 112
IS 9
BP 4045
EP 4052
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 286QA
UT ISI:000085455600017
ER

PT J
AU Gomez, JA
   Guenzburger, D
TI Density functional study of electronic, magnetic and hyperfine
   properties of [M(CN)(5)NO](2-) (M = Fe, Ru) and reduction products
SO CHEMICAL PHYSICS
LA English
DT Article
ID METAL-NITROSYL COMPLEXES; SODIUM-NITROPRUSSIDE; SPECTROSCOPIC
   PROPERTIES; NEUTRON-DIFFRACTION; MOLECULAR-STRUCTURE; SINGLE-CRYSTALS;
   SPECTRA; REACTIVITY; DIHYDRATE; ENERGY
AB The discrete variational method (DVM) in density functional theory
   (DFT) was employed to investigate the electronic structure of the
   complexes: [Fe(CN)(5)NO](2-) (nitroprusside), [Fe(CN)(5)NO](3-),
   [Fe(CN)(4)NO](2-), [Ru(CN)(5)NO](2-) and [Ru(CN)(5)NO](3-). Total
   energy calculations revealed that in pentacyanonitrosylferrate(I) and
   pentacyanonitrosylruthenate(I), which are paramagnetic ions containing
   one unpaired electron, the M-N-O bond angle is bent. From
   self-consistent spin-polarized calculations, the distribution of the
   unpaired electron in the paramagnetic complexes [Fe(CN)(5)NO](3-),
   [Fe(CN)(4)NO](2-) and [Ru(CN)(5)NO](3-) was obtained, as well as
   spin-density maps. A long-standing controversy regarding the
   configuration of [Fe(CN)(5)NO](3-) was elucidated, and it was found
   that the unpaired electron in this complex is in an orbital primarily
   localized on pi* (NO). Mossbauer quadrupole splittings on Fe and Ru
   were derived from calculations of the electric-field gradients.
   Magnetic hyperfine coupling constants on N of the NO ligand were also
   obtained for the paramagnetic complexes. (C) 2000 Elsevier Science B.V.
   All rights reserved.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
RP Guenzburger, D, Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150,
   BR-22290180 Rio De Janeiro, Brazil.
CR ABRAGAM A, 1951, P ROY SOC LOND A MAT, V205, P135
   ABRAGAM A, 1961, PRINCIPLES NUCL MAGN
   BARALDO LM, 1994, INORG CHEM, V33, P5890
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BELANZONI P, 1995, J PHYS CHEM-US, V99, P13094
   BLOOM MBD, 1971, J CHEM SOC A, P3843
   BOTTOMLEY F, 1979, ACTA CRYSTALLOGR B, V35, P2193
   CARDUCCI MD, 1997, J AM CHEM SOC, V119, P2669
   CLARKE MJ, 1993, STRUCT BOND, V81, P147
   CLAUSE CA, 1970, J AM CHEM SOC, V92, P7482
   DANON J, 1964, J CHEM PHYS, V41, P3651
   DANON J, 1967, J CHEM PHYS, V47, P382
   DELLEY B, 1982, J CHEM PHYS, V76, P1949
   DELLEY B, 1983, PHYS REV B, V27, P2132
   DUFEK P, 1995, PHYS REV LETT, V75, P3545
   ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
   ELLIS DE, 1970, PHYS REV           B, V2, P2887
   ELLIS DE, 1999, ADV QUANTUM CHEM, V34, P51
   ENEMARK JH, 1974, COORDIN CHEM REV, V13, P339
   ERIKSSON LA, 1994, J CHEM PHYS, V100, P5066
   ESTRIN DA, 1996, INORG CHEM, V35, P3897
   FAN LY, 1991, J CHEM PHYS, V94, P6057
   GLIDEWELL C, 1987, INORG CHIM ACTA, V132, P145
   GREATEX R, 1971, J CHEM SOC A, P1873
   GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
   GUENZBURGER D, 1977, INORG CHIM ACTA, V21, P119
   GUIDA JA, 1988, SOLID STATE COMMUN, V66, P1007
   GUTLICH P, 1978, MOSSBAUER SPECTROSCO
   JOSS S, 1989, INORG CHEM, V28, P1815
   KURAMOCHI H, 1997, J AM CHEM SOC, V119, P11442
   MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
   MCNEIL DAC, 1965, J CHEM SOC, P410
   MINGOS DMP, 1973, INORG CHEM, V12, P1209
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
   MUNDT WA, 1969, J CHEM PHYS, V50, P3127
   NAVAZA A, 1989, ACTA CRYSTALLOGR C, V45, P839
   NAVAZA A, 1996, J SOLID STATE CHEM, V123, P48
   NEFEDOV VI, 1977, J ELECTRON SPECTROSC, V10, P121
   NOGUEIRA SR, 1992, CHEM PHYS, V164, P229
   NOGUEIRA SR, 1995, INT J QUANTUM CHEM, V54, P381
   OLABE JA, 1984, INORG CHEM, V23, P4297
   OOSTERHUIS WT, 1969, J CHEM PHYS, V50, P4381
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PERDEW JP, 1986, PHYS REV B, V34, P7406
   RAYNOR JB, 1970, J CHEMSOC A, P339
   RAYNOR JB, 1971, J INORG NUCL CHEM, V33, P735
   SCHMIDT J, 1974, INORG NUCL CHEM LETT, V10, P55
   STROUD AH, 1971, APPROXIMATE CALCULAT
   SWANN J, 1997, INORG CHEM, V36, P5348
   SYMONS JCR, 1982, J CHEM SOC DA, P2041
   SYMONS MCR, 1976, INORG CHEM, V15, P1022
   TERRA J, 1995, J PHYS CHEM-US, V99, P4935
   TRITTGOC J, 1997, CHEM PHYS LETT, V268, P471
   UMRIGAR C, 1980, PHYS REV B, V21, P852
   VANVOORST JDW, 1966, J CHEM PHYS, V45, P3914
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
   VUGMAN NV, COMMUNICATION
   WOIKE T, 1984, PHYS REV LETT, V53, P1767
   WOIKE T, 1998, PHYS REV B, V58, P8411
   ZENG Z, 1997, PHYS REV B, V55, P12522
   ZENG Z, 1999, PHYS REV B, V59, P6927
NR 63
TC 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD FEB 15
PY 2000
VL 253
IS 1
BP 73
EP 89
PG 17
SC Physics, Atomic, Molecular & Chemical
GA 286KM
UT ISI:000085445200008
ER

PT J
AU Fazzio, A
   Janotti, A
   da Silva, AJR
   Mota, R
TI Microscopic picture of the single vacancy in germanium
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC-STRUCTURE; POINT-DEFECTS; AB-INITIO; SILICON;
   PSEUDOPOTENTIALS; SEMICONDUCTORS; DENSITY; MODEL
AB A complete microscopic picture of the germanium vacancy is presented,
   and our results are compared with recent measurements. We analyze,
   through first principles calculations, the structural relaxations,
   Jahn-Teller distortions, and orbitals for the charge states (+ +, +, 0,
   -, - -). The formation energies for the different charge states are
   presented, as well as the positions of the (+ +/+), (+/0), (0/-), and
   (-/- -) levels, and we obtain that the vacancy in Ge is not an Anderson
   negative-U system, as opposed to the silicon vacancy. We propose as an
   explanation a much smaller electron-lattice coupling for the E mode in
   germanium than in silicon.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Fazzio, A, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR ANDERSON PW, 1975, PHYS REV LETT, V34, P953
   BACHELET GB, 1982, PHYS REV B, V26, P4199
   BARAFF GA, 1979, PHYS REV LETT, V43, P956
   BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
   FRANK W, 1987, MATER SCI FORUM, V15, P369
   FUCHS HD, 1995, PHYS REV B, V51, P16817
   GARCIA A, 1995, PHYS REV LETT, V74, P1131
   HASSLEIN H, 1997, MATER SCI FORUM 1-3, V258, P59
   HASSLEIN H, 1998, PHYS REV LETT, V80, P2626
   HWANG CJ, 1968, PHYS REV, V171, P958
   JANOTTI A, 1999, PHYSICA B, V273, P575
   KIM JH, 1997, J NEUROPATH EXP NEUR, V56, P11
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   LANNOO M, 1968, J PHYS CHEM SOLIDS, V29, P1987
   LARKINS FP, 1971, J PHYS C SOLID STATE, V4, P143
   MATTILA T, 1998, PHYS REV B, V58, P1367
   POYKKO S, 1996, PHYS REV B, V53, P3813
   PUSKA MJ, 1998, PHYS REV B, V58, P1318
   REMEDIAKIS IN, 1999, PHYS REV B, V59, P5536
   WATKINS GD, 1976, DEFECTS THEIR STRUCT, P203
   WATKINS GD, 1980, PHYS REV LETT, V44, P593
   WATKINS GD, 1986, DEEP CTR SEMICONDUCT, P147
   ZISTL C, 1997, MATER SCI FORUM 1-3, V258, P53
NR 23
TC 14
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JAN 15
PY 2000
VL 61
IS 4
BP R2401
EP R2404
PG 4
SC Physics, Condensed Matter
GA 284TJ
UT ISI:000085348300004
ER

PT J
AU Laali, KK
   Hollenstein, S
   Galembeck, SE
   Coombs, MM
TI Stable ion study of protonated cyclopenta[a]phenanthrenes.
   Structure-reactivity relationships and charge delocalization in the
   carbocations
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; AM1 CALCULATIONS;
   ORGANIC-MOLECULES; CARCINOGEN; CATIONS; SUBSTITUENT; METABOLITES;
   OXIDATION; ARENES
AB Protonation studies are reported for a series of
   cyclopenta[a]phenanthrenes C-p[a]P in superacid media. Hydrocarbons 1,
   4, 7, are ring protonated in FSO3H-SO2ClF to form monoarenium ions. The
   Delta(16,17) compounds 3, 6 are protonated at the D-ring double-bond to
   form stable alpha-phenanthrene-substituted carbocations.
   The 17-keto derivatives 2, 5, 8, 9, 19, 20 are CO-protonated in
   FSO3H-SO2ClF to form carboxonium ions. Carboxonium ions derived from 8
   and 20 undergo ring fluorosulfonation in the biologically important
   A-ring under thermodynamic control (higher temperatures and prolonged
   reaction times). Low temperature protonation of 8 and 9 with FSO3H .
   SbF5 (4 : 1)-SO2ClF gives their corresponding carboxonium-arenium
   dications (protonation of 2 with FSO3H . SbF5 (1 : 1)-SO2ClF gave a
   mixture of mono- and dications), where ring protonation sites are
   controlled by the position of the methyl group and occur in the A-ring
   for the A-ring methylated derivatives (8, 9).
   Whereas the 11-methoxy derivative (16) forms a carboxonium ion in
   FSO3H-SO2ClF analogous to the 11-Me derivative (5), the 11-phenol
   derivative (15), the ethoxy (17) and propoxy (18) derivatives are more
   reactive, forming a mixture of mono- and dication (with 15 and 17) or
   give mostly a carboxonium-arenium dication (with 18).
   Substituent effects observed under stable ion conditions emphasize
   relative carbocation stability and relief of peri-strain. Under
   thermodynamic control, carboxonium ions undergo fluorosulfonation in
   the biologically important A-ring. Charge delocalizations in the
   resulting mono- and dications (deduced primarily based on magnitude of
   Delta delta(13)C) are discussed and compared. In an effort to further
   enhance the NMR assignments and for comparison, mono-arenium ions
   1H(+), 4H(+), 6H(+), 7H(+) and their neutral precursors were calculated
   at the B3LYP/6-31G(d,p) level of ab initio theory; their H-1 and C-13
   NMR chemical shifts were computed by the GIAO method and their overall
   charge delocalization paths were deduced via differences in the NPA
   charges (cation minus neutral). The results are compared and discussed.
   Stable ion studies of C-P[a]P provide useful insights into the
   contrasting regioselectivities observed in chemical and biological
   activiation.
C1 Kent State Univ, Dept Chem, Kent, OH 44242 USA.
   USP, FFCLRP, Dept Quim, LAMMOL, Ribeirao Preto, SP, Brazil.
   Univ Surrey, Dept Chem, Guildford GU2 5XH, Surrey, England.
RP Laali, KK, Kent State Univ, Dept Chem, Kent, OH 44242 USA.
CR BECKE AD, 1996, J CHEM PHYS, V104, P1040
   BHATT T, 1990, POLYCYCL AROMAT COMP, V1, P55
   BHATT TS, 1982, CARCINOGENESIS, V3, P667
   BOYD GW, 1993, CARCINOGENESIS, V14, P1697
   BOYD GW, 1995, CARCINOGENESIS, V16, P2351
   BOYD GW, 1995, CARCINOGENESIS, V16, P2543
   COOMBS MM, 1966, J CHEM SOC C, P963
   COOMBS MM, 1987, CYCLOPENTA A PHENANT
   COOMBS MM, 1996, COMMUNICATION
   COOMBS MM, 1998, J CHEM RES-S     NOV, P692
   DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
   DITCHFIELD R, 1974, MOL PHYS, V27, P789
   DODDS JL, 1980, J MOL PHYS, V41, P1419
   FRISCH MJ, 1998, GAUSSIAN 98 REVISION
   GLEDINING ED, NBO VERSION 3 1
   HADFIELD ST, 1984, CARCINOGENESIS, V5, P1395
   HADFIELD ST, 1984, CARCINOGENESIS, V5, P1485
   HARDEN GJ, 1995, J CHEM SOC P1, P3037
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
   HARVEY RG, 1993, J ORG CHEM, V58, P361
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   LAALI KK, 1991, J ORG CHEM, V56, P1867
   LAALI KK, 1993, J ORG CHEM, V58, P1385
   LAALI KK, 1996, CHEM REV, V96, P1873
   LAALI KK, 1997, J CHEM SOC PERK  NOV, P2207
   LAALI KK, 1997, J ORG CHEM, V62, P4023
   LAALI KK, 1997, J ORG CHEM, V62, P5804
   LAALI KK, 1997, J ORG CHEM, V62, P7752
   LAALI KK, 1998, J CHEM SOC PERK  APR, P897
   LAALI KK, 1998, J ORG CHEM, V63, P7280
   REDDY VP, 1992, J FLUORINE CHEM, V56, P195
   REED AE, 1983, J CHEM PHYS, V78, P4066
   REED AE, 1985, J CHEM PHYS, V83, P735
   WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
   YOUNG RJ, 1993, J ORG CHEM, V58, P356
NR 35
TC 6
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2000
IS 2
BP 211
EP 220
PG 10
SC Chemistry, Organic; Chemistry, Physical
GA 279PN
UT ISI:000085054500008
ER

PT J
AU Sparrapan, R
   Mendes, MA
   Carvalho, M
   Eberlin, MN
TI Formal fusion of a pyrrole ring onto 2-pyridyl and 2-pyrimidyl cations:
   One-step gas-phase synthesis of indolizine and its derivatives
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE cycloadditions; heterocycles; ion-molecules reactions; mass spectroscopy
ID DIELS-ALDER CYCLOADDITION; EVEN-ELECTRON RULE; MASS-SPECTROMETRY;
   ACYLIUM IONS; IMMONIUM IONS; TRANSACETALIZATION; 3D
AB Two ortho-hetarynium ions, the 2-pyridyl and 2-pyrimidyl cations, react
   promptly with 1,3-dienes in the gas phase by annulation, formally by
   fusion, onto the ions of a pyrrole ring. This novel reaction proceeds
   through an initial polar [4 + 2(+)] cycloaddition across the C=N+ bond,
   followed by fast ring opening, a [1,4-H] shift, and finally a
   recyclization that results in a contraction of a six- to a
   five-membered ring and dissociation by the loss of a methyl radical.
   For the 2-pyridyl cation. this reaction yields ionized indolizines
   (pyrrolo[1,2-a]pyridines), while for the 2-pyrimidyl cation, it gives
   ionized pyrrolo[1,2-a]pyrimidines. The annulation reaction, performed
   in the rf-only collision quadrupole of a pentaquadrupole (QqQqQ) mass
   spectrometer, occurs readily with both 1,3-butadiene and isoprene, and
   is thermodynamically and kinetically favored as predicted by ab initio
   calculations. Ortho-hetarynium ions and 1,3-dienes provide, therefore,
   the two building blocks for the efficient one-step gas-phase synthesis
   of ionized bicyclic pyrrolo[1,2-a]pyridine (indolizine) and
   pyrrolo[1,2-a] pyrimidine, as well as their analogues and derivatives.
C1 Univ Estadual Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, Univ Estadual Campinas, Inst Chem, CP 6154, BR-13083970
   Campinas, SP, Brazil.
CR BORDEN WT, 1982, DIRADICALS
   BOWEN RD, 1981, ORG MASS SPECTROM, V16, P180
   BUNNETT JF, 1981, J ORG CHEM, V46, P4567
   BUSCH KL, 1988, MASS SPECTROMETRY MA
   CARVALHO M, 1998, CHEM-EUR J, V4, P1161
   CUMMINGS CS, 1940, PHYS REV, V58, P787
   DENHERTOG HJ, 1965, HETEROCYCL CHEM, V4, P121
   EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
   EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
   EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
   EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
   EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
   FRIEDMAN L, 1953, J AM CHEM SOC, V75, P2832
   GOZZO FC, 1999, J ORG CHEM, V64, P2188
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HOFFMAN RW, 1967, DEHYDROBENZYNE CYCLO
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KARNI M, 1980, ORG MASS SPECTROM, V15, P53
   KAUFFMANN T, 1963, CHEM BER, V96, P2519
   KAUFFMANN T, 1965, ANGEW CHEM INT EDIT, V4, P543
   KAUFFMANN T, 1965, ANGEW CHEM, V77, P557
   KAUFFMANN T, 1971, ANGEW CHEM INT EDIT, V10, P20
   KAUFFMANN T, 1971, ANGEW CHEM, V83, P21
   LU L, 1995, J MASS SPECTROM, V30, P581
   MOLLER C, 1934, PHYS REV, V46, P618
   MORAES LAB, 1997, J CHEM SOC PERK  OCT, P2105
   MORAES LAB, 1997, J ORG CHEM, V62, P5096
   MORAES LAB, 1998, J AM CHEM SOC, V120, P11136
   OHKURA K, 1989, TETRAHEDRON LETT, V30, P3433
   PROSTAKOV NS, 1975, RUSS CHEM REV, V44, P748
   SCHOLZ M, 1912, CHEM BER, V45, P734
   TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
   TURECEK F, 1998, EUR J MASS SPECTROM, V4, P1998
   UCHIDA T, 1976, SYNTHESIS-STUTTGART, P209
   WANG F, 1999, J ORG CHEM, V64, P3213
NR 35
TC 12
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA MUHLENSTRASSE 33-34, D-13187 BERLIN, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD JAN
PY 2000
VL 6
IS 2
BP 321
EP 326
PG 6
SC Chemistry, Multidisciplinary
GA 277JV
UT ISI:000084931200013
ER

PT J
AU Morgon, NH
   Xavier, LA
   Riveros, JM
TI Gas-phase nucleophilic reactions of Ge(OCH3)(4): experimental and
   computational characterization of pentacoordinated Ge anions
SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
DE germanium methoxide; gas-phase nucleophilic reactions; pentacoordinated
   Ge anions; fluoride affinity; germyl anions; computational Ge chemistry
ID ION-MOLECULE REACTIONS; TRAP MASS-SPECTROMETRY; CYCLOTRON RESONANCE;
   THEORETICAL CHARACTERIZATION; GLASS POWDERS; NEGATIVE-IONS; SILICON;
   AFFINITIES; CHEMISTRY; FLUORIDE
AB The gas-phase ion/molecule reactions of F- and CH3O- with Ge(OCH3)(4)
   have been investigated by Fourier transform ion cyclotron mass
   spectrometry. Both nucleophiles react preferentially by an addition
   mechanism to yield XGe(OCH3)(4)(-) (X = F, OCH3) complexes that are
   identified as typical pentacoordinated Ge species, Pentacoordinated Ge
   adducts formed with excess internal energy can undergo elimination of
   formaldehyde to yield HGe(OCH3)(4)(-) or further elimination processes
   that result in the formation of germyl anions like Ge(OCH3)(3)(-).
   Other minor product ions are also observed which can be attributed to
   the intermediacy of a pentacoordinated adduct. Dissociation of the
   XGe(OCH3)(4)(-) anions induced by infrared multiphoton excitation leads
   to sequential losses of formaldehyde and gives rise to different germyl
   anions like Ge(OCH3)(3)(-) HGe(OCH3)(2)(-), and H2GeOCH3-. The
   XGe(OCH3)(4)(-) and germyl anions react readily with BF3 through
   successive methoxide-fluoride exchange and this reaction provides a
   gas-phase synthetic pathway for multiply fluorinated Ge anions. Ab
   initio calculations performed on model pentacoordinated species
   Fn+1Ge(OH)(4-n)(-) (n = 0-4) reveal that addition of a fluoride ion on
   hydroxygermanes occurs preferentially in the apical position of a
   trigonal bipyramid. The fluoride affinity of the prototype molecule
   Ge(OH)(4) is calculated to be 60.9 kcal mol(-1), and fluoride affinity
   increases monotonically with increasing fluorine substitution, The
   fluoride affinity of GeF4 is calculated to be 79 kcal mol(-1). Similar
   calculations also predict an unusually high hydride affinity (60 kcal
   mol(-1)) for Ge(OH)(4) with the hydride occupying an equatorial
   position. (C) 2000 Elsevier Science B.V.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
   Univ Estadual Campinas, UNICAMP, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Av Lineu Prestes 748,Cidade
   Univ, BR-05508900 Sao Paulo, Brazil.
EM jmrnigra@quim.iq.usp.br
CR ANDERSON WE, 1951, PHYS REV, V81, P819
   ANGELINI G, 1991, INT J MASS SPECTROM, V109, P1
   ARONNE A, 1993, MATER CHEM PHYS, V34, P86
   ARONNE A, 1994, PHYS CHEM GLASSES, V35, P160
   BENZI P, 1988, J ORGANOMET CHEM, V354, P39
   BENZI P, 1989, J ORGANOMET CHEM, V373, P289
   BENZI P, 1990, INT J MASS SPECTROM, V100, P646
   BERNARDS TNM, 1992, J NON-CRYST SOLIDS, V142, P215
   CAMPOSTRINI R, 1989, J NON-CRYST SOLIDS, V108, P143
   CASCALES C, 1998, ANGEW CHEM INT EDIT, V37, P129
   CIOSLOWSKI J, 1998, J AM CHEM SOC, V120, P2612
   CRAMER CJ, 1995, J AM CHEM SOC, V117, P9285
   DAMRAUER R, 1988, J AM CHEM SOC, V110, P6601
   DAMRAUER R, 1993, J AM CHEM SOC, V115, P5218
   DAMRAUER R, 1995, CHEM REV, V95, P1137
   DASILVA MLP, 1995, J MASS SPECTROM, V30, P733
   DASILVA MLP, 1997, INT J MASS SPECTROM, V165, P83
   DEPUY CH, 1987, ACCOUNTS CHEM RES, V20, P127
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GOLDBERG N, 1998, CHEM FUNCT 1-3, V2, P1105
   GORDON MS, 1992, ADV GAS PHASE ION CH, P203
   HAJDASZ DJ, 1994, J AM CHEM SOC, V116, P10751
   HARLAND PW, 1972, INT J MASS SPECTROM, V10, P169
   HARLAND PW, 1974, J CHEM PHYS, V61, P1621
   HIBINO T, 1989, J CHEM SOC FARAD T 1, V85, P2327
   HUHEEY JE, 1993, INORG CHEM, A30
   KAMIYA K, 1998, PHYS CHEM GLASSES, V39, P9
   KLASS G, 1981, AUST J CHEM, V34, P519
   KUDIN KK, 1988, J PHYS CHEM A, V102, P744
   LARSON JW, 1985, J AM CHEM SOC, V107, P766
   LARSON JW, 1987, INORG CHEM, V26, P4018
   LI H, 1998, J AM CHEM SOC, V120, P8567
   LI HL, 1998, J AM CHEM SOC, V120, P10569
   MALLOUK TE, 1984, INORG CHEM, V23, P3160
   MALLOUK TE, 1984, INORG CHEM, V23, P3167
   MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
   MORGON NH, 1997, CHEM PHYS LETT, V275, P457
   MORGON NH, 1997, J AM CHEM SOC, V119, P1708
   MORGON NH, 1998, J PHYS CHEM A, V102, P10399
   MORGON NH, 1998, J PHYS CHEM A, V102, P2050
   MURPHY MK, 1977, INORG CHEM, V16, P2437
   MURPHY MK, 1977, J AM CHEM SOC, V99, P4992
   NOWEK A, 1998, J PHYS CHEM A, V102, P2189
   OKADA Y, 1990, SPECTROCHIM ACTA A, V46, P643
   OPERTI L, 1992, J ORGANOMET CHEM, V433, P35
   OPERTI L, 1993, ORGANOMETALLICS, V12, P4509
   OPERTI L, 1993, ORGANOMETALLICS, V12, P4516
   POLA J, 1992, J MATER CHEM, V2, P961
   REED AE, 1990, J AM CHEM SOC, V112, P1434
   SHELDON JC, 1987, J CHEM SOC PERK T 2, P275
   SOBOTT F, 1998, CHEM-EUR J, V4, P2353
   STANIC V, 1997, J MATER CHEM, V7, P105
   TANABE FKJ, 1996, J PHYS CHEM-US, V100, P2862
   TOLTL NP, 1998, J AM CHEM SOC, V120, P1172
   VANBOMMEL MJ, 1992, J NON-CRYST SOLIDS, V147, P80
   VONWEL H, 1987, J AM CHEM SOC, V109, P5823
   WENTHOLD PG, 1995, J PHYS CHEM-US, V99, P2002
   XAVIER LA, 1998, INT J MASS SPECTROM, V179, P223
   ZAITSEVA GS, 1997, CHEM BER-RECL, V130, P739
NR 59
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1387-3806
J9 INT J MASS SPECTROM
JI Int. J. Mass Spectrom.
PD JAN 21
PY 2000
VL 196
SI Sp. Iss. SI
BP 363
EP 375
PG 13
SC Physics, Atomic, Molecular & Chemical; Spectroscopy
GA 277HR
UT ISI:000084927100032
ER

PT J
AU Coelho, LAF
   Marchut, A
   de Oliveira, JV
   Balbuena, PB
TI Theoretical studies of energetics and diffusion of aromatic compounds
   in supercritical carbon dioxide
SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
LA English
DT Article
ID MOLECULAR-DYNAMICS; LENNARD-JONES; AB-INITIO; BENZENE DIMER;
   FORCE-FIELD; HARD-SPHERE; CO2 DIMER; COEFFICIENTS; MODEL; PHASE
AB Atomic and molecular interactions of aromatic compounds in carbon
   dioxide are studied with ab initio and molecular dynamics techniques.
   Ab initio calculations are used to determine the nature of the CO2-CO2,
   CO2-benzene, and benzene-benzene interactions. We select an explicit
   all-atom force field without partial atomic charges to describe the
   intermolecular and intramolecular pair interactions of CO2 with benzene
   and toluene. Molecular dynamics simulations are used to calculate
   diffusion coefficients for benzene and toluene at infinite dilution in
   CO2 along isotherms at 313.15, 323.15, and 333.15 K, in the density
   range from 1.35 rho(c) to 2.10 rho(c) (rho(c) = critical CO2 density).
   Diffusion coefficients are also calculated with a model based on
   perturbation theory of simple liquids. The calculated diffusion
   coefficients agree fairly well with the experimental results of Suarez
   et al. (Chem. Eng. Sci. 1993, 48, 2419).
C1 Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA.
   Univ Fed Rio de Janeiro, Chem Engn Program, Rio De Janeiro, Brazil.
RP Balbuena, PB, Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA.
CR ALLEN MP, COMPUTER SIMULATION
   BALBUENA PB, 1999, MOL DYNAMICS CLASSIC, V7, P431
   BELBUENA PB, 1999, MOL DYNAMICS CLASSIC, V7
   BRENNECKE JF, 1999, CHEM REV, V99, P433
   BROOKS BR, 1983, J COMPUT CHEM, V4, P187
   BUCKINGHAM AD, 1963, P ROY SOC LOND A MAT, V273, P275
   CASEWIT CJ, 1992, J AM CHEM SOC, V114, P10035
   CHIALVO AA, 1992, IND ENG CHEM RES, V31, P1391
   CHIPOT C, 1996, J AM CHEM SOC, V118, P11217
   DARIVA C, 1999, BRAZ J CHEM ENG
   DARIVA C, 1999, IN PRESS FLUID PHASE
   EGGENBERGER R, 1991, MOL PHYS, V72, P433
   EINSTEIN A, 1926, INVESTIGATIONS THEOR
   ENGKVIST O, 1999, J CHEM PHYS, V110, P5758
   FORESMAN JB, 1996, EXPLORING CHEM ELECT
   FRENKEL D, 1996, UNDERSTANDING MOL SI
   FRISCH MJ, 1997, GAUSSIAN 94 REVISION
   HAILE JM, 1992, MOL DYNAMICS SIMULAT
   HARMONY MD, 1979, J PHYS CHEM REF DATA, V8, P619
   HARRIS JG, 1995, J PHYS CHEM-US, V99, P12021
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HOBZA P, 1996, J PHYS CHEM-US, V100, P18790
   HOOVER WG, 1985, PHYS REV A, V31, P1695
   ILLIES AJ, 1987, J PHYS CHEM-US, V91, P3489
   ISRAELACHVILII J, 1992, INTERMOLECULAR SURFA
   IWAI Y, 1997, FLUID PHASE EQUILIBR, V127, P251
   JENSEN F, 1999, INTRO COMPUTATIONAL
   JUCKS KW, 1988, J CHEM PHYS, V88, P2125
   LIDE DR, 1997, HDB CHEM PHYSICS
   LIU HQ, 1998, CHEM ENG SCI, V53, P2403
   MCRURY TB, 1976, J PHYS CHEM-US, V64, P1288
   MURTHY CS, 1981, MOL PHYS, V44, P135
   POWLES JG, 1984, PHYSICA A, V126, P289
   RAPPE AK, 1992, J AM CHEM SOC, V114, P10024
   REID RC, 1987, PROPERTIES GASES LIQ
   SEMINARIO JM, 1996, RECENT DEV APPL MODE, V4
   SEMINARIO JM, 1998, J AM CHEM SOC, V120, P3970
   SIMONS J, 1997, QUANTUM MECH CHEM
   SMITH GD, 1996, J PHYS CHEM-US, V100, P9624
   SOUZA LES, 1993, MOL PHYS, V78, P137
   SPEEDY RJ, 1987, MOL PHYS, V62, P509
   SUAREZ JJ, 1993, CHEM ENG SCI, V48, P2419
   TOM JW, 1993, IND ENG CHEM RES, V32, P2118
   WALSH MA, 1987, CHEM PHYS LETT, V142, P265
   WONG MW, 1996, CHEM PHYS LETT, V256, P391
   YIN DX, 1998, J COMPUT CHEM, V19, P334
NR 46
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0888-5885
J9 IND ENG CHEM RES
JI Ind. Eng. Chem. Res.
PD JAN
PY 2000
VL 39
IS 1
BP 227
EP 235
PG 9
SC Engineering, Chemical
GA 272JD
UT ISI:000084646000029
ER

PT J
AU Diehl, A
   Tamashiro, MN
   Barbosa, MC
   Levin, Y
TI Density-functional theory for attraction between like-charged plates
SO PHYSICA A
LA English
DT Article
ID ELECTRICAL DOUBLE-LAYER; ELECTROSTATIC CORRELATION; LIQUIDS; FORCES;
   SURFACES; FLUIDS
AB We study the interactions between two negatively charged macroscopic
   surfaces confining positive counterions. A density-functional approach
   is introduced which, besides the usual mean-field interactions, takes
   into account the correlations in the positions of counterions. The
   excess free energy is derived in the framework of the Debye-Huckel
   theory of the one-component plasma, with the homogeneous density
   replaced by a weighted density. The minimization of the total free
   energy yields the density profile of the microions. The pressure is
   calculated and compared with the simulations and the results derived
   from integral equations theories. We find that the interaction between
   the two plates becomes attractive when their separation distance is
   sufficiently small and the surface charge density is larger than a
   threshold value. (C) 1999 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
   Univ Fed Ceara, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil.
   Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA.
RP Barbosa, MC, Univ Fed Rio Grande Sul, Inst Fis, Caixa Postal 15051,
   BR-91501970 Porto Alegre, RS, Brazil.
CR ARENZON JJ, 1999, EUR PHYS J B, V12, P79
   BRAMI B, 1979, PHYSICA            A, V95, P505
   CARBAJALTINOCO MD, 1996, PHYS REV E B, V53, P3745
   CHAPMAN DL, 1913, PHILOS MAG, V25, P475
   CROCKER JC, 1996, PHYS REV LETT, V77, P1897
   CURTIN WA, 1985, PHYS REV A, V32, P2909
   DENTON AR, 1989, PHYS REV A, V39, P4701
   DERJAGUIN BV, 1941, ACTA PHYSICOCHIM URS, V14, P633
   GOUY G, 1910, J PHYS-PARIS, V9, P457
   GROOT RD, 1991, J CHEM PHYS, V95, P9191
   GULDBRAND L, 1984, J CHEM PHYS, V80, P2221
   ISE N, 1986, ANGEW CHEM INT EDIT, V25, P323
   ISRAELACHVILI JN, 1986, PHYSICA A, V140, P278
   ISRAELACHVILI JN, 1992, INTERMOLECULAR SURFA
   KJELLANDER R, 1984, CHEM PHYS LETT, V112, P49
   KJELLANDER R, 1986, J PHYS CHEM-US, V90, P1230
   LEVIN Y, 1999, PHYSICA A, V265, P432
   LOZADACASSOU M, 1990, J CHEM PHYS, V93, P1386
   LOZADACASSOU M, 1996, PHYS REV E A, V53, P522
   MIERYTERAN L, 1990, J CHEM PHYS, V92, P5087
   NARAYANAN T, 1994, PHYS REV LETT, V73, P3002
   NORDHOLM S, 1984, CHEM PHYS LETT, V105, P302
   PENFOLD R, 1990, J CHEM PHYS, V92, P1915
   PINCUS PA, 1998, EUROPHYS LETT, V42, P103
   PODGORNIK R, 1989, J CHEM PHYS, V91, P5840
   ROBBINS MO, COMMUNICATION
   ROUZINA I, 1996, J PHYS CHEM-US, V100, P9977
   SAFRAN SA, 1994, STAT THERMODYNAMICS
   SHKLOVSKII BI, 1999, PHYS REV LETT, V82, P3268
   STEVENS MJ, 1990, EUROPHYS LETT, V12, P81
   STEVENS MJ, 1996, J CHEM PHYS, V104, P5209
   TAMASHIRO MN, 1999, PHYSICA A, V268, P24
   TARAZONA P, 1985, PHYS REV A, V31, P2672
   VERWEY EJW, 1948, THEORY STABILITY LYO
NR 34
TC 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD DEC 15
PY 1999
VL 274
IS 3-4
BP 433
EP 445
PG 13
SC Physics, Multidisciplinary
GA 268BG
UT ISI:000084394000005
ER

PT J
AU da Silva, CO
   da Silva, EC
   Nascimento, MAC
TI Ab initio calculations of absolute pK(a) values in aqueous solution I.
   Carboxylic acids
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; DENSITY-FUNCTIONAL THEORY; SOLVATION
   MODEL; FREE-ENERGIES; ACIDITIES; SOLVENT; ABINITIO; DERIVATIVES;
   POTENTIALS; CHARGES
AB A thermodynamical cycle is proposed to calculate absolute pK(a) values
   for a Bronsted acid in aqueous solution. The solvent (water) was
   represented by a dielectric using the polarizable continuum model
   (PCM), and the absolute pK(a) values of some aliphatic carboxylic acids
   were computed. The results indicate that the proposed methodology seems
   to be capable of predicting reasonably good absolute pK(a) values,
   although in some cases appreciable deviations are observed, which can
   be related to neglecting the molecular motion contributions (Delta
   G(Mm)) to the solvation energy (Delta G(solv)).
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis,
   Bloco A,Sala 412,Cidade Univ, BR-21949900 Rio De Janeiro, Brazil.
CR *GEOM CTR SOFTW DE, MOL CAV FIG 3 WER OB
   ADAMO C, 1997, J COMPUT CHEM, V18, P1993
   AMOVILLI C, 1997, J PHYS CHEM B, V101, P1051
   ANDZELM J, 1995, J CHEM PHYS, V103, P9312
   BARONE V, 1997, J CHEM PHYS, V106, P8727
   BARONE V, 1997, J CHEM PHYS, V107, P3210
   BARONE V, 1998, J COMPUT CHEM, V19, P404
   BAUSCHLICHER CW, 1995, J CHEM PHYS, V103, P1788
   BENNAIM A, 1984, J CHEM PHYS, V81, P2016
   BENNAIM A, 1987, SOLVATION THERMODYNA, CH1
   BORDWELL FG, 1988, ACCOUNTS CHEM RES, V21, P456
   CABANI S, 1981, J SOLUTION CHEM, V10, P563
   CAMMI R, 1994, J CHEM PHYS, V101, P3888
   CAMMI R, 1995, J COMPUT CHEM, V16, P1449
   CANCES E, 1997, J CHEM PHYS, V107, P3032
   CHRISTEN HR, 1988, ORG CHEM GRUNDLAGEN, V1, P419
   COOKSON RF, 1974, CHEM REV, V74, P5
   COSSI M, 1996, CHEM PHYS LETT, V255, P327
   COSSI M, 1996, J COMPUT CHEM, V17, P57
   COSSI M, 1998, J COMPUT CHEM, V19, P833
   CRAMER CJ, 1992, SCIENCE, V256, P213
   CURTISS LA, 1993, J CHEM PHYS, V98, P1293
   FRISCH MJ, 1995, GAUSSIAN 9J REVISION
   GAO J, 1986, J AM CHEM SOC, V108, P4784
   GUILMAN AG, 1990, PHARM BASIS THERAPEU
   JORGENSEN WL, 1989, J AM CHEM SOC, V111, P4190
   LI GS, 1997, J PHYS CHEM A, V101, P7885
   LIM C, 1991, J PHYS CHEM-US, V95, P5610
   MARCH J, 1992, ADV ORGANIC CHEM REA, CH8
   MENNUCCI B, COMMUNICATION
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   NETTO JDM, 1996, J PHYS CHEM-US, V100, P15105
   NEWTON MD, 1971, J AM CHEM SOC, V93, P4971
   PEARSON RG, 1986, J AM CHEM SOC, V108, P6109
   REEVE W, 1979, CAN J CHEM, V57, P2747
   RICHARDSON WH, 1997, INT J QUANTUM CHEM, V61, P207
   SCHUURMANN G, 1996, QUANT STRUCT-ACT REL, V15, P121
   SCHUURMANN G, 1997, QUANTITATIVE STRUCTU, V7, P225
   SCHUURMANN G, 1998, J PHYS CHEM A, V102, P6706
   SIGGEL MRF, 1988, J AM CHEM SOC, V110, P91
   TOMASI J, 1994, CHEM REV, V94, P2027
NR 41
TC 40
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 16
PY 1999
VL 103
IS 50
BP 11194
EP 11199
PG 6
SC Chemistry, Physical
GA 268PP
UT ISI:000084425000069
ER

PT J
AU Costa, MF
   Fonseca, TL
   Amaral, OAV
   Castro, MA
TI Calculations of the polarizability and hyperpolarizability of the NaH
   molecule including vibrational corrections
SO PHYSICS LETTERS A
LA English
DT Article
DE polarizability; vibrational correction; NaH
ID QUADRATIC CONFIGURATION-INTERACTION; ELECTRON CORRELATION THEORIES;
   BODY-PERTURBATION-THEORY; AB-INITIO; TRIPLE EXCITATIONS; NUCLEAR;
   MODEL; HF
AB In this work we present results for the dipole moment, polarizability
   and first hyperpolarizability of the NaH molecule obtained through the
   many-body perturbation-theory, coupled cluster and quadratic
   configuration interaction methods, including vibrational corrections.
   It is shown that the nuclear relaxation contribution is of fundamental
   importance for both polarizability and first hyperpolarizability of
   this system. Besides, inclusion of electron correlation effects changes
   appreciably the size of this contribution. In addition, our results
   show that the curvature contribution does not alter significantly the
   values obtained for the polarizability. (C) 1999 Published by Elsevier
   Science B.V. All rights reserved.
C1 Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
RP Costa, MF, Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
CR ARCHIBONG EF, 1991, PHYS REV A, V44, P5478
   BARTLETT RJ, 1981, ANNU REV PHYS CHEM, V32, P359
   BISHOP DM, 1990, REV MOD PHYS, V62, P343
   BISHOP DM, 1992, J CHEM PHYS, V97, P5255
   BISHOP DM, 1994, ADV QUANTUM CHEM, V25, P1
   BISHOP DM, 1994, J CHEM PHYS, V101, P2180
   BISHOP DM, 1998, ADV CHEM PHYS, V104, P1
   BUCKINGHAM AD, 1967, ADV CHEM PHYS, V12, P107
   CASTRO MA, 1996, PHYS REV A, V53, P3664
   DAGDIGIAN PJ, 1979, J CHEM PHYS, V71, P2823
   DYKSTRA CE, 1988, AB INITIO CALCULATIO
   FRISCH MJ, 1995, GAUSSIAN 94
   GUERREIRO M, 1997, CHEM PHYS LETT, V274, P315
   KIRTMAN B, 1990, CHEM PHYS LETT, V175, P601
   LEE TJ, 1990, J PHYS CHEM-US, V94, P5463
   LEE YS, 1984, J CHEM PHYS, V81, P5906
   LUIS JM, 1997, J CHEM PHYS, V107, P1501
   LUIS JM, 1999, J CHEM PHYS, V111, P875
   MARTI J, 1993, J CHEM PHYS, V99, P3860
   MARTI J, 1993, MOL PHYS, V80, P625
   MCLEAN AD, 1967, J CHEM PHYS, V47, P1927
   MILLER TM, 1977, ADV ATOM MOL PHYS, V13, P1
   PAPADOPOULOS MG, 1996, MOL PHYS, V88, P1063
   POPLE JA, 1978, INT J QUANTUM CHEM, V14, P545
   POPLE JA, 1987, J CHEM PHYS, V87, P5968
   PURVIS GD, 1982, J CHEM PHYS, V76, P1910
   PYYKKO P, 1987, MOL PHYS, V60, P597
   RAGHAVACHARI K, 1985, J CHEM PHYS, V82, P4607
   RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479
   RUSSELL AJ, 1997, MOL PHYS, V90, P251
   SADLEJ AJ, 1988, COLLECT CZECH CHEM C, V53, P1995
   SADLEJ AJ, 1991, J MOL STRUCT THEOCHE, V234, P147
   URBAN M, 1985, J CHEM PHYS, V83, P4041
NR 33
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9601
J9 PHYS LETT A
JI Phys. Lett. A
PD NOV 29
PY 1999
VL 263
IS 3
BP 186
EP 192
PG 7
SC Physics, Multidisciplinary
GA 265RX
UT ISI:000084258100007
ER

PT J
AU Teles, LK
   Scolfaro, LMR
   Leite, JR
   Ramos, LE
   Tabata, A
   Castineira, JLP
   As, DJ
TI Relaxation effects on the negatively charged Mg impurity in zincblende
   GaN
SO PHYSICA STATUS SOLIDI B-BASIC RESEARCH
LA English
DT Article
ID NITRIDE
AB The electronic structure of Mg impurity in zincblende (c-)GaN is
   investigated by using the ab initio full potential linear-augmented
   plane-wave method and the local density-functional approximation. Fun
   geometry optimization calculations, including nearest and next-nearest
   neighbor displacements, are performed far the impurity in the neutral
   and negatively charged states. A value of 190 +/- 10 meV was obtained
   for the Franck-Condon shift to the thermal energy, which is in good
   agreement with that observed in recent low temperature
   photoluminescence and Hall-effect measurements. We conclude that the
   nearest and next-nearest neighbors of the Mg impurity replacing Ga in
   c-GaN undergo outward relaxations which play an important role in the
   determination of the center acceptor energies.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Estadual Paulista, Fac Ciencias Bauru, BR-17033360 Bauru, SP, Brazil.
   Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
   Univ Gesamthsch Paderborn, FB Phys 6, D-33098 Paderborn, Germany.
RP Scolfaro, LMR, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
   Paulo, Brazil.
CR AS DJ, 1998, PHYS STATUS SOLIDI B, V210, P445
   AS DJ, 1999, J NITRIDE SEMICON S1, V4
   BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
   CASTINEIRA JLP, 1998, MAT SCI ENG B-SOLID, V51, P53
   FIORENTINI V, 1996, P 23 ICPS, V4, P28777
   GOTZ W, 1996, APPL PHYS LETT, V68, P667
   ORTON JW, 1998, REP PROG PHYS, V61, P1
   PANKOVE JI, 1998, SEMICONDUCTORS SEMIM, V50
   PERDEW JP, 1996, PHYS REV LETT, V77, P3865
   SCHWARZ K, 1996, LECT NOTES CHEM, V67, P139
NR 10
TC 6
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA MUHLENSTRASSE 33-34, D-13187 BERLIN, GERMANY
SN 0370-1972
J9 PHYS STATUS SOLIDI B-BASIC RE
JI Phys. Status Solidi B-Basic Res.
PD NOV
PY 1999
VL 216
IS 1
BP 541
EP 545
PG 5
SC Physics, Condensed Matter
GA 264QX
UT ISI:000084193900104
ER

PT J
AU Takahata, Y
   Chong, DP
TI Density-functional calculations of molecular electron affinities
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE molecular electron affinities; density functional theory
ID BASIS-SETS; THERMOCHEMISTRY; APPROXIMATION; EXCHANGE; ENERGY; ATOMS;
   SF4; GAS
AB Electron affinities of twelve small molecules were calculated by
   density functional theory using two different functionals(B88-P86 and
   B3LYP) combined with three different basis sets 6-31++G**:; 6-311++G**;
   aug-cc-pVTZ. Outer valence Green's function method is also employed for
   calculation of electron affinities of the molecules. The two most
   efficient approaches were found to be the combination of (1)B88-P86
   with 6-31++G**;: basis set and (2)B3LYP with 6-31++G**:;: The two
   approaches were employed to calculate electron affinities of some
   medium size molecules.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
   Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada.
RP Takahata, Y, Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas,
   SP, Brazil.
CR BABCOCK LM, 1981, J CHEM PHYS, V75, P3864
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BOESCH SE, 1996, J PHYS CHEM-US, V100, P10083
   CHONG DP, 1995, CAN J CHEM, V73, P79
   CHOWDHURY S, 1986, J AM CHEM SOC, V108, P5453
   FARRAGHER AL, 1967, T FARADAY SOC, V63, P2369
   FRISH MJ, 1995, GAUSSIAN 94
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HELLWEGE KL, 1976, LANDOLTBORNSTEIN NUM, V7
   JURSIC BS, 1997, J MOL STRUCT THEOCHE, V394, P19
   KENDALL RA, 1992, J CHEM PHYS, V96, P6796
   KING RA, 1996, J PHYS CHEM-US, V100, P6061
   KLOBUKOWSKI M, 1997, ADV QUANTUM CHEM, V28, P189
   LEE C, 1988, PHYS REV B, V37, P785
   LIDE DR, 1995, CRC HDB CHEM PHYSICS
   MADELUNG O, 1992, LANDOLTBORNSTEIN NUM, V21
   ORTIZ JV, 1988, J CHEM PHYS, V89, P6348
   PARR RG, 1989, DENSITY FUNCTIONAL T, P95
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   RIENSTRAKIRACOF., 1998, COMMUNICATION
   TSHUMPER GS, 1997, J CHEM PHYS, V107, P2529
   VIGGIANO AA, 1991, INT J MASS SPECTROM, V109, P327
   ZIEGLER T, 1992, J CHEM PHYS, V96, P7623
   ZIEGLER T, 1992, J COMPUT CHEM, V13, P70
NR 25
TC 4
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD SEP-OCT
PY 1999
VL 10
IS 5
BP 354
EP 358
PG 5
SC Chemistry, Multidisciplinary
GA 261MC
UT ISI:000084012100003
ER

PT J
AU Esteves, PM
   Nascimento, MAC
   Mota, CJA
TI Reactivity of alkanes on zeolites: A theoretical ab initio study of the
   H/H exchange
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID H-D EXCHANGE; PENTACOORDINATED CARBONIUM-IONS; HYDROGEN-DEUTERIUM
   EXCHANGE; HARTREE-FOCK CALCULATIONS; DIMETHYL ETHER FORMATION; C-C
   BONDS; SOLID ACIDS; ELECTROSTATIC POTENTIALS; ELECTROPHILIC REACTIONS;
   SURFACE METHOXY
AB Ab initio calculations were performed to study the H/H exchange between
   light alkanes (methane, ethane, propane, and isobutane) in protonated
   zeolites. The Bronsted acid site of the zeolite was represented by a T3
   cluster (T = Si, Al). The results of the calculations, at the
   B3LYP/6-31G** and MP2/6-31G**//HF/6-31G** levels, indicated that the
   transition state resembles a pentacoordinated carbonium ion. The
   enthalpy of activation was similar, regardless of the alkane and the
   type of hydrogen being exchanged. The Delta H-double dagger values, at
   room temperature, ranged from 32.2 kcal/mol for methane to 36.2
   kcal/mol for the exchange of the tertiary hydrogen of isobutane, both
   at the B3LYP/6-31G** level. These results are not in complete agreement
   with experiments, as it has been shown that for isobutane only the
   primary hydrogens exchange at temperatures near ambient. This
   disagreement may be attributed to the fact that the cluster model
   employed in the calculations neither includes the electrostatic effects
   of the zeolite cavity nor takes into account steric repulsion
   associated with the framework.
C1 Univ Fed Rio de Janeiro, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Mota, CJA, Univ Fed Rio de Janeiro, Inst Quim, Cidade Univ,CT Bloco A,
   BR-21949900 Rio De Janeiro, Brazil.
CR BECK LW, 1995, J AM CHEM SOC, V117, P11594
   BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
   BLASZKOWSKI SR, 1996, J AM CHEM SOC, V118, P5152
   BLASZKOWSKI SR, 1996, J PHYS CHEM-US, V100, P3463
   BLASZKOWSKI SR, 1997, J AM CHEM SOC, V119, P5152
   BLASZKOWSKI SR, 1997, J PHYS CHEM B, V101, P2292
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   BRUNDLE M, 1998, J AM CHEM SOC, V120, P1556
   CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
   COLLINS SJ, 1995, CHEM PHYS LETT, V246, P555
   COLLINS SJ, 1995, J CATAL, V153, P94
   CORMA A, 1995, CHEM REV, V95, P559
   ESTEVES PM, 1998, TOP CATAL, V6, P163
   ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
   EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
   EVLETH EM, 1996, J PHYS CHEM-US, V100, P11368
   FRASH MV, 1997, J PHYS CHEM B, V101, P5346
   FRASH MV, 1998, J PHYS CHEM B, V102, P2232
   FRISCH MJ, 1995, GAUSSIAN 94
   HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P703
   JOBIC H, 1996, J PHYS CHEM-US, V100, P19545
   KAZANSKY VB, 1991, ACCOUNTS CHEM RES, V24, P379
   KAZANSKY VB, 1992, J MOL CATAL, V74, P257
   KAZANSKY VB, 1994, CATAL LETT, V28, P211
   KRAMER GJ, 1993, NATURE, V363, P529
   KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
   KROTLA J, 1998, J PHYS CHEM B, V102, P2454
   LINS JOMDL, 1996, THEOCHEM-J MOL STRUC, V371, P237
   MOTA CJA, UNPUB
   MOTA CJA, 1991, J CHEM SOC CHEM COMM, P171
   MOTA CJA, 1992, J AM CHEM SOC, V114, P1121
   MOTA CJA, 1993, STUD SURF SCI CATAL, V75, P463
   MOTA CJA, 1994, J CHEM SOC FARADAY T, V90, P2297
   MOTA CJA, 1996, APPL CATAL A-GEN, V146, P181
   MOTA CJA, 1996, J PHYS CHEM-US, V100, P12418
   MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
   MOTA CJA, 1997, J CATAL, V172, P194
   NASCIMENTO MAC, 1999, J MOL STRUC-THEOCHEM, V464, P239
   OLAH GA, 1968, J AM CHEM SOC, V90, P2726
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
   OLAH GA, 1973, J AM CHEM SOC, V95, P4960
   ORTIZ W, 1999, ORG LETT, V1, P531
   RIGBY AM, 1997, J CATAL, V170, P1
   SINCLAIR PE, 1997, J PHYS CHEM B, V101, P295
   SOMMER J, 1992, J AM CHEM SOC, V114, P5884
   SOMMER J, 1994, J AM CHEM SOC, V116, P5491
   SOMMER J, 1995, J AM CHEM SOC, V117, P1135
   STEVENSON DP, 1952, J AM CHEM SOC, V74, P3269
   VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13713
   ZICOVICHWILSON C, COMMUNICATION
   ZICOVICHWILSON CM, 1995, J PHYS CHEM-US, V99, P13224
   ZYGMUNT SA, 1994, J MOL STRUCT THEOCHE, V314, P113
   ZYGMUNT SA, 1996, J PHYS CHEM-US, V100, P6663
NR 53
TC 25
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5647
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 25
PY 1999
VL 103
IS 47
BP 10417
EP 10420
PG 4
SC Chemistry, Physical
GA 261LF
UT ISI:000084010100015
ER

PT J
AU Goeppert, A
   Sassi, A
   Sommer, J
   Esteves, PM
   Mota, CJA
   Karlsson, A
   Ahlberg, P
TI Protonation of small alkanes in liquid superacids: Absence of
   intramolecular C-13 and H-2 scrambling in propane and isobutane
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID THEORETICAL AB-INITIO; ACTIVATION; DEUTERIUM; CRACKING; ZEOLITE; CATIONS
C1 Univ Strasbourg 1, Inst Chim, F-67070 Strasbourg, France.
   Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
   Univ Gothenburg, Dept Organ Chem, S-41296 Gothenburg, Sweden.
RP Sommer, J, Univ Strasbourg 1, Inst Chim, 4 Rue Blaise Pascal, F-67070
   Strasbourg, France.
CR BROUWER DM, 1968, RECL TRAV CHIM PAY B, V87, P1435
   CORMA A, 1985, J CATAL, V93, P30
   CORMA A, 1994, J CATAL, V145, P171
   ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
   ESTEVES PM, 1998, TOP CATAL, V6, P163
   HAAG WO, 1984, 8TH P INT C CAT BERL, V2, P305
   IVANOVA II, 1998, TOP CATAL, V6, P49
   MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
   OLAH G, 1985, SUPERACIDS
   OLAH GA, 1972, J AM CHEM SOC, V94, P808
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
   OLAH GA, 1995, HYDROCARBON CHEM
   PINES H, 1981, CHEM CATALYTIC HYDRO
   SAUNDERS M, 1992, CROAT CHEM ACTA, V65, P673
   SOMMER J, 1992, J AM CHEM SOC, V114, P5884
   SOMMER J, 1993, ACCOUNTS CHEM RES, V26, P370
   SOMMER J, 1997, J AM CHEM SOC, V119, P3274
NR 17
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 17
PY 1999
VL 121
IS 45
BP 10628
EP 10629
PG 2
SC Chemistry, Multidisciplinary
GA 258UP
UT ISI:000083857800022
ER

PT J
AU Okulik, N
   Peruchena, NM
   Esteves, PM
   Mota, CJA
   Jubert, A
TI Ab initio topological analysis of the electronic density in isobutonium
   cations
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR CHARGE-DISTRIBUTIONS; ELECTROPHILIC REACTIONS; QUANTUM
   TOPOLOGY; TERMS
AB Studies performed on isobutonium cations at the ab initio level show
   that five different stable structures can be characterized. The two
   structures most energetically favored correspond to van der Waals
   complexes, one of them between CH4 and i-C3H7+ and one of smaller
   energy between H-2 and the C4H9+ cation. Among the isobutonium cations,
   the most stable structure corresponds to the C-isobutonium cation where
   a three-center two-electron bond is formed. The isobutonium cations on
   the H are significantly higher in energy. The topology of the
   electronic density charge of the isobutonium cations is studied, at ab
   initio level, using the theory of atoms in molecules (AIM) developed by
   Bader. The electronic delocalization that operates through the sigma
   bonds in saturated molecules and specifically in protonated alkanes can
   be studied by means of the analysis of the charge density and of the
   Laplacian of the electronic charge density at the bond critical points.
C1 Natl Univ La Plata, Fac Ciencias Exactas, Dept Quim, CONICET,Ctr Quim Inorgan,CEQUINOR,UNLP, RA-1900 La Plata, Argentina.
   UNNE, Fac Ciencias Exactas & Nat & Agrimensura, Dept Quim, RA-3400 Corrientes, Argentina.
   Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
   Fac Agroind, RA-3700 Pcia R Saenz Pena, Chaco, Argentina.
RP Okulik, N, Natl Univ La Plata, Fac Ciencias Exactas, Dept Quim,
   CONICET,Ctr Quim Inorgan,CEQUINOR,UNLP, CC 962, RA-1900 La Plata,
   Argentina.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
   BADER RFW, 1979, J AM CHEM SOC, V101, P1389
   BADER RFW, 1979, J CHEM PHYS, V70, P6316
   BADER RFW, 1980, J CHEM PHYS, V73, P2871
   BADER RFW, 1981, ADV QUANTUM CHEM, V14, P63
   BADER RFW, 1981, REP PROG PHYS, V44, P893
   BADER RFW, 1983, J AM CHEM SOC, V105, P5061
   BADER RFW, 1990, ATOMS MOL QUANTUM TH
   CREMER D, 1983, J AM CHEM SOC, V105, P5069
   ESTEVES PM, 1998, TOP CATAL, V6, P163
   FRISCH MJ, 1995, GAUSSIAN 94
   KLIEGERKONIG W, 1982, J COMPUT CHEM, V3, P317
   MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
   OLAH GA, 1973, J AM CHEM SOC, V95, P4960
NR 16
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 21
PY 1999
VL 103
IS 42
BP 8491
EP 8495
PG 5
SC Chemistry, Physical
GA 251DT
UT ISI:000083429900019
ER

PT J
AU de Oliveira, AE
   Bruns, RE
TI CCl4: mean dipole moment derivatives and core electron binding energies
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE atomic polar tensor; density functional theory; CCl4
ID POLAR TENSORS; VIBRATIONAL INTENSITIES; INFRARED INTENSITIES;
   SUBSTITUTED METHANES
AB Atomic polar tensors for the carbon tetrachloride molecule are
   calculated from experimental fundamental infrared intensities, a normal
   coordinate transformation determined from observed fundamental
   frequency values and experimentally determined CCl bond lengths. Dipole
   moment derivative sign ambiguities were eliminated by comparing the
   alternative mathematical solutions obtained from the experimental data
   with results of Hartree-Fock, Moller-Plesset 2 and Density Functional
   Theory calculations using a 6 -31 + + G(d,p) basis set. Carbon and
   chlorine mean dipole moment derivatives of 1.043 +/- 0.022e and - 0.261
   +/- 0.006e, respectively, are determined from the preferred atomic
   polar tensors. These values are in excellent agreement with those
   obtained from the CCl4 Is carbon atom ionization energy using a simple
   potential model (1.081e and - 0.270e), from an electronegativity model
   proposed earlier (1.008e and - 0.252e) and from an electronegativity
   equalization model (1.066e and - 0.266e). (C) 1999 Elsevier Science
   B.V. AU rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13081970 Campinas, SP, Brazil.
RP Bruns, RE, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13081970
   Campinas, SP, Brazil.
CR BAGUS PS, 1965, PHYS REV           A, V139, P619
   BASSI ABM, 1975, THESIS U ESTADUAL CA
   BRUNS RE, 1996, J BRAZIL CHEM SOC, V7, P497
   CIOSLOWSKI J, 1989, J AM CHEM SOC, V111, P8333
   DEOLIVEIRA AE, 1998, J PHYS CHEM A, V102, P4615
   FRISCH MJ, 1995, GAUSSIAN 94
   GUADAGNINI PH, 1997, J AM CHEM SOC, V119, P4224
   HUHEEY JE, 1965, J PHYS CHEM-US, V69, P3284
   JOLLY WL, 1984, ATOM DATA NUCL DATA, V31, P433
   MORCILLO J, 1961, ANN R SOC ESP FIS A, V57, P81
   NETO BB, 1988, J CHEM PHYS, V89, P1887
   NETO BB, 1990, J PHYS CHEM-US, V94, P1764
   PERSON WB, 1974, J CHEM PHYS, V61, P1040
   PERSON WB, 1976, J CHEM PHYS A, V64, P3036
   SIEGBAHN K, 1971, ESCA APPL FREE MOL
   SUTO E, 1991, J PHYS CHEM-US, V95, P9716
   TANABE K, 1970, SPECTROCHIM ACTA A, V26, P1469
NR 17
TC 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD SEP 20
PY 1999
VL 55
IS 11
BP 2215
EP 2219
PG 5
SC Spectroscopy
GA 240GD
UT ISI:000082816800007
ER

PT J
AU Ramos, JCS
   Hollauer, E
   Cardoso, SP
TI The vibration frequencies predicted by the AM1 model.
SO QUIMICA NOVA
LA Portuguese
DT Review
DE AM1; frequencies; CH; NH; OW; CO; CC frequencies
ID DENSITY-FUNCTIONAL THEORY; GROUND-STATES; MOLECULES; SPECTRA; MNDO
AB We analyse vibrational frequencies of 168 compounds with the AMI model
   concerning its experimentally observed gaseous frequencies. Stretching
   of CH, NH, OH and CO bonds, its related bending frequencies, and the CC
   frame movements ape the studied vibrations. The results show problems
   with the AMI vibrational splittings, Often symmetric stretching
   frequencies, like in CH3, CH2 and NN3, appear switched with the
   corresponding antisymmetrical ones. among the studied vibrations many
   stretchings are overestimated, while bendings oscillate around
   experimental values. Fluorine stretchings, NN, OO, CH, double and
   triples CG bonds and cyclic hydrocarbon breathing modes are always
   overestimated while torsions, umbrella modes and OH/SH stretching are,
   in average, underestimated. Graphical analysis shaw that compounds with
   the lowest molecular masses are the ones with the largest difference to
   the experimental values. From our results it is not possible to fit
   confortably the calculated frequencies by a simple linear relationship
   of the type, v(obs)=a*v(AM1). Better aggreement is obtained when
   different curves are adjusted for the stretching and bending modes, and
   when a complete linear function is used. Among our studies the best
   obtained statistical results are for CH, NN and OH. The conclusions
   obtained in this work will improve the AMI calculated frequencies
   leading to accurate results for these properties.
C1 Univ Fed Fluminense, Inst Quim, Dept Quim Fis, BR-24210150 Niteroi, RJ, Brazil.
   UnED, Escola Tecn Fed Quim, Secao Quim, BR-26530060 Nilopolis, RJ, Brazil.
RP Ramos, JCS, Univ Fed Fluminense, Inst Quim, Dept Quim Fis, Morro do
   Valonguinho S-N, BR-24210150 Niteroi, RJ, Brazil.
CR BRAND JCD, 1970, MATH COMPUT, V24, P647
   BRIGHT EW, 1955, MOL VIBRATIONS
   CASTELLAVENTURA M, 1994, SPECTROCHIM ACTA A, V50, P69
   COOLIDGE MB, 1991, J COMPUT CHEM, V12, P948
   DEFREES DJ, 1985, J CHEM PHYS, V82, P333
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P1685
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DUNCAN JL, 1964, SPECTROCHIM ACTA, V20, P523
   DUNCAN JL, 1991, SPECTROCHIM ACTA A, V47, P1
   FABIAN WMF, 1988, J COMPUT CHEM, V9, P369
   FAUSTO R, 1994, J MOL STRUCT, V323, P267
   HARMONY MD, 1979, J PHYS CHEM REF DATA, V8, P619
   HEALY EF, 1993, J MOL STRUCT THEOCHE, V281, P141
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HERZBERG G, 1950, SPECTRA DIATOMIC MOL
   HOLLAUER E, 1993, THESIS CAMPINAS SP
   HOUT RF, 1982, J COMPUT CHEM, V3, P234
   KLIMO V, 1962, COLLECT CZECH CHEM C, V49, P1731
   LEVINE IN, 1975, MOL SPECTROSCOPY
   MORSE PM, 1929, PHYS REV, V34, P57
   NIELSON JR, 1949, J CHEM PHYS, V17, P659
   OHNO K, 1995, J MOL STRUCT, V352, P475
   SALA O, 1984, ESPECTROSCOPIA RAMAN
   SANTOS HF, 1995, J MOL STRUCT, V335, P129
   SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
   SHIMANOUCHI T, 1977, J PHYS CHEM REF DATA, V6, P993
   STEWART JJP, 1993, MANUAL MOPAC 93 REVI
   STREY G, 1967, J MOL SPECTROSC, V24, P87
   SWALEN JD, 1962, J CHEM PHYS, V36, P1914
   WALL FT, 1937, J CHEM PHYS, V5, P314
   ZHOU XF, 1996, VIB SPECTROSC, V12, P73
NR 32
TC 4
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0100-4042
J9 QUIM NOVA
JI Quim. Nova
PD SEP-OCT
PY 1999
VL 22
IS 5
BP 684
EP 692
PG 9
SC Chemistry, Multidisciplinary
GA 237BB
UT ISI:000082632800012
ER

PT J
AU Pliego, JR
   De Almeida, WB
   Celebi, S
   Zhu, ZD
   Platz, MS
TI Singlet-triplet gap, and the electronic and vibrational spectra of
   chlorophenylcarbene: A combined theoretical and experimental study
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID LASER FLASH-PHOTOLYSIS; O-H BOND; AB-INITIO; YLIDE FORMATION;
   PERTURBATION-THEORY; CARBENE FORMATION; EXCITED-STATES; SPIN STATES;
   KINETICS; CCL2
AB Minimum energy structures of singlet and triplet chlorophenylcarbene, a
   prototypical carbene, were computed. The singlet-triplet energy
   separation was predicted to be 7.84 and 7.70 kcal/mol at the
   UCCSD(T)/6-31+G* and QCISD(T)/6-31+G** levels of theory, respectively,
   after zero-point correction. This is slightly larger than that
   predicted by the CAS(6,6) (4.5 kcal/mol), local spin density
   approximation (5.6 kcal/mol), and the BLYP (7.3 kcal/mol) methods with
   the 6-31G* basis set reported by Trindle et al. The UV-vis and IR
   spectra of chlorophenylcarbene were analyzed with the aid of the
   CASPT2/CASSCF(10,10) and the B3LYP/6-31G* levels of theory,
   respectively. The UV-vis and IR spectra of chlorophenylcarbene were
   assigned on the basis of these calculations. The ab initio calculations
   predicted the existence of strong absorption bands in the UV and a weak
   band in the visible in good agreement with published spectra. The long
   (750 nm) wavelength band corresponds to electron promotion from the
   lone pair sigma (HOMO) to the pi* (LUMO). On the basis of the
   calculated harmonic frequencies, we cannot assign the 1244 and 1600
   cm(-1) IR bands observed in an argon matrix to chlorophenyl carbene.
   The most intense IR band (1225 cm(-1)) corresponds to the symmetric C-C
   stretch of the carbene and aromatic carbon. The asymmetric and
   symmetric C-C-Cl stretches are assigned to the bands observed at 847
   and 739 cm(-1), respectively.
C1 Univ Fed Minas Gerais, Dept Quim, Lab Quim Computac & Modelagem Mol, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
   Ohio State Univ, Newman & Wolfrom Lab Chem, Columbus, OH 43210 USA.
RP Platz, MS, Univ Fed Minas Gerais, Dept Quim, Lab Quim Computac &
   Modelagem Mol, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
CR ADMASU A, 1997, J PHYS CHEM A, V101, P3832
   ADMASU A, 1998, J CHEM SOC PERK  MAY, P1093
   AMOS RD, 1991, CHEM PHYS LETT, V185, P256
   ANDERSSON K, 1998, MOLCAS PROGRAM VERSI
   BALLY T, 1994, ANGEW CHEM INT EDIT, V33, P1964
   BARON WJ, 1973, CARBENES, V1, P1
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   BENT HA, 1960, J CHEM EDUC, V37, P616
   BERNARDI F, 1997, J ORG CHEM, V62, P2018
   BONDYBEY VE, 1977, J MOL SPECTROSC, V64, P180
   BONNEAU R, 1990, J AM CHEM SOC, V112, P744
   CAI ZL, 1993, CHEM PHYS LETT, V210, P481
   CHATEAUNEUF JE, 1990, J AM CHEM SOC, V112, P3217
   CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
   CRAMER CJ, 1994, J AM CHEM SOC, V116, P9787
   EISENTHAL KB, 1985, TETRAHEDRON, V41, P1543
   FRISCH MJ, 1995, GAUSSIAN 94
   GANZER GA, 1986, J AM CHEM SOC, V108, P1517
   GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
   GOULD IR, 1985, TETRAHEDRON, V41, P1587
   GRILLER D, 1982, J AM CHEM SOC, V104, P5549
   GRILLER D, 1984, ACCOUNTS CHEM RES, V17, P283
   GRILLER D, 1985, TETRAHEDRON, V41, P1525
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HIRAO K, 1992, CHEM PHYS LETT, V190, P374
   HOUK KN, 1985, TETRAHEDRON, V41, P1555
   JACKSON JE, 1988, J AM CHEM SOC, V110, P5595
   JONES MB, 1992, J AM CHEM SOC, V114, P2163
   KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
   KIRMSE W, 1993, J AM CHEM SOC, V115, P8918
   LEE C, 1988, PHYS REV B, V37, P785
   LEOPOLD DG, 1985, J CHEM PHYS, V83, P4849
   MATZINGER S, 1996, J AM CHEM SOC, V118, P1535
   MCMAHON RJ, 1987, J AM CHEM SOC, V109, P2456
   MILLIGAN DE, 1967, J CHEM PHYS, V47, P703
   MODARELLI DA, 1992, J AM CHEM SOC, V114, P7034
   MOSS RA, 1988, TETRAHEDRON LETT, V29, P6417
   NAKANO H, 1993, J CHEM PHYS, V99, P7983
   PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
   PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
   PLIEGO JR, 1997, J CHEM PHYS, V106, P3582
   PLIEGO JR, 1997, J CHEM SOC FARADAY T, V93, P1881
   PLIEGO JR, 1997, J CHEM SOC PERK  NOV, P2365
   PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
   PLIEGO JR, 1998, J BRAZIL CHEM SOC, V9, P181
   POPLE JA, 1983, J AM CHEM SOC, V105, P6389
   ROBERT M, 1996, J PHYS CHEM-US, V100, P18426
   ROBERT M, 1998, J PHYS CHEM A, V102, P1507
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SHIN SK, 1990, J PHYS CHEM-US, V94, P6963
   SOUNDARARAJAN N, 1988, J AM CHEM SOC, V110, P7143
   TOSCANO JP, 1994, J AM CHEM SOC, V116, P8146
   TRINDLE C, 1997, J AM CHEM SOC, V119, P12947
   TURRO NJ, 1980, J AM CHEM SOC, V102, P7578
   WANG JL, 1995, J AM CHEM SOC, V117, P5477
   WONG C, 1993, J CHEM RES S, P32
   YAMAMOTO N, 1994, J AM CHEM SOC, V116, P2064
   ZUEV PS, 1994, J ORG CHEM, V59, P2267
   ZUPANCIC JJ, 1985, TETRAHEDRON, V41, P1471
NR 60
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 16
PY 1999
VL 103
IS 37
BP 7481
EP 7486
PG 6
SC Chemistry, Physical
GA 238JH
UT ISI:000082706800014
ER

PT J
AU Taft, CA
   Guimaraes, TC
   Pavao, AC
   Lester, WA
TI Adsorption and dissociation of diatomic molecules on transition-metal
   surfaces
SO INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY
LA English
DT Review
ID ANGLE-RESOLVED PHOTOEMISSION; ELECTRON-ENERGY LOSS; TEMPERATURE
   PROGRAMMED DESORPTION; RAY PHOTOELECTRON DIFFRACTION;
   DENSITY-FUNCTIONAL THEORY; MORSE-POTENTIAL ANALYSIS; SULFUR MODIFIED
   FE(100); SINGLE-CRYSTAL SURFACE; SMALL NICKEL CLUSTERS; QUANTUM
   MONTE-CARLO
AB The interaction between transition-metal surfaces and simple diatomic
   molecules (CO, NO, H-2, N, and O-2) may lead to the breaking and making
   of chemical bonds and trigger important surface-catalysed reactions. We
   discuss the most common surface interaction and orientation models and
   consider the electronic structure of the transition metal, and the
   influence of structure, bonding and coordination of the diatomic
   molecule. We emphasize the importance of the tilted precursor in the
   dissociation of diatomic molecules on transition-metal surfaces.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
   Univ Fed Pernambuco, Dept Quim Fundamental, BR-50960450 Recife, PE, Brazil.
   Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
   Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150,Urca,
   BR-22290180 Rio De Janeiro, Brazil.
CR AHLRICHS R, 1985, J CHEM PHYS, V82, P890
   AIZAWA H, 1998, SURF SCI, V399, L364
   ALBRIGHT TA, 1985, ORBITAL INTERACTIONS
   ALLISON JN, 1982, SURF SCI, V115, P553
   ALMEIDA AL, 1998, J CHEM PHYS, V109, P3671
   ALMEIDA AL, 1999, INT J QUANTUM CHEM, V71, P153
   ANDERSON AB, 1974, J CHEM PHYS, V60, P4271
   ANDERSON AB, 1976, INORG CHEM, V15, P2598
   ANDERSON AB, 1984, SURF SCI, V146, P80
   ANDERSON AB, 1986, J AM CHEM SOC, V108, P1385
   ANDERSON AB, 1987, J PHYS CHEM-US, V91, P4245
   ANDERSON AB, 1988, J PHYS CHEM-US, V92, P809
   ANDERSON JB, 1995, INT REV PHYS CHEM, V14, P85
   ANDERSSON S, 1977, SOLID STATE COMMUN, V21, P75
   ANDERSSON S, 1980, J PHYS C SOLID STATE, V13, P3547
   ANDREONI W, 1981, PHYS REV B, V23, P4379
   ANGEVAARE PAJ, 1988, J CATAL, V110, P11
   ARABCZYK W, 1997, SURF SCI, V377, P578
   ARUMAINAYAGAM CR, 1996, SURF SCI, V360, P121
   ASENSIO MC, 1992, CHEM PHYS LETT, V192, P259
   AUGUSTINE RL, 1996, HETEROGENEOUS CATALY
   BACKX C, 1981, SURF SCI, V104, P300
   BACON AD, 1979, THEOR CHIM ACTA, V53, P21
   BAERENDS EJ, 1992, NATO ADV STUDY I S B, V283
   BAETZOLD RC, 1982, SOLID STATE COMMUN, V44, P781
   BAGUS PS, 1983, PHYS REV B, V28, P5423
   BAGUS PS, 1990, PHYS REV B, V42, P10852
   BAGUS PS, 1990, SURF SCI, V236, P233
   BAGUS PS, 1994, CHEM PHYS LETT, V224, P576
   BAHRIM B, 1996, J CHEM PHYS, V104, P10014
   BAIRD RJ, 1980, SURF SCI, V97, P356
   BALASUBRAMANIAN K, 1987, J CHEM PHYS, V87, P3981
   BALKENENDE AR, 1989, APPL SURF SCI, V37, P189
   BALKENENDE AR, 1991, APPL SURF SCI, V47, P351
   BATRA IP, 1976, SURF SCI, V57, P12
   BAUSCHLICHER CW, 1985, COMP AB INITIO QUANT
   BAUSCHLICHER CW, 1986, J CHEM PHYS, V85, P354
   BAUSCHLICHER CW, 1994, J CHEM PHYS, V101, P3250
   BEHM RJ, 1984, J VAC SCI TECHNOL A, V2, P1040
   BEHM RJ, 1997, ACTA PHYS POL A, V93, P260
   BENNICH P, 1998, PHYS REV B, V57, P9274
   BENZIGER J, 1980, SURF SCI, V94, P119
   BENZIGER J, 1980, SURF SCI, V94, P199
   BERGER HF, 1992, SURF SCI, V275, L627
   BERNASEK SL, 1993, ANNU REV PHYS CHEM, V44, P265
   BERTINO M, 1996, APPL PHYS A-MATER, V62, P95
   BERTINO MF, 1997, SURF SCI, V385, L984
   BERTOLINI JC, 1981, SURF SCI, V102, P12
   BERTOLINI JC, 1981, SURF SCI, V102, P131
   BESENBACHER F, 1993, PROG SURF SCI, V44, P1
   BEUTL M, 1997, SURF SCI, V385, P1106
   BEUTLER A, 1997, SURF SCI, V371, P381
   BIBERIAN JP, 1982, SURF SCI, V118, P443
   BIEMOLT W, 1992, CHEM PHYS LETT, V188, P477
   BIRD DM, 1993, CHEM PHYS LETT, V212, P518
   BLANSE B, 1989, J CATAL, V119, P238
   BLASTER HU, 1996, P 4 INT S HET CAT FI
   BLOMBERG MRA, 1991, J AM CHEM SOC, V113, P424
   BLYHOLDER G, 1964, J PHYS CHEM-US, V68, P2772
   BLYHOLDER G, 1975, J CHEM PHYS, V62, P3193
   BOETTGER JC, 1993, INT J QUANTUM CHEM S, V27, P147
   BOLAND JJ, 1991, PHYS REV LETT, V67, P1539
   BONICKE IA, 1998, SURF SCI, V395, P138
   BONZEL HP, 1975, SURF SCI, V51, P213
   BONZEL HP, 1977, SURF SCI, V62, P45
   BONZEL HP, 1987, SURFACE SCI REPT, V8, P43
   BORG A, 1994, SURF SCI, V306, P10
   BORG HJ, 1994, J CHEM PHYS, V101, P10052
   BORUP RL, 1997, SURF SCI, V374, P152
   BORUSIK OS, 1997, SURF SCI LETT, V486, L1016
   BOTZO F, 1983, CHEM PHYS LETT, V94, P243
   BOUDART M, 1969, ADV CATAL, V20, P153
   BOWMAN R, 1973, SURF SCI, V35, P8
   BOZSO F, 1977, J CATAL, V49, P18
   BOZSO F, 1977, J CATAL, V49, P189
   BOZSO F, 1984, SURF SCI, V141, P591
   BRADLEY JM, 1996, J CHEM PHYS, V104, P4283
   BREITSCHAFTER MJ, 1981, SURF SCI, V109, P493
   BRODEN G, 1976, SURF SCI, V59, P593
   BRUNDLE CR, 1975, FARADAY DISCUSS, V60, P51
   BUTLER DA, 1994, CHEM PHYS LETT, V217, P423
   CAMPBELL CT, 1984, SURF SCI, V139, P396
   CAPUTI LS, 1993, SURF SCI, V282, P62
   CAPUTI LS, 1993, SURF SCI, V289, L591
   CEPERLEY DM, 1996, ADV CHEM PHYS, V93, P1
   CHACONTAYLOR MR, 1996, J PHYS CHEM-US, V100, P7610
   CHANG S, 1974, PHYS REV LETT, V52, P648
   CHONG DP, 1986, J CHEM PHYS, V84, P5606
   COLONELL JI, 1996, J CHEM PHYS, V104, P6822
   CONRAD H, 1975, SURF SCI, V50, P296
   CONRAD H, 1977, SURF SCI, V65, P235
   CONRAD H, 1984, SURF SCI, V145, P1
   COOK JC, 1997, SURF SCI, V371, P213
   COTTON FA, 1962, J AM CHEM SOC, V84, P4432
   COX DM, 1987, NATO ADV STUDY I SER, V158, P741
   COX DM, 1990, ACS SYM SER, V437, P172
   CULOTTA E, 1992, SCIENCE, V258, P1862
   DAVIS MF, 1993, SELECTIVITY CATALYSI
   DELBECQ F, 1998, SURF SCI, V396, P156
   DEMONGEOT FB, 1997, J CHEM PHYS, V106, P711
   DEPAOLA RA, 1987, PHYS REV B, V35, P4236
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DOVESI R, 1983, PHYS REV B, V28, P5781
   DOVESI R, 1987, J CHEM PHYS, V86, P6967
   DOWBEN PA, 1988, SURF SCI, V193, P336
   DOWBEN PA, 1991, SURF SCI, V254, L482
   DRAKOVA D, 1990, SURF SCI, V226, P285
   DUARTE HA, 1997, J PHYS CHEM B, V101, P7474
   DUBOIS LH, 1987, J CHEM PHYS, V87, P1367
   DUCROS R, 1980, SURF SCI, V94, P154
   DUMESIC JA, 1993, MICROKINETICS HETERO
   EASTMAN DE, 1974, JPN J APPL PHYS PT 2, V2, P827
   EBERHARDT W, 1985, PHYS REV LETT, V54, P1856
   EDAMOTO K, 1988, SURF SCI, V204, L739
   ERLEY W, 1981, J VAC SCI TECHNOL, V18, P472
   ERTL G, 1982, CRIT REV SOLID STATE, P349
   ERTL G, 1982, SURF SCI, V114, P527
   ERTL G, 1994, TOP CATAL, V1, P305
   ERTL G, 1997, HDB HETEROGENEOUS CA
   ESTIU GL, 1994, J PHYS CHEM-US, V98, P9972
   FEIBELMAN PJ, 1991, PHYS REV LETT, V67, P461
   FERMI E, 1926, Z PHYS, V48, P542
   FICHTNERENDRUSCHAT S, 1998, J CHEM PHYS, V108, P774
   FINK T, 1991, SURF SCI, V245, P96
   FINLAY RJ, 1997, CHEM PHYS LETT, V274, P499
   FRAGA F, 1992, COMPUTATIONAL CHEM S
   FRANCHY R, 1995, SURF SCI, V322, P95
   FREUND HJ, 1987, SURF SCI, V185, P187
   FROMENT GC, 1997, P INT S DYN SURF REA
   FUKUDA Y, 1980, SURF SCI, V99, P289
   FUKUDA Y, 1981, SURF SCI, V104, L234
   FUKUDA Y, 1988, SURF SCI, V203, L651
   GHIOTTI G, 1993, SURF SCI A, V287, P228
   GLAND JL, 1980, SURF SCI, V94, P355
   GODOWSKI PJ, 1996, ACTA PHYS POL A, V89, P657
   GONZALEZ L, 1982, SURF SCI, V119, P61
   GORDON MH, 1993, CHEM PHYS, V175, P37
   GORLING A, 1993, SURF SCI, V286, P26
   GROSS A, 1998, PHYS REV B, V57, P2493
   GRUNZE M, 1979, SURF SCI, V89, P381
   GRUNZE M, 1984, P 8 C CAT, V4, P133
   GRUNZE M, 1984, PHYS REV LETT, V53, P850
   GRUNZE M, 1987, APPL PHYS A-SOLID, V44, P19
   GUEST RJ, 1992, SURF SCI, V278, P239
   GUIMARAES TC, 1997, PHYS REV B, V56, P7001
   GUIMARAES TC, 1999, IN PRESS PHYS REV B
   GUO XC, 1994, SURF SCI, V310, P163
   HAMMER B, 1992, PHYS REV LETT, V69, P1971
   HAMMER B, 1996, PHYS REV LETT, V76, P2141
   HAMMER B, 1997, CATAL LETT, V46, P31
   HAMMER B, 1997, NATO ADV STUDY I S E, V331
   HAMMOND BL, 1994, MONTE CARLO METHODS
   HANEMAN D, 1997, SURF SCI, V375, P71
   HARDER R, 1994, SURF SCI, V316, P478
   HARLE H, 1997, CHEM PHYS LETT, V279, P275
   HARRIS J, 1985, PHYS REV LETT, V55, P1583
   HARRIS S, 1982, CHEM PHYS, V67, P229
   HARRIS S, 1984, J CATAL, V86, P400
   HASHIZUME T, 1991, JPN J APPL PHYS, V30, L1529
   HASSE G, 1987, SURF SCI, V191, P75
   HAYDEN BE, 1991, SURF SCI, V243, P31
   HEINZ K, 1979, SURF SCI, V87, P5959
   HEINZMANN U, 1996, J PHYS-CONDENS MAT, V8, P3245
   HEITZINGER JM, 1992, SURF SCI, V260, P151
   HERMANN K, 1987, PHYS REV B, V35, P9467
   HESKETT D, 1984, SURF SCI, V139, P558
   HINES MA, 1993, J CHEM PHYS, V98, P9134
   HO W, 1980, SURF SCI, V95, P171
   HOFFMAN RH, 1988, SOLIDS SURFACES
   HOFFMANN R, 1962, J CHEM PHYS, V36, P2179
   HOFFMANN R, 1962, J CHEM PHYS, V37, P2872
   HOFFMANN R, 1963, J CHEM PHYS, V39, P1397
   HOFFMANN R, 1977, INORG CHEM, V16, P503
   HOFFMANN R, 1987, ANGEW CHEM INT EDIT, V26, P846
   HOFFMANN R, 1988, REV MOD PHYS, V60, P101
   HOFFMANN R, 1988, SOLIDS SURFACES
   HOHENBERG P, 1964, PHYS REV, V136, B864
   HOLLOWAY S, 1984, J ELECTROANAL CH INF, V161, P193
   HOOPER CW, 1991, CATALYTIC AMMONIA SY, P253
   HUBER R, 1970, J MOL BIOL, V52, P349
   IBBOTSON DE, 1981, SURF SCI, V110, P313
   IBOTTSON DE, 1981, SURF SCI, V110, P294
   ILLAS F, 1996, THEOCHEM-J MOL STRUC, V371, P257
   ILLAS F, 1997, SURF SCI, V376, P279
   ITOH H, 1976, JPN J APPL PHYS, V15, P2311
   JACKSON SD, 1998, J CHEM SOC FARADAY T, V94, P955
   JAFFE JE, 1993, PHYS REV B, V48, P7903
   JAKOB P, 1997, SURF SCI, V370, L185
   JENSEN ES, 1983, PHYS REV B, V27, P3338
   JOHNSON DW, 1979, J CHEM SOC FARAD T 1, V75, P2143
   JOHNSON KH, 1973, ADV QUANTUM CHEM, V7, P143
   JOHNSON KH, 1976, INT J QUANT CHEM S, V10, P47
   JOYNER RW, 1993, ELEMENTARY REACTION
   KALDOR A, 1990, PURE APPL CHEM, V62, P79
   KAMATH PV, 1984, J PHYS CHEM-US, V88, P464
   KANG DB, 1985, J AM CHEM SOC, V107, P7858
   KANSKI J, 1977, SURF SCI, V65, P63
   KARIKORPI M, 1987, SURF SCI, V179, L41
   KATSUKI S, 1989, SURF SCI, V220, P181
   KAWAI M, 1996, SURF SCI, V368, P239
   KEVAN SD, 1981, PHYS REV LETT, V46, P1629
   KINNERSLEY AD, 1997, SURF SCI, V377, P567
   KIRCHNER EJJ, 1992, J CHEM PHYS, V97, P3821
   KISHI K, 1975, J CHEM SOC F1, V71, P1715
   KISHI K, 1976, P ROY SOC LOND A MAT, V352, P289
   KISKINOVA M, 1981, SURF SCI, V108, P64
   KLAUSER R, 1986, J ELECTRON SPECTROSC, V38, P187
   KO EI, 1981, SURF SCI, V109, P221
   KOHN W, 1965, PHYS REV, V140, A1133
   KORZENIEWSKI C, 1986, J CHEM PHYS, V85, P4153
   KROES GJ, 1997, J CHEM PHYS, V107, P3309
   KUNDROTAS PJ, 1997, SURF SCI, V377, P7
   KUNIMORI K, 1993, SURF SCI, V283, P58
   KUNZ AB, 1973, SOLID STATE COMMUN, V13, P35
   KUWAHARA Y, 1988, SURF SCI, V207, P17
   LABANOWSKI J, 1991, DENSITY FUNCTIONAL M
   LADAS S, 1981, SURF SCI, V102, P151
   LAMBERT DK, 1988, J CHEM PHYS, V89, P3847
   LANGHOFF SR, 1986, CHEM PHYS LETT, V124, P251
   LAUTERBACH J, 1992, SURF SCI, V279, P287
   LAWLEY P, 1987, AB INITIO METHODS QU
   LEIBSLE FM, 1993, PHYS REV B, V47, P15865
   LEIBSLE FM, 1994, SURF SCI, V317, P309
   LESTER WA, 1997, RECENT ADV QUANTUM M, V2
   LIPKOWITZ KB, 1992, REV COMPUTATIONAL CH
   LOFFREDA D, 1998, J CHEM PHYS, V108, P6447
   LOFFREDA D, 1998, J CHEM PHYS, V108, P6447
   LU SH, 1992, PHYS REV B, V45, P6142
   LUDVIKSSON A, 1993, SURF SCI, V284, P328
   LUFTMAN HS, 1984, SURF SCI, V139, P369
   LUNTZ AC, 1988, J CHEM PHYS, V89, P4381
   MADLOWEN P, 1982, J CHEM PHYS, V77, P2673
   MANNSTADT W, 1995, PHYS REV B, V51, P14616
   MANNSTADT W, 1995, PHYS REV B, V51, P14616
   MARUCA R, 1990, SURF SCI, V236, P210
   MASEL RI, 1979, SURF SCI, V79, P26
   MATOLIN V, 1986, SURF SCI, V166, L115
   MATOLIN V, 1998, SURF SCI, V398, P117
   MATSUMOTO Y, 1980, J CHEM SOC F1, V76, P1116
   MATSUSHIMA T, 1997, SURF SCI, V386, P24
   MEHANDRU SP, 1986, SURF SCI, V169, L281
   MELE F, 1994, SURF SCI A, V307, P113
   MILLER JB, 1987, J CHEM PHYS, V87, P6725
   MINOT C, 1998, THEOCHEM-J MOL STRUC, V424, P119
   MIYOSHI E, 1991, SURF SCI, V242, P531
   MOFFAT JR, 1994, THEORETICAL ASPECTS
   MOLER EJ, 1997, CHEM PHYS LETT, V264, P502
   MOON DW, 1985, J AM CHEM SOC, V107, P4363
   MOON DW, 1985, SURF SCI, V163, P215
   MOON DW, 1987, SURF SCI, V180, L123
   MOON DW, 1987, SURF SCI, V184, P90
   MORIKAWA Y, 1997, SURF SCI, V386, P67
   MORIN M, 1992, J CHEM PHYS, V96, P3950
   MORTENSEN JJ, 1997, Z PHYS CHEM 1-2, V198, P113
   MOULIJN JA, 1993, INTEGRATED APPROACH
   MULLER H, 1992, SURF SCI, V269, P207
   MULLER JE, 1992, SURF SCI, V272, P45
   MUSCAT JP, 1980, SURF SCI, V99, P609
   MUSCAT JP, 1981, SURF SCI, V110, P389
   MUSCHIOL U, 1998, SURF SCI, V395, P182
   NAHM TU, 1997, SURF SCI, V375, P281
   NETZER FP, 1981, SURF SCI, V110, P251
   NEYMAN KM, 1993, SURF SCI A, V287, P64
   NEYMAN KM, 1994, SURF SCI B, V307, P1193
   NIEWENHUYS BE, 1983, SURF SCI, V126, P307
   NILSSON A, 1997, APPL PHYS A-MATER, V65, P147
   NIU J, 1992, PHYS REV LETT, V68, P2277
   NORDLANDER P, 1984, SURF SCI, V136, P59
   NORSKOV JK, 1980, PHYS REV B, V21, P2136
   NORSKOV JK, 1981, PHYS REV LETT, V46, P257
   NORSKOV JK, 1982, PHYS REV B, V26, P2875
   NORSKOV JK, 1984, SURF SCI, V137, P65
   NORSKOV JK, 1991, PROG SURF SCI, V38, P103
   NORVELL JC, 1975, SCIENCE, V190, P568
   OH SH, 1986, J CATAL, V100, P360
   OHNISHI S, 1994, PHYS REV B, V49, P14619
   OHNO Y, 1994, J CHEM PHYS, V101, P5319
   ONSGAARD J, 1998, SURF SCI, V398, P318
   OSOSVSKII VD, 1997, SURF SCI, V377, P32
   PACCHIONI G, 1989, PHYS REV B, V40, P6003
   PACCHIONI G, 1990, J CHEM PHYS, V93, P1209
   PACCHIONI G, 1992, NATO SERIES, V283
   PACCHIONI G, 1993, CHEM PHYS, V177, P373
   PACCHIONI G, 1993, NATO ADV STUDY I C
   PANAS I, 1988, CHEM PHYS LETT, V149, P265
   PANAS I, 1989, J CHEM PHYS, V90, P6791
   PANGHER N, 1996, CHEM PHYS LETT, V255, P378
   PARKS EK, 1995, J CHEM PHYS, V102, P7377
   PARKS EK, 1995, Z PHYS D ATOM MOL CL, V33, P59
   PARKS EK, 1997, J CHEM PHYS, V107, P1861
   PARKS EK, 1997, J CHEM PHYS, V107, P1861
   PARKS EK, 1998, J CHEM PHYS, V108, P3731
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PASSLER M, 1979, PHYS REV LETT, V43, P360
   PAUL J, 1986, NATURE, V323, P1701
   PAULING L, 1984, J SOLID STATE CHEM, V54, P297
   PAVAO AC, 1991, PHYS REV B, V43, P6962
   PAVAO AC, 1991, PHYS REV B, V44, P1910
   PAVAO AC, 1994, PHYS REV B, V50, P1868
   PAVAO AC, 1994, TRENDS CHEM PHYS, V3, P109
   PAVAO AC, 1995, SURF SCI, V323, P340
   PAVAO AC, 1999, THEOCHEM-J MOL STRUC, V458, P99
   PETERSSON LG, 1979, PHYS REV LETT, V42, P1545
   PICK S, 1996, SURF SCI, V352, P300
   PICK S, 1998, PHYS REV B, V57, P1942
   PIET WNM, 1995, THEORETICAL ASPECTS
   PRICE GL, 1980, SURF SCI, V91, P571
   PRINCE KC, 1986, SURF SCI, V175, P101
   RAATZ F, 1985, SURF SCI, V156, P982
   RAMSEY MG, 1997, SURF SCI, V385, P207
   RAO CNR, 1982, CHEM PHYS LETT, V88
   RAO CNR, 1991, SURF SCI REP, V13, P221
   RAY AK, 1988, PHYS REV B, V37, P9943
   REIFSNYDER SN, 1997, J PHYS CHEM B, V101, P4972
   RESCH C, 1993, CHEM PHYS, V177, P421
   RETTNER CT, 1986, J CHEM PHYS, V85, P1131
   RHODIN TN, 1977, SOLID STATE COMMUN, V23, P275
   RHODIN TN, 1979, NATURE SURFACE CHEM
   RIDDLEY J, 1973, THEOR CHIM ACTA, V32, P111
   ROCHEFORT A, 1993, SURF SCI, V294, P43
   RODRIGUEZ JA, 1987, J PHYS CHEM-US, V91, P2161
   RODRIGUEZ JA, 1992, SCIENCE, V257, P897
   ROMEO M, 1990, SURF SCI, V238, P163
   ROOT TW, 1983, SURF SCI, V134, P30
   ROOT TW, 1986, J CHEM PHYS, V85, P4679
   ROSCH N, 1990, VACUUM, V41, P150
   ROSEN A, 1979, SURF SCI, V82, P139
   ROY D, 1986, CHEM PHYS LETT, V139, P501
   RUBAN A, 1997, J MOL CATAL A-CHEM, V115, P421
   RUCKMAN MW, 1994, ACCOUNTS CHEM RES, V27, P250
   RUETTE F, 1992, QUANTUM CHEM APPROAC
   RUMPF F, 1988, LANGMUIR, V4, P722
   RUSSIER V, 1992, J PHYS CHEM-US, V96, P7579
   SAILLARD JY, 1984, J AM CHEM SOC, V106, P2006
   SAKAKINI BH, 1997, J CHEM SOC FARADAY T, V93, P1637
   SANDELL A, 1997, PHYS REV B, V55, P7233
   SCHENNACH R, 1996, SURF SCI, V369, P277
   SCHICHL A, 1984, SURF SCI, V137, P261
   SCHLATHOLTER T, 1996, SURF SCI, V352, P195
   SCHROTER L, 1992, SURF SCI, V261, P243
   SCHULTZ PA, 1990, J VAC SCI TECHNOL A, V8, P2525
   SEETS DC, 1996, CHEM PHYS LETT, V257, P280
   SEIP U, 1984, SURF SCI, V139, P29
   SELLERS H, 1994, SURF SCI, V310, P281
   SELLERS H, 1994, THEORETICAL COMPUTAT
   SELLIDJ A, 1994, PHYS REV B, V49, P8367
   SELMANI A, 1986, INT J QUANTUM CHEM, V29, P829
   SEXTON BA, 1980, CHEM PHYS LETT, V76, P294
   SHELEF M, 1994, CATAL REV, V36, P433
   SHINN ND, 1985, J CHEM PHYS, V83, P52928
   SHINN ND, 1985, J CHEM PHYS, V83, P5928
   SHINN ND, 1986, PHYS REV B, V33, P1464
   SHINN ND, 1988, PHYS REV B, V38, P12248
   SHINN ND, 1990, PHYS REV B, V41, P9771
   SHUSTOROVICH E, 1986, SURFACE SCI REPT, V6, P1
   SHUSTOROVICH E, 1990, ADV CATAL, V37, P101
   SHUSTOROVICH E, 1991, METAL SURFACE REACTI
   SHUSTOROVICH E, 1992, SURF SCI, V268, P397
   SHUSTOROVICH E, 1993, SURF SCI, V289, P127
   SHUSTOROVICH EM, 1991, METAL SURFACE REACTI
   SIEGBAHN PEM, 1992, INT J QUANTUM CHEM, V42, P1149
   SITZ GO, 1988, J CHEM PHYS, V89, P2573
   SKELTON DC, 1997, SURF SCI, V370, P64
   SLATER JC, 1951, PHYS REV, V81, P385
   SLATER JC, 1972, ADVANCES QUANTUM CHE, V6, P1
   SLATER JC, 1974, SELF CONSISTENT FIEL
   SMIRNOV KS, 1997, SURF SCI, V384, L975
   SMITH GW, 1991, J PHYS CHEM-US, V95, P2327
   SNABL M, 1997, SURF SCI, V385, P1016
   SO SK, 1989, J CHEM PHYS, V91, P5701
   SOMORJAI GA, 1994, INTRO SURFACE CHEM C
   SOTTO M, 1997, SURF SCI, V371, P36
   SPENCER ND, 1982, J CATAL, V74, P129
   SPITZER A, 1982, SURF SCI, V118, P121
   STEINRUCK HP, 1985, SURF SCI, V152, P323
   STEINRUCK HP, 1989, SURF SCI, V208, P136
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STOHR J, 1982, PHYS REV B, V26, P4111
   STOHR J, 1982, PHYS REV B, V26, P4111
   SUNG SS, 1985, J AM CHEM SOC, V107, P578
   SUNG SS, 1986, J PHYS CHEM-US, V90, P1380
   SURNEV L, 1988, SURF SCI, V201, P1
   SUTCU LF, 1991, SURF SCI LETT, V249, L343
   SZABO A, 1992, MODERN QUANTUM CHEM
   SZYMERSKA I, 1976, J CATAL, V41, P197
   TAFT CA, 1998, J MOL STRUCT, V426, P199
   TAKASU Y, 1973, J CATAL, V29, P479
   TANAKA K, 1996, SURF SCI, V357, P721
   TANG SL, 1986, J CHEM PHYS, V84, P6488
   TATARENKO S, 1985, SURF SCI, V163, P249
   THOMAS JLC, 1997, J PHYS CHEM A, V101, P8530
   THOMAS JM, 1994, PRINCIPLES PRACTICE
   THOMAS JM, 1997, PRINCIPLES PRACTICE
   THOMAS LH, 1989, P CAMB PHILOS SOC, V26, P376
   THOMAS S, 1974, APPL PHYS LETT, V24, P1
   THOMPSON MR, 1994, NEW DEV SELECTIVE OX, V2, P167
   TOMANEK D, 1988, PHYS REV B, V31, P2488
   TONG SY, 1980, SURF SCI, V94, P73
   TSAI MC, 1985, SURF SCI, V155, P387
   TSANG YW, 1976, J PHYS C SOLID STATE, V9, P71
   TULLY JC, 1993, J VAC SCI TECHNOL  2, V11, P1914
   UMBACH E, 1979, SURF SCI, V88, P65
   UPTON TH, 1981, CRC CRIT R SOLID ST, V10, P261
   UPTON TH, 1988, J CHEM PHYS, V88, P3988
   VANDAELEN MA, 1996, J PHYS CHEM-US, V100, P2279
   VANSANTEN RA, 1974, J CATAL, V33, P202
   VANSANTEN RA, 1991, THEORETICAL HETEROGE
   VANSANTEN RA, 1995, CATAL REV, V37, P557
   VANSANTEN RA, 1995, CHEM KINETICS CATALY
   VARMA CM, 1980, PHYS REV, V22, P3795
   VARMA S, 1990, J VAC SCI TECHNOL  2, V8, P2605
   VELDE GT, 1993, CHEM PHYS, V177, P399
   VONGLAN RE, 1997, SURF SCI, V375, P353
   WANG C, 1979, SURF SCI, V84, P329
   WANG C, 1997, SURF SCI, V327, P267
   WANG H, 1997, SURF SCI, V372, P267
   WATANABE K, 1996, SURF SCI, V368, P366
   WEI DH, 1997, SURF SCI, V381, P49
   WEIMER JJ, 1985, SURF SCI, V155, P133
   WESNER DA, 1989, PHYS REV B, V39, P10770
   WHELLER MC, 1996, J CHEM PHYS, V105, P1572
   WHITE JA, 1996, PHYS REV B, V53, P1667
   WHITE MG, 1990, HETEROGENEOUS CATALY
   WHITMAN LJ, 1986, J CHEM PHYS, V85, P3688
   WHITMAN LJ, 1986, PHYS REV LETT, V56, P1984
   WILKE S, 1996, PHYS REV B, V53, P4926
   WILLIAMS AK, 1977, SURF SCI, V68, P136
   WILLIAMS FL, 1973, J CATAL, V30, P438
   WILLIAMS FL, 1974, SURF SCI, V45, P377
   WONG YT, 1991, J PHYS CHEM-US, V95, P859
   WU Y, 1987, SURF SCI, V179, P26
   XU C, 1995, SURF SCI, V327, P38
   YANAGITA H, 1997, PHYS REV B, V56, P14952
   YANG H, 1997, SURF SCI, V375, P268
   YING SC, 1975, PHYS REV B, V11, P1483
   YOSHIDA K, 1978, SURF SCI, V75, P46
   YOSHIDA S, 1994, ELECT PROCESSES CATA
   YOSHIMI K, 1996, SURF SCI, V368, P389
   YOSHINOBU J, 1991, J CHEM PHYS, V95, P9393
   ZAERA F, 1997, J CHEM PHYS, V106, P41204
   ZASADA I, 1997, SURF SCI, V383, P241
   ZENG HC, 1987, SURF SCI, V188, P599
   ZERNER M, 1989, AM CHEM SOC S SERIES, V394
   ZERNER MC, 1980, J AM CHEM SOC, V102, P589
   ZHAO YB, 1990, SURF SCI, V239, P189
   ZHOU RH, 1992, J PHYS-CONDENS MAT, V4, P2429
   ZIEGLER T, 1991, CHEM REV, V91, P651
   ZONNEVYLLE MC, 1994, J CATAL, V148, P417
NR 449
TC 8
PU TAYLOR & FRANCIS LTD
PI LONDON
PA ONE GUNPOWDER SQUARE, LONDON EC4A 3DE, ENGLAND
SN 0144-235X
J9 INT REV PHYS CHEM
JI Int. Rev. Phys. Chem.
PD APR-JUN
PY 1999
VL 18
IS 2
BP 163
EP 233
PG 71
SC Chemistry, Physical
GA 232ER
UT ISI:000082357600001
ER

PT J
AU Antonelli, A
   Justo, JF
   Fazzio, A
TI Point defect interactions with extended defects in semiconductors
SO PHYSICAL REVIEW B
LA English
DT Article
ID STACKING-FAULTS; PARTIAL DISLOCATIONS; MOLECULAR-DYNAMICS; AB-INITIO;
   SILICON; DIFFUSION; PSEUDOPOTENTIALS; MOBILITY; STATES; MODEL
AB We performed a theoretical investigation of the interaction of point
   defects (vacancy and self-interstitials) with an intrinsic stacking
   fault in silicon using ab initio total-energy calculations. Defects at
   the fault and in the crystalline environment display a different
   behavior, which is evidenced by changes in formation energy and
   electronic structure. The formation energies for the vacancy and the
   [110]-split interstitial are lower at the intrinsic stacking fault than
   those in the crystal, indicating that in nonequilibrium conditions,
   intrinsic stacking faults can act, together with other extended
   defects, as a sink for point defects, and also that in equilibrium
   conditions, there can be a higher concentration of such defects at the
   fault than that in bulk silicon. [S0163-1829(99)03631-0].
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
   Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Antonelli, A, Univ Estadual Campinas, Inst Fis Gleb Wataghin,
   BR-13083970 Campinas, SP, Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
   BACHELET GB, 1982, PHYS REV B, V26, P4199
   BLOCHL PE, 1993, PHYS REV LETT, V70, P2435
   BOURGOIN J, 1983, POINT DEFECTS SEMI 2, V35
   BULATOV VV, 1995, PHILOS MAG A, V72, P453
   BULATOV VV, 1997, PHYS REV LETT, V79, P5042
   CAR R, 1985, PHYS REV LETT, V55, P2471
   CHOU MY, 1985, PHYS REV B, V32, P7979
   CSANYI G, 1998, PHYS REV LETT, V80, P3984
   HIRTH JP, 1982, THEORY DISLOCATIONS
   HOHENBERG P, 1964, PHYS REV, V136, B864
   HU SM, 1974, J APPL PHYS, V45, P1567
   HUANG J, 1989, PHYS REV LETT, V63, P628
   KACKELL P, 1998, PHYS REV B, V58, P1326
   KAPLAN T, 1998, PHYS REV B, V58, P12865
   KIM JN, 1997, PHYS REV B, V55, P16186
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   KOHN W, 1965, PHYS REV, V140, A1133
   LEHTO N, 1997, PHYS REV B, V55, P15601
   LEHTO N, 1997, PHYS REV B, V56, P12706
   MAITI A, 1996, PHYS REV LETT, V77, P1306
   MATTHEISS LF, 1981, PHYS REV B, V23, P5384
   SENKADER S, 1995, J APPL PHYS, V78, P6469
   STAMPFL C, 1998, PHYS REV B, V57, P15052
   SUZUKI H, 1962, J PHYS SOC JPN, V17, P322
   WEBER J, 1994, SOLID STATE PHENOM, V37, P13
   WESSEL K, 1977, PHILOS MAG A, V35, P1523
   ZHU J, 1996, PHYS REV B, V54, P4741
NR 28
TC 14
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 15
PY 1999
VL 60
IS 7
BP 4711
EP 4714
PG 4
SC Physics, Condensed Matter
GA 230FQ
UT ISI:000082241500061
ER

PT J
AU Esteves, PM
   Alberto, GGP
   Ramirez-Solis, A
   Mota, CJA
TI The alkane sigma-bond basicity scale revisited
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID THEORETICAL AB-INITIO; ELECTROSTATIC POTENTIALS; VIBRATIONAL
   FREQUENCIES; REVERSIBLE PROTONATION; ACTIVATION; SUPERACIDS; ISOBUTANE;
   DENSITY; CATIONS
AB The energy of the n-butonium and isobutonium cations was calculated. At
   the MP4/6-311++G**//MP2(fu)/6-31G** level, the C-carbonium ions were
   more stable than the H-carbonium ions. The results are in agreement
   with gas-phase data of n-butane and isobutane protonation but disagree
   with results in liquid superacid, where protonation of the tertiary C-H
   of isobutane is preferred over C-C protonation. Additional
   calculations, including the superacid moiety, revealed that the
   activation energy for C-C protonation is higher than the energy for
   attack at the tertiary C-H. This suggests that the sigma bond
   reactivity in the liquid superacid system is controlled by the
   activation energy for proton transfer, rather than by the intrinsic
   basisity of the bond. The higher stability of the C-carbonium relative
   to the H-carbonium ions was ascribed to a better charge distribution
   among the atoms and groups of the three center bond.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-2194990 Rio De Janeiro, Brazil.
   Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
   Univ CT Bloco A, BR-2194990 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
   BERGNER A, 1993, MOL PHYS, V80, P1431
   BOO DW, 1993, CHEM PHYS LETT, V211, P358
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
   ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
   ESTEVES PM, 1998, TOP CATAL, V6, P163
   FIELD FH, 1968, ACCOUNTS CHEM RES, V1, P42
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   HEHRE WJ, 1986, AB INITIO MOL ORBITA, CH7
   HIRAOKA K, 1975, CAN J CHEM, V53, P970
   HIRAOKA K, 1975, J CHEM PHYS, V63, P394
   HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
   HIRAOKA K, 1978, INT J MASS SPEC ION, V27, P139
   HOGEVEEN H, 1967, RECL TRAV CHIM PAY B, V86, P1313
   HOUT RF, 1982, J COMPUT CHEM, V3, P234
   MOTA CJA, UNPUB
   MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
   OLAH GA, 1969, J AM CHEM SOC, V91, P3261
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
   OLAH GA, 1973, J AM CHEM SOC, V95, P4939
   OLAH GA, 1973, J AM CHEM SOC, V95, P4960
   OLAH GA, 1987, HYPERCARBON CHEM
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
   SOMMER J, 1996, RES CHEM INTERMEDIAT, V22, P753
   SOMMER J, 1997, J AM CHEM SOC, V119, P3274
   TALROZE VL, 1952, DOKL AKAD NAUK SSSR, V86, P909
   THOMPSON RC, 1965, INORG CHEM, V4, P1641
   YEH LI, 1989, J AM CHEM SOC, V111, P5597
NR 30
TC 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 18
PY 1999
VL 121
IS 32
BP 7345
EP 7348
PG 4
SC Chemistry, Multidisciplinary
GA 230KH
UT ISI:000082250000010
ER

PT J
AU Duarte, HA
   Salahub, DR
   Haslett, T
   Moskovits, M
TI Fe(N-2)(n) (n=1-5): Structure, bonding, and vibrations from density
   functional theory
SO INORGANIC CHEMISTRY
LA English
DT Article
ID GENERALIZED GRADIENT APPROXIMATION; TRANSITION-METAL ATOMS;
   EXCHANGE-ENERGY; OPTIMIZATION; MOLECULES; FE(CO)5; BINDING; STATES
AB The Fe(N-2)(n) (n = 1-5) complexes have been studied with the
   LCGTO-KS-DF method. The structures containing end-on and side-on N2
   ligands have been fully optimized and the dissociation energies
   estimated. The ground states are predicted to be end-on complexes with
   the exception of n = 2. The vibrational analysis of all predicted
   ground states is reported. The effect of N-15 isotopic substitution on
   the vibrational frequencies has been estimated. Comparisons are made
   with the isoelectronic species Fe(CO)(n). The Fe-N-2 bonding has been
   discussed in terms of sigma donation and pi back-donation and the
   Mulliken population analysis. The predicted harmonic frequencies show
   that the infrared spectra of Fe(N-2)(4) and Fe(N-2)(5) are similar, and
   the two complexes could not be distinguished in nitrogen matrix
   experiments using infrared spectroscopy.
C1 Univ Montreal, Dept Chim, Montreal, PQ H3C 3J7, Canada.
   Univ Toronto, Dept Chem, Toronto, ON M5S 1A1, Canada.
   Univ Fed Minas Gerais, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil.
RP Duarte, HA, Natl Res Council Canada, Steacie Inst Mol Sci, 100 Sussex
   Dr, Ottawa, ON K1A 0R6, Canada.
CR BAERENDS EJ, 1997, CHEM PHYS LETT, V265, P481
   BARNES LA, 1991, J CHEM PHYS, V94, P2031
   BARRETT PH, 1977, J CHEM SOC F2, V73, P378
   BARTON TJ, 1977, J CHEM SOC CHEM COMM, P841
   BAUSCHLICHER CW, 1987, J CHEM PHYS, V87, P2129
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BECKE AD, 1995, THEOR CHIM ACTA, V91, P147
   BLANCHET C, 1997, J CHEM PHYS, V106, P8778
   BRATERMAN PS, 1975, METAL CARBONYL SPECT
   CASIDA ME, 1996, DEMON SOFTWARE DEMON
   CHERTIHIN GV, 1996, J PHYS CHEM-US, V100, P14609
   CULOTTA E, 1992, SCIENCE, V258, P1862
   DANIEL C, 1984, J PHYS CHEM-US, V88, P4805
   DAUL C, 1994, INT J QUANTUM CHEM, V52, P867
   DELLEY B, 1994, J CHEM PHYS, V100, P5785
   ERTL G, 1983, J VAC SCI TECHNOL A, V1, P1247
   FOURNIER R, 1993, J CHEM PHYS, V99, P1801
   FRENKING G, 1996, NATO ADV SCI I C-MAT, V474, P185
   GODBOUT N, 1992, CAN J CHEM, V70, P560
   GODBOUT N, 1996, THESIS U MONTREAL
   HASLETT T, UNPUB
   HUBER KP, 1979, MOL SPECTRA MOL STRU, V4
   JONES RO, 1989, REV MOD PHYS, V61, P689
   LEE C, 1988, PHYS REV B, V37, P785
   PERDEW JP, 1986, PHYS REV B, V33, P8800
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PERDEW JP, 1986, PHYS REV B, V34, P7406
   PERDEW JP, 1991, PHYSICA B, V172, P1
   PERDEW JP, 1992, PHYS REV B, V46, P6671
   POLIAKOFF M, 1977, J CHEM SOC DA, P2276
   RAO CNR, 1991, SURF SCI REP, V13, P223
   RUSSO N, 1996, NATO ASI SER C, P474
   RUSSO TV, 1994, J CHEM PHYS, V101, P7729
   SCHLEGEL HB, 1987, AB INITIO METHODS QU, V1
   SIEGBAHN PEM, 1991, J CHEM PHYS, V95, P364
   STAMANT A, 1990, CHEM PHYS LETT, V169, P387
   YATES JT, 1994, SURF SCI, V299, P731
   ZACARIAS A, 1996, INT J QUANTUM CHEM, V60, P1419
   ZACARIAS A, 1997, INT J QUANTUM CHEM, V61, P467
   ZIEGLER T, 1977, THEOR CHIM ACTA, V43, P261
   ZIEGLER T, 1987, J AM CHEM SOC, V109, P4825
NR 41
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD AUG 23
PY 1999
VL 38
IS 17
BP 3895
EP 3903
PG 9
SC Chemistry, Inorganic & Nuclear
GA 230FF
UT ISI:000082240600022
ER

PT J
AU Klautau, AB
   Legoas, SB
   Muniz, RB
   Frota-Pessoa, S
TI Magnetic behavior of thin Cr layers sandwiched by Fe
SO PHYSICAL REVIEW B
LA English
DT Article
ID DENSITY-WAVE CHROMIUM; REAL-SPACE; FE/CR(001) SUPERLATTICES; FE/PD(001)
   SUPERLATTICES; AB-INITIO; MULTILAYERS; IMPURITIES; MAGNETORESISTANCE;
   POLARIZATION; INTERFACES
AB The magnetic behavior of thin layers of Cr in Fe/Cr/Fe(001) trilayers
   and superlattices is studied using the first principles self-consistent
   RS-LMTO-ASA (real space - linear muffin-tin orbital - atomic sphere
   approximation) method. The effects of lattice compression and interface
   mixing are investigated, and it is shown that they can cause large
   reductions of the Cr magnetic moments. [S0163-1829(99)12625-0].
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Fed Fluminense, Dept Fis, BR-24210340 Niteroi, RJ, Brazil.
RP Klautau, AB, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
   Sao Paulo, Brazil.
CR ANDERSEN OK, 1975, PHYS REV B, V12, P3060
   ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571
   ANDERSEN OK, 1985, HIGHLIGHTS CONDENSED
   BAIBICH MN, 1988, PHYS REV LETT, V61, P2472
   BEER N, 1984, ELECT STRUCTURE COMP
   COEHOORN R, 1995, J MAGN MAGN MATER, V151, P341
   DAVIES A, 1996, PHYS REV LETT, V76, P4175
   FAWCETT E, 1988, REV MOD PHYS, V60, P209
   FERREIRA S, 1990, PHYS REV B, V41, P5627
   FERREIRA S, 1995, PHYS REV B, V51, P2045
   FISHMAN RS, 1998, PHYS REV B, V57, P10284
   FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
   FROTAPESSOA S, 1993, PHYS REV LETT, V71, P4206
   FULLERTON EE, 1995, PHYS REV B, V51, P6364
   FULLERTON EE, 1995, PHYS REV LETT, V75, P330
   HAYDOCK R, 1980, SOLID STATE PHYS, V35, P216
   HEINRICH B, 1996, J APPL PHYS 2A, V79, P4518
   HERMAN F, 1991, J APPL PHYS, V69, P4783
   HIRAI K, 1997, J PHYS SOC JPN, V66, P560
   HIRAI K, 1998, J PHYS SOC JPN, V67, P1776
   KLAUTAU AB, 1998, J MAGN MAGN MATER, V186, P223
   KOELLING DD, 1994, PHYS REV B, V50, P273
   LEVY PM, 1990, J APPL PHYS 2B, V67, P5914
   MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638
   MORUZZI VL, 1990, PHYS REV B B, V42, P8361
   PARKIN SSP, 1990, PHYS REV LETT, V64, P2304
   PEDUTO PR, 1991, PHYS REV B, V44, P13283
   PEDUTO PR, 1997, BRAZ J PHYS, V27, P574
   PETRILLI HM, 1993, PHYS REV B, V48, P7148
   PURCELL ST, 1991, PHYS REV LETT, V67, P903
   SCHREYER A, 1995, EUROPHYS LETT, V32, P595
   SHIRANE G, 1962, J PHYS SOC JAPAN SB3, V17, P35
   SKRIVER HL, 1981, J PHYS F MET PHYS, V11, P97
   SKRIVER HL, 1991, PHYS REV B, V43, P9538
   SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172
   STOEFFLER D, 1991, PHYS REV B, V44, P10389
   STOEFFLER D, 1994, J APPL PHYS 2B, V75, P6467
   STOEFFLER D, 1994, PHYS REV B, V49, P299
   STOEFFLER D, 1995, J MAGN MAGN MATER, V140, P557
   STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260
   TOMAZ MA, 1997, PHYS REV B, V55, P3716
   UNGURIS J, 1991, PHYS REV LETT, V67, P140
   VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
   ZABEL H, 1994, APPL PHYS A, V58, P159
   ZABEL H, 1994, PHYSICA B, V198, P156
NR 45
TC 13
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 1
PY 1999
VL 60
IS 5
BP 3421
EP 3427
PG 7
SC Physics, Condensed Matter
GA 225VH
UT ISI:000081986300075
ER

PT J
AU Abraham, RJ
   Tormena, CF
   Rittner, R
TI Conformational analysis, Part 32. NMR, solvation and theoretical
   investigation of conformational isomerism in 3-fluorobutan-2-one and
   3,3-difluorobutan-2-one
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID VIBRATIONAL ASSIGNMENT; INTERNAL-ROTATION; ABINITIO CALCULATIONS;
   BARRIERS; STABILITY; CHLORIDE; SPECTRA; RAMAN
AB The solvent and temperature dependence of the H-1 and C-13 NMR spectra
   of 3-fluorobutan-2-one (FB) and 3,3-difluorobutan-2-one (DFB) are
   reported and the (4)J(HF), (1)J(CF) and (2)J(CF) couplings analysed
   using ab initio calculations and solvation theory. The solvent
   dependence of the IR spectra (carbonyl band) was also measured. In FB,
   ab initio theory at the 6-31G**/MP2 level gives only two energy minima
   for the cis (F-C-C=O 22 degrees) and trans (F-C-C=O 178 degrees)
   rotamers. The gauche rotamer was not a minimum in the energy surface.
   Assuming only the cis and trans forms, the observed couplings when
   analysed by solvation theory lead to the energy difference (E-cis -
   E-trans) between the cis and trans rotamers of 3.7 kcal mol(-1) in the
   vapour phase, decreasing to 2.5 kcal mol(-1) in CCl4 and to 0.1 kcal
   mol(-1) in DMSO. In all solvents used the trans rotamer is more stable
   than the cis. The vapour state energy difference compares very well
   with that calculated [3.67 kcal mol(-1) including a zero-point energy
   correction (ZPE)]. In DFB ab initio calculations at this level and also
   at (6-311G**/MP2 and ZPE) gave only one minimum in the potential energy
   surface corresponding to the cis rotamer (C-C-C=O 0 degrees). The H-1
   and C-13 NMR data, (4)J(HF), (1)J(CF) and (2)J(CF) couplings do not
   change with solvent confirming that there is only one rotamer in
   solution for DFB, in agreement with the ab initio calculations.
C1 Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
   Univ Estadual Campinas, Inst Quim, BR-13083970 Sao Paulo, Brazil.
RP Abraham, RJ, Univ Liverpool, Dept Chem, POB 147, Liverpool L69 3BX,
   Merseyside, England.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
   ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
   ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
   ABRAHAM RJ, 1996, J CHEM SOC PERK  APR, P533
   ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
   ABRAHAM RJ, 1999, J CHEM SOC PERK  JAN, P99
   BURMAKOV AI, 1982, J ORG CHEM USSR, P1009
   DURIG JR, 1989, J CHEM PHYS, V90, P6840
   DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
   DURIG JR, 1991, J MOL STRUCT, V242, P179
   DURIG JR, 1991, J RAMAN SPECTROSC, V22, P141
   EWING DF, 1972, J CHEM SOC P2, P701
   FORESMAN JB, 1993, EXPLORING CHEM ELECT
   FRISCH MJ, 1995, GAUSSIAN94 REVISION
   KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P3572
   OLIVATO PR, 1996, REV HETEROATOM CHEM, V15, P115
   PHAN HV, 1993, SPECTROCHIM ACTA A, V49, P1967
   SAEGEBARTH E, 1967, J CHEM PHYS, V46, P3088
   SHAPIRO BL, 1973, J MAGN RESON, V9, P305
   VANEIJCK BP, 1972, J MOL STRUCT, V11, P67
   WYMAN DP, 1964, J ORG CHEM, V29, P1956
NR 21
TC 15
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD AUG
PY 1999
IS 8
BP 1663
EP 1667
PG 5
SC Chemistry, Organic; Chemistry, Physical
GA 224UR
UT ISI:000081918800016
ER

PT J
AU Nasar, RS
   Cerqueira, M
   Longo, E
   Leite, ER
   Varela, AJ
   Beltran, A
   Andres, J
TI Experimental and theoretical study on the piezoelectric behavior of
   barium doped PZT
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID MORPHOTROPIC PHASE-BOUNDARY; PERTURBED-ION; CRYSTALS; SEPARABILITY;
   SIMULATION; CERAMICS; MODEL; FILMS
AB An experimental and theoretical study of the ferroelectric and
   piezoelectric behavior of PZT doped with barium is presented. Ab initio
   perturbed ion calculations was carried out. The properties, such as
   remnant polarization, coercive field and the coupling factor of the PZT
   at constant sintering temperature was compared with the Zr4+/Ti4+ ions
   dislocation energy and the lattice interaction energy. An agreement
   between the experimental and theoretical results, with a decrease of
   the interaction energy and an inversion of the energy stability from
   tetragonal to rhombohedral phase was observed. (C) 1999 Kluwer Academic
   Publishers.
C1 Univ Fed Rio Grande Norte, Dept Quim, BR-59072970 Natal, RN, Brazil.
   UFSCar, Dept Quim, Lab Interdisciplinar Electroquim & Ceram, BR-13565 Sao Carlos, SP, Brazil.
   UNESP, Inst Quim, BR-14800900 Araraquara, SP, Brazil.
   Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
RP Nasar, RS, Univ Fed Rio Grande Norte, Dept Quim, Caixa Postal 1662,
   BR-59072970 Natal, RN, Brazil.
CR ANDRES J, 1993, INT J QUANTUM CHEM S, V27, P175
   ANDRES J, 1994, CHEM PHYS LETT, V221, P249
   BELTRAN A, 1993, J PHYS CHEM-US, V97, P2555
   BERNARD J, 1971, PIEZOELECTRIC CERAMI
   CERQUEIRA M, 1997, J MATER SCI, V32, P2381
   CHAKRAVORTY SJ, 1989, PHYS REV A, V39, P2290
   CLEMENTI E, 1974, ATOM DATA NUCL DATA, V14, P177
   COMES R, 1970, ACTA CRYSTALLOGR A, V26, P244
   EYRAUD L, 1981, FERROELECTRICS, V31, P113
   FLOREZ M, 1992, CLUSTER MODELS SURFA, P605
   HANKEY DL, 1980, THESIS PENNSYLVANIA
   HIMERATH BV, 1983, J AM CERAM SOC, V66, P790
   HSUEH CC, 1993, INTEGR FERROELECTR, V3, P21
   HUZINAGA S, 1971, J CHEM PHYS, V55, P5543
   JAFFE B, 1971, PIEZOELECTRIC CERAMI
   KAKEGAWA K, 1977, SOLID STATE COMMUN, V24, P769
   KAWAGUCHI T, 1984, APPL OPTICS, V23, P2187
   KULCSAR F, 1959, J AM CERAM SOC, V42, P49
   KUMADA A, 1985, JPN J APPL PHYS S, V24, P739
   LAL R, 1988, BRIT CERAM TRANS J, V87, P99
   LINES EM, 1977, PRINCIPLES APPL FERR
   LUANA V, 1988, J MOL STRUCT THEOCHE, V166, P215
   LUANA V, 1989, PHYS REV B, V39, P11093
   LUANA V, 1990, PHYS REV B, V41, P3800
   LUANA V, 1990, PHYS REV B, V42, P1791
   LUANA V, 1992, CLUSTER MODELS SURFA, P619
   MATSUO Y, 1965, J AM CERAM SOC, V48, P289
   MCLEAN AD, 1981, ATOM DATA NUCL DATA, V26, P197
   NOMURA S, 1955, J PHYS SOC JPN, V10, P108
   OHMO T, 1973, J JPN SOC POWDER MET, V20, P154
   PAIVASANTOS CP, 1990, THESIS IFQSC USP
   PETROVSKY VI, 1993, INTEGR FERROELECTR, V3, P59
   PRESTON KD, 1992, APPL PHYS LETT, V60, P2831
   SAHA SK, 1992, AM CERAM SOC BULL, V71, P1424
   SHIRANE G, 1953, J PHYS SOC JPN, V8, P615
   STOTZ S, 1987, FERROELECTRICS, V76, P123
   TURIK AV, 1980, SOV PHYS-TECH PHYS, V25, P1251
   UCHINO K, 1986, AM CERAM SOC BULL, V65, P647
   VASILIU F, 1983, PHYS STATUS SOLIDI A, V80, P637
   VENKATARAMANI S, 1980, AM CERAM SOC B, V59, P462
   WOOD VE, 1992, J APPL PHYS, V71, P4557
   YAMAGUCHI O, 1989, J AM CERAM SOC, V72, P1065
   YAMAGUCHI T, 1976, CERAM INT, V2, P76
   YAMAMOTO T, 1992, AM CERAM SOC BULL, V71, P978
NR 44
TC 5
PU KLUWER ACADEMIC PUBL
PI DORDRECHT
PA SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 0022-2461
J9 J MATER SCI
JI J. Mater. Sci.
PD AUG
PY 1999
VL 34
IS 15
BP 3659
EP 3667
PG 9
SC Materials Science, Multidisciplinary
GA 222UZ
UT ISI:000081804900014
ER

PT J
AU Mota, FD
   Justo, JF
   Fazzio, A
TI Hydrogen role on the properties of amorphous silicon nitride
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; MOLECULAR-DYNAMICS; SI; BETA-SI3N4; CHEMISTRY;
   DISILANE; SYSTEMS; FILMS; MODEL; BOND
AB We have developed an interatomic potential to investigate structural
   properties of hydrogenated amorphous silicon nitride. The interatomic
   potential used the Tersoff functional form to describe the Si-Si, Si-N,
   Si-H, N-H, and H-H interactions. The fitting parameters for all these
   interactions were found with a set of ab initio and experimental
   results of the silicon nitride crystalline phase, and of molecules
   involving hydrogen. We investigated the structural properties of
   unhydrogenated and hydrogenated amorphous silicon nitride through Monte
   Carlo simulations. The results show that depending on the nitrogen
   content, hydrogen has a different chemical preference to bind to either
   nitrogen or silicon, which is corroborated by experimental findings.
   Besides, hydrogen incorporation reduced considerably the concentration
   of undercoordinated atoms in the material, and consequently the
   concentration of dangling bonds. (C) 1999 American Institute of
   Physics. [S0021-8979(99)00616-7].
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   UFBa, Inst Fis, BR-40210340 Salvador, BA, Brazil.
RP Mota, FD, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR 1985, JANAF THERMOCHEMICAL
   *CRC, 1991, HDB CHEM PHYS
   ALLEN MP, 1987, COMPUTER SIMULATION
   BEAGLEY B, 1972, J STRUCT CHEM, V11, P371
   BRENNER DW, 1990, PHYS REV B, V42, P9458
   CUNHA C, 1993, PHYS REV B, V48, P17806
   DEBRITOMOTA F, 1998, PHYS REV B, V58, P8323
   DURIG JR, 1980, J CHEM PHYS, V73, P4784
   DYSON AJ, 1996, SURF SCI, V355, P140
   FLETCHER R, 1963, COMPUT J, V6, P163
   GORDON MS, 1986, J AM CHEM SOC, V108, P1421
   GRUN R, 1979, ACTA CRYSTALLOGR B, V35, P800
   GURAYA MM, 1990, PHYS REV B, V42, P5677
   HABRAKEN FHPM, 1994, MAT SCI ENG R, V12, P123
   HARDIE D, 1957, NATURE, V180, P331
   KATZ RN, 1980, SCIENCE, V208, P841
   LIU AY, 1990, PHYS REV B, V41, P10727
   MARTINMORENO L, 1987, PHYS REV B, V35, P9683
   MCDONALD IR, 1972, MOL PHYS, V23, P41
   MISAWA M, 1979, J NONCRYSTALLINE SOL, V34, P313
   MOTA FD, 1998, INT J QUANTUM CHEM, V70, P973
   MURTY MVR, 1995, PHYS REV B, V51, P4889
   ROBERTSON J, 1991, PHILOS MAG B, V63, P47
   ROBERTSON J, 1994, PHILOS MAG B, V69, P307
   ROBERTSON J, 1995, J NON-CRYST SOLIDS, V187, P297
   SANFABIAN E, 1989, PHYS REV B, V39, P1844
   SMITH FW, 1991, J NON-CRYST SOLIDS, V137, P871
   TERSOFF J, 1986, PHYS REV LETT, V56, P632
   TERSOFF J, 1989, PHYS REV B, V39, P5566
   TERSOFF J, 1991, PHYS REV B, V44, P12039
   UMESAKI N, 1992, J NON-CRYST SOLIDS, V150, P120
   VASHISHTA P, 1990, PHYS REV B, V41, P12197
   VASSILOU B, 1957, NATURE, V179, P435
NR 33
TC 12
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
   11797-2999 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 15
PY 1999
VL 86
IS 4
BP 1843
EP 1847
PG 5
SC Physics, Applied
GA 221HD
UT ISI:000081720600010
ER

PT J
AU Hollauer, E
   Rocco, MLM
   Lopes, MCA
   de Souza, GGB
TI An ab initio study of the valence excitation of methyl methacrylate as
   observed by EELS
SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
LA English
DT Article
DE methyl methacrylate; ab initio calculations; electron energy loss
   spectroscopy; valence-shell
ID SAC-CI THEORIES; EXCITED-STATES; ELECTRON; SPECTROSCOPY; MOLECULE; ACID
AB Ab initio calculations have been carried out in order to assign the
   main bands observed in a recent electron energy-loss study of the
   methyl methacrylate molecule. We employed the Dunning-Huzinaga
   double-zeta basis set for the early steps of geometry optimization but
   for the excited states Rydberg p functions were added to the conjugated
   heavy atoms. Both isomers, the s-cis and s-trans, had its vertical
   spectrum calculated in order to evaluate possible conformation effects
   on the VUV spectrum. SAC (Symmetry Adapted Cluster)-CI calculations
   pointed to the ethylenic pi orbital (8.99 eV) as the HOMO for s-cis
   while the n sigma orbital is predicted around 1 eV more stable. For the
   n pi orbital, although it was not possible to obtain a SAC-CI
   estimative, Koopmans' ionization potentials place it 1.68 eV more
   stable than the pi orbital. The lowest observable transitions have been
   assigned by SAC-CI calculations as to ethylenic pi-pi* (7.10 eV) and n
   pi-pi* (7.97 eV) for the cis isomer. For the trans isomer similar
   values were obtained (7.37 eV and 7.93 eV, respectively). Oscillator
   strengths have been calculated showing acceptable agreement with the
   experimental results. Previous assignments have been revised. (C) 1999
   Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, BR-21949900 Rio De Janeiro, Brazil.
   Univ Fed Fluminense, Inst Quim, Dept Fisicoquim, BR-24020150 Niteroi, RJ, Brazil.
   Univ Fed Juiz de Fora, Dept Fis ICE, BR-36036330 Juiz de Fora, MG, Brazil.
RP Rocco, MLM, Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, Cidade
   Univ,Ilha Fundao, BR-21949900 Rio De Janeiro, Brazil.
CR BAKER BL, 1995, J MOL STRUCT, V356, P95
   DUNNING TH, 1977, METHODS ELECT STRUCT
   HALLER I, 1979, J ELECTROCHEM SOC, V126, P154
   HOLLAUER E, 1991, CHEM PHYS LETT, V181, P401
   IWATA S, 1977, THEORET CHEM ACTA BE, V44, P323
   NAKATSUJI H, 1979, CHEM PHYS LETT, V67, P334
   NAKATSUJI H, 1981, J CHEM PHYS, V75, P2952
   NAKATSUJI H, 1987, THEOR CHIM ACTA, V71, P201
   NAKATSUJI H, 1990, J CHEM PHYS, V93, P1865
   NAKATSUJI H, 1991, INT J QUANTUM CHEM, V39, P93
   NAKATSUJI H, 1991, J CHEM PHYS, V95, P4296
   RAO CNR, 1975, UV VISIBLE SPECTROSC
   RITSKO JJ, 1978, J CHEM PHYS, V69, P3931
   ROCCO MLM, 1997, CHEM PHYS, V223, P15
   SJOGREN B, 1992, J ELECTRON SPECTROSC, V59, P161
   UENO N, 1992, J APPL PHYS, V72, P5423
NR 16
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0368-2048
J9 J ELECTRON SPECTROSC RELAT PH
JI J. Electron Spectrosc. Relat. Phenom.
PD JUL
PY 1999
VL 104
IS 1-3
BP 31
EP 39
PG 9
SC Spectroscopy
GA 213ZP
UT ISI:000081303400002
ER

PT J
AU Bechepeche, AP
   Treu, O
   Longo, E
   Paiva-Santos, CO
   Varela, JA
TI Experimental and theoretical aspects of the stabilization of zirconia.
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID NEUTRON POWDER DIFFRACTION; X-RAY-ABSORPTION; ELECTRONIC-STRUCTURE;
   DEFECT STRUCTURE; 3 PHASES; ZRO2; SIMULATION; POLYMORPHS; CRYSTALS;
   DOPANTS
AB Using the Rietveld method, phases of ceria-doped zirconia, calcined at
   temperatures of 600 and 900 degrees C, were quantitatively analysed for
   different concentrations of ceria. The results show that the
   stabilization of zirconia depends on the dopant concentration and
   calcination temperature. Moreover, the theoretical calculation using
   the ab initio Hartree-Fock-Roothaan method indicates that the most
   stable phases for ceria-stabilized zirconia are cubic or tetragonal, in
   accordance with experimental results. (C) 1999 Kluwer Academic
   Publishers.
C1 UFSCAR, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
   UNESP, Inst Quim, BR-14800900 Araraquara, SP, Brazil.
RP Bechepeche, AP, UFSCAR, Dept Quim, POB 676, BR-13565905 Sao Carlos, SP,
   Brazil.
CR AITA CR, 1990, J AM CERAM SOC, V73, P3209
   ANDRES J, 1995, J MATER SCI, V30, P4852
   CAGLIOTI G, 1958, NUCL INSTRUM, V3, P223
   CHING WY, 1987, MATER RES SOC S P, V8, P181
   COHEN RE, 1988, PHYSICA B, V1, P150
   CORMACK AN, 1990, J AM CERAM SOC, V73, P3220
   DUPUIS M, 1980, QG01 U CAL BERK
   DWIVEDI A, 1990, PHILOS MAG A, V61, P1
   FRENCH RH, 1994, PHYS REV B, V49, P5133
   GARVIE RC, 1975, NATURE, V258, P703
   GARVIE RC, 1978, J PHYS CHEM-US, V82, P218
   HEUER AH, 1981, ADM CERAMICS, V3
   HILL RJ, 1987, J APPL CRYSTALLOGR, V20, P467
   HILLERT M, 1991, ACTA METALL MATER, V39, P1111
   HILLERT M, 1991, J AM CERAM SOC, V74, P2005
   HOWARD CJ, 1988, ACTA CRYSTALLOGR B, V44, P116
   HUZINAGA S, 1984, GAUSSIAN BASIS SETS
   JANSEN HJF, 1988, PHYSICA B, V150, P10
   LI P, 1993, PHYS REV B, V48, P10063
   LI P, 1994, J AM CERAM SOC, V77, P1281
   MORINAGA M, 1983, J PHYS CHEM SOLIDS, V44, P301
   ORLANDO R, 1992, PHYS REV B, V45, P592
   PROFFEN T, 1993, ACTA CRYSTALLOGR B, V49, P599
   ROTH WL, 1975, CRYSTAL STRUCTURE CH, P85
   SAKAI Y, 1982, J COMPUT CHEM, V3, P6
   SMITH DK, 1965, ACTA CRYSTALLOGR, V18, P963
   STEFANOVICH EV, 1994, PHYS REV B, V49, P11560
   SUBBARAO EC, 1975, PHYS STATUS SOLIDI A, P21
   YOUNG RA, 1995, J APPL CRYSTALLOGR, V28, P366
   ZANDIEHNADEM F, 1988, PHYSICA B, V150, P19
NR 30
TC 5
PU KLUWER ACADEMIC PUBL
PI DORDRECHT
PA SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 0022-2461
J9 J MATER SCI
JI J. Mater. Sci.
PD JUN 1
PY 1999
VL 34
IS 11
BP 2751
EP 2756
PG 6
SC Materials Science, Multidisciplinary
GA 211VD
UT ISI:000081181800036
ER

PT S
AU Ellis, DE
   Guenzburger, D
TI The discrete variational method in density functional theory and its
   applications to large molecules and solid-state systems
SO ADVANCES IN QUANTUM CHEMISTRY, VOL 34
SE ADVANCES IN QUANTUM CHEMISTRY
LA English
DT Review
DE density functional; electronic structure; molecules; solids
ID CHARGE-TRANSPORT-PROPERTIES; TRANSITION-METAL COMPLEXES; EFFECTIVE CORE
   POTENTIALS; EMBEDDED-ATOM-METHOD; ELECTRONIC-STRUCTURE;
   MOSSBAUER-SPECTROSCOPY; OPTICAL-PROPERTIES; SPIN-DENSITY; GAMMA-FE;
   CORRELATION ENERGIES
C1 Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
   Northwestern Univ, Ctr Mat Res, Evanston, IL 60208 USA.
   Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
RP Ellis, DE, Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL
   60208 USA.
CR *GROMOS, GRON MOL SIM DAT BAS
   ALEXANDER S, 1995, SCIENCE, V268, P1163
   ANSON FC, 1986, J AM CHEM SOC, V108, P6593
   AREAS EPG, 1995, J PHYS CHEM-US, V99, P14882
   AWSCHALOM DD, 1992, PHYS REV LETT, V68, P3092
   AWSCHALOM DD, 1992, SCIENCE, V258, P414
   AWSCHALOM DD, 1995, PHYS TODAY, V48, P43
   BAERENDS EJ, 1973, CHEM PHYS, V2, P41
   BAIN R, UNPUB
   BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
   BECKE AD, 1988, J CHEM PHYS, V88, P2547
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BENESH GA, 1996, PHYS REV B, V54, P5940
   BERCES A, 1996, TOP CURR CHEM, V182, P41
   BETHE HA, 1968, INTERMEDIATE QUANTUM
   BORING M, 1979, J CHEM PHYS, V71, P32
   BORING M, 1979, J CHEM PHYS, V71, P392
   BOUMAN TD, 1972, J CHEM PHYS, V56, P2478
   BRAND HV, 1992, J PHYS CHEM-US, V96, P7725
   CALLAWAY J, 1964, PURE APPL PHYSICS MO, V16
   CALLAWAY J, 1984, SOLID STATE PHYSICS
   CAR R, 1989, SIMPLE MOL SYSTEMS V
   CARR R, 1985, PHYS REV LETT, V55, P247
   CATLOW CRA, 1976, J PHYS C SOLID STATE, V9, P419
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CHACHAM H, 1987, PHYS REV B, V35, P1602
   CHO BK, 1995, PHYS REV B, V52, P3676
   CHO BK, 1995, PHYS REV B, V52, P3684
   CIZEK J, 1966, J CHEM PHYS, V45, P4256
   CONROY H, 1967, J CHEM PHYS, V47, P5307
   COWAN RD, 1976, J OPT SOC AM, V66, P1010
   DAW MS, 1984, PHYS REV B, V29, P6443
   DELLEY B, 1982, J CHEM PHYS, V76, P1949
   DELLEY B, 1983, PHYS REV B, V27, P2132
   DESCLAUX JP, 1974, CHEM PHYS LETT, V29, P534
   DOVESI R, 1987, J CHEM PHYS, V86, P6967
   DUFEK P, 1995, PHYS REV LETT, V75, P3545
   DUNNING TH, 1977, METHODS ELECT STRUCT, CH1
   ELLIS DE, UNPUB
   ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
   ELLIS DE, 1970, PHYS REV           B, V2, P2887
   ELLIS DE, 1974, J CHEM PHYS, V60, P2856
   ELLIS DE, 1977, INT J QUANT CHEM S, V11, P201
   ELLIS DE, 1977, J PHYS B ATOM MOL PH, V10, P1
   ELLIS DE, 1982, ACTINIDES PERSPECTIV, P123
   ELLIS DE, 1984, INT J QUANTUM CHEM, V25, P185
   ELLIS DE, 1985, HDB PHYSICS CHEM ACT, P1
   ELLIS DE, 1992, ACTINIDES PERSPECTIV, P123
   ELLIS DE, 1995, DENSITY FUNCTIONAL T
   ELLIS DE, 1995, ELECT DENSITY FUNCTI, P263
   EZAWA T, 1989, PHYSICA B, V161, P281
   FACKLER NLP, 1996, J AM CHEM SOC, V118, P481
   FERRARO JR, 1982, COORDIN CHEM REV, V43, P205
   FOILES SM, 1986, PHYS REV B, V33, P7983
   GASPAR R, 1954, ACTA PHYS ACAD SCI H, V3, P263
   GATTESCHI D, 1996, INORG CHEM, V35, P1926
   GIBBS GV, 1982, AM MINERAL, V67, P421
   GILL PE, 1981, PRACTICAL OPTIMIZATI
   GOLDMAN AI, 1994, PHYS REV B, V50, P9668
   GRANT IP, 1961, P ROY SOC LOND A MAT, V262, P555
   GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
   GRIMES RW, 1992, QUANTUM MECH CALCULA
   GU H, 1995, ULTRAMICROSCOPY, V59, P215
   GUENZBURGER D, 1980, PHYS REV B, V22, P4203
   GUENZBURGER D, 1987, PHYS REV B, V36, P6971
   GUENZBURGER D, 1991, PHYS REV LETT, V67, P3832
   GUENZBURGER D, 1992, PHYS REV B, V45, P285
   GUENZBURGER D, 1995, PHYS REV B, V51, P12519
   GUENZBURGER D, 1995, PHYS REV B, V52, P13390
   GUO GY, 1990, PHYS REV B, V41, P6372
   GUO L, UNPUB
   GUO LQ, 1996, INORG CHEM, V35, P5304
   HASELGROVE CB, 1961, MATH COMPUT, V15, P323
   HAY PJ, 1978, J CHEM PHYS, V69, P984
   HAY PJ, 1985, J CHEM PHYS, V82, P229
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HESS AC, 1992, J PHYS CHEM-US, V96, P4367
   HIRSHFELD FL, 1977, THEOR CHIM ACTA, V44, P129
   HOHENBERG P, 1964, PHYS REV, V136, B847
   HOLM RH, 1987, CHEM REV, V87, P1401
   HUZINAGA S, 1984, J PHYS CHEM-US, V88, P4880
   JACKSON JD, 1975, CLASSICAL ELECTRODYN
   JOHNSTONHALPERIN E, 1995, PHYS REV B, V51, P12852
   KELLY PJ, 1992, PHYS REV B, V45, P6543
   KEUNE W, 1989, PHYSICA B, V161, P269
   KIRKPATRICK S, 1983, SCIENCE, V220, P671
   KIRKPATRICK S, 1984, J STAT PHYS, V34, P975
   KITTEL C, 1996, INTRO SOLID STATE PH
   KOELLING DD, 1983, RELATIVISTIC EFFECTS, P227
   KOHN W, 1965, PHYS REV, V137, P1697
   KOHN W, 1965, PHYS REV, V140, A1133
   KOWASH PK, 1989, PHYS REV B, V39, P1908
   KRYACHKO ES, 1990, DENSITY FUNCTIONAL T
   KUBLER J, 1981, PHYS LETT A, V81, P81
   LABANOWSKI JK, 1991, DENSITY FUNCTIONAL M
   LASAGA AC, 1990, REV MINERAL, V23, P17
   LIBERMAN D, 1965, PHYS REV A, V27, P137
   LUTSKO JF, 1988, PHYS REV B, V38, P2887
   MACLAREN JM, 1991, COMPUT PHYS COMMUN, V66, P383
   MARTINSEN J, 1983, J AM CHEM SOC, V105, P677
   MATTHEISS LF, 1994, PHYS REV B, V49
   MCGIBBON MM, 1994, SCIENCE, V266, P102
   MICHAEL RD, 1992, J MAGN MAGN MATER, V111, P29
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   NEWCOMB TP, 1990, INORG CHEM, V29, P223
   NOGUEIRA SR, 1996, INT J QUANTUM CHEM, V57, P471
   OGAWA MY, 1987, J AM CHEM SOC, V109, P1115
   OGAWA MY, 1989, PHYS REV B, V39, P10682
   PACE LJ, 1983, J AM CHEM SOC, V105, P2612
   PAINTER GS, 1970, PHYS REV           B, V1, P4747
   PAINTER GS, 1971, COMPUTATIONAL METHOD, P271
   PAPAEFTHYMIOU GC, 1992, PHYS REV B, V46, P10366
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PEPPER M, 1991, CHEM REV, V91, P719
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PICKETT WE, 1994, PHYS REV LETT, V72, P3702
   PYYKKO P, 1979, ACCOUNTS CHEM RES, V12, P276
   RANCOURT DG, IN PRESS PHYS CHEM M
   RANCOURT DG, 1994, AM MINERAL, V79, P51
   RANCOURT DG, 1994, J MAGN MAGN MATER, V138, P31
   RANCOURT DG, 1994, PHYS CHEM MINER, V21, P250
   RANCOURT DG, 1994, PHYS CHEM MINER, V21, P258
   RAVIKUMAR V, UNPUB
   RAVIKUMAR V, 1993, ULTRAMICROSCOPY, V52, P557
   REDHAMMER GJ, 1993, PHYS CHEM MINER, V20, P382
   REDHAMMER GJ, 1995, PHYS CHEM MINER, V22, P282
   RINCON L, 1995, ORGANOMETALLICS, V14, P1292
   ROBINSON LM, 1995, INORG CHEM, V34, P5588
   RODRIGUES RP, UNPUB
   RODRIGUES RP, 1997, THESIS NW U
   ROSA A, 1992, INORG CHEM, V31, P4717
   ROSA A, 1993, INORG CHEM, V32, P5637
   ROSA A, 1994, INORG CHEM, V33, P584
   ROSE ME, 1983, RELATIVISTIC EFFECTS
   ROSEN A, 1975, J CHEM PHYS, V62, P3039
   ROSEN A, 1976, J CHEM PHYS, V65, P3629
   SANCHEZDELGADO RA, 1994, J MOL CATAL, V86, P287
   SANER J, 1989, CHEM REV, V89, P199
   SESSOLI R, 1993, NATURE, V365, P141
   SEXTON BA, 1985, SURF SCI, V163, P99
   SHELDON RA, 1981, METAL CATALYZED OXID
   SHERMAN DM, 1987, PHYS CHEM MINER, V14, P355
   SHIM I, 1987, PHYSICS CHEM SMALL C, P523
   SLATER JC, 1974, SELF CONSISTENT FIEL, V4
   STROUD AH, 1971, APPROXIMATE CALCULAT
   TAFT KL, 1994, J AM CHEM SOC, V116, P823
   TEPPEN BJ, 1994, J PHYS CHEM-US, V98, P12545
   TERRA J, 1991, PHYS REV B, V44, P8584
   TERRA J, 1995, J PHYS CHEM-US, V99, P4935
   TERRA J, 1996, IN PRESS P LAT AM C
   TINKHAM M, 1964, GROUP THEORY QUANTUM
   TOSSELL JA, 1977, PHYS CHEM MINER, V2, P21
   UMRIGAR C, 1980, PHYS REV B, V21, P852
   VIJAYAKUMAR M, 1989, PHYS REV A, V40, P6834
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
   VUGMAN NV, 1972, J CHEM PHYS, V57, P1297
   WANG CS, 1985, PHYS REV LETT, V54, P1852
   WASSERMANN EF, 1989, PHYS SCR T, V25, P209
   WIEGAND BC, 1992, CHEM REV, V92, P491
   WILKINSON H, 1965, ALGEBRAIC EIGENVALUE
   WINKLER FK, 1971, J MOL BIOL, V59, P169
   WYCKOFF RWG, 1968, CRYSTAL STRUCTURES, V4
   XU BX, 1984, J PHYS C SOLID STATE, V17, P1339
   XU YN, 1991, PHYS REV B, V44, P11048
   YANG CY, 1978, J CHEM PHYS, V68, P2626
   YONEZAWA F, 1992, MOL DYNAMICS SIMULAT
   ZARESTKY J, 1995, PHYS REV B, V51, P678
   ZENG Z, IN PRESS PHYS REV B
   ZENG Z, 1996, PHYS REV B, V53, P6613
   ZENG Z, 1996, PHYS REV B, V54, P13020
   ZENG Z, 1996, PHYSICA C, V271, P23
   ZENG Z, 1997, PHYS REV B, V55, R40
   ZIEGLER T, 1981, J CHEM PHYS, V74, P1271
   ZIETLOW TC, 1985, J SOLID STATE CHEM, V57, P112
   ZIETLOW TC, 1986, INORG CHEM, V25, P1351
   ZIETLOW TC, 1986, INORG CHEM, V25, P2195
NR 177
TC 31
PU ACADEMIC PRESS INC
PI SAN DIEGO
PA 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0065-3276
J9 ADVAN QUANTUM CHEM
PY 1999
VL 34
BP 51
EP 141
PG 91
GA BN22K
UT ISI:000081150800002
ER

PT J
AU Da Silva, SC
   Franco, DW
TI Metastable excited state and electronic structure of [Ru(NH3)(5)NO](3+)
   and [Ru(NH3)(4)(-)(OH)NO](2+)
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE nitrosyl; ruthenium; DFT; metastable state; electronic structure
ID INFRARED-ABSORPTION SPECTRA; LIGHT; NITROPRUSSIDE; COMPLEXES
AB Light-induced metastable excited states of complexes
   [RuO(NH3)(5)NO](3+) and [Ru(NH3)(4)(OH)NO](2+) were investigated by
   FTIR spectroscopy. Both systems showed only one metastable excited
   state (MSI), with decay temperatures higher than 200 K. MSI formation
   occurs upon irradiation in the visible band (450-500 nm). According to
   ab initio density functional theory (DFT) molecular orbital analysis
   and ZINDO semi empirical C.I. calculation, MSI originates from the
   charge transfer transition 2b(2)(dxy) --> 7e(pi*NO). Since irradiation
   in regions other than the charge transfer transition causes fast
   depopulation of the metastable excited state, this light-induced decay
   is tentatively assigned to light absorption by the systems in the
   excited state. (C) 1999 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
RP Franco, DW, Univ Fed Sao Paulo, Inst Quim Sao Carlos, Caixa Postal 780,
   BR-13560970 Sao Carlos, SP, Brazil.
CR *HYP INC, 1996, HYP 4 5
   ARMOR JN, 1968, J AM CHEM SOC, V90, P5928
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BOTTOMLEY F, 1974, J CHEM SOC DA, V15, P1600
   ENEMARK JH, 1974, COORDIN CHEM REV, V13, P339
   FOMITCHEV DV, 1996, INORG CHEM, V35, P7021
   FOMITCHEV DV, 1996, INORG CHEM, V35, P7021
   FRISCH MJ, 1995, GAUSSIAN 94
   GADEKE W, 1988, CHEM PHYS, V124, P113
   GUIDA JA, 1986, SOLID STATE COMMUN, V57, P175
   GUIDA JA, 1995, INORG CHEM, V34, P4113
   HAUSER U, 1977, Z PHYS A, V280, P17
   LEE C, 1988, PHYS REV B, V37, P785
   MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
   OOKUBO K, 1996, J MOL STRUCT, V379, P241
   PRESSPRICH MR, 1994, J AM CHEM SOC, V116, P5233
   SCHREINER AF, 1972, INORG CHEM, V11, P880
   SILVA SC, UNPUB
   TERRILE C, 1990, SOLID STATE COMMUN, V73, P481
   WOIKE T, 1990, SOLID STATE COMMUN, V73, P149
   WOLKE T, 1984, PHYS REV LETT, V53, P1767
   ZOLLNER H, 1989, CHEM PHYS LETT, V161, P497
NR 22
TC 24
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUL
PY 1999
VL 55
IS 7-8
BP 1515
EP 1525
PG 11
SC Spectroscopy
GA 209AY
UT ISI:000081025900021
ER

PT J
AU Segala, M
   Domingues, NS
   Livotto, PR
   Stefani, V
TI Heterocyclic dyes displaying excited-state intramolecular
   proton-transfer reactions (ESIPT): computational study of the
   substitution effect on the electronic absorption spectra of 2-(2
   '-hydroxyphenyl)-1,3-benzoxazole derivatives
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID AB-INITIO; PHOTOELECTRON-SPECTRA; TRANSIENT ABSORPTION; TRANSFER LASER;
   2-(2'-HYDROXYPHENYL)BENZOXAZOLE; SPECTROSCOPY; MODEL; MOLECULES
AB Semi-empirical molecular-orbital methods were used to simulate the
   electronic absorption spectra of a series of
   2-(2'-hydroxyphenyl)-1,3-benzoxazole derivatives, namely AMI and
   MNDO-PM3 for geometry optimization and INDO/S-CI and HAM/3 for
   spectroscopic features. Wavelengths of maximum absorption that agree
   better with experimental data were found when INDO/S-CI was applied to
   PM3-generated inputs. Chemical substitution redshifted the absorption
   spectrum of all the model compounds, a feature discussed based on the
   calculated energy levels of frontier orbitals and charge redistribution
   upon electronic excitation.
C1 Univ Fed Rio Grande Sul, Inst Quim, BR-91501970 Porto Alegre, RS, Brazil.
RP Stefani, V, Univ Fed Rio Grande Sul, Inst Quim, Av Bento Goncalves
   9500, BR-91501970 Porto Alegre, RS, Brazil.
CR ACUNA AU, 1986, J PHYS CHEM-US, V90, P2807
   ACUNA AU, 1991, CHEM PHYS LETT, V187, P98
   ALANSARI IAZ, 1997, J LUMIN, V71, P83
   ARTHENENGELAND T, 1992, CHEM PHYS, V163, P43
   ASBRINK L, 1977, CHEM PHYS LETT, V52, P63
   ATKINS PW, 1983, MOL QUANTUM MECH
   BRINN IM, 1991, J PHYS CHEM-US, V95, P6540
   CATALAN J, 1997, J PHYS CHEM A, V101, P7914
   CORREA DS, 1999, THESIS U FEDERAL RIO
   COSTELA A, 1987, OPT COMMUN, V64, P457
   DAS K, 1994, J PHYS CHEM-US, V98, P9126
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DOMINGUES NS, 1997, J CHEM SOC PERK  SEP, P1861
   DOUHAL A, 1994, J PHOTOCH PHOTOBIO A, V78, P127
   ENDO K, 1995, J PHYS CHEM SOLIDS, V56, P1131
   ERNSTING NP, 1992, J CHEM PHYS, V97, P3914
   FERRER ML, 1994, APPL OPTICS, V33, P2266
   FRANCIS JT, 1994, J PHYS CHEM-US, V98, P3650
   GRABOWSKA A, 1994, J LUMIN, V60, P886
   HASS KC, 1996, CHEM PHYS LETT, V263, P414
   HOLLER MG, 1997, THESIS U FEDERAL RIO
   KLOPFFER W, 1977, ADV PHOTOCHEM, V10, P311
   LAVTCHIEVA L, 1993, J PHYS CHEM-US, V97, P306
   LINDDHONLM E, 1985, MOL ORBITALS THEIR E, P142
   MARZINZIK AL, 1996, J MOL STRUCT, V375, P117
   MORDZINSKI A, 1982, CHEM PHYS LETT, V90, P122
   NAGAOKA S, 1993, J PHYS CHEM-US, V97, P11385
   NOVOA JJ, 1991, J AM CHEM SOC, V113, P9017
   OBUKHOV AE, 1996, LASER PHYS, V6, P890
   OCONNOR DB, 1985, CHEM PHYS LETT, V121, P417
   OTTERSTEDT JEA, 1973, J CHEM PHYS, V58, P5716
   PLADALMAU A, 1995, J ORG CHEM, V60, P5468
   RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
   RIOS MA, 1995, J PHYS CHEM-US, V99, P12456
   RIOS MA, 1998, J PHYS CHEM A, V102, P1560
   SASTRE R, 1995, ADV MATER, V7, P198
   SHANG XM, 1998, J OPT SOC AM B, V15, P854
   STEFANI V, 1992, DYES PIGMENTS, V20, P97
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STEWART JJP, 1990, J COMPUT AID MOL DES, V4, P1
   SYTNIK A, 1994, P NATL ACAD SCI USA, V91, P8627
   TAKAHATA Y, 1993, J MOL STRUCT THEOCHE, V283, P289
   TAKAHATA Y, 1995, THEOCHEM-J MOL STRUC, V335, P229
   THIEL W, 1994, MNDO94
   WOOLFE GJ, 1983, CHEM PHYS, V77, P213
NR 45
TC 6
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD JUN
PY 1999
IS 6
BP 1123
EP 1127
PG 5
SC Chemistry, Organic; Chemistry, Physical
GA 208GD
UT ISI:000080981900012
ER

PT J
AU Mundim, KC
   Ellis, DE
TI Stochastic classical molecular dynamics coupled to functional density
   theory: Applications to large molecular systems
SO BRAZILIAN JOURNAL OF PHYSICS
LA English
DT Article
ID OPTIMIZATION
AB A hybrid approach is described, which combines stochastic classical
   molecular dynamics and first principles Density Functional theory to
   model the atomic and electronic structure of large molecular and
   solid-state systems. The stochastic molecular dynamics using
   Generalized Simulated Annealing (GSA) is based on the nonextensive
   statistical mechanics and thermodynamics. Examples are given of
   applications in linear-chain polymers, structural ceramics, impurities
   in metals, and pharmacological molecule-protein interactions.
C1 Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
   Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
   Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA.
RP Mundim, KC, Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
CR ALDER BJ, 1957, J CHEM PHYS, V27, P1208
   ALDER BJ, 1970, PHYS REV           A, V1, P18
   ALLINGER NL, 1982, ACS MONOGRAPH, V177
   AREAS EPG, 1994, BRAZ J MED BIOL RES, V27, P527
   AREAS EPG, 1995, J PHYS CHEM-US, V99, P14882
   CEPERLEY D, 1986, SCIENCE, V231, P555
   CURADO EMF, 1991, J PHYS A, V24, P3187
   CURADO EMF, 1991, J PHYS A, V24, L69
   DELLANAY F, 1987, J MATER SCI, V22, P1
   DORFMAN S, 1996, COMPOS PART A-APPL S, V27, P697
   DORFMAN S, 1996, COMPOSITE INTERFACES, V3, P431
   ELLIS DE, 1995, ELECT DENSITY FUNCTI, P263
   ELLIS DE, 1998, IN PRESS P 9 CIMTEC
   ELLIS DE, 1998, MATER RES SOC SYMP P, V527, P69
   GANGOPADHYAY U, 1995, J MATER SCI, V30, P94
   GUO CK, UNPUB
   GUO L, 1998, J PORPHYR PHTHALOCYA, V2, P1
   KIRKPATRICK S, 1983, SCIENCE, V220, P671
   KIRKPATRICK S, 1984, J STAT PHYS, V34, P975
   KLUG A, 1958, ACTA CRYSTALLOGR, V11, P199
   MORET MA, 1996, THESIS
   MORET MA, 1998, J COMPUT CHEM, V19, P647
   MUNDIM KC, 1996, INT J QUANTUM CHEM, V58, P373
   MUNDIM KC, 1998, PHYSICA A, V252, P405
   PASCUTTI PG, 1999, IN PRESS J COMP CHEM
   SZU H, 1987, PHYS LETT A, V122, P157
   TSALLIS C, 1988, J STAT PHYS, V52, P479
   TSALLIS C, 1996, PHYSICA A, V233, P395
NR 28
TC 6
PU SOCIEDADE BRASILEIRA FISICA
PI SAO PAULO
PA CAIXA POSTAL 66328, 05315-970 SAO PAULO, BRAZIL
SN 0103-9733
J9 BRAZ J PHYS
JI Braz. J. Phys.
PD MAR
PY 1999
VL 29
IS 1
BP 199
EP 214
PG 16
SC Physics, Multidisciplinary
GA 205RY
UT ISI:000080835400018
ER

PT J
AU Rodrigues, JAR
   de Oliveira, AP
   Moran, PJS
   Custodio, R
TI Regioselectivity of the nitration of phenol by acetyl nitrate adsorbed
   on silica gel
SO TETRAHEDRON
LA English
DT Article
DE nitration; nitric acid and derivatives; phenols; regioselection
ID NITROGEN-DIOXIDE; SUBSTITUTION; DERIVATIVES; CATALYSTS; AROMATICS;
   ESTERS; ACID
AB The reaction of phenol with acetyl nitrate in chloroform gives
   nitrophenol with an ortho/para ratio of 1.8. This ratio increase to
   13.3 when the reaction was carried out with acetyl nitrate pre-adsorbed
   on dry silica gel. Silica may be acting as a template to bring phenol
   close to acetyl nitrate by hydrogen bonds forming a ternary complex,
   which undergoes a six-center rearrangement to o-nitrophenol. The
   formation of this ternary complex is evaluated by ab initio molecular
   orbital calculation, (C) 1999 Elsevier Science Ltd. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Rodrigues, JAR, Univ Estadual Campinas, Inst Quim, BR-13083970
   Campinas, SP, Brazil.
CR CLARK JH, 1992, SUPPORTED REAGENTS P
   CONLON DA, 1996, J ORG CHEM, V61, P6425
   DELAMARE PBD, 1959, AROMATIC SUBSTITUTIO, P76
   DELAUDE L, 1993, ACCOUNTS CHEM RES, V26, P607
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GIGANTE B, 1995, J ORG CHEM, V60, P3445
   GROTTA HM, 1967, J HETEROCYCLIC CHEM, V4, P611
   HALVARSON K, 1957, ARK KEMI, V11, P77
   KIMURA M, 1990, J ORG CHEM, V55, P4887
   KURZ ME, 1973, J ORG CHEM, V38, P2271
   MALYSHEVA LV, 1995, CATAL REV, V37, P179
   MARCH J, 1992, ADV ORG CHEM, P511
   NORMAN ROC, 1965, ELECTROPHILIC SUBSTI, P301
   OLAH GA, 1989, ORGANIC NITRO CHEM S, P13
   OLAH GA, 1996, CHEM BR          AUG, P21
   PERVEZ H, 1988, TETRAHEDRON, V44, P4555
   RIEGO JM, 1996, TETRAHEDRON LETT, V37, P513
   RODRIGUES JAR, IN PRESS SYNTH COMMU
   SAARI WS, 1991, J MED CHEM, V34, P2922
   SCHOFIELD K, 1980, AROMATIC NITRATION, P236
   SMITH K, 1992, SOLID SUPPORTS CATAL
   STRAZZOLINI P, 1995, B CHEM SOC JPN, V68, P1155
   STRAZZOLINI P, 1998, J ORG CHEM, V63, P952
   SUZUKI H, 1995, J CHEM SOC PERK 0221, P339
   SUZUKI H, 1996, J CHEM SOC PERK  APR, P677
   SUZUKI H, 1996, J ORG CHEM, V61, P5944
   TAYLOR R, 1990, ELECTROPHILIC AROMAT
   VOGEL A, 1978, TXB PRACTICAL ORGANI
NR 28
TC 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0040-4020
J9 TETRAHEDRON
JI Tetrahedron
PD MAY 28
PY 1999
VL 55
IS 22
BP 6733
EP 6738
PG 6
SC Chemistry, Organic
GA 201DK
UT ISI:000080579600002
ER

PT J
AU Alves, HWL
   Alves, JLA
   Castineira, JLP
   Leite, JR
TI Lattice dynamics of boron nitride
SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
   TECHNOLOGY
LA English
DT Article
DE boron nitride; LAPW method; lattice dynamics; frozen phonons; shell
   model
ID BN; SEMICONDUCTORS; BP
AB Using the density-functional theory within the full potential linear
   augmented plane-wave (FP-LAPW) method, we have calculated ab initio the
   equation of state and the principal phonon modes in cubic boron nitride
   (c-BN), including their pressure dependence and the amplitude of the
   eigendisplacements. A good agreement with the experiments is obtained,
   whenever a comparison is possible: in fact, most of the results are
   predictions. A ten-parameter valence overlap shell model (VOSM) was
   constructed and we obtained the phonon dispersion curves, elastic
   constants and effective charges. Our results were compared with
   calculated theoretical data for c-BN and for other III-V materials and
   we found that the lattice dynamics properties for cubic boron nitride
   is very close to those of diamond. (C) 1999 Elsevier Science S.A. All
   rights reserved.
C1 FUNREI, Dept Ciencias Nat, BR-36300000 Sao Koao Del Rei, MG, Brazil.
   Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
   Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, LNMS, BR-05389970 Sao Paulo, Brazil.
RP Alves, HWL, FUNREI, Dept Ciencias Nat, Praca D Helvecio 74, BR-36300000
   Sao Koao Del Rei, MG, Brazil.
CR ALVES HWL, 1992, J PHYS-CONDENS MAT, V4, P6603
   BILZ H, 1979, PHONON DISPERSION RE, P101
   BLAHA P, 1995, COMPUTER CODE WIEN95
   CASTINEIRA JLP, 1998, MAT SCI ENG B-SOLID, V51, P53
   CEPERLEY DM, 1981, PHYS REV B, V23, P5048
   COHEN ML, 1998, ELECT STRUCTURE OPTI
   EDGAR JH, 1994, PROPERTIES GROUP 3 N
   KARCH K, 1997, PHYS REV B, V56, P7404
   KIM K, 1996, PHYS REV B, V53, P16310
   KUNC K, 1976, SOLID STATE COMMUN, V19, P1027
   KUNC K, 1983, AB INITIO CALCULATIO, P65
   KUNC K, 1985, ELECT STRUCTURE DYNA, P227
   MADELUNG O, 1982, LANDOLTBORNSTEIN N A, V17
   MADELUNG O, 1989, LANDOLTBORNSTEIN N A, V22
   PAINE RT, 1990, CHEM REV, V90, P73
   SANJURJO JA, 1983, PHYS REV B, V28, P4579
   WENTZCOVITCH RM, 1986, PHYS REV B, V34, P1071
   WENTZCOVITCH RM, 1987, PHYS REV B, V36, P6058
NR 18
TC 5
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5107
J9 MATER SCI ENG B-SOLID STATE M
JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
PD MAY 6
PY 1999
VL 59
IS 1-3
BP 264
EP 267
PG 4
SC Materials Science, Multidisciplinary; Physics, Condensed Matter
GA 203CB
UT ISI:000080689000057
ER

PT J
AU Pliego, JR
   De Almeida, WB
TI A new mechanism for the reaction of carbenes with OH groups
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID LASER-FLASH-PHOTOLYSIS; CORRELATED MOLECULAR CALCULATIONS;
   GAUSSIAN-BASIS SETS; SPECTROSCOPIC DETECTION; YLIDE FORMATION;
   ETHYL-ACETATE; AB-INITIO; H BOND; FLUORENYLIDENE; INSERTION
AB The reaction pathway for the 2H(2)O + CCl2 reaction through a cyclic
   five-atom transition structure was studied using ab initio molecular
   orbital theory. The MP2 method in conjunction with the DZP basis set
   was used for geometry optimizations, and single point energy
   calculations were performed at MP2 and MP4 levels with the cc-pVDZ and
   cc-pVTZ basis sets. The solvent effect on the activation free energy
   was evaluated by Monte Carlo statistical mechanics calculations. The
   new mechanism has a high rate constant, and we predict a lifetime of
   seven nanoseconds for dichlorocarbene in aqueous solution. We have
   proposed that this mechanism occurs for the reaction of dichlorocarbene
   with water, and possibly may be involved in many reactions of carbenes
   with alcohols. We have also shown that it can explain the following
   experimental facts: (a) alteration of the product isotopic effect on
   addition of a second alcohol, (b) difference between product and
   kinetic isotopic effects, and (c) no linear dependence of the observed
   rate constant for carbene decay on alcohol concentration.
C1 Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
   Univ Fed Minas Gerais, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
RP Pliego, JR, Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol,
   BR-31270901 Belo Horizonte, MG, Brazil.
CR ADMASU A, 1997, J PHYS CHEM A, V101, P3832
   BELT ST, 1993, J AM CHEM SOC, V115, P2200
   BETHELL D, 1971, J CHEM SOC B, P23
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   CHATEAUNEUF JE, 1991, J AM CHEM SOC, V113, P6585
   CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
   CURTISS LA, 1991, J CHEM PHYS, V94, P7221
   CURTISS LA, 1992, J CHEM PHYS, V96, P9030
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   DUNNING TH, 1997, METHODS ELECT STRUCT
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
   GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
   GRILLER D, 1982, J AM CHEM SOC, V104, P5549
   JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
   JORGENSEN WL, 1988, J AM CHEM SOC, V110, P1657
   JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
   JORGENSEN WL, 1995, BOSS VERSION 3 5
   KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
   KIRMSE W, 1993, J AM CHEM SOC, V115, P8918
   MOSS RA, 1988, TETRAHEDRON LETT, V29, P6417
   MOSS RA, 1989, ACCOUNTS CHEM RES, V22, P15
   NOBES RH, 1982, CHEM PHYS LETT, V89, P497
   OLSON DR, 1996, J PHYS ORG CHEM, V9, P759
   PLATZ MS, 1996, J PHYS ORG CHEM, V9, P689
   PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
   PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
   PLIEGO JR, 1997, J CHEM PHYS, V106, P3582
   PLIEGO JR, 1997, J CHEM SOC FARADAY T, V93, P1881
   PLIEGO JR, 1997, J CHEM SOC PERK  NOV, P2365
   PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
   PLIEGO JR, 1998, J BRAZIL CHEM SOC, V9, P181
   SOUNDARARAJAN N, 1988, TETRAHEDRON LETT, V29, P3419
   VOLATRON F, 1983, J AM CHEM SOC, V105, P2359
   WANG JL, 1995, J AM CHEM SOC, V117, P5477
   WOON DE, 1993, J CHEM PHYS, V98, P1358
   YAMAGUCHI Y, 1993, J AM CHEM SOC, V115, P5790
   ZUPANCIC JJ, 1985, TETRAHEDRON, V41, P1471
NR 38
TC 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAY 20
PY 1999
VL 103
IS 20
BP 3904
EP 3909
PG 6
SC Chemistry, Physical
GA 200XK
UT ISI:000080565300015
ER

PT J
AU Ribeiro, MCC
   Almeida, LCJ
TI Fluctuating charge model for polyatomic ionic systems: A test case with
   diatomic anions
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; SOLID ALKALI CYANIDES; FORCE-FIELDS;
   POLARIZABILITY; DENSITY; POTENTIALS; CRYSTALS; WATER
AB The fluctuating charge (FQ) model proposed by Rick et al. [(J. Chem.
   Phys. 101, 6141 (1994)] for molecular dynamics (MD) simulation of water
   is applied to a test case for polyatomic ionic systems. A system
   resembling alkali cyanide crystals, with two partial charges on the
   atomic sites of the polarizable anions, is considered. The need for
   charge fluctuation considerations in such a simple system is
   demonstrated by ab initio calculations of the partial charges in the
   cyanide ion with different orientations within a fixed octahedral
   environment of sodium ions. It is shown that the charge distributions
   in the crystal obtained with the FQ model are sensitive to changes in
   the environment in such a way that the anions become more polarizable
   as the lattice parameter increases. Conversely, the charge
   distributions shrink with increasing repulsive short-range
   interactions. Furthermore, a well-known polarization effect, that is,
   the reduction in the frequencies of longitudinal optic modes of the
   crystal, is also obtained with the FQ model. (C) 1999 American
   Institute of Physics. [S0021-9606(99)50423-6].
C1 Univ Sao Paulo, Inst Quim, Lab Espectroscopia Mol, BR-05599970 Sao Paulo, Brazil.
RP Ribeiro, MCC, Univ Sao Paulo, Inst Quim, Lab Espectroscopia Mol, CP
   26077, BR-05599970 Sao Paulo, Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
   ASTRAND PO, 1998, J PHYS CHEM A, V102, P7686
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   BULJAN A, 1997, J PHYS CHEM A, V101, P1393
   CHELLI R, 1997, J CHEM PHYS, V107, P8041
   FERRARIO M, 1986, J CHEM PHYS, V84, P3975
   FRISCH MJ, 1995, GAUSSIAN 94
   FUMI FG, 1964, J PHYS CHEM SOLIDS, V25, P31
   GREADY JE, 1978, CHEM PHYS, V31, P467
   JACUCCI G, 1976, PHYS REV A, V13, P1581
   JEMMER P, 1998, J PHYS CHEM A, V102, P8377
   KATO T, 1993, J CHEM PHYS, V99, P3966
   KLEIN ML, 1983, J CHEM PHYS, V79, P2333
   LADD MFC, 1977, J CHEM SOC DA, V3, P220
   LESAR R, 1982, J CHEM PHYS, V77, P3682
   LIU YP, 1998, J CHEM PHYS, V108, P4739
   LYNDENBELL RM, 1983, MOL PHYS, V48, P1093
   MADDEN PA, 1991, J CHEM PHYS, V95, P1980
   MADDEN PA, 1993, J PHYS CONDENS MATT, V5, P2687
   MADDEN PA, 1996, CHEM SOC REV, V25, P339
   MATSUI M, 1998, J CHEM PHYS, V108, P3304
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   RAPPE AK, 1991, J PHYS CHEM-US, V95, P3358
   RIBEIRO MCC, 1998, J CHEM PHYS, V108, P9027
   RICK SW, 1994, J CHEM PHYS, V101, P6141
   RICK SW, 1997, J PHYS CHEM B, V101, P10488
   SANGSTER MJL, 1976, ADV PHYS, V25, P247
   TISSEN JTWM, 1990, MOL PHYS, V71, P413
   WIBERG KB, 1992, J PHYS CHEM-US, V96, P671
NR 29
TC 11
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
   11797-2999 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 15
PY 1999
VL 110
IS 23
BP 11445
EP 11448
PG 4
SC Physics, Atomic, Molecular & Chemical
GA 200CH
UT ISI:000080521200039
ER

PT J
AU Wilson, M
   Madden, PA
   Jemmer, P
   Fowler, PW
   Batana, A
   Bruno, J
   Munn, RW
   Monard, MC
TI Models of environmental effects on anion polarizability
SO MOLECULAR PHYSICS
LA English
DT Article
ID REFRACTIVE-INDEX; ALKALI-HALIDES; DIPOLE POLARIZABILITY; FLUORIDE-ION;
   CRYSTALS; PRESSURE; DERIVATIVES; PARAMETERS; SIMULATION; NABR
AB This paper deals with three different approaches to the representation
   of environmental effects on anion polarizability in cubic crystals of
   the stoichiometry MX, where M is an alkali metal and X is a halogen. Ab
   initio embedded cluster calculations of the variation in anion
   polarizability with pressure in a fixed crystal type are presented and
   compared with experiment. The results are then used in a scaled nb
   initio model used to predict further values for the pressure dependence
   of the in-crystal anion polarizability. This scaled model is compared
   with a fully empirical 'universal' model due to Batana el nl. based on
   polarizability change with ionic radius [1997, Molec. Phys., 92, 1029].
   The assumptions of the two models differ substantially and the central
   purpose of this paper is to contrast these differences and highlight
   their consequences for prediction. Although the empirical model
   typically overestimates the experimental pressure derivatives, and the
   nb initio calculations Somewhat underestimate them, it is shown that
   the assumption of incompressible cations in the scaled ab
   initio-derived model has a firmer physical basis than the empirical
   picture in which all ions are compressible.
C1 Univ Oxford, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England.
   Univ Exeter, Dept Chem, Exeter EX4 4QD, Devon, England.
   Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Inorgan Analit & Quim Fis, RA-1428 Buenos Aires, DF, Argentina.
   UMIST, Dept Chem, Manchester M60 1QD, Lancs, England.
   Univ Sao Paulo, Dept Ciencias Comp & Estatist, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, Brazil.
RP Wilson, M, Univ Oxford, Phys & Theoret Chem Lab, S Parks Rd, Oxford OX1
   3QZ, England.
CR AMOS RD, 1995, CADPAC CAMBRIDGE ANA
   BATANA A, 1997, MOL PHYS, V92, P1029
   BENDOW B, 1974, APPL OPTICS, V13, P2382
   DIERCKSEN GHF, 1981, CHEM PHYS LETT, V84, P390
   DIERCKSEN GHF, 1982, MOL PHYS, V47, P33
   FONTANELLA J, 1972, PHYS REV B, V6, P582
   FOWLER PW, 1983, MOL PHYS, V49, P913
   FOWLER PW, 1984, MOL PHYS, V53, P865
   FOWLER PW, 1984, PHYS REV B, V29, P1035
   FOWLER PW, 1984, PHYS REV B, V30, P6131
   FOWLER PW, 1985, MOL PHYS, V54, P129
   FOWLER PW, 1985, P ROY SOC LOND A MAT, V398, P377
   FOWLER PW, 1985, PHYS REV B, V31, P5443
   FOWLER PW, 1990, J CHEM SOC FARADAY T, V86, P1019
   HARDING JH, 1995, PHIL MAG LETT, V71, P113
   JEMMER P, 1998, J PHYS CHEM A, V102, P8377
   JOHANNSEN PG, 1997, PHYS REV B, V55, P6856
   JOHANNSEN PG, 1997, PHYS REV B, V55, P6865
   LAZZERETTI P, 1991, 167 CNR
   MADDEN PA, 1991, J CHEM PHYS, V94, P918
   MAHAN GD, 1980, SOLID STATE IONICS, V1, P29
   MAHAN GD, 1990, LOCAL DENSITY THEORY
   MULLER U, 1993, INORGANIC STRUCTURE
   PYPER NC, 1991, ADV SOLID STATE CHEM, V2, P223
   PYPER NC, 1997, J PHYS-CONDENS MAT, V9, P471
   SHANKER J, 1979, PHILOS MAG B, V39, P405
   SINGH AV, 1978, PHYSICA B, V94, P331
   SRINIVASAN R, 1973, PHYS STATUS SOLIDI B, V57, P757
   TESSMAN JR, 1983, PHYS REV, V49, P913
   VANVECHTEN JA, 1969, PHYS REV, V182, P891
   WERNER HJ, 1980, J CHEM PHYS, V73, P2319
NR 31
TC 6
PU TAYLOR & FRANCIS LTD
PI LONDON
PA ONE GUNPOWDER SQUARE, LONDON EC4A 3DE, ENGLAND
SN 0026-8976
J9 MOL PHYS
JI Mol. Phys.
PD MAY 20
PY 1999
VL 96
IS 10
BP 1457
EP 1467
PG 11
SC Physics, Atomic, Molecular & Chemical
GA 198LW
UT ISI:000080426500003
ER

PT J
AU Wang, F
   Tao, WA
   Gozzo, FC
   Eberlin, MN
   Cooks, RG
TI Synthesis of B- and P-heterocycles by reaction of cyclic acetals and
   ketals with borinium and phosphonium ions
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID RESONANCE MASS-SPECTROMETER; DICOORDINATED BORON CATIONS; GAS-PHASE;
   EFFICIENT DEPROTECTION; TRIMETHYL BORATE; ACYLIUM IONS; CHEMISTRY;
   AFFINITIES; REAGENT; BONDS
AB Tricoordinated cyclic boron cations result from gas-phase ion/molecule
   reactions of dicoordinated borinium ions with neutral acetals and
   ketals and thiazolidine. The reaction, which proceeds via initial
   cationic binding to a heteroatom followed by a consecutive ring-opening
   and ring-reclosing process, resembles the Eberlin transacetalization of
   acylium ions (Eberlin, M. N.; Cooks, R. G. Org. Mass Spectrom. 1993,
   28, 679). The cyclic structure of the tricoordinated boron cation is
   demonstrated by tandem mass spectrometry and further confirmed by
   comparison with authentic cyclic tricoordinated boron cations.; The
   five-membered cyclic boron cations dissociate by ethylene oxide loss to
   thus reform the reactant-dicoordinated borinium ion; the six-membered
   boron cations fragment instead by ethylene loss. Consistent with the
   proposed mechanism, the ion/molecule reaction efficiency falls in the
   order CH3OB+C2H5 > CH3OB+OCH3 much greater than CH3B+CH3; i.e., the
   higher the nucleophilicity of the borinium ion, the higher the reaction
   efficiency. A potential energy surface is calculated for the reaction
   of CH3OB+OCH3 with 2-methyl-1,3-dioxolane, and the reaction is found to
   be 43.3 kcal/mol exothermic due to initial formation of a strong B-O
   bond. The analogous reactivity displayed by phosphonium ions is also
   investigated by both experiment and ab initio calculations. In contrast
   to the borinium ions, the phosphonium ions exhibit higher
   regioselectivity for sulfur compared to nitrogen and oxygen. Finally,
   the present findings indicate that the reaction exothermicity and the
   regioselectivity are controlled by both the Lewis acidity of the
   reactant cations and the leaving ability of the released neutrals in
   the rate-limiting nucleophilic-induced recyclization step.
C1 Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
   State Univ Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Cooks, RG, Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
CR CARVALHO M, 1998, CHEM-EUR J, V4, P1161
   CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
   COLORADO A, 1996, J MASS SPECTROM, V31, P403
   COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
   CORBRIDGE DEC, 1995, PHOSPHORUS OUTLINE I
   CRAGG RH, 1972, J CHEM SOC DA, P1373
   DENIS JN, 1980, ANGEW CHEM INT EDIT, V19, P1006
   EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
   FALLON PJ, 1968, INT J MASS SPECTROM, V1, P133
   FORTE L, 1990, CAN J CHEM, V68, P1629
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GOZZO FC, 1996, J CHEM SOC PERK  APR, P587
   GREENE TW, 1991, PROTECTING GROUPS OR
   GROS P, 1995, J CHEM RES S, P196
   HALL BJ, 1996, INT J MASS SPECTROM, V155, P123
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HETTICH RL, 1987, INT J MASS SPECTROM, V81, P203
   HIGASHI J, 1982, INORG CHEM, V21, P716
   HUA SM, 1985, ORG MASS SPECTROM, V20, P719
   IMRIE C, 1995, J PHYS ORG CHEM, V8, P41
   ISBELL JJ, 1996, RAPID COMMUN MASS SP, V10, P1418
   JOHNSTONE C, 1996, CHEM COMMUN     0207, P341
   KAPPES MM, 1982, ORGANOMETALLICS, V1, P1303
   KAUR G, 1998, J ORG CHEM, V63, P2365
   KEMPEN EC, 1997, J MASS SPECTROM, V32, P846
   KOBAYASHI S, 1993, TETRAHEDRON LETT, V34, P4047
   KOLLE P, 1985, CHEM REV, V85, P399
   KUIVALAINEN T, 1996, J AM SOC MASS SPECTR, V7, P189
   LAW RW, 1956, J CHEM PHYS, V25, P1086
   LEECK DT, 1995, INT J MASS SPECTROM, V141, P229
   MA SG, 1997, J MASS SPECTROM, V32, P159
   MA SM, 1993, TETRAHEDRON LETT, V34, P8071
   MOLLER C, 1934, PHYS REV, V46, P618
   MORAES LAB, 1997, J CHEM SOC PERK  OCT, P2105
   MORAES LAB, 1997, J ORG CHEM, V62, P5096
   MURPHY MK, 1976, J AM CHEM SOC, V98, P1433
   NAKAYAKKARA VK, 1994, P 42 ASMS C MASS SPE, P737
   NGUYEN V, 1997, J AM CHEM SOC, V119, P8342
   NISHIGUCHI T, 1995, J CHEM SOC CHEM COMM, P1121
   NOTH H, 1982, INORG CHEM, V21, P706
   NOTH H, 1983, PURE APPL CHEM, V55, P1453
   PAU JK, 1978, J AM CHEM SOC, V100, P3838
   PEARSON RG, 1963, J AM CHEM SOC, V85, P3533
   PEARSON RG, 1988, J AM CHEM SOC, V110, P7684
   RANATUNGA TD, 1992, J AM CHEM SOC, V114, P8600
   RANATUNGA TD, 1993, INT J MASS SPECTROM, V128, L1
   RANATUNGA TD, 1995, INORG CHEM, V34, P18
   RANATUNGA TD, 1995, THESIS PURDUE U
   RANATUNGA TD, 1997, J AM CHEM SOC, V119, P5200
   SCHMIDT MW, 1985, J AM CHEM SOC, V107, P1922
   SCHNEIDER WF, 1991, INORG CHEM, V30, P3919
   SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
   SWAMY KCK, 1990, PHOSPHORUS SULFUR, V53, P437
   THOEN KK, 1996, J AM SOC MASS SPECTR, V7, P1138
   WADA Y, 1964, J PHYS CHEM-US, V68, P1588
   WANG F, 1999, ANGEW CHEM INT EDIT, V38, P386
NR 58
TC 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD APR 30
PY 1999
VL 64
IS 9
BP 3213
EP 3223
PG 11
SC Chemistry, Organic
GA 194BA
UT ISI:000080171200043
ER

PT J
AU Jardim, IN
   Treu, O
   Martines, MAU
   Davolos, MR
   Jafelicci, M
   Pinheiro, JC
TI Ab initio study of high tridymite by the formalism generator coordinate
   Hartree-Fock
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE electronic properties of high tridymite; IR Spectrum of high tridymite;
   generator coordinate HF method
ID CONTRACTED GAUSSIAN-BASIS; SLATER-TYPE BASES; BASIS-SETS;
   DIATOMIC-MOLECULES; ATOMS H; EQUATIONS; VERSION; SYSTEMS; CHOICE
AB The Generator Coordinate Hartree-Fock (GCHF) Method is applied to
   generate extended 14s 8p and 17s 11p Gaussian basis sets for the atoms
   O and Si, respectively. The role of the weight functions in the
   assessment of the numerical integration range of the GCHF is shown. The
   Gaussian basis sets are contracted to [6s4p] O atom and [8s5p] Si atom
   by the Dunning's segmented contraction scheme. To evaluate the quality
   of our contracted [6s4p] and [8s5p] bases in molecular calculations we
   accomplish calculations of total and orbital energies in the
   Hartree-Fock-Roothaan method for O-2 and SiO molecules. We compare the
   results obtained with the our (14s 8p) and (17s 11p) bases sets with
   the of 6-311G basis and with values from the literature. The addition
   of one d polarization function in the silicon basis and its utilization
   with the basis for oxygen leads to the calculation of electronic
   properties and IR Spectrum of high tridymite in space group D-3d. (C)
   1999 Elsevier Science B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, BR-66075110 Belem, Para, Brazil.
   UNESP, Inst Quim, BR-14801970 Araraquara, SP, Brazil.
RP Jardim, IN, Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, CP
   11101, BR-66075110 Belem, Para, Brazil.
CR CUSTODIO R, 1992, CAN J CHEM, V70, P580
   CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
   DACOSTA HFM, 1987, MOL PHYS, V62, P91
   DACOSTA HFM, 1991, CHEM PHYS, V154, P379
   DACOSTA HFM, 1992, CHEM PHYS LETT, V192, P195
   DASILVA ABF, 1989, MOL PHYS, V68, P433
   DASILVA ABF, 1993, CHEM PHYS LETT, V203, P201
   DASILVA ABF, 1993, MOL PHYS, V78, P1301
   DAVOLOS MR, 1998, 9 WORLD CER C CIMTEC
   DINGLE TW, 1989, J COMPUT CHEM, V10, P753
   DOLLASE WA, 1967, ACTA CRYSTALLOGR, V23, P617
   ETCHEPARE J, 1978, J CHEM PHYS, V68, P1531
   FERRACIN LC, 1997, J LUMIN, V72, P185
   FISCHER FC, 1972, ATOM DATA, V4, P341
   FRISCH MJ, 1995, GAUSSIAN 94
   GOODSON DZ, 1982, J PHYS CHEM-US, V86, P659
   GRIFFEN DT, 1992, INORGANIC STRUCTURAL
   HEHRE J, 1986, AB INITIO MOL THEORY
   JORGE FE, 1996, J CHEM PHYS, V104, P6278
   MALLI GL, 1993, PHYS REV A, V47, P143
   MOHALLEM JR, 1986, INT J QUANTUM CH S20, P45
   MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
   MOHALLEM JR, 1987, J CHEM PHYS, V86, P5043
   MONCORGE R, 1994, OPT MATER, V4, P139
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   PAVANI R, 518 RJ IBM
   PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
   PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
   POPLE JA, 1981, INT J QUANTUM CHEM S, V15, P269
   POPLE JA, 1993, ISRAEL J CHEM, V33, P345
   PYKKO P, 1987, CHEM PHYS LETT, V134, P575
   REINEN D, 1997, J ALLOY COMPD, V246, P193
   ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
NR 33
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAY 18
PY 1999
VL 464
IS 1-3
BP 15
EP 21
PG 7
SC Chemistry, Physical
GA 192KC
UT ISI:000080076700004
ER

PT J
AU Bolivar-Marinez, LE
   Galvao, DS
   Caldas, MJ
TI Geometric and spectroscopic study of some molecules related to
   eumelanins. 1. Monomers
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID INTERMEDIATE NEGLECT; DIFFERENTIAL OVERLAP; MODEL POLYMERS; MELANINS;
   POLYMERIZATION; PARAMETERS; MECHANISM; STATES
AB We have carried out ab initio and semiempirical PM3 (parametric method
   3) and ZINDO (Zerner's intermediate neglect of differential overlap)
   calculations on neutral and charged 5,6-indolequinone and its reduced
   forms semiquinone and hydroquinone. These molecules are believed to
   compose the major part of the active material of eumelanin, a
   biological pigment present in illuminated and nonilluminated areas in
   living organisms. Our results show that these molecules can behave as
   electron accepters and that their electronic behavior is consistent
   with that of the semiconductor models proposed for melanins. The
   relationship between electronic behavior and biological functions is
   also addressed.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Estadual Campinas, UNICAMP, Inst Fis, BR-13081970 Campinas, SP, Brazil.
RP Caldas, MJ, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR BLOIS MS, 1964, BIOPHYS J, V4, P471
   BLOIS MS, 1969, SOLID STATE BIOPHYSI, P243
   BUCCI P, 1974, J AM CHEM SOC, V96, P1305
   CHEDEKEL MR, 1982, PHOTOCHEM PHOTOBIOL, V35, P881
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
   DISCHIA M, 1996, GAZZ CHIM ITAL, V126, P783
   DOSSANTOS DA, 1991, CHEM PHYS LETT, V184, P579
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GALVAO DS, 1988, J CHEM PHYS, V88, P4088
   GALVAO DS, 1989, PHYS REV LETT, V63, P786
   GALVAO DS, 1990, J CHEM PHYS, V92, P2630
   GALVAO DS, 1990, J CHEM PHYS, V93, P2848
   GIACOMONI PU, 1995, J PHOTOCH PHOTOBIO B, V29, P87
   JELLINGER K, 1971, ACTA NEUROPATHOL, V17, P553
   LONGUETHIGGINS HC, 1960, ARCH BIOCHEM BIOPHYS, V86, P231
   MASON HS, 1967, ADV BIOL SKIN, V3, P293
   MCGINNESS JE, 1973, J THEOR BIOL, V48, P19
   MCGINNESS JE, 1973, SCIENCE, V177, P896
   MCGINNESS JE, 1974, SCIENCE NY, V183, P853
   NAPOLITANO A, 1996, J MED CHEM, V39, P5192
   NICOLAUS RA, 1968, MELANINS
   PROCTOR P, 1974, J THEOR BIOL, V183, P853
   PROTA G, 1992, MELANINS MELANOGENES
   PULLMAN A, 1961, BIOCHIM BIOPHYS ACTA, V54, P384
   PULLMAN B, 1963, QUANTUM BIOCH
   RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
   RIDLEY J, 1987, THEOR CHEM ACTA, V72, P347
   RIDLEY JE, 1976, THEOR CHIM ACTA, V42, P223
   ROSEI MA, 1996, SYNTHETIC MET, V76, P331
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STEWART JJP, 1990, J COMPUT CHEM, V11, P221
   STRZELECKA T, 1982, PHYSIOL CHEM PHYS M, V14, P223
   SWAN GA, 1963, ANN NY ACAD SCI, V100, P1005
   SWAN GA, 1974, FORTSCHR CHEM ORG NA, V31, P522
NR 34
TC 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5647
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD APR 15
PY 1999
VL 103
IS 15
BP 2993
EP 3000
PG 8
SC Chemistry, Physical
GA 189YN
UT ISI:000079934100025
ER

PT J
AU Quintao, AD
   Vianna, RO
   Mohallem, JR
TI Resonating Valence Bond calculations on small anionic lithium clusters
SO EUROPEAN PHYSICAL JOURNAL D
LA English
DT Article
ID METALS
AB We recast the Resonating Valence Bond theory, first introduced bq Linus
   Pauling, in a nonorthogonal ab initio Valence Bond formalism and apply
   the method to study some properties of the anionic clusters Li-n(-) (2
   less than or equal to n less than or equal to 5). We show how to choose
   appropriate structures and orbitals, and also how to use the so-called
   metallic orbitals. The problem of interpreting the role of a specific
   Valence Bond structure looking up its weight in the general wave
   function is elucidated. Information about the excited states of the
   systems is obtained. The theory can make good qualitative predictions
   on the electronic behaviour of the clusters by using a wave function
   that is a linear combination of a small set of structures. Pauling's
   theory is shown to be quite appropriate for describing anionic systems.
   specially the small ones, where the loosely bounded electron largely
   influences the properties of the systems. We verify the preference of
   some clusters for linear geometries.
C1 UFMG, Inst Ciencias Exatas, Dept Fis, BR-30161970 Belo Horizonte, MG, Brazil.
RP Quintao, AD, UFMG, Inst Ciencias Exatas, Dept Fis, CP 702, BR-30161970
   Belo Horizonte, MG, Brazil.
CR BOUSTANI I, 1988, J CHEM PHYS, V88, P5657
   FRISCH MJ, 1993, GAUSSIAN 92 DFT REVI
   GUTOWSKI M, 1994, J CHEM PHYS, V101, P6
   KNIGHT WD, 1984, PHYS REV LETT, V55, P2563
   LEVY B, 1968, INT J QUANTUM CHEM, V2, P307
   MCWEENY R, 1990, INT J QUANTUM CHEM S, V24, P733
   MCWEENY R, 1990, INT J QUANTUM CHEM S, V24, P733
   MCWEENY R, 1992, METHODS MOL QUANTUM
   MOHALLEM JR, 1997, Z PHYS D ATOM MOL CL, V42, P135
   PAULING L, 1949, P ROY SOC LOND A MAT, V196, P343
   PAULING L, 1960, NATURE CHEM BOND
   PAULING L, 1984, J SOLID STATE CHEM, V54, P297
   PRESS WH, 1992, NUMERICAL RECIPES
   PULAY P, 1980, CHEM PHYS LETT, V73, P393
   QUINTAO AD, UNPUB EUR PHYS J D
   VIANNA RO, 1998, J CHEM PHYS, V109, P23
   WU W, 1994, J CHEM PHYS, V101, P4826
NR 17
TC 5
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6060
J9 EUR PHYS J D
JI Eur. Phys. J. D
PD APR
PY 1999
VL 6
IS 1
BP 89
EP 97
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 188UA
UT ISI:000079865800011
ER

PT J
AU Gozzo, FC
   Eberlin, MN
TI 2-pyridyl and 2-pyrimidyl cations: Stable o-hetarynium ions in the gas
   phase
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID MASS-SPECTROMETRY; ACYLIUM IONS; CHEMISTRY; BENZYNE
AB As indicated by high-level CBS-Q ab initio calculations, extensive
   overlap occurs in the 2-pyridyl and 2-pyrimidyl cations between the
   fully occupied sp(2) orbital of nitrogen and the adjacent, coplanar,
   and empty spl orbital of the C2-carbon. Such effective orbital overlap
   results in o-aryne-like structures with substantially shorter N-C+ bond
   lengths and N-C+ bond orders of 1.9-2.1. Therefore. the 2-pyridyl and
   2-pyrimidyl cations are best represented, and can be regarded as,
   o-hetarynium ions, being more stable than their positional,
   nonconjugated isomers by as much as 18-28 kcal/mol. The 4-pyrimidyl
   cation also displays characteristic o-hetarynium ion structure with
   substantial orbital overlap. However, the ion easily isomerizes by
   charge-induced ring opening, as indicated by both the calculations and
   the ion's lack of o-hetarynium-like reactivity. A high energy barrier
   of 62.8 kcal/mol hampers isomerization by H-ring walking of the
   3-pyridyl cation to the far more stable 2-pyridyl cation. For the
   related 2-furanyl, 2-thiophenyl, and 2-pyrrolyl cations, little or none
   of the extra orbital overlap occurs; hence, they display energies
   close, and structures similar, to those of their 3-isomers.
   Collision-induced dissociation of collisionally quenched precursor ions
   performed via triple-stage QqQqQ mass spectrometric (MSS) experiments
   confirms the greater stability of the 2-pyridyl and 2-pyrimidyl cations.
C1 State Univ Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, State Univ Campinas, Inst Chem, CP 6154, BR-13083970
   Campinas, SP, Brazil.
CR BORDEN WT, 1982, DIRADICALS
   BUNNETT JF, 1981, J ORG CHEM, V46, P4567
   CARVALHO M, 1998, CHEM-EUR J, V4, P1161
   DENHERTOG HJ, 1965, HETEROCYCL CHEM, V4, P121
   EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
   EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
   FORESMAN JB, 1993, EXPLORING CHEM ELECT
   FRIEDMAN L, 1969, J ORG CHEM, V34, P3089
   FRISCH MJ, 1995, GAUSSIAN94 REVISION
   GALLUP GA, 1976, INT J MASS SPECTROM, V22, P185
   GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
   HEANEY H, 1962, CHEM REV, V62, P81
   HEHRE WJ, 1997, GUIDE MOL MECH MOL O
   HOFFMAN RW, 1967, DEHYDROBENZYNE CYCLO
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KAUFFMANN T, 1962, CHEM BER, V95, P949
   KAUFFMANN T, 1963, CHEM BER, V96, P2519
   KAUFFMANN T, 1965, ANGEW CHEM INT EDIT, V4, P543
   KAUFFMANN T, 1971, ANGEW CHEM INT EDIT, V10, P20
   LAING JW, 1976, J AM CHEM SOC, V98, P660
   LEWIS ES, 1962, J AM CHEM SOC, V84, P3847
   MCLAFFERTY FW, 1989, WILEY NBS REGISTRY M
   MENDES MA, 1998, J AM CHEM SOC, V120, P7869
   MORAES LAB, 1996, J ORG CHEM, V61, P8726
   MORAES LAB, 1997, J ORG CHEM, V62, P5096
   NASH JJ, 1996, J AM CHEM SOC, V118, P11872
   OCHTERSKI JW, 1996, J CHEM PHYS, V104, P2598
   OHKURA K, 1989, TETRAHEDRON LETT, V30, P3433
   ROBERTS JD, 1956, J AM CHEM SOC, V78, P601
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
   SPARRAPAN R, UNPUB
   SPARRAPAN R, 1998, J PHYS CHEM A, V102, P5189
   WITTIG G, 1955, ANGEW CHEM, V67, P348
NR 34
TC 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD APR 2
PY 1999
VL 64
IS 7
BP 2188
EP 2193
PG 6
SC Chemistry, Organic
GA 185UW
UT ISI:000079690100013
ER

PT J
AU Pliego, JR
   De Almeida, WB
TI A theoretical ab initio and Monte Carlo simulation study of the
   pyridine plus CCl2 reaction kinetics in the gas phase and in carbon
   tetrachloride solution using canonical flexible transition state theory
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID LASER FLASH-PHOTOLYSIS; POTENTIAL-ENERGY SURFACES; RATE CONSTANTS;
   CHEMICAL-REACTIONS; THERMAL-DECOMPOSITION; YLIDE FORMATION; PATH;
   DYNAMICS; ENERGETICS; HYDRATION
AB The potential energy surface for the pyridine + CCl2 reaction was
   studied at the ab initio MP4/6-311G(2df,p) //MP2/6-31G((*)) level of
   theory. The MP4/6-311G(2df,p) energies were evaluated by the additivity
   approximation E[MP4/6-311G(2df,p)] approximate to E[MP4/6-31G((*))] +
   E[MP2/6-311G(2df,p)] - E[MP2/6-31G((*))]. The first step proceeds by
   the addition of CCl2 to pyridine forming a dipolar ylide structure
   without an activation barrier. Then this species rearranges to a more
   stable biradical like ylide on a picosecond time scale. The generalized
   transition state for dipolar ylide formation occurs at a large center
   of mass distance between the species, and to calculate the reaction
   rate constant we have used canonical flexible transition state theory.
   The configurational integral was solved by Monte Carlo simulation and
   statistical perturbation theory, and the potential of mean force in the
   gas phase was obtained. This procedure was extended to the liquid phase
   by including the solvent coordinates in the configurational integral.
   The activation free energy in the gas phase and in carbon tetrachloride
   solution was calculated as 1.44 and 2.62 kcal mol(-1), respectively.
   The corresponding rate constants are 5.5 x 10(11) and 7.5 x 10(10) l
   mol(-1) s(-1). The last value is in reasonable agreement with the
   experimental result of 7 x 10(9) l mol(-1) s(-1) determined in
   isooctane solution.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim
   Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR ADMASU A, 1997, J PHYS CHEM A, V101, P3832
   ADMASU A, 1998, J CHEM SOC PERK  MAY, P1093
   BUCKNER JK, 1989, J AM CHEM SOC, V111, P2507
   CHATEAUNEUF JE, 1990, J AM CHEM SOC, V112, P3217
   COLLINS MA, 1996, ADV CHEM PHYS, V93, P389
   DUAN XF, 1995, J CHEM PHYS, V102, P6121
   DUNNING TH, 1988, SCIENCE, V240, P453
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
   GARRETT BC, 1979, J PHYS CHEM-US, V83, P1052
   GLASSTONE S, 1941, THEORY RATE PROCESSE
   GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
   GROTE RF, 1980, J CHEM PHYS, V73, P2715
   GROTE RF, 1981, J CHEM PHYS, V74, P4465
   HILL TL, 1987, STAT MECH
   JACKSON JE, 1988, J AM CHEM SOC, V110, P5595
   JORGENSEN BL, 1995, BOSS VERSION 3 5
   JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
   JORGENSEN WL, 1988, ADV CHEM PHYS 2, V70, P469
   JORGENSEN WL, 1989, ACCOUNTS CHEM RES, V22, P184
   JORGENSEN WL, 1989, J AM CHEM SOC, V111, P3770
   JORGENSEN WL, 1990, J AM CHEM SOC, V112, P4768
   JORGENSEN WL, 1994, J CHEM SOC FARADAY T, V90, P1727
   KLIPPENSTEIN SJ, 1987, J CHEM PHYS, V87, P3410
   KUMARAN SS, 1997, J PHYS CHEM A, V101, P8653
   LADANYI BM, 1986, J AM CHEM SOC, V108, P585
   MEBEL AM, 1996, J PHYS CHEM-US, V100, P7517
   MERZ KM, 1990, J AM CHEM SOC, V112, P7973
   MILLER WH, 1980, J CHEM PHYS, V72, P99
   NGUYEN MT, 1995, J PHYS CHEM-US, V99, P11883
   NORTHRUP SH, 1980, J CHEM PHYS, V73, P2700
   PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
   PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
   PLIEGO JR, 1997, J CHEM PHYS, V106, P3582
   PLIEGO JR, 1997, J CHEM SOC PERK  NOV, P2365
   PLIEGO JR, 1998, CHEM PHYS LETT, V285, P11
   PLIEGO JR, 1999, IN PRESS J PHYS CH A
   ROBERT M, 1996, J PHYS CHEM-US, V100, P18426
   ROBERT M, 1998, J PHYS CHEM A, V102, P1507
   ROBERTSON SH, 1995, FARADAY DISCUSS, V102, P65
   ROBERTSON SH, 1995, J CHEM PHYS, V103, P2917
   SMITH SC, 1991, J CHEM PHYS, V95, P3404
   SMITH SC, 1993, J PHYS CHEM-US, V97, P7034
   STEINFELD JI, 1989, CHEM KINETICS DYNAMI
   TRUHLAR DG, 1980, ACCOUNTS CHEM RES, V13, P440
   TRUHLAR DG, 1983, J PHYS CHEM-US, V87, P2664
   TRUHLAR DG, 1996, J PHYS CHEM-US, V100, P12771
   VILLA J, 1997, THEOR CHEM ACC, V97, P317
   VOTH GA, 1996, J PHYS CHEM-US, V100, P13034
   WARDLAW DM, 1984, CHEM PHYS LETT, V110, P230
   WARDLAW DM, 1985, J CHEM PHYS, V83, P3462
NR 51
TC 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI PCCP Phys. Chem. Chem. Phys.
PD MAR 15
PY 1999
VL 1
IS 6
BP 1031
EP 1036
PG 6
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 182PX
UT ISI:000079508300013
ER

PT J
AU Borin, AC
   Serrano-Andres, L
   Fulscher, MP
   Roos, BO
TI A theoretical study of the electronic spectra of N-9 and N-7 purine
   tautomers
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR-ORBITAL THEORY; AB-INITIO MP2; MATRIX-ISOLATION;
   EXCITED-STATES; GAS-PHASE; ADENINE; 2-CHLOROADENINE; SPECTROSCOPY;
   ABSORPTION
AB The complete active space (CAS) SCF method and multiconfigurational
   second-order perturbation theory (CASPT2) have been used to study
   electronic spectra of the N(9)H and N(7)H tautomers of purine. The
   calculations include vertical excitation energies, oscillator
   strengths, dipole moments, and transition moment directions in gas
   phase. In accord with experiment in nonpolar solvents, the two lowest
   pi --> pi* excited singlet valence states are predicted to be located
   at 4.7 and 5.1 eV. The latter is expected to shift to the red in
   aqueous solutions. A satisfactory interpretation of the electronic
   spectra above 5.5 eV is obtained if the experimental data are assumed
   to consist of the superposition of the spectra of the N(9)H and N(7)H
   tautomers, Two bands reported at 6.2 and 6.6 eV in nonpolar solvents
   match the corresponding B-1(b) and B-1(a) states of the N(9)H purine,
   respectively. The absence of the 6.2 eV-band in water can be explained
   by the predominance in aqueous solution of the N(7)H form, which has a
   weak B-1(b) transition at 6.4 eV overlapped by a strong B-1(a)
   transition at 6.6 eV.
C1 Chem Ctr Lund, Dept Theoret Chem, S-22100 Lund, Sweden.
   Univ Sao Paulo, Inst Quim, BR-05599970 Sao Paulo, Brazil.
   Univ Valencia, Dept Quim Fis, E-46100 Burjassot, Spain.
RP Fulscher, MP, Chem Ctr Lund, Dept Theoret Chem, POB 124, S-22100 Lund,
   Sweden.
CR AARON JJ, 1987, J MOL STRUCT, V156, P119
   ALBINSSON B, 1993, J AM CHEM SOC, V115, P223
   ANDERSSON K, 1994, MOLCAS VERSION 3
   BROO A, 1996, CHEM PHYS, V211, P147
   BROO A, 1997, J PHYS CHEM A, V101, P3589
   CALLIS PR, 1983, ANNU REV PHYS CHEM, V34, P329
   CAMINATI W, 1996, CHEM PHYS LETT, V251, P189
   CHEN HH, 1969, J CHEM PHYS, V51, P1862
   CLARK LB, 1965, J AM CHEM SOC, V87, P11
   DEVOE H, 1962, J MOL BIOL, V4, P500
   DROBNIK J, 1966, PHOTOCHEM PHOTOBIOL, V5, P13
   FULSCHER MP, 1992, J PHYS CHEM-US, V96, P9204
   FULSCHER MP, 1995, J AM CHEM SOC, V117, P2089
   FULSCHER MP, 1997, J AM CHEM SOC, V119, P6168
   GONELLA NC, 1982, J AM CHEM SOC, V104, P3162
   HA TK, 1996, J MOL STRUC THEOCHEM, V164, P161
   KWIATKOWSKI JS, 1990, J MOL STRUCT THEOCHE, V208, P35
   LIN J, 1980, J AM CHEM SOC, V102, P4627
   LISTER JH, 1971, CHEM HETEROCYCLIC CO
   LORENTZON J, 1995, J AM CHEM SOC, V117, P9265
   MAJOUBE M, 1995, J MOL STRUCT, V355, P147
   MALMQVIST PA, 1989, CHEM PHYS LETT, V155, P189
   MASON SF, 1954, J CHEM SOC, P2071
   NOWAK MJ, 1994, J PHYS CHEM-US, V98, P2813
   NOWAK MJ, 1994, SPECTROCHIM ACTA A, V50, P1081
   PLATT JR, 1949, J CHEM PHYS, V17, P489
   RICE JE, 1995, MULLIKENTM VERSION 2
   ROOS BO, 1992, CHEM PHYS LETT, V192, P5
   ROOS BO, 1995, QUANTUM MECH ELECT S, P357
   ROOS BO, 1996, ADV CHEM PHYS, V93, P219
   ROOS BO, 1996, J MOL STRUC-THEOCHEM, V388, P257
   RUBIO M, 1994, CHEM PHYS, V179, P395
   SCHUMACHER M, 1982, J AM CHEM SOC, V104, P4167
   SCHUMACHER M, 1983, CHEM BER, V116, P2001
   SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P185
   SERRANOANDRES L, 1996, J PHYS CHEM-US, V100, P6484
   VASAK M, 1982, TETRAHEDRON, V38, P1571
   VOET D, 1963, BIOPOLYMERS, V1, P193
   WALLACE SL, 1980, TETRAHEDRON, V36, P1531
   WATSON DG, 1965, ACTA CRYSTALLOGR, V19, P573
   WIDMARK PO, 1990, THEOR CHIM ACTA, V77, P291
NR 41
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAR 25
PY 1999
VL 103
IS 12
BP 1838
EP 1845
PG 8
SC Chemistry, Physical
GA 182JV
UT ISI:000079496600021
ER

PT J
AU Dias, LC
   Custodio, R
   Pessine, FBT
TI Theoretical studies of Nile Red by ab initio and semiempirical methods
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CHARGE-TRANSFER; MO THEORY; FLUORESCENCE; STATES; SOLVENTS; HAM-3; AM1
AB Ab initio and semiempirical calculations were carried out for the Nile
   Red (NR) molecule to study the possible occurrence of the twisted
   intramolecular charge transfer process. The results showed that NR is
   planar in the ground state (using the CEP-31g basis set) with a high
   barrier to rotation of the diethylamine group by 90 degrees (0.334 and
   0.381 eV with AM1 and CEP-31g, respectively). CIS calculations showed
   that the charge transfer decreases after the twisting, in contrast to
   the TICT prediction. The solvatochromic effect was justified through
   the dipole moments calculated for the first excited state. (C) 1999
   Elsevier Science B.V. All rights reserved.
C1 Univ Fed Parana, Dept Quim, BR-81531970 Curitiba, Parana, Brazil.
   Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Pessine, FBT, Univ Fed Parana, Dept Quim, BR-81531970 Curitiba, Parana,
   Brazil.
CR ASBRINK L, 1977, CHEM PHYS LETT, V52, P63
   ASBRINK L, 1977, CHEM PHYS LETT, V52, P72
   ASBRINK L, 1980, QCPE, V12, P292
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DEYE JF, 1990, ANAL CHEM, V62, P615
   DUTTA AK, 1996, CHEM PHYS LETT, V258, P369
   DUTTA AK, 1996, J PHOTOCH PHOTOBIO A, V93, P57
   FRISCH MJ, 1995, GAUSSIAN 94
   LIPPERT E, 1961, ANGEW CHEM, V73, P695
   LIPPERT E, 1962, ADV MOL SPECTROSC, P443
   RETTIG W, 1979, CHEM PHYS LETT, V62, P115
   RETTIG W, 1994, TOP CURR CHEM, V169, P253
   ROTKIEWICZ K, 1973, CHEM PHYS LETT, V19, P315
   ROTKIEWICZ K, 1973, CHEM PHYS LETT, V21, P212
   SARKAR N, 1994, LANGMUIR, V10, P326
   SCHOLES GD, 1997, CHEM PHYS LETT, V266, P521
   SERRANOANDRES L, 1995, J AM CHEM SOC, V117, P3189
   SIEMIARCZUK A, 1977, CHEM PHYS LETT, V51, P315
   SOUJANYA T, 1995, CHEM PHYS LETT, V236, P503
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
NR 20
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAR 26
PY 1999
VL 302
IS 5-6
BP 505
EP 510
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 180CM
UT ISI:000079367600021
ER

PT J
AU Miwa, RH
   Schmidt, TM
TI DX centers in GaAs/Si-delta/AlAs heterostructure
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID DOPED GAAS; ELECTRONIC-STRUCTURE; ALXGA1-XAS ALLOYS; NEGATIVE-U; SI
AB Microscopic mechanisms of impurity spreading in GaAs/Si-delta/AlAs
   heterostructure have been investigated using an ab initio
   pseudopotential total energy calculation. Our results showed that
   silicon atoms can move from the delta-doped plane occupying
   interstitial positions, favored by the high doped concentration,
   forming DX centers. The silicon impurity position, out of the delta
   plane in the AlAs layers, presents an energetically stable
   configuration, and in the GaAs layers, presents a metastable
   configuration. As a consequence a silicon doping limit is reached due
   to the presence of localized deep states inside the band gap, when
   silicon atoms are in interstitial positions. (C) 1999 American
   Institute of Physics. [S0003-6951(99)01214-0].
C1 Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Miwa, RH, Univ Fed Uberlandia, Dept Ciencias Fis, CP 593, BR-38400902
   Uberlandia, MG, Brazil.
CR ASHWIN MJ, 1993, J APPL PHYS, V73, P633
   BRANDT O, 1991, APPL PHYS LETT, V59, P2730
   CHADI DJ, 1973, PHYS REV B, V8, P5747
   CHADI DJ, 1988, PHYS REV LETT, V61, P873
   GHOSH S, 1992, PHYS REV B, V46, P7533
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   MAGUIRE J, 1987, APPL PHYS LETT, V50, P516
   MOONEY PM, 1990, J APPL PHYS, V67, P1
   MORGAN TN, 1986, PHYS REV B, V34, P2664
   MOSSER V, 1991, PHYS REV LETT, V66, P1737
   MURRAY R, 1989, J APPL PHYS, V66, P2588
   SCHMIDT TM, 1995, MATER SCI FORUM, V196, P273
   SCHMIDT TM, 1995, PHYS REV B, V51, P7898
   SCHMIDT TM, 1996, P 23 INT C PHYS SEM, P2745
   SCHUBERT EF, 1990, J VAC SCI TECHNOL  2, V8, P2980
   SHI JM, 1996, PHYS REV B, V54, P7996
   SHI JM, 1997, PHYS REV B, V55, P13093
   THEIS TN, 1991, J ELECTRON MATER, V20, P35
   WOLK JA, 1991, PHYS REV LETT, V66, P774
   YAMAGUCHI E, 1991, J PHYS SOC JPN, V60, P3093
NR 20
TC 6
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
   11797-2999 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD APR 5
PY 1999
VL 74
IS 14
BP 1999
EP 2001
PG 3
SC Physics, Applied
GA 182DM
UT ISI:000079483300023
ER

PT J
AU Zeng, Z
   Guenzburger, D
   Ellis, DE
TI Electronic structure, spin couplings, and hyperfine properties of
   nanoscale molecular magnets
SO PHYSICAL REVIEW B
LA English
DT Article
ID WATER OXIDATION CENTER; FERRITIN CORES; MAGNETIZATION; CLUSTERS;
   TRANSITION; COMPLEXES; MODELS; STATE; NANOMAGNET; EXCHANGE
AB First-principles self-consistent spin-polarized electronic structure
   calculations were performed for the nanoscale magnetic molecules
   Mn12O12(CH3COO)(16)(H2O)(4) and Fe11O6(OH)(6)(O2CPh)(15). The numerical
   discrete variational method was employed, within density-functional
   theory. Charges and magnetic moments were obtained for the atoms, as
   well as density of states diagrams, and charge- and spin-density maps.
   For Mn12O12(CH3COO)(16)(H2O)(4), values of the Heisenberg exchange
   parameters J were derived from the calculations; Mossbauer hyperfine
   parameters were calculated for Fe11O6(OH)(6)(O2CPh)(15) and compared to
   reported experimental values. [S0163-1829(99)05709-4].
C1 Acad Sinica, Inst Solid State Phys, Hefei 230031, Peoples R China.
   Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
   Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
   Northwestern Univ, Ctr Mat Res, Evanston, IL 60208 USA.
RP Zeng, Z, Acad Sinica, Inst Solid State Phys, Hefei 230031, Peoples R
   China.
CR AWSCHALOM DD, 1992, SCIENCE, V258, P414
   AWSCHALOM DD, 1995, PHYS TODAY, V48, P43
   BARRA AL, 1997, PHYS REV B, V56, P8192
   BATTOCLETTI M, 1996, PHYS REV B, V53, P9776
   BLONDIN G, 1990, CHEM REV, V90, P1359
   CANESCHI A, 1991, J AM CHEM SOC, V113, P5873
   CANESCHI A, 1997, J CHEM SOC DALT 1107, P3963
   CAO PL, 1982, PHYS REV B, V25, P2124
   CHEESMAN MR, 1997, CHEM COMMUN     0907, P1677
   DELLEY B, 1982, J CHEM PHYS, V76, P1949
   DUFEK P, 1995, PHYS REV LETT, V75, P3545
   ELLIS DE, IN PRESS ADV QUANT C
   ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
   FRIEDMAN JR, 1996, PHYS REV LETT, V76, P3830
   GATTESCHI D, 1994, SCIENCE, V265, P1054
   GOODENOUGH JB, 1955, PHYS REV, V100, P564
   GORUN SM, 1987, J AM CHEM SOC, V109, P3337
   GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
   GUBANOV VA, 1980, PHYS REV LETT, V44, P1633
   HENDRICKSON DN, 1992, J AM CHEM SOC, V114, P2455
   HENNION M, 1997, PHYS REV B, V56, P8819
   LASCIALFARI A, 1998, PHYS REV B, V57, P514
   LIONTI F, 1997, J APPL PHYS 2A, V81, P4608
   LIS T, 1980, ACTA CRYSTALLOGR B, V36, P2042
   MANN S, 1986, J MOL BIOL, V188, P225
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
   PAINTER GS, 1970, PHYS REV           B, V1, P4747
   PAPAEFTHYMIOU GC, 1992, PHYS REV B, V46, P10366
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PARR RG, 1995, DENSITY FUNCTIONAL T
   POWELL AK, 1995, J AM CHEM SOC, V117, P2491
   REYNOLDS PA, 1996, INORG CHEM, V35, P545
   ROSEN A, 1976, J CHEM PHYS, V65, P3629
   SCHMITT EA, 1992, J AM CHEM SOC, V114, P6109
   SESSOLI R, 1993, J AM CHEM SOC, V115, P1804
   SESSOLI R, 1993, NATURE, V365, P141
   SLATER JC, 1974, SELF CONSISTENT FIEL, V4
   SMITH JMA, 1985, INORG CHIM A-BIOINOR, V106, P193
   STPIERRE TG, 1996, COORDIN CHEM REV, V151, P125
   STROUD AH, 1971, APPROXIMATE CALCULAT
   TERRA J, 1995, J PHYS CHEM-US, V99, P4935
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
   ZENG Z, 1997, PHYS REV B, V55, P12522
   ZHAO XG, 1997, INORG CHEM, V36, P1198
NR 45
TC 19
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 1
PY 1999
VL 59
IS 10
BP 6927
EP 6937
PG 11
SC Physics, Condensed Matter
GA 177WG
UT ISI:000079233600048
ER

PT J
AU Mathon, J
   Umerski, A
   Villeret, M
   Muniz, RB
TI Quantum oscillations of the spin density in magnetic multilayers
SO PHYSICAL REVIEW B
LA English
DT Article
ID NONMAGNETIC METALLIC LAYER; AB-INITIO CALCULATIONS; WELL STATES; FE/CU
   MULTILAYERS; EXCHANGE; CU; POLARIZATION; SPACER; CO/CU/CO(001); COPPER
AB An asymptotic stationary phase formula is derived for the oscillatory
   spin density induced in a nonmagnetic spacer sandwiched between two
   semi-infinite ferromagnets. It gives an explicit dependence for the
   polarization on the spacer layer thickness and on the distance from the
   ferromagnet-spacer interface. Both dependences are shown to oscillate
   with thr same periods as the exchange coupling between the
   ferromagnetic layers. The magnitude of the polarization is governed by
   the degree of confinement of carriers in the spacer quantum well and by
   the curvature of the spacer Fermi surface. The formula is applied to a
   Co/Cu/Co (001) trilayer described by tight-binding bands fitted to an
   ab initio band structure. Its validity is tested against a fully
   numerical calculation using the same band structure. As in the case of
   the oscillatory exchange coupling, the induced polarization is
   dominated by the contribution of the Cu Fermi surface neck extrema
   leading to a short period oscillation of 2.6 atomic planes. An
   interesting non-Ruderman-Kittel-Kasuya-Yosida initial decay of the
   induced polarization is discussed. [S0163-1829 (99)06309-2].
C1 City Univ London, Dept Math, London EC1V 0HB, England.
   Univ Fed Fluminense, Dept Fis, Niteroi, RJ, Brazil.
RP Mathon, J, City Univ London, Dept Math, London EC1V 0HB, England.
CR BLANC JAC, 1994, INTRO ELECT MAGNETIC, V1
   BRUNO P, 1991, PHYS REV LETT, V67, P1602
   BRUNO P, 1992, PHYS REV B, V46, P261
   COSTA AT, 1997, PHYS REV B, V55, P3724
   DRCHAL V, 1996, PHYS REV B, V53, P15036
   EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85
   EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941
   JIN QY, 1994, PHYS REV LETT, V72, P768
   KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105
   KUDRNOVSKY J, 1996, PHYS REV B, V53, P5125
   LANG P, 1993, PHYS REV LETT, V71, P1927
   LANG P, 1996, PHYS REV B, V53, P9092
   MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873
   MATHON J, 1995, PHYS REV LETT, V74, P3696
   MATHON J, 1997, PHYS REV B, V56, P11797
   MORUZZI VL, 1978, CALCULATED ELECT PRO
   NIKLASSON AMN, 1996, PHYS REV B, V53, P8509
   NORDSTROM L, 1994, PHYS REV B, V50, P13058
   NORDSTROM L, 1996, J APPL PHYS 2A, V79, P4515
   ORTEGA JE, 1992, PHYS REV LETT, V69, P844
   ORTEGA JE, 1993, PHYS REV B, V47, P1540
   PAPACONSTANTOPO.DA, 1986, HDB BAND STRUCTURE E
   PARKIN SSP, 1990, PHYS REV LETT, V64, P2304
   PIZZINI S, 1995, PHYS REV LETT, V74, P1470
   SAMANT MG, 1994, PHYS REV LETT, V72, P1112
   SEGOVIA P, 1996, PHYS REV LETT, V77, P3455
   UMERSKI A, UNPUB
   UMERSKI A, 1997, PHYS REV B, V55, P5266
NR 28
TC 9
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 1
PY 1999
VL 59
IS 9
BP 6344
EP 6350
PG 7
SC Physics, Condensed Matter
GA 178EX
UT ISI:000079254300054
ER

PT J
AU Schiavon, RP
   Barbuy, B
TI The temperature scale of metal-rich M giants based on TiO bands:
   Population synthesis in the near-infrared
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE infrared : stars; molecular data; stars : atmospheres; stars :
   fundamental parameters; stars : late-type
ID OLD STELLAR POPULATIONS; GLOBULAR-CLUSTERS; OSCILLATOR-STRENGTHS; MODEL
   ATMOSPHERES; STARS; SPECTRA; SPECTROSCOPY; GALAXIES; SYSTEMS; LIBRARY
AB We have computed a grid of high-resolution synthetic spectra for cool
   stars (2500 < T-eff < 6000K) in the wavelength range 6000-10200
   Angstrom by employing an updated line list of atomic and molecular
   lines together with state-of-the-art model atmospheres. As a
   by-product, by fitting TiO band heads in spectra of well-known M
   giants, we have derived the electronic oscillator strengths of the TiO
   gamma', delta, epsilon, and phi systems. The derived oscillator
   strengths for the gamma' epsilon and phi systems differ from the
   laboratory and ab initio values found in the literature, but they are
   consistent with the model atmospheres and line lists employed,
   resulting in a good match to the observed spectra of M giants of known
   parameters. The behavior of TiO bands as a function of the stellar
   parameters T-eff log g and [Fe/H] is presented,and the use of TiO
   spectral indices in stellar population studies is discussed.
C1 Univ Sao Paulo, Inst Astron & Geofis, Dept Astron, BR-01060970 Sao Paulo, Brazil.
RP Schiavon, RP, CNPq, Observ Nacl, Dept Astron, Rua Gen Jose Cristino 77,
   BR-20921400 Rio De Janeiro, Brazil.
CR ALLARD F, 1995, ASTROPHYS J 1, V445, P433
   ALVAREZ R, 1998, ASTRON ASTROPHYS, V330, P1109
   BARAFFE I, 1995, APJ, V446, L35
   BARBUY B, 1982, THESIS U PARIS 7
   BARBUY B, 1985, ASTRON ASTROPHYS, V151, P189
   BARBUY B, 1991, ASTRON ASTROPHYS, V247, P15
   BARBUY B, 1994, ASTROPHYS J, V430, P218
   BARBUY B, 1997, IAU S FUND STELL PAR, V189, P203
   BARBUY B, 1998, UNPUB
   BARBUY B, 1999, UNPUJB
   BARNBAUM C, 1996, ASTRON ASTROPHYS, V310, P259
   BELL RA, 1979, ASTROPHYS J        S, V41, P593
   BESSELL MS, 1998, ASTRON ASTROPHYS, V333, P231
   BICA E, 1986, ASTRON ASTROPHYS, V162, P21
   BRETT JM, 1990, ASTRON ASTROPHYS, V231, P440
   BRUZUAL G, 1997, ASTRON J, V114, P1531
   BRUZUAL G, 1998, UNPUB
   BURSTEIN D, 1984, ASTROPHYS J, V287, P586
   DAVIS SP, 1986, ASTROPHYS J, V309, P449
   DELBOUILLE L, 1973, PHOTOMETRIC ATLAS SO
   DESOUZA RE, 1993, ASTRON J, V105, P1737
   ERDELYIMENDES M, 1989, ASTRON ASTROPHYS SUP, V80, P229
   FLUKS MA, 1994, ASTRON ASTROPHYS SUP, V105, P311
   GREVESSE N, 1996, ASTR SOC P, V99, P117
   GUARNIERI MD, 1998, ASTRON ASTROPHYS, V331, P70
   HAMUY M, 1994, PUBL ASTRON SOC PAC, V106, P566
   HEDGECOCK IM, 1995, ASTRON ASTROPHYS, V304, P667
   HOFFLEIT D, 1991, PRELIMINARY VERSION
   HUBER KP, 1979, CONSTANTS DIATOMIC M
   JACOBY GH, 1984, ASTROPHYS J SUPPL S, V56, P257
   JORGENSEN UG, 1994, ASTRON ASTROPHYS, V284, P179
   KOVACS I, 1969, ROTATIONAL STRUCTURE
   KURUCZ RL, 1992, IAU S, V149, P225
   LANGHOFF SR, 1997, ASTROPHYS J 1, V481, P1007
   LEJEUNE T, 1998, ASTRON ASTROPHYS SUP, V130, P65
   LUNDEVALL C, 1998, IN PRESS J MOL SPECT
   MILONE A, 1994, ASTRON ASTROPHYS SUP, V108, P449
   MILONE A, 1995, ASTRON ASTROPHYS SUP, V113, P547
   ORTOLANI S, 1990, ASTRON ASTROPHYS, V236, P362
   ORTOLANI S, 1995, NATURE, V377, P701
   PHILLIPS JG, 1973, APJS, V26, P313
   PLEZ B, 1992, ASTRON ASTROPHYS, V256, P551
   RIDGWAY ST, 1980, ASTROPHYS J, V235, P126
   RIEKE GH, 1985, ASTROPHYS J, V288, P618
   SANTOS JFC, 1995, ASTRON ASTROPHYS, V303, P753
   SCHALLER G, 1992, ASTRON ASTROPHYS SUP, V96, P269
   SCHIAVON RP, 1997, ASTROPHYS J 1, V484, P499
   SIMARD B, 1991, J MOL SPECTROSC, V148, P128
   SPITE M, 1967, ANN ASTROPHYS, V30, P211
   WORTHEY G, 1994, ASTROPHYS J SUPPL S, V94, P687
NR 50
TC 16
PU UNIV CHICAGO PRESS
PI CHICAGO
PA 5720 SOUTH WOODLAWN AVE, CHICAGO, IL 60637-1603 USA
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JAN 10
PY 1999
VL 510
IS 2
PN Part 1
BP 934
EP 943
PG 10
SC Astronomy & Astrophysics
GA 176NJ
UT ISI:000079157600039
ER

PT J
AU Tabata, A
   Lima, AP
   Teles, LK
   Scolfaro, LMR
   Leite, JR
   Lemos, V
   Schottker, B
   Frey, T
   Schikora, D
   Lischka, K
TI Structural properties and Raman modes of zinc blende InN epitaxial
   layers
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ELECTRON-MICROSCOPY; ELASTIC-CONSTANTS; GAN; NITRIDE; FILMS; PHASE;
   ALN; SPECTROSCOPY
AB We report on x-ray diffraction and micro-Raman scattering studies on
   zinc blende InN epitaxial films. The samples were grown by molecular
   beam epitaxy on GaAs(001) substrates using a InAs layer as a buffer.
   The transverse-optical (TO) and longitudinal-optical phonon frequencies
   at Gamma of c-InN are determined and compared to the corresponding
   values for c-GaN. Ab initio self-consistent calculations are carried
   out for the c-InN c-GaN lattice parameters and TO phonon frequencies. A
   good agreement between theory and experiment is found. (C) 1999
   American Institute of Physics. [S0005-6951(99)00503-3].
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
   Univ Gesamthsch Paderborn, FB Phys 6, D-33098 Paderborn, Germany.
RP Tabata, A, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
   Sao Paulo, Brazil.
CR BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
   CARLES R, 1980, PHYS REV B, V22, P4804
   CHANDRASEKHAR D, 1995, J CRYST GROWTH, V152, P135
   HARBEKE G, 1982, LANDOLTBNROSNTEIN, V17
   INUSHIMA T, 1996, INST PHYS CONF SER, V142, P971
   JENKINS LC, 1995, J VAC SCI TECHNOL B, V13, P1585
   KIM K, 1996, PHYS REV B, V53, P16310
   KWON HJ, 1996, APPL PHYS LETT, V69, P937
   LEI T, 1992, J APPL PHYS, V71, P4933
   ORTON JW, 1998, REP PROG PHYS, V61, P1
   PETROV I, 1992, APPL PHYS LETT, V60, P2491
   SCHWARZ K, 1996, LECT NOTES CHEM, V67, P139
   SHERWIN ME, 1991, J APPL PHYS, V69, P8423
   SIEGLE H, 1995, SOLID STATE COMMUN, V96, P943
   STRITE S, 1993, J CRYST GROWTH, V127, P204
   TABATA A, 1996, J APPL PHYS 1, V79, P4137
   VANCAMP PE, 1990, PHYS REV B, V41, P1598
   WEINSTEIN BA, 1998, SOLID STATE COMMUN, V106, P567
   WRIGHT AF, 1994, PHYS REV B, V50, P2159
   WRIGHT AF, 1995, PHYS REV B, V51, P7866
   YAMAMOTO A, 1997, J CRYST GROWTH, V174, P641
NR 21
TC 52
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
   11797-2999 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JAN 18
PY 1999
VL 74
IS 3
BP 362
EP 364
PG 3
SC Physics, Applied
GA 158TW
UT ISI:000078133800012
ER

PT J
AU Martins, LMMD
   Arbilla, G
   da Silva, EC
TI Unimolecular decomposition of formaldehyde: H2CO -> H-2+CO. Part I: Ab
   initio reaction path and variational transition state rate constants
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PHOTOFRAGMENTATION DYNAMICS; PHOTO-DISSOCIATION; ENERGY; DISTRIBUTIONS;
   SURFACE; H2CO; PHOTODISSOCIATION; PHOTOCHEMISTRY; FEATURES; PRODUCT
AB Features of the ground-state potential energy surface of formaldehyde
   relevant to its dissociation to H-2 and CO were analyzed by means of ab
   initio calculations. The multiconfigurational self-consistent field
   (MCSCF) calculation gave a critical energy of 83.22 kcal/mol. Accurate
   structures are presented for H2CO(X(1)A(1)) and the saddle point. The
   reaction path was determined and the coupling between reaction
   coordinate and normal modes was analyzed along it, with two different
   levels of calculation (Hartree-Fock and MCSCF). Using these data, the
   transition state was located and the rate constants were calculated for
   the temperature range 200-4500 K using the generalized transition state
   theory.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Arbilla, G, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis,
   BR-21949900 Rio De Janeiro, Brazil.
CR BAKER J, 1986, J COMPUT CHEM, V7, P385
   BALDRIDGE KK, 1989, J PHYS CHEM-US, V93, P5107
   BAMFORD DJ, 1985, J CHEM PHYS, V82, P3032
   BUTENHOFF TJ, 1990, J CHEM PHYS, V92, P377
   CERJAN CJ, 1981, J CHEM PHYS, V75, P2800
   CHANG YT, 1992, J CHEM PHYS, V96, P4341
   CHUANG YY, 1996, POLYRATE VERSION 7 0
   DEBARRE D, 1985, J CHEM PHYS, V83, P4476
   DUPUIS M, 1980, NATL RESOUR COMPUT C
   DUPUIS M, 1983, J CHEM PHYS, V79, P6167
   FRISCH MJ, 1981, J PHYS CHEM-US, V85, P1467
   FRISCH MJ, 1984, J CHEM PHYS, V81, P1882
   FROST W, 1983, J PHYS CHEM-US, V87, P4489
   GARRETT BC, 1980, J PHYS CHEM-US, V84, P1730
   GILBERT RG, 1990, THEORY UNIMOLECULAR
   GODDARD JD, 1979, J CHEM PHYS, V70, P5117
   GODDARD JD, 1981, J CHEM PHYS, V75, P3459
   GREEN WH, 1990, CHEM PHYS LETT, V169, P127
   HOUSTON PL, 1976, J CHEM PHYS, V65, P757
   HUZINAGA S, 1965, J CHEM PHYS, V42, P1293
   LIU YP, 1993, J AM CHEM SOC, V115, P2408
   LIU YP, 1993, J AM CHEM SOC, V115, P2408
   LU DH, 1992, COMPUT PHYS COMMUN, V71, P235
   MARTINS LMM, IN PRESS
   MILLER WH, 1979, J AM CHEM SOC, V101, P6810
   MILLER WH, 1980, J CHEM PHYS, V72, P99
   MILLER WH, 1987, CHEM REV, V87, P19
   MOORE CB, 1983, ANNU REV PHYS CHEM, V34, P525
   PESLHERBE GH, 1996, J CHEM PHYS, V104, P7882
   SCUSERIA GE, 1989, J CHEM PHYS, V90, P3629
   SKODJE RT, 1981, J PHYS CHEM-US, V85, P3019
   STECKER R, 1994, POLYRATE VERSION 6 2
   TERENTIS AC, 1996, CHEM PHYS LETT, V258, P626
   TROE J, 1984, J PHYS CHEM-US, V88, P4375
   TRUHLAR DG, 1970, J CHEM PHYS, V52, P3842
   TRUHLAR DG, 1971, J AM CHEM SOC, V93, P1840
   TRUHLAR DG, 1985, THEORY CHEM REACTION, V4, P65
   YAMADA K, 1971, J MOL SPECTROSC, V38, P70
   YOUNG ES, 1973, J CHEM PHYS, V58, P3988
NR 39
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 24
PY 1998
VL 102
IS 52
BP 10805
EP 10812
PG 8
SC Chemistry, Physical
GA 153MT
UT ISI:000077837400030
ER

PT J
AU Miwa, RH
TI Theoretical study of Si-Ge mixed dimers on Si(001) surfaces
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculation; growth process; pseudopotential; Si and
   Ge
ID DENSITY-FUNCTIONAL THEORY; ATOMIC-STRUCTURE; GROUND-STATE; GROWTH
AB We have studied the atomic geometry of mixed Si-Ge dimers on Si(001)
   surface, using first-principle total energy calculations. Our results
   indicate that the formation of mixed Si-Ge dimers, with the Si atoms in
   a "down" position and the Ge atoms in an "up" position, is an
   energetically more favourable surface topology with respect to the
   switching between Si and Ge atoms, where the Si atoms occupy an "up"
   position and the Ge atoms occupy a "down" position. The formation of
   pure Si-Si and Ge-Ge buckled dimers was also considered, and our
   results indicate that this structure is not energetically favourable
   against formation of mixed Si-Ge buckled dimers. For a 2 x 4 surface
   covered by mixed Si-Ge buckled dimers in an antiphase topology, our
   total energy calculations indicate that this configuration is
   energetically equivalent to the 2 x 4 surface in a semi-antiphase
   topology. (C) 1998 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Miwa, RH, Univ Fed Uberlandia, Dept Ciencias Fis, CR 593, BR-38400902
   Uberlandia, MG, Brazil.
EM hiroki@inga.ufu.br
CR CAR R, 1985, PHYS REV LETT, V55, P2471
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CHEN X, 1997, PHYS REV B, V55, R7319
   CHO JH, 1994, PHYS REV B, V49, P13670
   CHO JH, 1994, PHYS REV B, V50, P17139
   DABROWSKI J, 1992, APPL SURF SCI, V56, P15
   FONTES E, 1993, PHYS REV LETT, V70, P2790
   GONZE X, 1991, PHYS REV B, V44, P8503
   HOHENBERG P, 1964, PHYS REV B, V864, P136
   JENKINS SJ, 1997, SURF SCI, V377, P887
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   LIN DS, 1991, PHYS REV LETT, V67, P2187
   NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
   OYANAGI H, 1995, PHYS REV B, V52, P5824
   PATTHEY L, 1995, PHYS REV LETT, V75, P2538
   SASAKI M, 1994, APPL SURF SCI, V82, P387
   STUMPF R, 1994, COMPUT PHYS COMMUN, V79, P447
   YEON HW, 1997, SURF SCI, V381, L533
NR 18
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD NOV 27
PY 1998
VL 418
IS 1
BP 55
EP 63
PG 9
SC Chemistry, Physical
GA 148VM
UT ISI:000077554300014
ER

PT J
AU Morgon, NH
   Riveros, JM
TI Calculation of the proton and electron affinity of simple Ge-containing
   species using density functional theory
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID ION-MOLECULE REACTIONS; GAS-PHASE ACIDITIES; DISSOCIATION-ENERGY;
   ATOMS; BOND; TETRAMETHYLGERMANE; APPROXIMATION; METHYLGERMANE; ANIONS;
   GEH5+
AB Basis sets developed using the generator coordinate method and a
   pseudopotential have been adapted to density functional theory to
   calculate the proton affinity of GeH4, GeH3-, GeF3-, CH3GeH2-, and
   Ge(OH)(3)(-) and the electron affinity of .GeH3 and .GeF3. The proton
   affinity of GeH4 is calculated to be 673.9 kJ mol(-1) at 298 K, while
   values for GeH3- (1505.0 kJ mol(-1)) and CH3GeH2- (1529.0 kJ mol(-1))
   are in excellent agreement with experimental values. The electron
   affinity of .GeF3 is predicted to be in the range of 3.5-3.7 eV by
   calculations using different functionals and ab initio methods. The
   present calculations reveal that the B3P86 method can yield proton
   affinities comparable to those obtained with other high-quality methods
   but consistently overestimates electron affinities of simple Ge
   radicals.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
   Univ Sao Paulo, Inst Chem, BR-05599970 Sao Paulo, Brazil.
RP Riveros, JM, UNICAMP, Inst Chem, Caixa Postal 6154, BR-13083970
   Campinas, SP, Brazil.
EM jmrnigra@quim.iq.usp.br
CR ARCHIBONG EF, 1994, J PHYS CHEM-US, V98, P10084
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BENZI P, 1989, J ORGANOMET CHEM, V373, P289
   BINNING RC, 1990, J CHEM PHYS, V92, P1860
   CALLOMON JH, 1976, LANDOLTBORNSTEIN, V7
   CURTISS LA, 1995, J CHEM PHYS, V103, P6104
   CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
   DECOUZON M, 1993, J AM SOC MASS SPECTR, V4, P54
   EICHHOLTZ M, 1997, Z PHYS CHEM 2, V199, P267
   FRANKLIN JL, 1974, ADV MASS SPECTROM, V6, P319
   FRENKING G, 1997, J AM CHEM SOC, V119, P6648
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GIORDAN M, 1997, CHEM PHYS LETT, V279, P396
   HARLAND PW, 1972, INT J MASS SPECTROM, V10, P169
   HITCHMAN ML, 1993, CHEM VAPOR DEPOSITIO
   HU CH, 1992, CHEM PHYS LETT, V190, P543
   HUNTER EP, COMMUNICATION
   HUNTER EPL, 1998, J PHYS CHEM REF DATA, V27, P413
   KHABASHESKU VN, 1998, J AM CHEM SOC, V120, P5005
   KOHDASUDOH S, 1983, J PHYS B ATOM MOL PH, V16, L529
   KUDIN KN, 1998, J PHYS CHEM A, V102, P744
   MAYER PM, 1997, INT J MASS SPECTROM, V167, P689
   MERRILL GN, 1996, J PHYS CHEM-US, V100, P17465
   MOC J, 1990, CHEM PHYS LETT, V173, P557
   MORGON NH, 1997, CHEM PHYS LETT, V275, P457
   MORGON NH, 1998, J PHYS CHEM A, V102, P2050
   NEGISHI Y, 1997, CHEM PHYS LETT, V269, P199
   OPERTI L, 1993, ORGANOMETALLICS, V12, P4509
   ORTIZ JV, 1987, J AM CHEM SOC, V109, P5072
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   POLA J, 1992, J ORGANOMET CHEM, V437, P271
   REDFERN PC, 1997, J PHYS CHEM A, V101, P8701
   REED KJ, 1974, J CHEM PHYS, V61, P4830
   SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
   SCHREINER PR, 1994, J CHEM PHYS, V101, P2141
   SEGOVIA M, 1997, CHEM PHYS LETT, V277, P490
   SEMINARIO JM, 1995, THEORETICAL COMPUTAT, V2
   SENZER SN, 1980, J PHYS CHEM-US, V84, P3066
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
   TANABE FKJ, 1996, J PHYS CHEM-US, V100, P2862
   WANG JLF, 1974, J CHEM PHYS, V60, P2158
   XAVIER LA, INT J MASS SPECTROM
NR 42
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 10
PY 1998
VL 102
IS 50
BP 10399
EP 10403
PG 5
SC Chemistry, Physical
GA 148QP
UT ISI:000077543700028
ER

PT J
AU Araujo, RCMU
   Ramos, MN
TI An ab initio MP2 study of HCN-HX hydrogen bonded complexes
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE ab initio MP2; binding energy; infrared parameters; hydrogen bond
ID INFRARED-SPECTROSCOPY; MOLECULAR-PROPERTIES; ROTATIONAL SPECTRUM;
   PERTURBATION-THEORY; GAS-PHASE; ACETYLENE; INTENSITIES; ENERGIES;
   ABINITIO; DIMER
AB An ab initio MP2/6-311++G* * study has been performed to obtain
   geometries, binding energies and vibrational properties of HCN-HX
   H-bonded complexes with X = F, Cl, NC, CN and CCH. These MP2/6-311++G**
   results have revealed that: (i) the calculated H-bond lengths are in
   very good agreement with the experimental ones; (ii) the H-bond
   strength is associated with the intermolecular charge transfer and
   follows the order: HCN-HNC approximate to HCN-HF > HCN-HCl approximate
   to HCN-HCN > HCN-HCCH; (iii) BSSE correction introduces an average
   reduction of 2.4 kJ/mol on the MP2/6-311++G** binding energies, i.e.
   11% of the uncorrected binding energy; (iv) the calculated zero-point
   energies reduce the stability of these complexes and show a good
   agreement with the available experimental values; (v) the H-X
   stretching frequency is shifted downward upon H-bond formation. This
   displacement is associated with the H-bond length; (vi) The more
   pronounced effect on the infrared intensities occurs with the H-X
   stretching intensity. It is much enhanced after complexation due to the
   charge-flux term; (vii) the calculated intermolecular stretching
   frequencies are in very good agreement with the experimental ones; and,
   finally, (viii) the results obtained for the HCN-HX complexes follow
   the same profile as those found for the acetylene-HX series but, in the
   latter case, the effects on the properties of the free molecules due to
   complexation are less pronounced than those in KCN-HX.
C1 Univ Fed Paraiba, Dept Quim, BR-58036300 Joao Pessoa, Paraiba, Brazil.
   Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901 Recife, PE, Brazil.
RP Araujo, RCMU, Univ Fed Paraiba, Dept Quim, BR-58036300 Joao Pessoa,
   Paraiba, Brazil.
CR ARAUJO RCM, UNPUB J CHEM SOC F2
   ARAUJO RCMU, 1995, SPECTROCHIM ACTA A, V51, P821
   ARAUJO RCMU, 1996, THEOCHEM-J MOL STRUC, V366, P233
   BARNES AJ, 1983, J MOL STRUCT, V100, P259
   BARTLETT RJ, 1975, J CHEM PHYS, V62, P3258
   BISHOP DM, 1982, J PHYS CHEM REF DATA, V11, P119
   BOX GEP, 1978, STAT EXPT
   BOYS SF, 1970, MOL PHYS, V19, P553
   BUCKINGHAM AD, 1988, CHEM REV, V88, P963
   BUXTON LW, 1981, CHEM PHYS, V56, P399
   CRAW JS, 1991, SPECTROCHIM ACTA A, V47, P69
   CURTISS LA, 1973, J MOL SPECTROSC, V48, P413
   DELBENE JE, 1992, INT J QUANTUM CHEM Q, V26, P527
   DELBENE JE, 1995, J PHYS CHEM-US, V99, P10705
   DINUR U, 1990, CHEM PHYS LETT, V166, P211
   FRISCH MJ, 1992, GAUSSIAN 92 REVISION
   GUSSONI M, 1984, J MOL STRUCT, V113, P323
   GUSSONI M, 1989, CHEM PHYS LETT, V160, P200
   HOWARD NW, 1986, J CHEM PHYS, V85, P6898
   KESTNER NR, 1968, J CHEM PHYS, V48, P252
   KING WT, 1976, J PHYS CHEM-US, V80, P2521
   KRISHNAN R, 1978, INT J QUANTUM CHEM, V14, P91
   LEGON AC, 1980, P ROY SOC LOND A MAT, V370, P213
   LEGON AC, 1982, J CHEM PHYS, V76, P2267
   LEGON AC, 1986, CHEM REV, V86, P635
   LEGON AC, 1988, P ROY SOC LOND A MAT, V417, P21
   MARDIA KV, 1979, MULTIVARIATE ANAL
   MCDONALD SA, 1980, J AM CHEM SOC, V102, P2892
   METTEE HD, COMMUNICATION
   METTEE HD, 1973, J PHYS CHEM-US, V77, P1762
   MILLEN DJ, 1978, J MOL STRUCT, V45, P1
   NESBITT DJ, 1988, CHEM REV, V88, P843
   POPLE JA, 1976, INT J QUANTUM CHEM S, V10, P1
   SUZUKI I, 1966, J CHEM PHYS, V44, P3561
   TOSTES JGR, 1987, J PHYS CHEM-US, V91, P3157
   WOFFORD BA, 1986, CHEM PHYS LETT, V124, P579
   WOFFORD BA, 1986, J CHEM PHYS, V85, P105
   WOFFORD BA, 1987, J CHEM PHYS, V87, P4478
   WOFFORD BA, 1987, J CHEM PHYS, V87, P5674
NR 39
TC 10
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD SEP-OCT
PY 1998
VL 9
IS 5
BP 499
EP 505
PG 7
SC Chemistry, Multidisciplinary
GA 148FR
UT ISI:000077494800015
ER

PT J
AU Duarte, HA
   Paniago, EB
   Carvalho, S
   De Almeida, WB
TI Interaction of N-hydroxyacetamide with vanadate: A density functional
   study
SO JOURNAL OF INORGANIC BIOCHEMISTRY
LA English
DT Article
DE vanadate; N-hydroxyacetamide; density functional; metal-ligand
   interaction
ID HYDROXAMIC ACIDS; AB-INITIO; APPROXIMATION; OPTIMIZATION; ENERGY; BOND;
   MO
AB The interaction between N-hydroxyacetamide (HL) and vanadate (VO3-) has
   been theoretically studied using density functional theory. All
   possible tautomers and conformations of two complexes formed have been
   fully optimized and vibrational analysis performed. From reported
   experimental results these two complexes have been shown to be in
   equilibrium in acidic aqueous solution: VO2LH2O and VO2(HL)L. The
   pentacoordinated VO2LH2O species having an intramolecular proton
   transferred from the coordinating H2O ligand to the oxo group, is the
   most stable. Seemingly, the most stable hexacoordinated VO2(HL)L
   species also has an oxo group protonated. Based on the analysis of the
   dipole moments of the species, the solvent effects within the continuum
   model are unlikely to change the relative stabilities of the different
   tautomers and conformers. The experimental infra-red spectrum of the
   VO2LH2O species has been measured and compared directly to the
   calculated frequencies. The most important peaks have been assigned to
   the corresponding normal modes. From the Mulliken population analysis,
   it is shown that the net charge on the vanadium atom and the oxygens
   surrounding the metal center are similar in the two species. The
   different coordination numbers may explain the differences of the
   reported V-51 NMR chemical shifts exhibited by these two species. (C)
   1998 Elsevier Science Inc. All rights reserved.
C1 Lab Quim Computac & Modelagem Mol, Belo Horizonte, MG, Brazil.
   Univ Fed Minas Gerais, ICEx, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil.
   Univ Fed Ouro Preto, ICEB, Dept Quim, Ouro Preto, MG, Brazil.
RP Duarte, HA, Lab Quim Computac & Modelagem Mol, Belo Horizonte, MG,
   Brazil.
CR BAUER L, 1974, ANGEW CHEM, V13, P376
   BECKE AD, 1988, PHYS REV A, V38, P3098
   CASIDA ME, 1996, DEMON SOFTWAREDEMONK
   COUTTS RT, 1967, CAN J PHARM SCI, V2, P1
   COUTTS RT, 1967, CAN J PHARM SCI, V2, P27
   CRICH D, 1989, CHEM REV, V89, P1563
   DEALMEIDA WB, 1997, 6 C CURR TRENDS COMP
   DEALMEIDA WB, 1998, J CHEM SOC DA, V15, P2531
   DUARTE HA, 1997, J PHYS CHEM B, V101, P7464
   FITZPATRICK NJ, 1989, POLYHEDRON, V8, P2255
   FOURNIER R, 1993, J CHEM PHYS, V99, P1801
   GODBOUT N, 1992, CAN J CHEM, V70, P560
   HADZI D, 1957, SPECTROCHIM ACTA, V10, P38
   HUBER KP, 1979, 4 CONSTANTS DIATOMIC
   KEHL H, 1982, CHEM BIOL HYDROXAMIC
   KURZAK B, 1992, COORDIN CHEM REV, V114, P162
   LIPCZYNSKAKOCHA.E, 1991, CHEM REV, V91, P477
   MILLER MJ, 1989, CHEM REV, V89, P1563
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   PERDEW JP, 1986, PHYS REV B, V34, P7406
   PETTERSSON L, 1983, CHEM SCRIPTA, V22, P254
   ROCHA WR, 1997, INT J QUANTUM CHEM, V65, P643
   ROCHA WR, 1998, ORGANOMETALLICS, V17, P1961
   SALAHUB DR, 1987, ADV CHEM PHYS, V69, P447
   SCHLEGEL HB, 1987, AB INITIO METHODS QU, V1
   SIGEL H, 1996, METAL IONS BIOL SYST, V31
   STAMANT A, 1990, CHEM PHYS LETT, V169, P387
   TURI L, 1992, J PHYS CHEM-US, V96, P3709
   YAMAKI RT, 1997, J CHEM SOC DALT 1221, P4817
   YAMIN LJ, 1996, THEOCHEM-J MOL STRUC, V360, P109
   ZIEGLER T, 1987, J AM CHEM SOC, V109, P4825
NR 31
TC 9
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 USA
SN 0162-0134
J9 J INORG BIOCHEM
JI J. Inorg. Biochem.
PD OCT
PY 1998
VL 72
IS 1-2
BP 71
EP 77
PG 7
SC Chemistry, Inorganic & Nuclear; Biochemistry & Molecular Biology
GA 147RA
UT ISI:000077578800009
ER

PT J
AU Marquardt, R
   Quack, M
TI Global analytical potential hypersurfaces for large amplitude nuclear
   motion and reactions in methane. I. Formulation of the potentials and
   adjustment of parameters to ab initio data and experimental constraints
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MONTE-CARLO CALCULATIONS; TRANSITION-STATE THEORY; DIPOLE-MOMENT
   FUNCTION; ADIABATIC CHANNEL MODEL; VIBRATION ENERGY-LEVELS; THERMAL
   RATE-CONSTANT; QUARTIC FORCE-FIELD; CH CHROMOPHORE; H+CH3->CH4
   RECOMBINATION; CORRELATED WAVEFUNCTIONS
AB Analytical representations of the global potential energy surface of
   XYn molecules are developed and applied to model the potential surface
   of methane in the electronic ground state. The generic analytical
   representation allows for a compact, robust, and flexible description
   of potentials fur XYn systems irrespective of the specific nature of
   the atomic interactions. The functions are global in that structures
   near several minima of the potential hypersurface as well as saddle
   points and dissociation limits are well described. Clusters of atoms
   Y-n can be represented as well by this type of function. Care is taken
   to implement conditions resulting from the symmetric group S-n and to
   construct positive definite bilinear forms of special functional forms
   of certain coordinates (such as bond lengths and bond angles), in order
   to avoid artifacts in exceptional ranges of the potential hypersurface.
   These special functional forms include intrinsic, symmetry allowed
   couplings between coordinates such as bending and stretching. We
   include linear potential terms in bond angle coordinates, which result
   in effectively quadratic potential terms for highly symmetric
   structures. True logical multidimensional 01-switching functions
   S-sw(r) of bond lengths r are used to interpolate between limiting
   ranges in the hypersurface. The particular form S-sw(r) similar to
   exp(-(r(sw)/r)(nsw)) allows us to describe the potential as a multipole
   expansion representation in the lirlit of large r(ix). In the
   application to methane, first the representations are fitted to data
   from high level ab initio calculations using multireference
   configuration interaction techniques. Additional conditions which help
   to improve the description of experimental data are considered during
   the fit. Typically, these conditions involve some parameters or
   parameter groups and refer to the equilibrium geometry and harmonic
   force field. Other constraints apply to the energies of dissociation
   channels. We describe the model potentials METPOT 1 to METPOT 4 in the
   present work. (C) 1998 American Institute of Physics.
   [S0021-9606(98)01045-9].
C1 ETH Zentrum, Chem Phys Lab, CH-8092 Zurich, Switzerland.
RP Marquardt, R, Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto
   Alegre, RS, Brazil.
CR *AIP, JCPSA6109010845 AIP
   *U WAT, 1981, MAPLE V REL 3 ETH
   ABOUMAJD A, 1984, THESIS DIJON
   BAKASOV A, 1998, J CHEM PHYS, V109, P7263
   BEIL A, 1994, J CHEM SOC CHEM COMM, V99, P49
   BEIL A, 1996, BER BUNSEN PHYS CHEM, V100, P1853
   BERKOWITZ J, 1994, J PHYS CHEM-US, V98, P2744
   BJERRUM N, 1914, VERHANDL DEUT PHYSIK, V16, P737
   BOTSCHWINA P, 1982, CHEM PHYS, V68, P41
   BOTSCHWINA P, 1988, J CHEM SOC F2, V84, P1263
   BRODERSEN S, 1987, J MOL SPECTROSC, V126, P405
   BROWN FB, 1985, CHEM PHYS LETT, V113, P441
   BUENKER RJ, 1975, THEOR CHIM ACTA, V39, P217
   BUNKER PR, 1983, J MOL SPECTROSC, V101, P180
   BUNKER PR, 1986, J CHEM PHYS, V85, P3724
   CHASE MW, JANAF THERMOCHEMI S1, V14
   COBOS CJ, 1985, CHEM PHYS LETT, V113, P419
   COMEAU DC, 1989, J CHEM PHYS, V90, P6491
   DENNISON DM, 1925, ASTROPHYS J, V62, P84
   DUBAL HR, 1989, J CHEM PHYS, V91, P6698
   DUCHOVIC R, 1982, CHEM PHYS LETT, V89, P120
   DUCHOVIC RJ, 1984, J PHYS CHEM-US, V88, P1339
   DUCHOVIC RJ, 1985, J CHEM PHYS, V82, P3599
   DUNCAN JL, 1964, SPECTROCHIM ACTA, V20, P523
   DUNNING TH, 1970, J CHEM PHYS, V53, P2823
   EYRING H, 1931, Z PHYS CHEM B-CHEM E, V12, P279
   FURUE H, 1991, CHEM PHYS, V154, P425
   GORDON MS, 1979, J CHEM PHYS, V70, P5503
   GORDON MS, 1993, J AM CHEM SOC, V115, P7486
   GRAY DL, 1979, MOL PHYS, V37, P1901
   GREV RS, 1991, J CHEM PHYS, V95, P5128
   GREV RS, 1992, J CHEM PHYS, V97, P8389
   HALONEN L, 1997, J CHEM PHYS, V106, P831
   HASE WL, 1985, J CHEM PHYS, V83, P3448
   HASE WL, 1987, J AM CHEM SOC, V109, P2916
   HIROTA E, 1982, J MOL SPECTROSC, V96, P175
   HIRST DM, 1985, CHEM PHYS LETT, V122, P225
   HOLLENSTEIN H, 1994, J CHEM PHYS, V101, P3588
   HOLLENSTEIN H, 1995, BER BUNSEN PHYS CHEM, V99, P275
   HU XC, 1991, J CHEM PHYS, V95, P8073
   HUTSON JM, 1990, ANNU REV PHYS CHEM, V41, P123
   ISAACSON AD, 1992, J PHYS CHEM-US, V96, P531
   IUNG C, 1989, J CHEM PHYS, V90, P3198
   IUNG C, 1992, J CHEM PHYS, V97, P2481
   IUNG C, 1995, J CHEM PHYS, V102, P8453
   JENSEN P, 1989, J MOL SPECTROSC, V133, P438
   JOHNSTON HS, 1966, GAS PHASE REACTION R
   KELLY PB, 1988, CHEM PHYS LETT, V151, P253
   KLOPPER W, 1998, J CHEM PHYS, V108, P10096
   LANGHOFF SR, 1974, INT J QUANTUM CHEM, V8, P61
   LEE TJ, 1995, J CHEM PHYS, V102, P254
   LEWERENZ M, 1983, THESIS U BONN
   LEWERENZ M, 1987, TEHSIS ETH ZURICH
   LEWERENZ M, 1988, J CHEM PHYS, V88, P5408
   LEWERENZ M, 1988, J CHEM SOC F2, V84, P1580
   LIAS SG, 1988, GAS PHASE ION NEU S1, V17
   LUCKHAUS D, 1992, CHEM PHYS LETT, V190, P581
   MARQUARDT DW, 1963, J SOC IND APPL MATH, V11, P431
   MARQUARDT R, UNPUB
   MARTIN JML, 1992, J CHEM PHYS, V97, P8361
   MARTIN JML, 1993, CHEM PHYS LETT, V205, P535
   MILLER JT, 1989, CHEM PHYS LETT, V158, P179
   MILLS IM, 1958, MOL PHYS, V1, P107
   MORSE PM, 1929, PHYS REV, V34, P57
   MURRELL JN, 1984, POTENTIAL ENERGY FUN
   NEFEDOV OM, 1992, PURE APPL CHEM, V64, P265
   PARTRIDGE H, 1995, J CHEM PHYS, V103, P10589
   PEPPER MJM, 1995, J COMPUT CHEM, V16, P207
   PEYERIMHOFF S, UNPUB
   PEYERIMHOFF S, 1984, CHEM PHYS LETT, V109, P563
   POPLE JA, 1975, MOL PHYS, V29, P599
   PULAY P, 1978, J CHEM PHYS, V68, P5077
   PULAY P, 1979, J AM CHEM SOC, V101, P2550
   QUACK M, 1974, BER BUNSEN PHYS CHEM, V78, P240
   QUACK M, 1975, BER BUNSEN PHYS CHEM, V79, P170
   QUACK M, 1979, J PHYS CHEM-US, V83, P150
   QUACK M, 1991, J CHEM PHYS, V95, P28
   QUACK M, 1993, J MOL STRUCT, V292, P171
   QUACK M, 1993, J MOL STRUCT, V294, P33
   QUACK M, 1995, FEMTOSECOND CHEM, P781
   QUACK M, 1995, J MOL STRUCT, V347, P245
   QUACK M, 1997, CONCEPTUAL TRENDS QU, V3, P417
   RAFF LM, 1984, J CHEM PHYS, V80, P6141
   RAYNES WT, 1987, MOL PHYS, V60, P509
   RIVEROS JM, 1969, J CHEM PHYS, V51, P1269
   RUSSELL JJ, 1988, INT J CHEM KINET, V20, P759
   SCHATZ GC, 1990, ADV MOL ELECTRONIC S, V1, P85
   SCHLEGEL HB, 1986, J CHEM PHYS, V84, P4530
   SIGNORELL R, 1996, MOL PHYS, V89, P297
   SOSA C, 1988, CHEM PHYS LETT, V153, P139
   SPIRKO V, 1982, J MOL SPECTROSC, V95, P381
   SPIRKO V, 1989, J MOL SPECTROSC, V133, P331
   SUHM MA, 1995, CHEM SOC REV, V24, P45
   WILSON EB, 1980, MOL VIBRATIONS THEOR
   WOLF RJ, 1986, CHEM PHYS LETT, V132, P493
   WU W, 1994, J CHEM PHYS, V101, P4826
   YAMADA C, 1981, J CHEM PHYS, V75, P5256
NR 97
TC 20
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
   11797-2999 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD DEC 22
PY 1998
VL 109
IS 24
BP 10628
EP 10643
PG 16
SC Physics, Atomic, Molecular & Chemical
GA 148QB
UT ISI:000077542400011
ER

PT J
AU Almeida, AL
   Martins, JBL
   Taft, CA
   Longo, E
   Lester, WA
TI Theoretical study of water coverage on MgO surfaces
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE water coverage; MgO; ab initio; adsorption; surface
ID TEMPERATURE-PROGRAMMED DESORPTION; CORE POTENTIAL DEPENDENCE; LARGE
   CLUSTER-MODELS; 0001 ZNO SURFACES; MAGNESIUM-OXIDE; MOLECULAR CLUSTER;
   MGO(100) SURFACE; BASIS-SET; ADSORPTION; METHANE
AB Ab initio and semiempirical calculations have been performed on an
   (MgO)(16) cluster model in order to study the effects of water coverage
   on pure MgO (100) surfaces. The geometries of various adsorbed water
   molecules have been optimized and the binding energies, charge
   transfer, and preferential sites of interaction analyzed. We have used
   Mulliken and natural bond population analysis methods in order to
   analyze charge distributions and the direction of charge transfer
   processes. We have also investigated the effects of low and high
   coverage on energy gaps, density of states, self-consistent field (SCF)
   orbital energies, and stretching frequencies. (C) 1999 John Wiley &
   Sons, Inc.
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
   Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
   Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290180 Rio De Janeiro, Brazil.
   Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Lester, WA, Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci,
   Berkeley, CA 94720 USA.
CR ALMEIDA AL, 1996, 23 QTEL QUIM TEOR EX
   ALMEIDA AL, 1996, 4 WORLD C THEOR OR C
   ALMEIDA AL, 1997, 9 INT C QUANT CHEM J
   ANCHELL JL, 1996, J PHYS CHEM-US, V100, P18317
   BERUTO D, 1993, J PHYS CHEM-US, V97, P9201
   BOUDART M, 1972, J AM CHEM SOC, V94, P6622
   CHACONTAYLOR MR, 1996, J PHYS CHEM-US, V100, P7610
   COLBOURN EA, 1982, SURF SCI, V117, P571
   COLBOURN EA, 1983, SURF SCI, V126, P350
   COLBOURN EA, 1992, SURF SCI REP, V15, P281
   COLLUCIA S, 1979, J CHEM SOC F1, V75, P1769
   COLUCCIA S, 1987, SPECTROCHIM ACTA A, V43, P1573
   DELEEUW NH, 1996, J CHEM SOC FARADAY T, V92, P2081
   DUNSKI H, 1994, J CATAL, V146, P166
   DURIEZ C, 1990, SURF SCI, V230, P123
   ECHTERHOFF R, 1988, J MOL STRUCT, V174, P343
   FERRY D, 1996, J CHEM PHYS, V105, P1697
   FOYT DC, 1977, J CATAL, V47, P260
   FRISCH MJ, 1995, GAUSSIAN 94
   GREENLAND DJ, 1978, CHEM SOIL CONSTITUEN
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   ITO T, 1985, J AM CHEM SOC, V107, P5062
   ITO T, 1985, NATURE, V314, P721
   ITO T, 1991, J PHYS CHEM-US, V95, P4476
   JONES CF, 1984, J CHEM SOC FARAD T 1, V80, P2609
   JUJIOKA HH, 1985, SURF SCI LETT, V149, L53
   KNOZINGER E, 1993, SURF SCI, V290, P388
   KOBAYASHI H, 1990, J PHYS CHEM-US, V94, P7206
   KURODA Y, 1988, J CHEM SOC F1, V84, P2421
   LEMBERTON JL, 1984, J CATAL, V89, P69
   LONGO E, 1985, ADV CERAM, V10, P592
   LONGO E, 1985, LANGMUIR, V1, P456
   LONGO E, 1987, HIGH TECH CERAMICS, P399
   MARTINS JBL, 1994, J MOL STRUCT, V303, P19
   MARTINS JBL, 1995, THEOCHEM, V330, P301
   MARTINS JBL, 1995, THEOCHEM, V330, P347
   MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
   MARTINS JBL, 1996, THEOCHEM-J MOL STRUC, V363, P249
   MCCARTHY MI, 1996, J PHYS CHEM-US, V100, P16990
   ONISHI H, 1987, SURF SCI, V191, P479
   PAVAO AC, 1994, PHYS REV B, V50, P1868
   PAVAO AC, 1995, SURF SCI, V323, P40
   SCAMEHORN CA, 1993, J CHEM PHYS, V99, P2786
   SCAMEHORN CA, 1994, J CHEM PHYS, V101, P1547
   SHIDO T, 1990, J CATAL, V122, P55
   SPOSITO G, 1984, SURFACE CHEM SOILS
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STUMM W, 1992, CHEM SOLID WATER INT
NR 48
TC 10
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD JAN 15
PY 1999
VL 71
IS 2
BP 153
EP 165
PG 13
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA 147MW
UT ISI:000077572100004
ER

PT J
AU Prudente, FV
   Acioli, PH
   Neto, JJS
TI The fitting of potential energy surfaces using neural networks:
   Application to the study of vibrational levels of H-3(+)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID QUANTUM MONTE-CARLO; DIATOMIC-MOLECULES; MOMENT SURFACES; H-3+
AB A back-propagation neural network is utilized to fit the potential
   energy surfaces of the H-3(+) ion, using the ab initio data points of
   Dykstra and Swope, and the Meyer, Botschwina, and Burton ab initio data
   points. We used the standard back-propagation formulation and have also
   proposed a symmetric formulation to account for the symmetry of the
   H-3(+) molecule. To test the quality of the fits we computed the
   vibrational levels using the correlation function quantum Monte Carlo
   method. We have compared our results with the available experimental
   results and with results obtained using other potential energy
   surfaces. The vibrational levels are in very good agreement with the
   experiment and the back-propagation fitting is of the same quality of
   the available potential energy surfaces. (C) 1998 American Institute of
   Physics. [S0021-9606(98)30644-3].
C1 Univ Brasilia, Inst Fis, BR-70910900 Brasilia, DF, Brazil.
RP Prudente, FV, Univ Brasilia, Inst Fis, CP 04455, BR-70910900 Brasilia,
   DF, Brazil.
EM fred@fis.unb.br
CR ACIOLI PH, IN PRESS J MOL STRUC
   BISHOP CM, 1982, REV SCI INSTRUM, V63, P4450
   BLANK TB, 1994, J CHEMOMETR, V8, P391
   BRAGA AP, 1997, J CHEM PHYS, V107, P9954
   BRENT RP, 1991, IEEE T NEURAL NETWOR, V2, P346
   BROWN DFR, 1996, J CHEM PHYS, V105, P7597
   CARNEY GD, 1986, J CHEM PHYS, V84, P3921
   CENCEK W, 1998, J CHEM PHYS, V108, P2831
   CEPERLEY DM, 1988, J CHEM PHYS, V89, P6316
   DARSEY JA, 1991, CHEM PHYS LETT, V177, P189
   DYKSTRA CE, 1979, J CHEM PHYS, V70, P1
   FRYE D, 1990, J CHEM PHYS, V92, P4948
   GARCIA E, 1985, MOL PHYS, V56, P621
   GARCIA E, 1985, MOL PHYS, V56, P629
   JAQUET R, 1998, J CHEM PHYS, V108, P2837
   KEDZIORA GS, 1997, J CHEM PHYS, V106, P8733
   LAGARIS IE, 1997, COMPUT PHYS COMMUN, V104, P1
   MACKAY DJC, 1992, NEURAL COMPUT, V4, P415
   MACKAY DJC, 1995, NETWORK-COMP NEURAL, V6, P469
   MAKAROV DE, 1998, J CHEM PHYS, V108, P590
   MEYER W, 1986, J CHEM PHYS, V84, P891
   MOLLER MF, 1993, NEURAL NETWORKS, V6, P525
   OKA T, 1980, PHYS REV LETT, V45, P531
   PRUDENTE FV, 1998, CHEM PHYS LETT, V287, P585
   REYNOLDS PJ, 1982, J CHEM PHYS, V77, P5593
   SILVA GME, 1997, J COMPUT CHEM, V18, P1407
   SIMONS G, 1973, J CHEM PHYS, V59, P3229
   SONTAG ED, 1989, NEURAL COMPUT, V1, P470
   SUMPTER BG, 1994, ANNU REV PHYS CHEM, V45, P439
   THOMPSON KC, 1998, J CHEM PHYS, V108, P564
   ZUPAN J, 1993, NEURAL NETWORK CHEM
NR 31
TC 14
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
   11797-2999 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 22
PY 1998
VL 109
IS 20
BP 8801
EP 8808
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 139QE
UT ISI:000077039900010
ER

PT J
AU Wang, F
   Ma, S
   Wong, P
   Cooks, RG
   Gozzo, FC
   Eberlin, MN
TI Gas phase agostic bonding in pyridine SiFn+ (n = 1, 3) cluster ions
   investigated by the kinetic method
SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
DE kinetic method; agostic bonding; cluster ions; SiF3+; SiF+; Lewis
   acidity
ID MOLECULAR-ORBITAL METHODS; CHARGE-TRANSFER REACTIONS; MS(3)
   MASS-SPECTROMETRY; TRANSITION-METAL BONDS; BASIS SETS; AFFINITIES;
   THERMOCHEMISTRY; SILICON; DISSOCIATION; CATION
AB Loosely bonded cluster ions, Py1SiF3+Py2 and Py1SiF+Py2, where Py-1 and
   Py-2 represent substituted pyridines, are formed by ion/molecule
   reactions between mass-selected SiF3+ or SiF+ and a mixture of
   pyridines. The clusters are hown to have loosely bound symmetric
   structures by MS3 experiments and ab initio calculations. The
   SiF3+/pyridine dimer is shown to have a trigonal bipyrimidal structure.
   Relative SiF3+ and SiF+ affinities of the constituent pyridines are
   measured by the kinetic method, and excellent linear correlations with
   the proton affinity of meta- and para-substituted pyridines are
   observed. Gas-phase stereoelectronic parameters (S-k) for SiF3+ SiF+
   are also experimentally measured and show that the binding of the
   ortho-substituted pyridines is governed by two opposing effects, steric
   hindrance and agostic bonding. Agostic bonding of the form C-H --- Si+,
   is evident in the SiF+ system, just as it is in the corresponding
   SiCl+/pyridine dimers. On the other hand, steric hindrance plays a key
   role in weakening the strength of the interaction of the central SiF3+
   ion and the ortho-substituted pyridines compared with that in
   SiF+-bound cluster ions. The relatively larger Lewis acidity of
   fluorinated siliconium ions compared with the corresponding chlorinated
   species shortens the Si-N bond and makes overall steric effects larger
   in the SiFn+ (n = 1, 3) systems than in the SiCln+ (n = 1, 3) systems.
   The potential application of the kinetic method in recognizing agostic
   bonding in transition metal systems in the gas phase is also
   demonstrated in this study. (Int J Mass Spectrom 179/180 (1998)
   195-205). (C) 1998 Elsevier Science B.V.
C1 Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
   State Univ Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Cooks, RG, Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
CR ABBOUD JLM, 1996, J AM CHEM SOC, V118, P1126
   BONDI A, 1964, J PHYS CHEM-US, V68, P441
   BOWERS MT, 1979, GAS PHASE ION CHEM, V1
   BROOKHART M, 1983, J ORGANOMET CHEM, V250, P395
   BROOKHART M, 1988, PROG INORG CHEM, V36, P1
   CACACE F, 1995, P NATL ACAD SCI USA, V92, P8635
   CACACE F, 1997, P NATL ACAD SCI USA, V94, P3507
   CACACE F, 1997, PURE APPL CHEM, V69, P227
   CAMPBELL S, 1995, J AM CHEM SOC, V117, P12840
   CECCHI P, 1996, ANGEW CHEM INT EDIT, V35, P2522
   CERDA BA, 1996, J AM CHEM SOC, V118, P11884
   CIPOLLINI R, 1995, J CHEM SOC CHEM COMM, P773
   COBURN JW, 1982, AM VACUUM SOC MONOGR
   COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
   COOKS RG, 1994, MASS SPECTROM REV, V13, P287
   COOKS RG, 1998, ACCOUNTS CHEM RES, V31, P379
   CRAIG SL, 1997, J PHYS CHEM A, V101, P19
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   FISHER ER, 1991, J PHYS CHEM-US, V95, P4765
   FISHER ER, 1993, J PHYS CHEM-US, V97, P10204
   FRENKING G, 1997, J AM CHEM SOC, V119, P6648
   FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GRANDINETTI F, 1993, INT J MASS SPECTROM, V124, P21
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   IGNACIO EW, 1990, J PHYS CHEM-US, V94, P7439
   KETVIRTIS AE, 1996, INT J MASS SPECTROM, V153, P161
   KETVIRTIS AE, 1997, J PHYS CHEM A, V101, P7258
   KETVIRTIS AE, 1998, J PHYS CHEM A, V102, P1162
   KICKEL BL, 1993, J PHYS CHEM-US, V97, P10198
   MA SG, 1997, INT J MASS SPECTROM, V163, P89
   MCGRADY GS, 1997, CHEM COMMUN     0821, P1547
   MOLLER C, 1934, PHYS REV, V46, P618
   MURPHY MK, 1976, J AM CHEM SOC, V98, P5781
   PETRMICHL RH, 1988, J CHEM PHYS, V89, P5454
   REENTS WD, 1984, INT J MASS SPECTROM, V59, P65
   RICCA A, 1998, J PHYS CHEM A, V102, P876
   RODRIQUEZ CF, 1992, CAN J CHEM, V70, P2234
   SCHNIER PD, 1996, J AM CHEM SOC, V118, P7178
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
   SENZER SN, 1983, J APPL PHYS, V54, P3524
   SURESH BS, 1987, J CHEM SOC DA, P1123
   WALSH R, 1981, ACCOUNTS CHEM RES, V14, P246
   WALSH R, 1983, J CHEM SOC FARAD T 1, V79, P2233
   WANG KH, 1992, J CHEM PHYS, V97, P5489
   WENTHOLD PG, 1996, J AM CHEM SOC, V118, P11865
   WINTERS HF, 1992, SURF SCI REP, V14, P161
   WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
   WONG PSH, 1997, J ORGANOMET CHEM, V539, P131
   WU ZC, 1994, RAPID COMMUN MASS SP, V8, P777
   YAMAMOTO H, 1996, APPL SURF SCI, V101, P333
   YANG SS, 1995, J MASS SPECTROM, V30, P807
   YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
NR 55
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1387-3806
J9 INT J MASS SPECTROM
JI Int. J. Mass Spectrom.
PD NOV 23
PY 1998
VL 180
BP 195
EP 205
PG 11
SC Physics, Atomic, Molecular & Chemical; Spectroscopy
GA 140RD
UT ISI:000077101400021
ER

PT J
AU Lino, JLS
   Germano, JSE
   da Silva, EP
   Lima, MAP
TI Elastic cross sections and annihilation parameter for e(+)-H-2
   scattering using the Schwinger multichannel method
SO PHYSICAL REVIEW A
LA English
DT Article
ID POSITRONS; COLLISIONS
AB We report detailed results for positron-H-2 collisions obtained with
   the Schwinger multichannel method. Our calculations include
   annihilation parameter, differential, integral, and momentum transfer
   cross sections for energies below the positronium formation threshold.
   The calculations were carried out in the static-plus-polarization
   approximation with symmetry-resolved cross sections. Energy
   (temperature) dependence and symmetry-resolved contributions for the
   annihilation parameter Z(eff) are also reported. Our ab initio integral
   cross sections are found to be in good agreement with the experimental
   data. [S1050-2947(98)04409-6].
C1 Ctr Tecn Aeronautica, Inst Tecnol Aeronaut, Dept Fis, BR-12228900 Sao Jose Dos Campos, Brazil.
   Univ Fed Ceara, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil.
   UNICAMP, Inst Fis, BR-13083970 Campinas, SP, Brazil.
RP Lino, JLS, Ctr Tecn Aeronautica, Inst Tecnol Aeronaut, Dept Fis,
   BR-12228900 Sao Jose Dos Campos, Brazil.
CR ARMOUR EAG, 1990, J PHYS B ATOM MOL PH, V23, P3057
   CHARLTON M, 1983, J PHYS B-AT MOL OPT, V16, P323
   DANBY G, 1990, J PHYS B ATOM MOL PH, V23, P1005
   DASILVA EP, 1994, PHYS REV A, V49, R1527
   DASILVA EP, 1996, PHYS REV LETT, V77, P1028
   DASILVA EP, 1998, NUCL INSTRUM METH B, V143, P140
   DAY DJ, 1992, HYPERFINE INTERACT, V73, P2017
   GERMANO JSE, 1993, PHYS REV A, V47, P3976
   GIBSON TL, 1992, J PHYS B ATOM MOL PH, V25, P1321
   KOLOS W, 1965, J CHEM PHYS, V43, P2429
   LARICCHIA G, 1995, AIP C P, V360, P385
   LINO JLS, 1994, J PHYS B-AT MOL OPT, V27, P1881
   MCCURDY CW, 1987, PHYS REV A, V36, P2061
   MURPHY TJ, 1991, PHYS REV LETT, V67, P2954
   PRZYBYLA DA, 1997, PHYS REV A, V55, P4244
   STEIN TS, UNPUB
   TAKATSUKA K, 1981, PHYS REV A, V24, P2473
NR 17
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD NOV
PY 1998
VL 58
IS 5
BP 3502
EP 3506
PG 5
SC Physics, Atomic, Molecular & Chemical; Optics
GA 138FT
UT ISI:000076961300022
ER

PT J
AU Moraes, LAB
   Eberlin, MN
TI Dehydrobenzoyl cations: Distonic ions with dual free radical and
   acylium ion reactivity
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CHARGED PHENYL RADICALS; GAS-PHASE; MASS-SPECTROMETRY; MOLECULE
   REACTIONS; BIMOLECULAR REACTIONS; CYCLOTRON RESONANCE; SUBSTITUTION;
   TRANSACETALIZATION; CHEMISTRY; ANILINE
AB In the gas phase, m- and p-dehydrobenzoyl cations display strong
   duality of chemical behavior. The ions react selectively as either free
   radicals or acylium ions, depending on the choice of the neutral
   reaction partner. Transacetalization with 2-methyl-1,3-dioxolane,
   ketalization with 2-methoxyethanol, and epoxide ring expansion with
   epichlorohydrin demonstrate their acylium ion reactivity, whereas
   (SCH3)-S-. abstraction with dimethyl disulfide demonstrates their free
   radical reactivity. In one-pot reactions with gaseous mixtures of
   epichlorohydrin and dimethyl disulfide, the m- and p-dehydrobenzoyl
   cations react selectively at either site to form the two
   monoderivatized ions in variable but controlled yields; further
   reaction at either the remaining radical or the acylium charge site
   forms a single biderivatized ion as the final product. The
   o-dehydrobenzoyl cation also displays the expected radical and acylium
   ion reactivities. But for the ortho isomer, binding of the nucleophilic
   neutral to the free or derivatized C+=O group facilitates reactions at
   the radical site. Hence, the ortho isomer displays a unique behavior;
   its acylium ion reactions either occur simultaneously with, or are
   followed by, H-abstraction radical reactions. As shown by ab initio
   calculations, the three isomers display sigma-localized odd-spin and
   pi-delocalized charge densities, which characterize distonic structures
   with molecular orbital-separated radical and charge sites. The
   dehydrobenzoyl cations are also, according to the calculations, the
   most stable among 19 of the most feasible C7H4O+. isomers.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, UNICAMP, Inst Chem, CP 6154, BR-13083970 Campinas, SP,
   Brazil.
CR ATTINA M, 1983, J AM CHEM SOC, V105, P1122
   AVILA DV, 1994, J AM CHEM SOC, V116, P99
   BEASLEY BJ, 1995, J MASS SPECTROM, V30, P384
   BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P203
   BOUMA WJ, 1980, ADV MASS SPECTROM A, V8, P178
   CARVALHO M, 1998, CHEM-EUR J, V4, P1161
   CARVALHO MC, 1997, J CHEM SOC PERK  NOV, P2347
   CARVALHO MC, 1997, J MASS SPECTROM, V32, P4437
   CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
   CHYALL LJ, 1994, J AM CHEM SOC, V116, P3135
   CREASER CS, 1996, J CHEM SOC PERK  MAR, P427
   DEKOSTER CG, 1995, INT J MASS SPECTROM, V141, P1
   DOUGLAS DJ, 1998, J AM SOC MASS SPECTR, V9, P101
   EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
   EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
   EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
   EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
   FLAMMANG R, 1992, RAPID COMMUN MASS SP, V6, P135
   FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
   FRISCH MJ, 1995, GAUSSIAN94 REVISION
   GALLUP GA, 1976, INT J MASS SPECTROM, V22, P185
   GOZZO FC, IN PRESS J ORG CHEM
   GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
   GOZZO FC, 1996, J CHEM SOC PERK  APR, P587
   HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KIM JK, 1982, J AM CHEM SOC, V104, P4624
   KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
   KUNZ H, 1991, COMPREHENSIVE ORGANI, V59, P659
   LI R, 1996, INT J MASS SPECTROM, V157, P293
   MILLER DL, 1983, ORG MASS SPECTROM, V18, P239
   MOLLER C, 1934, PHYS REV, V46, P618
   MORAES LAB, UNPUB J ORG CHEM
   MORAES LAB, 1996, J ORG CHEM, V61, P8726
   MORAES LAB, 1997, J CHEM SOC PERK  OCT, P2105
   MORAES LAB, 1997, J ORG CHEM, V62, P5096
   MOURGUES P, 1993, ORG MASS SPECTROM, V28, P1098
   OLAH GA, 1976, CARBONIUM IONS, V5, CH35
   PARADISI C, 1988, ORG MASS SPECTROM, V23, P521
   RUSLI RD, 1990, CHEM BER, V123, P535
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SMITH RL, 1993, ORG MASS SPECTROM, V28, P1623
   SMITH RL, 1995, J AM CHEM SOC, V117, P1393
   SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
   SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
   STALEY RH, 1977, J AM CHEM SOC, V99, P5964
   STIRK KG, 1991, J AM CHEM SOC, V113, P5880
   STIRK KM, 1992, CHEM REV, V92, P1649
   STIRK KM, 1992, J AM CHEM SOC, V114, P8604
   STIRK KM, 1993, RAPID COMMUN MASS SP, V7, P392
   THOEN KK, 1996, J AM CHEM SOC, V118, P8669
   TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
   VANAMSTERDAM MW, 1993, ORG MASS SPECTROM, V28, P919
   YATES BF, 1984, J AM CHEM SOC, V106, P5805
   YU SJ, 1993, J AM CHEM SOC, V115, P9676
NR 55
TC 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 4
PY 1998
VL 120
IS 43
BP 11136
EP 11143
PG 8
SC Chemistry, Multidisciplinary
GA 136JE
UT ISI:000076855000015
ER

PT J
AU Dal Colle, M
   Distefano, G
   Modelli, A
   Jones, D
   Guerra, M
   Olivato, PR
   Ribeiro, DD
TI UV-photoelectron, electron transmission, and dissociative electron
   attachment spectroscopies of acetone oximes
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PI-STAR ORBITALS; ULTRAVIOLET PHOTOELECTRON; INTRAMOLECULAR
   INTERACTIONS; THIO GROUPS; TERT-BUTYL; AB-INITIO; X-ALPHA; DERIVATIVES;
   AFFINITIES; BENZENE
AB The conformation and the electronic structure of several
   alpha-heterosubstituted acetone oximes XCH2(CH3)C= NOH (X = H (1), F
   (2), Cl (3), CH3O (4), C2H5S (5), and (CH3)(2)N (6)) have been
   determined by means of a multidisciplinary approach based on
   ultraviolet photoelectron (UP), electron transmission (ET), and
   dissociative electron attachment (DEA) spectroscopies and fully
   optimized ab initio 6-31G** and MP2/6-31G** calculations. The vertical
   ionization energy (IE) and electron affinity (EA) values related to the
   HOMO (pi(C=N)) and LUMO (pi*(C=N)) have been determined by the Delta
   SCF and Delta MP2 (IE only) procedures. The compounds studied prefer an
   anti (E) configuration between the OH and the CH2X group and a gauche
   conformation of the C-X bond with respect to the double bond, except 2
   and 4 for which a syn (Z) planar structure is nearly degenerate with
   the E one. The spectral data, coupled with the results of the
   calculations, indicate that the properties of the acetone oximes are
   mainly governed by the mixing between the orbitals localized at the X
   and C=N fragments and by electrostatic interactions between hydrogen
   and the electronegative atoms. When X has poor donor and poor mesomeric
   acceptor properties (X = F and OMe), the prevailing interaction is the
   strong charge-transfer mixing of the hydroxyl oxygen lone pair with the
   pi*(C=N) orbital and the X group moves in the main molecular plane.
C1 Univ Ferrara, Dipartimento Chim, I-44100 Ferrara, Italy.
   Univ Bologna, Dipartimento Chim G Ciamician, I-40127 Bologna, Italy.
   CNR, ICoCEA, I-40126 Bologna, Italy.
   Univ Sao Paulo, Inst Quim, Sao Paulo, Brazil.
RP Distefano, G, Univ Ferrara, Dipartimento Chim, Via Borsari 46, I-44100
   Ferrara, Italy.
CR BIERLEIN TK, 1951, ACTA CRYSTALLOGR, V4, P450
   BONDI A, 1964, J PHYS CHEM-US, V68, P441
   DALCOLLE M, 1995, J PHYS CHEM-US, V99, P15011
   DANNENBERG JJ, 1994, J PHYS CHEM-US, V98, P6714
   DARGELOS A, 1977, J CHEM PHYS, V67, P3011
   DISTEFANO G, 1985, J CHEM SOC P2, P2037
   DISTEFANO G, 1987, J CHEM SOC P2, P1459
   DISTEFANO G, 1989, J ELECTRON SPECTROSC, V49, P281
   DISTEFANO G, 1996, J CHEM SOC PERK  AUG, P1661
   DISTEFANO G, 1997, J MOL STRUCT THEOCHE, V418, P99
   FRISCH MJ, 1995, GAUSSIAN 94
   GUERRA M, 1984, CHEM PHYS, V91, P383
   GUERRA M, 1990, CHEM PHYS LETT, V167, P315
   JOHNSTON AR, 1982, J ELECTRON SPECTROSC, V25, P119
   JONES D, 1994, J CHEM SOC P2, P1651
   KOOPMANS T, 1933, PHYSICA, V1, P104
   KULESHOVA LN, 1981, ACTA CRYSTALLOGR B, V37, P1363
   MODELLI A, 1982, CHEM PHYS LETT, V86, P434
   MODELLI A, 1983, CHEM PHYS, V77, P153
   MODELLI A, 1983, J ELECTRON SPECTROSC, V31, P63
   MODELLI A, 1984, TETRAHEDRON, V40, P3257
   MODELLI A, 1986, CHEM PHYS LETT, V132, P448
   MODELLI A, 1989, CHEM PHYS LETT, V163, P269
   MODELLI A, 1990, CHEM PHYS, V145, P89
   MODELLI A, 1992, J CHEM PHYS, V96, P2061
   OLIVATO PR, 1984, J CHEM SOC P2, P1505
   OLIVATO PR, 1995, SPECTROCHIM ACTA A, V51, P1479
   OLIVATO PR, 1998, J CHEM SOC PERK  JAN, P109
   SANCHE L, 1972, PHYS REV           A, V5, P1672
   WAGNER G, 1974, CHEM BER, V107, P6877
NR 30
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 8
PY 1998
VL 102
IS 41
BP 8037
EP 8043
PG 7
SC Chemistry, Physical
GA 132EF
UT ISI:000076616800022
ER

PT J
AU Resende, SM
   Wagner, B
TI Analysis of the reaction paths to dissociation of dichloro-ethylenes
   into Cl-2 and C2H2
SO CHEMICAL PHYSICS
LA English
DT Article
ID AB-INITIO; PHOTOCHEMISTRY
AB The reaction paths to dissociation of dichloro-ethylenes (DCE) into
   Cl-2 and acetylene (C2H2) in the gas phase were studied, at the
   CCSD(T)/6-311G(d,p)//CASSCF(6,6)/6-31G(d) level of theory, including
   zero point energy correction. The structures and energies of reactants,
   transition states and products were determined through ab initio
   calculations. There are two principal paths to dissociation. One of
   them involves a number of transition states and intermediates where
   internal rotations, H and Cl migrations are involved until the
   dissociation into Cl and C2H2Cl radicals. The activation energy to this
   path is about 97 kcal/mol. On the other hand, C2H2Cl radicals were also
   predicted to be formed directly from cis- and trans-DCE. In addition,
   we have determined several paths to isomerization among the trans-,
   cis- and 1,1-dichloro-ethylene. We have concluded that these
   isomerization paths have activation energies below to the dissociation
   reaction. Therefore, the dissociation process can proceed from every
   dichloro-ethylene. (C) 1998 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
RP Wagner, B, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac &
   Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR BALDRIDGE KK, 1989, J PHYS CHEM-US, V93, P5107
   FRISCH MJ, 1995, GAUSSIAN 94
   GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
   HE GX, 1993, J PHYS CHEM-US, V97, P2186
   LAURSEN SL, 1989, J PHYS CHEM-US, V93, P2328
   LAURSEN SL, 1990, J PHYS CHEM-US, V94, P8175
   LEE TJ, 1989, INT J QUANTUM CHEM S, V23, P199
   LIDE DR, 1993, CRC HDB CHEM PHYSICS
   RESENDE SM, 1997, MOL PHYS, V91, P635
   RESENDE SM, 1998, J CHEM SOC FARADAY T, V94, P2895
   RIEHL JF, 1994, J CHEM PHYS, V101, P5942
   SCHMIDT M, 1993, J COMPUT CHEM, V14, P1346
NR 12
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD NOV 1
PY 1998
VL 238
IS 1
BP 11
EP 20
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 132AW
UT ISI:000076608400002
ER

PT J
AU Capaz, RB
   Dal Pino, A
   Joannopoulos, JD
TI Theory of carbon-carbon pairs in silicon.
SO PHYSICAL REVIEW B
LA English
DT Article
ID INTERSTITIAL-CARBON; IRRADIATED SILICON; DEFECTS
AB Interstitial-substitutional carbon pairs (CiCs) in silicon display
   interesting metastable behavior associated with two different
   structural configurations. In this work, we perform extensive ab initio
   calculations on this system. Our results show the following. (i) The
   metastable configuration for the neutral charge state displays C-1h
   symmetry and it is reminiscent of the isolated interstitial carbon
   configuration, i.e., a split interstitial C-Si pair with the
   substitutional carbon bonded to the silicon interstitial. (ii) The
   ground-state configuration also has C-1h symmetry, but it consists;of a
   single silicon interstitial twofold coordinated in an unusual bridge
   configuration between two substitutional carbon atoms. With an
   activation energy of 0.07 eV, this configuration becomes a
   motional-averaged state with C-3v symmetry. (iii) The ground state is
   lower in; energy by 0.11 eV with respect to the metastable state. The
   jump from one configuration to the other corresponds to a simple
   ''bond-switching'' mechanism with a calculated energy barrier of 0.13
   eV. (iv) Both configurations have two electronic-states in the gap,
   with gap-state wave functions consistent with the local bonding of the
   defect complex in each case. (v) Analysis of local-mode vibrations on
   the ground-state configuration indicates a stronger component in one of
   the carbon atoms, which explains the experimentally observed isotope
   splittings. Vibrational frequencies for the metastable configuration
   are also predicted. All of these results are in satisfactory agreement
   with experiments. [S0163-1829(98)07236-1].
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
   Inst Tecnol Aeronaut, BR-12225 Sao Jose Dos Campos, Brazil.
   MIT, Dept Phys, Cambridge, MA 02139 USA.
RP Capaz, RB, Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528,
   BR-21945970 Rio De Janeiro, Brazil.
CR BEAN AR, 1970, SOLID STATE COMMUN, V8, P175
   BURNARD MJ, 1993, PHYS REV B, V47, P10217
   CAPAZ RB, 1994, PHYS REV B, V50, P7439
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   DALPINO A, 1992, PHYS REV B, V45, P3304
   DALPINO A, 1993, PHYS REV B, V47, P12554
   DAVIES G, 1983, J PHYS C SOLID STATE, V16, P5503
   DAVIES G, 1994, HDB SEMICONDUCTORS, V3, P1557
   HOHENBERG P, 1964, PHYS REV, V136, B864
   JONES R, 1995, MATER SCI FORUM, V196, P785
   KEATING PN, 1966, PHYS REV, V145, P637
   KOHN W, 1965, PHYS REV, V140, A1133
   LEARY P, 1997, PHYS REV B, V55, P2188
   MIKKELSEN JC, 1986, MRS S P, V59
   NEEDELS M, 1991, MATER RES SOC S P, V209, P102
   NEWMAN RC, 1969, J PHYS CHEM SOLIDS, V30, P1492
   ODONNELL KP, 1983, PHYSICA B & C, V116, P258
   PAULING L, 1960, NATURE CHEM BOND, P85
   PAYNE MC, 1992, REV MOD PHYS, V64, P1045
   PERDEW J, 1984, PHYS REV B, V23, P5048
   RAPPE AM, 1990, PHYS REV B, V41, P1227
   SONG LW, 1990, PHYS REV B, V42, P5765
   TERSOFF J, 1990, PHYS REV LETT, V64, P1757
   WATKINS GD, 1976, PHYS REV LETT, V36, P1329
   ZHENG JF, 1994, 2I INT C PHYS SEM, P2363
NR 25
TC 8
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD OCT 15
PY 1998
VL 58
IS 15
BP 9845
EP 9850
PG 6
SC Physics, Condensed Matter
GA 129WJ
UT ISI:000076486800050
ER

PT J
AU Dos Santos, HF
   O'Malley, PJ
   De Almeida, WB
TI Gas phase and water solution conformational analysis of the herbicide
   diuron (DCMU): an ab initio study
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
DE DCMU; diuron; conformational analysis; solvent effect; ab initio
   calculation
ID PHOTOSYNTHETIC REACTION CENTER; PHOTOSYSTEM-II; AQUEOUS-SOLUTION; D1
   PROTEIN; INHIBITORS; ENERGIES; BINDING
AB In the present work, the conformational equilibrium for the herbicide
   diuron (DCMU) has been investigated using high level ab initio
   calculations. The solvent effect was included through two different
   continuum models: (1) the real cavity IPCM method and (2) the standard
   dipole Onsager model SCRF. The effect due to solute-solvent
   hydrogen-bond interactions was analyzed considering a hybrid
   discreet-continuum model. At the Hartree-Fock level, the gas phase
   results showed that only the trans forms (A and B) are present in the
   equilibrium mixture, with the relative concentrations found to be 33%
   (A) and 67% (B) (HF/6-311+G**//6-31G**). When the electronic
   correlation effect is included (MP2/6-31G*//HF/6-31G*), a relative
   stabilization of the cis forms was observed, with the conformational
   distribution calculated as 38% (A), 50% (B), 6% (C) and 6% (D). The
   trans conformations were found to be completely planar, which has been
   considered to be a prerequisite for the herbicide binding. In water
   solution, the ri ans conformation A should be the most abundant
   conformer, the IPCM and SCRF values being ca. 100% and ca. 85%
   respectively. The IPCM calculations with the isodensity level set to
   0.0005 present a conformational distribution close to that obtained
   from the hybrid model [92% (A) and 8% (B)], which has been considered
   our best solvent approach. Regarding the biological action of urea-type
   herbicides, the results presented here are important, because some QSAR
   studies have suggested that the partition coefficient is related to the
   herbicide activity, so the conformational equilibrium may play a role
   in the biological action.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
   Univ Manchester, Inst Sci & Technol, Dept Chem, Manchester M60 1QD, Lancs, England.
RP Dos Santos, HF, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim
   Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR BOWYER J, 1990, Z NATURFORSCH C, V45, P379
   CRAMER CJ, 1992, J COMPUT AID MOL DES, V6, P629
   CREUZET S, 1989, Z NATURFORSCH C, V44, P435
   DEALMEIDA WB, 1992, THEOCHEM, V253, P349
   DEALMEIDA WB, 1995, STRUCT CHEM, V6, P383
   DEISENHOFER J, 1985, NATURE, V318, P618
   DOSSANTOS HF, 1998, J PHARM SCI, V87, P190
   DRABER W, 1991, ANGEW CHEM INT EDIT, V30, P1621
   FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   HANSCH C, 1995, CHEM BIOL ACS PROFES, P459
   KARELSON M, 1996, CHEM REV, V96, P1027
   KUBINYI H, 1993, QSAR HANSCH ANAL REL
   LI GS, 1997, J PHYS CHEM A, V101, P7885
   MICHEL H, 1988, BIOCHEMISTRY-US, V27, P1
   ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
   PFEFER G, 1996, ACTA CRYSTALLOGR B 4, V52, P662
   POPLE JA, 1993, ISRAEL J CHEM, V33, P345
   SILVA THA, 1997, BIOORGAN MED CHEM, V5, P353
   SILVA THA, 1997, STRUCT CHEM, V8, P95
   SINNING I, 1992, TRENDS BIOCHEM SCI, V17, P150
   SZAFRAN M, 1993, J COMPUT CHEM, V14, P371
   TREBST A, 1984, Z NATURFORSCH C, V39, P405
   TREBST A, 1993, PHYTOCHEMISTRY, V33, P969
   VOET D, 1995, BIOCHEMISTRY
   WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
   WIBERG KB, 1995, J PHYS CHEM-US, V99, P9072
   WIBERG KB, 1996, J COMPUT CHEM, V17, P185
NR 28
TC 7
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD SEP
PY 1998
VL 99
IS 5
BP 301
EP 311
PG 11
SC Chemistry, Physical
GA 125RC
UT ISI:000076250000004
ER

PT J
AU de Brito Mota, F
   Justo, JF
   Fazzio, A
TI Structural properties of amorphous silicon nitride
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC-STRUCTURE; INTERATOMIC POTENTIALS; MOLECULAR-DYNAMICS;
   BETA-SI3N4; CHEMISTRY; SYSTEMS; BOND
AB We developed an empirical potential for interactions between Si and N
   to describe silicon nitride systems using the Tersoff functional form.
   The fitting parameters were found using a set of ab initio and
   experimental results of the crystalline phase. Using this empirical
   model, we explored the structural properties of amorphous silicon
   nitride through Monte Carlo simulations, and compared them to available
   experimental data. The good description of the a-SiNx system for a wide
   range of nitrogen contents (0 < x < 1.5) shows the reliability of this
   model.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   UFBA, Inst Fis, BR-40210340 Salvador, BA, Brazil.
RP de Brito Mota, F, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
   Paulo, Brazil.
CR AIYAMA T, 1979, J NONCRYSTALLINE SOL, V33, P131
   ALLEN MP, 1987, COMPUTER SIMULATION
   BALAMANE H, 1992, PHYS REV B, V46, P2250
   BORGEN O, 1961, ACTA CHEM SCAND, V15, P1789
   CUNHA C, 1993, PHYS REV B, V48, P17806
   FLETCHER R, 1963, COMPUT J, V6, P163
   FROHMANBENTCHKO.D, 1969, J APPL PHYS, V40, P3307
   GRUN R, 1979, ACTA CRYSTALLOGR B, V35, P800
   GURAYA MM, 1990, PHYS REV B, V42, P5677
   HABRAKEN FHPM, 1994, MAT SCI ENG R, V12, P123
   HARDIE D, 1957, NATURE, V180, P331
   HERZBERG G, 1945, DIATOMIC MOL
   KALIA RK, 1997, PHYS REV LETT, V78, P2144
   KALIA RK, 1997, PHYS REV LETT, V78, P689
   KATZ RN, 1980, SCIENCE, V208, P841
   LIU AY, 1990, PHYS REV B, V41, P10727
   MARTINMORENO L, 1987, PHYS REV B, V35, P9683
   MCDONALD IR, 1972, MOL PHYS, V23, P41
   MISAWA M, 1979, J NONCRYSTALLINE SOL, V34, P313
   NIIHARA K, 1977, J MATER SCI, V12, P1233
   PEPPER M, 1980, INSULATING FILMS SEM, V50, P193
   POWELL MJ, 1981, APPL PHYS LETT, V38, P794
   ROBERTSON J, 1991, PHILOS MAG B, V63, P44
   SANFABIAN E, 1989, PHYS REV B, V39, P1844
   TERSOFF J, 1986, PHYS REV LETT, V56, P632
   TERSOFF J, 1988, PHYS REV B, V37, P6991
   TERSOFF J, 1989, PHYS REV B, V39, P5566
   UMESAKI N, 1992, J NON-CRYST SOLIDS, V150, P120
   VASHISHTA P, 1990, PHYS REV B, V41, P12197
   VASSILOU B, 1957, NATURE, V179, P435
   VENEZUELA PPM, 1996, PHYS REV LETT, V77, P546
   WYCKOFF RWG, 1986, CRYSTAL STRUCTURES
   XU Y, 1988, PHYSICA B, V150, P32
NR 33
TC 32
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD OCT 1
PY 1998
VL 58
IS 13
BP 8323
EP 8328
PG 6
SC Physics, Condensed Matter
GA 125HU
UT ISI:000076232100036
ER

PT J
AU Resende, SM
   Pliego, JR
   De Almeida, WB
TI Free radical mechanism of the Cl-2 addition to acetylene
SO JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS
LA English
DT Article
ID MOLECULAR ELECTRONIC WAVEFUNCTIONS; ATOMS; SUBSTITUTIONS; INTERMEDIATE;
   COMPLEXES; CHLORINE; SIGMA; C2H2
AB The free radical mechanism for the addition of Cl-2 to acetylene in the
   gas phase has been studied. The structures and energies of reactants,
   transition states and products were determined through ab initio
   calculations of the stationary points on the potential-energy surface
   (PES) for the interaction of these two molecules. Using BD(T)/6-311 +
   G(2df,2p)//CASSCF(6,6)/6-31G(d,p) level of theory, the reaction rate
   for the initiation step (Cl-2 + C2H2 --> Cl + C2H2Cl) was estimated as
   10(-18) 1 mol(-1) s(-1) (at 298.15 K). This leads to the formation of a
   small quantity of Cl and C2H2Cl radicals, the chain propagators, and
   the following steps will only occur to an appreciable extent after an
   induction period, which generates a measurable amount of these
   radicals. The following steps were studied at the UCCSD(T)/6-311 +
   G(2df,2p)//UMP2/6-31G(d,p) level of theory. The propagation reaction
   C2H2 + Cl --> C2H2Cl occurs with an activation energy of -1.22 kcal
   mol(-1), and produces a radical C2H2Cl, where the two hydrogens are on
   opposite sides of the molecule (trans-isomer). This reaction has a rate
   constant 2.85 x 10(10) 1 mol(-1) s(-1) at 298.15 K. The interconversion
   of the two isomers of the C2H2Cl radical (cis-trans) is very fast, with
   a rate constant 4.75 x 10(10) s(-1) and so these species can be
   considered to be in equilibrium. The rate constants for the reaction
   C2H2Cl + Cl-2 --> C2H2Cl2 + Cl, where the products trans- and
   cis-1,2-dichloroethylenes are formed, are 1.95 x 10(10) and 3.63 x
   10(9) 1 mol-l s(-1), respectively, and those for the two polymerization
   reactions C2H2 + C2H2Cl --> C2H2C2H2Cl are ca. 10(2) 1 mol(-1) s(-1).
   Hence, the latter reactions will not compete with the formation of
   C2H2Cl2, and the polymerization products will not be produced in
   meaningful amounts. Analysis of the kinetics data gives 97.3% of the
   trans-1,2-dichloroethylene and 2.7% of the cis-1,2-dichloroethylene
   products.
C1 UFMG, Dept Quim, Lab Quim Computac & Modelagem Mol, ICEX, BR-31270901 Belo Horizonte, MG, Brazil.
RP Resende, SM, UFMG, Dept Quim, Lab Quim Computac & Modelagem Mol, ICEX,
   BR-31270901 Belo Horizonte, MG, Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
   BARTON D, 1979, COMPREHENSIVE ORGANI, V1
   BLOEMINK HI, 1994, CHEM PHYS LETT, V223, P162
   BLOEMINK HI, 1995, J CHEM SOC FARADAY T, V91, P1891
   CIZEK J, 1966, J CHEM PHYS, V45, P4256
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   HANDY NC, 1989, CHEM PHYS LETT, V164, P185
   KAISER EW, 1992, INT J CHEM KINET, V24, P179
   KAISER EW, 1996, J PHYS CHEM-US, V100, P4111
   KRISHNAN R, 1980, J CHEM PHYS, V72, P4244
   LEGON AC, 1995, CHEM PHYS LETT, V237, P291
   LIDE DR, 1993, CRC HDB CHEM PHYSICS
   MARCH J, 1985, ADV ORGANIC CHEM REA
   MOLLER C, 1934, PHYS REV, V46, P618
   PALDUS J, 1972, PHYS REV A, V5, P50
   POPLE JA, 1976, INT J QUANTUM CHEM S, V10, P1
   POUTSMA MZ, 1966, TETRAHEDRON, V22, P2167
   RESENDE SM, 1997, MOL PHYS, V91, P635
   ROOS BO, 1987, ADV CHEM PHYSICS, V69
   RUEDENBERG K, 1982, CHEM PHYS, V71, P41
   RUEDENBERG K, 1982, CHEM PHYS, V71, P51
   RUEDENBERG K, 1982, CHEM PHYS, V71, P65
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SIEGBAHN PEM, 1981, J CHEM PHYS, V74, P2384
NR 24
TC 4
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 0WF,
   CAMBS, ENGLAND
SN 0956-5000
J9 J CHEM SOC FARADAY TRANS
JI J. Chem. Soc.-Faraday Trans.
PD OCT 7
PY 1998
VL 94
IS 19
BP 2895
EP 2900
PG 6
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 126HM
UT ISI:000076287900004
ER

PT J
AU Lopez-Castillo, A
TI Nonlinear dynamics of the hydrogen molecule
SO PHYSICAL REVIEW A
LA English
DT Article
ID 3-BODY COULOMB PROBLEM; HELIUM ATOM; QUANTUM DEFECTS; STATES;
   QUANTIZATION; H-2; MODEL
AB The hydrogen molecule (H-2) contains the basic ingredients for
   understanding the chemical bond, even more so than the hydrogen
   molecule ion. H-2 is studied in the context of nonlinear dynamics. The
   classical mechanics of H-2 is studied in three dimensions with nine,
   six, and three degrees of freedom and in one dimension (two degrees of
   freedom). The semiclassical quantization is made using the
   Bohr-Sommerfeld rules and the Gutzwiller formula to calculate the
   eigenvalues of the doubly occupied symmetric excited states of H-2. An
   ab initio quantum calculation is performed and compared with
   semiclassical results. The difficulties that appear in those
   calculations are discussed, and a proposal of the experimental measure
   is made.
C1 Univ Fed Sao Carlos, Dept Matemat, Ctr Ciencias & Tecnol, BR-13560970 Sao Paulo, Brazil.
RP Lopez-Castillo, A, Univ Fed Sao Carlos, Dept Matemat, Ctr Ciencias &
   Tecnol, Caixa Postal 676, BR-13560970 Sao Paulo, Brazil.
CR BARANGER M, 1987, ANN PHYS-NEW YORK, V177, P330
   BATES DR, 1953, PHILOS T ROY SOC A, V246, P215
   BAUSCHLICHER CW, 1989, CHEM PHYS LETT, V159, P485
   BOHR N, 1913, PHILOS MAG, V25, P10
   COVENEY PV, 1984, J PHYS B ATOM MOL PH, V17, P319
   DUAN YW, 1995, PHYS REV A, V52, P3497
   EBERLY JH, 1990, PHYS REV A, V42, P5750
   ERIKSON HA, 1949, PHYS REV, V75, P29
   EZRA GS, 1991, J PHYS B ATOM MOL PH, V24, L413
   GUBERMAN SL, 1983, J CHEM PHYS, V78, P1404
   KRAGH H, 1977, J CHEM EDUC, V54, P208
   LEOPOLD JG, 1980, J PHYS B ATOM MOL PH, V13, P1025
   LEOPOLD JG, 1980, J PHYS B ATOM MOL PH, V13, P1037
   LOPEZCASTILLO A, 1996, J PHYS B-AT MOL OPT, V29, P197
   LOPEZCASTILLO A, 1996, PHYS REV LETT, V77, P4516
   MENIS T, 1992, J PHYS B ATOM MOL PH, V25, L263
   MULLER J, 1995, J CHEM PHYS, V103, P4985
   OSTROVSKY VN, 1997, J PHYS B-AT MOL OPT, V30, P151
   PAULI W, 1922, ANN PHYS-BERLIN, V68, P177
   RAWLINGS D, 1991, MOTTEC 91, P381
   RICHTER K, 1992, J PHYS B ATOM MOL PH, V25, P3929
   SHIMAMURA I, 1990, PHYS REV A, V41, P3545
   STIEFEL EL, 1971, LINEAR REGULAR CELES
   STRAND MP, 1979, J CHEM PHYS, V70, P3812
   SUGIURA Y, 1927, Z PHYS, V45, P484
   TAKAGI H, 1983, PHYS REV A, V27, P691
   VANVLECK JH, 1922, PHILOS MAG, V44, P842
   WINTGEN D, 1988, PHYS REV LETT, V61, P1803
   WINTGEN D, 1992, CHAOS, V2, P19
NR 29
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD SEP
PY 1998
VL 58
IS 3
BP 1846
EP 1858
PG 13
SC Physics, Atomic, Molecular & Chemical; Optics
GA 116MY
UT ISI:000075730200031
ER

PT J
AU De Almeida, WB
   Dos Santos, HF
   Zerner, MC
TI A theoretical study of the interaction of anhydrotetracycline with
   Al(III)
SO JOURNAL OF PHARMACEUTICAL SCIENCES
LA English
DT Article
ID SOLVENT; TETRACYCLINE; ALUMINUM; PRODUCT; AM1
AB In this article the complexation of anhydrotetracycline (AHTC), the
   major toxic decomposition product of the antibiotic tetracycline, with
   Al(III) has been investigated using the AM1 semiempirical and ab initio
   Hartree-Fock levels of theory. Different modes of complexation have
   been considered with the structure of tetra- and pentacoordinated
   complexes being fully optimized, In the gas phase, processes ii and
   iii, which lead to the complexes with stoichiometry MHL2+, are favored.
   Structure II ([AlLH2(OH)(H2O)](2+)) has the metal coordinated to the
   O-11 and O-12 groups and the O-3 group protonated and is the global
   minimum on the potential energy surface for the interaction. In water
   solution, the Al(III) is predicted to form predominantly a
   tetracoordinated complex at the O-am and O-3 site (V) of the AHTC with
   the stoichiometry MH2L3+ (process i). The experimental proposal is the
   complexed form with the metal ion coordinated to the O-11-O-12 moiety
   (site II). The intramolecular proton transfer, which leads to the most
   stable Al(III)-AHTC MHL2+ complex, has not been considered by the
   experimentalists. The experimental structure was found to be
   unfavorable in our calculations in both gas phase and water solution.
   All the semiempirical results are in perfect agreement with the ab
   initio calculations. So, we suggest that the experimental assignments
   should be revised, taking into account the results obtained in the
   present study.
C1 UFMG, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
   Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA.
RP De Almeida, WB, UFMG, ICEx, Dept Quim, Lab Quim Computac & Modelagem
   Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR ALVAREZFERNANDE.A, 1969, J PHARM SCI, V58, P443
   DEALMEIDA WB, 1997, 6 C CURR TRENDS COMP
   DEALMEIDA WB, 1997, J CHEM SOC P2, V7, P1335
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DEWAR MJS, 1990, ORGANOMETALLICS, V9, P508
   DOSSANTOS HF, 1998, J PHARM SCI, V87, P190
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   HASAN T, 1985, J ORG CHEM, V50, P1755
   KARELSON M, 1993, J PHYS CHEM-US, V97, P11901
   KLANT A, 1993, J CHEM SOC P2, P799
   LAMBS L, 1988, INORG CHEM, V27, P3001
   MACHADO FC, 1995, J INORG BIOCHEM, V60, P163
   MARTIN RB, 1994, ACCOUNTS CHEM RES, V27, P204
   PALENIK GJ, 1978, J AM CHEM SOC, V100, P4458
   RIVAIL JL, 1996, COMPUTATIONAL CHEM R, V1, P139
   SIQUEIRA JM, 1994, J PHARM SCI, V83, P291
   SZAFRAN M, 1993, J COMPUT CHEM, V14, P371
   TOMASI J, 1994, CHEM REV, V94, P2027
   WARSHEL A, 1981, ACCOUNTS CHEM RES, V14, P284
NR 19
TC 13
PU AMER PHARMACEUTICAL ASSN
PI WASHINGTON
PA 2215 CONSTITUTION AVE NW, WASHINGTON, DC 20037 USA
SN 0022-3549
J9 J PHARM SCI
JI J. Pharm. Sci.
PD SEP
PY 1998
VL 87
IS 9
BP 1101
EP 1108
PG 8
SC Chemistry, Medicinal; Chemistry, Multidisciplinary; Pharmacology &
   Pharmacy
GA 117MQ
UT ISI:000075785600012
ER

PT J
AU Aleman, C
   Casanovas, J
   Galembeck, SE
TI PAPQMD parametrization of molecular systems with cyclopropyl rings:
   Conformational study of homopeptides constituted by
   l-aminocyclopropane-l-carboxylic acid
SO JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN
LA English
DT Article
DE MM and MD techniques; homopeptides; parametrization
ID FORCE-FIELD PARAMETRIZATION; ELECTROSTATIC POTENTIALS; NUCLEIC-ACIDS;
   AMINO-ACIDS; AB-INITIO; C-ALPHA,ALPHA-DIALKYLATED GLYCINES; STRUCTURAL
   VERSATILITY; ORGANIC-MOLECULES; ENERGY FUNCTIONS; ATOMIC CHARGES
AB The suitability of ab initio, semiempirical and density functional
   methods as sources of stretching and bending parameters has been
   explored using the PAPQMD (Program for Approximate Parametrization from
   Quantum Mechanical Data) strategy. Results show that semiempirical
   methods provide parameters comparable to those compiled on empirical
   force fields. In this respect the AMI method seems to be a good method
   to obtain parameters at a minimum computational cost. On the other
   hand, harmonic force fields initially developed for proteins and DNA
   have been extended to include compounds containing highly strained
   three-membered rings, Like 1-aminocyclopropane-1-carboxylic acid. For
   this purpose the cyclopropyl ring has been explicitly parametrized at
   the AMI level considering different chemical environments. Finally, the
   new set of parameters has been used to investigate the conformational
   preferences of homopeptides constituted by
   1-aminocyclopropane-1-carboxylic acid. Results indicate that such
   compounds tend to adopt a helical conformation stabilized by
   intramolecular hydrogen bonds between residues i and i + 3. This
   conformation allows the arrangement of the cyclic side chains without
   steric clashes.
C1 Univ Politecn Catalunya, ETS Enginyers Ind, Dept Enginyeriia Quim, E-08028 Barcelona, Spain.
   Univ Rovira & Virgili, Fac Quim, Dept Quim Fis & Inorgan, E-43005 Tarragona, Spain.
   Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Quim, BR-14049901 Ribeirao Preto, Brazil.
RP Aleman, C, Univ Politecn Catalunya, ETS Enginyers Ind, Dept Enginyeriia
   Quim, Av Diagonal 647, E-08028 Barcelona, Spain.
CR ALEMAN C, 1991, J COMPUT CHEM, V12, P664
   ALEMAN C, 1992, BIOPOLYMERS, V32, P621
   ALEMAN C, 1992, J COMPUT AID MOL DES, V6, P331
   ALEMAN C, 1993, BIOPOLYMERS, V33, P1811
   ALEMAN C, 1993, J COMPUT AID MOL DES, V7, P721
   ALEMAN C, 1993, J COMPUT CHEM, V14, P799
   ALEMAN C, 1993, J COMPUT CHEM, V14, P799
   ALEMAN C, 1994, BIOPOLYMERS, V34, P941
   ALEMAN C, 1994, J CHEM SOC P2, P563
   ALEMAN C, 1995, J ORG CHEM, V60, P910
   ALEMAN C, 1996, J POLYM SCI POL PHYS, V34, P963
   ALEMAN C, 1997, J PHYS CHEM B, V101, P5046
   ALEMAN C, 1997, PROTEINS, V28, P83
   ALEMAN C, 1997, PROTEINS, V29, P575
   ALHAMBRA C, 1994, J COMPUT CHEM, V15, P12
   ALLINGER NL, 1977, J AM CHEM SOC, V99, P8127
   ALLINGER NL, 1989, J AM CHEM SOC, V111, P8551
   BAGUS PS, 1977, J CHEM PHYS, V67, P618
   BAKOWIES D, 1996, J COMPUT CHEM, V17, P87
   BALARAM P, 1992, CURR OPINI STRUCT BI, V2, P1845
   BEEKE AD, 1988, PHYS REV A, V38, P3098
   BENEDETTI E, 1989, BIOPOLYMERS, V28, P175
   BENEDETTI E, 1989, INT J BIOL MACROMOL, V11, P353
   BIRNGHAM RC, 1975, J AM CHEM SOC, V97, P1285
   BROOKS BR, 1983, J COMPUT CHEM, V4, P187
   BROOKS CL, 1988, PROTEINS THEORETICAL
   BUCK CW, 1990, J COMPUT CHEM, V11, P623
   CHALLACOMBE M, 1991, J CHEM PHYS, V95, P1064
   CLARK M, 1989, J COMPUT CHEM, V10, P982
   CORNELL WD, 1995, J AM CHEM SOC, V117, P5179
   COX SR, 1984, J COMPUT CHEM, V5, P191
   DECLERCQ E, 1993, MED RES REV, V13, P229
   DECLERCQ E, 1995, J MED CHEM, V38, P2491
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DIBLASIO B, 1993, BIOPOLYMERS, V33, P1037
   DINUR U, 1989, J AM CHEM SOC, V111, P5149
   DINUR U, 1990, J COMPUT CHEM, V11, P1234
   DUNCAN JL, 1969, J MOL SPECTROSC, V30, P253
   FERENCZY GG, 1990, J COMPUT CHEM, V11, P159
   FOGARASI G, 1984, ANNU REV PHYS CHEM, V35, P191
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   HAGLER AT, 1974, J AM CHEM SOC, V96, P5319
   HARIHARAN PC, 1974, MOL PHYS, V27, P209
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HERMANS J, 1984, BIOPOLYMERS, V23, P1513
   HOPFINGER AJ, 1984, J COMPUT CHEM, V5, P486
   HWANG MJ, 1994, J AM CHEM SOC, V116, P2515
   JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
   KARLE IL, 1990, CURR SCI INDIA, V59, P875
   KARPLUS M, 1990, NATURE, V347, P631
   KOLLMAN P, 1990, AMBER 3 0A
   KOTTALAM J, 1990, BIOPOLYMERS, V29, P1409
   LEE C, 1988, PHYS REV B, V37, P785
   LEE JH, 1991, J COMPUT CHEM, V12, P186
   LEONARD JM, 1990, J COMPUT CHEM, V11, P952
   LUQUE FJ, 1991, J AM CHEM SOC, V113, P5203
   MAPLE JR, 1988, P NATL ACAD SCI USA, V85, P5350
   MOMMANY FA, 1975, J PHYS CHEM-US, V79, P2361
   NILSSON L, 1986, J COMPUT CHEM, V7, P591
   OLIVELLA S, 1984, QCPE B, V4, P109
   OROZCO M, 1990, J COMPUT CHEM, V11, P909
   OROZCO M, 1993, ACTA CHIM HUNG, V130, P695
   OROZCO M, 1993, J COMPUT CHEM, V14, P881
   PARK JM, 1995, J COMPUT CHEM, V16, P1011
   PRANATA J, 1991, J AM CHEM SOC, V113, P2810
   PULAY P, 1978, J CHEM PHYS, V68, P5077
   PULAY P, 1983, J CHEM PHYS, V79, P3382
   REN J, 1995, NAT STRUCT BIOL, V2, P293
   REYNOLDS CA, 1992, J AM CHEM SOC, V114, P9075
   SERRALLACH A, 1974, J MOL SPECTROSC, V52, P94
   SINGH UC, 1984, J COMPUT CHEM, V5, P191
   SMYTHE ML, 1995, J AM CHEM SOC, V117, P5445
   STEWART JJP, 1983, Q C P E B, V3, P101
   STEWART JJP, 1989, J COMPUT CHEM, V10, P221
   TONIOLO C, 1991, MACROMOLECULES, V24, P4004
   VANGUNSTEREN WF, 1990, ANGEW CHEM INT EDIT, V29, P992
   WEINER SJ, 1986, J COMPUT CHEM, V7, P230
   WILLIAMS DE, 1988, J COMPUT CHEM, V9, P745
   WILLIAMS DE, 1990, BIOPOLYMERS, V29, P1397
   WILLIAMS RW, 1991, J COMPUT CHEM, V12, P761
   YAMAGUCHI Y, 1980, J CHEM PHYS, V73, P2310
   YAMAMOTO S, 1985, J PHYS CHEM-US, V89, P3298
   ZHANG L, 1994, J AM CHEM SOC, V116, P11915
NR 84
TC 9
PU KLUWER ACADEMIC PUBL
PI DORDRECHT
PA SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 0920-654X
J9 J COMPUT AID MOLEC DESIGN
JI J. Comput.-Aided Mol. Des.
PD MAY
PY 1998
VL 12
IS 3
BP 259
EP 273
PG 15
SC Computer Science, Interdisciplinary Applications; Biochemistry &
   Molecular Biology; Biophysics
GA 116PR
UT ISI:000075734200004
ER

PT J
AU Sambrano, JR
   de Sousa, AR
   Queralt, JJ
   Andres, J
   Longo, E
TI A theoretical analysis on the intramolecular proton transfer of
   alpha-alanine in an aqueous medium
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID AXES ELLIPSOIDAL CAVITY; GAS-PHASE; AB-INITIO; NONPERFECT
   SYNCHRONIZATION; ABINITIO; GLYCINE; SOLVENT; ACETALDEHYDE; ZWITTERION;
   ALGORITHM
AB Intramolecular proton transfer from oxygen to nitrogen atoms in the
   alpha-alanine amino acid has been studied by ab initio methods at the
   HF/6-31G*, HF/6-31 ++ G** and MP2/6-31 ++ G** levels of calculation
   including the solvent effects by means of self-consistent reaction
   field theory. An analysis of the results based on the natural bond
   orbital charges shows that the transition structure presents an
   imbalance in the sense that the charge shift lags behind the proton
   transfer and that the bond formation is always in advance with respect
   to the bond cleavage. All calculation levels show that the barrier
   height associated with the conformational change on alpha-alanine is
   larger than the proton transfer process. (C) 1998 Elsevier Science B.V.
   All rights reserved.
C1 Univ Jaume I, Dept Ciencias Expt, Castello 12080, Spain.
   Univ Estadual Paulista, Dept Matemat, BR-17030360 Bauru, SP, Brazil.
   Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Queralt, JJ, Univ Jaume I, Dept Ciencias Expt, Apartat 224, Castello
   12080, Spain.
EM queralt@vents.uji.es
CR ANDRES J, 1997, RRD PHYS CHEM, V1, P99
   BAKER J, 1986, J COMPUT CHEM, V7, P385
   BAKER J, 1987, J COMPUT CHEM, V8, P563
   BERNASCONI CF, 1987, ACCOUNTS CHEM RES, V20, P301
   BERNASCONI CF, 1992, ACCOUNTS CHEM RES, V25, P9
   BERNASCONI CF, 1992, ADV PHYS ORG CHEM, V27, P116
   BERNASCONI CF, 1994, J AM CHEM SOC, V116, P5405
   BERNASCONI CF, 1996, J AM CHEM SOC, V118, P10494
   BONACCORSI R, 1984, J AM CHEM SOC, V106, P1945
   BORGIS D, 1989, ENZYME CATALYSIS PRO
   CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
   CSASZAR AG, 1996, J PHYS CHEM-US, V100, P3541
   DING YB, 1992, CHEM PHYS LETT, V199, P261
   FERSHT A, 1985, ENZYME STRUCTURE MEC
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   JEFFREY GA, 1991, HYDROGEN BONDING BIO
   KIRBY AJ, 1997, ACCOUNTS CHEM RES, V30, P290
   LODISH H, 1995, MOL CELL BIOL
   MIASKIEWICZ K, 1990, J SOLUTION CHEM, V19, P465
   MOLLER C, 1934, PHYS REV, V46, P618
   MOYANO A, 1989, J ORG CHEM, V54, P573
   NAVARRETE JTL, 1997, THEOR CHEM ACC, V98, P5
   QUERALT JJ, 1998, CHEM PHYS LETT, V283, P294
   QUERALT JJ, 1998, CHEM PHYS, V229, P125
   REED AE, 1988, CHEM REV, V88, P899
   RINALDI D, 1983, J CHEM PHYS, V78, P834
   RINALDI R, 1992, 622 QCPE IND U
   RIVAIL JL, 1976, CHEM PHYS, V18, P233
   RIVAIL JL, 1982, J CHIM PHYS PCB, V79, P1
   STEWART R, 1985, PROTON APPL ORGANIC
   TOMASI J, 1994, CHEM REV, V94, P2027
   TOMASI J, 1994, STRUCTURE REACTIVITY, P10
   TORTONDA FR, 1996, CHEM PHYS LETT, V260, P21
NR 33
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 11
PY 1998
VL 294
IS 1-3
BP 1
EP 8
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 118WP
UT ISI:000075864200001
ER

PT J
AU Almeida, AL
   Martins, JBL
   Taft, CA
   Longo, E
   Lester, WA
TI Ab initio and semiempirical studies of the adsorption and dissociation
   of water on pure, defective, and doped MgO (001) surfaces
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID LARGE CLUSTER-MODELS; MAGNESIUM-OXIDE; CO INTERACTION;
   ELECTRONIC-STRUCTURE; OXIDATIVE DIMERIZATION; CHARGE-DISTRIBUTION;
   3D-METAL SURFACES; SOLID HYDROXIDES; ZNO SURFACES; HYDROGEN
AB Ab initio and semiempirical calculations of large cluster models have
   been performed in order to study water adsorption and dissociation on
   pure, defective (vacancies) and doped (Li, Na, K, Ca, Fe) MgO (001)
   surfaces. The geometries of the adsorbed and dissociated molecules have
   been optimized preparatory to analysis of binding energies, stretching
   frequencies, charge transfers, preferential sites of interaction, and
   bond distances. We have used Mulliken, natural bond order, and
   electrostatic-derived atomic and overlap populations to analyze charge
   distributions in the clusters. We have also investigated transition
   structures, activation energies, energy gaps, HOMO, density of states,
   SCF orbital energies as well as the acid-base properties of our cluster
   model. Numerical results are compared, where possible, with experiment,
   interpreted in the framework of various analytical models, and
   correlated with site coordination numbers, corner and edge site
   preferential locations, and direction of charge transfer. A thorough
   charge analysis indicates substantial charge redistribution in the
   magnesium oxide crystal as a result of water adsorption and
   dissociation in pure, defective, and doped MgO crystals. The
   introduction of heavier impurities and vacancies could produce
   substantial changes in the physical and chemical properties of the
   catalyst and increase the binding and dissociation energies. Some of
   the largest changes originate from the introduction of vacancies. Two
   and three-dimensional potential energy surfaces are used to investigate
   activation energies of hydroxylation on the MgO surface. Stretching
   frequencies are correlated with magnesium and oxygen coordination
   numbers. (C) 1998 American Institute of Physics.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estat, BR-22290180 Rio De Janeiro, Brazil.
   Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
   Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
   Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Almeida, AL, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
   Estat, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil.
CR ALMEIDA AL, 1996, UNPUB 4 WORLD C THEO
   ANCHELL JL, 1996, J PHYS CHEM-US, V100, P18317
   ANDRE JM, 1977, THEOR CHIM ACTA, V43, P239
   BECKENKAMP K, 1992, J MOL STRUCT, V270, P393
   BESLER BH, 1990, J COMPUT CHEM, V11, P431
   BOEHM HP, 1983, CATALYSIS SCI TECHNO, V4, P39
   BOUDART M, 1972, J AM CHEM SOC, V94, P6622
   CARNEIRO JWD, 1987, J MOL STRUCT THEOCHE, V152, P281
   CARNEIRO JWD, 1993, CHEM PHYS LETT, V202, P278
   CAUSA M, 1986, PHYS REV B, V33, P1308
   CHACONTAYLOR MR, 1996, J PHYS CHEM-US, V100, P7610
   COLBOURN EA, 1982, SURF SCI, V117, P571
   DAVYDOV AA, 1990, INFRARED SPECTROSCOP
   DELEEUW NH, 1995, J PHYS CHEM-US, V99, P17219
   DEROUANE EG, 1974, CHEM PHYS LETT, V28, P445
   ERMOSHKIN AN, 1982, J PHYS C SOLID STATE, V15, P847
   FOTY DC, 1977, J CATAL, V147, P2160
   FRISCH MJ, 1992, GAUSSIAN 92
   FUKUI K, MECH MOL MIGRATIONS, P2
   FUKUI K, 1964, MOL ORBITALS CHEM PH
   FUKUI K, 1965, TETRAHEDRON LETT, P4303
   FUKUI K, 1966, TETRAHEDRON LETT, P51
   GONIAKOWSKI J, 1993, SURF SCI, V287, P188
   GONIAKOWSKI J, 1994, SURF SCI, V319, P68
   GONIAKOWSKI J, 1994, SURF SCI, V68, P3198
   GONIAKOWSKI J, 1995, SURF SCI, V323, P129
   GUIMARES TC, IN PRESS PHYS REV B
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   HERMANSSON K, 1991, J CHEM PHYS, V95, P3578
   ITO T, 1985, J AM CHEM SOC, V107, P5062
   ITO T, 1985, NATURE, V314, P721
   JONES CF, 1984, J CHEM SOC FARAD T 1, V80, P2609
   JUJIOKA HH, 1985, SURF SCI LETT, V149, L53
   KNOZINGER E, 1993, SURF SCI, V290, P383
   KRESIN VZ, 1992, CHEM PHYS LETT, V197, P1
   KUNZ AB, 1976, INT J QUANTUM CHEM S, V10, P283
   KUNZ AB, 1977, CHEM PHYS LETT, V45, P18
   LANGEL W, 1994, PHYS REV LETT, V73, P504
   LANGEL W, 1995, J CHEM PHYS, V103, P3240
   LEMBERTON JL, 1984, J CATAL, V89, P69
   LIANG SHC, 1986, J CATAL, V101, P293
   LIN CH, 1987, J AM CHEM SOC, V109, P4808
   LONGO E, 1985, ADV CERAM, V10, P592
   LONGO E, 1985, LANGMUIR, V1, P456
   LONGO E, 1987, HIGH TECH CERAMICS, P399
   LUTZ HD, 1987, J MOL STRUCT, V156, P143
   MARS P, 1963, ADV CATAL, V14, P35
   MARTINS JBL, 1994, J MOL STRUCT, V303, P19
   MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
   MARTINS JBL, 1995, J MOL STRUCT, V330, P411
   MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
   MARTINS JBL, 1996, THEOCHEM-J MOL STRUC, V363, P249
   MCCARTHY MI, 1996, J PHYS CHEM-US, V100, P16990
   OKAZAKI S, 1989, J CHEM PHYS, V90, P5595
   ONISHI H, 1987, SURF SCI, V191, P479
   PACCHIONI G, 1993, PHYS REV B, V48, P573
   PAVAO AC, 1991, PHYS REV B, V43, P6962
   PAVAO AC, 1991, PHYS REV B, V44, P1910
   PAVAO AC, 1994, PHYS REV B, V50, P1868
   PAVAO AC, 1994, TRENDS CHEM PHYS, V3, P109
   PAVAO AC, 1995, SURF SCI, V323, P340
   PAVAO AC, 1995, SURF SCI, V323, P40
   PICAUD S, 1993, CHEM PHYS LETT, V209, P340
   REED AE, 1985, J CHEM PHYS, V83, P735
   RUSSO S, 1992, SURF SCI, V262, P245
   SAWABE K, 1994, J CHEM PHYS, V101, P4819
   SCAMEHORN CA, 1993, J CHEM PHYS, V99, P2786
   SCHONBERGER U, 1995, PHYS REV B, V52, P8788
   SEIDL PR, 1988, CHEM PHYS LETT, V373, P1147
   SEIDL PR, 1990, CHEM PHYS LETT, V175, P183
   SHIDO T, 1984, J CATAL, V89, P69
   SHIDO T, 1989, J CHEM SOC FARAD T 1, V85, P441
   SINGH UC, 1984, J COMPUT CHEM, V5, P129
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STIRNIMAN MJ, 1996, J CHEM PHYS, V105, P1295
   TAFT CA, 1966, CHEM PHYS LETT, V248, P1164
   TOSTES JGR, 1994, J MOL STRUCT THEOCHE, V306, P1019
   TOSTES JGR, 1995, CHEM PHYS LETT, V237, P33
   TOSTES JR, 1996, THEOCHEM-J MOL STRUC, V388, P85
   TSYGANENKO AA, 1973, J MOL STRUCT, V19, P579
NR 80
TC 16
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
   11797-2999 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD SEP 1
PY 1998
VL 109
IS 9
BP 3671
EP 3685
PG 15
SC Physics, Atomic, Molecular & Chemical
GA 114ZP
UT ISI:000075639300042
ER

PT J
AU Mendes, MA
   Moraes, LAB
   Sparrapan, R
   Eberlin, MN
   Kostiainen, R
   Kotiaho, T
TI Oxygen atom transfer to positive ions: A novel reaction of ozone in the
   gas phase
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID MASS-SPECTROMETRY; ACYLIUM IONS; RADICAL-CATION; KINETICS; CHEMISTRY;
   O3; MECHANISMS; ATMOSPHERE; O-3(-); NO2
AB In the gas phase, neutral ozone (O-3) transfers an oxygen atom to
   several positive ions, i.e. the radical cations of pyridines (R-Py+.; R
   = H, CH3, C2H5, and Cl), pyrimidine (Pi(+).), and alkyl halides
   (CH3X+.; X = Cl and I), and the halogen cations (X+; X = Cl, Br, and
   I). Reactivity changes drastically within the halogen series (Cl+ much
   less than Br+ less than or equal to I+), whereas no O-transfer occurs
   to F+. The oxide derivatives R-Py+-O ., Pi(+)-O ., CH3X+-O ., and XO+
   are formed, as demonstrated by pentaquadrupole (QqQqQ) double- and
   triple-stage mass spectrometry. No oxygen atom transfer occurs,
   however, in "inverse" reactions, i.e., those of ionized ozone (O-3(+).)
   with the corresponding neutrals; and charge transfer dominates. Ab
   initio calculations suggest that O-transfer from ozone to ionized
   pyridine yields ionized pyridine N-oxide via simple nucleophilic
   addition of ozone as opposed to 1,3-dipolar cycloaddition. Similar
   nucleophilic addition followed by Oz loss is also the most likely
   mechanism for O-transfer from ozone to the ionized alkyl halides and
   halogen cations. This novel O-transfer reaction to positive ions, which
   expands our knowledge of the rich chemistry of ozone, introduces a new
   pathway for the gas-phase oxidation of halogen atoms, pyridines,
   pyrimidines, alkyl halides, and analogues, and consequently for the
   gas-phase generation of their chemically interesting but difficult to
   access ionized oxides.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
   Univ Helsinki, Dept Pharm, Div Pharmaceut Chem, FIN-00014 Helsinki, Finland.
   VTT Chem Technol, FIN-02044 Espoo, Finland.
RP Eberlin, MN, UNICAMP, Inst Chem, CP6154, BR-13083970 Campinas, SP,
   Brazil.
CR ARNOLD ST, 1995, J CHEM PHYS, V103, P2454
   ATKINSON R, 1984, CHEM REV, V84, P437
   BAILEY PS, 1978, OZONATION ORGANIC CH, V1
   BUSCH KL, 1988, MASS SPECTROMETRY MA
   CACACE F, 1994, SCIENCE, V265, P208
   CAREY FA, 1984, ADV ORGANIC CHEM
   CARVALHO MC, 1997, J CHEM SOC PERK  NOV, P2347
   COOKS RG, 1973, METASTABLE IONS
   DOMINE F, 1992, J PHYS CHEM-US, V96, P2171
   DOUGLAS DJ, 1998, J AM SOC MASS SPECTR, V9, P101
   EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
   EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
   FEDCHAK JA, 1995, J CHEM PHYS, V103, P981
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GARNER MC, 1996, CHEM PHYS LETT, V248, P20
   GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
   HAKOLA H, 1994, J ATMOS CHEM, V18, P75
   HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
   HUEY LG, 1995, J PHYS CHEM-US, V99, P5001
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
   LEVSEN K, 1983, MASS SPECTROM REV, V2, P77
   LI ZJ, 1995, J PHYS CHEM-US, V99, P13445
   LIAS SG, 1988, J PHYS CHEM REF D S1, V17
   MARCH J, 1985, ADV ORGANIC CHEM
   MCEWAN MJ, 1975, CHEM ATMOSPHERE
   MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
   MOLINA MJ, 1994, PURE APPL CHEM, V265, P18177
   MOLINA MJ, 1996, PURE APPL CHEM, V68, P1749
   MOLLER C, 1934, PHYS REV, V46, P618
   MORAES LAB, 1996, J ORG CHEM, V61, P8726
   MORAES LAB, 1997, J ORG CHEM, V62, P5096
   NEWSON KA, 1995, INT J MASS SPECTROM, V148, P203
   NEWSON KA, 1996, INT J MASS SPECTROM, V153, P151
   SCHMELZ T, 1991, CHEM PHYS LETT, V183, P209
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SLANGER TG, 1994, SCIENCE, V265, P1817
   SMITH D, 1995, MASS SPECTROM REV, V14, P255
   STEINFELD JI, 1987, J PHYS CHEM REF DATA, V16, P911
   STEVENSON DP, 1951, DISCUSS FARADAY SOC, P35
   TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
   VIGGIANO AA, 1993, MASS SPECTROM REV, V12, P115
   WANG NS, 1990, J PHYS CHEM-US, V94, P8787
NR 47
TC 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 12
PY 1998
VL 120
IS 31
BP 7869
EP 7874
PG 6
SC Chemistry, Multidisciplinary
GA 111CQ
UT ISI:000075420100023
ER

PT J
AU Justo, JF
   Bazant, MZ
   Kaxiras, E
   Bulatov, VV
   Yip, S
TI Interatomic potential for silicon defects and disordered phases
SO PHYSICAL REVIEW B
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; 90-DEGREES PARTIAL DISLOCATION;
   CONCERTED-EXCHANGE MECHANISM; PURE AMORPHOUS-SILICON; LIQUID SILICON;
   FORCE-FIELDS; ELECTRONIC-PROPERTIES; SELF-DIFFUSION; BULK PHASES; SI
AB We develop an empirical potential for silicon which represents a
   considerable improvement over existing models in describing local
   bonding for bulk defects and disordered phases. The model consists of
   two- and three-body interactions with theoretically motivated
   functional forms that capture chemical and physical trends as explained
   in a companion paper. The numerical parameters in the functional form
   are obtained by fitting to a set of ab initio results from
   quantum-mechanical calculations based on density-functional theory in
   the local-density approximation, which include various bulk phases and
   defect structures. We test the potential by applying it to the
   relaxation of point defects, core properties of partial dislocations
   and the structure of disordered phases, none of which are included in
   the fitting procedure. For dislocations, our model makes predictions in
   excellent agreement with ab initio and tight-binding calculations. It
   is the only potential known to describe both the 30 degrees- and 90
   degrees-partial dislocations in the glide set {111}. The structural and
   thermodynamic properties of the liquid and amorphous phases are also in
   good agreement with experimental and ab initio results. Our potential
   is capable of simulating a quench directly from the liquid to the
   amorphous phase, and the resulting amorphous structure is more
   realistic than with existing empirical preparation methods. These
   advances in transferability come with no extra computational cost,
   since force evaluation with our model is faster than with the popular
   potential of Stillinger-Weber, thus allowing reliable atomistic
   simulations of very large atomic systems. [S0163-1829(98)04026-0].
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
   Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
   MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
   MIT, Dept Nucl Engn, Cambridge, MA 02139 USA.
RP Justo, JF, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
   Brazil.
CR ALINAGHIAN P, 1994, PHILOS MAG B, V69, P889
   ALLEN MP, 1987, COMPUTER SIMULATION
   ANTONELLI A, 1996, PHYS REV B, V53, P1310
   ARIAS TA, 1994, PHYS REV LETT, V73, P680
   BALAMANE H, 1992, PHYS REV B, V46, P2250
   BARYAM Y, 1984, PHYS REV LETT, V52, P1129
   BATRA IP, 1987, PHYS REV B, V35, P9552
   BAZANT MZ, 1996, PHYS REV LETT, V77, P4370
   BAZANT MZ, 1997, PHYS REV B, V56, P8542
   BERNSTEIN N, 1997, PHYS REV B, V56, P10488
   BIGGER JRK, 1992, PHYS REV LETT, V69, P2224
   BISWAS R, 1987, PHYS REV B, V36, P7437
   BLOCHL PE, 1993, PHYS REV LETT, V70, P2435
   BOLDING BC, 1990, PHYS REV B, V41, P10568
   BROUGHTON JQ, 1987, PHYS REV B, V35, P9120
   BULATOV VV, 1995, PHILOS MAG A, V72, P453
   CAR R, 1988, PHYS REV LETT, V60, P204
   CARLSSON AE, 1990, PHYS REV B, V41, P1247
   CARLSSON AE, 1990, SOLID STATE PHYS, V43, P1
   CARLSSON AE, 1990, SPRINGER P PHYSICS, V48, P257
   CHELIKOWSKY JR, 1989, PHYS REV LETT, V62, P292
   CHELIKOWSKY JR, 1990, PHYS REV B, V41, P5735
   CHELIKOWSKY JR, 1991, PHYS REV B, V44, P1538
   CSANYI G, 1998, PHYS REV LETT, V80, P3984
   DING KJ, 1986, PHYS REV B, V34, P6987
   DUESBERY MS, 1991, PHYS REV B, V43, P5143
   FORTNER J, 1989, PHYS REV B, V39, P5527
   GLAZOV VM, 1969, LIQUID SEMICONDUCTOR
   HANSEN LB, 1995, PHYS REV LETT, V75, P4444
   HOLENDER JM, 1991, J PHYS-CONDENS MAT, V3, P1947
   HUANG YM, 1995, PHYS REV LETT, V74, P3392
   ISHIMARU M, 1996, PHYS REV B, V53, P7176
   ISMAILBEIGI S, COMMUNICATION
   JUSTO JF, UNPUB
   KAXIRAS E, 1988, PHYS REV B, V38, P12736
   KAXIRAS E, 1992, MODEL SIMUL MATER SC, V1, P91
   KAXIRAS E, 1993, PHYS REV B, V47, P1659
   KAXIRAS E, 1993, PHYS REV LETT, V70, P3752
   KAXIRAS E, 1996, MATER RES SOC S P, V408, P79
   KELIRES PC, 1988, PHYS REV LETT, V61, P562
   KELLY PJ, 1992, PHYS REV B, V45, P6543
   KUGLER S, 1989, PHYS REV B, V40, P8030
   KWON I, 1994, PHYS REV B, V49, P7242
   LI XP, 1988, PHYS REV B, V38, P3331
   LUEDTKE WD, 1988, PHYS REV B, V37, P4656
   MISTRIOTIS AD, 1989, PHYS REV B, V39, P1212
   NANDEDKAR AS, 1990, PHILOS MAG A, V61, P873
   NASTAR M, 1996, PHYS REV B, V53, P13521
   NIELSEN OH, 1985, PHYS REV B, V32, P3792
   NUNES RW, 1996, PHYS REV LETT, V77, P1516
   PANDEY KC, 1986, PHYS REV LETT, V57, P2287
   PANDEY KC, 1991, PHYS REV LETT, V66, P915
   PARRINELLO M, 1981, J APPL PHYS, V52, P7182
   PAYNE MC, 1992, REV MOD PHYS, V64, P1045
   POON TW, 1990, PHYS REV LETT, V65, P2161
   PORTER LJ, 1997, J APPL PHYS, V81, P96
   ROORDA S, 1991, PHYS REV B, V44, P3702
   SEONG H, 1996, PHYS REV B, V53, P9791
   SIMMONS G, 1971, SINGLE CRYSTAL ELAST
   STICH I, 1989, PHYS REV LETT, V63, P2240
   STICH I, 1991, PHYS REV B, V44, P11092
   STICH I, 1991, PHYS REV B, V44, P4262
   STICH I, 1996, PHYS REV LETT, V76, P2077
   STILLINGER FH, 1985, PHYS REV B, V31, P5262
   SUZUKI T, 1991, DISLOCATION DYNAMICS, P99
   TEICHLER H, 1989, SPRINGER P PHYSICS, V35, P25
   TERSOFF J, 1988, PHYS REV B, V37, P6991
   TERSOFF J, 1988, PHYS REV B, V38, P9902
   TRINCZEK U, 1993, PHYS STATUS SOLIDI A, V137, P577
   WALLACE DC, 1972, THERMODYNAMICS CRYST
   WOOTEN F, 1985, PHYS REV LETT, V54, P1392
NR 71
TC 128
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 1
PY 1998
VL 58
IS 5
BP 2539
EP 2550
PG 12
SC Physics, Condensed Matter
GA 108UQ
UT ISI:000075284300040
ER

PT J
AU Augusti, R
   Gozzo, FC
   Moraes, LAB
   Sparrapan, R
   Eberlin, MN
TI The simplest azabutadienes in their N-protonated forms. Generation,
   stability, and cycloaddition-reactivity in the gas phase
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID DIELS-ALDER REACTION; PENTAQUADRUPOLE MASS-SPECTROMETER;
   MOLECULAR-ORBITAL METHODS; RADICAL-CATION; CARBONYL-COMPOUNDS; ACYLIUM
   IONS; BASIS SETS; ISOMERS; TANDEM; DISSOCIATION
AB The simplest azabutadienes, i.e. 1-aza-1,3-butadiene and
   2-aza-1,3-butadiene, are generated in their N-protonated forms 1 and 2
   via gas-phase dissociative electron ionization of allylamine and
   piperidine; respectively. Formation of 1 and 2 is suggested by simple
   dissociation mechanisms, and supported by high-accuracy G2 ab initio
   calculations, which show the ions to be stable, non-interconverting
   species. Whereas 1 and 2 are unreactive toward ethylene and
   cyclohexene, 2 reacts with alkenes activated by electron-donating
   (OC2H5), electron-withdrawing (CN; COCH3), and vinyl and phenyl
   substituents most likely by polar [4(+) + 2] cycloaddition, as
   suggested by MS3 experiments and ab initio calculations. The
   cycloadduct of 2 with ethyl vinyl ether is unstable and dissociates
   promptly by ethanol loss; hence, net C2H2 addition occurs. This novel
   vinylation reaction is proposed as a potential structurally diagnostic
   test for both 2-azabutadienes and vinyl ethers. Isomer 1 is in general
   much less reactive, and abundant adducts are only formed in reactions
   with alkenes activated by electron-withdrawing substituents. In
   reactions of 1 and 2 with esters (methyl acetate and dimethyl
   carbonate), hydrogen-bridged ion-neutral complexes are formed as the
   most abundant and stable products, as suggested by the ab initio
   calculations. Acetone, fluoroacetone and acetonitrile form abundant
   adducts with-bath 1 and 2; However, the experimental and theoretical
   results on these adducts provide nb clear structural information.
   Reactions of 1 with DMSO occur almost exclusively by proton transfer,
   whereas 2 forms an abundant complex with DMSO. Limited reactivity is
   observed for I and 2 with acetyl chloride and thionyl chloride; the
   minor products observed were those of either dissociative proton
   transfer or charge exchange.;The distinctive reactivities of 1 and 2
   with styrene, ethyl vinyl ether, and dimethyl sulfoxide contrast to
   their identical low energy CID behavior, and allow their
   straightforward differentiation in the gas phase.
C1 State Univ Campinas, UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
   Univ Fed Minas Gerais, Dept Chem, BR-31270901 Belo Horizonte, MG, Brazil.
RP Eberlin, MN, State Univ Campinas, UNICAMP, Inst Chem, CP 6154,
   BR-13083970 Campinas, SP, Brazil.
CR ABBOUD JLM, 1993, J AM CHEM SOC, V115, P12468
   BARLUENGA J, 1990, PURE APPL CHEM, V62, P1957
   BASHEER MM, UNPUB
   BAULD NL, 1992, ADV ELECTRON TRANSFE, V2, P1
   BEIFUSS U, 1995, J CHEM SOC CHEM COMM, P2137
   BELLVILLE DJ, 1981, J AM CHEM SOC, V103, P718
   BOGER DL, 1987, HETER DIELSALDER MET
   BOUCHOUX G, 1989, J AM CHEM SOC, V111, P5560
   BOUCHOUX G, 1992, J AM CHEM SOC, V114, P10000
   BOWERS MT, 1970, J PHYS CHEM-US, V74, P2583
   BOYS SF, 1970, MOL PHYS, V19, P553
   BUDZIKIEWICZ H, 1964, INTERPRETATION MASS
   BUSCH KL, 1988, MASS SPECTROMETRY MA
   CARVALHO M, 1998, CHEM-EUR J, V4, P1159
   CASTLE LW, 1989, ORG MASS SPECTROM, V24, P637
   CURTISS LA, 1993, J CHEM PHYS, V98, P1293
   DASS C, 1990, MASS SPECTROM REV, V9, P1
   DUFFIELD AM, 1965, J AM CHEM SOC, V87, P810
   EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
   EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   EBERLIN MN, 1994, J AM SOC MASS SPECTR, V6, P1
   EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
   EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
   FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GASSMAN PG, 1987, J AM CHEM SOC, V109, P2182
   GORDON MS, 1980, CHEM PHYS LETT, V76, P163
   GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
   GROENEWOLD GS, 1984, J AM CHEM SOC, V106, P539
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KENTTAMAA HI, 1989, J AM CHEM SOC, V111, P4122
   KIM T, 1990, J AM CHEM SOC, V112, P6285
   KNOELKER HJ, 1995, TETRAHEDRON LETT, V36, P8194
   LIAS SG, 1988, J PHYS CHEM REF D S1, V17
   LONGEVIALLE P, 1992, MASS SPECTROM REV, V11, P157
   LU L, 1995, J MASS SPECTROM, V30, P581
   MATTAY J, 1987, ANGEW CHEM INT EDIT, V26, P825
   MIGRON Y, 1977, ORG MASS SPECTROM, V12, P500
   MOLLER C, 1934, PHYS REV, V46, P618
   MORAES LAB, 1996, J ORG CHEM, V61, P8726
   MORAES LAB, 1997, J ORG CHEM, V62, P5096
   PORTER QN, 1985, MASS SPECTROMETRY HE
   SCHMIDT RR, 1973, ANGEW CHEM INT EDIT, V12, P212
   SCHMITTEL M, 1997, ANGEW CHEM INT EDIT, V36, P2550
   SCHOFFSTALL AM, 1990, ADV CYCLOADDITION, V2, P1
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
   SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
   TURECEK F, 1984, MASS SPECTROM REV, V3, P85
   UGGERUD E, 1992, MASS SPECTROM REV, V11, P389
   VANTILBORG MWE, 1980, ORG MASS SPECTROM, V15, P152
   WINCEL H, 1989, INT J MASS SPECTROM, V91, P339
NR 55
TC 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD JUL 24
PY 1998
VL 63
IS 15
BP 4889
EP 4897
PG 9
SC Chemistry, Organic
GA 108JQ
UT ISI:000075263100008
ER

PT J
AU Carvalho, M
   Gozzo, FC
   Mendes, MA
   Sparrapan, R
   Kascheres, C
   Eberlin, MN
TI Locating the charge site in heteroaromatic cations
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE ab initio calculations; collision-induced dissociation; in-molecule
   reactions; mass spectrometry
ID GAS-PHASE; SOOT FORMATION; IONS; C3H3+; CHEMISTRY
AB Low-energy collision-induced dissociation (CID) and ion-molecule
   reactions with 2-methyl-1,3-dioxolane (MD) performed by pentaquadrupole
   (QqQqQ) mass spectrometry were applied to locate the charge site in
   isomeric heteroaromatic cations. The 2-, 3-, and 4-pyridyl cations are
   indistinguishable by CID. However, as suggest ed by MS3 experiments and
   ab initio calculations, the 2-pyridyl cation reacts extensively with MD
   by a transacetalization-like mechanism to afford a bicyclic
   dihydrooxazolopyridyl cation. The 3- and 4-pyridyl cations, on the
   contrary react predominantly with MD by proton transfer, as does the
   analogous phenyl cation. The 2-. 4-, and 5-pyrimidyl cations display
   characteristic CID behavior. In addition, the 2-pyrimidyl cation reacts
   extensively with MD by the transacetalization-like mechanism, whereas
   proton transfer occurs predominantly for the 4- and 5-pyrimidyl
   cations. The ions thought to be the 2- and 3-furanyl and 2- and
   3-thiophenyl cations show indistinguishable CID and ion-molecule
   behavior. This is most likely the result of their inherent instability
   in the gas phase and their spontaneous isomerization to the
   corresponding butynoyl and butynethioyl cations HC=CHCH2C=O+ and
   HC=CHCH2C=S+. These isomerizations, which are considerably exothermic
   according to G2(MP2) ab initio calculations, are indicated by a series
   of experimental results. The ions dissociate upon CID by loss of CO or
   CS and undergo transacetalization with MD. Most informative is the
   participation of HC=CHCH2C=S+ in a transacetalization/dissociation
   sequence with replacement of sulfur by oxygen, which is structurally
   diagnostic for thioacylium ions. It is therefore possible to locate the
   charge site of the 2-pyridyl and the three 2-, 4-, and 5-pyrimidyl
   cations and to identify the isomeric precursors from which they are
   derived. However, rapid isomerization to the common HC=CHCH2-C=O(S)(+)
   ion eliminates characteristic chemical behavior that could result from
   different charge locations in the heteroaromatic 2- and 3-furanyl and
   2- and 3-thiophenyl cations.
C1 UNICAMP, State Univ Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, UNICAMP, State Univ Campinas, Inst Chem, CP 6154,
   BR-13083970 Campinas, SP, Brazil.
EM eberlin@iqm.unicamp.br
CR AULOOS PJ, 1981, J AM CHEM SOC, V103, P6505
   BAYKUT G, 1986, COMBUST SCI TECHNOL, V45, P233
   BOWERS MT, 1979, GAS PHASE ION MOL RE, V1
   BUSCH KL, 1988, MASS SPECTROMETRY MA
   CAMERON A, 1989, J PHYS CHEM-US, V93, P139
   CARVALHO MC, 1997, J CHEM SOC PERK  NOV, P2347
   CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
   CURTISS LA, 1993, J CHEM PHYS, V98, P1293
   DENHERTOG HJ, 1965, HETEROCYCL CHEM, V4, P121
   EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
   EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
   EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
   FORESMAN JB, 1993, EXPLORING CHEM ELECT
   FRANKLIN JL, 1972, ION MOL REACTIONS
   FRISCH MJ, 1995, GAUSSIAN94 REVISION
   GOZZO FC, UNPUB J ORG CHEM
   GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
   HARRISON AG, 1983, CHEM IONIZATION MASS
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HOLMES JL, 1979, CAN J CHEM, V57, P249
   HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KAUFFMANN T, 1962, CHEM BER, V95, P949
   KAUFFMANN T, 1963, CHEM BER, V96, P2519
   KAUFFMANN T, 1965, ANGEW CHEM INT EDIT, V4, P543
   KAUFFMANN T, 1965, ANGEW CHEM, V77, P557
   KAUFFMANN T, 1971, ANGEW CHEM INT EDIT, V10, P20
   KAUFFMANN T, 1971, ANGEW CHEM, V83, P21
   LEVSEN K, 1983, MASS SPECTROM REV, V2, P77
   LOSSING FP, 1972, CAN J CHEM, V50, P139
   MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
   MOLLER C, 1934, PHYS REV, V46, P618
   MORAES LAB, 1996, J ORG CHEM, V61, P8726
   MORAES LAB, 1997, J CHEM SOC P2, V10, P2105
   MORAES LAB, 1997, J ORG CHEM, V62, P5096
   RADOM L, 1976, J AM CHEM SOC, V98, P10
   SMYTH KC, 1982, COMBUST SCI TECHNOL, V28, P147
   SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
   TSAI BP, 1975, J CHEM PHYS, V63, P4384
NR 39
TC 27
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA MUHLENSTRASSE 33-34, D-13187 BERLIN, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD JUL
PY 1998
VL 4
IS 7
BP 1161
EP 1168
PG 8
SC Chemistry, Multidisciplinary
GA 103ZD
UT ISI:000074987000005
ER

PT J
AU Aleman, C
   Ishiki, HM
   Armelin, EA
   Junior, OA
   Galembeck, SE
TI Free energies of solvation for peptides and polypeptides using SCRF
   methods
SO CHEMICAL PHYSICS
LA English
DT Article
ID AQUEOUS SOLVATION; HYDROGEN-BOND; AB-INITIO; SOLVENT; MODEL; MOLECULES;
   COMPLEXES; CONTINUUM; POLYMERS; RESIDUES
AB The effects of the aqueous solvent in the conformational preferences of
   peptides and homopeptides have been investigated using two different
   and widely used self-consistent reaction-field models. The free
   energies of solvation were predicted using the polarizable continuum
   model developed by Tomasi and co-workers and adapted to semi-empirical
   hamiltonians by Orozco and Luque, and the solvation model developed by
   Cramer and Truhlar. The set of compounds investigated is constituted by
   five dipeptides with different chemical nature and structural
   properties as well as by two homopeptides in which the size of the
   polypeptidic chain was varied. Results provided by the different
   methods are compared and discussed. (C) 1998 Elsevier Science B.V. All
   rights reserved.
C1 Univ Politecn Catalunya, ETS Engn Ind Barcelona, Dept Engn Quim, E-08028 Barcelona, Spain.
   Univ Fed Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Quim, Ribeirao Preto, SP, Brazil.
RP Aleman, C, Univ Politecn Catalunya, ETS Engn Ind Barcelona, Dept Engn
   Quim, Diagonal 647, E-08028 Barcelona, Spain.
CR AGUILAR M, 1993, CHEM PHYS, V174, P397
   ALAGONA G, 1986, J MOL STRUCT THEOCHE, V137, P263
   ALEMAN C, 1994, BIOPOLYMERS, V34, P841
   ALEMAN C, 1995, J ORG CHEM, V60, P910
   ALEMAN C, 1995, J PHYS CHEM-US, V99, P17653
   ALEMAN C, 1996, J BIOMOL STRUCT DYN, V14, P193
   ALEMAN C, 1996, J PHYS CHEM-US, V100, P11480
   ALEMAN C, 1997, CHEM PHYS, V222, P9
   ALEMAN C, 1997, J ORG CHEM, V62, P6562
   ALEMAN C, 1997, J PHYS CHEM B, V101, P3441
   ALEMAN C, 1997, J PHYS CHEM B, V101, P5046
   ALEMAN C, 1997, PROTEINS, V29, P575
   ALEMAN R, 1997, PROTEIN-STRUCT FUNCT, V28, P83
   BACHS M, 1994, J COMPUT CHEM, V15, P446
   BONACCORSI R, 1984, J AM CHEM SOC, V106, P1945
   CHIPOT C, 1994, J PHYS CHEM-US, V98, P1601
   CHUDINOV GE, 1992, CHEM PHYS, V160, P41
   CRAMER CJ, 1991, J AM CHEM SOC, V113, P8552
   CRAMER CJ, 1992, SCIENCE, V256, P213
   CRAMER CJ, 1995, 95147 UMSI
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   FORD GP, 1993, J MOL STRUCT THEOCHE, V283, P49
   FRISCH MJ, 1995, GAUSSIAN94 REVISION
   GIESEN DJ, 1995, J AM CHEM SOC, V117, P1057
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V23, P213
   HAWKINS GD, 606 QCPE
   HODGKIN EE, 1990, BIOPOLYMERS, V30, P533
   JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
   KARELSON MM, 1989, TETRAHEDRON COMPUT M, V2, P295
   KARELSON MM, 1990, J CHEM SOC P2, P195
   LEO AJ, 1993, CHEM REV, V93, P1281
   LEON S, 1997, J PHYS CHEM A, V101, P4208
   LEON S, 1997, STRUCT CHEM, V8, P39
   LUQUE FJ, 1993, J PHYS CHEM-US, V97, P4386
   LUZHKOV V, 1992, J COMPUT CHEM, V13, P199
   MIERTUS S, 1981, CHEM PHYS, V55, P117
   MIERTUS S, 1982, CHEM PHYS, V65, P239
   MOLLER C, 1934, PHYS REV, V46, P618
   NAVAS JJ, 1996, J ORG CHEM, V61, P6849
   OROZCO M, 1995, J AM CHEM SOC, V117, P1378
   OROZCO M, 1995, J COMPUT CHEM, V16, P563
   OROZCO M, 1996, J MOL STRUCT THEOCHE, V371, P269
   PIEROTTI RA, 1976, CHEM REV, V76, P717
   RAUHUT G, 1993, J AM CHEM SOC, V115, P9174
   RINALDI D, 1973, THEOR CHIM ACTA, V32, P57
   STEWART JJP, 1993, MOPAC 93 REVISION 2
   SZAFRAN M, 1993, J COMPUT CHEM, V14, P371
   TAPIA O, 1975, MOL PHYS, V29, P1653
   TOMASI J, 1994, CHEM REV, V94, P2027
   WANG B, 1992, J COMPUT CHEM, V12, P4162
   WILBERG KB, 1993, J AM CHEM SOC, V115, P1078
NR 51
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD JUL 15
PY 1998
VL 233
IS 1
BP 85
EP 96
PG 12
SC Physics, Atomic, Molecular & Chemical
GA ZZ999
UT ISI:000074790600008
ER

PT J
AU Sparrapan, R
   Mendes, MA
   Ferreira, IPP
   Eberlin, MN
   Santos, C
   Nogueira, JC
TI Gas-phase chemistry of the sulfur hexafluoride fragment ions SFn+
   (n=0-5) and SFn2+ (n=2, 4). Ab initio thermochemistry of novel
   reactions of S+. and SF+
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MASS-SPECTROMETRY; PROTON AFFINITY; KINETIC METHOD; ISOMERS
AB A systematic study of the gas-phase chemistry of the major positively
   charged ions produced by 70 eV dissociative electron ionization of SF6,
   i.e., SFn+ (n = 0-5) and SFn2+ (n = 2, 4), has been performed via
   pentaquadrupole (QqQqQ) mass spectrometric experiments in conjunction
   with G2(MP2) ab initio calculations. Comparison, under exactly the same
   15 eV collision conditions, of the SFn+ proclivities to dissociate by F
   loss was accomplished via a tandem-in-space three-dimensional MS2 scan.
   The experimental SFn+ dissociation proclivities were found to correlate
   perfectly with those expected from G2(MP2) dissociation thresholds.
   Ion/molecule reactions of mass-selected SFn+ and SFn2+ were performed
   with O-2 and the oxygenated neutral gases H2O, CO, CO2, and N2O. The
   ions, under the very low energy (near zero) multiple collision
   conditions employed, undergo either dissociation by F loss or charge
   exchange, or participate in novel reactions that have been corroborated
   by both MS3 experiments and G2(MP2) ab initio thermochemistry.
   O-abstraction takes place in reactions of SF+ with O-2 and CO, and of
   S+. with CO2 and O-2 and the corresponding oxyions F-SO+ and SO+. are
   formed to great extents. CO-abstraction that yields ionized carbon
   oxysulfide (COS+.) also occurs to a minor extent in reactions of S+.
   with CO2. Reactions of SF+ with CO yields a minor COS+. product in a
   net sulfur cation (S+.) transfer reaction. Theory corroborates the
   experimental observations as the respective O-abstraction and S+.
   transfer reactions are predicted by G2(MP2) ab initio thermochemistry
   to be the most favorable processes.
C1 State Univ Campinas, UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
   Univ Fed Sao Carlos, Dept Chem, BR-13560 Sao Carlos, SP, Brazil.
RP Eberlin, MN, State Univ Campinas, UNICAMP, Inst Chem, CP 6154,
   BR-13083970 Campinas, SP, Brazil.
CR BABCOCK LM, 1981, J CHEM PHYS, V74, P5700
   BABCOCK LM, 1981, J CHEM PHYS, V75, P3868
   CARVALHO M, 1998, CHEM-EUR J, V4, P1159
   CHEN CL, 1979, J CHEM PHYS, V71, P2897
   CHEUNG YS, 1995, J AM CHEM SOC, V117, P9725
   COB JW, 1982, PLASMA CHEM PLASMA P, V2, P1
   COOKS RG, 1994, MASS SPECTROM REV, V13, P287
   CURTISS LA, 1993, J CHEM PHYS, V98, P1293
   DILLARD JG, 1975, J PHYS CHEM-US, V79, P2455
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
   EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
   FEHSENFELD FC, 1971, J CHEM PHYS, V54, P438
   FRISCH MJ, 1995, GAUSSIAN94 REVISION
   GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
   GRANT ER, 1977, CHEM PHYS LETT, V52, P595
   HIRAOKA K, 1995, J AM SOC MASS SPECTR, V6, P1137
   IRIKURA KK, 1995, J CHEM PHYS, V102, P5357
   JIAO CQ, 1993, J AM CHEM SOC, V115, P6268
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KARACHEVTEV AZ, 1985, SOV J CHEM PHYS, V3, P695
   KOMIENKO O, 1997, ANAL CHEM, V69, P1536
   LATIMER DR, 1994, J CHEM PHYS, V101, P3410
   LYMAN JL, 1973, J PHYS CHEM-US, V77, P883
   LYMAN JL, 1977, J CHEM PHYS, V67, P1868
   MACKAY GI, 1992, INT J MASS SPECTROM, V117, P387
   MCALPINE RD, 1985, ADV CHEM PHYS, V60, P31
   MCLAFFERTY FW, 1989, WILEY NBS REGISTRY M, V1
   MITCHELL KAR, 1969, CHEM REV, V69, P157
   MORAES LAB, 1996, J ORG CHEM, V61, P8726
   MORAES LAB, 1997, J ORG CHEM, V62, P5096
   PAULING L, 1960, NATURE CHEM BOND
   RICHTER R, 1987, J CHEM PHYS, V87, P4615
   RICHTER R, 1993, J CHEM PHYS, V87, P4615
   SAUERS I, 1986, IEEE T ELECTR INSUL, V21, P111
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SHUL RJ, 1987, J PHYS CHEM-US, V91, P2556
   SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
   SPARRAPAN R, UNPUB J PHYS CHEM A
   STONE JA, 1989, INT J MASS SPECTROM, V94, P269
   STONE JA, 1989, INT J MASS SPECTROM, V94, P269
   TAMURA A, 1987, APPL PHYS LETT, V51, P1503
   TICHY M, 1987, INT J MASS SPECTROM, V79, P231
   VANBRUNT RJ, 1990, IEEE T ELECTR INSUL, V25, P76
   WANG HX, 1993, PLASMA CHEM PLASMA P, V13, P1
   WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
   WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
   ZANGERLE R, 1993, INT J MASS SPECTROM, V129, P117
NR 48
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUL 2
PY 1998
VL 102
IS 27
BP 5189
EP 5195
PG 7
SC Chemistry, Physical
GA ZZ640
UT ISI:000074751300006
ER

PT J
AU Casagrande, D
   Srivastava, GP
   Ferraz, AC
TI Theoretical calculations for Si(001)-(2x1)Cl
SO SURFACE SCIENCE
LA English
DT Article
DE adsorption; atomic geometry; chemisorption; semiconductor surfaces;
   surface states
ID CL; PHOTOEMISSION; ADSORPTION; SURFACES; SI
AB We have investigated the atomic geometry, electronic states and bonding
   at the Si(001)-(2 x 1) surface covered with a monolayer of Cl. The
   calculations were performed with ab initio pseudopotentials, using a
   plane wave basis and the local density approximation. We find that the
   adsorption of Cl results in an elongated symmetric Si dimer. The
   calculated Si-Cl, Si-Si (dimer) and Si-Si (back-bond) distances are
   2.08 Angstrom, 2.43 Angstrom and 2.34 Angstrom, respectively. The Si-Cl
   bond is inclined at 20 degrees with respect to the surface normal. Our
   results for atomic geometry and electronic states are in good agreement
   with available experimental data. (C) 1998 Elsevier Science B.V. All
   rights reserved.
C1 Univ Exeter, Dept Phys, Exeter EX4 4QL, Devon, England.
   Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, Brazil.
RP Srivastava, GP, Univ Exeter, Dept Phys, Stocker Rd, Exeter EX4 4QL,
   Devon, England.
EM physics@ac.ex.uk
CR CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   JOHANSSON LSO, 1990, PHYS REV B, V42, P9534
   KRUGER P, 1993, PHYS REV B, V47, P1898
   LEE LQ, 1994, J PHYS-CONDENS MAT, V6, P6169
   LEVINE JD, 1973, SURF SCI, V34, P90
   PURDIE D, 1991, J PHYS-CONDENS MAT, V3, P7751
   ROWE JE, 1977, PHYS REV B, V16, P1581
   THORNTON G, 1989, SURF SCI, V211, P959
   TROULLIER N, 1990, SOLID STATE COMMUN, V74, P613
NR 9
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD MAY 15
PY 1998
VL 404
IS 1-3
BP 653
EP 657
PG 5
SC Chemistry, Physical
GA ZY342
UT ISI:000074610800134
ER

PT J
AU Esteves, PM
   Mota, CJA
   Ramirez-Solis, A
   Hernandez-Lamoneda, R
TI Mechanism of superacid catalyzed alkane activation: theoretical ab
   initio studies of pentacoordinated carbonium ion rearrangement
SO TOPICS IN CATALYSIS
LA English
DT Article
DE carbonium ion; superacid; rearrangement; alkane activation
ID ELECTROPHILIC REACTIONS; ISOBUTANE CRACKING; ALIPHATIC-HYDROCARBONS;
   DEUTERIUM-EXCHANGE; HYDROGEN-TRANSFER; SINGLE BONDS; Y-ZEOLITES; ACID
   SITE; 3-CENTER; ETHANE
AB A theoretical ab initio study of the interconversion of
   pentacoordinated carbonium ions was carried out. For the isobutonium
   cations it was found that the respective C-carbonium ions were lower in
   energy than the H-isobutonium ions. Nevertheless, the interconversion
   of the 1-H-isobutonium cation in the C-isobutonium ion is a barrierless
   process. This suggests that product arisen from C-C protonation in
   liquid superacid and zeolite catalyzed alkane activation may be formed
   by protonation in the outer and more accessible primary C-H bonds of
   isobutane, rather than by direct protonation of the inner and more
   steric demanding C-C bonds.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
   Univ Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
   Univ,CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
   BOHME DK, 1980, J CHEM PHYS, V73, P4976
   BOYS SF, 1970, MOL PHYS, V19, P553
   CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
   CHUPKA WA, 1971, J CHEM PHYS, V54, P4256
   COLLINS SJ, 1996, J CHEM SOC FARADAY T, V92, P4347
   COMMEYRAS A, 1969, J AM CHEM SOC, V91, P2929
   CORMA A, 1985, J CATAL, V93, P30
   CORMA A, 1989, ZEOLITES FACTS FIGUR, P49
   CORMA A, 1994, J CATAL, V145, P171
   DEKOCK RL, 1988, J CHEM EDUC, V65, P194
   FRENCH M, 1975, CAN J CHEM, V53, P2268
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GIANNETTO G, 1986, J CHEM SOC CHEM COMM, P1302
   GILLESPIE RJ, 1966, J CHEM SOC A, P1170
   HAAG WO, 1984, P 8 INT C CAT, P305
   HIRAO K, 1984, CHEM PHYS, V89, P237
   HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
   KIM SJ, 1993, J PHYS CHEM-US, V97, P12232
   LOMBARDO EA, 1988, J CATAL, V110, P171
   LOMBARDO EA, 1988, J CATAL, V112, P565
   MARCH J, 1996, ADV ORG CHEM, P215
   MCMURRY JE, 1992, ACCOUNTS CHEM RES, V25, P47
   MOTA CJA, IN PRESS J AM CHEM S
   MOTA CJA, UNPUB
   MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
   OLAH GA, 1968, J AM CHEM SOC, V90, P2726
   OLAH GA, 1969, J AM CHEM SOC, V91, P3261
   OLAH GA, 1972, J AM CHEM SOC, V94, P808
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
   OLAH GA, 1973, J AM CHEM SOC, V95, P4952
   OLAH GA, 1973, J AM CHEM SOC, V95, P4960
   OLAH GA, 1979, SCIENCE, V206, P13
   OLAH GA, 1985, SUPERACIDS
   OLAH GA, 1987, HYPERCARBON CHEM
   OLAH GA, 1992, CHEM ALKANES CYCLOAL, CH13
   SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCHREINER PR, 1993, J AM CHEM SOC, V115, P9659
   SCHREINER PR, 1995, J AM CHEM SOC, V117, P453
   SHERTUKDE PV, 1992, J CATAL, V136, P446
   SOMMER J, 1992, J AM CHEM SOC, V114, P5884
   SOMMER J, 1997, J AM CHEM SOC, V119, P3274
   STEFANADIS C, 1991, J MOL CATAL, V67, P363
   THOMPSON RC, 1965, INORG CHEM, V4, P1641
   TRAEGER JC, 1981, J AM CHEM SOC, V103, P3647
   YALURIS G, 1995, J CATAL, V153, P54
   YALURIS G, 1995, J CATAL, V153, P65
NR 48
TC 15
PU BALTZER SCI PUBL BV
PI BUSSUM
PA PO BOX 221, 1400 AE BUSSUM, NETHERLANDS
SN 1022-5528
J9 TOPIC CATALYSIS
JI Top. Catal.
PY 1998
VL 6
IS 1-4
BP 163
EP 168
PG 6
SC Chemistry, Applied; Chemistry, Physical
GA ZW644
UT ISI:000074432300019
ER

PT J
AU do Monte, SA
   Braga, M
TI Electronic factor for photoinduced electron transfer in
   porphyrin-bridge-quinone systems
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID PHOTOSYNTHETIC REACTION CENTER; DISTANCE DEPENDENCE;
   RHODOPSEUDOMONAS-VIRIDIS; SPHAEROIDES R-26; FIXED DISTANCES; LONE
   PAIRS; MODEL; BICYCLO<2.2.2>OCTANE; SPACERS
AB Quantum-chemical calculations at a semiempirical level (CNDO/S) are
   used for porphyrin-bridge-quinone systems and at an ab initio and
   semiempirical level for CH2-bridge-CH22- systems. In both cases the
   bridge is constituted by a number of aromatic, saturated or mixed
   units. From these calculations the electronic factor (Delta) is
   obtained, for photoinduced reaction (PET) in the first case and for
   thermal reaction in the second case. The relative efficiency of the
   bridges is discussed. For phenylene and staffane units, a
   non-exponential dependence of Delta with distance is observed for PET,
   while for the other two bridges the exponential behavior prevails. (C)
   1998 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
RP do Monte, SA, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540
   Recife, PE, Brazil.
CR ANTOLOVICH M, 1991, J PHYS CHEM-US, V95, P1933
   BENE JD, 1968, J CHEM PHYS, V48, P1807
   BENE JD, 1968, J CHEM PHYS, V49, P1221
   BENE JD, 1969, J CHEM PHYS, V50, P1126
   BERATAN DN, 1986, J AM CHEM SOC, V108, P4321
   BORN M, 1920, Z PHYS, V1, P45
   BRAGA M, 1992, INT J QUANTUM CHEM, V44, P839
   BRAGA M, 1992, J PHYS CHEM-US, V96, P9218
   BRAGA M, 1993, J PHYS CHEM-US, V97, P8929
   CHANG CH, 1986, FEBS LETT, V205, P82
   DEISENHOFER J, 1984, J MOL BIOL, V180, P385
   DEISENHOFER J, 1989, SCIENCE, V245, P1463
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   ELLIS RL, 1972, THEOR CHIM ACTA, V26, P131
   FRISCH MJ, 1992, GAUSSIAN 92
   HELMS A, 1992, J AM CHEM SOC, V114, P6227
   JORAN AD, 1984, J AM CHEM SOC, V106, P6090
   KHUNDKAR LR, 1994, J AM CHEM SOC, V116, P9700
   KIM K, 1994, J PHYS CHEM-US, V98, P11053
   KOOPMANS T, 1934, PHYSICA, V1, P104
   LARSSON S, 1981, J AM CHEM SOC, V103, P4034
   LARSSON S, 1986, J CHEM PHYS, V85, P2548
   LARSSON S, 1987, J CHEM PHYS, V86, P5223
   LARSSON S, 1991, INT J QUANTUM CHEM, V18, P99
   LELAND BA, 1985, J PHYS CHEM-US, V89, P5571
   YEATES TO, 1988, P NATL ACAD SCI USA, V85, P7993
NR 26
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JUN 26
PY 1998
VL 290
IS 1-3
BP 136
EP 142
PG 7
SC Physics, Atomic, Molecular & Chemical
GA ZW963
UT ISI:000074466600022
ER

PT J
AU Martins, JBL
   Taft, CA
   Perez, MA
   Stamato, FMLG
   Longo, E
TI Theoretical study of metiamide, a histamine H-2 antagonist
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
ID GAS-PHASE; MOLECULAR DETERMINANTS; ACTIVATION MECHANISM; RECEPTOR
   MODEL; TAUTOMERISM; HISTAMINE-H2-RECEPTOR; H-2-RECEPTORS;
   2-METHYLHISTAMINE; 4-METHYLHISTAMINE; CONFORMATION
AB The requirements for H-2-antagonist activity so far identified for most
   of the known antagonists of histamine are the presence of a
   heterocyclic ring containing a basic center linked via a methylene
   chain to a substituted guanidine or thiourea polar side chain.
   Metiamide is a potent H-2 antagonist (pA2 = 6.06). We have used the ab
   initio Hartree-Fock (HF) method in order to study the conformational
   properties of the N-3-H tautomers of metiamide molecule; and histamine
   monocation. Three basis set (the 3-21G*, 6-31G**, and 6-31 + G**) were
   used, the results compared, and the geometric parameters fully
   optimized. Our results indicate the preference of metiamide for a
   folded conformation with an intramolecular hydrogen bonding between the
   imidazole ring and one of the NH groups. The optimized geometrical
   parameters and charge distributions of both molecules, using the
   Mulliken, and natural bond order (NBO) analysis, are given and
   discussed. (C) 1998 John Wiley & Sons, Inc.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290180 Rio De Janeiro, Brazil.
   Univ Estadual Ponta Grossa, Ponta Grossa, Parana, Brazil.
   Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
   Estatist, R Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil.
CR ALAGONA G, 1988, MOL PHYSICS CHEM BIO, V2, P507
   ASH ASF, 1966, BRIT J PHARMACOL CHE, V27, P427
   BLACK JW, 1975, J MED CHEM, V18, P905
   BONNET JJ, 1973, J AM CHEM SOC, V95, P4829
   CAMPILLO M, 1996, J MOL STRUCT THEOCHE, V371, P279
   DURANT GJ, 1975, J MED CHEM, V18, P905
   ENRIZ RD, 1993, J MOL STRUCT THEOCHE, V280, P5
   ERIKS JC, 1993, MOL PHARMACOL, V44, P886
   FRANKE R, 1984, THEORETICAL DRUG DES
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GANELLIN CR, 1973, J MED CHEM, V16, P610
   GANELLIN CR, 1973, J MED CHEM, V16, P620
   GANELLIN CR, 1974, MOL QUANTUM PHARM, P43
   GANELLIN CR, 1982, PHARM HISTAMINE RECE, V3
   GANELLIN CR, 1993, MEDICINAL CHEM, CH3
   GIRALDO J, 1992, MOL PHARMACOL, V42, P373
   GREEN JP, 1977, P NATL ACAD SCI USA, V74, P5697
   HERNANDEZLAGUNA A, 1995, J PHYS CHEM-US, V99, P9087
   JOESTEN MD, 1974, HYDROGEN BONDING
   KERNS RC, 1978, J AM CHEM SOC, V100, P6587
   KIER LB, 1968, J MED CHEM, V11, P441
   KIER LB, 1986, J MED CHEM, V11, P441
   KIMURA E, 1984, CHEM PHARM BULL, V32, P3569
   LAGUNA AH, 1993, J AM CHEM SOC, V115, P1450
   LAGUNA AH, 1995, J MOL STRUCT THEOCHE, V335, P77
   LAGUNA AH, 1995, J PHYS CHEM-US, V99, P9087
   LUQUE FJ, 1990, J CHIM PHYS PCB, V87, P1569
   MAZUREK AP, 1987, MOL PHARMACOL, V31, P345
   NAGY PI, 1994, J AM CHEM SOC, V116, P4898
   PARDO L, 1991, MOL PHARMACOL, V40, P980
   PIMENTEL GC, 1960, HYDROGEN BOND
   PROUT K, 1974, ACTA CRYSTALLOGR B, V30, P2284
   PULLMAN B, 1974, MOL PHARMACOL, V10, P360
   REGGIO P, 1986, J MED CHEM, V29, P2412
   RICHARDS WG, 1977, QUANTUM PHARM
   SCHWARTZ JC, 1986, INNOVATIVE APPROACHE, P73
   SMEYERS YG, 1985, J MOL STRUCT THEOCHE, V123, P431
   SMEYERS YG, 1985, QSAR STRATEGIES DESI, P374
   SMEYERS YG, 1990, J MOL STRUCT THEOCHE, V207, P157
   STAMATO FML, 1990, J MOL STRUCT THEOCHE, V210, P447
   STAMATO FML, 1992, J MOL STRUCT THEOCHE, V254, P505
   TAPIA O, 1990, INT J QUANTUM CHEM, V38, P727
   TOPIOL S, 1984, J MED CHEM, V27, P1531
   TOPIOL S, 1987, J COMPUT CHEM, V8, P142
   VEIDIS MV, 1969, J CHEM SOC A, V17, P2659
   VINORADOV SN, 1971, HYDROGEN BONDING
   VOGELSANGER B, 1991, J AM CHEM SOC, V113, P7864
   WEINSTEIN H, 1976, MOL PHARMACOL, V12, P738
   WEINSTEIN H, 1986, MOL PHARMACOL, V29, P28
NR 49
TC 9
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD JUL 15
PY 1998
VL 69
IS 1
BP 117
EP 128
PG 12
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA ZV457
UT ISI:000074306500013
ER

PT J
AU Rocha, WR
   De Almeida, WB
TI Theoretical study of the olefin insertion reaction in the
   heterobimetallic Pt(H)(PH3)(2)(SnCl3)(C2H4) compound
SO ORGANOMETALLICS
LA English
DT Article
ID ASYMMETRIC HYDROFORMYLATION; BERRY PSEUDOROTATION; CRYSTAL-STRUCTURE;
   BASIS-SETS; COMPLEXES; REARRANGEMENT; PHOSPHORUS; MOLECULES; NMR; MO
AB Ab initio MO calculations at the MP4(SDQ)//MP2 level of theory were
   carried out to investigate the energies and reaction mechanism for the
   olefin insertion reaction (first step in the olefin hydroformylation
   catalytic cycle) using heterobimetallic trans-Pt(H)(PH3)(2)(SnCl)(3) as
   the active catalytic species. The electronic effects of SnCl3 on the
   trigonal-bipyramidal intermediates formed were analyzed through the
   charge decomposition analysis method. The results show that the major
   role of the SnCl3 ligand is to stabilize the pentacoordinated
   intermediates as well as to weaken the Pt-H bond trans to it, favoring
   the insertion.
C1 UFMG, Dept Quim, Lab Quim Computac & Modelagem Mol, ICRx, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, UFMG, Dept Quim, Lab Quim Computac & Modelagem Mol,
   ICRx, BR-31270901 Belo Horizonte, MG, Brazil.
CR AGBOSSOU F, 1995, CHEM REV, V95, P2485
   ALBINATI A, 1985, J ORGANOMET CHEM, V295, P239
   ANTES I, 1995, ORGANOMETALLICS, V14, P4263
   CLARK HC, 1973, INORG CHEM, V12, P357
   CORNILS B, 1980, NEW SYNTHESIS CARBON
   DAPPRICH S, 1995, ANGEW CHEM INT EDIT, V34, P354
   DAPPRICH S, 1995, ANGEW CHEM, V107, P383
   DAPPRICH S, 1995, J PHYS CHEM-US, V99, P9352
   DAVIDSON PJ, 1976, CHEM REV, V76, P219
   DELPRA A, 1979, J CHEM SOC DA, P1862
   DEMUYNCK J, 1977, NOUVEAU J CHIM, V1, P217
   FRENKING G, 1997, J CHEM SOC DALT 0521, P1653
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GOMEZ M, 1991, ORGANOMETALLICS, V10, P4036
   HARMON RE, 1973, CHEM REV, V73, P21
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HOFFMANN R, 1972, J AM CHEM SOC, V94, P3047
   HOLLWARTH A, 1993, CHEM PHYS LETT, V208, P237
   HOLMES RR, 1972, ACCOUNTS CHEM RES, V5, P296
   HOLT MS, 1989, CHEM REV, V89, P11
   JOHNSON BFG, 1972, J CHEM SOC CHEM COMM, P1312
   KOGA N, 1988, J AM CHEM SOC, V110, P3417
   KOGA N, 1991, CHEM REV, V91, P823
   KOLLAR L, 1987, J ORGANOMET CHEM, V330, P305
   KOLLAR L, 1988, J ORGANOMET CHEM, V350, P277
   MUSAEV DG, 1996, ADV CHEM PHYS, V95, P61
   PARRINELLO G, 1987, J AM CHEM SOC, V109, P7122
   ROCHA WR, 1997, INT J QUANTUM CHEM, V65, P643
   ROMEO R, 1975, J MOLECULAR CATAL, V1, P325
   ROSSI AR, 1975, INORG CHEM, V14, P365
   ROUNDHILL DM, 1975, ADV ORGANOMET CHEM, V13, P273
   SCHWAGER I, 1976, J CATAL, V45, P256
   SCRIVANTI A, 1986, J ORGANOMET CHEM, V314, P369
   STRICH A, 1973, J AM CHEM SOC, V95, P5574
   STRICH A, 1978, INORG CHEM, V4, P942
   THORN DL, 1978, J AM CHEM SOC, V100, P2079
   UGI I, 1971, ACCOUNTS CHEM RES, V4, P288
NR 38
TC 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD MAY 11
PY 1998
VL 17
IS 10
BP 1961
EP 1967
PG 7
SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
GA ZP802
UT ISI:000073789900015
ER

PT J
AU Ishiki, HM
   Aleman, C
   Galembeck, SE
TI Conformational preferences of flavone and isoflavone in the gas phase,
   aqueous solution and organic solution
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; AB-INITIO; MODEL; PARAMETRIZATION;
   PARAMETERS; SOLVENT; STATES; ENERGY
AB Flavone and isoflavone are an important class of secondary metabolites
   that are widely distributed in nature. In this Letter we have
   determined the conformational preferences of each compound in the gas
   phase, aqueous solution and organic solution. Gas-phase calculations
   were performed using AM1, MNDO, HF/3-21G, HF/6-31G(d) and
   B3-LYP/6-31G(d) calculations. Besides solution calculations were
   performed using the MST solvation model. (C) 1998 Elsevier Science B.V.
   All rights reserved.
C1 Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Quim, Lab Modelagem Mol, BR-14049902 Ribeirao Preto, SP, Brazil.
   Univ Politecn Catalunya, ETS Engn Ind Barcelona, Dept Engn Quim, E-08028 Barcelona, Spain.
RP Galembeck, SE, Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao
   Pret, Dept Quim, Lab Modelagem Mol, Ave Bandelrantes 3900, BR-14049902
   Ribeirao Preto, SP, Brazil.
CR ALEMAN C, 1996, J PHYS CHEM-US, V100, P1524
   ALEMAN C, 1997, IN PRESS J ORG CHEM
   BACHS M, 1994, J COMPUT CHEM, V15, P446
   BAKER J, 1986, J COMPUT CHEM, V7, P385
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
   BLASDALE WC, 1945, J AM CHEM SOC, V67, P491
   CODY V, 1994, J MOL STRUCT, V317, P89
   COLLIE JN, 1899, J CHEM SOC, V75, P710
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   FOTSIS T, 1997, CANCER RES, V57, P2916
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P203
   KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
   KOES RE, 1994, BIOESSAYS, V16, P123
   KRISHNAN R, 1980, J CHEM PHYS, V72, P650
   LEANDERSON P, 1997, FREE RADICAL BIO MED, V23, P235
   LEE C, 1988, PHYS REV B, V37, P785
   LUQUE FJ, 1993, J PHYS CHEM-US, V97, P4386
   LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
   LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
   MAHMOOD N, 1996, BIOCHEM BIOPH RES CO, V229, P73
   MIERTUS S, 1981, CHEM PHYS, V55, P1981
   MIERTUS S, 1982, CHEM PHYS, V65, P239
   MIYAKE T, 1997, J AGR FOOD CHEM, V45, P1819
   MOLLER C, 1934, PHYS REV, V46, P618
   PIEROTTI RA, 1976, CHEM REV, V76, P717
   RASTELLI G, 1995, EUR J MED CHEM, V30, P141
   STEWART JJP, 1990, QCPE B, V10, P86
   VAYA J, 1997, FOOD CHEM, V45, P3004
   VAYA J, 1997, FREE RADICAL BIO MED, V23, P302
   VENKATARAMAN K, 1962, CHEM FLAVONOIDS COMP
   VRIELYNCK L, 1993, J MOL STRUCT, V297, P227
   VRIELYNCK L, 1994, SPECTROCHIM ACTA A, V50, P2177
NR 34
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 8
PY 1998
VL 287
IS 5-6
BP 579
EP 584
PG 6
SC Physics, Atomic, Molecular & Chemical
GA ZP121
UT ISI:000073718500016
ER

PT J
AU Prudente, FV
   Neto, JJS
TI The fitting of potential energy surfaces using neural networks.
   Application to the study of the photodissociation processes
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DISCRETE VARIABLE REPRESENTATION; CROSS-SECTIONS; SCATTERING; MOLECULES
AB A back-propagation neural network is utilized to fit potential energy
   surfaces and the transition dipole moment of the HCl+ ion, using the ab
   initio electronic energies calculated by Pradhan, Kirby and Dalgarno.
   These surfaces are used in the study of the photodissociation process.
   The photodissociation cross section is calculated utilizing the equally
   spaced discrete variable representation and the negative imaginary
   potential method. (C) 1998 Elsevier Science B.V. All rights reserved.
C1 Univ Brasilia, Dept Fis, BR-70910900 Brasilia, DF, Brazil.
RP Prudente, FV, Univ Brasilia, Dept Fis, CP 04455, BR-70910900 Brasilia,
   DF, Brazil.
CR BISHOP CM, 1982, REV SCI INSTRUM, V63, P4450
   BLANK TB, 1995, J CHEM PHYS, V103, P4129
   BROWN DFR, 1996, J CHEM PHYS, V105, P7597
   COLBERT DT, 1992, J CHEM PHYS, V96, P1982
   DARSEY JA, 1991, CHEM PHYS LETT, V177, P189
   FRIEDMAN JH, 1991, ANN STAT, V19, P1
   GARCIA E, 1985, MOL PHYS, V56, P621
   MEYER W, 1986, J CHEM PHYS, V84, P891
   PRADHAN AD, 1991, J CHEM PHYS, V95, P9009
   PRESS WH, 1986, NUMERICAL RECIPES
   PRUDENTE FV, 1997, J MOL STRUC-THEOCHEM, V394, P169
   RODRIGUEZ A, 1991, J CHEM PHYS, V86, P4401
   ROM N, 1991, CHEM PHYS, V151, P199
   SEIDEMAN T, 1992, J CHEM PHYS, V96, P4412
   SEIDEMAN T, 1992, J CHEM PHYS, V97, P2499
   SEIDEMAN T, 1993, J CHEM PHYS, V98, P1989
   SIMONS G, 1973, J CHEM PHYS, V59, P3229
   SUMPTER BG, 1994, ANNU REV PHYS CHEM, V45, P439
   VANDISHOECK EF, 1982, J CHEM PHYS, V77, P3693
   ZUPAN J, 1993, NEURAL NETWORK CHEM
NR 20
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 8
PY 1998
VL 287
IS 5-6
BP 585
EP 589
PG 5
SC Physics, Atomic, Molecular & Chemical
GA ZP121
UT ISI:000073718500017
ER

PT J
AU Sambrano, JR
   Andres, J
   Beltran, A
   Sensato, F
   Longo, E
TI Theoretical study of the structure and stability of NbxOy, and NbxOy+
   (x = 1-3; y = 2-5, 7, 8) clusters
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; ELECTRON LOCALIZATION; TOPOLOGICAL ANALYSIS;
   EXACT EXCHANGE; BONDS; IONS
AB Geometric, thermodynamic and electronic properties of cluster neutrals
   NbxOy and cations NbxOy+ (x = 1-3; y = 2-5, 7, 8) have been
   characterized theoretically. A DFT calculation using a hybrid
   combination of B3LYP with contracted Huzinaga basis sets. Numerical
   results of the relative stabilities, ionization potentials and band
   gaps of different clusters are in agreement with experiment. Analysis
   of dissociation channels supports the more stable building blocks as
   formed by NbO2, NbO2+ NbO3 and NbO3+ stoichiometries. The net atomic
   charges suggest that oxygen donor molecules can interact more favorably
   on central niobium atoms of cluster cations, while the interaction with
   oxygen acceptor molecules is more favorable on the terminal oxygen
   atoms of neutral clusters. A topological analysis of the electron
   localization function gradient field indicates that the clusters may be
   described as having a strong ionic interaction between Nb and O atoms.
   Published by Elsevier Science B.V.
C1 Univ Estadual Paulista, Dept Matemat, BR-17030360 Bauru, SP, Brazil.
   Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
   Univ Fed Sao Carlos, Dept Quim, LIEC, BR-13565905 S Carlos, SP, Brazil.
RP Sambrano, JR, Univ Estadual Paulista, Dept Matemat, CP 473, BR-17030360
   Bauru, SP, Brazil.
CR BADER RFW, 1990, ATOMS MOL
   BAKER J, 1995, CHEM PHYS LETT, V237, P53
   BECKE AD, 1990, J CHEM PHYS, V92, P5397
   BECKE AD, 1993, J CHEM PHYS, V98, P5648
   CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
   CASTLEMAN AW, 1986, CHEM REV, V86, P589
   DENG HT, 1996, J PHYS CHEM-US, V100, P13386
   ELAZHARY AA, 1996, J PHYS CHEM-US, V100, P15056
   FOSTER JP, 1980, J AM CHEM SOC, V102, P7211
   GALBRAITH JM, 1996, J CHEM PHYS, V105, P862
   HOLTHAUSEN MC, 1995, CHEM PHYS LETT, V240, P245
   HUZINAGA S, 1984, GAUSSIAN BASIS SETS
   HUZINAGA S, 1985, BASIS SET MOL CALCUL
   JENA P, 1992, PHYSICS CHEM FINITE, V374
   KEESEE RG, 1986, J PHYS CHEM REF DATA, V15, P1011
   LABONOWSKY JK, 1991, DENSITY FUNCTIONAL M
   LEE C, 1988, PHYS REV B, V37, P785
   LEE C, 1993, PHYS REV B, V98, P5648
   LOPEZ X, 1996, CAN J CHEM, V74, P1032
   NOURY S, 1997, TOPMOD PACKAGE
   PARR RG, 1989, DENSITY FUNCTIONAL T
   RAUHUT G, 1995, J PHYS CHEM-US, V99, P3093
   REED AE, 1985, J CHEM PHYS, V83, P735
   REED AE, 1988, CHEM REV, V88, P899
   SAVIN A, 1992, ANGEW CHEM INT EDIT, V31, P187
   SAVIN A, 1996, CAN J CHEM, V74, P1088
   SEMINARIO JM, 1995, MODERN DENSITY FUNCT
   SEMINARIO M, 1995, DENSITY FUNCTIONAL T
   SILVI B, 1994, NATURE, V371, P683
   STEVENS PJ, 1994, J PHYS CHEM-US, V98, P11623
   WIERZBICKI A, 1996, J PHYS CHEM-US, V100, P11250
   XU YC, 1995, J AM CHEM SOC, V117, P5413
   ZIEGLER T, 1993, J AM CHEM SOC, V115, P636
   ZIEGLER T, 1993, J AM CHEM SOC, V115, P636
NR 34
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 8
PY 1998
VL 287
IS 5-6
BP 620
EP 626
PG 7
SC Physics, Atomic, Molecular & Chemical
GA ZP121
UT ISI:000073718500023
ER

PT J
AU Bettega, MHF
   Oliveira, AJS
   Natalense, APP
   Lima, MAP
   Ferreira, LG
TI Static-exchange cross sections for electron-collisions with B2H6, C2H6,
   Si2H6, and Ge2H6
SO EUROPEAN PHYSICAL JOURNAL D
LA English
DT Article
ID NORM-CONSERVING PSEUDOPOTENTIALS; LOW-ENERGY ELECTRONS;
   INELASTIC-SCATTERING; POLYATOMIC-MOLECULES; ABINITIO; ETHANE;
   EXCITATION; METHANE; SNH4; CH4
AB We report integral and differential cross sections from 5-30 eV for
   elastic scattering of electrons by X2H6 (X=B, C, Si, Ge) obtained using
   the Schwinger Multichannel Method with Pseudopotentials [M.K.F.
   Bettega, L.G. Ferreira, M.A.P. Lima, Phys. Rev. A 47, 1111 (1993)]. We
   compare our results with available experimental data and other
   theoretical results, and also with previous results for XH4 (X=C, Si,
   Ge) [M.H.F. Bettega, A.P.P. Natalense, M.A.P. Lime, L.G. Ferreira, J.
   Chem. Phys. 103, 10566 (1995)]. To our knowledge this is the first ab
   initio calculation of the B2H6 and Ge2H5 electron scattering cross
   sections.
C1 Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil.
   Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Sao Paulo, Brazil.
   UFMa, Dept Fis, BR-65040020 Sao Luiz, MA, Brazil.
RP Bettega, MHF, Univ Fed Parana, Dept Fis, Caixa Postal 19081,
   BR-81531990 Curitiba, Parana, Brazil.
CR BACHELET G, 1982, PHYS REV B, V46, P4199
   BETTEGA MHF, 1993, PHYS REV A, V47, P1111
   BETTEGA MHF, 1995, J CHEM PHYS, V103, P10566
   BETTEGA MHF, 1996, INT J QUANTUM CHEM, V60, P821
   BETTEGA MHF, 1996, J CHEM PHYS, V105, P1029
   CURRY PJ, 1985, J PHYS B ATOM MOL PH, V18, P2303
   DILON MA, 1994, J PHYS B ATOM MOL PH, V27, P1209
   DUNNING TH, 1970, J CHEM PHYS, V53, P2823
   GILLAN CJ, 1987, J PHYS B ATOM MOL PH, V20, P4585
   HAMANN DR, 1979, PHYS REV LETT, V43, P1494
   LIMA MAP, 1990, PHYS REV A, V41, P327
   MAPSTONE B, 1992, J PHYS B ATOM MOL PH, V25, P491
   NATALENSE APP, 1995, PHYS REV A, V52, R1
   NATALENSE APP, 1996, PHYS REV A, V54, P5435
   NESTMANN BM, 1994, J PHYS B ATOM MOL PH, V27, P2297
   PFINGST K, 1994, J PHYS B ATOM MOL PH, V27, P2283
   RESCIGNO TN, 1992, PHYS REV A, V45, P2894
   RESCIGNO TN, 1992, PHYS REV A, V45, P7800
   RESCIGNO TN, 1996, J CHEM PHYS, V104, P120
   SUEOKA O, 1986, J PHYS B ATOM MOL PH, V19, P4035
   SUN WG, 1992, J CHEM PHYS, V97, P5480
   TAKATSUKA K, 1981, PHYS REV A, V24, P2473
   TAKATSUKA K, 1984, PHYS REV A, V30, P1734
   TANAKA H, 1988, J PHYS B ATOM MOL PH, V21, P1255
   VARELLA MTD, 1997, Z PHYS D ATOM MOL CL, V39, P59
   WINSTEAD C, 1991, J CHEM PHYS, V94, P5455
NR 26
TC 7
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6060
J9 EUR PHYS J D
JI Eur. Phys. J. D
PD MAR
PY 1998
VL 1
IS 3
BP 291
EP 296
PG 6
SC Physics, Atomic, Molecular & Chemical
GA ZM841
UT ISI:000073581700010
ER

PT J
AU Kahlal, S
   Saillard, JY
   Hamon, JR
   Manzur, C
   Carrillo, D
TI Molecular orbital analysis of the metal-hydrazide(2-) bonding in
   co-ordination chemistry
SO JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
LA English
DT Review
ID X-RAY CRYSTAL; TUNGSTEN-DINITROGEN COMPLEXES; TRANSITION-METAL
   COMPLEXES; BRIDGING ALKOXO LIGANDS; STRUCTURAL CHARACTERIZATION;
   COORDINATED DINITROGEN; HYDRAZIDO(2-) COMPLEXES; MOLYBDENUM COMPLEXES;
   ELECTRONIC-STRUCTURE; NITROGEN-FIXATION
AB The bonding in mono-and bis-hydrazido metal complexes has been studied
   with the help of EHMO and ab initio calculations on various models as
   well as on free hydrazide. The theoretical results have been analysed
   together with a collection of structural data obtained through a
   Cambridge Data Base search covering 118 compounds. Although generally
   described as being a hydrazide(2-) ligand, its oxidation state is often
   closer -1 in early transition-metal complexes, corresponding to the
   following occupation of its frontier orbitals:
   (sigma(n))(2)(pi(NN))(2)-(pi(sigma))(2)(pi*(NN))(1). The occupied
   hydrazido pi(NN) orbital, which does not interact significantly with
   the metal, is largely responsible for the significant double-bond
   character of the N-N bond. The partial population of the pi*(NN) level,
   which tends to reduce the N-N bond order, is partly balanced by
   depopulation of the somewhat antibonding pi(sigma) orbital. Assuming
   the traditional hydrazido(2-) formal charge, the ligand is a
   six-electron donor in monohydrazido metal species if co-ordinated
   linearly. If significantly bent, it is a four-electron donor. In the
   case of cis bis(hydrazido) species, the two formally hydrazide(2-)
   ligands act generally as a 10-electron donor system.
C1 Valparaiso Univ, Inst Quim, Lab Quim Inorgan, Valparaiso, Chile.
   Univ Rennes 1, UMR CNRS 6511, Chim Solide & Inorgan Mol Lab, F-35042 Rennes, France.
   Univ Rennes 1, UMR CNRS 6509, F-35042 Rennes, France.
RP Saillard, JY, Valparaiso Univ, Inst Quim, Lab Quim Inorgan, Ave Brasil
   2950, Valparaiso, Chile.
CR *CAMBR CRYST DAT C, 1997, CAMBR DAT BAS SYST V
   ALBRIGHT TA, 1985, ORBITAL INTERACTIONS
   AMMETER JH, 1978, J AM CHEM SOC, V100, P3686
   AOSHIMA T, 1992, J ORGANOMET CHEM, V423, P39
   ARNDTSEN BA, 1991, J AM CHEM SOC, V113, P4971
   ARNDTSEN BA, 1992, J AM CHEM SOC, V114, P7041
   BAKAR MA, 1988, J CHEM SOC DA, P2525
   BAKAR MA, 1988, J CHEM SOC DA, P2545
   BARCLAY JE, 1990, J CHEM SOC DA, P2503
   BARRIENTOSPENNA CF, 1982, INORG CHEM, V21, P2578
   BARRY JT, 1997, POLYHEDRON, V16, P2113
   BENSON MT, 1995, INORG CHEM, V34, P2348
   BISHOP MW, 1979, J CHEM SOC DA, P1600
   BISHOP PT, 1988, J ORGANOMET CHEM, V341, P373
   BLOCK E, 1991, INORG CHEM, V30, P1736
   BLOCK E, 1991, INORG CHIM ACTA, V181, P227
   BLOWER PJ, 1985, J CHEM SOC DA, P2647
   BRIDGEMAN AJ, 1995, J CHEM SOC DA, P1023
   BULTITUDE J, 1986, J CHEM SOC CHEM COMM, P1748
   BURRELL AK, 1994, J AM CHEM SOC, V116, P3813
   BURT RJ, 1982, J CHEM SOC DA, P2295
   BUSTOS C, 1991, INORG CHIM ACTA, V185, P25
   BUSTOS C, 1994, INORG CHEM, V33, P1427
   BUSTOS C, 1994, INORG CHEM, V33, P4937
   CAI S, 1996, ORGANOMETALLICS, V15, P1023
   CARRILLO D, 1992, INORG CHIM ACTA, V197, P209
   CHATT J, 1979, J ORGANOMET CHEM, V170, C6
   CHATT J, 1979, TRANSIT METAL CHEM, V4, P271
   CHATT J, 1980, J CHEM SOC CHEM COMM, P786
   CHATT J, 1982, INORG CHEM, V21, P2383
   CHATT J, 1982, J CHEM SOC DA, P1041
   CHATT J, 1982, J CHEM SOC DA, P345
   CHISHOLM MH, 1987, COMPREHENSIVE COORDI, V2, P161
   COIA GM, 1994, J AM CHEM SOC, V116, P3649
   COIA GM, 1997, INORG CHEM, V36, P2341
   CRAMER RE, 1988, ORGANOMETALLICS, V7, P841
   CRICHTON BAL, 1980, TRANSIT METAL CHEM, V5, P316
   CUNDARI TR, 1992, J AM CHEM SOC, V114, P7879
   CUNDARI TR, 1993, ORGANOMETALLICS, V12, P4971
   DAHLSTROM PL, 1982, INORG CHEM, V21, P933
   DANOPOULOS AA, 1994, J CHEM SOC DA, P907
   DANOPOULOS AA, 1997, POLYHEDRON, V16, P1081
   DAY VW, 1976, J ORGANOMET CHEM, V112, C55
   DEBORD JRD, 1993, INORG CHEM, V32, P785
   DEETH RJ, 1991, J CHEM SOC DA, P1875
   DEHNICKE K, 1989, POLYHEDRON, V8, P707
   DEHNICKE K, 1993, CHEM REV, V93, P981
   DILWORTH JR, 1981, J CHEM SOC CHEM COMM, P132
   DILWORTH JR, 1982, J AM CHEM SOC, V104, P365
   DILWORTH JR, 1983, INORG CHIM A-BIOINOR, V79, P208
   DILWORTH JR, 1983, J CHEM SOC DA, P1489
   DILWORTH JR, 1983, J CHEM SOC DA, P455
   DILWORTH JR, 1985, INORG CHEM, V24, P2594
   DILWORTH JR, 1992, POLYHEDRON, V11, P147
   DILWORTH JR, 1993, POLYHEDRON, V12, P513
   DILWORTH JR, 1997, J CHEM SOC DALT 0121, P269
   DUBOIS DL, 1977, NOUV J CHIM, V1, P479
   EINSTEIN FWB, 1982, INORG CHEM, V21, P2585
   EMSLEY J, 1989, ELEMENTS
   FITZROY MD, 1990, INORG CHIM ACTA, V169, P79
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GEBREYES K, 1986, INORG CHEM, V25, P405
   GEORGE TA, 1990, POLYHEDRON, V9, P545
   GEORGE TA, 1993, INORG CHEM, V32, P1706
   GERNERT MB, 1996, ACTA CRYSTALLOGR C 3, V52, P545
   GREEN JC, 1992, J CHEM SOC CHEM 0915, P1361
   GREEN MLH, 1991, J CHEM SOC DA, P3781
   GREEN MLH, 1997, J CHEM SOC DALT 0421, P1281
   GREEN MLH, 1997, J CHEM SOC DALT 0521, P1719
   HANSON IR, 1981, J CHEM SOC DA, P390
   HEATH GA, 1974, J AM CHEM SOC, V96, P259
   HENDERSON RA, 1983, ADV INORG CHEM, V27, P197
   HIDAI M, 1976, INORG CHEM, V15, P2694
   HIDAI M, 1984, J ORGANOMET CHEM, V272, P155
   HIDAI M, 1986, J AM CHEM SOC, V108, P1562
   HIRSCHKUCHMA M, 1997, J CHEM SOC DALT 0921, P3189
   HOFFMANN R, 1962, J CHEM PHYS, V36, P2179
   HOFFMANN R, 1963, J CHEM PHYS, V39, P1397
   HOFFMANN R, 1982, ANGEW CHEM INT EDIT, V21, P711
   HSIEH TC, 1988, INORG CHEM, V27, P241
   HUGHES DL, 1981, ACTA CRYSTALLOGR B, V37, P557
   IWANAMI K, 1981, B CHEM SOC JPN, V54, P1773
   JIMENEZTENORIO M, 1994, J CHEM SOC DA, P2431
   JOHNSON BFG, 1987, COMPREHENSIVE COORDI, V2, P99
   JORGENSEN KA, 1993, INORG CHEM, V32, P1521
   KANG H, 1988, J CHEM SOC CHEM COMM, P1192
   KETTLER PB, 1994, INORG CHEM, V33, P5864
   KOMORI K, 1983, CHEM LETT, P465
   KORNER V, 1997, CHEM BER-RECL, V130, P489
   KOSTIC NM, 1981, J AM CHEM SOC, V103, P4677
   LATHAN WA, 1974, PROGR PHYS ORG CHEM, V11, P175
   LIKAO J, 1995, ACTA CRYSTALLOGR  12, V51, P2486
   LIN ZY, 1993, COORDIN CHEM REV, V123, P149
   LYNE PD, 1994, J ORGANOMET CHEM, V478, P141
   MAHY JP, 1984, J AM CHEM SOC, V106, P1699
   MANZUR C, UNPUB
   MANZUR C, 1996, INORG CHIM ACTA, V249, P245
   MANZUR C, 1997, ACTA CRYSTALLOGR  10, V53, P1401
   MANZUR C, 1997, INORG CHIM ACTA, V255, P73
   MANZUR C, 1997, J CHEM CRYSTALLOGR, V27, P339
   MANZUR C, 1998, INORG CHIM ACTA, V268, P199
   MARCH FC, 1975, J ORGANOMET CHEM, V96, C43
   MASON R, 1974, J AM CHEM SOC, V96, P260
   MCCLEVERTY JA, 1987, TRANSIT METAL CHEM, V12, P283
   MEALLI C, 1990, J CHEM EDUC, V67, P399
   MOLLER C, 1934, PHYS REV, V46, P618
   MOUNTFORD P, 1995, J CHEM SOC CHEM COMM, P2357
   NICHOLSON T, 1985, J CHEM SOC CHEM COMM, P367
   NICHOLSON T, 1987, POLYHEDRON, V6, P1577
   NICHOLSON T, 1988, POLYHEDRON, V7, P171
   NISHIHARA H, 1982, J AM CHEM SOC, V104, P4367
   NUGENT WA, 1980, COORDIN CHEM REV, V31, P123
   NUGENT WA, 1988, METAL LIGAND MULTIPL
   OSBORNE JH, 1985, J AM CHEM SOC, V107, P7945
   OSHITA H, 1990, CHEM LETT, P1303
   OSHITA H, 1992, ORGANOMETALLICS, V11, P4116
   PATERSSON GA, 1988, J CHEM PHYS, V89, P2193
   PENG G, 1994, INORG CHEM, V33, P2864
   PIETSCH MA, 1996, INORG CHEM, V35, P1273
   RAPPE AK, 1982, J AM CHEM SOC, V104, P3287
   RAPPE AK, 1982, J AM CHEM SOC, V104, P448
   RAPPE AK, 1984, INORG CHEM, V23, P995
   REDSHAW C, 1979, J CHEM SOC DA, P3343
   RETBOLL M, 1995, ACTA CHEM SCAND, V49, P278
   SCHOFIELD MH, 1991, INORG CHEM, V30, P3595
   SEINO H, 1994, J AM CHEM SOC, V116, P7433
   SEINO H, 1995, J AM CHEM SOC, V117, P12181
   SEINO H, 1997, INORG CHEM, V36, P161
   SHAIK SN, 1986, INORG CHIM ACTA, V115, L19
   SHAIKH SN, 1988, INORG CHEM, V27, P1896
   SHAIKH SN, 1988, INORG CHIM ACTA, V144, P147
   SILAVWE ND, 1988, INORG CHEM, V27, P4669
   STERGIOU AC, 1994, INORG CHIM ACTA, V217, P61
   STREET AC, 1991, CHEM LETT, P383
   SUTTON D, 1993, CHEM REV, V93, P995
   VEITH M, 1976, ANGEW CHEM INT EDIT, V15, P387
   WIGLEY DE, 1994, PROG INORG CHEM, V42, P239
   WILLIAMS DN, 1992, J CHEM SOC DA, P739
   WILLIAMS DS, 1993, ORGANOMETALLICS, V12, P4560
   ZUBIETA J, 1990, INORG CHEM, V29, P4595
NR 140
TC 25
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 4WF,
   CAMBS, ENGLAND
SN 0300-9246
J9 J CHEM SOC DALTON TRANS
JI J. Chem. Soc.-Dalton Trans.
PD APR 7
PY 1998
IS 7
BP 1229
EP 1240
PG 12
SC Chemistry, Inorganic & Nuclear
GA ZJ011
UT ISI:000073170600028
ER

PT J
AU Pliego, JR
   Franca, MA
   De Almeida, WB
TI Kinetics of the H2O+CCl2 reaction in gas phase and in solution by an
   insertion mechanism
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CORRELATED MOLECULAR CALCULATIONS; LASER FLASH-PHOTOLYSIS;
   GAUSSIAN-BASIS SETS; O-H BOND; AB-INITIO; DIMETHOXYCARBENE; ADDITIVITY;
   METHYLENE; HYDRATION; CARBENES
AB The single-step insertion reaction of dichlorocarbene into the water OH
   bond was investigated at the ab initio level of theory. We have used
   additivity approximation to obtain an effective CCSD(T)/cc-pVTZ + diff
   single-point energy calculation on MP2/DZP optimized geometries. The
   solvent effect on the activation free energy was included by performing
   Monte Carlo simulations and statistical perturbation theory. it was
   found that direct insertion should not play an important role in the
   H2O + CCl2 reaction. A mechanism involving two water molecules is
   suggested as a possible alternative reaction pathway. (C) 1998 Elsevier
   Science B.V.
C1 Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
RP Pliego, JR, Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Quim, Lab
   Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR ADMASU A, 1997, J PHYS CHEM A, V101, P3832
   BETHELL D, 1971, J CHEM SOC B, P23
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
   CHIPOT C, 1994, J PHYS CHEM-US, V98, P11362
   CURTISS LA, 1991, J CHEM PHYS, V94, P7221
   CURTISS LA, 1992, J CHEM PHYS, V96, P9030
   DU XM, 1990, J AM CHEM SOC, V112, P1920
   DUNNING TH, 1977, METHODS ELECT STRUCT
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   FRISCH MJ, 1995, GAUSSIAN 94
   GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
   GRILLER D, 1982, J AM CHEM SOC, V104, P5549
   JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
   JORGENSEN WL, 1988, J AM CHEM SOC, V110, P1657
   JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
   JORGENSEN WL, 1995, BOSS VERS 3 5
   KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
   KIRMSE W, 1993, J AM CHEM SOC, V115, P8918
   MOSS RA, 1988, TETRAHEDRON LETT, V29, P6417
   NOBES RH, 1982, CHEM PHYS LETT, V89, P497
   PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
   PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
   PLIEGO JR, 1997, J CHEM SOC FARADAY T, V93, P1881
   POPLE JA, 1983, J AM CHEM SOC, V105, P6389
   ROBINSON EA, 1961, J CHEM SOC, P1663
   STAKER WS, 1991, J CHEM SOC FARADAY T, V87, P2421
   TOSCANO JP, 1994, J AM CHEM SOC, V116, P8146
   WANG JL, 1995, J AM CHEM SOC, V117, P5477
   WOON DE, 1993, J CHEM PHYS, V98, P1358
   ZUPANCIC JJ, 1985, TETRAHEDRON, V41, P1471
NR 31
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAR 13
PY 1998
VL 285
IS 1-2
BP 121
EP 126
PG 6
SC Physics, Atomic, Molecular & Chemical
GA ZF354
UT ISI:000072889100019
ER

PT J
AU Castellano, EE
   Piro, OE
   Caram, JA
   Mirifico, MV
   Aimone, SL
   Vasini, EJ
   Glossman, MD
TI Crystallographic study and molecular orbital calculations of
   1,2,5-thiadiazole 1,1-dioxide derivatives
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE 1,2,5-thiadiazole; 1,1-dioxide derivatives; single-crystal x-ray
   diffraction; ab initio MO calculations; structure; conformation;
   reactivity
ID 3,4-DIPHENYL-1,2,5-THIADIAZOLE 1,1-DIOXIDE; CHEMICAL-REACTIVITY;
   CRYSTAL-STRUCTURE; ACETONITRILE; ELECTROREDUCTION; HYDROLYSIS; SOLVENTS
AB Single-crystal x-ray diffraction studies are reported for 3,4-dimethyl
   (I), 3-methyl-4-phenyl (II) and 3,4-diphenyl (III) derivatives of
   1,2,5-thiadiazole 1,1-dioxide. Ab initio MO calculations on the
   electronic structure, conformation and reactivity of I, II and III are
   also reported and compared with the x-ray results. The structural data
   are related to previous kinetic and electrochemical experimental
   results on these compounds. (C) 1998 John Wiley & Sons, Ltd.
C1 Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, RA-1900 La Plata, Argentina.
   Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
   CONICET, Programa PROFIMO, RA-1900 La Plata, Argentina.
   Natl Univ La Plata, INIFTA, CONICET, RA-1900 La Plata, Argentina.
   Natl Univ La Plata, CEQUINOR, CONICET, RA-1900 La Plata, Argentina.
   Univ Nacl Lujan, Dept Ciencias Basicas, RA-6700 Lujan, Argentina.
RP Piro, OE, Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, CC 67,
   RA-1900 La Plata, Argentina.
EM Piro@ayelen.fisica.unlp.edu.ar
CR AMATO JS, 1982, J AM CHEM SOC, V104, P1375
   ARAN VJ, 1988, ADV HETEROCYCL CHEM, V44, P81
   BACHRACH SM, 1994, REV COMPUTATIONAL CH, V5
   BAKER RJ, 1980, J ORG CHEM, V45, P482
   BAUMGARTEL H, 1984, ENCY ELECTROCHEMISTR, V15, P168
   CALDERON CE, 1979, ACTA CRYSTALLOGR B, V35, P2795
   CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P1340
   CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P2296
   CARAM JA, 1994, ELECTROCHIM ACTA, V39, P939
   CARAM JA, 1996, CAN J CHEM, V74, P1564
   CROMER DT, 1974, INT TABLES CRYSTALLO, V4, P71
   CROMER DT, 1974, INT TABLES XRAY CRYS, V4, P149
   DUNN PJ, 1989, J CHEM SOC CHEM COMM, P1134
   FOCESFOCES C, 1975, ACTA CRYSTALLOGR B, V31, P2310
   FOCESFOCES C, 1977, ACTA CRYSTALLOGR B, V33, P910
   FRENZ BA, 1983, ENRAF NONIUS STRUCTU
   FRISCH MJ, 1995, GAUSSIAN 94
   FUKUI K, 1973, THEORY ORIENTATION S
   GLOSSMAN MD, 1995, THEOCHEM-J MOL STRUC, V330, P385
   GLOSSMAN MD, 1996, ATUALIDADES FISICO Q, P526
   GLOSSMAN MD, 1997, J MOL STRUCTURE THEO, V390, P67
   HAMILTON WC, 1959, ACTA CRYSTALLOGR, V12, P609
   JOHNSON CK, 1965, ORNL3794 ORTEP
   MIRIFICO MV, 1991, ELECTROCHIM ACTA, V36, P167
   MIRIFICO MV, 1991, INT J CHEM KINET, V23, P197
   MIRIFICO MV, 1993, J PHYS ORG CHEM, V6, P341
   MIRIFICO MV, 1995, AN QUIM, V91, P557
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P2338
   PARR RG, 1984, J AM CHEM SOC, V106, P4049
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PEARSON RG, 1963, J AM CHEM SOC, V85, P3533
   PEARSON RG, 1966, SCIENCE, V151, P172
   PERICHON J, 1978, ENCY ELECTROCHEMISTR, V11, P71
   POLITZER P, 1981, CHEM APPL ATOMIC MOL
   ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
   SHELDRICK GM, 1976, SHELX PROGRAM CRYSTA
   WEINSTOCK LM, 1984, COMPREHENSIVE HETERO, V6
   YANG W, 1986, J AM CHEM SOC, V108, P5708
NR 40
TC 15
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD FEB
PY 1998
VL 11
IS 2
BP 91
EP 100
PG 10
SC Chemistry, Organic; Chemistry, Physical
GA ZD967
UT ISI:000072743700003
ER

PT J
AU Gomes, MG
   Davanzo, CU
   Silva, SC
   Lopes, LGF
   Santos, PS
   Franco, DW
TI cis- and trans-nitrosyltetraammineruthenium(II). Spectral and
   electrochemical properties and reactivity
SO JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
LA English
DT Article
ID RUTHENIUM NITROSYL COMPLEXES; REVERSIBLE ELECTRON-TRANSFER;
   NITRIC-OXIDE; CHEMISTRY; BEHAVIOR; LIGAND
AB A synthetic route was developed for the preparation of
   trans-[Ru(NH3)(4)(NO)X](n+), where X = isonicotinamide (isn), pyrazine
   (pyz) or sulfite, and cis-[Ru(NH3)(4)(NO)(NO2)](2+). The complexes have
   been characterized by elemental analysis, UV/VIS, infrared, H-1 NMR and
   ESR spectroscopies, molar conductance measurements and cyclic
   voltammetry. All showed v(NO) in the range characteristic of
   metal-co-ordinated NO+ and do not exhibit any ESR signal, consistent
   with the formulation of Ru-II-NO+. The equilibrium constants K-eq for
   the reaction trans-[Ru(NH3)(4)(NO)X](3+) + 20H(-) reversible arrow
   trans-[Ru(NH3)(4)(NO2)X](+) + H2O are 2.5 x 10(8) and 6 x 10(8) dm(6)
   mol(-2) for X = isn or pyz. Cyclic voltammograms of the complexes in
   aqueous solution exhibited reversible one-electron waveforms in the
   potential range -0.13 to -0.38 V vs. SCE, which were assigned to the
   [Ru(NH3)(4)(No)X](n+) --> [Ru(NH3)(4)(NO)X]((n-1)+) process. Nitric
   oxide and trans-[Ru(NH3)(4)(H2O)X](2+) are the final products of the
   reaction between Eu-II and trans-[Ru(NH3)(4)(NO)X](3+), L = isn or pyz.
   Ab initio molecular orbital calculations performed for
   trans-[Ru(NH3)(4)(NO)(pyz)](3+) and trans-[Ru(NH3)(4)(NO)(pyz)](2+),
   and the products of the trans-[Ru(NH3)(4)(NO)(pyz)](3+) one-electron
   electrochemical or chemical reduction, strongly suggest the added
   electron is localized mainly on the nitrosyl ligand. A correlation was
   observed between v(NO) and E-1/2 for the reversible reduction wave.
   These results indicate that the nitric oxide reduction is facilitated
   by strong pi-acceptor ligands trans to the NO. Nitric oxide and
   trans-[Ru(NH3)(4)(H2O)X](3+) were formed when solutions containing
   trans-[Ru(NH3)(4)(NO)X](3+) were irradiated in the range 310-370 nm.
C1 USP, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
   Univ Fed Ceara, Dept Quim Analit & Fis Quim, Fortaleza, Ceara, Brazil.
   Univ Estadual Campinas, Inst Quim, BR-13081970 Campinas, SP, Brazil.
   USP, Inst Quim, BR-09500900 Sao Paulo, Brazil.
RP Franco, DW, USP, Inst Quim Sao Carlos, Caixa Postal 780, BR-13560970
   Sao Carlos, SP, Brazil.
CR *HYP INC, 1994, HYPERCHEM 4
   ALBERT A, 1971, DETERMINATION IONIZA
   ARMOR JN, 1975, INORG CHEM, V14, P444
   ARNELLE DR, 1995, ARCH BIOCHEM BIOPHYS, V318, P279
   BAGATIN IA, 1996, SPECTROSC LETT, V29, P1409
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BEDIOUI F, 1994, J ELECTROANAL CHEM, V377, P295
   BENEDIX R, 1993, INORG CHIM ACTA, V204, P189
   BOHLE DS, 1995, J AM CHEM SOC, V117, P9584
   BORGES SSS, UNPUB INORG CHEM
   BORGES SSS, 1996, 8 INT PHOT SOC C FOZ, P81
   BOTTOMLEY F, 1978, ACCOUNTS CHEM RES, V11, P158
   BOTTOMLEY F, 1989, REACTIONS COORDINATE, V2
   BOTTOMLEY F, 1996, METHODS NITRIC OXIDE
   BROWN GM, 1978, J AM CHEM SOC, V100, P2767
   BUTLER AR, 1993, CHEM SOC REV, P233
   CALLAHAN RW, 1975, J AM CHEM SOC, V97, P894
   CALLAHAN RW, 1977, INORG CHEM, V16, P574
   CLARKE MJ, 1978, J AM CHEM SOC, V100, P5068
   CLARKE MJ, 1993, STRUCT BONDING BERLI, V81, P144
   CRAMER WA, 1990, ENERGY TRANSDUCTION, P334
   DAHMEN EAM, 1986, ELECTROANALYSIS THEO
   DAVIES NA, 1997, CHEM COMMUN     0107, P47
   EISENBERG R, 1975, ACCOUNTS CHEM RES, V8, P26
   ELDER RC, 1977, INORG CHEM, V16, P1048
   ENEMARK JH, 1974, COORDIN CHEM REV, V13, P339
   FONTECAVE M, 1994, B SOC CHIM FR, V131, P620
   FORD PC, 1993, FEBS LETT, V326, P1
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GODBOUT N, 1992, CAN J CHEM, V70, P560
   GODWIN JB, 1971, INORG CHEM, V10, P2150
   HAMPL V, 1996, METHODS NITRIC OXIDE, CH21
   ISIED SS, 1974, INORG CHEM, V13, P1545
   KARLIN KD, 1993, BIONORGANIC CHEM COP
   KOSHLAND DE, 1992, SCIENCE, V258, P1861
   KUBAS GJ, 1981, INORG CHEM, V20, P2667
   KUEHN CG, 1980, PROG INORG CHEM, V27, P153
   LEE C, 1988, PHYS REV B, V37, P785
   LEGZDINS P, 1994, J AM CHEM SOC, V116, P12105
   LOPES LGF, UNPUB INORG CHEM
   MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
   MASTONE J, 1975, J INORG NUCL CHEM, V37, P473
   MAZZETTO SE, 1996, INORG CHEM, V35, P3509
   NAKAMOTO K, 1986, INFRARED RAMAN SPECT
   PALMER JW, 1960, J INORG NUCL CHEM, V15, P279
   PELL S, 1973, INORG CHEM, V12, P873
   PIPES DW, 1984, INORG CHEM, V23, P2466
   REED CA, 1972, J CHEM SOC DA, P1243
   RITCHERADDO GB, 1992, METAL NITROSYLS
   RODRIGUEZ JA, 1997, 26 REUN AN SOC BRAS, S32
   SADLER PJ, 1991, ADV INORG CHEM RAD, V36, P1
   SCHREINER AF, 1972, INORG CHEM, V11, P880
   SILVA SC, UNPUB
   THIEMENS MH, 1991, SCIENCE, V251, P932
   THIEMENS MH, 1995, ACS S SER, V587
   WINK DA, 1995, METHODS COMPANION ME, V7, P14
   WINTER ERS, 1971, J CATAL, V22, P158
NR 57
TC 44
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 4WF,
   CAMBS, ENGLAND
SN 0300-9246
J9 J CHEM SOC DALTON TRANS
JI J. Chem. Soc.-Dalton Trans.
PD FEB 21
PY 1998
IS 4
BP 601
EP 607
PG 7
SC Chemistry, Inorganic & Nuclear
GA ZD135
UT ISI:000072654900016
ER

PT J
AU Morgon, NH
TI Theoretical calculation of proton affinities using basis set functions
   defined by the generator coordinate method
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID GAS-PHASE ACIDITIES; COMPACT EFFECTIVE POTENTIALS; EXPONENT BASIS-SETS;
   OPTIMIZATION TECHNIQUE; GAUSSIAN-2 THEORY; EFFICIENT; ENERGIES;
   1ST-ROW; ATOMS; IONS
AB Ab initio calculations have been performed to determine the molecular
   structure and proton affinity of a set of molecules. The basis sets
   were developed for pseudopotentials using the GCM procedure, This
   technique is potentially useful for large molecules for which similar
   procedures (such as the G2 method and variations) were not feasible.
   This method achieves performance similar to the G2 method at a lower
   computational cost, The mean absolute deviation and the mean deviation
   of the results from experimental are 3.5 and 1.7 kJ mol(-1),
   respectively, compared with 4.6 and 2.2 kJ mol(-1) for the G2 method.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Morgon, NH, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13083970
   Campinas, SP, Brazil.
EM nelson@iqm.unicamp.br
CR CHANDRA AK, 1996, J PHYS CHEM-US, V100, P11596
   CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
   CURTISS LA, 1991, J CHEM PHYS, V94, P7221
   CURTISS LA, 1993, J CHEM PHYS, V98, P1293
   CUSTODIO R, 1992, CAN J CHEM, V70, P580
   CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
   DUNNING TH, 1977, METHODS ELECT STRUCT, P1
   ERVIN KM, 1990, J AM CHEM SOC, V112, P5750
   FELLER DF, 1979, THEOR CHIM ACTA, V52, P231
   FRISCH MJ, 1994, GAUSSIAN 94 REVISION
   GRAUL ST, 1990, J AM CHEM SOC, V112, P2517
   LIAS SG, 1988, J PHYS CHEM REF DA S, V1, P17
   MOHALLEM JR, 1986, INT J QUANTUM CH S20, P45
   MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
   MORGON NH, 1995, CHEM PHYS LETT, V235, P436
   MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
   MORGON NH, 1995, J PHYS CHEM-US, V99, P17832
   MORGON NH, 1995, THEOCHEM-J MOL STRUC, V335, P11
   MORGON NH, 1997, J AM CHEM SOC, V119, P1708
   NELDER JA, 1965, COMPUT J, V7, P308
   OCHTERSKI JW, 1995, J AM CHEM SOC, V117, P11299
   SMITH BJ, 1991, J PHYS CHEM-US, V95, P10549
   SMITH BJ, 1992, AUST J CHEM, V45, P285
   SMITH BJ, 1995, CHEM PHYS LETT, V245, P123
   SMITH BJ, 1995, J PHYS CHEM-US, V99, P6468
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
   STEVENS WJ, 1992, CAN J CHEM, V70, P612
   TANABE FKJ, 1996, J PHYS CHEM-US, V100, P2862
NR 28
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAR 12
PY 1998
VL 102
IS 11
BP 2050
EP 2054
PG 5
SC Chemistry, Physical
GA ZC830
UT ISI:000072622400023
ER

PT J
AU Rocha, WR
   Pliego, JR
   Resende, SM
   dos Santos, HF
   de Oliveira, MA
   de Almeida, WB
TI Ab initio conformational analysis of cyclooctane molecule
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE ab initio conformational analysis; cyclooctane molecule; potential
   energy surface; Hartree-Fock theory; Moller-Plesset theory
ID GAUSSIAN-TYPE BASIS; ORBITAL METHODS; ORGANIC-MOLECULES; MECHANICS;
   SPACE; OXOCANES; MINIMUM
AB The potential energy surface (PES) for the cyclooctane molecule was
   comprehensively investigated at the Hartree-Fock (HF) level of theory
   employing the 3-21G, 6-31G, and 6-31G* basis sets. Six distinct true
   minimum energy structures (named B, BB, BC, CROWN, TBC, and TCC1),
   characterized through harmonic frequency analysis, were located on the
   multidimensional PES. Two transition state structures were also located
   on the PES for the cyclooctane molecule. Electron correlation effects
   were accounted for using the Moller-Plesset second-order perturbation
   theory (MP2) approach. The predicted global minimum energy structure on
   the ab initio PES for the cyclooctane molecule is the BC conformer. A
   gas phase electron diffraction study at 300 K suggested a
   conformational mixture while an NMR study in solution at 161.5 K
   predicted the BC conformer as the predominant form. The equilibrium
   constants reported in the present study, which were evaluated from the
   nb initio calculated total Gibbs free energy change values, were in
   good agreement with both experimental investigations. The ab initio
   results showed that the low temperature condition significantly favored
   the BC conformer while above room temperature both BC and CROWN
   structures can coexist. (C) 1998 John Wiley & Sons, Inc.
C1 UFMG, ICEx, Dept Quim, LQC MM, BR-31270901 Belo Horizonte, MG, Brazil.
RP Rocha, WR, Univ Florida, Quantum Theory Project, 362 Williamson Hall,
   Gainesville, FL 32611 USA.
CR ALMENNINGEN A, 1966, ACTA CHEM SCAND, V20, P2689
   ANET FAL, 1973, J AM CHEM SOC, V95, P4424
   ANET FAL, 1973, TETRAHEDRON LETT, V50, P5029
   BOFILL JM, 1994, J COMPUT CHEM, V15, P1
   BRECKNELL DJ, 1985, J MOL STRUCT THEOCHE, V124, P343
   CHANG G, 1989, J AM CHEM SOC, V111, P4379
   CULOT P, 1992, THEOR CHIM ACTA, V82, P189
   DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
   DOBLER M, 1966, HELV CHIM ACTA, V49, P2492
   DOROFEEVA OV, 1990, J STRUCT CHEM, V31, P153
   FERGUSON DM, 1989, J AM CHEM SOC, V111, P4371
   FERGUSON DM, 1992, J COMPUT CHEM, V13, P525
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HENRICKSON JB, 1967, J AM CHEM SOC, V89, P7047
   HUZINAGA S, 1984, GAUSSIAN BASIS SETS
   KRISHNAN R, 1980, J CHEM PHYS, V72, P650
   LIPTON M, 1988, J COMPUT CHEM, V9, P343
   PAKES PW, 1981, J PHYS CHEM-US, V85, P2469
   PAKES PW, 1981, J PHYS CHEM-US, V85, P2476
   POPLE JA, 1993, ISRAEL J CHEM, V33, P345
   ROCHA WR, 1997, J COMPUT CHEM, V18, P254
   SAUNDERS M, 1987, J AM CHEM SOC, V109, P3150
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
NR 23
TC 15
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD APR 15
PY 1998
VL 19
IS 5
BP 524
EP 534
PG 11
SC Chemistry, Multidisciplinary
GA ZC849
UT ISI:000072624700005
ER

PT J
AU Alves, JLA
   Alves, HWL
   de Oliveira, C
   Valadao, RDSC
   Leite, JR
TI Zinc-blende GaN: ab initio calculations
SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
   TECHNOLOGY
LA English
DT Article
DE zinc-blende; wide-gap device concepts; molecular cluster calculations
ID EFFECTIVE CORE POTENTIALS; SEMICONDUCTOR COMPOUNDS; MOLECULAR
   CALCULATIONS; ZINCBLENDE GAN; 110 SURFACE; RECONSTRUCTION; ORBITALS
AB The purpose of this paper is to contribute, on a theoretical basis, an
   understanding of future wide-gap device concepts and applications based
   on III-V nitride semiconductors. The electronic properties of
   zinc-blende structure GaN and their (110), (100) and (111) surfaces are
   investigated using ab initio calculations based on the full potential
   linear augmented plane-wave (FPLAPW) method within the large unit cell
   approach, and on the molecular Gaussian-92 code. Lattice constant,
   cohesive energy, bulk modulus are obtained from total energy
   calculations. Light-hole and heavy-hole effective masses along (100),
   (111) and (110) directions and electron masses at Gamma point are
   extracted from band structure calculations and compared with previous
   ones based on pseudopotential methods. The hydrostatic pressure
   dependence of the Gamma Gamma, Gamma X and Gamma L energy gaps are also
   obtained. Comparing our band structure and 'molecular cluster'
   calculations, the relaxations of the surfaces are found to be mostly
   determined by local rehybridization or valence effects and are
   basically independent of energy band features. (C) 1997 Elsevier
   Science S.A.
C1 DCNAT FUNREI, BR-36300000 Sao Joao Del Rei, MG, Brazil.
   DFMM IFUSP, BR-05389970 Sao Paulo, SP, Brazil.
RP Alves, JLA, DCNAT FUNREI, CP 110, BR-36300000 Sao Joao Del Rei, MG,
   Brazil.
EM arestrup@dedalus.lcc.ufmg.br
CR CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CHANG KJ, 1984, SOLID STATE COMMUN, V50, P105
   EDGAR JH, 1994, DATAREVIEWS SERIES
   FAN WJ, 1996, J APPL PHYS, V79, P188
   FANCIULLI M, 1993, PHYS REV B, V48, P15144
   FIORENTINI V, 1993, PHYS REV B, V47, P13353
   FRISCH MJ, 1992, GAUSSIAN 92
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   HAY PJ, 1985, J CHEM PHYS, V82, P299
   JAFFE JE, 1996, PHYS REV B, V53, R4209
   JHI SH, 1995, PHYS STATUS SOLIDI B, V191, P367
   LAMBRECHT WRL, 1992, MATER RES SOC S P, V242, P367
   MADELUNG O, 1982, LANDOLTBORNSTEIN N A, V17
   MONKHORST HJ, 1976, PHYS REV B, V13, P5188
   PALUMMO M, 1992, PHYSICS SEMICONDUCTI, V1, P89
   POWELL RC, 1993, J APPL PHYS, V73, P189
   STRIFE S, 1992, J VAC SCI TECHNOL B, V10, P1237
   SWARTS CA, 1980, J VAC SCI TECHNOL, V17, P982
   SWARTS CA, 1981, SURF SCI, V110, P400
   WADT WR, 1985, J CHEM PHYS, V82, P284
   WIMMER E, 1981, PHYS REV B, V24, P864
NR 21
TC 4
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5107
J9 MATER SCI ENG B-SOLID STATE M
JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
PD DEC 18
PY 1997
VL 50
IS 1-3
BP 57
EP 60
PG 4
SC Materials Science, Multidisciplinary; Physics, Condensed Matter
GA YW795
UT ISI:000071974800014
ER

PT J
AU Ishiki, HM
   Donate, PM
   Galembeck, SE
TI Electronic structure of chromone and its hydroxylated derivatives on
   positions 2 and 3
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE computational study; electronic structure; flavonoids; reactivity;
   resonance
ID MOLECULAR-ORBITAL METHODS; INTRAMOLECULAR PROTON-TRANSFER;
   GAUSSIAN-TYPE BASIS; CONFORMATIONAL-ANALYSIS; SEMIEMPIRICAL METHODS;
   BASIS-SETS; ORGANIC-MOLECULES; OPTIMIZATION; FLAVONOIDS; PARAMETERS
AB The electronic structure of chromone (1) and those of its 2-hydroxy (2)
   and 5-hydroxy (3) derivatives were studied by semiempirical and ab
   initio molecular orbital methods. Several electronic parameters show
   that the A-ring is an aromatic system, whereas the C-ring does not
   present conjugation. In the C-ring, the double bonds are located in the
   carbonyl group and between C(2)-C(3). These results were confirmed by
   comparison with geometries of chromone derivatives which were
   determined by X-ray diffraction data. The relative stability of
   compounds (2) and (3) was explained and the sites of acid, basic,
   nucleophilic and electrophilic attack were also determined. (C) 1998
   Elsevier Science B.V.
C1 Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Quim, BR-14049901 Ribeirao Preto, SP, Brazil.
RP Galembeck, SE, Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao
   Preto, Dept Quim, Ave Bandeirantes 3900, BR-14049901 Ribeirao Preto,
   SP, Brazil.
EM segalemb@usp.br
CR AHUJA VK, 1978, INDIAN J CHEM A, V16, P531
   BAKER J, 1986, J COMPUT CHEM, V7, P385
   BESLER BH, 1990, J COMPUT CHEM, V11, P431
   BEUGELMANS R, 1976, TETRAHEDRON LETT, V25, P2145
   BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
   BOUMAN TD, 1985, J PHYS CHEM-US, V89, P4460
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   BROWN NMD, 1965, SPECTROCHIM ACTA, V21, P1277
   CODY V, 1994, J MOL STRUCT, V317, P89
   COLLIE JN, 1899, J CHEM SOC, V75, P710
   COLLINS JB, 1976, J CHEM PHYS, V64, P5142
   DEREU N, 1981, J ORGANOMET CHEM, V208, P23
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DICK B, 1990, J PHYS CHEM-US, V94, P5752
   DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
   GEISSMAN TA, 1962, CHEM FLAVONOIDS COMP
   GILLESPIE RJ, 1992, CHEM SOC REV, V21, P59
   GORDON MH, 1995, J AGR FOOD CHEM, V43, P1784
   HARBONE JB, 1988, FLAVONOIDS ADV RES 1
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HILA J, 1985, B SOC CHIM FR, V6, P1275
   HUHEEY JE, 1972, INORGANIC CHEM PRINC
   HVSTEEN B, 1983, BIOCHEM PHARMACOL, V32, P1141
   ILIC P, 1982, J HETEROCYCLIC CHEM, V19, P625
   KOES RE, 1994, BIOESSAYS, V16, P123
   MATHIS CT, 1964, SPECTROCHIM ACTA, V20, P871
   PEREIRA GK, 1996, THEOCHEM-J MOL STRUC, V363, P87
   SAENGCHANTARA ST, 1986, NAT PROD REP, V3, P465
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SINGH UC, 1984, J COMPUT CHEM, V5, P129
   SOMOGYI A, 1987, ACTA CHIM HUNG, V124, P855
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STEWART JJP, 1989, J COMPUT CHEM, V10, P221
   STEWART JJP, 1990, J COMPUT AID MOL DES, V4, P1
   VRIELYNCK L, 1993, J MOL STRUCT, V297, P227
   WATSON WH, 1991, ACTA CRYSTALLOGR C, V47, P459
NR 36
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD FEB 2
PY 1998
VL 423
IS 3
BP 235
EP 243
PG 9
SC Chemistry, Physical
GA YX315
UT ISI:000072027900009
ER

PT J
AU Hollauer, E
   Olabe, JA
TI A HF/CI-SD study of the low-lying states of nitroprusside ion
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE ab initio (SCF, CI-SD); nitroprusside; excited states; metastable
   states; Na-2[Fe(CN)(5)NO]; pentacyanonitrosylferrate
ID TRANSPARENT MOLECULAR SYSTEMS; COMPACT EFFECTIVE POTENTIALS; METASTABLE
   ELECTRONIC STATE; EXPONENT BASIS-SETS; OPTICAL DISPERSION;
   SODIUM-NITROPRUSSIDE; POLARIZED-LIGHT; SINGLE-CRYSTAL; RAMAN-SPECTRA;
   TGA-DTA
AB Since the discovering of two photoexcited metastable states of
   crystalline sodium nitroprusside, Na-2[Fe(CN)(5)NO]..2H(2)O (SNP)
   showing rather long lifetimes at temperatures below 160 K, much effort
   has been devoted toward the study of its electronic structure. Despite
   this tremendous effort the nature of the frontier orbitals and the
   related low energy excitations remains controversial. Early
   calculations, EHT, showed the HOMO as mainly the metallic 3d orbital
   while the LUMO had a major pi* (NO) contribution. However INDO
   calculations, clearly set the metal d orbital many electron-volts deep
   in core. The vertical electronic spectrum have been estimated through
   ab initio HF/CI-SD with a double-zeta quality basis set. The ab initio
   results support Bottomley and Grein's interpretations and assign the
   first electronic transitions to ligand-to-ligand charge-transfer
   excitation from trans-cyano to nitrosyl ligands. The corresponding
   oscillator strengths have been calculated showing comparable intensity
   with the experimental results. The excitation energy of the metal -->
   NO charge-transfer transition, 8e --> 13e (d(xz),d(yz) --> pi* NO) have
   been estimated to be at 4.52 eV and show a rather intense absorption
   band. The second CT excitation, 1b(2) --> 13e (d(xy) --> pi* NO),
   pointed by previous works as a typical CT band, exhibits a small
   intensity at 5.04 eV. In the calculations it was observed that SCF
   orbital ordering are rather dependent on the metal basis set used.
   Metallic minimal basis set show results in close agreement with EHT
   early calculations while double-zeta basis set pushes the metallic d
   orbitals deep away from the HOMO's. The HF orbital ordering has been
   used to interpret photochemical and thermoanalysis experiments on SNP
   and the results seem to fit properly with the calculated properties.
C1 Univ Fed Fluminense, Inst Quim, Dept Fisicoquim, BR-24210150 Niteroi, RJ, Brazil.
   Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Inorgan Analit & Quim Fis Inquimae, RA-1428 Buenos Aires, DF, Argentina.
EM gfqholl@vm.uff.br
   olabe@ayelen.q3.fcen.uba.ar
CR AMALVY JI, 1986, AN ASOC QUIM ARGENT, V74, P437
   AMALVY JI, 1986, J CRYST SPECTROSC, V16, P537
   AMMETER JH, 1978, J AM CHEM SOC, V100, P3686
   BOTTOMLEY F, 1979, ACTA CRYSTALLOGR B, V35, P2193
   BOTTOMLEY F, 1980, J CHEM SOC DA, P1359
   BRAGA M, 1981, PHYS REV B, V23, P4328
   CALABRESE A, 1974, J AM CHEM SOC, V96, P5054
   COOK DB, 1995, INT J QUANTUM CHEM, V53, P309
   CRICHTON O, 1977, J CHEM SOC DA, V10, P986
   DELLAVEDOVA CO, 1981, J MOL STRUCT, V70, P241
   DUNNING TH, MODERN THEORETICAL M, V3
   ESTRIN DA, 1996, INORG CHEM, V35, P3897
   FENSKE RF, 1972, INORG CHEM, V11, P437
   GENTILE LA, 1975, J THERM ANAL, V7, P279
   GOLEBIEWSKI A, 1980, J MOL STRUCT, V67, P183
   GUIDA JA, 1986, SOLID STATE COMMUN, V57, P175
   GUIDA JA, 1988, SOLID STATE COMMUN, V66, P1007
   HAUSER U, 1977, Z PHYS A, V280, P125
   HAUSER U, 1977, Z PHYS A, V280, P17
   HAUSER U, 1978, Z PHYS A ATOMS NUCL, V284, P9
   HUZINAGA S, 1965, J CHEM PHYS, V42, P1293
   JARZYNOWSKI T, 1977, ROCZ CHEM, V51, P2299
   KRASSER W, 1984, J MOL STRUCT, V114, P57
   KRASSER W, 1986, J RAMAN SPECTROSC, V17, P83
   MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
   MANOHARAN PT, 1966, INORG CHEM, V5, P823
   MOHAI B, 1986, J THERM ANAL, V31, P157
   NAKATSUJI H, 1990, J CHEM PHYS, V93, P1865
   NAKATSUJI H, 1991, INT J QUANTUM CHEM, V39, P93
   PIERLOOT K, 1993, J PHYS CHEM-US, V97, P12220
   PRESSPRICH MR, 1994, J AM CHEM SOC, V116, P5233
   RAPPE S, 1981, J CHEM PHYS, V85, P2607
   RETZLAFF C, 1987, Z KRISTALLOGR, V180, P20
   RIGOTTI G, 1984, J CRYST SPECTROSC, V14, P517
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
   STEVENS WJ, 1990, COMMUNICATION    MAR
   STEVENS WJ, 1992, CAN J CHEM, V70, P612
   STEVENS WJ, 1993, J CHEM PHYS, V98, P5555
   STOCHEL G, 1986, Z INORG CHEM, V25, P3663
   TERRILE C, 1990, SOLID STATE COMMUN, V73, P481
   VERGARA MM, 1987, J PHYS CHEM SOLIDS, V13, P48
   WASIELEWSKA E, 1986, INORG CHIM ACTA, V113, P115
   WOIKE T, 1983, SOLID STATE COMMUN, V45, P499
   WOIKE T, 1983, SOLID STATE COMMUN, V45, P503
   WOIKE T, 1990, SOLID STATE COMMUN, V73, P149
   WOIKE T, 1993, SOLID STATE COMMUN, V86, P333
   WOLFE SK, 1975, INORG CHEM, V14, P1049
   ZOLLNER H, 1989, S CHEM PHYS LETT, V161, P497
   ZOLLNER H, 1989, Z KRISTALLOGR, V188, P139
NR 50
TC 5
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD SEP-OCT
PY 1997
VL 8
IS 5
BP 495
EP 504
PG 10
SC Chemistry, Multidisciplinary
GA YT741
UT ISI:000071640400010
ER

PT J
AU Olivato, PR
   Mondino, MG
   Yreijo, MH
   Wladislaw, B
   Bjorklund, MB
   Marzorati, L
   Distefano, G
   Dal Colle, M
   Bombieri, G
   Del Pra, A
TI Spectroscopic and theoretical studies on the conformation of some
   alpha-sulfinylacetophenones
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID SUBSTITUTED CARBONYL-COMPOUNDS; ULTRAVIOLET PHOTOELECTRON-SPECTROSCOPY;
   ELECTRONIC INTERACTION; INTRAMOLECULAR INTERACTIONS; ACETOPHENONES;
   SPECTRA
AB IR nu(CO) and nu(SO) frequencies of some alpha-sulfinylacetophenones
   [PhC(O)CH2S(O)R: R = Me 1, Et 2, Pr-i 3, Ph 4 and Bu' 5] have been
   measured and their conformations are estimated with the help of ab
   initio 6-31G** calculations and X-ray diffraction analyses. The
   anomalous negative carbonyl frequency shifts for the cis(2) rotamer
   together with the decrease of the cis:gauche population ratio in
   solvents of increasing polarity for compounds 1-4 support the existence
   of a strong intramolecular interaction between C=O and S=O dipoles,
   which stabilizes the cis(2) rotamer more than the pi(CO)-sigma*(C-SO)
   and pi(CO)*-sigma(C-SO) orbital interactions stabilize the gauche(3)
   rotamer. The stability of the cis(2) rotamer is discussed in terms of
   the electrostatic attraction between the C=O and S=O dipoles along with
   the pi(S=O)*<--n(O(CO)) charge transfer which lead to an O-(C)...
   S-(SO) contact shorter than the sum of the corresponding van der Waals
   radii. The gauche(2) rotamer of 5 is more stable than the cis(2) one in
   which steric strain between the carbonyl oxygen atom and the tert-butyl
   group is present.
C1 Univ Sao Paulo, Inst Quim, BR-05599970 Sao Paulo, Brazil.
   Univ Ferrara, Dipartimento Chim, I-44100 Ferrara, Italy.
   Univ Milan, Ist Chim Farmaceut, I-20131 Milan, Italy.
RP Olivato, PR, Univ Sao Paulo, Inst Quim, Caixa Postal 26-077,
   BR-05599970 Sao Paulo, Brazil.
CR ALCUDIA F, 1988, AN QUIM C-ORG BIOQ, V84, P333
   ALTOMARE A, 1994, J APPL CRYSTALLOGR, V27, P435
   BELLAMY LJ, 1975, ADV INFRARED GROUP F, P141
   BELLAMY LJ, 1975, ADV INFRARED GROUP F, P143
   BONFADA E, 1989, THESIS U SAO PAULO B
   BUENO E, 1996, THESIS U SAO PAULO B
   CHARTON M, 1977, DESIGN BIOPHARMACEUT, P228
   DALCOLLE M, 1995, J PHYS CHEM-US, V99, P15011
   DISTEFANO G, 1987, J CHEM SOC P2, P1459
   DISTEFANO G, 1991, J CHEM SOC P2, P1195
   DISTEFANO G, 1996, J CHEM SOC PERK  AUG, P1661
   ELIEL E, 1967, CONFORMATIONAL ANAL
   FRISCH MJ, 1992, GAUSSIAN92
   GASET A, 1968, B SOC CHIM FR, P4108
   GRIESBAUM K, 1963, J AM CHEM SOC, V85, P1969
   HANSCH C, 1970, SUBSTITUENT CONSTANT
   JOHNSON CK, 1976, ORNL5138
   JONES RN, 1968, NATL RES COUNCIL CAN, V12
   JONES RN, 1969, NATL RES COUNCIL CAN, V13
   KOBAYASHI T, 1974, B CHEM SOC JPN, V47, P2563
   LOPES JCD, 1992, ANAIS ASS BRASIL QUI, V41, P87
   LUMBROSO H, 1989, J MOL STRUCT, V212, P113
   MONDINO MG, 1996, THESIS U SAO PAULO B
   NARDELLI M, 1983, COMPUT CHEM, V7, P95
   NARDELLI M, 1995, J APPL CRYSTALLOGR, V28, P659
   OLIVATO PR, IN PRESS PHOSPHORUS
   OLIVATO PR, 1987, PHOSPHORUS SULFUR, V33, P135
   OLIVATO PR, 1989, PHOSPHORUS SULFUR, V44, P9
   OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
   OLIVATO PR, 1992, MAGN RESON CHEM, V30, P81
   OLIVATO PR, 1992, PHOSPHORUS SULFUR, V66, P207
   PITHA J, 1966, CAN J CHEM, V44, P3031
   PITHA J, 1967, CAN J CHEM, V45, P2347
   RIDDICK JA, 1970, ORGANIC SOLVENTS, V2
   RUSSELL GA, 1966, J AM CHEM SOC, V88, P5498
   SHELDRICK GM, 1993, SHELXL 93 PROGRAM CR
   YOUNG VY, 1976, J CHEM PHYS, V65, P3187
NR 37
TC 16
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 4WF,
   CAMBS, ENGLAND
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD JAN
PY 1998
IS 1
BP 109
EP 114
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA YR484
UT ISI:000071499900020
ER

PT J
AU Mohallem, JR
   Vianna, RO
   Quintao, AD
   Pavao, AC
   McWeeny, R
TI Pauling's resonating valence bond theory of metals: some studies on
   lithium clusters
SO ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; GEOMETRIC STRUCTURE
AB We report for the first time fully ab initio valence bond (VB)
   calculations with explicit use of the unsynchronized resonance
   structures introduced by Pauling [1]. We show that resonance involving
   these structures largely determines the stability and conformation of
   the Li-4 cluster and plays a central role in a VB explanation of the
   3-center bonds in planar alkali clusters. The theory can make
   qualitative predictions on the behaviour of general metallic clusters,
   and can relate stability and conformation to electronic structure, thus
   indicating the origin of magic numbers. This first ab initio test of
   Pauling's resonating VB theory confirms the importance of the metallic
   orbital and the covalent character of the metal-metal bond.
C1 UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50740540 RECIFE,PE,BRAZIL.
   UNIV PISA,DIPARTIMENTO CHIM & CHIM IND,I-56100 PISA,ITALY.
RP Mohallem, JR, UNIV FED MINAS GERAIS,INST CIENCIAS EXATAS,DEPT FIS,CP
   702,BR-30161970 BELO HORIZONT,MG,BRAZIL.
CR AGUIAR JA, 1992, J MAG MAG MAT, V547, P104
   BECKMANN HO, 1980, J CHEM PHYS, V73, P5182
   BOBROWICZ FW, 1977, METHODS ELECTRONIC S, P79
   BONACICKOUTECKY V, 1991, CHEM REV, V91, P1035
   BOUSTANI I, 1987, PHYS REV B, V35, P9437
   BOUSTANI I, 1988, J CHEM PHYS, V88, P5657
   BRAGG WL, 1937, J ROY SOC ARTS, V85, P431
   DUNNING TH, 1977, METHODS ELECT STRUCT, P1
   GATTI C, 1987, THEOR CHIM ACTA, V72, P433
   GERRATT J, 1980, P ROY SOC LOND A MAT, V371, P525
   GONCALVES CP, UNPUB
   KNIGHT WD, 1984, PHYS REV LETT, V52, P2141
   MCADON MH, 1985, PHYS REV LETT, V55, P2563
   MCWEENY R, 1959, P ROY SOC LOND A MAT, V253, P242
   MCWEENY R, 1990, INT J QUANTUM CHEM S, V24, P733
   PAULING L, 1948, NATURE, V161, P1029
   PAULING L, 1949, P ROY SOC LOND A MAT, V196, P343
   PAULING L, 1960, NATURE CHEM BOND
   PAULING L, 1984, J SOLID STATE CHEM, V54, P2197
   PAULING L, 1987, PHYS REV LETT, V59, P225
   PAVAO AC, 1995, THEOCHEM-J MOL STRUC, V335, P59
   PRESS WH, 1986, NUMERICAL RECIPES AR, CH10
   QUINTAO AD, IN PRESS
   RAY AK, 1993, PHYS REV B, V48, P14702
   VOTER AF, 1981, CHEM PHYS, V57, P253
   VOTER AF, 1986, J AM CHEM SOC, V108, P2830
   WHELAND GW, 1955, RESONANCE ORGANIC CH
NR 27
TC 8
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010
SN 0178-7683
J9 Z PHYS D-ATOMS MOL CLUSTERS
JI Z. Phys. D-Atoms Mol. Clusters
PD NOV
PY 1997
VL 42
IS 2
BP 135
EP 143
PG 9
SC Physics, Atomic, Molecular & Chemical
GA YJ528
UT ISI:A1997YJ52800011
ER

PT J
AU Janotti, A
   Fazzio, A
   Piquini, P
   Mota, R
TI Defect complexes in GaAs: First-principles calculations
SO PHYSICAL REVIEW B
LA English
DT Article
ID NATIVE DEFECTS; PSEUDOPOTENTIALS; IRRADIATION
AB The electronic and structural properties of selected defect complexes
   in GaAs, created during electron or ion irradiation, are studied. An ab
   initio calculation based on pseudopotential density-functional theory
   is used. A supercell with 128 atoms is adopted in Car-Parrinello
   scheme. For the antistructure pair (As-Ga+Ga-As), from the total-energy
   calculations, first donor, first acceptor, and second acceptor levels
   are observed, and a comparison is made with earlier, both theoretical
   and experimental, results. Two other possible defect complexes
   (V-As+As-Ga+Ga-i) and V-Ga+Ga-As+As-i), are discussed. It is shown that
   the first one presents a metastable configuration, and the second one
   is unstable presenting a spontaneous recombination. For all defect
   complexes the formation energies and charge densities are discussed.
C1 UNIV FED SANTA MARIA,DEPT FIS,BR-97015900 SANTA MARIA,RS,BRAZIL.
RP Janotti, A, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05315970 SAO
   PAULO,SP,BRAZIL.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
   BARAFF GA, 1986, PHYS REV B, V33, P7356
   BOURGOIN JC, 1988, J APPL PHYS, V64, R65
   CAR R, 1985, PHYS REV LETT, V55, P2471
   DESOUZA JP, 1992, MATER RES SOC S P, V240, P887
   DESOUZA JP, 1996, APPL PHYS LETT, V68, P535
   DESOUZA JP, 1997, J APPL PHYS, V68, P680
   HAUSMANN H, 1996, PHYS REV B, V54, P8527
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   KRAMBROCK K, 1993, PHYS REV B, V47, P3987
   LAKS DB, 1992, PHYS REV B, V45, P10965
   PEARTON SJ, 1990, MATER SCI REP, V4, P313
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   SCHMIDT TM, 1996, PHYS REV B, V53, P1315
NR 14
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 15
PY 1997
VL 56
IS 20
BP 13073
EP 13076
PG 4
SC Physics, Condensed Matter
GA YH588
UT ISI:A1997YH58800060
ER

PT J
AU Carvalho, MC
   Juliano, VF
   Kascheres, C
   Eberlin, MN
TI Gas phase chemistry of the heterocumulene cations O=C=N+=C=O and
   O=C=C=N+=O
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID ION-MOLECULE REACTIONS; PENTAQUADRUPOLE MASS-SPECTROMETER; KINETIC
   METHOD; ACYLIUM IONS; ISOMERS; TANDEM; COLLISIONS; AFFINITIES; 3D
AB The low energy collisional dissociation and ion/molecule chemistry of
   the heterocumulene cations O=C=N+=C=O 1 and O=C=C=N+=O 2 have been
   investigated by pentaquadrupole mass spectrometry, and G2(MP2) ab
   initio calculations applied to interrogate their relative stabilities
   and dissociation thresholds, as well as those of six other conceivable
   C2NO2+ isomers 3-8. The calculations show that the acyclic 1 (zero) and
   2 (72.4 kcal mol(-1)) are the most stable isomers, whereas both the
   location of the positive charge mainly at the CO-carbon and the short
   CO bond lengths characterize their acylium ion structures, Two cyclic
   isomers, i.e. 7 (131.3 kcal mol(-1)) and 8 (140.0) kcal mol(-1), were
   also found to be stable, but placed at energy levels considerably
   higher than 1. Exactly as predicted from G2(MP2) energy dissociation
   thresholds, low-energy collisions cause dissociation of 1 exclusively
   by CO loss to yield NCO+ of m/z 42. A more diverse dissociation
   chemistry is predicted and exhibited by 2, which dissociates mainly by
   loss of an oxygen atom (C2NO+ of m/z 54), CO (CNO+ of m/z 42) and C2O
   (NO+ of m/z 30). Both ions are unreactive towards polar [4+2(+)]
   cycloaddition with isoprene. However, they undergo ketalization with
   2-methoxyethanol, and transacetalization with two cyclic neutral
   acetals, i.e. 2-methyl-1,3-dioxolane and 1,3-dioxane, and these
   structurally diagnostic ion/molecule reactions confirm experimentally
   the acylium ion structures of 1 and 2. Cyclic 'ionic ketals', ie.
   1,3-dioxonium ions, are formed in these reactions, as evidenced by
   their MS3 spectra, which show extensive dissociation to re-form the
   reactant ions. Whereas 1 readily forms a stable and covalently bound
   adduct with pyridine, 2 reacts mainly by net CN+ and OCN+ transfer
   via--most likely--the unstable (Py-2)(+) adduct.
C1 STATE UNIV CAMPINAS UNICAMP,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR BEAUGRAND C, 1989, ANAL CHEM, V61, P1447
   BOWERS MT, 1979, GAS PHASE ION CHEM, V1
   BUSCH KL, 1988, MASS SPECTROMETRY MA
   COOKS RG, 1973, METASTABLE IONS
   COOKS RG, 1994, MASS SPECTROM REV, V13, P287
   CURTISS LA, 1993, J CHEM PHYS, V98, P1293
   EBERLIN MN, IN PRESS MASS SPECTR
   EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
   EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
   EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
   ELLER K, 1991, CHEM REV, V91, P1121
   FARRAR JM, 1988, TECHNIQUES STUDY ION
   FRANKLIN JL, 1972, ION MOL REACTIONS
   FRISCH MJ, 1995, GAUSSIAN 94
   GRAUL ST, 1990, J AM CHEM SOC, V112, P2517
   HEATH TG, 1991, J AM SOC MASS SPECTR, V2, P270
   HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
   JALONEN J, 1985, J CHEM SOC CHEM COMM, P872
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KENTTAMAA HI, 1989, J AM CHEM SOC, V111, P4122
   KIM JK, 1982, J AM CHEM SOC, V104, P4624
   KINTER MT, 1986, J AM CHEM SOC, V108, P1797
   KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
   LEVSEN K, 1983, MASS SPECTROM REV, V2, P77
   MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
   MCLUCKEY SA, 1982, INT J MASS SPECTROM, V44, P215
   MORAES LAB, IN PRESS J ORG CHEM
   MORAES LAB, 1996, J ORG CHEM, V61, P8726
   MORAES LAB, 1997, J CHEM SOC PERK  OCT, P2105
   MORAES LAB, 1997, J ORG CHEM, V62, P5096
   PARKARINEN JMH, 1996, J MASS SPECTROM, V31, P1003
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SCHWARZ H, 1989, PURE APPL CHEM, V61, P984
   SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
   SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
   SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
   SULZLE D, 1992, CHEM BER-RECL, V125, P279
   THOEN KK, 1996, J AM SOC MASS SPECTR, V7, P1250
   VAINIOTALO P, 1996, P 44 ASMS C MASS SPE, P453
   WESDEMIOTIS C, 1987, CHEM REV, V87, P485
   WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
   YANG SS, 1995, J MASS SPECTROM, V30, P807
   ZAGOREVSKII DV, 1994, MASS SPECTROM REV, V13, P133
NR 45
TC 17
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
   ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD NOV
PY 1997
IS 11
BP 2347
EP 2352
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA YH013
UT ISI:A1997YH01300033
ER

PT J
AU Pliego, JR
   DeAlmeida, WB
TI Reaction of CCl2 with CH2NH and the formation of dipolar and biradical
   ylide structures
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID AB-INITIO; SPECTROSCOPIC DETECTION; 1,2-HYDROGEN MIGRATION;
   POLYATOMIC-MOLECULES; CYCLO-ADDITIONS; RATE CONSTANTS; ABSOLUTE RATE;
   DECOMPOSITION; SELECTIVITIES; PHOTOLYSIS
AB The potential energy surface for the reaction between CH2NH and CCl2
   has been investigated using ab initio methods. We have performed
   geometry optimizations at the MP2/6-31G* level of theory and single
   point calculations at the MP4(SDQ)/6-311+ +G** level. The reaction step
   for ylide formation has a free energy of activation predicted to be 5.0
   kcal mol(-1). The parallel 1,2-cycloaddition reaction has a calculated
   free energy barrier of 16.5 kcal mol(-1), indicating that this second
   pathway is not competitive with ylide formation. The structure of the
   azomethine ylide formed in the first reaction step is similar to that
   found for the ylide resulting from the reaction of methylene with
   ammonia and corresponds to a dipolar species, This is highly unstable
   and rearranges to its more stable isomer, the biradical azomethine
   ylide, which has a structure similar to the corresponding carbonyl
   ylide. This species has a free energy barrier to ring closure
   calculated to be 21.2 kcal mol(-1), so it has reasonable kinetic
   stability, The resulting aziridine has a free energy of 24.1 kcal
   mol(-1) lower than the biradical azomethine ylide, and the activation
   free energy of ring opening is calculated to be 45.3 kcal mol(-1).
C1 UFMG,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEN MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BACH RD, 1995, J ORG CHEM, V60, P4653
   BARTNIK R, 1984, TETRAHEDRON, V40, P2569
   BONNEAU R, 1991, J AM CHEM SOC, V113, P9872
   CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
   COOK AG, 1962, J ORG CHEM, V27, P3686
   DU XM, 1990, J AM CHEM SOC, V112, P1920
   FRISH MJ, 1995, GAUSSIAN 94
   GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
   HOUK KN, 1980, J AM CHEM SOC, V102, P1504
   HOUK KN, 1984, J AM CHEM SOC, V106, P4291
   HOUK KN, 1985, TETRAHEDRON, V41, P1555
   JACKSON JE, 1988, J AM CHEM SOC, V110, P5595
   JACKSON JE, 1989, J AM CHEM SOC, V111, P6874
   KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
   LIU MTH, 1989, J AM CHEM SOC, V111, P6873
   MACDONALD HHJ, 1972, CAN J CHEM, V50, P428
   MILLER WH, 1980, J CHEM PHYS, V72, P99
   MOSS RA, 1980, ACCOUNTS CHEM RES, V13, P58
   MOSS RA, 1989, ACCOUNTS CHEM RES, V22, P15
   NAITO T, 1994, J AM CHEM SOC, V116, P10080
   PADWA A, 1991, CHEM REV, V91, P263
   PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
   PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
   PLIEGO JR, 1997, J CHEM PHYS, V106, P3582
   POPLE JA, 1983, J AM CHEM SOC, V105, P6389
   RONDAN NG, 1980, J AM CHEM SOC, V102, P1770
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   WALCH SP, 1993, J CHEM PHYS, V98, P3163
   YAMAGUCHI Y, 1993, J AM CHEM SOC, V115, P5790
NR 29
TC 5
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
   ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD NOV
PY 1997
IS 11
BP 2365
EP 2369
PG 5
SC Chemistry, Organic; Chemistry, Physical
GA YH013
UT ISI:A1997YH01300035
ER

PT J
AU Sambrano, JR
   Andres, J
   Beltran, A
   Sensato, FR
   Leite, ER
   Stamato, FMLG
   Longo, E
TI An ab initio study of oxygen vacancies and doping process of Nb and Cr
   atoms on TiO2 (110) surface models
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE ab initio; oxygen vacancy; doping; titanium oxide surface; varistor
   ceramics
ID OXIDE; SOLVENT; VARISTORS; CLUSTERS
AB We theoretically investigated how the formation of oxygen vacancies and
   the addition of niobium and chromium atoms as dopants modify the
   varistor properties of TiO2. The calculations were carried out at the
   HF level using a contracted basis set, developed by Huzinaga et al.. to
   represent the atomic centers on the (110) surface for the large
   (TiO2)(15) cluster model. The change of the values for the net atomic
   charges and band gap after oxygen vacancy formation and the presence of
   dopants in the lattice are analyzed and discussed. It is shown that the
   formation of oxygen vacancies decreases the band gap while an opposite
   effect is found when dopants are located in the reduced surface. The
   theoretical results are compared with available experimental data. A
   plausible explanation of the varistor behavior of this system is
   proposed. (C) 1997 John Wiley & Sons, Inc.
C1 UNIV JAUME 1,DEPT CIENCIES EXPT,CASTELLO 12080,SPAIN.
   UNIV FED SAO CARLOS,DEPT QUIM,LIEC,BR-13565905 SAO CARLOS,SP,BRAZIL.
RP Sambrano, JR, UNIV ESTADUAL PAULISTA,DEPT MATEMAT,CP 473,BR-17030360
   BAURU,SP,BRAZIL.
CR BAGUS PS, 1991, CLUSTER MODELS SUR B, V283, P233
   BERMUDEZ VM, 1981, PROG SURF SCI, V11, P1
   BUENO PR, UNPUB
   BUENO PR, 1996, J MATER SCI LETT, V15, P2048
   CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
   EGDELL RG, 1995, J MATER CHEM, V5, P499
   FOSTER JP, 1980, J AM CHEM SOC, V102, P7211
   FRISCH MJ, 1995, GAUSSIAN94 REVISION
   GUPTA TK, 1985, J MATER SCI, V20, P4091
   HADJIIVANOV KI, 1996, CHEM SOC REV, V25, P61
   HAGFELDT A, 1992, INT J QUANTUM CHEM, V44, P477
   HAGFELDT A, 1994, INT J QUANTUM CHEM, V49, P97
   HEILAND G, 1984, CHEM PHYSICS SOLID S, V3
   HENRICH VE, 1983, PROG SURF SCI, V14, P175
   HENRICH VE, 1985, REP PROG PHYS, V48, P11
   HUZINAGA S, 1984, GAUSSIAN BASIS SETS
   HUZINAGA S, 1985, COMPUT PHYS REP, V2, P279
   INAMADA M, 1978, JPN J APPL PHYS, V17, P1
   LEITE ER, 1992, J MATER SCI, V27, P5325
   MARTINS JBL, 1993, INT J QUANTUM CHEM, V27, P643
   MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
   MARTINS JBL, 1995, J MOL STRUCT THEOCHE, V330, P447
   MARUCCO JF, 1981, J PHYS CHEM SOLIDS, V42, P363
   MASUYAMA T, 1968, JPN J APPL PHYS, V7, P1294
   PENNEWISS J, 1982, MATER LETT, V40, P536
   PENNEWISS J, 1990, MATER LETT, V40, P219
   PETTERSSON LGM, 1993, THEOR CHIM ACTA, V85, P345
   PIANARO SA, 1995, J MATER SCI LETT, V14, P692
   RANTALA TS, 1994, PHYS SCRIPTA, V54, P252
   REED AE, 1985, J CHEM PHYS, V83, P735
   REED AE, 1988, CHEM REV, V88, P899
   RINALDI D, 1992, J COMPUT CHEM, V13, P675
   RIVAIL JL, 1976, CHEM PHYS, V18, P233
   RIVAIL JL, 1985, J MOL STRUCT THEOCHE, V120, P387
   SAKAI Y, 1982, J COMPUT CHEM, V3, P6
   SANON G, 1991, PHYS REV, V44, P5681
   TAPIA O, 1975, MOL PHYS, V29, P1653
   TAPIA O, 1992, THEORETICAL MODELS C, P435
   TOMASI J, 1994, CHEM REV, V94, P2027
   WATANABE Y, 1994, J NON-CRYST SOLIDS, V178, P84
   YANG SL, 1995, J MATER RES, V10, P345
NR 41
TC 9
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD DEC 5
PY 1997
VL 65
IS 5
BP 625
EP 631
PG 7
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA YG650
UT ISI:A1997YG65000028
ER

PT J
AU Rocha, WR
   DeAlmeida, WB
TI Reaction path for the insertion reaction of SnCl2 into the Pt-Cl bond:
   An ab initio study
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
ID COMPACT EFFECTIVE POTENTIALS; EXPONENT BASIS-SETS; ASYMMETRIC
   HYDROFORMYLATION; ORGANIC SYNTHESES; OLEFIN HYDROFORMYLATION;
   ELECTRONIC-STRUCTURE; MOLECULAR-STRUCTURE; CRYSTAL-STRUCTURE;
   TRANSITION-METAL; COMPLEXES
AB The reaction pathway for the insertion reaction of SnCl2 into the Pt-Cl
   bond on the cis-Pt(Cl)(2)(PH3)(2) compound was investigated at the ab
   initio MO level of theory. The optimized structure obtained for the
   transition state indicates that this reaction proceeds through a
   three-center transition state, and the formed intermediate
   cis-Pt(Cl)(PH3)(2)(SnCl3) easily isomerizes to the
   trans-Pt(Cl)(PH3)(2)(SnCl3) compound. The nature of the bonds was
   investigated with the charge decomposition analysis (CDA) method and
   this method indicates that the SnCl3 group is a stronger trans director
   than is the PH3 group. (C) 1997 John Wiley & Sons, Inc.
C1 UFMG,ICEF,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR ALBINATI A, 1985, J ORGANOMET CHEM, V295, P239
   ANDERSON GK, 1980, CHEM SOC REV, V9, P185
   BAERENDS EJ, 1986, NATO ASI SER C-MATH, V176, P159
   BAGUS PS, 1984, J CHEM PHYS, V80, P4378
   BAGUS PS, 1984, J CHEM PHYS, V81, P1966
   BAGUS PS, 1992, J CHEM PHYS, V96, P8962
   BARDI R, 1982, J ORGANOMET CHEM, V224, P407
   BARDI R, 1982, J ORGANOMET CHEM, V234, P107
   BASOLO F, 1967, MECH INORGANIC REACT
   BERRY RS, 1960, J CHEM PHYS, V32, P933
   CAVINATO G, 1983, J ORGANOMET CHEM, V241, P275
   CHATT J, 1953, J CHEM SOC, P2939
   DAPPRICH S, 1994, CDA 2 1
   DAPPRICH S, 1995, J PHYS CHEM-US, V99, P9352
   DELPRA A, 1979, J CHEM SOC DA, P1862
   DEWAR MJS, 1951, B SOC CHIM FR, V18, C79
   EHLERS AW, 1996, ORGANOMETALLICS, V15, P105
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   FUJIMOTO H, 1974, J CHEM PHYS, V60, P572
   FUJIMOTO H, 1981, J AM CHEM SOC, V103, P752
   GOMEZ M, 1991, ORGANOMETALLICS, V10, P4036
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HOLLWARTH A, 1993, CHEM PHYS LETT, V208, P237
   HSU CY, 1975, J AM CHEM SOC, V97, P3553
   KATO S, 1974, J AM CHEM SOC, V94, P2024
   KOLLAR L, 1987, J ORGANOMET CHEM, V330, P305
   KOLLAR L, 1988, J ORGANOMET CHEM, V350, P277
   OZAWA F, 1981, B CHEM SOC JPN, V54, P1868
   PAONESSA RS, 1982, J AM CHEM SOC, V104, P3529
   PARRINELLO G, 1987, J AM CHEM SOC, V109, P7122
   PETTIT LD, 1971, Q REV, P1
   PREGOSIN PS, 1978, HELV CHIM ACTA, V61, P1848
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
   STEVENS WJ, 1992, CAN J CHEM, V70, P612
   STILLE JK, 1983, J MOL CATAL, V21, P203
   WISNER JM, 1986, J AM CHEM SOC, V108, P347
   ZIEGLER T, 1977, THEOR CHIM ACTA, V46, P1
   ZIEGLER T, 1992, NATO ASI SER C, V378, P367
NR 39
TC 9
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD DEC 5
PY 1997
VL 65
IS 5
BP 643
EP 650
PG 8
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA YG650
UT ISI:A1997YG65000030
ER

PT J
AU Cordeiro, JMM
TI C-H center dot center dot center dot O and N-H center dot center dot
   center dot O hydrogen bonds in liquid amides investigated by Monte
   Carlo simulation
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE Monte Carlo simulation; amides; hydrogen bond; radial distribution
   functions
ID X-RAY-DIFFRACTION; MOLECULAR-DYNAMICS SIMULATIONS; MO-SCF CALCULATIONS;
   FORMAMIDE; METHYLFORMAMIDE; GEOMETRY; N,N-DIMETHYLFORMAMIDE; PEPTIDES;
   MIXTURES; NEUTRON
AB Monte Carlo simulations of liquid formamide, N-methylformamide (MF),
   and N,N-dimethylformamide (DMF) have been performed in the isothermal
   and isobaric ensemble at 298 K and 1 atm, aiming to investigate the C-H
   ... O and N-H ... O hydrogen bonds. The interaction energy was
   calculated using the classical 6-12 Lennard-Jones pairwise potential
   plus a Coulomb term on a rigid six-site molecular model with the
   potential parameters being optimized in this work. Theoretical values
   obtained for heat of vaporization and liquid densities are in good
   agreement with the experimental data. The radial distribution function
   [RDF, g(r)] obtained compare well with R-X diffraction data available.
   The RDF and molecular mechanics (MM2) minimization show that the C-H
   ... O interaction has a significant role in the structure of the three
   liquids. These results are supported by ab initio calculations. This
   Interaction is particularly important in the structure of MF. The
   intensity of the N-H ... O hydrogen bond is greater in the MF than
   formamide. This could explain some anomalous properties verified in MF.
   (C) 1997 John Wiley & Sons, Inc.
RP Cordeiro, JMM, UNESP,FAC ENGN ILHA SOLTEIRA,DEPT QUIM & FIS,AV BRASIL
   56,BR-15385000 ILHA SOLTEIRA,SP,BRAZIL.
CR *SER SOFTW, PCMODEL PROGR
   ALLEN MP, 1987, COMPUTER SIMULATIONS
   BERTOLASI V, 1995, ACTA CRYSTALLOGR B 6, V51, P1004
   CARLSON HA, 1993, J COMPUT CHEM, V14, P1240
   COURNOYER ME, 1984, MOL PHYS, V51, P119
   DESIRAJU GR, 1990, J CHEM SOC CHEM COMM, V179, P454
   DESIRAJU GR, 1991, ACCOUNTS CHEM RES, V24, P290
   FANTONI AC, 1996, J CHEM SOC FARADAY T, V92, P343
   FREITAS LCG, DIADORIM FORTRAN COD
   FREITAS LCG, 1995, THEOCHEM-J MOL STRUC, V335, P189
   FRISH MJ, 1992, GAUSSIAN REVISION A
   GIBSON KD, 1990, J COMPUT CHEM, V11, P468
   HAGLER AT, 1974, J AM CHEM SOC, V96, P5319
   JORGENSEN WL, 1985, J AM CHEM SOC, V107, P569
   JORGENSEN WL, 1991, CHEMTRACTS ORG CHEM, V4, P91
   KALMAN E, 1983, Z NATURFORSCH A, V38, P231
   LADANYI BM, 1993, ANNU REV PHYS CHEM, V44, P335
   LIDE DR, 1992, CRC HDB PHYSICS CHEM
   METROPOLIS N, 1953, J CHEM PHYS, V21, P108
   NEUEFEIND J, 1992, MOL PHYS, V76, P143
   OHTAKI H, 1983, B CHEM SOC JPN, V56, P2116
   OHTAKI H, 1983, B CHEM SOC JPN, V56, P3406
   OHTAKI H, 1986, B CHEM SOC JPN, V59, P271
   RADNAI T, 1988, B CHEM SOC JPN, V61, P3845
   RAO BG, 1990, J AM CHEM SOC, V112, P3803
   SAGARIK KP, 1987, J CHEM PHYS, V86, P5117
   SCHOESTER PC, 1995, Z NATURFORSCH A, V50, P38
   SINOTI ALL, 1996, J BRAZIL CHEM SOC, V7, P133
   STEINER T, 1994, J CHEM SOC CHEM COMM, P2341
   STRAATSMA TP, 1992, ANNU REV PHYS CHEM, V43, P407
   TAYLOR R, 1982, J AM CHEM SOC, V104, P5063
   YASHONATH S, 1991, CHEM PHYS, V155, P351
NR 32
TC 10
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD DEC 5
PY 1997
VL 65
IS 5
BP 709
EP 717
PG 9
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
   Physics, Atomic, Molecular & Chemical
GA YG650
UT ISI:A1997YG65000037
ER

PT J
AU Mathon, J
   Villeret, M
   Umerski, A
   Muniz, RB
   Castro, JD
   Edwards, DM
TI Quantum-well theory of the exchange coupling in magnetic multilayers
   with application to Co/Cu/Co(001)
SO PHYSICAL REVIEW B
LA English
DT Article
ID NONMAGNETIC METALLIC LAYER; AB-INITIO CALCULATIONS; TORQUE METHOD;
   OSCILLATIONS; SUPERLATTICES; STATES; MAGNETORESISTANCE; FERROMAGNETS;
   CONFINEMENT; INTERFACES
AB Two parallel calculations of the-exchange coupling in a Co/Cu/Co(001)
   trilayer, both using the same realistic s, p, and d tight-binding bands
   with parameters determined from the ab initio band structures of bulk
   Cu and Co, are reported. The coupling is first calculated within the
   framework of the quantum-well (QW) formalism in which the periodic
   behavior of the spectral density is exploited to derive an analytic
   formula for the coupling valid for large spacer thicknesses. On the
   other hand, an alternative expression for the coupling, referred to as
   cleavage formula, is derived that allows accurate and efficient
   numerical evaluation of the coupling. An analytic approximation to this
   expression, valid in the asymptotic region of large spacer thickness,
   is also obtained. These two approaches are discussed in relation to
   other existing theoretical formulations of the coupling. The numerical
   results for the coupling obtained from the cleavage formula are first
   compared with the analytical QW calculation. The agreement between the
   two calculations is impressive and entirely justifies the analytical QW
   approach. The numerical calculation fully confirms the result of the QW
   formalism that, for trilayers with thick Co layers, the short-period
   oscillation due to the minority electrons from the vicinity of the Cu
   Fermi-surface (FS) necks is dominant, the contribution of the
   long-period oscillation being negligible. This is shown, in the
   analytical QW formalism, to be due to the existence of bound states for
   the minority-spin electrons at the Cu FS necks in the ferromagnetic
   configuration. The dominant short-period oscillation has been confirmed
   by spin-polarized scanning electron microscopy and observed directly in
   the most recent photoemission experiments. The full confinement of the
   minority electrons at the neck of the Cu FS also leads to a strong
   temperature dependence of the short-period oscillation and an initial
   decay of the coupling with spacer thickness N that is much slower than
   predicted by the usual 1/N-2 law. For the electrons at the belly of the
   Cu FS, the confinement is weak in both spin channels and the
   long-period oscillation hardly changes between zero and room
   temperatures. In addition, the belly contribution to the coupling
   decreases at T=0 K following the usual 1/N-2 dependence. The amplitude
   of the calculated coupling approximate to 1.2 mJ/m(2) at the first
   antiferromagnetic peak of Cu is only a factor of 3 larger than the
   observed coupling strength. Finally, the coupling for 2 ML of Co
   embedded in Cu has also been evaluated from the cleavage formula. A
   large initial coupling strength (3.4 mJ/m(2)) and comparable
   contributions from the shea-and long-oscillation periods are obtained.
   This is in complete agreement with theoretical results reported by
   other groups. [S0163-1829(97)04138-6].
C1 UNIV FED FLUMINENSE,DEPT FIS,NITEROI,RJ,BRAZIL.
   UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT MATH,LONDON SW7 2BZ,ENGLAND.
RP Mathon, J, CITY UNIV LONDON,DEPT MATH,LONDON EC1V 0HB,ENGLAND.
CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472
   BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1
   BRUNO P, 1991, PHYS REV LETT, V67, P1602
   BRUNO P, 1992, PHYS REV B, V46, P261
   BRUNO P, 1995, PHYS REV B, V52, P411
   CASTRO JD, 1994, PHYS REV B, V49, P16062
   CASTRO JDE, 1995, PHYS REV B, V51, P12876
   CASTRO JDE, 1996, PHYS REV B, V53, P13306
   DRCHAL V, 1996, PHYS REV B, V53, P15036
   EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85
   EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941
   EDWARDS DM, 1991, PHYS REV LETT, V67, P493
   EDWARDS DM, 1995, J MAGN MAGN MATER 1, V140, P517
   FEREIRA M, 1996, J PHYS CONDENS MATT, V8, P11259
   HERMAN F, 1991, J APPL PHYS, V69, P4783
   JOHNSON MT, 1993, MATER RES SOC S P, V313, P93
   KROMPIEWSKI S, 1994, EUROPHYS LETT, V26, P303
   KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105
   KUDRNOVSKY J, 1996, PHYS REV B, V53, P5125
   LANG P, 1993, PHYS REV LETT, V71, P1927
   LANG P, 1996, PHYS REV B, V53, P9092
   LEE BC, 1995, PHYS REV B, V52, P3499
   LEE DH, 1981, PHYS REV B, V23, P4988
   MATHON J, 1989, J PHYS-CONDENS MAT, V1, P2505
   MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873
   MATHON J, 1993, J MAGN MAGN MATER, V127, L261
   MATHON J, 1995, PHYS REV LETT, V74, P3696
   MORUZZI VL, 1978, CALCULATED ELECTRONI
   NORDSTROM L, 1994, PHYS REV B, V50, P13058
   OPPENEER PM, 1993, PHYSICS TRANSITION M, V1
   ORTEGA JE, 1992, PHYS REV LETT, V69, P844
   ORTEGA JE, 1993, PHYS REV B, V47, P1540
   PAPACONSTANTOPO.DA, 1986, HDB BAND STRUCTURE E
   PARKIN SSP, 1990, PHYS REV LETT, V64, P2304
   PARKIN SSP, 1992, MATER RES SOC S P, V231, P195
   SANCHO MPL, 1985, J PHYS F MET PHYS, V15, P851
   SEGOVIA P, 1996, PHYS REV LETT, V77, P3455
   SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995
   STILES MD, 1993, PHYS REV B, V48, P7238
   UMERSKI A, 1997, PHYS REV B, V55, P5266
   VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923
   VANSCHILFGAARDE M, 1995, PHYS REV LETT, V74, P4063
   WEBER W, 1995, EUROPHYS LETT, V31, P431
NR 43
TC 35
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 1
PY 1997
VL 56
IS 18
BP 11797
EP 11809
PG 13
SC Physics, Condensed Matter
GA YF528
UT ISI:A1997YF52800068
ER

PT J
AU Enderlein, R
   Sipahi, GM
   Scolfaro, LMR
   Leite, JR
TI Density functional theory for holes in semiconductors
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DELTA-DOPED GAAS; FERMI-EDGE SINGULARITY; NIPI-SUPERSTRUCTURE;
   QUANTUM-WELLS; CRYSTALS; GAS
AB A long standing problem of solid state theory is solved, being the
   derivation of a set of self-consistent one-particle equations for the
   interacting multicomponent hole gas of a semiconductor in an external
   potential. Combining effective mass theory with density functional
   theory, the Hohenberg-Kohn theorem is generalized and a set of
   generalized Kohn-Sham equations is obtained for the multicomponent gas.
   It is demonstrated how the exchange-correlation potential matrix may be
   calculated by the local density approximation. Explicit results are
   given for the Gamma(8) valence band holes of zinc blende type
   semiconductors. [S0031-9007(97)04490-6].
RP Enderlein, R, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05315970
   SAO PAULO,BRAZIL.
CR ANDO T, 1985, J PHYS SOC JPN, V54, P1528
   BANGERT E, 1974, 12TH P INT C PHYS SE, P714
   BROIDO DA, 1985, PHYS REV B, V31, P888
   DHARMAWARDANA MWC, 1982, PHYS REV A, V26, P2096
   DOHLER GH, 1972, PHYS STATUS SOLIDI B, V52, P533
   DOHLER GH, 1972, PHYS STATUS SOLIDI, V52, P79
   ENDERLEIN R, IN PRESS
   HOHENBERG P, 1964, PHYS REV, V136, B864
   KOHN W, 1965, PHYS REV, V140, A1133
   LUTTINGER JM, 1955, PHYS REV, V97, P869
   REBOREDO FA, 1993, PHYS REV B, V47, P4655
   RICHARDS D, 1993, PHYS REV B, V47, P9629
   SINGWI KS, 1968, PHYS REV, V176, P589
   SIPAHI GM, 1996, PHYS REV B, V53, P9930
   WAGNER J, 1991, PHYS REV B, V43, P12134
NR 15
TC 22
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 10
PY 1997
VL 79
IS 19
BP 3712
EP 3715
PG 4
SC Physics, Multidisciplinary
GA YF186
UT ISI:A1997YF18600042
ER

PT J
AU Moraes, LAB
   Eberlin, MN
TI Transacetalization of 1,3-dioxane with acylium and sulfinyl cations in
   the gas phase
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID ION-MOLECULE REACTIONS; MASS-SPECTROMETRY; ORBITAL METHODS; BASIS SETS;
   ISOMERS; 1,3-DIOXOLANES; SUBSTITUTION; INSTRUMENT; SCANS; 3D
AB Transacetalization occurs extensively In gas phase ion-molecule
   reactions of 1,3-dioxane with a variety of acylium ions [R-C+=O; R =
   CH3, C2H5, Ph, CH3O, Cl, CH2=CH, (CH3)(2)N] and a sulfur analogue, the
   thioacetyl ion CH3-C+=S. Six-membered 1,3-dioxanylium ions and
   analogues, i.e. cyclic 'ionic (thio)ketals', are formed, as evidenced
   by pentaquadrupole triple-stage collision-dissociation mass spectra and
   MP2/6-311G(d,p)//6-311G(d,p) + ZPE ab initio calculations, as well as
   by O-18 labelling experiments. Transacetalization with 1,3-dioxane is
   not a general reaction for sulfinyl cations (R-S+=O). They react either
   moderately (CH3-S+=O) or extensively (CH2=CH-S+=O) by
   transacetalization, form abundant intact adducts (Ph-S+=O) or undergo
   mainly proton transfer and/or hydride abstraction reactions (Cl-S+=O,
   CH3O-S+=O and C2H5O-S+=O). Competitive MS2 experiments are employed to
   compare the transacetalization reactivity of different acylium ions,
   and that of two cyclic neutral acetals, that is 1,3-dioxane and
   1,3-dioxolane. All the cyclic 'ionic ketals) dissociate exclusively
   under low-energy collision conditions to regenerate the original
   reactant ion species, a simple dissociation chemistry that is amply
   demonstrated to be a very general characteristic of the
   transacetalization products. The cyclic 'ionic thioketal' formed in
   transacetalization with CH3-C+=S is found, however, to dissociate
   exclusively to the oxygen analogue ion CH3-C+=O, a triple-stage mass
   spectrometric(MS3) experiment that constitutes a novel gas-phase
   strategy for conversion of thioacylium ions into acylium ions.
C1 UNICAMP,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR ATTINA M, 1983, J AM CHEM SOC, V105, P1122
   CAREY FA, 1984, ADV ORGANIC CHEM
   CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
   CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
   CREASER CS, 1996, J CHEM SOC PERK  MAR, P427
   EBERLIN MN, IN PRESS MASS SPECTR
   EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
   EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
   EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
   EBERLIN MN, 1997, J AM CHEM SOC, V119
   FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GORDON MS, 1980, CHEM PHYS LETT, V76, P163
   GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
   GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
   GOZZO FC, 1996, J CHEM SOC PERK  APR, P587
   HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KIM JK, 1982, J AM CHEM SOC, V104, P4624
   KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
   KUMAKURA M, 1978, J PHYS CHEM-US, V82, P639
   KUNZ H, 1991, COMPREHENSIVE ORGANI, V59, P659
   LEINONEN A, 1994, ORG MASS SPECTROM, V29, P295
   MOLLER C, 1934, PHYS REV, V46, P618
   MORAES LAB, 1996, J ORG CHEM, V61, P8726
   MORAES LAB, 1997, J ORG CHEM, V62, P5096
   PARADISI C, 1988, ORG MASS SPECTROM, V23, P521
   RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
   SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
   SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
   STALEY RH, 1977, J AM CHEM SOC, V99, P5964
   VAINIOTALO P, 1996, P 44 ASMS C MASS SPE, P453
NR 37
TC 18
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
   ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD OCT
PY 1997
IS 10
BP 2105
EP 2111
PG 7
SC Chemistry, Organic; Chemistry, Physical
GA YB261
UT ISI:A1997YB26100035
ER

PT J
AU Jorge, FE
   deCastro, EVR
   daSilva, ABF
TI A universal Gaussian basis set for atoms Cerium through Lawrencium
   generated with the generator coordinate Hartree-Fock method
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE universal Gaussian basis set; generator coordinate Hartree-Fock method;
   heavy atoms
ID SLATER-TYPE BASES; LYING EXCITED-STATES; COULOMB CALCULATIONS;
   HEAVY-ATOMS; EQUATIONS; VERSION
AB The generator coordinate Hartree-Fock method is applied to generate a
   universal Gaussian basis set for the heavy atoms from Ce (Z = 58)
   through Lr (Z = 103). The Hartree-Fock energies obtained with our
   universal Gaussian basis set are compared with the new numerical
   Hartree-Fock results of Koga et al., when available, and with
   geometrical Gaussian basis sets results available in the Literature.
   The universal Gaussian basis set presented here is generated taking
   into account the shell constraint (the sharing of exponential functions
   between all s, p, d, and f atomic orbitals), and can be used as
   starting basis set in ab initio relativistic Hartree-Fock-Roothaan
   calculations. (C) 1997 John Wiley & Sons, Inc.
C1 UNIV SAO PAULO, INST QUIM DE SAO CARLOS, DEPT QUIM & FIS MOL, BR-13560970 SAO CARLOS, SP, BRAZIL.
   UNIV FED DO ESPIRITO SANTO, CCE, DEPT QUIM, VITORIA, ES, BRAZIL.
   UNIV FED DO ESPIRITO SANTO, CCE, DEPT FIS, VITORIA, ES, BRAZIL.
CR CLEMENTI E, 1991, MOTECC MODERN TECHNI, P58
   DACOSTA HFM, 1987, MOL PHYS, V62, P91
   DASILVA ABF, 1989, MOL PHYS, V68, P433
   DASILVA ABF, 1993, CAN J CHEM, V71, P1713
   DASILVA ABF, 1993, CHEM PHYS LETT, V201, P37
   DASILVA ABF, 1993, CHEM PHYS LETT, V203, P201
   DASILVA ABF, 1993, MOL PHYS, V78, P1301
   DASILVA ABF, 1996, CAN J CHEM, V74, P1526
   FISCHER CF, 1977, HARTREEFOCK METHOD A
   KOGA T, 1995, INT J QUANTUM CHEM, V54, P261
   MALLI GL, 1993, PHYS REV A, V47, P143
   MALLI GL, 1994, J CHEM PHYS, V101, P6829
   MATSUOKA O, 1987, CHEM PHYS LETT, V140, P567
   MOHALLEM JR, 1986, INT J QUANTUM CH S20, P45
   MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
   MOHALLEM JR, 1987, J CHEM PHYS, V86, P5043
   MOHANTY AK, 1990, J CHEM PHYS, V93, P1829
   OKADA S, 1989, J CHEM PHYS, V91, P4193
NR 18
TC 11
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD OCT
PY 1997
VL 18
IS 13
BP 1565
EP 1569
PG 5
SC Chemistry, Multidisciplinary
GA YA494
UT ISI:A1997YA49400001
ER

PT J
AU Guimaraes, TC
   Pavao, AC
   Taft, CA
   Lester, WA
TI Interaction mechanism of N-2 with the Cr (110) surface
SO PHYSICAL REVIEW B
LA English
DT Article
ID ANGLE-RESOLVED PHOTOEMISSION; RAY-ABSORPTION-SPECTRA; HIGHER
   EXCITED-STATES; ELECTRONIC-STRUCTURE; CHEMISORBED MOLECULES; 3D-METAL
   SURFACES; TRANSITION-METALS; CO CHEMISORPTION; DISSOCIATION; PRECURSOR
AB The interaction:of N-2 With the Cr (110) surface is analyzed using the
   ab initio Hartree-Fock method and a Cr5N2 cluster. Our results indicate
   that the tilted state is energetically favored over perpendicular
   adsorption. The Mulliken surface-->N-2 charge transfer, overlap
   populations as well as N-N distances increase in the tilted
   configuration. We also analyze the stretching frequencies, geometrical
   parameters, natural bond orbital populations, density of states,
   orbital energies,charge-density distribution and orbital contours. We
   propose a model to explain the catalytic dissociation of N-2 On the Cr
   (110) surface.
C1 CTR BRASILEIRO PESQUISAS FIS,BR-22290180 RIO JANEIRO,BRAZIL.
   UNIV CALIF BERKELEY,LAWRENCE BERKELEY LAB,DIV CHEM SCI,BERKELEY,CA 94720.
   UNIV CALIF BERKELEY,DEPT CHEM,BERKELEY,CA 94720.
   UNIV ESTADO BAHIA,DEPT DESENHO & TECNOL,SALVADOR,BA,BRAZIL.
RP Guimaraes, TC, UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50670900
   RECIFE,PE,BRAZIL.
CR BADER RFW, 1990, ATOMS MOL QUANTUM TH
   BAGUS PS, 1980, J ELECTRON SPECTROSC, V20, P253
   BENNDORF C, 1985, SURF SCI, V163, L675
   BJORMEHJOLM O, 1994, PHYS REV LETT, V19, P2551
   BJORNEHOLM O, 1993, PHYS REV B, V47, P2308
   BLYHOLDER G, 1964, J PHYS CHEM-US, V68, P2772
   BOZSO F, 1977, J CATAL, V49, P18
   DEPAOLA RA, 1986, CHEM PHYS LETT, V128, P343
   DOWBEN PA, 1984, SURF SCI, V147, P89
   DOWBEN PA, 1988, SURF SCI, V193, P336
   DOWBEN PA, 1991, SURF SCI, V254, L482
   EGELHOFF WF, 1984, SURF SCI, V141, L324
   ERTL G, 1984, PHYS REV LETT, V53, P850
   FORESMAN JB, 1996, EXPLORING CHEM ELECT
   FREUND HJ, 1983, PHYS REV LETT, V50, P768
   FREUND HJ, 1987, SURF SCI, V185, P187
   FRISCH MJ, 1992, GAUSSIAN 92
   FUKUDA Y, 1988, SURF SCI, V203, L651
   GRUNZE M, 1984, PHYS REV LETT, V53, P850
   HASSE G, 1987, SURF SCI, V191, P75
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   HERMANN K, 1981, SOLID STATE COMMUN, V38, P1257
   HESKETT D, 1984, SURF SCI, V139, P558
   HESKETT D, 1985, SURF SCI, V164, P490
   HO W, 1980, SURF SCI, V95, P171
   HORN K, 1982, SURF SCI, V118, P465
   IBACH H, 1982, ELECTRON ENERGY LOSS
   IBBOTSON DE, 1981, SURF SCI, V110, P313
   MAHAN GD, 1978, J CHEM PHYS, V68, P1344
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   NIEUWENHUYS BE, 1981, SURF SCI, V105, P505
   NORTON PR, 1978, SURF SCI, V72, P33
   ORTEGA JE, 1994, PHYS REV B, V49, P859
   PAULING L, 1960, NATURE CHEM BOND
   PAULING L, 1984, J SOLID STATE CHEM, V54, P297
   PAVAO AC, 1955, SURF SCI, V323, P340
   PAVAO AC, 1991, PHYS REV B, V43, P6962
   PAVAO AC, 1994, PHYS REV B, V50, P1868
   PIVETEAU B, 1994, PHYS REV B, V49, P8402
   PLUMMER EW, 1985, SURF SCI, V158, P58
   REED AE, 1985, J CHEM PHYS, V83, P735
   SANDELL A, 1993, PHYS REV LETT, V70, P2000
   SHINN ND, 1985, J CHEM PHYS, V83, P5928
   SHINN ND, 1986, PHYS REV B, V33, P1464
   SHINN ND, 1988, PHYS REV B, V38, P12248
   SHINN ND, 1990, PHYS REV B, V41, P9771
   SINDER M, 1994, PHYS REV B, V50, P2775
   SPENCER ND, 1982, J CATAL, V74, P129
   STOHR J, 1982, PHYS REV B, V26, P4111
   TOMANEK D, 1985, PHYS REV B, V31, P2488
   TSAI MC, 1985, SURF SCI, V155, P387
   UEBA H, 1986, SURF SCI, V169, P153
   UMBACH E, 1984, SOLID STATE COMMUN, V51, P365
   WHITMAN LJ, 1986, J CHEM PHYS, V85, P3788
   WIBERG KB, 1993, J COMPUT CHEM, V14, P1504
   WU Y, 1987, SURF SCI, V179, L26
   WU Y, 1988, SURF SCI, V203, L651
   ZDANSKY EOF, 1993, PHYS REV B, V48, P2632
   ZHAO J, 1994, PHYS REV B, V20, P424
   ZHOU RH, 1992, J PHYS-CONDENS MAT, V4, P2429
NR 60
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD SEP 15
PY 1997
VL 56
IS 11
BP 7001
EP 7010
PG 10
SC Physics, Condensed Matter
GA XY806
UT ISI:A1997XY80600093
ER

PT J
AU Aleman, C
   Galembeck, SE
TI Intramolecular electronic and hydrogen-bonding interactions in
   N,N'-dimethyl-2,3-di-O-methyl-L-tartaramide
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID L-TARTARIC ACID; MST-SCRF CALCULATIONS; CONFORMATIONAL-ANALYSIS;
   PSEUDOROTATIONAL EQUILIBRIUM; PENTOFURANOSE MOIETY; POLY(ETHYLENE
   OXIDE); ENERGY CALCULATIONS; COUPLING-CONSTANTS; FURANOSE RING;
   FORCE-FIELD
AB The changes in energy of the
   N,N'-dimethyl-2,3-di-O-methyl-L-tartaramide, model compound of
   polytartaramides based on 2,3-di-O-methyl-L-tartaric acid and
   1,n-alkanediamine, have been analyzed by ab initio quantum mechanical
   calculations. The influences of the gauche oxygen effect have been
   investigated in the gas phase as well as in aqueous, chloroform, and
   carbon tetrachloride solutions. The results indicate that polarizable
   environments enhance the gauche oxygen effect, but the amount of
   stabilization depends on the electronic characteristics of the solvent.
C1 UNIV SAO PAULO,FAC FILOSOFIA CIENCIAS & LETRAS RIBEIRAO PRET,DEPT QUIM,BR-14049901 RIBEIRAO PRET,SP,BRAZIL.
RP Aleman, C, UNIV POLITECN CATALUNYA,ETS ENGN IND BARCELONA,DEPT ENGN
   QUIM,DIAGONAL 647,E-08028 BARCELONA,SPAIN.
CR ABRAHAM RJ, 1972, J AM CHEM SOC, V94, P1913
   ALEMAN C, 1993, J COMPUT AID MOL DES, V7, P241
   ALEMAN C, 1994, J CHEM SOC P2, P563
   ALEMAN C, 1995, J ORG CHEM, V60, P6135
   ALEMAN C, 1995, J PHYS CHEM-US, V99, P17653
   ALEMAN C, 1996, J PHYS CHEM-US, V100, P1524
   ALEMAN C, 1996, TETRAHEDRON, V52, P8275
   ALTONA C, 1972, J AM CHEM SOC, V94, P8205
   ALTONA C, 1973, J AM CHEM SOC, V95, P2333
   BACHS M, 1994, J COMPUT CHEM, V15, P446
   BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
   BOU JJ, 1994, MACROMOLECULES, V27, P5263
   BOU JJ, 1995, POLYMER, V36, P181
   CASANOVAS J, 1994, J COMPUT AID MOL DES, V8, P441
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   ELIEL EL, 1973, J AM CHEM SOC, V95, P8041
   FREY RF, 1991, J AM CHEM SOC, V113, P7129
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GEJJI SP, 1994, CHEM PHYS LETT, V226, P427
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
   HOSSAIN N, 1993, NUCLEOS NUCLEOT, V12, P499
   INOMATA K, 1992, J PHYS CHEM-US, V96, P7934
   IRIBARREN I, 1996, MACROMOLECULES, V29, P4397
   IRIBARREN I, 1996, MACROMOLECULES, V29, P8413
   LEON S, 1997, STRUCT CHEM, V8, P39
   LUQUE FJ, 1993, J PHYS CHEM-US, V97, P4386
   LUQUE FJ, 1994, J COMPUT CHEM, V15, P847
   LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
   LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
   MATSUURA H, 1987, J MOL STRUCT, V156, P293
   MIERTUS S, 1982, CHEM PHYS, V65, P239
   MOLLER C, 1934, PHYS REV, V46, P618
   MULLERPLATHE F, 1994, MACROMOLECULES, V27, P6040
   NAVAS JJ, 1996, J ORG CHEM, V61, P6849
   OLSON WK, 1982, J AM CHEM SOC, V104, P270
   OLSON WK, 1982, J AM CHEM SOC, V104, P278
   OROZCO M, 1994, CHEM PHYS, V182, P237
   OROZCO M, 1995, J AM CHEM SOC, V117, P1378
   OROZCO M, 1995, J COMPUT CHEM, V16, S563
   PEREIRA GK, IN PRESS J MOL STRUC
   PEREIRA GK, 1996, THEOCHEM-J MOL STRUC, V363, P87
   PIEROTTI RA, 1976, CHEM REV, V76, P717
   PLAVEC J, 1993, J AM CHEM SOC, V115, P9734
   RODRIGUEZGALAN A, 1992, J POLYM SCI POL CHEM, V30, P713
   SHANG HS, 1994, J AM CHEM SOC, V116, P1528
   SOSANUMA K, 1995, MACROMOLECULES, V28, P8629
   STEWART JJP, 1993, MOPAC 93 REVISION 2
   TASAKI K, 1985, POLYM J, V17, P641
   THIBAUDEAU C, 1994, J AM CHEM SOC, V116, P8033
   VEGA MC, 1992, J BIOMOL STRUCT DYN, V10, P1
   VOIGHTMARTIN IG, 1995, MACROMOLECULES, V28, P242
   YOSHIDA H, 1992, CHEM PHYS LETT, V196, P601
NR 52
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD SEP 19
PY 1997
VL 62
IS 19
BP 6562
EP 6567
PG 6
SC Chemistry, Organic
GA XX490
UT ISI:A1997XX49000024
ER

PT J
AU Martins, JBL
   Taft, CA
   Longo, E
   Andres, J
TI Ab initio study of CO and H-2 interaction on ZnO surfaces using a small
   cluster model
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE ab initio; adsorption; ZnO
ID OXIDE SURFACES; ZINC-OXIDE; ABINITIO CALCULATIONS; METHANOL SYNTHESIS;
   CARBON-MONOXIDE; METAL; PHOTOELECTRON; ADSORPTION; POTENTIALS; SITES
AB We have studied the adsorption of H-2 and CO molecules, as well as the
   dissociation of H-2, on the (ZnO)(6) cluster model using the ab initio
   Hartree-Fock method. The effective core potential was used for Zn, C,
   and O atoms at double-zeta-type valence basis set level, whereas for H
   we used Dunning's basis set, We have also added polarization and
   diffuse functions to the O, C, and H basis set. The CO molecule
   interacts with the lowest coordination zinc sites which are located on
   the edge between the (0001) and (10 (1) over bar 0) surfaces. The
   decrease in CO bond length upon adsorption on ZnO surfaces is
   associated with the charge transfer from CO to the surface, Our
   calculations indicate the 5 sigma orbital from adsorbed CO stabilized
   to a 1.56 eV deeper energy, Of all the configurations investigated, the
   molecular H-2 interaction has the lowest binding energy with a decrease
   in H-2 bond strength, The H-2 molecule also dissociates on the zinc and
   oxygen sites of the ZnO cluster, and the preferential dissociation site
   is the oxygen which has a coordination number of two. The H-2
   dissociation shows a large stabilization energy for the most stable
   adsorption site which is the lowest coordination site. Molecular CO and
   H-2 adsorption yields a smaller change in the estimated energy gaps and
   ionization potentials, We have also analysed the geometry of the
   adsorbed molecules, the Mulliken charge, the orbital SCF energies, and
   also the molecular orbital densities and contour plots. Our results are
   compared with the available experimental data, (C) 1997 Elsevier
   Science B.V.
C1 UNIV FED SAO CARLOS,DEPT QUIM,BR-13560905 SAO CARLOS,SP,BRAZIL.
   UNIV JAUME 1,DEPT CIENCIAS EXPT,CASTELLO DE PLANA,SPAIN.
RP Martins, JBL, CTR BRASILEIRO PESQUISAS FIS,DEPT MAT CONDENSADA & FIS
   ESTATIST,RUA XAVIER SIGAUD 150,BR-22290 RIO JANEIRO,BRAZIL.
CR ABRAHAMS SC, 1969, ACTA CRYSTALLOGR B, V25, P1233
   ANDERSON AB, 1986, J AM CHEM SOC, V108, P1385
   BOLIS V, 1989, J CHEM SOC FARAD T 1, V85, P855
   CHANG CC, 1973, J PHYS CHEM-US, V77, P2634
   DAMICO KL, 1983, J AM CHEM SOC, V105, P6380
   DENT AL, 1969, J PHYS CHEM-US, V73, P3772
   EARLEY CW, 1993, J COMPUT CHEM, V14, P216
   FERRARI AM, 1996, INT J QUANTUM CHEM, V58, P241
   FRISCH MJ, 1992, GAUSSIAN 92
   GAY RR, 1980, J AM CHEM SOC, V102, P6752
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HENGLEIN A, 1989, CHEM REV, V89, P1861
   JACOBI K, 1984, SURF SCI, V141, P109
   KITCHEN DB, 1989, J PHYS CHEM-US, V93, P7265
   KLIER K, 1982, ADV CATAL, V31, P243
   LIN JY, 1991, J AM CHEM SOC, V113, P8312
   LIN JY, 1992, INORG CHEM, V31, P686
   MARTINS JBL, IN PRESS J MOL STRUC
   MARTINS JBL, 1994, J MOL STRUCT, V303, P19
   MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
   MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P347
   MARTINS JBL, 1996, THEOCHEM-J MOL STRUC, V363, P249
   MAVRIDIS A, 1989, J AM CHEM SOC, V111, P2482
   MERCHAN M, 1987, J CHEM PHYS, V87, P1690
   MOLLER PJ, 1995, SURF SCI, V323, P102
   SCARANO D, 1992, SURF SCI, V276, P281
   SOLOMON EI, 1993, CHEM REV, V93, P2623
   SPANHEL L, 1991, J AM CHEM SOC, V113, P2826
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
   VEILLARD A, 1991, CHEM REV, V91, P743
   ZAKI MI, 1987, SPECTROCHIM ACTA A, V43, P1455
   ZHANPEISOV NU, 1994, J STRUCT CHEM, V35, P9
NR 33
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD JUN 30
PY 1997
VL 398
BP 457
EP 466
PG 10
SC Chemistry, Physical
GA XV714
UT ISI:A1997XV71400050
ER

PT J
AU Gong, XG
   Guenzburger, D
   Saitovitch, EB
TI Structure and dynamic properties of neutral and ionized SiH5 and Si2H3
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID SPECTROSCOPY; SPECTRUM; ENTHALPIES; MOLECULES; DISILYNE; RADICALS;
   SILANE; CATION; BANDS; ATOMS
AB The equilibrium structures and dynamical properties of neutral and
   ionized SiH5, and Si2H3 have been studied using the ab initio molecular
   dynamics method. The obtained equilibrium structures are in good
   agreement with other highly precise methods. In SiH5+, we have clearly
   observed that H-2 rotates about the C-3 axis. In Si2H3+, we have found
   that H atoms can interchange positions frequently and also the
   structure changes. The different dynamical behaviors of the Si-H and
   C-H molecules has been addressed. (C) 1997 Published by Elsevier
   Science B.V.
C1 CTR BRASILEIRO PESQUISAS FIS,URCA,RJ,BRAZIL.
RP Gong, XG, NANJING UNIV,INST SOLID STATE PHYS,NATL LAB SOLID STATE
   MICROSTRUCT,NANJING 210093,PEOPLES R CHINA.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
   BECERRA R, 1992, J PHYS CHEM-US, V96, P10856
   BETRENCOURT M, 1986, J CHEM PHYS, V84, P4121
   BOGEY M, 1991, PHYS REV LETT, V66, P413
   BOO DW, 1993, CHEM PHYS LETT, V211, P358
   BOO DW, 1995, J CHEM PHYS, V103, P514
   BORRMANN A, 1996, CHEM PHYS LETT, V252, P1
   BUDA F, 1989, PHYS REV LETT, V63, P294
   CAO YB, 1993, J PHYS CHEM-US, V97, P5215
   CAR R, 1985, PHYS REV LETT, V55, P2471
   COLEGROVE BT, 1990, J CHEM PHYS, V93, P7230
   COLEGROVE BT, 1990, J PHYS CHEM-US, V94, P5593
   CURTISS LA, 1991, J CHEM PHYS, V95, P2433
   DAVIES PB, 1994, J CHEM PHYS, V100, P6166
   DEMOLLIENS A, 1989, J AM CHEM SOC, V111, P5623
   GONG XG, IN PRESS
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   HU CH, 1992, CHEM PHYS LETT, V190, P543
   KHANNA SN, 1995, PHYS REV B, V51, P13705
   KIRKPATRICK S, 1983, SCIENCE, V220, P671
   KOHN W, 1965, PHYS REV, V140, A1133
   NAKAMURA K, 1985, J CHEM PHYS, V83, P4504
   OLAH GA, 1973, CARBOCATIONS ELECTRO
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   RING MA, 1992, J PHYS CHEM-US, V96, P10848
   SAX AF, 1991, J PHYS CHEM-US, V95, P1768
   SCHLEYER PV, 1983, CHEM PHYS LETT, V95, P477
   SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
   SCUSERIA GE, 1993, NATURE, V366, P512
   SMITH DM, 1992, J CHEM PHYS, V96, P1741
   TSE JS, 1995, PHYS REV LETT, V74, P876
   VOLATRON F, 1990, CHEM PHYS LETT, V166, P49
NR 32
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD AUG 29
PY 1997
VL 275
IS 3-4
BP 392
EP 398
PG 7
SC Physics, Atomic, Molecular & Chemical
GA XV887
UT ISI:A1997XV88700038
ER

PT J
AU Morgon, NH
   Linnert, HV
   deSouza, LAG
   Riveros, JM
TI Gas-phase nucleophilic reactions in SO2F2: experiment and theory
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID COMPACT EFFECTIVE POTENTIALS; EXPONENT BASIS-SETS; OPTIMIZATION
   TECHNIQUE; ADDITION-ELIMINATION; IONS; FLUORIDE; SULFUR; ATOMS;
   THERMOCHEMISTRY; SUBSTITUTION
AB The gas-phase ion-molecule reactions of simple anions (HO-, CH3O-,
   NH2-) with SO2F2 proceed with rate constants close to the collision
   limit. The energy surface for the OH-/SO2F2 reaction has been
   characterized by ab initio calculations using basis functions adapted
   for a pseudopotential and corrected for anionic systems by the
   generator coordinate method (GCM) at the QCISD(T)/(ECP/TZV/GCM) level.
   The calculations indicate that reaction occurs by initial addition of
   the anion to SO2F2 to form a hypervalent sulfur species. The high
   efficiency of the reaction is associated with a low energy barrier
   separating the initial adduct from the product side ion-neutral
   complex. (C) 1997 Elsevier Science B.V.
C1 UNIV SAO PAULO,INST CHEM,BR-05599970 SAO PAULO,BRAZIL.
RP Morgon, NH, UNIV CAMPINAS,INST CHEM,CAMPINAS,SP,BRAZIL.
CR ALKORTA I, 1994, THEOR CHIM ACTA, V89, P1
   BACHRACH SM, 1996, J PHYS CHEM-US, V100, P3535
   CHEUNG YS, 1995, J AM CHEM SOC, V117, P9725
   CLARY DC, 1997, J CHEM PHYS, V106, P575
   CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
   CUSTODIO R, 1992, CAN J CHEM, V70, P580
   CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
   DASILVA MLP, 1995, J MASS SPECTROM, V30, P733
   DUNNING TH, 1977, MODERN THEORETICAL C, V3, P1
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GLUKHOVTSEV MN, 1995, J AM CHEM SOC, V117, P2024
   GORDON IM, 1989, CHEM SOC REV, V19, P65
   GRABOWSKI JJ, 1989, J AM CHEM SOC, V111, P1193
   HAGEN K, 1978, J MOL STRUCT, V44, P187
   IRIKURA KK, 1995, J CHEM PHYS, V102, P5357
   LARSON JW, 1985, J AM CHEM SOC, V107, P766
   LARSON JW, 1987, INORG CHEM, V26, P4018
   LIAS SG, 1988, J PHYS CHEM S1, V235, P436
   MCKEE ML, 1996, J PHYS CHEM-US, V100, P3473
   MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
   MILLER KJ, 1979, J AM CHEM SOC, V101, P7206
   MORGON NH, 1995, CHEM PHYS LETT, V235, P436
   MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
   MORGON NH, 1995, J PHYS CHEM-US, V99, P17832
   MORGON NH, 1995, THEOCHEM-J MOL STRUC, V335, P11
   OKUYAMA T, 1990, CHEM SULPHINIC ACIDS, P623
   RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
   ROZAS I, 1996, J CHEM SOC PERK  MAR, P461
   SMITH D, 1977, INT J MASS SPECTROM, V23, P123
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
   STEVENS WJ, 1992, CAN J CHEM, V70, P612
   SU T, 1975, INT J MASS SPECTROM, V17, P211
   WANG HB, 1994, J PHYS CHEM-US, V98, P1608
   YANG KY, 1995, J PHYS CHEM-US, V99, P15035
NR 34
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 5
PY 1997
VL 275
IS 5-6
BP 457
EP 462
PG 6
SC Physics, Atomic, Molecular & Chemical
GA XV888
UT ISI:A1997XV88800004
ER

PT J
AU Srivastava, RM
   Seabra, GM
TI Preparation and reactions of 3-[3-(aryl)-1,2,4-oxadiazol-5-yl]
   propionic acids
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE arylamidoximes; bis-1,2,4-oxadiazoles; diaryl-1,2,4-oxadiazoles;
   ab-initio sto-3g calculations
AB The synthesis of title compounds 3a-g, from arylamidoximes 1a-g and
   succinic anhydride in high yields is described. 1,2,4-Oxadiazoles 3a-f
   were also obtained by carrying out the reaction in a domestic microwave
   oven. Preliminary pharmacological evaluations demonstrated that 3b-e
   possess analgesic properties. Ab initio molecular orbital calculations
   of the type STO-3G have been performed for compounds 3a, 4a, 5a and 6a.
C1 UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50670901 RECIFE,PE,BRAZIL.
CR AFIATPOUR P, 1994, BRAZ J MED BIOL RES, V27, P1403
   ARBASINO M, 1963, ATTI ACCAD NAZL SFMN, V34, P532
   BALLARD RE, 1968, SPECTROCHIM ACTA A, V24, P1975
   BARRANS J, 1959, CR HEBD ACAD SCI, V249, P1096
   BLATT AH, 1943, ORG SYNTH, V2, P165
   BRAM G, 1991, CHEM IND-LONDON, P396
   FRISCH MJ, 1992, GAUSSAIN 92
   HIROTA T, 1994, ACTA CRYSTALLOGR C, V50, P807
   KALINOWSKI HO, 1984, 13C NMR SPECTROSKOPI, P183
   LEITE LFC, 1983, THESIS U FEDERAL PER
   LEITE LFCD, 1989, B SOC CHIM BELG, V98, P203
   LOPEZ JP, 1983, J MOL STRUCT, V94, P203
   MILLER JA, 1989, CHEM BER, V22, P243
   MILLER JA, 1989, CHEM BER, V22, P2796
   MOUSSEBOIS C, 1964, HELV CHIM ACTA, V47, P942
   PARK CH, 1977, HAKSUL YONGUCHI CHUN, V4, P133
   SCHULZ O, 1985, CHEM BER, V18, P2459
   SRIVASTAVA M, 1984, J HETEROCYCLIC CHEM, V21, P1193
   SRIVASTAVA RM, 1977, J ORG CHEM, V42, P1555
   SRIVASTAVA RM, 1983, GAZZ CHIM ITAL, V113, P845
   SRIVASTAVA RM, 1984, J CHEM ENG DATA, V29, P221
   SRIVASTAVA RM, 1989, QUIM NOVA, V12, P221
   SRIVASTAVA RM, 1992, J BRAZIL CHEM SOC, V3, P117
   SRIVASTAVA RM, 1993, J BRAZIL CHEM SOC, V4, P84
NR 24
TC 9
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PY 1997
VL 8
IS 4
BP 397
EP 405
PG 9
SC Chemistry, Multidisciplinary
GA XV685
UT ISI:A1997XV68500013
ER

PT J
AU Pfannes, HD
TI Simple theory of superparamagnetism and spin-tunneling in Mossbauer
   spectroscopy
SO HYPERFINE INTERACTIONS
LA English
DT Article
ID MAGNETIC-RELAXATION; SPECTRA; MOLECULES; DISSIPATION; SYSTEMS
AB The magnetic relaxation of isolated small (< 100 Angstrom) monodomain
   magnetic particles is due to superparamagnetic relaxation (predominant
   at high temperatures) and eventually quantum tunneling of the magnetic
   moment (at low temperatures). The superparamagnetic relaxation process
   can be formally described by an (multiple phonon absorption and
   emission) Orbach process with an anisotropy Hamiltonian due to
   crystalline or form anisotropy (H) over cap(Ion) = S-z(2) and a usual
   dynamical spin-Hamiltonian for the spin-phonon interaction. From this
   Mossbauer spectra can be calculated using ab-initio or stochastic
   methods. Phonon-assisted tunneling and its influence on Mossbauer
   spectra are discussed.
RP Pfannes, HD, UNIV FED MINAS GERAIS,DEPT FIS,CP 702,BR-30123970 BELO
   HORIZONT,MG,BRAZIL.
CR BROWN WF, 1959, J APPL PHYS, V30, S130
   BROWN WF, 1963, PHYS REV, V130, P1677
   CALDEIRA AO, 1981, PHYS REV LETT, V46, P211
   CALDEIRA AO, 1983, ANN PHYS-NEW YORK, V149, P374
   CHUDNOVSKY EM, 1994, PHYS REV LETT, V72, P3433
   CIANCHI L, 1986, REP PROG PHYS, V49, P1243
   DATTAGUPTA S, 1977, PHYS REV B, V16, P3893
   GARG A, 1994, J APPL PHYS 2, V76, P6168
   HARTMANNBOUTRON F, 1995, J PHYS I, V5, P1281
   HARTMANNBOUTRON F, 1996, INT J MOD PHYS B, V10, P2577
   HARTMANNBOUTRON F, 1996, J PHYS I, V6, P137
   MORUP S, 1980, APPLICATIONS MOSSBAU, V2, P1
   NEEL L, 1949, ANN GEOPHYS, V5, P99
   ORBACH R, 1972, ELECT PARAMAGNETIC R, P121
   PFANNES HD, 1994, HYPERFINE INTERACT, V83, P79
   POLITI P, 1995, PHYS REV LETT, V75, P537
   STAMP PCE, 1992, INT J MOD PHYS B, V6, P1355
   STONER EC, 1991, IEEE T MAGN, V27, P3475
   VILLAIN J, 1994, EUROPHYS LETT, V27, P159
NR 19
TC 7
PU BALTZER SCI PUBL BV
PI AMSTERDAM
PA ASTERWEG 1A, 1031 HL AMSTERDAM, NETHERLANDS
SN 0304-3843
J9 HYPERFINE INTERACTIONS
JI Hyperfine Interact.
PY 1997
VL 110
IS 1-2
BP 127
EP 134
PG 8
SC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter;
   Physics, Nuclear
GA XV680
UT ISI:A1997XV68000015
ER

PT J
AU daSilva, JBP
   Ramos, MN
   Suto, E
   Bruns, RE
TI Transferability of the cis- and trans-dichloroethylene atomic polar
   tensors
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PHASE INTENSITY MEASUREMENTS; PRINCIPAL COMPONENT ANALYSIS;
   DIPOLE-MOMENT DERIVATIVES; EFFECTIVE CHARGES; INFRARED INTENSITIES;
   DIFLUOROETHYLENE
AB The isotopic invariance criterion, ab initio molecular orbital results,
   and principal component analysis are used to resolve the sign
   ambiguities of the dipole moment derivatives for cis-dichloroethylene
   and the out-of-plane derivatives of trans-dichloroethylene. Atomic
   polar tensors (APTs) for CiS-C2H2Cl2 and cis-C2D2Cl2 as well as
   out-of-plane polar tensor elements for trans-C2H2Cl2 and trans-C2D2Cl2
   are reported. Mean dipole moment derivatives of the difluoro-and
   dichloroethylenes are compared and interpreted as atomic charges. The
   APTs of cis-dichloroethylene are transferred to trans-dichloroethylene
   to calculate its infrared fundamental vibrational intensities. These
   intensities are in much better agreement with the experimental
   intensities than those calculated by a MP2/6-311++G(d,p) wave function.
   The transferability of mean dipole moment derivatives between the cis
   and trans-dichloroethylenes is demonstrated using a simple potential
   model and carbon and chlorine core electron binding energies obtained
   by ESCA spectroscopy.
C1 UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13083970 CAMPINAS,SP,BRAZIL.
   UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50739901 RECIFE,PE,BRAZIL.
CR BASSI ABM, 1975, THESIS U ESTADUAL CA
   BIARGE JF, 1961, ANALES REAL SOC ES A, V57, P81
   CIOSLOWSKI J, 1989, J AM CHEM SOC, V111, P8333
   CRAIG NC, 1996, J PHYS CHEM-US, V100, P5310
   CRAWFORD BL, 1952, J CHEM PHYS, V20, P977
   FRISCH MJ, 1992, GAUSSIAN 92
   GUADAGNINI PH, 1995, J AM CHEM SOC, V117, P4144
   GUADAGNINI PH, 1997, J AM CHEM SOC, V119, P4224
   HOPPER MJ, 1983, J CHEM PHYS, V79, P19
   KAGEL RO, 1983, J CHEM PHYS, V78, P7029
   KAGEL RO, 1984, J PHYS CHEM-US, V88, P521
   MARDIA KV, 1979, MULTIVARIATE ANAL, P213
   NEWTON JH, 1976, J CHEM PHYS, V64, P3036
   OVEREND J, 1963, INFRARED SPECTROSCOP, CH10
   PERSON WB, 1974, J CHEM PHYS, V61, P1040
   RAMOS MN, 1985, J PHYS CHEM-US, V89, P4979
   SCARMINIO IS, 1989, TRAC-TREND ANAL CHEM, V8, P326
   SCHAFER L, 1986, J MOL STRUCT, V145, P135
   SIEGBAHN K, 1969, ESCA APPLIED FREE MO
   SUTO E, 1991, J COMPUT CHEM, V12, P885
   SUTO E, 1991, J PHYS CHEM-US, V95, P9716
   SUTO E, 1993, J PHYS CHEM-US, V97, P6161
NR 22
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 28
PY 1997
VL 101
IS 35
BP 6293
EP 6298
PG 6
SC Chemistry, Physical
GA XT955
UT ISI:A1997XT95500020
ER

PT J
AU Ma, SG
   Wong, P
   Cooks, RG
   Gozzo, FC
   Eberlin, MN
TI Stereoelectronic effects in phosphorus dichloride cation pyridine
   complexes
SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES
LA English
DT Article
DE kinetic method; stereoelectronic effects; cation affinity; PCL2+;
   thermochemistry; agostic effects
ID MS(3) MASS-SPECTROMETRY; GAS-PHASE BASICITIES; AMMONIUM ION AFFINITIES;
   TRANSITION-METAL BONDS; PROTON-BOUND DIMERS; KINETIC METHOD;
   ELECTRON-AFFINITIES; PCL2 RADICALS; ACIDITIES; AM1
AB The kinetic method is applied to order the relative affinities of a
   group of substituted pyridines towards PC2+ relationships with the
   affinities towards other cations. The absolute affinities are estimated
   with the aid of AM1 molecular orbital calculations while the PCl2+
   affinity of pyridine itself is also estimated by ab initio calculations
   at MP2/6-31G(d,p)//6-31G(d,p) level to be 76.0 kcal mol(-1). The
   experiments employ the PCl2+-bound dimer of two pyridines generated via
   ion/ molecule reactions between the mass-selected PCl2+ ion and a
   mixture of pyridines. The dimers, examined using MS3 experiments,
   fragment exclusively to yield the pyridine/PCl2+ monomers and this is
   consistent with ab initio RHF/6-31G(d,p) and AM1 molecular orbital
   calculations which show a tetrahedral complex with a N-P-N angle of 129
   degrees. For meta- and parasubstituted pyridines, there is an excellent
   linear correlation (slope 0.69) between the logarithm of the ratio of
   the two fragment ion abundances and the proton affinity of the
   corresponding substituted pyridine. Similar correlations are observed
   for other cations (SiCl3+, Cl+, SF3+ and SiCl+) and it is shown that
   both the number of degrees of freedom in the dimer and the cation
   affinity control this correlation.
   Dimers comprising ortho-substituted pyridines show decreased affinities
   due to stereoelectronic interactions between the ortho-substituted
   alkyl group and the central PCl2+ cation. A set of gas phase
   stereoelectronic parameters (S-k) is determined and ordered as 2-MePy
   (-0.38) < 2,4-diMePy (-0.84) < 2,6-diMePy (-0.86) < 2,5-diMePy (-1.08)
   < 2,3-diMePy (-1.26). AM1 calculations show that the eclipsed
   conformation of 2-methylpyridine/PCl2+ adduct is more stable than the
   staggered conformation by approx. 3 kcal mol(-1) and this is suggested
   to be due to a favorable agostic interaction between the hydrogen of
   the ortho methyl group and the central phosphorus atom. The most stable
   conformation is found when the two chlorines face the two hydrogens of
   the ortho methyl substituent in a ''face-to-face'' interaction. This
   novel type of interaction is also the reason for the relatively small
   magnitude of S-k, the stereoelectronic parameter, in
   2,6-dimethylpyridine. The overall stereoelectronic effects of the
   ortho-substituent(s) on PCl2+ affinities indicate that steric effects
   dominate electronic effects in this system. The PCl2+ ion behaves
   similarly in its steric and agostic effects to SF3+ and very
   differently to SiCl+ which displays uniquely strong agostic effects.
   (C) 1997 Elsevier Science B.V.
C1 PURDUE UNIV,DEPT CHEM,W LAFAYETTE,IN 47907.
   STATE UNIV CAMPINAS,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR ABBOUD JLM, 1989, J AM CHEM SOC, V111, P8960
   ABBOUD JLM, 1996, J AM CHEM SOC, V118, P1126
   ANDREWS L, 1969, J PHYS CHEM-US, V73, P2774
   BOJESEN G, 1994, J CHEM SOC P2, P1029
   BONAZZOLA L, 1981, J CHEM PHYS, V75, P4829
   BRODBELTLUSTIG JS, 1989, TALANTA, V36, P255
   BROOKHART M, 1983, J ORGANOMET CHEM, V250, P395
   BROOKHART M, 1988, PROG INORG CHEM, V36, P1
   BRUM JL, 1994, J PHYS CHEM-US, V98, P5587
   BURINSKY DJ, 1984, J AM CHEM SOC, V106, P2770
   CHEN GD, 1995, INT J MASS SPECTROM, V151, P69
   CHEN GD, 1995, J MASS SPECTROM, V30, P1167
   COOKS RG, 1977, J AM CHEM SOC, V99, P1279
   COOKS RG, 1989, ADV MASS SPECTROM, V11, P33
   COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
   COOKS RG, 1994, MASS SPECTROM REV, V13, P287
   CRAIG SL, UNPUB J PHYS CHEM
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DEWAR MJS, 1991, J AM CHEM SOC, V113, P735
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   GRAUL ST, 1990, INT J MASS SPECTROM, V96, P181
   GREEN MLH, 1984, PURE APPL CHEM, V56, P47
   GUTSEV GL, 1994, CHEM PHYS, V179, P325
   HASS MJ, 1993, INT J MASS SPECTROM, V124, P115
   HOKE SH, 1994, J AM CHEM SOC, V116, P4888
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KING RB, 1994, ENCY INORGANIC CHEM, V1, P35
   LATIFZADEH L, 1995, CHEM PHYS LETT, V241, P13
   LEE HN, IN PRESS J PHYS CHEM
   LI XP, 1993, ORG MASS SPECTROM, V28, P366
   LIOU CC, 1992, J AM CHEM SOC, V114, P6761
   MAJUMDAR TK, 1992, J AM CHEM SOC, V114, P2897
   MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
   MCLUCKEY SA, 1983, INT J MASS SPECTROM, V52, P165
   NOURSE BD, 1991, INT J MASS SPECTROM, V106, P249
   OZGEN T, 1983, INT J MASS SPECTROM, V48, P427
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
   SETHSON I, 1992, J AM CHEM SOC, V114, P953
   VELJKOVIC M, 1985, ADV MASS SPECTROM B, V10, P1149
   WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
   WRIGHT LG, 1982, INT J MASS SPECTROM, V42, P115
   WU HF, 1993, J AM SOC MASS SPECTR, V4, P718
   WU ZC, 1992, RAPID COMMUN MASS SP, V6, P403
   WU ZC, 1994, RAPID COMMUN MASS SP, V8, P777
   YANG SS, 1995, J MASS SPECTROM, V30, P184
   YANG SS, 1995, J MASS SPECTROM, V30, P807
   YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
NR 48
TC 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-1176
J9 INT J MASS SPECTROM ION PROC
JI Int. J. Mass Spectrom. Ion Process.
PD APR
PY 1997
VL 163
IS 1-2
BP 89
EP 99
PG 11
SC Physics, Atomic, Molecular & Chemical; Spectroscopy
GA XL627
UT ISI:A1997XL62700008
ER

PT J
AU Moraes, LAB
   Gozzo, FC
   Eberlin, MN
   Vainiotalo, P
TI Transacetalization with acylium ions. A structurally diagnostic
   ion/molecule reaction for cyclic acetals and ketals in the gas phase
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; MASS-SPECTROMETRY; BASIS SETS; SUBSTITUTION;
   ISOMERS
AB Transacetalization takes place in high yields in gas phase ion/molecule
   reactions of acylium ions (RC+=O) with a variety of cyclic acetals and
   ketals, that is, five-, six-, and seven-membered 1,3-O,O-heterocycles
   and their mono-sulfur and nitrogen analogues. A general, structurally
   diagnostic method for the gas phase characterization of cyclic acetals
   and ketals is therefore available. Transacetalization occurs via
   initial O(or S)-acylation, followed by a ring-opening/ring-re-forming
   process in which a neutral carbonyl compound is eliminated and cyclic
   ''ionic ketals'' (that is, cyclic 1,3-dioxonium ions and analogues) are
   formed. The nature of the substituents at the 2-position, which are
   eliminated in the course of the reaction, is found to affect
   considerably the extent of transacetalization. Substituents not at the
   2-position remain in the ionic products; hence positional isomers
   produce different cyclic ''ionic ketals'' and are easily
   differentiated. The triple-stage (MS3) mass spectra of the cyclic
   ''ionic ketals'' show in all cases major dissociation to re-form the
   reactant acylium ion, a unique dissociation chemistry that is
   equivalent to the hydrolysis of neutral acetals and ketals and which is
   then determined to be a very general characteristic of cyclic ''ionic
   ketals''. Additionally, the O-18-labeled transacetalization product of
   1,3-dioxolane shows dissociation to both CH3C+=O-18 and CH3C+=O to the
   same extent, which confirms its cyclic ''ionic ketal'' structure and
   the ''oxygen-scrambling'' mechanism of transacetalization. Ab initio
   MP2/6-31G(d,p)//6-31G-(d,p) + ZPE energy surface diagrams show that
   transacetalization is the most exothermic, thermodynamically favorable
   process in reactions of CH3C+=O with 1,3-dioxolane and 1,3-oxathiolane,
   whereas 1,3-dithiolane is unreactive due to the endothermicity of the
   initial acylation step.
C1 UNICAMP,INST CHEM CP6154,BR-13083970 CAMPINAS,SP,BRAZIL.
   UNIV JOENSUU,DEPT CHEM,FIN-80101 JOENSUU,FINLAND.
CR ATTINA M, 1983, J AM CHEM SOC, V105, P1122
   BOGERT MT, 1933, J AM CHEM SOC, V55, P3741
   CAREY FA, 1984, ADV ORGANIC CHEM
   CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
   CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
   CREASER CS, 1996, J CHEM SOC PERK  MAR, P427
   EBERLIN MN, IN PRESS MASS SPECTR
   EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
   EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
   EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
   FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
   FRISCH MJ, 1995, GAUSSIAN 94 REVISION
   GORDON MS, 1980, CHEM PHYS LETT, V76, P163
   GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
   GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
   GOZZO FC, 1996, J CHEM SOC PERK  APR, P587
   HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KIM JK, 1982, J AM CHEM SOC, V104, P4624
   KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
   KUMAKURA M, 1978, J PHYS CHEM-US, V82, P639
   LEIONONEN A, 1994, ORG MASS SPECTROM, V29, P295
   MOLLER C, 1934, PHYS REV, V46, P618
   MORAES LA, IN PRESS J CHEM S P2
   MORAES LAB, 1996, J ORG CHEM, V61, P8726
   OLAH GA, 1964, FRIEDELCRAFTS RELATE, V3
   OLAH GA, 1976, CARBONIUM IONS, V5, P2084
   PARADISI C, 1988, ORG MASS SPECTROM, V23, P521
   RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
   SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
   SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
   STALEY RH, 1977, J AM CHEM SOC, V99, P5964
   VAINIOTALO P, 1996, P 44 ASMS C MASS SPE, P453
NR 38
TC 47
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD JUL 25
PY 1997
VL 62
IS 15
BP 5096
EP 5103
PG 8
SC Chemistry, Organic
GA XN357
UT ISI:A1997XN35700035
ER

PT J
AU Gong, XG
TI Structure and stability of cluster-assembled solid Al12C(Si): A
   first-principles study
SO PHYSICAL REVIEW B
LA English
DT Article
ID MAGNETIC-PROPERTIES; METALLIC CLUSTERS; ALUMINUM CLUSTERS; CRYSTALS;
   SYSTEMS; C-60
AB We have proposed a possible crystal structure for the cluster-assembled
   solid Al12C(Si), and its electronic structures and stability have been
   studied in the framework of density functional theory and ab initio
   molecular dynamics. We find that Al12C(Si) clusters are condensed by
   van der Waals force, with a very small cohesive energy of similar to
   1.1 eV. The combined steepest descent on ions shows that upon the
   formation of solid the relaxation of atomic distances in the Al12C(Si)
   cluster is very small. The stability of the Al12C solid is also
   confirmed by a dynamical simulation at low temperature.
C1 ACAD SINICA,INST SOLID STATE PHYS,HEFEI 230031,PEOPLES R CHINA.
   CTR BRASILEIRO PESQUISAS FIS,RIO JANEIRO,BRAZIL.
RP Gong, XG, NANJING UNIV,INST SOLID STATE PHYS,NATL LAB SOLID STATE
   MICROSTRUCT,NANJING 210093,PEOPLES R CHINA.
CR *JENA P, 1992, PHYSICS CHEM FINITE
   BACHELET GB, 1982, PHYS REV B, V26, P4199
   BENOIT M, 1996, PHYS REV LETT, V76, P2934
   CAR R, 1985, PHYS REV LETT, V55, P2471
   CHENG HP, 1991, PHYS REV B A, V43, P10647
   GONG XG, 1993, PHYS REV LETT, V70, P2078
   HOHENBERG P, 1964, PHYS REV, V136, B864
   HOHENBERG P, 1995, PHYS REV, V140, A1133
   IDO H, 1990, J APPL PHYS, V67, P4978
   KAWAI R, UNPUB
   KHANNA SN, 1992, PHYS REV LETT, V69, P1664
   KHANNA SN, 1994, CHEM PHYS LETT, V219, P479
   KHANNA SN, 1995, PHYS REV B, V51, P13705
   KROTO H, 1988, SCIENCE, V242, P1139
   KUMAR V, UNPUB
   LIU F, 1996, CHEM PHYS LETT, V248, P213
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   SAITO S, 1991, PHYS REV LETT, V66, P2637
   SEITSONEN AP, 1993, PHYS REV B, V48, P1981
   SEITSONEN AP, 1995, J CHEM PHYS, V103, P8075
   SHOEMAKER DP, 1952, ACTA CRYSTALLOGR, V5, P637
   SUN DY, 1996, PHYS REV B, V54, P17051
   WHITTEN RL, 1990, MRS LATE NEWS SESSIO
   YI JY, 1990, CHEM PHYS LETT, V174, P461
   YOU JQ, 1995, PHYS REV B, V51, P1358
   ZHANG GW, 1994, J APPL PHYS 2, V76, P7037
NR 26
TC 23
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL 15
PY 1997
VL 56
IS 3
BP 1091
EP 1094
PG 4
SC Physics, Condensed Matter
GA XM766
UT ISI:A1997XM76600035
ER

PT J
AU Srivastava, RM
   Pavao, AC
   Seabra, GM
   Brown, RK
TI Anomeric effect enhancement in C-5-substituted 2-methoxytetrahydropyrans
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE anomeric effect; 2-methoxytetrahydropyran; conformation; AM1
   calculations; HF/6-31g** basis set
AB cis- and trans-2,5-Dimethoxytetrahydropyrans,
   cis-2,5-dimethoxy-6-methyltetrahydropyran and
   2-methoxy-5-methyltetrahydropyran have been examined to see the effect
   of an OCH3 group at position 5 on the degree of anomeric effect in
   substituted 2-methoxytetrahydropyrans. The present study shows that
   this group stabilises the C-2 electronegative substituent in the axial
   position. Semi-empirical and ab initio molecular orbital calculations
   support this view. AM1 calculation gives lower enthalpies as well as
   lower dipole moments for the compounds having an OCH3 group in the
   axial position at C-2 over the equatorial form in
   2-methoxytetrahydropyrans. This enhanced stabilisation is attributed to
   the electrostatic interaction between the partial positive charge at
   C-5 and the partial negative charge of the aglycone oxygen atom. (C)
   1997 Elsevier Science B.V.
C1 UNIV ALBERTA,DEPT CHEM,EDMONTON,AB,CANADA.
RP Srivastava, RM, UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50670901
   RECIFE,PE,BRAZIL.
CR ANDERSON CB, 1964, CHEM IND-LONDON, P2054
   ANDERSON CB, 1968, TETRAHEDRON, V24, P1707
   BOOTH GE, 1966, J ORG CHEM, V31, P544
   BOOTH H, 1982, J CHEM SOC CHEM COMM, P1047
   BOOTH H, 1985, J CHEM SOC CHEM COMM, P467
   BOOTH H, 1992, TETRAHEDRON, V48, P6151
   BUEMI G, 1988, J MOL STRUCT THEOCHE, V164, P379
   DESCOTES G, 1970, B SOC CHIM FR, P3730
   DESLONGCHAMPS P, 1983, STEREOELECTRONIC EFF
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   ELIEL EL, 1962, TETRAHEDRON LETT, P97
   ELIEL EL, 1968, J ORG CHEM, V33, P3754
   FRISCH MJ, 1992, GAUSSIAN 92
   GELIN M, 1970, B SOC CHIM FR, P3723
   HALL SS, 1978, J ORG CHEM, V43, P667
   JUARISTI E, 1992, TETRAHEDRON, V48, P5019
   JUARISTI E, 1995, ANOMERIC EFFECT
   KIRBY AJ, 1983, ANOMERIC EFFECT RELA
   LEMIEUX RU, 1969, CAN J CHEM, V47, P4427
   LEMIEUX RU, 1971, PURE APPL CHEM, V25, P527
   MONNERET C, 1978, CARBOHYD RES, V65, P35
   MONNERET C, 1987, J CARBOHYD CHEM, V6, P221
   PIERSON GO, 1968, J ORG CHEM, V33, P2572
   PRALY JP, 1987, CAN J CHEM, V65, P213
   PULAG P, 1977, MODERN THEORETICAL C, V4
   SOUZA AMA, 1986, THESIS U FEDERAL PER
   SRIVASTAVA RM, 1970, CAN J CHEM, V48, P2334
   STEWART JJP, 1990, J COMPUT AID MOL DES, V4, P1
   STEWART JJP, 1993, MOPAC 9300 MANUAL
   SWEET F, 1968, CAN J CHEM, V46, P1543
   TVAROSKA I, 1981, CARBOHYD RES, V90, P173
   TVAROSKA I, 1989, ADV CARBOHYD CHEM, P75
   VENTURA ON, 1989, J MOL STRUCT THEOCHE, V187, P55
   WIBERG KB, 1989, J AM CHEM SOC, V111, P4821
   WOOD G, 1969, CAN J CHEM, V47, P429
   WOODS RJ, 1991, J CHEM SOC CHEM COMM, P334
   WOODS RJ, 1995, J PHYS CHEM-US, V99, P3832
NR 37
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD JUL 7
PY 1997
VL 412
IS 1-2
BP 51
EP 58
PG 8
SC Chemistry, Physical
GA XL894
UT ISI:A1997XL89400006
ER

PT J
AU Glaser, MA
   Clark, NA
   Garcia, E
   Walba, DM
TI Quantum chemistry based force fields for soft matter
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE liquid crystal; modeling; force fields; quantum chemistry
ID FERROELECTRIC LIQUID-CRYSTALS; HIGH SPONTANEOUS POLARIZATION; OPLS
   POTENTIAL FUNCTIONS; MONTE-CARLO SIMULATIONS;
   NUCLEAR-MAGNETIC-RESONANCE; MOLECULAR-DYNAMICS
AB We describe the use of ab initio electronic structure calculations in
   the development of high-quality classical interaction potentials for
   liquid crystal modeling. Our focus is on methods for the rapid,
   on-demand creation of force fields for use in mean field theory based
   calculations of materials properties, employed for routine
   pre-synthesis evaluation of novel liquid crystalline materials. The
   role of quantum chemistry in the development of intermolecular
   interaction potentials for large-scale simulations of soft matter is
   also discussed, and directions for future work are outlined. The
   utility of quantum chemistry derived force fields for liquid crystal
   modeling is illustrated by two example applications: mean field theory
   based prediction of the spontaneous polarization density P of
   ferroelectric liquid crystals, and large-scale simulation studies of
   the nanosegregation of polymer precursors in smectic liquid crystal
   hosts. (C) 1997 Elsevier Science B.V.
C1 UNIV BRAZILIA,DEPT CHEM,BRASILIA,BRAZIL.
   UNIV COLORADO,DEPT CHEM & BIOCHEM,BOULDER,CO 80309.
RP Glaser, MA, UNIV COLORADO,DEPT PHYS,CONDENSED MATTER LAB,BOULDER,CO
   80309.
CR 1996, LIQCRYST DATABASE 5
   *BIOS MOL SIM, 1995, CERIUS2
   *WAV INC, SPART
   BAHR C, 1986, MOL CRYST LIQ CRYST, V4, P31
   BAHR C, 1987, MOL CRYST LIQ CRYST, V148, P29
   BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   BRIGGS JM, 1990, J COMPUT CHEM, V11, P958
   BRIGGS JM, 1991, J PHYS CHEM-US, V95, P3315
   DEMUS D, 1983, WISSENSCHAFTL BEITRA, V41, P18
   FRISCH MJ, 1995, GAUSSIAN 94
   GLASER MA, UNPUB
   GLASER MA, 1995, MOL PHYS REP, V10, P26
   GLASER MA, 1996, UNPUB
   GUYMON CA, 1997, SCIENCE, V275, P57
   HEHRE WJ, 1995, PRACTICAL STRATEGIES
   HO MS, 1993, FERROELECTRICS, V138, P51
   JORGENSEN WL, 1984, J AM CHEM SOC, V106, P6638
   JORGENSEN WL, 1993, J COMPUT CHEM, V14, P206
   KELLER P, 1985, J PHYS PARIS G, V4, P2203
   LIDE DR, 1996, CRC HDB CHEM PHYSICS
   MAYO SL, 1990, J PHYS CHEM-US, V94, P8897
   POON CD, 1989, J CHEM PHYS, V91, P7392
   POON CD, 1989, LIQ CRYST, V5, P1159
   PRICE SL, 1991, COMPUTER SIMULATION, P183
   RAPPE AK, 1991, J PHYS CHEM-US, V95, P3358
   RAPPE AK, 1992, J AM CHEM SOC, V114, P10024
   SEXTON JC, 1992, NUCL PHYS B, V380, P665
   SIEPMANN JI, 1993, NATURE, V365, P330
   SMITH GD, 1995, MACROMOLECULES, V28, P5804
   STONE AJ, 1991, HYDROGEN BONDED LIQU, P25
   TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
   WATANABE M, 1993, J CHEM PHYS, V99, P8063
   YOSHINO K, 1987, MOL CRYST LIQ CRYST, V144, P87
NR 34
TC 10
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUL 30
PY 1997
VL 53
IS 8
BP 1325
EP 1346
PG 22
SC Spectroscopy
GA XL198
UT ISI:A1997XL19800024
ER

PT J
AU Resende, SM
   DeAlmeida, WB
TI Ab initio study of the formation of molecular complexes between Cl-2
   and C2H2
SO MOLECULAR PHYSICS
LA English
DT Article
ID ROTATIONAL SPECTROSCOPY; HYDROGEN-FLUORIDE; ABINITIO; PHOTOCHEMISTRY;
   INTERMEDIATE; SURFACE; WATER
AB The intermolecular potential energy surface (PES) for the interaction
   between the Cl-2 and C2H2 molecules has been comprehensively
   investigated using nb initio methods, aiming to locate the possible
   stationary points. The calculations were performed with the double zeta
   plus double polarization (DZ2P), triple zeta plus polarization (TZP)
   and triple zeta plus double polarization (TZ2P) basis sets, including
   electron correlation at the second-order Moller-Plesset (MP2) level,
   and basis set superposition error correction. Six stationary points
   were located on the PES: a T-shaped form where one chlorine atom is
   attached to the acetylene triple bond (b pi-a sigma type), a parallel
   form, a slipped parallel form, a crossed form and an inclined and a
   symmetric inverse T-shaped forms, where the van der Waals bond is
   between one of the H atoms of the acetylene and the Cl-Cl bond. At the
   MP2/TZ2P//MP2/TZP level of calculation, only the T-shaped and the
   parallel forms are minimum energy structures, and their stabilization
   energies are 2.002 and 0.422 kcal mol(-1) respectively. The two inverse
   T-shaped forms and the slipped parallel form are predicted to be
   first-order transition states at this level of calculation, and their
   stabilization energies are 0.709 kcal mol(-1) for the inclined form,
   0.694 kcal mol(-1) for the symmetric form, and 0.624 kcal mol(-1) for
   the slipped parallel form, which suggest that the intermolecular PES is
   very flat in this region. The crossed form is a second-order transition
   state, and it is stabilized by 0.390 kcal mol(-1). The shifts of the
   intramolecular frequencies upon complexation are also discussed. The
   global minimum is the T-shaped bn-ao structure, and the geometry, the
   intermolecular stretching force constant and the charge redistribution
   on complex formation lead to a classification of the outer (weak) type
   according to Mulliken. These results show the weakness of this
   interaction, which is dominated by dispersion forces, characteristic of
   the complexes between molecules without a permanent electric dipole,
   such as C2H2 and Cl-2.
RP Resende, SM, UNIV FED MINAS GERAIS,ICEX,DEPT QUIM,LAB QUIM COMPUTAC &
   MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR ANDREWS L, 1983, J CHEM PHYS, V79, P3670
   AULT BS, 1987, J PHYS CHEM-US, V91, P4723
   BLAKE JF, 1989, J AM CHEM SOC, V111, P1919
   BLOEMINK H, 1995, J CHEM SOC CHEM COMM, V18, P1833
   BLOEMINK HI, 1994, CHEM PHYS LETT, V223, P162
   BLOEMINK HI, 1995, J CHEM SOC FARADAY T, V91, P1891
   BOYS SF, 1970, MOL PHYS, V19, P533
   DEALMEIDA WB, 1989, CHEM PHYS, V137, P143
   DEALMEIDA WB, 1990, CHEM PHYS, V141, P297
   DEALMEIDA WB, 1993, J PHYS CHEM-US, V97, P2560
   FRISCH MJ, 1995, GAUSSIAN 94
   HOBZA P, 1988, CHEM REV, V88, P871
   INGOLD CK, 1969, STRUCTURE MECHANISM
   KANG HC, 1996, CHEM PHYS LETT, V254, P135
   LAURSEN SL, 1989, J PHYS CHEM-US, V93, P2328
   LAURSEN SL, 1990, J PHYS CHEM-US, V94, P8175
   LEGON AC, 1995, J CHEM SOC FARADAY T, V91, P1881
   MULLIKEN RS, 1952, J PHYS CHEM-US, V56, P801
   NOVOA JJ, 1994, CHEM PHYS, V186, P175
   PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
   PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
   PLIEGO JR, 1996, THEOR CHIM ACTA, V93, P333
   RESENDE SM, 1996, CHEM PHYS, V206, P1
   RESENDE SM, 1997, IN PRESS J PHYS CHEM
   SCHMIDT M, 1993, J COMPUT CHEM, V14, P1346
NR 25
TC 5
PU TAYLOR & FRANCIS LTD
PI LONDON
PA ONE GUNPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE
SN 0026-8976
J9 MOL PHYS
JI Mol. Phys.
PD JUL
PY 1997
VL 91
IS 4
BP 635
EP 641
PG 7
SC Physics, Atomic, Molecular & Chemical
GA XK031
UT ISI:A1997XK03100005
ER

PT J
AU Martins, JBL
   Longo, E
   Taft, CA
   Andres, J
TI Ab initio and semiempirical MO studies using large cluster models of CO
   and H-2 adsorption and dissociation on ZnO surfaces with the formation
   of ZnH and OH species.
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE ab initio; semiempirical MO study; cluster model
ID ZINC-OXIDE SURFACES; METHANOL SYNTHESIS; PHOTOELECTRON-SPECTROSCOPY;
   ROOM-TEMPERATURE; CARBON-MONOXIDE; HYDROGEN; MECHANISMS; POTENTIALS;
   PARAMETERS; CATALYST
AB We have used ab initio MO as well as MNDO, AM1 and PM3 semiempirical
   methods with large (ZnO)(60) clusters to study the H-2 and CO
   adsorption, as well as the H-2 dissociation, on ZnO surfaces with the
   formation of ZnH and OH species. From the optimized adsorption and
   dissociation geometries, we analyse Mulliken populations, binding
   energies, band gaps, and bonding distances. The calculated SCF orbital
   energies, density of states and stretch frequencies are compared with
   infrared and ultraviolet photoelectron experiments. We analyse the
   effect of cluster size on our calculations, hydrogen bonding, and
   heterolytic dissociation, as well as the diversity and stability of the
   bonding sites, and compare our results obtained using both ab initio
   and semiempirical methods. (C) 1997 Elsevier Science B.V.
C1 UNIV FED SAO CARLOS,DEPT QUIM,BR-13565905 SAO CARLOS,SP,BRAZIL.
   UNIV JAUME 1,DEPT CIENCIAS EXPT,CASTELLO DE PLANA 12080,SPAIN.
RP Martins, JBL, CTR BRASILEIRO PESQUISAS FIS,DEPT MAT CONDENSADA & FIS
   ESTATIST,RUA XAVIER SIGAUD 150,BR-22290180 RIO JANEIRO,BRAZIL.
CR AU CT, 1988, SURF SCI, V197, P391
   BOCCUZZI F, 1978, J CATAL, V51, P150
   BOLIS V, 1989, J CHEM SOC FARAD T 1, V85, P855
   CHANG CC, 1973, J PHYS CHEM-US, V77, P2634
   DAMICO KL, 1983, J AM CHEM SOC, V105, P6380
   DENT AL, 1969, J PHYS CHEM-US, V73, P3772
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   EISCHENS RP, 1962, J CATAL, V1, P180
   FRISCH MJ, 1992, GAUSSIAN 92
   FUBINI B, 1982, J CHEM SOC F1, V78, P153
   FUJITA S, 1993, B CHEM SOC JPN, V66, P3094
   GAY RR, 1980, J AM CHEM SOC, V102, P6752
   GHIOTTI G, 1993, SURF SCI A, V287, P228
   GIAMELLO E, 1983, J CHEM SOC FARAD T 1, V79, P1995
   GRUNZE M, 1981, J CRYST GROWTH, V52, P241
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   HOTAN W, 1979, SURF SCI, V83, P162
   HOWARD J, 1984, J CHEM SOC FARAD T 1, V80, P225
   HUSSAIN G, 1990, J CHEM SOC FARADAY T, V86, P1615
   JACOBI K, 1984, SURF SCI, V141, P109
   KLIER K, 1982, ADV CATAL, V31, P243
   LEY L, 1974, PHYS REV           B, V9, P600
   LONGO E, 1984, ADV CERAM, V10, P526
   LONGO E, 1985, LANGMUIR, V1, P456
   MARTINS JBL, 1993, INT J QUANTUM CHEM, V27, P643
   MARTINS JBL, 1994, J MOL STRUCT, V303, P19
   MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
   MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P347
   MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
   MARTINS JBL, 1996, J MOL STRUCT, V363, P249
   MOLLER PJ, 1995, SURF SCI, V323, P102
   SEANOR DA, 1965, J CHEM PHYS, V42, P2967
   SOLOMON EI, 1993, CHEM REV, V93, P2623
   SPANHEL L, 1991, J AM CHEM SOC, V113, P2826
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STEWART JP, 1983, QCPE B, V3, P43
   ZERNER MC, 1991, REV COMPUTATIONAL CH
NR 39
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD JUN 2
PY 1997
VL 397
BP 147
EP 157
PG 11
SC Chemistry, Physical
GA XJ804
UT ISI:A1997XJ80400015
ER

PT J
AU Acioli, PH
TI Review of quantum Monte Carlo methods and their applications
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE quantum Monte Carlo; correlation energy; jellium model; variational
   Monte Carlo; diffusion Monte Carlo
ID GENERALIZED GRADIENT APPROXIMATION; LOCAL-DENSITY APPROXIMATION;
   METAL-SURFACES; GROUND-STATE; EXCHANGE-ENERGY; WAVE-FUNCTIONS;
   GREEN-FUNCTION; ELECTRON-GAS; MOLECULES; SOLIDS
AB Correlation energy makes a small but very important contribution to the
   total energy of an electronic system. Among the traditional methods
   used to study electronic correlation are coupled clusters (CC),
   configuration interaction (CI) and many-body perturbation theory (MBPT)
   in quantum chemistry, and density functional theory (DFT) in solid
   state physics. An alternative method, which has been applied
   successfully to systems ranging from the homogeneous electron gas, to
   atoms, molecules, solids and clusters is quantum Monte Carlo (QMC). In
   this method the Schrodinger equation is transformed to a diffusion
   equation which is solved using stochastic methods. In this work we
   review some of the basic aspects of QMC in two of its variants,
   variational (VMC) and diffusion Monte Carlo (DMC). We also review some
   of its applications, such as the homogeneous electron gas, atoms and
   the inhomogeneous electron gas (jellium surface). The correlation
   energy obtained by Ceperley and Alder (D.M. Ceperley and B.J. Alder,
   Physical Review, 45 (1980) 566), as parameterized by Perdew and Zunger
   (J.P. Perdew and A. Zunger, Phys. Rev. B23 (1980) 5469), is one of the
   most used in DFT calculations in the local density approximation (LDA).
   Unfortunately, the use of the LDA in inhomogeneous systems is
   questionable, and better approximations are desired or even necessary.
   We present results of the calculations performed on metallic surfaces
   in the jellium model which can be useful to obtain better
   approximations for the exchange and correlation functionals. We have
   computed the electronic density, work function, surface energy and pair
   correlation functions for a jellium slab at the average density of
   magnesium (r(s) = 2.66). Since there is an exact expression for the
   exchange and correlation functional in terms of the pair correlation
   functions, the knowledge of such functions near the edge of the surface
   may be useful to obtain exchange and correlation functionals valid for
   inhomogeneous systems. From the exchange and correlation functional we
   can conclude that the exchange-correlation hole is nearly spherical in
   the bulk region but elongated in the direction perpendicular to the
   surface as the electron approaches the edge of the surface, showing the
   anisotropic character of the electronic correlation near the surface.
   (C) 1997 Elsevier Science B.V.
RP Acioli, PH, UNIV BRASILIA,DEPT FIS,BR-70910900 BRASILIA,DF,BRAZIL.
CR ACIOLI PH, UNPUB
   ACIOLI PH, 1994, J CHEM PHYS, V100, P8169
   ACIOLI PH, 1996, PHYS REV B, V54, P17199
   ANDERSON JB, 1995, INT REV PHYS CHEM, V14, P85
   BACHELET GB, 1989, PHYS REV LETT, V62, P2088
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BOSIN A, UNPUB
   BOYS SF, 1969, P ROY SOC LOND A MAT, V31, P43
   CAFFAREL M, 1992, J CHEM PHYS, V97, P8415
   CEPERLEY D, 1978, PHYS REV B, V18, P3126
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CEPERLEY DM, 1981, RECENT PROGR MANY BO, P262
   CEPERLEY DM, 1984, J CHEM PHYS, V81, P5833
   CEPERLEY DM, 1986, J STAT PHYS, V43, P815
   CHASE MW, 1985, J PHYS CHEM REF D S1, V14, P535
   CHEN B, IN PRESS
   FAHY S, 1988, PHYS REV LETT, V61, P1631
   FAHY S, 1990, PHYS REV B, V42, P3503
   GROSSMAN JC, 1995, PHYS REV B, V52, P16735
   GROSSMAN JC, 1995, PHYS REV LETT, V74, P1323
   HAMMOND BL, 1987, J CHEM PHYS, V87, P1130
   HAMMOND BL, 1994, MONTE CARLO METHODS
   HANDY NC, 1973, J CHEM PHYS, V58, P279
   HOHENBERG P, 1964, PHYS REV, V136, B864
   HOLMSTROM JE, 1969, ARK FYS, V40, P133
   HU CD, 1985, PHYS SCRIPTA, V32, P391
   KALOS MH, 1962, PHYS REV, V128, P1791
   KOHN W, 1965, PHYS REV, V140, A113
   KROTSCHECK E, 1985, PHYS REV B, V32, P5693
   KWON YK, 1993, PHYS REV B, V48, P12037
   LANG ND, 1970, PHYS REV           B, V1, P4555
   LANG ND, 1971, PHYS REV           B, V3, P1215
   LANGRETH DC, 1983, PHYS REV B, V28, P1809
   LI XP, 1991, PHYS REV B, V44, P10929
   LI XP, 1992, PHYS REV B, V45, P6124
   METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
   MITAS L, 1991, J CHEM PHYS, V95, P3467
   MITAS L, 1994, PHYS REV A, V49, P4411
   MITAS L, 1994, PHYS REV LETT, V72, P2438
   NEEDS RJ, 1990, PHYS REV B, V42, P10933
   OLSEN J, 1991, PHYS REV A, V43, P3355
   PERDEW JP, 1986, PHYS REV B, V33, P8800
   PERDEW JP, 1989, PHYS REV B, V40, P3399
   PERDEW JP, 1992, PHYS REV B, V46, P6671
   PERDEW JP, 1993, PHYS REV B, V48, P4978
   REYNOLDS PJ, 1982, J CHEM PHYS, V77, P5593
   ROOTHAN CCJ, 1951, PHYS REV, V97, P1474
   SHAVITT I, 1977, METHODS ELECT STRUCT
   SIEGBAHN PEM, 1983, METHODS COMPUTATIONA
   SLATER JC, 1929, PHYS REV, V34, P1293
   UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719
   UMRIGAR CJ, 1993, J CHEM PHYS, V94, P3657
   VEILLARD A, 1968, J CHEM PHYS, V49, P2415
   ZHANG ZY, 1990, PHYS REV B, V41, P5674
NR 54
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD MAY 2
PY 1997
VL 394
IS 2-3
BP 75
EP 85
PG 11
SC Chemistry, Physical
GA XF583
UT ISI:A1997XF58300002
ER

PT J
AU Mota, CJA
   Esteves, PM
   RamirezSolis, A
   HernandezLamoneda, R
TI Protonated isobutane. A theoretical ab initio study of the isobutonium
   cations
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID HYDROGEN-DEUTERIUM EXCHANGE; ELECTROPHILIC REACTIONS; ELECTROSTATIC
   POTENTIALS; PROTOLYSIS DEUTEROLYSIS; ELECTRONIC-STRUCTURE;
   CARBONIUM-IONS; SINGLE BONDS; CARBOCATIONS; 3-CENTER; MOLECULES
AB The structure and energy of the isobutonium cations, protonated
   isobutane, were studied by ab initio methods. At MP2(full)/6-31G**
   level, besides the C-isobutonium cation (5), the 2-H-isobutonium cation
   (6), and the 1-H-isobutonium cation (7), two additional structures,
   representing the van der Wads complex between methane and isopropyl.
   cation (8) and hydrogen plus tert-butyl cation (9), could also be
   characterized. The,energy increases in the order 9 < 8 < 5 < 6 < 7,
   indicating the lower energy of the van der Waals complexes. The
   experimental proton affinity of isobutane is in good agreement with the
   calculated values for the van der Waals complexes 8 and 9, indicating
   the facility of rupture of the three center bond in 5 and 6. On the
   other hand, the relative order of stability of the isobutonium cations
   can explain the experimental gas phase protonation of isobutane by
   small electrophiles, such as H-3(+) and H3O+, as well as the H-D
   exchange in liquid superacid.
C1 UNIV AUTONOMA ESTADO MORELOS,FAC CIENCIAS,CUERNAVACA 62210,MORELOS,MEXICO.
RP Mota, CJA, UNIV FED RIO DE JANEIRO,DEPT QUIM ORGAN,INST
   QUIM,BR-21949900 RIO JANEIRO,BRAZIL.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
   BISCHOF PK, 1975, J AM CHEM SOC, V97, P2278
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   BURWELL RL, 1948, J AM CHEM SOC, V70, P3128
   BURWELL RL, 1954, J AM CHEM SOC, V76, P5822
   CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
   CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
   COLLINS SJ, 1994, CHEM PHYS LETT, V228, P246
   CORMA A, 1993, CATAL REV, V35, P483
   DEKOCK RL, 1988, J CHEM EDUC, V65, P194
   DUPUIS M, 1994, HONDO 8 5 CHEM STATI
   DYCZMONS V, 1970, CHEM PHYS LETT, V5, P361
   FIELD FH, 1968, ACCOUNTS CHEM RES, V1, P42
   FRISCH MJ, 1995, GUASSIAN 94 REVISION
   HACHOUMY M, 1995, THESIS U L PASTEUR
   HIRAO K, 1984, CHEM PHYS, V89, P237
   HIRAOKA K, 1975, CAN J CHEM, V53, P970
   HIRAOKA K, 1975, J CHEM PHYS, V63, P394
   HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
   HIRAOKA K, 1978, INT J MASS SPEC ION, V27, P139
   HOBZA P, 1995, J COMPUT CHEM, V16, P1315
   HOGEVEEN H, 1967, RECL TRAV CHIM PAY B, V86, P1313
   HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P703
   HOUT RF, 1982, J COMPUT CHEM, V3, P234
   KOHLER HJ, 1978, CHEM PHYS LETT, V58, P175
   LIAS SG, 1984, J PHYS CHEM REF DATA, V13, P695
   LIDE DR, 1994, CRC HDB CHEM PHYSICS
   LOMBARDO EA, 1988, J CATAL, V112, P565
   MCMURRY JE, 1992, ACCOUNTS CHEM RES, V25, P47
   MOTA CJA, 1996, J PHYS CHEM-US, V100, P12418
   OLAH GA, 1968, J AM CHEM SOC, V90, P2726
   OLAH GA, 1969, J AM CHEM SOC, V91, P3261
   OLAH GA, 1971, J AM CHEM SOC, V93, P1251
   OLAH GA, 1972, J AM CHEM SOC, V94, P808
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
   OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
   OLAH GA, 1973, J AM CHEM SOC, V95, P4960
   OLAH GA, 1987, HYPERCARBON CHEM
   OLAH GA, 1987, HYPERCARBON CHEM, P222
   OTVOS JW, 1951, J AM CHEM SOC, V73, P5741
   POIRIER RA, 1982, J MOL STRUCT THEOCHE, V88, P343
   RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
   SCHELEYER PV, 1992, J COMPUT CHEM, V13, P997
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SHERTUKDE PV, 1992, J CATAL, V136, P446
   SOMMER J, 1992, J AM CHEM SOC, V114, P5884
   SOMMER J, 1997, J AM CHEM SOC, V119, P32474
   STEVENSON DP, 1952, J AM CHEM SOC, V74, P3269
   TALROZE VL, 1952, DOKL AKAD NAUK SSSR, V86, P909
NR 49
TC 38
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD JUN 4
PY 1997
VL 119
IS 22
BP 5193
EP 5199
PG 7
SC Chemistry, Multidisciplinary
GA XC669
UT ISI:A1997XC66900016
ER

PT J
AU Pliego, JR
   DeAlmeida, WB
TI Absolute proton affinity and basicity of the carbenes CH2, CF2, CCl2,
   C(OH)(2), FCOH, CPh2 and fluorenylidene
SO JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS
LA English
DT Article
ID O-H BOND; POLYATOMIC-MOLECULES; ION
AB Ab initio molecular orbital calculations were performed in order to
   determine the absolute proton affinity and basicity of some carbenes.
   For the species CH2, CF2, CCl2 C(OH)(2), and FCOH, the G2(MP2) method
   was utilized, and we have obtained the values 207.0, 177.4, 209.6,
   217.3 and 199.9 kcal mol(-1), respectively, for the absolute proton
   affinities. For CPh2 and fluorenylidene the calculation was performed
   at the HF/DZ + (P)/HF/DZ and MP2/DZ/HF/DZ levels of theory. For CPh2 we
   have obtained an absolute proton affinity of 275.0 kcal mol(-1) and,
   for fluorenylidene, the value is 272.4 kcal mol(-1). The implication of
   these results for the carbene reaction mechanism with PH groups is
   discussed.
C1 UFMG,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BETHELL D, 1971, J CHEM SOC B, P23
   CEYER ST, 1979, J CHEM PHYS, V70, P14
   CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
   CURTISS LA, 1993, J CHEM PHYS, V98, P1293
   DIXON DA, 1991, J PHYS CHEM-US, V95, P4180
   DU XM, 1990, J AM CHEM SOC, V112, P1920
   FRISCH MJ, 1995, GAUSSIAN 94
   GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
   GRILLER D, 1983, J AM CHEM SOC, V104, P5849
   HILLEBRAND C, 1996, J PHYS CHEM-US, V100, P9698
   KIRMSE W, 1964, CARBENE CHEM
   KIRMSE W, 1981, J AM CHEM SOC, V103, P5935
   KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
   LEE C, 1996, J PHYS CHEM-US, V100, P7398
   LEVI BA, 1977, J AM CHEM SOC, V99, P8454
   LIAS SG, 1988, J PHYS CHEM REF D S1, V17
   NG CY, 1977, J CHEM PHYS, V67, P4235
   PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
   PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
   POPLE JA, 1983, J AM CHEM SOC, V105, P6389
   VOGT J, 1975, J AM CHEM SOC, V97, P6682
   WALCH SP, 1993, J CHEM PHYS, V98, P3163
   ZUPANCIC JJ, 1985, TETRAHEDRON, V41, P1471
NR 23
TC 10
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
   ENGLAND CB4 4WF
SN 0956-5000
J9 J CHEM SOC FARADAY TRANS
JI J. Chem. Soc.-Faraday Trans.
PD MAY 21
PY 1997
VL 93
IS 10
BP 1881
EP 1883
PG 3
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA XC287
UT ISI:A1997XC28700004
ER

PT J
AU Zeng, Z
   Duan, Y
   Guenzburger, D
TI Magnetism, chemical bonding, and hyperfine properties in the nanoscale
   antiferromagnet [Fe(OMe)(2)(O2CCH2Cl)](10)
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC-STRUCTURE; CLUSTER; TRANSITION; PARTICLES; ARRAYS; WHEEL;
   STATE
AB The electronic and magnetic properties of the nanometer-size
   antiferromagnet [Fe(OMe)(2)(O2CCH2Cl)](10) are investigated with the
   first-principles spin-polarized discrete variational method, in the
   framework of density-functional theory. Magnetic moments, densities of
   slates, and charge- and spin-density maps are obtained. The Mossbauer
   hyperfine parameters isomer shift, quadrupole splitting, and hyperfine
   field are obtained from the calculations and compared to reported
   experimental values when available.
RP Zeng, Z, CTR BRASILEIRO PESQUISAS FIS,CBPF,RUA DR XAVIER SIGAUD
   150,BR-22290180 RIO JANEIRO,BRAZIL.
CR AWSCHALOM DD, 1992, PHYS REV LETT, V68, P3092
   AWSCHALOM DD, 1992, SCIENCE, V258, P414
   AWSCHALOM DD, 1995, PHYS TODAY, V48, P43
   BAERENDS EJ, 1973, CHEM PHYS, V2, P41
   BARBARA B, 1990, PHYS LETT A, V145, P205
   BENCINI A, 1995, J CHEM SOC DA, P963
   CANESCHI A, 1996, INORG CHIM ACTA, V243, P295
   CAO PL, 1982, PHYS REV B, V25, P2124
   DELFS C, 1993, INORG CHEM, V32, P3099
   DELLEY B, 1982, J CHEM PHYS, V76, P1949
   DUFEK P, 1995, PHYS REV LETT, V75, P3545
   ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
   ELLIS DE, 1970, PHYS REV           B, V2, P2887
   ELLIS DE, 1994, ELECT DENSITY FUNCTI
   GATTESCHI D, 1994, SCIENCE, V265, P1054
   GATTESCHI D, 1996, INORG CHEM, V35, P1926
   GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
   GUENZBURGER D, 1980, PHYS REV B, V22, P4203
   GUENZBURGER D, 1987, PHYS REV B, V36, P6971
   KENT AD, 1994, J APPL PHYS 2, V76, P6656
   MELDRUM FC, 1992, SCIENCE, V257, P522
   MICHAEL RD, 1992, J MAGN MAGN MATER, V111, P29
   PAPAEFTHYMIOU GC, 1992, PHYS REV B, V46, P10366
   PARR RG, 1989, DENSITY FUNCTIONAL T
   POWELL AK, 1995, J AM CHEM SOC, V117, P2491
   SESSOLI R, 1993, NATURE, V365, P141
   SHENOY GK, 1978, MOSSBAUER ISOMER SHI
   SMYTH JF, 1991, J APPL PHYS, V69, P5262
   STPIERRE TG, 1987, J MAGN MAGN MATER, V69, P276
   TAFT KL, 1990, J AM CHEM SOC, V112, P9629
   TAFT KL, 1994, J AM CHEM SOC, V116, P823
   TERRA J, 1991, PHYS REV B, V44, P8584
   TERRA J, 1995, J PHYS CHEM-US, V99, P4935
   UMRIGAR C, 1980, PHYS REV B, V21, P852
   VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
   ZIOLO RF, 1992, SCIENCE, V257, P219
NR 36
TC 10
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 1
PY 1997
VL 55
IS 18
BP 12522
EP 12528
PG 7
SC Physics, Condensed Matter
GA XA260
UT ISI:A1997XA26000081
ER

PT J
AU Ferraz, AC
   Srivastava, GP
TI Atomic geometry and electronic structure of S/InP(001)
SO SURFACE SCIENCE
LA English
DT Article
DE adatoms; density functional calculations; indium phosphide; sulfur;
   surface electronic phenomena; surface relaxation and reconstruction
ID PASSIVATED INP(100)-(1X1) SURFACE
AB We have performed ab initio pseudopotential calculations of the atomic
   geometry and electronic states for a monolayer S-covered (001) surface
   of InP. It is found that for the 1 x 1 periodicity with S in the bridge
   site, the overlayer-substrate distance between S and In is 1.3 Angstrom
   and the In-S-In angle is 113.8 degrees. While the calculated In-S-In
   angle is close to the experimentally deduced value, we find that our
   prediction of overlayer-substrate distance is smaller than the value
   obtained from LEED analysis. We also discuss the energetics of
   formation of long and short dimer bonds for the 1 x 2, 2 x 1 and 2 x 2
   reconstructions of the surface.
C1 UNIV EXETER,DEPT PHYS,EXETER EX4 4QL,DEVON,ENGLAND.
RP Ferraz, AC, UNIV SAO PAULO,INST FIS,CP 66318,BR-05389970 SAO
   PAULO,SP,BRAZIL.
CR GONZE X, 1991, PHYS REV B, V44, P8503
   JIN JM, 1995, PHYS REV LETT, V75, P878
   LU ZH, 1992, APPL PHYS LETT, V60, P2773
   NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   TAO Y, 1992, APPL PHYS LETT, V60, P2669
   WARREN OL, 1995, PHYS REV B, V52, P2959
NR 7
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD APR 20
PY 1997
VL 377
IS 1-3
BP 121
EP 124
PG 4
SC Chemistry, Physical
GA WZ496
UT ISI:A1997WZ49600027
ER

PT J
AU Urquhart, SG
   Turci, CC
   Tyliszczak, T
   Brook, MA
   Hitchcock, AP
TI Core excitation spectroscopy of phenyl- and methyl-substituted silanol,
   disiloxane, and disilane compounds: Evidence for pi-delocalization
   across the Si-C-phenyl bond
SO ORGANOMETALLICS
LA English
DT Article
ID ABSOLUTE OSCILLATOR-STRENGTHS; INNER-SHELL SPECTROSCOPY;
   HIGH-RESOLUTION; K-EDGE; ELECTRON-EXCITATION; GAS-PHASE; SPECTRA;
   MOLECULES; PHOTOABSORPTION; MONOCHROMATOR
AB The Si 1s and 2p solid state photoabsorption (total electron yield)
   spectra of triphenylsilanol, hexaphenyldisiloxane, and
   hexaphenyldisilane and the Si 1s spectra (total ion yield) of gaseous
   trimethylsilanol, hexamethyldisiloxane, hexamethyldisilane, and
   trimethylmethoxysilane have been recorded using synchrotron radiation.
   These spectra are compared to inner shell electron energy loss spectra
   of gaseous triphenylsilanol, hexaphenyldisilane,
   trimethylmethoxysilane, hexamethyldisiloxane, and hexamethyldisilane in
   the Si 2p and C 1s regions, measured under scattering conditions where
   electric dipole transitions dominate (2.5 keV residual energy, theta
   less than or equal to 2 degrees). Comparison of the Si 1s and Si 2p
   spectra of the Ph3Si-X and Me3Si-X species shows there are low-lying
   transitions at Si which occur exclusively in the Ph3Si-X species. These
   transitions are attributed to (Si 1s(-1),pi*Si-Ph) and (Si
   2p(-1),pi*Si-Ph) states in which the core excited electron is
   delocalized across the Si-C(phenyl) bond into the pi* levels ofthe
   phenylring. Extended Huckel and ab initio molecular orbital
   calculations of the core excitation spectra support this
   interpretation. Transitions characteristic of Si-Si and Si-O bonds are
   also identified.
C1 MCMASTER UNIV,DEPT CHEM,HAMILTON,ON L8S 4M1,CANADA.
   UNIV FED RIO JANEIRO,INST QUIM,BR-21910900 RIO JANEIRO,BRAZIL.
CR *WAV INC, 1994, SPART VERS 4 0
   AGREN H, 1995, CHEM PHYS, V195, P47
   BADER M, 1986, J PHYS-PARIS, V47, P501
   BADER RFW, 1990, ATOMS MOL QUANTUM TH
   BOCK H, 1968, J CHEM SOC B, P1158
   BODEUR S, 1990, PHYS REV A, V41, P252
   BOUISSET E, 1991, J PHYS B ATOM MOL PH, V24, P1609
   BOZEK JD, 1990, CHEM PHYS, V145, P131
   BRION CE, 1982, AIP C P, V94, P429
   COOPER G, 1990, CHEM PHYS, V140, P147
   COOPER G, 1995, CHEM PHYS, V196, P293
   DAVIS DW, 1974, SPECTROSC RELAT PHEN, V3, P157
   EASTMOND R, 1972, TETRAHEDRON, V28, P4601
   FLANK AM, 1991, Z PHYS D ATOM MOL CL, V21, P357
   FRANCIS JT, 1992, J PHYS CHEM-US, V96, P6598
   GARDELIS S, 1996, APPL SURF SCI, V102, P408
   GILLESPIE RJ, UNPUB
   GREENWOOD NN, 1984, CHEM ELEMENTS
   HENKE BL, 1982, ATOM DATA NUCL DATA, V27, P1
   HITCHCOCK AP, 1988, CHEM PHYS, V121, P265
   HITCHCOCK AP, 1990, PHYSICA SCRIPTA T, V31, P159
   HITCHCOCK AP, 1993, SURF SCI, V291, P350
   HITCHCOCK AP, 1994, J ELECTRON SPECTROSC, V67, P1
   HORSLEY JA, 1985, J CHEM PHYS, V83, P6099
   HOWELL J, 1982, FORTICON8 PROGRAM QC
   HUNT WJ, 1969, CHEM PHYS LETT, V3, P414
   HUZINAGA S, 1984, GAUSSIAN BASIS SETS
   IWATA S, 1978, JPN J APPL PHYS, V17, P109
   JOLLY WL, 1984, ATOM DATA NUCL DATA, V31, P109
   KELFVE P, 1980, PHYS SCR, V21, P75
   KENNAN JJ, 1993, SILOXANE POLYM, P72
   KOSUGI N, 1980, CHEM PHYS LETT, V74, P500
   KOSUGI N, 1987, THEOR CHIM ACTA, V72, P150
   KOSUGI N, 1992, CHEM PHYS LETT, V190, P481
   KOSUGI N, 1992, J CHEM PHYS, V97, P8842
   KWART H, 1977, D ORBITALS CHEM SILI
   LI D, 1993, SOLID STATE COMMUN, V87, P613
   MCGRATH R, 1992, PHYS REV B, V45, P9327
   MEALLI C, 1990, J CHEM EDUC, V67, P399
   MILLER AA, 1964, I EC PROD RES DEV, V3, P1964
   MURPHY CM, 1950, IND ENG CHEM, V42, P2462
   NOLL W, 1968, CHEM TECHNOLOGY SILI
   PATAI S, 1989, CHEM ORGANIC SILICON
   PITT CG, 1972, J CHEM SOC CHEM COMM, P28
   REED AE, 1990, J AM CHEM SOC, V112, P1434
   SCHWARZ WHE, 1975, CHEM PHYS, V11, P217
   SCHWARZ WHE, 1987, CHEM PHYS, V117, P73
   SHAMBAYATI S, 1990, J AM CHEM SOC, V112, P697
   SODHI RNS, 1984, J ELECTRON SPECTROSC, V34, P363
   SOMMER LH, 1946, J AM CHEM SOC, V68, P2282
   STOHR J, 1992, NEXAFS SPECTROSCOPY
   SUTHERLAND DGJ, 1992, J CHEM PHYS, V97, P7918
   SUTHERLAND DGJ, 1993, PHYS REV B, V48, P15089
   TAN KH, 1982, CAN J PHYS, V60, P131
   URQUHART SG, UNPUB J AM CHEM SOC
   URQUHART SG, 1994, CHEM PHYS, V189, P757
   URQUHART SG, 1995, J POLYM SCI POL PHYS, V33, P1603
   WALSH R, 1989, CHEM ORGANIC SILICON
   WINKLER DC, 1994, CHEM PHYS LETT, V222, P1
   XIONG JZ, 1996, CHEM PHYS, V203, P81
   YANG BX, 1992, NUCL INSTRUM METH A, V316, P422
   YANG BX, 1992, REV SCI INSTRUM 2B, V63, P1355
NR 62
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD MAY 13
PY 1997
VL 16
IS 10
BP 2080
EP 2088
PG 9
SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
GA WY882
UT ISI:A1997WY88200014
ER

PT J
AU Cerqueira, M
   Nasar, RS
   Longo, E
   Varela, JA
   Beltran, A
   Llusar, R
   Andres, J
TI Piezoelectric behaviour of PZT doped with calcium: A combined
   experimental and theoretical study
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID MORPHOTROPIC PHASE-BOUNDARY; PERTURBED-ION; CRYSTALS; SEPARABILITY;
   SIMULATION; CERAMICS; FILMS; MODEL
AB An experimental and theoretical study on the piezoelectric behaviour of
   PZT doped with a range of calcium ion concentrations is presented. A
   systematic study of the effect on the piezoelectric properties of PZT
   doped with various concentrations of CaO at constant sintering
   temperature and sintering time was carried out. The remanent
   polarization, planar coupling factor and frequency-thickness constant
   increase with calcium concentration. Ab initio perturbed ion
   calculations show that the lattice energy decreases with calcium
   addition for both tetragonal and rhombohedral phases of PZT.
C1 UNIV JAUME 1,DEPT CIENCIES EXPT,CASTELLO 12080,SPAIN.
   UFSCAR,DEPT QUIM,LAB INTERDISCIPLINAR ELECTROQUIM & CERAM,BR-13565 SAO CARLOS,SP,BRAZIL.
   UNESP,INST QUIM,BR-14800900 ARARAQUARA,SP,BRAZIL.
CR ANDRES J, 1993, INT J QUANTUM CHEM S, V27, P175
   ANDRES J, 1994, CHEM PHYS LETT, V221, P249
   BANNO H, 1967, JPN J APPL PHYS, V6, P954
   BELTRAN A, 1993, J PHYS CHEM-US, V97, P2555
   BERNARD J, 1971, PIEZOELECTRIC CERAMI
   CHAKRAVORTY SJ, 1989, PHYS REV A, V39, P2290
   CLEMENTI E, 1974, ATOM DATA NUCL DATA, V14, P177
   COMES R, 1970, ACTA CRYSTALLOGR A, V26, P244
   FLOREZ M, 1992, CLUSTER MODELS SURFA, P605
   HANKEY DL, 1980, THESIS PENNSYLVANIA
   HIMERATH BV, 1983, J AM CERAM SOC, V66, P790
   HSUEH CC, 1993, INTEGR FERROELECTR, V3, P21
   HUZINAGA S, 1971, J CHEM PHYS, V55, P5543
   JAFFE B, 1971, PIEZOELECTRIC CERAMI
   KAKEGAWA K, 1977, SOLID STATE COMMUN, V24, P769
   KAWAGUCHI T, 1984, APPL OPTICS, V23, P2187
   KULCSAR F, 1959, J AM CERAM SOC, V42, P49
   KUMADA A, 1985, JPN J APPL PHYS S, V24, P739
   LAL R, 1988, BRIT CERAM TRANS J, V87, P99
   LINES EM, 1977, PRINCIPLES APPL FERR
   LUANA V, 1988, J MOL STRUCT THEOCHE, V166, P215
   LUANA V, 1989, PHYS REV B, V39, P11093
   LUANA V, 1990, PHYS REV B, V41, P3800
   LUANA V, 1990, PHYS REV B, V42, P1791
   LUANA V, 1992, CLUSTER MODELS SURFA, P619
   MATSUO Y, 1965, J AM CERAM SOC, V48, P289
   MCLEAN AD, 1981, ATOM DATA NUCL DATA, V26, P197
   NOMURA S, 1955, J PHYS SOC JPN, V10, P108
   OHMO T, 1973, J JPN SOC POWDER MET, V20, P154
   PAIVASANTOS CP, 1990, THESIS
   PETROVSKY VI, 1993, INTEGR FERROELECTR, V3, P59
   PRESTON KD, 1992, APPL PHYS LETT, V60, P2831
   SAHA SK, 1992, AM CERAM SOC BULL, V71, P1424
   SHIRANE G, 1953, J PHYS SOC JPN, V8, P615
   STOTZ S, 1987, FERROELECTRICS, V76, P123
   TURIK AV, 1987, SOV PHYS-TECH PHYS, V25, P1251
   UCHINO K, 1986, AM CERAM SOC BULL, V65, P647
   VASILIU F, 1983, PHYS STATUS SOLIDI A, V80, P637
   VENKATARAMANI S, 1980, AM CERAM SOC B, V59, P462
   WOOD VE, 1992, J APPL PHYS, V71, P4557
   YAMAGUCHI O, 1989, J AM CERAM SOC, V72, P1065
   YAMAGUCHI T, 1976, CERAM INT, V2, P76
   YAMAMOTO T, 1992, AM CERAM SOC BULL, V71, P978
   ZHANG QM, 1994, J APPL PHYS, V1, P75
NR 44
TC 4
PU CHAPMAN HALL LTD
PI LONDON
PA 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN
SN 0022-2461
J9 J MATER SCI
JI J. Mater. Sci.
PD MAY 1
PY 1997
VL 32
IS 9
BP 2381
EP 2386
PG 6
SC Materials Science, Multidisciplinary
GA WY350
UT ISI:A1997WY35000020
ER

PT J
AU deMelo, CP
   Fonseca, TL
TI Polarizabilities of defect-bearing polyenic chains
SO SYNTHETIC METALS
LA English
DT Article
DE ab initio quantum chemical methods and calculations
AB We investigate the effect of the presence of conformational defects on
   the polarization response of conjugated chains. Our ab initio results
   for the polarizabilities of small C2n+1H2n+3+, and C2nH2n+2++ oligomers
   of polyacetylene confirm previous suggestions that the nonlinear
   optical properties of these systems are highly dependent on the type of
   conformational defect introduced. Especially, we call attention to the
   fact that the first hyperpolarizability of soliton bearing chains has
   opposite signs' for positive and negative defects.
RP deMelo, CP, UNIV FED PERNAMBUCO,DEPT FIS,BR-50670901 RECIFE,PE,BRAZIL.
CR ANDERSON T, 1994, BRAZ J PHYS, V24, P756
   DEMELO CP, UNPUB CHEM PHYS LETT
   DEMELO CP, 1988, J CHEM PHYS, V88, P2567
   DUCASSE L, 1993, SYNTHETIC MET, V55, P4536
   FRISCH MJ, 1992, GAUSSIAN 92 REVISION
   KIRTMAN B, 1995, J CHEM PHYS, V102, P5350
   LINDSAY GA, 1995, POLYM 2 ORDER NONLIN
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
NR 8
TC 4
PU ELSEVIER SCIENCE SA LAUSANNE
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD FEB 15
PY 1997
VL 85
IS 1-3
BP 1085
EP 1086
PG 2
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
   Polymer Science
GA WX708
UT ISI:A1997WX70800028
ER

PT J
AU DelNero, J
   Laks, B
   Custodio, R
TI Polycarbonitrile: A semiempirical, ab initio and density functional
   study of molecular stability
SO SYNTHETIC METALS
LA English
DT Article
DE polycarbonitrile; semiempirical; ab initio; density functional method;
   conformational structure
ID POLYMETHINEIMINE; POLYMERS
AB The theoretical literature data with respect to the electronic
   properties of this compound is quite scarce and makes use of the planar
   all-trans structure as the most stable for the calculations. In this
   work semiempirical (AMI and PM3), ab initio (at the Hartree-Fock level)
   and density functional theory (using the correlation functional of
   Vosko, Wille and Nussair) were used to analyse the conformational
   stability of the all-trans and all-cis dimers, trimers and tetramers of
   polycarbonitrile. The semiempirical and ab initio calculations at the
   Hartree-Fock level showed in general that the all-trans structure with
   respect to other conformers is the most unstable structure. The
   inclusion of electronic correlation energy through the MP2 calculations
   or the VWN functional method suggest that the trans structure is the
   most stable. The relative energies calculated at the correlated level
   presented differences around 2 kcal/mol among the different conformers.
   While the all-cis compounds presented a planar structure for any of the
   three methods, the all-trans polymer showed a strong deviation of
   planarity with a set of local minima in its energy surface. These
   results suggest that further calculations on the electronic properties
   of this polymer can be significantly different of those actually
   available in the literature.
C1 UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13083970 CAMPINAS,SP,BRAZIL.
RP DelNero, J, UNIV ESTADUAL CAMPINAS,INST FIS,BR-13083970
   CAMPINAS,SP,BRAZIL.
CR BREDAS JL, 1983, J CHEM PHYS, V78, P6137
   KARPFEN A, 1979, CHEM PHYS LETT, V64, P299
   MOLLER C, 1934, PHYS REV, V46, P618
   SPRINGBORG M, 1991, SYNTHETIC MET, V41, P4393
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
NR 5
TC 6
PU ELSEVIER SCIENCE SA LAUSANNE
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD FEB 15
PY 1997
VL 85
IS 1-3
BP 1127
EP 1128
PG 2
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
   Polymer Science
GA WX708
UT ISI:A1997WX70800049
ER

PT J
AU Eberlin, MN
   Sorrilha, AEPM
   Gozzo, FC
   Pimpim, RS
TI Novel [3+2] 1,3-cycloaddition of the ionized carbonyl ylide +CH2OCH2
   center dot with carbonyl compounds in the gas phase
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID DISTONIC RADICAL CATIONS; ION-MOLECULE REACTIONS; CATALYZED
   DIELS-ALDER; MASS-SPECTROMETRY; PERICYCLIC-REACTIONS; ORBITAL METHODS;
   DIMETHYL ETHER; ETHYLENE-OXIDE; ACYLIUM IONS; BASIS SETS
AB For the first time [3 + 2] 1,3-cycloaddition of an ionized carbonyl
   ylide has been observed in gas phase ion-molecule reactions of
   (+CH2OCH2.) (1) with several carbonyl compounds. The reaction, which
   competes with electrophilic addition that leads to net CH2.+ transfer,
   occurs across the C=O double bond of acetaldehyde and several acyclic
   ketones yielding ionized 4,3-dialkyl-1,3-dioxolanes as unstable
   cycloadducts. Rapid dissociation of the nascent cycloadducts by loss of
   a 4-alkyl substituent as a radical leads to the observed products, that
   is cyclic 3-alkyl-1,3-dioxolanylium ions. Cycloaddition of 1 with
   cyclic ketones yields bicyclic spiro adducts, which also undergo rapid
   dissociation. Cyclobutanone yields ionized 1,3-dioxaspiro[4,3]octane,
   which dissociates exclusively by neutral ethene loss to ionized
   4-methylene-1,3-dioxolane. Ionized 1,3-dioxaspiro[4,4]nonane is formed
   in reactions with cyclopentanone, and its rapid dissociation by loss of
   C3H6 and C2H5. yields the ionized 4-methylene-1,3-dioxolanylium and the
   4-ethenyl-1,3-dioxolanylium product ions, respectively. A systematic
   study of this novel reaction and characterization of the product ions
   carried out via pentaquadrupole (QqQqQ) multiple stage (MS-(1) and MS3)
   mass spectrometric experiments provide experimental evidence for the
   cycloaddition mechanism. The dissociation chemistry observed for the
   cycloaddition products correlate well with their proposed structures
   and was compared to that of both isomeric and reference ions. Ab initio
   MP2/6-31G(d,p)//HF/6-31G(d,p) + ZPE potential energy surface diagrams
   for the reactions of 1 with acetone, fluoroacetone, and
   1,1,1-trifluoroncetone support the operation of the two competitive
   reaction pathways, that is CH2.+ transfer and [3 + 2]
   1,3-cyclonddition/dissociation, and show that the cycloaddition process
   is favored by electron-withdrawing substituents.
RP Eberlin, MN, UNIV CAMPINAS,INST CHEM,CP 6154,BR-13083970
   CAMPINAS,SP,BRAZIL.
CR AUDIER H, 1964, B SOC CHIM FR, P1880
   BASHER MM, IN PRESS
   BAULD NL, 1987, ACCOUNTS CHEM RES, V20, P371
   BAUMANN BC, 1981, J AM CHEM SOC, V103, P6223
   BELLVILLE DJ, 1981, J AM CHEM SOC, V103, P718
   BIANCHI G, 1977, CHEM DOUBLE BON 1 SA, P369
   BLAIR AS, 1973, CAN J CHEM, V51, P703
   BOGER DL, 1987, HETERO DIELSALDER ME
   BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P1
   BOUMA WJ, 1979, J AM CHEM SOC, V101, P5540
   BOUMA WJ, 1980, ADV MASS SPECTROM A, V8, P178
   BOUMA WJ, 1980, J AM CHEM SOC, V102, P2246
   BOUMA WJ, 1983, J AM CHEM SOC, V105, P1743
   BOWERS MT, 1970, J PHYS CHEM-US, V74, P2583
   BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR
   CASTLE LW, 1989, ORG MASS SPECTROM, V24, P637
   DASS C, 1990, MASS SPECTROM REV, V9, P1
   DOMINH T, 1970, J AM CHEM SOC, V92, P1402
   EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
   EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
   EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
   EBERLIN MN, 1993, P 41 ASMS C MASS SPE, P975
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
   FLEMING I, 1976, FRONTIER ORBITALS OR
   FRASERMONTEIRO ML, 1982, J PHYS CHEM-US, V86, P739
   FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
   FRISCH MJ, 1995, GAUSSIAN 94
   FUKUI K, 1971, ACCOUNTS CHEM RES, V4, P57
   GASSMAN PG, 1987, J AM CHEM SOC, V109, P2182
   GILLON A, 1982, TETRAHEDRON, V38, P1477
   GORDON MS, 1980, CHEM PHYS LETT, V76, P163
   GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
   GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
   GOZZO FC, 1996, J CHEM SOC PERK  APR, P587
   GROENEWOLD GS, 1984, J AM CHEM SOC, V106, P539
   HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
   HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HOFFMANN RW, 1968, CHEM BER, V101, P3861
   HOLMES JL, 1975, CAN J CHEM, V53, P2076
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KEOUGH T, 1982, ANAL CHEM, V54, P2540
   KIM T, 1990, J AM CHEM SOC, V112, P6285
   KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
   MATTAY J, 1987, ANGEW CHEM INT EDIT, V26, P825
   MOLLER C, 1934, PHYS REV, V46, P618
   MORAES LAB, UNPUB J ORG CHEM
   MORAES LAB, 1996, J ORG CHEM, V61, P8726
   NOBES RH, 1987, CHEM PHYS LETT, V135, P78
   NOURSE BD, 1992, ORG MASS SPECTROM, V27, P453
   POTTS KT, 1984, 1 3 DIPOLAR CYCLOADD
   RADOM L, 1984, PURE APPL CHEM, V56, P1831
   SCHMIDT RR, 1973, ANGEW CHEM INT EDIT, V12, P212
   SCHOFFSTALL AM, 1990, ADV CYCLOADDITION, V2, P1
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
   SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
   SMITH RL, 1993, J AM CHEM SOC, V115, P10348
   SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
   STIRK KM, 1992, CHEM REV, V92, P1649
   STIRK KM, 1992, J AM CHEM SOC, V114, P8604
   TERLOUW JK, 1983, J CHEM SOC CHEM COMM, P1121
   VANDESANDE CC, 1975, J AM CHEM SOC, V97, P4613
   VANIOTALO P, 1996, P 44 ASMS C MASS SPE, P453
   VANTILBORG MWE, 1980, ORG MASS SPECTROM, V15, P152
   VANVELZEN PNT, 1981, CHEM PHYS LETT, V83, P55
   YAMAGUCHI Y, 1993, J AM CHEM SOC, V115, P5790
   YATES BF, 1984, J AM CHEM SOC, V106, P5805
   YATES BF, 1986, TETRAHEDRON, V42, P6225
   YU SJ, 1993, J AM SOC MASS SPECTR, V4, P117
NR 71
TC 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD APR 16
PY 1997
VL 119
IS 15
BP 3550
EP 3557
PG 8
SC Chemistry, Multidisciplinary
GA WU272
UT ISI:A1997WU27200017
ER

PT J
AU Morgon, NH
   Argenton, AB
   daSilva, MLP
   Riveros, JM
TI Experimental and theoretical characterization of FSi(OCH3)(2)(OCH2)(-):
   A gas phase fluoride-siloxirane adduct
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID OPTIMIZATION TECHNIQUE; SUBSTITUTED SILANES; BASIS-SETS; H SYSTEM;
   ANIONS; THERMOCHEMISTRY; CHEMISTRY; IONS; AFFINITIES; MOLECULES
AB The structural characteristics and reactivity of the gas-phase
   FSi(OCH3)(2)(OCH2)(-) ion were investigated by a combination of ab
   initio calculations and FT-ICR techniques. The theoretical calculations
   for different possible structures reveal that carbanion and alkoxide
   ion type structures lead to ring closure upon geometry optimization to
   yield two different cyclic fluoride-siloxirane structures. The
   FSi(OCH3)(2)(cyc-OCH2)(-) ions containing the elusive siloxirane ring
   are estimated to be extremely stable with respect to F-(69 kcal
   mol(-1)) dissociation in agreement with earlier calculations on simpler
   systems. Experimentally, this ion is formed as a minor product (7%) in
   the gas-phase ion/molecule reaction of F- with Si(OMe)(4) and is
   observed to undergo readily fluoride transfer to the parent neutral.
   This strongly suggests an ion with a structure corresponding to a
   fluoride adduct of a siloxirane species, Reaction of
   FSi(OCH3)(2)(OCH2)(-) with BF3, hexafluorobenzene, and gas-phase acids
   more acidic than ethanol further suggests that this ion is capable of
   reacting as an alkoxide type nucleophile or base. This latter behavior
   has been associated with the possibility of ring opening of the
   siloxirane in the collision complex that mediates this ion/molecule
   reaction.
C1 UNIV SAO PAULO,INST CHEM,BR-05599970 SAO PAULO,BRAZIL.
CR ALLENDORF MD, 1992, J PHYS CHEM-US, V96, P428
   ALLENDORF MD, 1995, J PHYS CHEM-US, V99, P15285
   BARTMESS JE, 1993, NIST STANDARD REFERE
   BENSON SW, 1976, THERMOCHEMICAL KINET, P60
   BIERBAUM VM, 1976, J AM CHEM SOC, V98, P4229
   BOATZ JA, 1988, J AM CHEM SOC, V110, P352
   BRICKHOUSE MD, 1988, J AM CHEM SOC, V110, P2706
   BROOK AG, 1974, ACCOUNTS CHEM RES, V7, P77
   CHU JCS, 1995, J PHYS CHEM-US, V99, P663
   COLVIN EW, 1981, SILICON ORGANIC SYNT, CH5
   CORRIU R, 1980, J ORGANOMET CHEM, V9, P357
   CUSTODIO R, 1992, CAN J CHEM, V70, P580
   CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
   DAMRAUER R, 1990, ORGANOMETALLICS, V9, P999
   DAMRAUER R, 1991, J AM CHEM SOC, V113, P4431
   DAMRAUER R, 1995, CHEM REV, V95, P1137
   DEPUY CH, 1980, J AM CHEM SOC, V102, P5012
   DEPUY CH, 1984, ORGANOMETALLICS, V3, P362
   DEPUY CH, 1987, ACCOUNTS CHEM RES, V20, P127
   DRIESS M, 1996, ANGEW CHEM INT EDIT, V35, P828
   DUNNING TH, 1977, METHODS ELECT STRUCT, P1
   FRERIKS IL, 1991, J AM CHEM SOC, V113, P9119
   GORDON MS, 1992, ADV GAS PHASE ION CH, P203
   GRIMM DT, 1992, J AM CHEM SOC, V114, P1227
   HO P, 1995, J PHYS CHEM-US, V99, P2166
   KREMPP M, 1995, ORGANOMETALLICS, V14, P170
   LARSON JW, 1985, J AM CHEM SOC, V107, P766
   MAIER G, 1994, ANGEW CHEM INT EDIT, V33, P1248
   MAIER G, 1995, J AM CHEM SOC, V117, P12712
   MORGON NH, UNPUB
   MORGON NH, 1995, CHEM PHYS LETT, V235, P436
   MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
   MORGON NH, 1995, J PHYS CHEM-US, V99, P17832
   NICHOLAS JB, 1995, J CHEM PHYS, V103, P8031
   RODRIQUEZ CF, 1992, CAN J CHEM, V70, P2234
   SCHLEGEL HB, 1993, J AM CHEM SOC, V115, P10916
   SCHLEGEL HB, 1993, J PHYS CHEM-US, V97, P8207
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCHWARZ H, 1989, CHEM ORGANIC SILICON, P445
   SHERRILL CD, 1996, J AM CHEM SOC, V118, P7158
   SILVA MLP, 1995, J MASS SPECTROM, V30, P733
   SKANCKE PN, 1994, J PHYS CHEM-US, V98, P3154
   SMITH BJ, 1991, J PHYS CHEM-US, V95, P10549
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6086
   SULLIVAN SA, 1981, J AM CHEM SOC, V103, P480
   TAYLOR WS, 1995, J AM CHEM SOC, V117, P6497
   WEST R, 1971, J AM CHEM SOC, V93, P282
   WETZEL DM, 1989, J AM CHEM SOC, V111, P3835
   ZHONG ML, 1996, J AM CHEM SOC, V118, P636
NR 49
TC 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 19
PY 1997
VL 119
IS 7
BP 1708
EP 1716
PG 9
SC Chemistry, Multidisciplinary
GA WJ097
UT ISI:A1997WJ09700025
ER

PT J
AU Varella, MTD
   Bettega, MHF
   Lima, MAP
TI Cross sections for rotational excitations of CH4, SiH4, GeH4, SnH4 and
   PbH4 by electron impact
SO ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS
LA English
DT Article
ID TEMPERATURE; SCATTERING; MOLECULES
AB We report differential and integral cross sections for rotational
   excitation of XH(4) molecules (X: C, Si, Ge, Sn, Pb) from 7.5-30 eV by
   electron impact. These cross sections were derived from fixed-nuclei
   scattering amplitudes (Bettega et al. 1995) obtained using the
   Schwinger Multichannel Method with Pseudopotentials (SMCPP) (Bettega et
   al. 1993). Our results represent the first rotational excitation cross
   sections for molecules as large as GeH4, SnH4 and PbH4 using entirely
   ab initio procedures. The cross sections for CH4 and SiH4 obtained with
   pseudopotentials are in very good agreement with all-electron
   calculations and with other theoretical results. A comparison between
   our calculated cross sections and experimental data for CH4 is in
   general encouraging, but some discrepancies remain. We found inelastic
   rotational cross sections and momentum transfer cross sections to be
   larger for SiH4, GeH4, SnH4 and PbH4 than for CH4. We could explain
   this feature.
C1 UNIV FED PARANA,DEPT FIS,BR-81531990 CURITIBA,PARANA,BRAZIL.
RP Varella, MTD, UNIV ESTADUAL CAMPINAS,INST FIS GLEB WATAGHIN,BR-13083970
   CAMPINAS,SP,BRAZIL.
CR ABULSABI N, 1983, J CHEM PHYS, V78, P1213
   BETTEGA MHF, 1993, PHYS REV A, V47, P1111
   BETTEGA MHF, 1995, J CHEM PHYS, V103, P10566
   BRESCANSIN LM, 1989, PHYS REV A, V40, P5577
   GARSCADDEN A, 1992, Z PHYS D ATOM MOL CL, V24, P97
   GIANTURCO FA, 1988, PHYS SCRI T, V23, P141
   GIANTURCO FA, 1995, PHYS REV A, V52, P1257
   JAIN A, 1983, J PHYS B-AT MOL OPT, V16, P3077
   JAIN A, 1991, Z PHYS D ATOM MOL CL, V21, P153
   MULLER R, 1985, J PHYS B ATOM MOL PH, V18, P3971
   NATALENSE APP, 1995, PHYS REV A, V52, R1
   ROSE ME, 1957, ELEMENTARY THEORY AN
   SHIMAMURA I, 1984, ELECT MOL COLLISIONS
NR 13
TC 13
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010
SN 0178-7683
J9 Z PHYS D-ATOMS MOL CLUSTERS
JI Z. Phys. D-Atoms Mol. Clusters
PD JAN
PY 1997
VL 39
IS 1
BP 59
EP 67
PG 9
SC Physics, Atomic, Molecular & Chemical
GA WF781
UT ISI:A1997WF78100011
ER

PT J
AU Tostes, JR
   Seidl, PR
   Taft, CA
   Lie, SK
   Carneiro, JWD
   Brown, W
   Lester, WA
TI Carbon-carbon and carbon-hydrogen hyperconjugation in neutral alcohols
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE hyperconjugation; neutral alcohol; carbon-carbon bonding;
   carbon-hydrogen bonding; charge distribution
ID MOLECULAR-ORBITAL THEORY; NEGATIVE HYPERCONJUGATION;
   ELECTRONIC-STRUCTURE; CHARGE-DISTRIBUTION; AB-INITIO; METHYL;
   CONFORMATIONS; CONSEQUENCES; SUBSTITUENTS; SPECTROSCOPY
AB A short review of hyperconjugation is presented emphasizing
   carbon-carbon and carbon-hydrogen hyperconjugation in neutral alcohols
   of different sizes and geometries. Charge distribution and geometrical
   parameters, involving adjacent 'acceptor' carbon-hydrogen and
   carbon-carbon bonds such as those found on methanol ethanol, 2-propanol
   t-butanol, exo and endo norbornol as well as their tetra-penta- and
   hexacyclic analogs in different conformations provide sensitive probes
   for hyperconjugation.
C1 UNIV FED FLUMINENSE,DEPT QUIM GERAL & INORGAN,BR-24249 NITEROI,RJ,BRAZIL.
   UNIV FED FLUMINENSE,DEPT FIS,BR-24249 NITEROI,RJ,BRAZIL.
   UNIV FED RIO DE JANEIRO,ESCOLA QUIM,RIO JANEIRO,BRAZIL.
   CTR BRASILEIRO PESQUISAS FIS,BR-22290 RIO JANEIRO,BRAZIL.
   UNIV CALIF BERKELEY,LAWRENCE BERKELEY LAB,DIV CHEM SCI,BERKELEY,CA 94720.
   UNIV CALIF BERKELEY,DEPT CHEM,BERKELEY,CA 94720.
RP Tostes, JR, UNIV FED FLUMINENSE,DEPT QUIM FIS,BR-24249
   NITEROI,RJ,BRAZIL.
CR ADCOCK W, 1990, J ORG CHEM, V55, P1411
   ALBRIGHT TA, 1985, ORBITAL INTERACTIONS, P171
   APBLETT A, 1991, CAN J CHEM, V69, P1022
   BADER RFW, 1983, J AM CHEM SOC, V105, P5061
   BASSINDALE AR, 1969, ORGANOMET CHEM, V20, P29
   BELLAMY LJ, 1976, J PHYS CHEM-US, V80, P1217
   BROWN KL, 1994, INORG CHEM, V33, P4189
   CARNEIRO JWD, 1987, J MOL STRUCT THEOCHE, V152, P281
   CARNEIRO JWD, 1993, CHEM PHYS LETT, V202, P278
   CHAMBERS RD, 1973, FLUORINE ORGANIC CHE
   CRAMER CJ, 1993, J AM CHEM SOC, V115, P9315
   DACOSTA NB, 1994, J MOL STRUCT, V305, P19
   DAVIS DD, 1981, J ORGANOMET CHEM, V206, P21
   DELLA EW, 1994, J CHEM SOC CHEM COMM, P417
   DESLONGCHAMPS P, 1983, STEREOELECTRONIC EFF
   DILL JD, 1976, J AM CHEM SOC, V98, P1663
   DOLBIER WR, 1984, J AM CHEM SOC, V106, P1871
   FORSYTH DA, 1986, J AM CHEM SOC, V108, P2157
   GONDO Y, 1994, SPECTROCHIM ACTA A, V50, P1451
   HAMLOW HP, 1964, TETRAHEDRON LETT, P2553
   HANSTEIN W, 1970, J AM CHEM SOC, V92, P7476
   HANSTEIN W, 1970, J AM CHEM SOC, V94, P7476
   HERNANDEZ V, 1994, J MOL STRUCT, V324, P189
   IGNATYEV IS, 1989, J MOL STRUCT, V197, P291
   KIRBY AJ, 1983, ANOMERIC EFFECT RELA
   KOPPEL IA, 1994, J AM CHEM SOC, V116, P8654
   LAMBERT JB, 1990, TETRAHEDRON, V46, P2677
   LAMBERT JB, 1992, J AM CHEM SOC, V114, P10246
   LAUBE T, 1995, ACCOUNTS CHEM RES, V28, P399
   LEMIEUX RU, 1974, TETRAHEDRON, V30, P1033
   MURUGAVEL R, 1993, INORG CHEM, V32, P5447
   OLIVER AM, 1989, J AM CHEM SOC, V111, P7259
   PAULING L, 1960, NATURE CHEM BOND, P609
   PITT CG, 1973, J ORGANOMET CHEM, V61, P49
   PROSS A, 1980, J AM CHEM SOC, V102, P2253
   RADOM L, 1972, J AM CHEM SOC, V94, P2371
   RADOM L, 1982, PROGR THEORETICAL OR, P3
   RASTOGI RC, 1992, J INDIAN CHEM SOC, V69, P310
   REED AE, 1983, J CHEM PHYS, V78, P4066
   REED AE, 1987, J AM CHEM SOC, V109, P7362
   REED AE, 1990, J AM CHEM SOC, V112, P1434
   RODRIQUEZ CF, 1993, THEOCHEM-J MOL STRUC, V99, P205
   ROMERS C, 1969, TOP STEREOCHEM, V4, P39
   RONDAN NG, 1985, J AM CHEM SOC, V107, P2099
   SALZNER U, 1992, CHEM PHYS LETT, V401, P190
   SALZNER U, 1993, J AM CHEM SOC, V115, P10231
   SCHLEYER PV, 1983, TETRAHEDRON, V39, P1141
   SCHLEYER PV, 1985, J AM CHEM SOC, V107, P6393
   SCHLEYER PV, 1991, J AM CHEM SOC, V113, P3990
   SCHNEIDER WF, 1995, J AM CHEM SOC, V117, P478
   SEIDL PR, 1988, CHEM PHYS LETT, V1147, P373
   SEIDL PR, 1990, CHEM PHYS LETT, V175, P183
   SEIDL PR, 1990, J MOL STRUCT THEOCHE, V204, P183
   SIEHL HU, 1992, J AM CHEM SOC, V114, P9343
   SKANCKE A, 1992, J MOL STRUCT THEOCHE, V259, P411
   TAFT CA, 1996, CHEM PHYS LETT, V248, P164
   TEH CK, 1989, CHEM PHYS LETT, V158, P351
   TOSTES JGR, 1994, J MOL STRUCT THEOCHE, V306, P1019
   TOSTES JGR, 1995, CHEM PHYS LETT, V237, P33
   VINKOVIC V, 1992, TETRAHEDRON LETT, V33, P7441
   VOLATRON ID, 1994, J PHYS CHEM-US, V98, P10728
   WIBERG KB, 1993, J AM CHEM SOC, V115, P614
   WILLIAMS JO, 1981, J MOL STRUCT, V76, P11
   WOLFE S, 1972, ACCOUNTS CHEM RES, V5, P102
NR 64
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD DEC 11
PY 1996
VL 388
BP 85
EP 95
PG 11
SC Chemistry, Physical
GA WE809
UT ISI:A1996WE80900013
ER

PT J
AU Lins, JOMDL
   Nascimento, MAC
TI Theoretical investigation of the methane activation reaction on
   protonated zeolite from generalized valence-bond plus configuration
   interaction calculations
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE activation energy; methane activation; transition state; zeolite
ID MOLECULAR ELECTROSTATIC POTENTIALS; DISSOCIATION ENERGIES; ATOMIC
   CHARGES; EXCHANGE; DEHYDROGENATION; DENSITY; CD4
AB Generalized valence-bond plus configuration interaction calculations
   are performed to study the activation of methane by a protonated model
   zeolite. The resulting transition state exhibits carbenium-like ion
   character, with a positively charged methyl group and an almost neutral
   hydrogen molecule to be formed. The nature of the transition state is
   similar to that obtained with density functional theory (DFT), in spite
   of significant differences in the geometry of the optimized model
   clusters. The activation barrier for the dehydrogenation process was
   found to be 74.8 kcal mol(-1), which compares well with the DFT value
   of 82.0 kcal mol(-1).
C1 UNIV FED RIO DE JANEIRO,DEPT FISICOQUIM,INST QUIM,BR-21949900 RIO JANEIRO,BRAZIL.
CR BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
   BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
   BROBOWICZ FW, 1977, MODERN THEORETICAL C, CH4
   CARTER EA, 1988, J CHEM PHYS, V88, P3132
   CHIANG AS, 1984, CHEM ENG SCI, V39, P1451
   CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
   DAVIS ME, 1991, IND ENG CHEM RES, V30, P1675
   DAVIS ME, 1995, STUD SURF SCI CATAL, V97, P35
   ESTEVES PM, UNPUB
   EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
   HIROTA E, 1979, J MOL SPECTROSC, V77, P213
   KRAMER GJ, 1993, NATURE, V363, P529
   KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
   MCIVER JW, 1971, CHEM PHYS LETT, V10, P303
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   NASCIMENTO MAC, UNPUB J PHYS CHEM
   RAPPE AK, 1988, GRADGVB PROGRAM
   SILVA SC, 1993, THEOCHEM-J MOL STRUC, V101, P51
   STACH H, 1986, ZEOLITES, V6, P74
   STEFANADIS C, 1991, J MOL CATAL, V67, P363
   VANSANTEN RA, 1995, CHEM REV, V95, P637
   WANG LS, 1993, CATAL LETT, V21, P35
   WOODS RJ, 1990, J COMPUT CHEM, V11, P297
NR 23
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD NOV 18
PY 1996
VL 371
BP 237
EP 243
PG 7
SC Chemistry, Physical
GA WD890
UT ISI:A1996WD89000027
ER

PT J
AU Rocha, WR
   DeAlmeida, WB
TI Quantum-mechanical and molecular mechanics conformational analysis of
   1,5-cyclooctadiene
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
ID GAUSSIAN-TYPE BASIS; MM3 FORCE-FIELD; SEMIEMPIRICAL METHODS;
   ORGANIC-MOLECULES; ORBITAL METHODS; OPTIMIZATION; PARAMETERS
AB The 1,5-cyclooctadiene (COD) molecule can easily form complexes with
   transition metals with the molecular structure of various of these
   complexes being proposed with the aid of X-ray diffraction methods. The
   fact that the complexes exhibit weak metal-GOD bonds makes it very
   important in inorganic synthesis and catalysis. In this work the
   potential energy surface (PES) for the GOD molecule was comprehensively
   investigated first with molecular mechanics (casing the MM3 force
   field); and, in a second stage, at the ab initio Hartree-Fock level of
   theory employing the 3-21G*, 6-31G, and 6-31G* basis sets and also
   including electron correlation effects at the Moller-Plesset
   second-order perturbation theory level. This work revealed that there
   are three distinct conformers of the COD molecule with the predicted
   lowest energy conformation being in agreement with the proposed
   structure based on experimental electron diffraction data. (C) 1997 by
   John Wiley & Sons, Inc.
C1 UFMG,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,ICEX,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR ALLINGER NL, 1975, TETRAHEDRON, V31, P21
   ALLINGER NL, 1989, J AM CHEM SOC, V111, P111
   ALLINGER NL, 1990, J COMPUT CHEM, V11, P848
   ALLINGER NL, 1993, J COMPUT CHEM, V14, P655
   ANET FAL, 1973, J AM CHEM SOC, V95, P3407
   DEALMEIDA WB, 1996, IN PRESS ANN 3 LAT A
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
   DOSSANTOS HF, IN PRESS INF TECNOL
   DOVAL AMG, 1995, J HETEROCYCLIC CHEM, V32, P557
   ERMER O, 1976, J AM CHEM SOC, V98, P3964
   GLICK MD, 1965, J ORGANOMET CHEM, V3, P200
   HAGNER K, 1982, J PHYS CHEM-US, V86, P117
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HENDRA PJ, 1961, SPECTROCHIM ACTA, V17, P913
   HUZINAGA S, 1984, GAUSSIAN BASIS SETS
   IBERS JA, 1962, ACTA CRYSTALLOGR, V15, P923
   LII JH, 1989, J AM CHEM SOC, V111, P8566
   MOLLER C, 1934, PHYS REV, V46, P618
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STEWART JJP, 1989, J COMPUT CHEM, V10, P221
   VANDENHENDE JH, 1963, J AM CHEM SOC, V85, P1009
NR 23
TC 7
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD JAN 30
PY 1997
VL 18
IS 2
BP 254
EP 259
PG 6
SC Chemistry, Multidisciplinary
GA WB112
UT ISI:A1997WB11200009
ER

PT J
AU Wong, PSH
   Ma, SG
   Yang, SS
   Cooks, RG
   Gozzo, FC
   Eberlin, MN
TI Sulfur trifluoride cation (SF3+) affinities of pyridines determined by
   the kinetic method: Stereoelectronic effects in the gas phase
SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
LA English
DT Article
ID MS(3) MASS-SPECTROMETRY; BOND-DISSOCIATION ENERGIES; TRANSITION-METAL
   BONDS; PROTON AFFINITY; CHEMISTRY; CARBONYL; SF6
AB Ion/molecule reactions performed by pentaquadrupole mass spectrometry
   are used to generate cluster ions in which neutral pyridines are bound
   to the polyatomic cation SF3+. The dimeric ions Py(1)SF(3)(+)Py(2),
   where Py(1) and Py(2) represent substituted pyridines, are shown to
   have loosely bound structures by collision-induced dissociation (MS(3))
   experiments and by semiempirical AM1 and ab initio RHF/G-S1G(d, p)
   molecular orbital calculations. In the case of dimers comprised of
   meta- and/or para-substituted pyridines (unhindered pyridines), there
   is an excellent Linear correlation between the logarithm of the
   fragment ion abundance ratio In{[Py(1)(SF3+)]/[Py(SF3+)]} and the
   proton affinities (PA) of the constituent pyridines. Semiempirical
   calculations are used to estimate the SF3+ affinities of pyridines
   which are found to be in the range of 25-31 kcal/mol. The SF3+
   affinities show an excellent linear correlation with the proton
   affinities of the pyridines, and the relationship SF3+ affinity
   (kcal/mol) = 0.73PA - 135.8 between the two affinities is derived. The
   effective temperature of the dimeric ions is determined to be 595 +/-
   69 K, which is in good agreement with values of around 600 K obtained
   experimentally in studies on many other systems activated under similar
   conditions. Ortho-substituted pyridines show lower than expected
   affinities due to stereoelectronic effects that decrease the cation
   affinities. Gas-phase stereoelectronic parameters (S-k) are measured
   from the deviation from the PA correlation and are ordered as 2-MePy
   (-1.09) < 2,6-diMePy (-1.11) < 2-EtPy (-1.91) < 2,3-diMePy (-2.15) <
   2,5-diMePy (-2.25) < 2,4-diMePy (-2.40). Overall, the steric effects
   are larger than those in the corresponding Cl+-bound dimers but smaller
   than those in the bulky [OCNCO+] system. Calculations show evidence for
   agostic bonding that offsets the steric effects in some eases. The
   eclipsed conformation of 2-methylpyridine/SF3+ adduct is found to be
   more stable than the staggered form by 0.8 kcal/mol, due to auxiliary
   agostic bonding between the hydrogen of the ortho methyl substituent
   and the sulfur atom. Calculations on atomic charge distribution reveal
   that the positive charge is mainly on the sulfur atom (+1.99) and the
   charge on the bonding hydrogen S-H-C (+0.07) is considerably lower than
   that on the other two methyl hydrogens (+0.14), which appears to be a
   good indication of agostic binding. The most stable form of the
   2-ethylpyridine/SF3+ adduct is found when the N-C-1-C-alpha-C-beta
   dihedral angle is approximately 60 degrees, where the ethyl hydrogen is
   directed toward the SF3 group via an interesting six-membered ring
   alignment. The experiments show a remarkably small steric effect in
   2,6-dimethylpyridine, probably due to strong agostic bonding enhanced
   by the buttressing effect that shortens the S-H distance. In addition,
   the face-to-face interactions of the F atoms and the H atoms further
   stabilize this form. (C) 1997 American Society for Mass Spectrometry
C1 PURDUE UNIV,BROWN LAB,DEPT CHEM,W LAFAYETTE,IN 47907.
   UNICAMP,INST CHEM,CAMPINAS,SP,BRAZIL.
CR AYNG SS, 1996, J AM SOC MASS SPECTR, V7, P198
   BABCOCK LM, 1981, J CHEM PHYS, V75, P3864
   BOWERS MT, 1979, GAS PHASE ION CHEM, V1
   BROOKHART M, 1983, J ORGANOMET CHEM, V250, P395
   BROOKHART M, 1988, PROG INORG CHEM, V36, P1
   CARMONA E, 1991, J AM CHEM SOC, V113, P4322
   CHEUNG YS, 1995, J AM CHEM SOC, V117, P9725
   COOKS RG, 1989, ADV MASS SPECTROM, V11, P33
   COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
   COOKS RG, 1994, MASS SPECTROM REV, V13, P287
   CORDERMAN RR, 1976, J AM CHEM SOC, V98, P3998
   CRABTREE RH, 1985, INORG CHEM, V24, P1986
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DILLARD JG, 1975, J PHYS CHEM-US, V79, P2455
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   FEHSENFELD FC, 1971, J CHEM PHYS, V54, P438
   FRANKLIN JL, 1972, ION MOL REACTIONS
   FUTRELL JH, 1986, GASEOUS ION CHEM MAS
   GREEN MLH, 1984, PURE APPL CHEM, V56, P47
   HARRISON AG, 1983, CHEM IONIZATION MASS
   HERRON JT, 1987, J PHYS CHEM REF DATA, V16, P1
   HO Y, 1992, J AM CHEM SOC, V114, P10961
   JENKINS HDB, 1994, TETRAHEDRON LETT, V34, P6543
   JONES RW, 1982, J PHYS CHEM-US, V86, P1387
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KOGA N, 1984, J AM CHEM SOC, V106, P4625
   LATIMER DR, 1994, J CHEM PHYS, V101, P3410
   LIAS SG, 1975, ION MOL REACTIONS TH
   MACKAY GI, 1992, INT J MASS SPECTROM, V117, P38
   MAJUMDAR TK, 1992, J AM CHEM SOC, V114, P2897
   MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
   NOURSE BD, 1991, INT J MASS SPECTROM, V106, P249
   OPERTI L, 1988, J AM CHEM SOC, V110, P3847
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
   STONE JA, 1989, INT J MASS SPECTROM, V94, P269
   TAMURA A, 1987, APPL PHYS LETT, V51, P1503
   YANG SS, 1995, J MASS SPECTROM, V30, P184
   YANG SS, 1995, J MASS SPECTROM, V30, P807
   ZANGERLE R, 1993, INT J MASS SPECTROM, V129, P117
NR 40
TC 20
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010
SN 1044-0305
J9 J AMER SOC MASS SPECTROM
JI J. Am. Soc. Mass Spectrom.
PD JAN
PY 1997
VL 8
IS 1
BP 68
EP 75
PG 8
SC Chemistry, Analytical; Chemistry, Physical; Spectroscopy
GA WA210
UT ISI:A1997WA21000010
ER

PT J
AU Olivato, PR
   Rittner, R
TI Conformational and electronic interaction studies of some
   alpha-mono-heterosubstituted carbonyl compounds
SO REVIEWS ON HETEROATOM CHEMISTRY
LA English
DT Article
DE alpha-heterosubstituted carbonyl compounds; conformational isomerism;
   electronic interactions
ID SOLUTION-STATE CONFORMATIONS; VIBRATIONAL ASSIGNMENT;
   INTERNAL-ROTATION; ULTRAVIOLET PHOTOELECTRON; ABINITIO CALCULATIONS;
   MOLECULAR-MECHANICS; MICROWAVE-SPECTRUM; IR SPECTROSCOPY;
   FLUOROACETONE; DERIVATIVES
AB nu(CO) frequencies and intensities of some alpha-heterosubstituted
   carbonyl compounds [XCH(2)C(O)Y: X = F, OMe, NR(2), Cl, Br, SEt, or I;
   and Y = Me, Ph, SR, OMe or NEt(2)], together with molecular mechanics
   calculations indicated the existence of cis-gauche rotational
   isomerism. In solvents of low polarity the gauche rotamers predominate
   over the cis ones, except for the fluoro and methoxy derivatives of
   acetophenone and methyl acetate series. The progressive increase in the
   gauche rotamer population in each series, on going from the fluoro to
   the iodo derivative has been mainly ascribed to the increasing
   contribution of the pi*(CO)/sigma(C-X) and pi*(CO)/n(X) orbital
   interactions. The carbonyl frequency shifts of the cis rotamers are
   interpreted as being due to the substituent field and inductive
   effects, while the corresponding shifts of the gauche rotamers have
   been attributed to an interplay of inductive and hyperconjugative
   effects. The carbonyl shifts induced by inductive (Delta nu(I)), field
   (Delta nu(F)) and hyperconjugative effects (Delta nu(H)) were estimated
   separately for the acetone derivatives. The larger negative carbonyl
   gauche shifts (Delta nu(g)) along with a higher non-additivity effect
   (Delta delta) of the alpha-methylene carbon chemical shifts can be
   associated with stronger pi*(CO)/sigma(C-X) and pi*(CO)/n(X) orbital
   interactions. The higher stabilization of the gauche rotamers for the
   alpha-akylthio carbonyl compounds, the larger nu(CO) gauche shifts and
   the lower non-additivity effect for the alpha-methylene carbon have
   been interpreted as being due to the simultaneous occurrence of
   pi*(CO)/sigma(C-S) and pi(CO)/sigma*(C-S) orbital interactions. The
   progressive bathochromic shifts of n(O) --> pi*(CO) transition for the
   alpha-heterosubstituted ketones, on going from the fluorine to the
   iodine substituent, were mainly ascribed to a contribution of the
   hyperconjugative interaction (pi*(CO)/sigma*(C-X)). Ab initio
   calculations, and photoelectron and electron transmission
   spectroscopies have supported, in general, the mentioned orbital
   interactions.
C1 UNIV SAO PAULO,INST QUIM,BR-05599970 SAO PAULO,BRAZIL.
   UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
   BASSO EA, 1993, J ORG CHEM, V58, P7865
   BONNIOL A, 1979, CR ACAD SCI C CHIM, V288, P407
   CANTACUZENE D, 1976, CAN J CHEM, V54, P2759
   CANTACUZENE J, 1972, TETRAHEDRON, V28, P717
   COOK BR, 1967, J CHEM PHYS, V47, P1700
   DISTEFANO G, 1991, J CHEM SOC P2, P1195
   DUDDECK H, 1986, TOP STEREOCHEM, V16, P219
   DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
   DURIG JR, 1991, SPECTROCHIM ACTA A, V47, P105
   DURIG JR, 1992, J RAMAN SPECTROSC, V23, P253
   EISENSTEIN O, 1974, TETRAHEDRON, V30, P1717
   FAUSTO R, 1986, J MOL STRUCT, V144, P225
   FRASER RR, 1995, CAN J CHEM, V73, P88
   GASET A, 1968, B SOC CHIM FR, P4108
   GODUNOV IA, 1994, RUSS CHEM B, V43, P723
   GODUNOV IA, 1994, ZH FIZ KHIM, V68, P1057
   GOUGH TE, 1967, CAN J CHEM, V45, P2529
   GUERRERO SA, 1983, J CHEM SOC PERK T 2, P1053
   GUTIERREZ MA, 1982, ORG MAGN RESONANCE, V20, P20
   JONES D, 1994, J CHEM SOC P2, P1651
   KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P1124
   KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P3577
   KARABATSOS GJ, 1970, TOP STEREOCHEM, V5, P167
   KLAPSTEIN D, 1988, CAN J SPECTROSC, V33, P161
   LUMBROSO H, 1987, J MOL STRUCT, V162, P131
   LUMBROSO H, 1987, J MOL STRUCT, V162, P141
   LUMBROSO H, 1989, J MOL STRUCT, V212, P113
   MARTINS MAP, 1981, SPECTROSC LETT, P505
   MAURY C, 1991, J MOL STRUCT, V246, P267
   MEYER AY, 1980, ISRAEL J CHEM, V20, P57
   MEYER M, 1992, CHEM BRIT, P785
   MIDO Y, 1985, J MOL STRUCT, V129, P253
   NESMEYANOV AN, 1975, DOKL AKAD NAUK, V220, P162
   OIKE F, 1992, THESIS U SAO PAULO
   OLIVATO PR, UNPUB
   OLIVATO PR, 1979, J CHEM PHYS, V70, P1677
   OLIVATO PR, 1984, J CHEM SOC P2, P1505
   OLIVATO PR, 1985, PHOSPHORUS SULFUR, V24, P225
   OLIVATO PR, 1990, J CHEM SOC P2, P465
   OLIVATO PR, 1990, PHOSPHORUS SULFUR, V47, P391
   OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
   OLIVATO PR, 1992, CAN J APPL SPECTROSC, V37, P37
   OLIVATO PR, 1992, PHOSPHORUS SULFUR, V71, P107
   OLIVATO PR, 1993, PHOSPHORUS SULFUR, V82, P7
   OLIVATO PR, 1994, PHOSPHORUS SULFUR, V95, P391
   OLIVATO PR, 1995, SPECTROCHIM ACTA A, V51, P1479
   PAN YH, 1967, CAN J CHEM, V45, P2943
   PHAN HV, 1990, J MOL STRUCT THEOCHE, V209, P333
   RAMARAO M, 1976, ORG MAGN RESONANCE, V39, P329
   RITTNER R, 1987, RECENT ADV ORGANIC N, P127
   RITTNER R, 1988, MAGN RESON CHEM, V26, P51
   RITTNER R, 1988, MAGN RESON CHEM, V26, P73
   RITTNER R, 1988, QUIM NOVA, V8, P170
   RITTNER R, 1990, SPECTROSC INT J, V8, P173
   RITTNER R, 1991, SPECTROSC-INT J, V9, P31
   SAEGEBARTH E, 1970, J CHEM PHYS, V52, P3555
   SHAPIRO BL, 1973, J MAGN RESON, V10, P65
   SUMATHI R, 1993, J MOL STRUCT THEOCHE, V280, P49
   VANDERVEKEN BJ, 1993, J MOL STRUCT, V293, P55
   VARNALI T, 1993, J MOL STRUCT THEOCHE, V280, P169
   WLADISLAW B, 1980, J CHEM SOC P2, P453
   YAMAGUCHI I, 1995, J MOL STRUCT, V352, P309
   YATES K, 1969, SPECTROCHIM ACTA A, V25, P765
   YATES P, 1961, CAN J CHEM, V39, P1977
NR 65
TC 16
PU MYU K K
PI TOKYO
PA SCIENTIFIC PUBLISHING DIV, 2-32-3 SENDAGI, BUNKYO-KU, TOKYO 113, JAPAN
SN 0915-6151
J9 REV HETEROATOM CHEM
JI Rev. Heteroatom Chem.
PY 1996
VL 15
BP 115
EP 159
PG 45
SC Chemistry, Multidisciplinary
GA VV529
UT ISI:A1996VV52900006
ER

PT J
AU Camargo, AC
   Igualada, JA
   Beltran, A
   Llusar, R
   Longo, E
   Andres, J
TI An ab initio perturbed ion study of structural properties of TiO2,
   SnO2, and GeO2 rutile lattices
SO CHEMICAL PHYSICS
LA English
DT Article
ID VANADIUM-DOPED ZIRCON; PERIODIC HARTREE-FOCK; TITANIUM-DIOXIDE;
   ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURES; OXIDE; PRINCIPLES;
   POLYMORPHS; DYNAMICS; SURFACES
AB This work describes a theoretical quantum mechanical study on TiO2,
   SnO2 and GeO2 rutile structures in order to characterize the geometric,
   mechanical, thermodynamic and electronic properties of these systems.
   The doping processes of V4+ at the sixfold-coordinated site have been
   studied with the aim of determining the relative stability of pure and
   doped structures. Ab initio perturbed ion calculations with Slater-type
   orbitals for representing atomic centers and large cluster models have
   been used. Local geometry optimizations have been performed to
   determine the lattice energy, lattice parameters and bulk modulus, as
   well as the force constant and vibrational frequencies (nu) of the
   breathing vibrational modes, a(1g), in the sixfold-coordinated site.
   Numerical results are analyzed and compared with experimental data, the
   geometrical distances obtained by computer simulation being in
   agreement with the reported experimental values. The difference in
   energy for the substitution of Ti4+, Sn4+ and Ge4+ for V4+ in TiO2,
   SnO2 and GeO2, respectively is very dependent on the method used to
   represent these doping processes. The TiO2, SnO2 lattices show a
   decrease in the nu value from the pure to the doped structure while a
   opposite trend is obtained for the GeO2 structure. The validity of the
   methodology is discussed.
C1 UNIV JAUME 1,DEPT EXPT SCI,CASTELLO 12080,SPAIN.
   UNIV FED SAO CARLOS,DEPT CHEM,BR-131560 SAO CARLOS,BRAZIL.
CR ANDRES J, 1994, CHEM PHYS LETT, V221, P249
   ANDRES J, 1995, CHEM PHYS LETT, V236, P521
   ANDRES J, 1995, J PHYS CHEM SOLIDS, V56, P901
   ANDRES J, 1995, J PHYS CHEM-US, V99, P8092
   ANDRES J, 1995, THEOCHEM-J MOL STRUC, V330, P313
   BAUR WH, 1956, ACTA CRYSTALLOGR, V9, P515
   BELTRAN A, 1993, J PHYS CHEM-US, V97, P2555
   BELTRAN A, 1994, J PHYS CHEM-US, V98, P7741
   BELTRAN A, 1995, INT J QUANTUM CHEM S, V29, P685
   BELTRAN A, 1995, J PHYS CHEM-US, V99, P6493
   BIRCH F, 1952, J GEOPHYS RES, V57, P227
   BONIFACIC V, 1982, J CHEM PHYS, V76, P2537
   BURDETT JK, 1985, INORG CHEM, V24, P2244
   BURDETT JK, 1987, J AM CHEM SOC, V109, P3639
   CATLOW CRA, 1990, NATURE, V347, P243
   CATLOW CRA, 1993, J SOLID STATE CHEM, V106, P13
   CHAKRAVORTY SJ, 1989, PHYS REV A, V39, P2290
   CLEMENTI E, 1974, ATOM DATA NUCL DATA, V14, P177
   DEBIASI RS, 1994, J PHYS CHEM SOLIDS, V55, P453
   DIXON R, 1995, J CHEM SOC FARADAY T, V91, P3495
   FAHMI A, 1993, PHYS REV B, V47, P11717
   GLASSFORD KM, 1992, PHYS REV B, V46, P1284
   HAGFELDT A, 1992, INT J QUANTUM CHEM, V44, P477
   HAGFELDT A, 1994, INT J QUANTUM CHEM, V49, P97
   HAGFELDT A, 1994, SOL ENERG MAT SOL C, V31, P481
   HAZEN RM, 1981, J PHYS CHEM SOLIDS, V42, P143
   HUZINAGA S, 1971, J CHEM PHYS, V55, P5543
   HUZINAGA S, 1973, ADV QUANTUM CHEM, V7, P1987
   JOLLY LH, 1994, EUR J MINERAL, V6, P7
   KOHL D, 1989, SENSOR ACTUATOR, V18, P71
   LASSALETTA G, 1995, J PHYS CHEM-US, V99, P1484
   LIAO KH, 1995, J PHYS CHEM-US, V99, P4569
   LINSEBIGLER AL, 1995, CHEM REV, V95, P735
   LUANA V, 1988, J MOL STRUCT THEOCHE, V166, P215
   LUANA V, 1990, PHYS REV B, V41, P3800
   LUANA V, 1990, PHYS REV B, V42, P1791
   LUANA V, 1992, CLUSTER MODELS SURFA, P605
   LUANA V, 1992, J CHEM PHYS, V97, P6544
   LUANA V, 1993, COMPUT PHYS COMMUN, V77, P107
   MARUTHAMUTHU P, 1995, J PHYS CHEM-US, V99, P3636
   MCWEENY R, 1959, P ROY SOC LOND A MAT, V253, P242
   NAKATO Y, 1986, J PHYS CHEM-US, V90, P6210
   NICOLOSO N, 1990, BER BUNSEN PHYS CHEM, V94, P731
   OKADA F, 1990, J PHYS CHEM-US, V94, P5900
   POUMELLEC B, 1991, J PHYS-CONDENS MAT, V3, P8195
   POWELL MJD, 1970, NUMERICAL METHODS NO
   RAMAMOORTHY M, 1994, PHYS REV B, V49, P16721
   RAMANA MV, 1988, J CHEM PHYS, V88, P2637
   SAKAI Y, 1985, J CHEM PHYS, V82, P270
   SAUER J, 1989, CHEM REV, V363, P493
   SAUER J, 1993, NATURE, V363, P493
   SCHINDLER KM, 1990, J PHYS CHEM-US, V94, P8222
   SILVI B, 1990, J CHEM PHYS, V93, P2637
   SILVI B, 1991, J PHYS CHEM SOLIDS, V52, P1005
   SIROKY K, 1994, TALANTA, V41, P1735
   VOS K, 1977, J PHYS C SOLID STATE, V10, P917
   WOLD A, 1993, SOLID STATE CHEM SYN
   XU WX, 1996, J SOLID STATE CHEM, V121, P301
   YU N, 1995, PHYS REV B, V49, P4768
NR 59
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD DEC 1
PY 1996
VL 212
IS 2-3
BP 381
EP 391
PG 11
SC Physics, Atomic, Molecular & Chemical
GA VV617
UT ISI:A1996VV61700010
ER

PT J
AU Teles, LK
   Scolfaro, LMR
   Enderlein, R
   Leite, JR
   Josiek, A
   Schikora, D
   Lischka, K
TI Structural properties of cubic GaN epitaxial layers grown on beta-SiC
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; GALLIUM NITRIDE; AB-INITIO; INTERFACES
AB Self-consistent Eight-binding total energy calculations are performed
   to study the deposition of a few layers of cubic GaN on (100) beta-SiC
   substrates. Cohesion energies, atomic displacements, dangling bond
   occupancies and surface reconstructions are calculated for a variety of
   epitaxial systems including monolayers of either Ga or N as well as
   single and double bilayers of GaN on either Si or C terminated
   substrates. The SiC substrates and Ga-N epitaxial layers are
   represented by 2x2 supercells of 9 Si and C monolayers plus the
   respective number of monolayers of Ga and N atoms. Depending on the
   system, surface atoms dimerize either symmetrically or asymmetrically
   resulting in either 2x1, c-2x2, or 2x2 surface reconstructions. At the
   substrate-epitaxial-layer interfaces, N binds stronger than Ga to
   either Si or C. Interface mixing is found to be energetically not
   advantageous for both C- and Si-terminated substrates, although for the
   latter the obtained small energy differences may suggest the
   possibility of mixing. (C) 1996 American Institute of Physics.
C1 UNIV BORDEAUX 1,LAB COMPOSITES THERMOSTRUCT,F-33600 PESSAC,FRANCE.
   UNIV GESAMTHSCH PADERBORN,FB PHYS 6,D-33098 PADERBORN,GERMANY.
RP Teles, LK, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05389970 SAO
   PAULO,BRAZIL.
CR ALVES JLA, COMMUNICATION
   ALVES JLA, IN PRESS MAT SCI ENG
   BECHSTEDT F, 1985, PHYS STAT US SOLID B, V131, P646
   BECHSTEDT F, 1988, SEMICONDUCTOR SURFAC
   BRANDT O, 1995, PHYS REV B, V52, R2253
   CAPAZ RB, 1995, PHYS REV B, V51, P17755
   CHURCHER N, 1986, J PHYS C SOLID STATE, V19, P4413
   HARBEKE G, 1982, PHYSICS GROUP 4 ELEM, V17
   HARRISON WA, 1980, ELECTRONIC STRUCTURE
   JOSIEK A, 1992, SUPERLATTICE MICROST, V12, P225
   KACKELL P, 1994, PHYS REV B, V50, P17037
   MAJEWSKI JA, 1987, PHYS REV B, V35, P9666
   NAKAMURA S, 1994, APPL PHYS LETT, V64, P1687
   NAKAMURA S, 1996, JPN J APPL PHYS 2, V35, L74
   NEUGEBAUER J, 1990, J CRYST GROWTH, V101, P332
   NEUGEBAUER J, 1992, SUPERLATTICE MICROST, V11, P393
   PAISLEY MJ, 1989, J VAC SCI TECHNOL A, V7, P701
   PARRY DE, 1975, SURF SCI, V49, P433
   PETALAS J, 1995, PHYS REV B, V52, P8082
   POLLMANN J, 1980, FESTKORPERPROBLEME, V20, P117
   SASAKI T, 1988, J APPL PHYS, V64, P4531
   SCHIKORA D, IN PRESS
   SHERWIN ME, 1991, J APPL PHYS, V69, P8423
   SITAR Z, 1992, J MATER SCI LETT, V11, P261
   STRITE S, 1991, J VAC SCI TECHNOL B, V9, P1924
NR 25
TC 9
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD DEC 1
PY 1996
VL 80
IS 11
BP 6322
EP 6328
PG 7
SC Physics, Applied
GA VV267
UT ISI:A1996VV26700036
ER

PT J
AU Zeng, Z
   Ellis, DE
   Guenzburger, D
   BaggioSaitovitch, E
TI Spin density and magnetism of rare-earth nickel borocarbides:
   RNi(2)B(2)C
SO PHYSICAL REVIEW B
LA English
DT Article
ID ANTIFERROMAGNETIC SUPERCONDUCTOR HONI2B2C; ELECTRONIC-STRUCTURE; BORIDE
   CARBIDE; R=RARE EARTH; INTERMETALLIC COMPOUNDS; QUATERNARY COMPOUNDS;
   SINGLE-CRYSTALS; ENERGY-GAP; B-C; YNI2B2C
AB The rare-earth spin moments in quarternary borocarbides RNi(2)B(2)C,
   R=Pr, Nd, Sm, Gd, Ho, Tm are determined by self-consistent density
   functional theory, using the embedded cluster formalism. Spin-polarized
   electronic structure calculations considering antiferromagnetic
   coupling between R-C layers are performed. Spin polarization of the
   lattice is examined in detail and related to observed ferromagnetic
   ordering in R-C layers and antiferromagnetic ordering between layers.
   The observed superconductivity of Y, Lu, Tm, Er, and Ho compounds and
   regions of coexistence with antiferromagnetism in Tm and Ho is
   discussed in terms of the magnitude of R moments, differences in R
   4f-5d hybridization, and resulting lattice polarization.
RP Zeng, Z, CTR BRASILEIRO PESQUISAS FIS,RUA XAVIER SIGAUD 150,BR-22290180
   RIO JANEIRO,BRAZIL.
CR ABRIKOSOV AA, 1961, SOV PHYS JETP, V12, P1243
   ALLENO E, 1995, PHYSICA C, V242, P169
   BAERENDS EJ, 1973, CHEM PHYS, V2, P41
   BALTENSPERGER W, 1963, PHYS KONDENS MATER, V1, P20
   BUDKO SL, 1995, PHYS REV B, V52, P305
   CANEPA F, 1994, NUOVO CIMENTO D, V16, P1857
   CARTER SA, 1995, PHYS REV B, V51, P12644
   CAVA RJ, 1994, NATURE, V367, P146
   CAVA RJ, 1994, NATURE, V367, P252
   CHO BK, 1995, PHYS REV B, V52, R3844
   COEHOORN R, 1994, PHYSICA C, V228, P331
   DECROUX M, 1982, SUPERCONDUCTIVITY TE, V34, P57
   DEGENENS PG, 1966, CR HEBD ACAD SCI, V247, P1836
   DEGENNES PG, 1962, J PHYS RADIUM, V23, P510
   DELLEY B, 1982, J CHEM PHYS, V76, P1949
   DUNLAP BD, 1983, J MAGN MAGN MATER, V37, P211
   DUNLAP BD, 1988, PHYS REV B, V39, P6224
   EISAKI H, 1994, PHYS REV B, V50, P647
   EKINO T, 1994, PHYSICA C, V235, P2529
   ELLIOTT RJ, 1972, MAGNETIC PROPERTIES, P1
   ELLIS DE, 1970, PHYS REV           B, V2, P2887
   ELLIS DE, 1979, PHYS REV B, V20, P1198
   ELLIS DE, 1994, ELECT DENSITY FUNCTI, P263
   ELMASSALAMI M, 1995, J PHYS-CONDENS MAT, V7, P10015
   ELMASSALAMI M, 1995, PHYSICA C, V244, P41
   FISCHER O, 1990, FERROMAGNETIC MATERI, V5, P465
   FULDE P, 1966, PHYS REV, V141, P275
   GINZBURG VL, 1957, SOV PHYS JETP, V4, P153
   GRIGEREIT TE, 1994, PHYS REV LETT, V73, P2756
   GUO GY, 1990, PHYS REV B, V41, P6372
   GUPTA LC, 1994, PHYSICA C 1, V235, P150
   HALLEY JW, 1988, THEORIES HIGH TEMPER
   HANSON ME, 1995, PHYS REV B, V51, P674
   HUANG Q, 1995, PHYS REV B, V51, P3701
   JOHNSTONHALPERIN E, 1995, PHYS REV B, V51, P12852
   KITTEL C, 1968, SOLID STATE PHYS, V22, P1
   KOHARA T, 1995, PHYS REV B, V51, P3985
   LAWRIE DD, 1995, PHYSICA C, V245, P159
   LEE JI, 1994, PHYS REV B, V50, P4030
   LEGVOLD S, 1980, FERROMAGNETIC MATERI, V1, P183
   MAPLE MB, 1968, PHYS LETT A, V26, P513
   MAPLE MB, 1973, MAGNETISM, V5, P289
   MAPLE MB, 1987, PHYSICA B & C, V148, P155
   MAPLE MB, 1989, J LESS-COMMON MET, V149, P405
   MATTHEISS LF, 1994, PHYS REV B, V49
   MATTHEISS LF, 1994, SOLID STATE COMMUN, V91, P587
   MULDER FM, 1995, J ALLOY COMPD, V217, P118
   MULLERHARTMANN E, 1971, PHYS REV LETT, V26, P428
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
   MURAYAMA C, 1994, PHYSICA C 4, V235, P2545
   NAGARAJAN R, 1994, PHYS REV LETT, V72, P274
   PARR RG, 1989, DENSITY FUNCTIONAL T
   PELLEGRIN E, 1995, PHYS REV B, V51, P16159
   PICKETT WE, 1994, PHYS REV LETT, V72, P3702
   PRASSIDES K, 1995, EUROPHYS LETT, V29, P641
   RHEE JY, 1995, PHYS REV B, V51, P15585
   RIBLET G, 1971, SOLID STATE COMMUN, V9, P1663
   ROSEN A, 1976, J CHEM PHYS, V65, P3629
   SANCHEZ DR, 1996, PHYS REV LETT, V76, P507
   SCHMIDT H, 1994, PHYSICA C, V229, P315
   SIEGRIST T, 1994, NATURE, V367, P254
   SINHA SK, 1995, PHYS REV B, V51, P681
   SLATER JC, 1974, QUANTUM THEORY MOL S, V4
   SUN YY, 1994, PHYSICA C, V230, P435
   SZYTULA A, 1994, HDB CRYSTAL STRUCTUR
   VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P129
   XU M, 1994, PHYSICA C 4, V235, P2533
   XU M, 1994, PHYSICA C, V227, P321
   ZARESTKY J, 1995, PHYS REV B, V51, P678
   ZENG Z, IN PRESS PHYSICA C
   ZENG Z, 1996, PHYS REV B, V53, P6613
   ZHOU H, 1987, PHYS REV B, V36, P594
NR 72
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 1
PY 1996
VL 54
IS 18
BP 13020
EP 13029
PG 10
SC Physics, Condensed Matter
GA VT682
UT ISI:A1996VT68200060
ER

PT J
AU Morgon, NH
   Giroldo, T
   Linnert, HV
   Riveros, JM
TI Isomerization of the molecular ion of allyl bromide
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID DISTONIC RADICAL CATIONS; MASS-SPECTROMETRY NRMS; X = CL; GAS-PHASE;
   AB-INITIO; OPTIMIZATION TECHNIQUE; IONIZATION ENERGIES;
   ORGANIC-MOLECULES; SPECTRA; NEUTRALIZATION
AB The molecular ion of allyl bromide has been characterized by nb initio
   molecular orbital calculations at the MP4(SDTQ) level with optimized
   geometries at the MP2 level in order to account for experimental data
   suggesting the presence of two isomers. The calculations predict the
   existence of an allyl bromide molecular ion with structural parameters
   resembling the neutral species except for a lengthening of the double
   bond. This structure is calculated to be more stable than a cyclic
   bromonium radical cation structure, Rearrangement of the molecular ion
   of allyl bromide to that of 1-bromopropene is shown to be possible
   through a transition state represented by the distonic ion,
   (BrHCCH2CH2.)-Br-+, lying just below the dissociation limit of the
   allyl bromide molecular ion. Studies based on ion/molecule reactivity
   of C3H5Br.+ ions generated from allyl bromide and 1-bromopropene with
   ammonia, methanol, allyl bromide, and charge transfer reactions
   strongly suggest that a small fraction of the molecular ions of allyl
   bromide isomerize to the 1-bromopropene molecular ion as predicted by
   the calculation. These experiments cannot establish unequivocally
   whether the allyl bromide molecular ions retain the structure of the
   parent molecules as predicted by the calculations or undergo
   ion/molecule reactions mediated by a bromonium type complex. Charge
   transfer experiments also suggest the adiabatic ionization energy of
   allyl bromide to be 9.83 +/- 0.07 eV.
C1 UNIV SAO PAULO,INST QUIM,BR-05599970 SAO PAULO,BRAZIL.
CR BERMAN DW, 1979, J AM CHEM SOC, V101, P1239
   BIERI G, 1981, J ELECTRON SPECTROSC, V23, P281
   BIERI G, 1982, J ELECTRON SPECTRY R, V27, P129
   BLANCHETTE MC, 1987, ORG MASS SPECTROM, V22, P701
   BOWEN RD, 1991, ACCOUNTS CHEM RES, V24, P364
   BOWERS MT, 1980, J AM CHEM SOC, V102, P4830
   BOYS SF, 1970, MOL PHYS, V19, P553
   BURGERS PC, 1983, ORG MASS SPECTROM, V18, P596
   BUSCH KL, 1988, MASS SPECTROMETRY MA
   CARRUPT PA, 1991, INT J MASS SPECTROM, V110, R1
   CUSTODIO R, 1992, CAN J CHEM, V70, P580
   CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
   CUSTODIO R, 1993, J MOL STRUCT THEOCHE, V281, P75
   DUNNING TH, 1977, METHODS ELECTRONIC S, CH1
   DURIG JR, 1980, J PHYS CHEM-US, V94, P3543
   FOX T, 1996, J PHYS CHEM-US, V100, P2950
   FRISCH MJ, 1992, GAUSSIAN 92 REVISION
   GAUMANN T, 1990, HELV CHIM ACTA, V73, P1215
   GAUMANN T, 1990, HELV CHIM ACTA, V73, P2218
   GAUMANN T, 1991, J AM SOC MASS SPECTR, V2, P372
   GIROLDO T, UNPUB
   GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
   HALGREN TA, 1977, CHEM PHYS LETT, V49, P225
   HAMILTON TP, 1990, J AM CHEM SOC, V112, P8260
   HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
   HECK AJR, 1995, J AM SOC MASS SPECTR, V6, P11
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HOLMES JL, COMMUNICATION
   HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
   HOLMES JL, 1989, MASS SPECTROM REV, V8, P513
   HONOVICH JP, 1985, INT J MASS SPECTROM, V42, P33
   HUDSON CE, 1995, J AM SOC MASS SPECTR, V6, P1037
   ISOLANI PC, 1992, QUIM NOVA, V15, P351
   LAY JO, 1983, J AM CHEM SOC, V105, P3445
   LIAS SG, 1976, INT J CHEM KINET, V8, P725
   LIAS SG, 1978, CHEM PHYS LETT, V54, P147
   LIAS SG, 1978, J AM CHEM SOC, V100, P6027
   LIAS SG, 1984, J PHYS CHEM REF DATA, V13, P695
   LIAS SG, 1994, NIST STANDARD REFERE
   MAYER I, 1992, CHEM PHYS LETT, V191, P497
   MCADOO DJ, 1993, ACCOUNTS CHEM RES, V26, P295
   MCLAFFERTY FW, 1962, ANAL CHEM, V34, P2
   MEOTNER M, 1976, CHEM PHYS LETT, V4, P484
   MINES GW, 1973, SPECTROCHIM ACTA A, V29, P1377
   MORGON NH, 1995, CHEM PHYS LETT, V235, P436
   MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
   NAGY PI, 1995, J CHEM PHYS, V102, P6812
   RADOM L, 1992, INT J MASS SPECTROM, V118, P339
   REYNOLDS CH, 1992, J AM CHEM SOC, V114, P8676
   RIVEROS JM, 1983, INT J MASS SPECTROM, V47, P183
   RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
   RIVEROS JM, 1991, RAPID COMMUN MASS SP, V5, P387
   SCHEI H, 1982, J MOL STRUCT, V17, P269
   SEVILLA MD, 1995, J PHYS CHEM-US, V99, P1060
   SHALER TA, 1994, J AM CHEM SOC, V116, P9222
   SKANCKE A, 1995, J PHYS CHEM-US, V99, P13886
   STIRK KM, 1992, CHEM REV, V92, P1649
   STIRK KM, 1992, J AM CHEM SOC, V114, P8604
   STIRK KM, 1994, INT J MASS SPECTROM, V130, P187
   TERLOUW JK, 1987, ANGEW CHEM INT EDIT, V26, P805
   TRAEGER JC, 1984, INT J MASS SPECTROM, V58, P259
   VANTILBORG MWEM, 1983, INT J MASS SPECTROM, V54, P299
   WADT WR, 1985, J CHEM PHYS, V82, P284
   WESDEMIOTIS C, 1987, CHEM REV, V87, P485
   WORRELL CW, 1974, J ELECTRON SPECTROSC, V3, P359
   XANTHEAS SS, 1996, J PHYS CHEM-US, V100, P3989
   YATES BF, 1986, TETRAHEDRON, V42, P6225
NR 67
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD NOV 14
PY 1996
VL 100
IS 46
BP 18048
EP 18056
PG 9
SC Chemistry, Physical
GA VT708
UT ISI:A1996VT70800008
ER

PT J
AU Araujo, RCMU
   Ramos, MN
TI An ab initio study of the molecular properties of the acetylene-HX
   hydrogen complexes
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE ab initio calculation; acetylene; hydrogen bonding; infrared; molecular
   complex
ID VANDERWAALS MOLECULES; ROTATIONAL SPECTRUM; ATOMIC CHARGES; GAS-PHASE;
   ABINITIO; INTENSITIES; DIMER; HCL; HF
AB MP2/6-311++G** ab initio molecular orbital calculations indicate that
   larger Delta Q(corr) intermolecular charge transfer values are
   associated with stronger hydrogen bonds in the acetylene-HX complexes
   where X is F, Cl CN, NC or CCH. The MP2/6-311++G** H-bond lengths are
   in very good agreement with the corresponding experimental values.
   The H-X stretching frequency is shifted downward upon H-bond formation.
   Its displacement shows an excellent linear correlation with the
   intermolecular charge transfer, in agreement with the experimental
   behaviour previously observed in such complexes. As expected, the more
   pronounced effect on the IR intensities occurs with the H-X stretching
   intensity, and it is much enhanced after complexation owing to the
   charge-flux term.
   The new low-frequency vibrational modes arising from complexation show
   several interesting features and their normal modes are schematically
   described herein.
C1 UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50739901 RECIFE,PE,BRAZIL.
RP Araujo, RCMU, UNIV FED PARAIBA,DEPT QUIM,BR-58036300 JOAO
   PESSOA,PARAIBA,BRAZIL.
CR ALDRICH PD, 1983, J CHEM PHYS, V78, P3521
   ARAUJO RCMU, 1995, SPECTROCHIM ACTA A, V51, P821
   BOYS SF, 1970, MOL PHYS, V19, P553
   BUCKINGHAM AD, 1986, INT REV PHYS CHEM, V5, P107
   BUCKINGHAM AD, 1988, CHEM REV, V88, P963
   CRAW JS, 1991, SPECTROCHIM ACTA A, V47, P69
   DELBENE JE, 1992, INT J QUANTUM CHEM Q, V26, P527
   FRASER GT, 1988, J CHEM PHYS, V89, P6028
   FRISCH MJ, 1992, GAUSSIAN 92 GAUSS IN
   GUSSONI M, 1984, J MOL STRUCT, V113, P323
   KESTNER NR, 1968, J CHEM PHYS, V48, P252
   KING WT, 1976, J PHYS CHEM-US, V80, P2521
   LEGON AC, 1980, P ROY SOC LOND A MAT, V370, P213
   LEGON AC, 1981, J CHEM PHYS, V75, P625
   LEGON AC, 1986, CHEM REV, V86, P635
   MCDONALD SA, 1980, J AM CHEM SOC, V102, P2892
   POPLE JA, 1982, CHEM PHYS LETT, V91, P185
   POPLE JA, 1983, J CHEM PHYS, V78, P4063
   RAMOS MN, 1988, CHEM PHYS LETT, V151, P397
   RAMOS MN, 1991, J MOL STRUCT, V248, P281
   READ WG, 1982, J CHEM PHYS, V76, P2238
   SVEIN S, 1993, J CHEM PHYS, V98, P2170
   TANG TH, 1990, J MOL STRUCT THEOCHE, V207, P319
   TOSTES JGR, 1987, J PHYS CHEM-US, V91, P3157
NR 24
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD AUG 26
PY 1996
VL 366
IS 3
BP 233
EP 240
PG 8
SC Chemistry, Physical
GA VP836
UT ISI:A1996VP83600009
ER

PT J
AU Sorrilha, AEPM
   Gozzo, FC
   Pimpim, RS
   Eberlin, MN
TI Multiple stage pentaquadrupole mass spectrometry for generation and
   characterization of gas-phase ionic species. The case of the
   PyC(2)H(5)(+center dot) isomers
SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
LA English
DT Article
ID DISTONIC RADICAL CATIONS; MOLECULAR-ORBITAL METHODS; REACTIVE
   COLLISIONS; BASIS SETS; CHEMISTRY; IDENTIFICATION; AMMONIA; OXIDE;
   DERIVATIVES; INSTRUMENT
AB Eleven isomers with the PyC(2)H(5)(+.) composition, which include three
   conventional (1-3) and eight distonic radical cations (4-11), have been
   generated and in most cases successfully characterized in the gas phase
   via tandem-in-space multiple-stage pentaquadrupole MS(2) and MS(3)
   experiments, The three conventional radical cations,that is, the
   ionized ethylpyridines C2H5-C5H4N+.(1-3), were generated via direct
   70-eV electron ionization of the neutrals, whereas sequences of
   chemical ionization and collision-induced dissociation (CID) or
   mass-selected ion-molecule reactions were used to generate the distonic
   ions H2C.-C5H4N+-CH3 (4-6), CH3-C5H4N+-CH2. (7-9), C5H5N+-CH2CH2. (10),
   and C5H5N+-CH.-CH3 (11). Unique features of the low-energy (15-eV) CID
   an ion-molecule reaction chemistry with the diradical oxygen molecule
   of the isomers were used for their structural characterization. All the
   ion-molecule reaction products of a mass-selected ion, each associated
   with its corresponding CID fragments, were collected in a single
   three-dimensional mass spectrum. Ab initio calculations at the
   ROMP2/6-31G(d, p)//6-31G(d, p) + ZPE level of theory were performed to
   estimate the energetics involved in interconversions within the
   PyC(2)H(5)(+.) system, which provided theoretical support for facile 4
   reversible arrow 7 interconversion evidenced in both CID and
   ion-molecule reaction experiments. The ab initio spin densities for the
   alpha-distonic ions 4-9 and 11 were found to be largely on the
   methylene or methyne formal radical sites, which thus ruled out
   substantial odd-spin delocalization throughout the neighboring pyridine
   ring. However, only 8 and 9 (and 10) react extensively with oxygen by
   radical coupling, hence high spin densities on the radical site of the
   distonic ions do not necessarily lead to radical coupling reaction with
   oxygen. The very typical ''spatially separated'' ab initio charge and
   spin densities of 4-11 were used to classify them as distonic ions,
   whereas 1-3 show, as expected, ''localized'' electronic structures
   characteristic of conventional radical ions. (C) 1996 American Society
   for Mass Spectrometry
C1 STATE UNIV CAMPINAS,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR *MINN SUP CTR INC, 1993, XMOL VERS 1 3 1
   BATEMAN RH, 1992, INT J MASS SPECTROM, V115, P205
   BEASLEY BJ, 1995, J MASS SPECTROM, V30, P384
   BJORNHOLM T, 1988, J AM CHEM SOC, V110, P3862
   BORTOLINI O, 1993, ORG MASS SPECTROM, V28, P1313
   BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P203
   BOUMA WJ, 1980, ADV MASS SPECTROM A, V8, P178
   BOWERS MT, 1979, GAS PHASE ION CHEM
   BUSH KL, 1989, MASS SPECTROMETRY MA
   CAREY FA, 1984, ADV ORGANIC CHEM
   CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
   COOKS RG, 1979, COLLISION SPECTROSCO
   DEKOSTER CG, 1990, INT J MASS SPECTROM, V98, P178
   EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
   EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
   EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P69
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
   FETTEROLF DD, 1984, ORG MASS SPECTROM, V19, P104
   FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
   FRISCH MJ, 1995, GAUSSIAN94
   GLENDENING ED, NBO VERSION 3 1
   GORDON MS, 1980, CHEM PHYS LETT, V76, P163
   GOZZO FC, 1993, P 41 ASMS C MASS SPE, A974
   GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
   GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
   GOZZO FC, 1996, J CHEM SOC PERK  APR, P587
   GROSS ML, 1972, ANAL CHEM, V44, P974
   GROSS ML, 1973, J AM CHEM SOC, V93, P1267
   HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
   HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
   HEATH TG, 1991, J AM SOC MASS SPECTR, V2, P270
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
   JULIANO VF, 1996, ANAL CHEM, V68, P1328
   KASCHERES C, 1988, ANAL CHIM ACTA, P223
   KAUFFMANN T, 1962, CHEM BER, V95, P949
   KENTTAMAA HI, 1989, J AM CHEM SOC, V111, P4122
   KENTTAMAA HI, 1994, ORG MASS SPECTROM, V29, P1
   KINTER MT, 1986, J AM CHEM SOC, V108, P1797
   KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
   LARSEN E, 1978, ORG MASS SPECTROM, V13, P417
   LAY JO, 1983, J AM CHEM SOC, V105, P3445
   LEVSEN K, 1983, MASS SPECTROM REV, V2, P77
   LEWIS ES, 1992, J AM CHEM SOC, V84, P3847
   LEWIS GN, 1916, J AM CHEM SOC, V38, P762
   MABUD MA, 1987, J AM CHEM SOC, V109, P7597
   MALEKNIA S, 1991, J AM SOC MASS SPECTR, V2, P212
   MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
   MCLAFFERTY FW, 1993, INTERPRETATION MASS
   MOLLER C, 1934, PHYS REV, V46, P618
   PORTER QN, 1985, MASS SPECTROMETRY HE, P633
   RADOM L, 1984, PURE APPL CHEM, V56, P1831
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
   SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
   SIMONETTA M, 1968, STRUCTURAL CHEM MOL, P769
   STALEY RH, 1974, J AM CHEM SOC, V96, P1260
   STIRK KM, 1992, CHEM REV, P92
   VAIRAMANI M, 1990, MASS SPECTROM REV, V9, P235
   VANDEGUCHTE WJ, 1990, ORG MASS SPECTROM, V25, P309
   VANDESANDE CC, 1975, J AM CHEM SOC, V97, P4613
   WESDEMIOTIS C, 1991, ORG MASS SPECTROM, V26, P671
   WESTMORE JB, 1986, MASS SPECTROM REV, V5, P381
   WITTNEBEN D, 1990, INT J MASS SPECTROM, V100, P545
   WRONKA J, 1984, J AM CHEM SOC, V106, P67
   WYSOCKI VH, 1990, J AM CHEM SOC, V112, P5110
   YATES BF, 1984, J AM CHEM SOC, V106, P5805
   YATES BF, 1986, TETRAHEDRON, V42, P6225
   YU SJ, 1993, J AM CHEM SOC, V115, P9676
   YU SJ, 1993, J AM SOC MASS SPECTR, V4, P117
NR 71
TC 15
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010
SN 1044-0305
J9 J AMER SOC MASS SPECTROM
JI J. Am. Soc. Mass Spectrom.
PD NOV
PY 1996
VL 7
IS 11
BP 1126
EP 1137
PG 12
SC Chemistry, Analytical; Chemistry, Physical; Spectroscopy
GA VP553
UT ISI:A1996VP55300006
ER

PT J
AU Silva, CR
   Reilly, JP
TI Theoretical calculations on excited electronic states of benzaldehyde
   and observation of the S-2<-S-0 jet-cooled spectrum
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID PLANE VIBRATIONAL MODES; BAND SYSTEM; ABSORPTION-SPECTRA;
   CARBONYL-COMPOUNDS; MASS-SPECTROMETRY; SUPERSONIC JETS; TRIPLET-STATES;
   GAS-PHASE; IONIZATION; PHOSPHORESCENCE
AB The S-2(pi pi*)<--S-0 spectrum of jet-cooled benzaldehyde has been
   recorded by laser ionization. The O-0(0) band has been located at 35
   191 cm(-1). Ten fundamental vibrations have been assigned following a
   vibrational analysis assisted by theoretical calculations. Ab initio
   molecular orbital methods have been used to examine the electronically
   excited states of benzaldehyde. On pi*<--pi excitation the primary
   geometric distortions are in the formyl group, while on pi*<--pi
   excitation these are mainly in the aromatic ring. Vibrational
   frequencies were found to be in reasonable agreement with the
   experimental data for the states studied (S-0, S-1(n pi*), S-2(pi pi*),
   and T(n pi*)), and the calculations provided a useful guide in
   assigning the observed excited state fundamentals.
C1 INDIANA UNIV,DEPT CHEM,BLOOMINGTON,IN 47405.
   UNIV FED RIO DE JANEIRO,DEPT FISICOQUIM,INST QUIM,BR-21949900 RIO JANEIRO,BRAZIL.
CR ABE H, 1984, CHEM PHYS LETT, V109, P217
   ALMASY F, 1933, J CHIM PHYS PCB, V30, P528
   ALMASY F, 1933, J CHIM PHYS PCB, V30, P634
   ANTONOV VS, 1981, APPL PHYS, V24, P89
   BERGER M, 1973, J AM CHEM SOC, V95, P1717
   BIRON M, 1985, CHEM PHYS LETT, V116, P250
   BIST HD, 1966, J MOL SPECTROSC, V21, P76
   BIST HD, 1967, J MOL SPECTROSC, V24, P413
   BIST HD, 1970, APPL SPECTROSC, V24, P292
   BOCK CW, 1985, J MOL STRUCT THEOCHE, V122, P155
   BOCK CW, 1987, J PHYS CHEM-US, V91, P6120
   BRAND JCD, 1966, J MOL SPECTROSC, V20, P359
   BRUHLMANN U, 1983, CHEM PHYS, V81, P439
   COLBY SM, 1994, INT J MASS SPECTROM, V131, P125
   COUSSENS B, 1992, J MOL STRUCT THEOCHE, V259, P331
   DAVIDSON ER, 1992, CHEM PHYS LETT, V197, P123
   ELSTON HJ, 1993, J PHYS CHEM-US, V97, P5506
   FORESMAN JB, 1992, J PHYS CHEM-US, V96, P135
   FORESMAN JB, 1993, EXPLORING CHEM ELECT
   FRISCH MJ, 1992, GAUSSIAN 92
   GARG SN, 1951, J SCI RES BANARAS, V2, P153
   GARRIGOULAGRANG.C, 1961, J CHIM PHYS PCB, V58, P559
   GILBERT A, 1991, ESSENTIALS MOL PHOTO
   GOODMAN L, 1972, MOL PHOTOCHEM, V4, P369
   GREEN JHS, 1976, SPECTROCHIM ACTA PT, V32, P1265
   HADAD CM, 1993, J PHYS CHEM-US, V97, P4293
   HARMONY MD, 1979, J PHYS CHEM REF DATA, V8, P619
   HAYASHI H, 1974, MOL PHYS, V27, P969
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HIRATA Y, 1980, J CHEM PHYS, V72, P5505
   HOLLAS JM, 1963, SPECTROCHIM ACTA, V19, P1425
   HOLLAS JM, 1968, J CHEM PHYS, V49, P1745
   HOLLAS JM, 1973, CHEM PHYS, V1, P385
   HOLLAS JM, 1973, J MOL SPECTROSC CHEM, V1, P62
   HOLLAS JM, 1978, J MOL SPECTROSC, V73, P240
   HOPKINS JB, 1980, J CHEM PHYS, V72, P5039
   HUBBARD LM, 1981, J AM CHEM SOC, V103, P3313
   IIJIMA T, 1969, B CHEM SOC JPN, V42, P2159
   IMANISHI S, 1951, J CHEM PHYS, V19, P389
   IMANISHI S, 1952, B CHEM SOC JPN, V25, P150
   INUZUKA K, 1965, B CHEM SOC JPN, V38, P1055
   ITO M, 1994, DYNAMICS EXCITED MOL, CH4
   ITOH T, 1988, CHEM PHYS LETT, V151, P166
   JAIN YS, 1973, J MOL SPECTROSC, V47, P126
   KAKAR RK, 1970, J CHEM PHYS, V52, P3803
   KIMURA K, 1965, THEOR CHIM ACTA, V3, P164
   KING GW, 1971, J MOL SPECTROSC, V37, P543
   KOYANAGI M, 1973, CHEM P LETT, V21, P1
   KOYANAGI M, 1979, CHEM PHYS, V39, P237
   LEOPOLD DG, 1981, J CHEM PHYS, V75, P4758
   LIN CT, 1971, J MOL SPECTROM, V37, P280
   LIPP ED, 1981, J MOL SPECTROSC, V87, P242
   LOMBARDI JR, 1976, J CHEM PHYS, V65, P2357
   LONG SR, 1983, J CHEM PHYS, V78, P3341
   MULLIKEN RS, 1955, J CHEM PHYS, V23, P1997
   OHMORI N, 1988, J PHYS CHEM-US, V92, P1086
   OLMSTED J, 1971, J MOL SPECTROSC, V40, P71
   OPSAL RB, 1985, ANAL CHEM, V57, P1884
   OTIS CE, 1980, REV SCI INSTRUM, V51, P1128
   PEDLEY JB, 1986, THERMOCHEMICAL DATA
   PENNER GH, 1987, J MOL STRUCT THEOCHE, V152, P201
   POLEVOY AV, 1984, KHIM VYS ENERG, V18, P195
   POLEVOY AV, 1987, KHIM FIZ, V6, P620
   POLEVOY AV, 1990, SOV J CHEM PHYS, V6, P1157
   POPLE JA, 1981, INT J QUANTUM CHEM S, V15, P269
   PRILESHAJEWA N, 1935, ACTA PHYSICOCHIM URS, V3, P195
   REINSCH M, 1990, J PHYS ORG CHEM, V3, P81
   RIDLEY JE, 1979, J MOL SPECTROSC, V76, P71
   ROBINSON GW, 1954, J CHEM PHYS, V22, P1384
   ROSENSTOCK HM, 1977, J PHYS CHEM REF D S1, V6
   SCHAEFER T, 1982, J MOL STRUCT THEOCHE, V89, P93
   SCHERER JR, 1963, SPECTROCHIM ACTA, V19, P601
   SCHERER JR, 1965, SPECTROCHIM ACTA, V21, P321
   SCHULER H, 1950, Z NATURFORSCH, V5, P448
   SELISKAR CJ, 1978, CHEM PHYS LETT, V59, P47
   SHAH AK, 1978, SPECTROCHIM ACTA A, V34, P749
   SILVA CR, IN PRESS
   SILVA CR, 1996, THESIS INDIANA U
   SMOLAREK J, 1972, J MOL SPECTROSC, V43, P416
   SNEH O, 1991, J PHYS CHEM-US, V95, P7154
   STOCKBURGER M, 1962, Z PHYS CHEM FRANKFUR, V31, P350
   STOICHEFF BP, 1954, CAN J PHYS, V32, P339
   TAKAGI K, 1963, J PHYS SOC JPN, V18, P1174
   THAKUR SN, 1977, INDIAN J PHYS, V51, P184
   VARSANYI G, 1969, VIBRATIONAL SPECTRA
   VILLA E, 1988, CHEM PHYS LETT, V147, P43
   WALSH AD, 1946, T FARADAY SOC, V42, P62
   WALSH AD, 1953, J CHEM SOC, P2306
   WHIFFEN DH, 1956, J CHEM SOC, P1350
   WIBERG KB, 1984, J PHYS CHEM-US, V88, P4723
   WILSON EB, 1934, PHYS REV, V45, P706
   YANG JJ, 1983, J PHYS CHEM-US, V87, P2255
   YANG JJ, 1985, J PHYS CHEM-US, V89, P3426
   ZWARICH R, 1971, J MOL SPECTROSC, V38, P336
NR 94
TC 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD OCT 24
PY 1996
VL 100
IS 43
BP 17111
EP 17123
PG 13
SC Chemistry, Physical
GA VP261
UT ISI:A1996VP26100006
ER

PT J
AU deMelo, CP
   Fonseca, TL
TI Ab initio polarizabilities of polyenic chains with conformational
   defects
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID VARIATIONAL PERTURBATIONAL TREATMENT; NONLINEAR-OPTICAL PROPERTIES;
   CONJUGATED CHAINS; LINEAR-POLARIZABILITIES; POLYACETYLENE; ABINITIO;
   POLYMERS; HYPERPOLARIZABILITY; SOLITONS; POLYPYRROLE
AB We present an ab initio Hartree-Fock study of the electronic
   polarizabilities of the C2n+1H2n+3+ (2 < n < 11) and C2nH2n+2++ (2 < n
   < 15) oligomers of polyacetylene. After a complete geometry
   optimization implemented through the GAUSSIAN 92 program, the
   longitudinal components of the linear polarizabilities were
   analytically determined and the second hyperpolarizabilities calculated
   through a finite field procedure. While the first hyperpolarizabilities
   of the bipolaron-like structures vanish (since inversion symmetry is
   preserved), the dominant component beta(xxy) of the soliton chains was
   obtained analytically. We confirm that the polarizabilities of these
   polyenic oligomers are quite sensitive to the nature of the
   conformational defect present.
RP deMelo, CP, UNIV FED PERNAMBUCO,DEPT FIS,BR-50670901 RECIFE,PE,BRAZIL.
CR ANDERSON T, 1994, BRAZ J PHYS, V24, P756
   CHAMPAGNE B, COMMUNICATION
   CHAMPAGNE B, 1992, INT J QUANTUM CHEM, V42, P1009
   CRAIG GSW, 1993, J AM CHEM SOC, V115, P860
   DEMELO CP, 1987, CHEM PHYS LETT, V140, P537
   DEMELO CP, 1988, J CHEM PHYS, V88, P2558
   DEMELO CP, 1988, J CHEM PHYS, V88, P2567
   DUCASSE L, 1992, J CHEM PHYS, V97, P9389
   DUCASSE L, 1993, SYNTHETIC MET, V55, P4536
   FRISCH MJ, 1992, GAUSSIAN 92 REVISION
   HURST GJB, 1988, J CHEM PHYS, V89, P385
   KIRTMAN B, 1995, J CHEM PHYS, V102, P5350
   PRASAD PN, 1988, NONLINEAR OPTICAL EL
   PRASAD PN, 1991, INTRO NONLINEAR OPTI
   ROBINS KA, 1995, SYNTHETIC MET, V71, P1671
   ROTH S, 1987, ADV PHYS, V36, P385
   SALEM L, 1966, MOL ORBITAL THEORY C
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SKOTHEIM TA, 1986, HDB CONDUCTING POLYM, V1
   TOTO JL, 1994, J CHEM PHYS, V101, P3945
   TOTO JL, 1995, CHEM PHYS LETT, V245, P660
   TOTO JL, 1995, J CHEM PHYS, V102, P8048
   TOTO JL, 1996, J CHEM PHYS, V104, P8586
   TOTO TT, 1995, CHEM PHYS LETT, V244, P59
   VILLAR HO, 1988, J CHEM PHYS, V88, P1003
   VILLAR HO, 1988, J CHEM PHYS, V88, P2859
   VILLAR HO, 1988, PHYS REV B, V37, P2520
   VILLESUZANNE A, 1992, J CHEM PHYS, V96, P495
   WILLIAMS DJ, 1983, NONLINEAR OPTICAL PR
NR 29
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD OCT 11
PY 1996
VL 261
IS 1-2
BP 28
EP 34
PG 7
SC Physics, Atomic, Molecular & Chemical
GA VL879
UT ISI:A1996VL87900006
ER

PT J
AU Ornellas, FR
   Iwata, S
TI Structures and energetics of new nitrogen and silicon molecules: An ab
   initio study of Si2N2
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID DENSITY-FUNCTIONAL METHODS; SPECTROSCOPIC PROPERTIES; VIBRATIONAL
   FREQUENCIES; INTERSTELLAR CLOUDS; DIAZASILENE SINN; HARTREE-FOCK; BOND;
   CHEMISTRY; SI2H2; ENERGIES
AB New species with molecular formula Si2N2, not yet observed
   experimentally, are described theoretically for the first time. Nine
   different stationary points have been examined and the effects of
   electronic correlation on the structural parameters, harmonic
   frequencies, and relative energies are described at increasingly higher
   levels of correlation treatment (MP2, MP4, CCSD(T)). The global minimum
   corresponds to a linear singlet state ((1) Sigma(g)(+)) SiNNSi. At the
   CCSD(T) level, the next most stable species (at 15.08 kcal/mol) has a
   nonclassical tetrahedral-like structure similar to the global minimum
   of Si2H2. This is followed by another local minimum with a linear
   structure SiNSiN (at 20.25 kcal/mol) and by a rhomboidal-type structure
   (at 21.33 kcal/mol), which is in fact a transition state connecting two
   equivalent tetrahedral-like structures. Another nonclassical structure
   similar to the monobridged one in the case of Si2H2 was also found to
   be a local minimum (at 28.18 kcal/mol). An interconversion path from
   this latter structure to the linear SiNNSi one is likely to occur via
   another transition state located at about 38 kcal/mol. With the
   exception of the linear isomer SiNNSi, the triplet states were found to
   lie very high energetically and to correspond to unstable structures.
   None of these species exhibits any appreciable amount of
   silicon-silicon bonding, and the analogue of cyanogen (NCCN) NSiSiN is
   unstable. The nature of the bonding in the most relevant species is
   also discussed, as well the energetics of dissociation. An analysis of
   the energetics and structural similarities and differences between
   Si2N2, C2N2, Si2H2, and Si2C2 is also carried out. Caution must be
   exercized in generalizing results at a low level of theory since they
   have not been confirmed by the CCSD(T) calculations.
C1 INST MOL SCI,OKAZAKI,AICHI 444,JAPAN.
RP Ornellas, FR, UNIV SAO PAULO,DEPT QUIM FUNDAMENTAL,INST QUIM,CP
   26077,BR-05599970 SAO PAULO,BRAZIL.
CR BALDRIDGE KK, 1987, ANNU REV PHYS CHEM, V38, P211
   BILLY M, 1969, CR ACAD SCI C CHIM, V269, P919
   BOGEY M, 1991, PHYS REV LETT, V66, P413
   BOLDYREV AI, 1993, J PHYS CHEM-US, V97, P5875
   BOLDYREV AI, 1994, J PHYS CHEM-US, V98, P1427
   BOLTON EE, 1992, J CHEM PHYS, V97, P5586
   BOTSCHWINA P, 1990, CHEM PHYS, V141, P311
   BOTSCHWINA P, 1994, CHEM PHYS LETT, V225, P480
   BRUNA PJ, 1984, CAN J PHYS, V62, P1508
   CAI ZL, 1992, J CHEM SOC FARADAY T, V88, P1611
   CARLOTTI M, 1974, CAN J PHYS, V52, P340
   COLEGROVE BT, 1990, J PHYS CHEM-US, V94, P5593
   CORDONNIER M, 1992, J CHEM PHYS, V97, P7984
   DEKOCK RL, 1988, J CHEM PHYS, V89, P3016
   DEKOCK RL, 1989, INORG CHEM, V28, P1680
   DURIG JR, 1972, J CHEM PHYS, V56, P5652
   ELHANINE M, 1992, J PHYS II, V2, P931
   FRISCH MJ, 1992, GAUSSIAN 92 REVISION
   FROUDAKIS G, 1994, J CHEM PHYS, V101, P6790
   GOLDBERG N, 1993, CHEM BER, V126, P2753
   GOLDBERG N, 1994, J CHEM PHYS, V101, P2871
   GORDON MS, 1980, CHEM PHYS LETT, V76, P163
   GORDON MS, 1986, CHEM PHYS LETT, V126, P451
   GORDON MS, 1986, MOL STRUCTURES ENERG, V1, P101
   GREV RS, 1992, J CHEM PHYS, V97, P7990
   HAGEN K, 1977, J AM CHEM SOC, V99, P1365
   HERBST E, 1989, ASTRON ASTROPHYS, V222, P205
   HUBER KP, 1979, MOL SPECTRA MOL STRU, V4
   IGNATYEV IS, 1992, J PHYS CHEM-US, V96, P7632
   IRAQI M, 1993, J PHYS CHEM-US, V97, P11371
   ITO H, 1993, CHEM PHYS LETT, V208, P328
   KAWAMATA H, IN PRESS J CHEM PHYS
   KISHI R, 1994, CHEM PHYS LETT, V224, P200
   KISHI R, 1996, J CHEM PHYS, V104, P8593
   KRISHNAN R, 1980, J CHEM PHYS, P560
   KUTZELNIGG W, 1984, ANGEW CHEM INT EDIT, V23, P272
   LAMMERTSMA K, 1988, J AM CHEM SOC, V110, P5239
   LANGER WD, 1990, ASTROPHYS J, V352, P123
   LEMBKE RR, 1977, J AM CHEM SOC, V99, P416
   LUKE BT, 1986, J AM CHEM SOC, V108, P260
   MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
   MOLLER C, 1934, PHYS REV, V46, P618
   MURRAY CW, 1993, J PHYS CHEM-US, V97, P1868
   NAULIN C, 1993, CHEM PHYS LETT, V202, P452
   NGUYEN MT, 1989, CHEM PHYS LETT, V157, P430
   ORNELLAS FR, 1996, J PHYS CHEM-US, V100, P10919
   PARISEL O, 1996, J CHEM PHYS, V104, P1979
   POPLE JA, 1954, J CHEM PHYS, V22, P541
   POPLE JA, 1991, J CHEM PHYS, V95, P4385
   RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479
   RANKIN DW, 1990, J CHEM SOC, A1224
   ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
   SCHAEFER HF, 1982, ACCOUNTS CHEM RES, V15, P283
   SCHNICK W, 1993, ANGEW CHEM INT EDIT, V32, P806
   SCUSERIA GE, 1991, CHEM PHYS LETT, V176, P27
   SEFYANI F, 1994, ASTROPHYS J, V434, P816
   SHIMANOUCHI T, 1977, J PHYS CHEM REF DATA, V6, P993
   SOMMERFELD T, 1995, J CHEM PHYS, V103, P1057
   SOMMERFELD T, 1996, J CHEM PHYS, V104, P1464
   SUDHAKAR PV, 1989, J PHYS CHEM-US, V93, P7289
   SUNIL KK, 1990, CHEM PHYS LETT, V171, P185
   TRUONG TN, 1986, J AM CHEM SOC, V108, P1775
   WALTENBURG HN, 1995, CHEM REV, V95, P1589
   WANG J, 1994, J PHYS CHEM-US, V98, P1844
   WIBERG N, 1986, ANGEW CHEM INT EDIT, V25, P79
   ZHENG C, 1986, J AM CHEM SOC, V108, P1876
NR 66
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD OCT 3
PY 1996
VL 100
IS 40
BP 16155
EP 16161
PG 7
SC Chemistry, Physical
GA VK731
UT ISI:A1996VK73100019
ER

PT J
AU Distefano, G
   DalColle, M
   dePalo, M
   Jones, D
   Bombieri, G
   DelPra, A
   Olivato, PR
   Mondino, MG
TI Experimental and theoretical study of the intramolecular interactions
   determining the conformation of beta-carbonyl sulfoxides
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID ULTRAVIOLET PHOTOELECTRON-SPECTROSCOPY; ELECTRON TRANSMISSION
   SPECTROSCOPY; MOLECULAR-PROPERTIES; IR SPECTROSCOPY; SPECTRA;
   ACETOPHENONES; DERIVATIVES; ACETONES
AB Information on the geometrical and electronic structures of
   alpha-methylsulfinylacetophenone, C6H5C(O)CH2S(O)CH3 2, have been
   obtained from X-ray diffraction analysis, UV photoelectron spectroscopy
   and ab initio 6-31G**calculations. A comparison of the results with
   those obtained from the spectra and the computations on
   alpha-methylthioacetophenone, C6H5C(O)CH2SCH3 1 and
   alpha-methylsulfonylacetophenone, C6H5C(O)CH2SO2CH3 3, together with
   previous results on; beta-keto sulfides and beta-keto sulfones
   indicates that the CH2-S(O) bond in is quasi-cis to the carbonyl group
   in the gas and solid phase, at variance with the other beta-carbonyl
   thioderivatives which adopt a gauche conformation. Eigenvector
   analysis, electron charge distribution at various atoms and/or groups
   and geometric parameters indicate that the cis conformation of 2 is
   stabilized by a strong non-bonded interaction between the negatively
   charged carbonyl oxygen and the positively charged sulfur atom from
   which it is separated by a distance (2.8-2.9 Angstrom much shorter than
   the sum of the the van der Waals radii. The predominant charge transfer
   interaction in 3 and related sulfones occurs in the opposite direction
   (O-SO2-->C-CO). The inversion of We direction of the charge transfer
   (and the change of the cis/gauche orientation of the thio group) from
   sulfone to sulfoxide is associated with an increase of electron
   affinity of the thio group in the latter, and could explain its smaller
   thermal stability.
   Ab initio 3-21G* calculations on several conformations of the
   bis-thioderivatives C6H5C(O)CH(SCH3)S(O)CH3 4, C6H5C(O)CH(SR)SO(2)R (R
   = Me 5 and Ph 6) and C6H5C(O)CH(SOCH3)SO2CH3 7, together with X-ray
   diffraction (4, 6 and 7) and photoelectron spectroscopy (4) analyses
   confirmed the cis (SOR) and gauche (SR and SO(2)R) preferred
   orientation of the thio groups with respect to the carbonyl group as
   observed in the monosubstituted derivatives. In 4 and 7 the S-SO atom
   is about 30 degrees out of the cis plane [O(1)-C(2)C(3)].
C1 CNR,AREA RIC,ICOCEA,I-40129 BOLOGNA,ITALY.
   UNIV MILAN,IST CHIM FARMACEUT,I-2013 MILAN,ITALY.
   UNIV SAO PAULO,INST QUIM,BR-05508 SAO PAULO,BRAZIL.
RP Distefano, G, UNIV FERRARA,DIPARTMENTO CHIM,VIA BORSARI 46,I-44100
   FERRARA,ITALY.
CR 1974, INT TABLES XRAY CRYS, V4, P101
   1981, CALCULATES ANTOMIQUE
   BERTHELAT JC, 1977, MOL PHYS, V33, P159
   BERTHELAT JC, 1978, PSATOM MANUAL
   BERTONCELLO R, 1989, J CHEM SOC P2
   BOCK H, 1974, CHEM BER, V107, P2299
   BONDI A, 1964, J PHYS CHEM-US, V68, P441
   DALCOLLE M, 1995, J PHYS CHEM-US, V99, P15011
   DISTEFANO G, 1987, J CHEM SOC P2, P1459
   DISTEFANO G, 1989, J ELECTRON SPECTROSC, V49, P281
   DISTEFANO G, 1991, J CHEM SOC P2, P1195
   DUPUIS M, PHSONDO MODIFIED VER
   FRISCH BMJ, 1992, GAUSSIAN 92
   GAL JF, 1985, J CHEM SOC P2, P103
   GROSSERT JS, 1984, CAN J CHEM, V62, P798
   GUERRERO SA, 1983, J CHEM SOC PERK T 2, P1053
   HOFFMANN R, 1971, ACCOUNTS CHEM RES, V4, P1
   JOHNSON CK, 1976, 5138 ORNL
   JONES D, 1994, J CHEM SOC P2, P1661
   LUMBROSO H, 1989, J MOL STRUCT, V212, P113
   MARTIN HD, 1986, J ELECTRON SPECTROSC, V41, P385
   MODELLI A, UNPUB
   MODELLI A, 1991, CHEM PHYS LETT, V181, P361
   NARDELLI M, 1983, COMPUT CHEM, V7, P95
   OLIVATO PR, UNPUB
   OLIVATO PR, 1976, CAN J CHEM, V54, P3026
   OLIVATO PR, 1984, J CHEM SOC P2, P1505
   OLIVATO PR, 1985, PHOSPHORUS SULFUR, V24, P225
   OLIVATO PR, 1987, PHOSPHORUS SULFUR, V33, P135
   OLIVATO PR, 1990, PHOSPHORUS SULFUR, V47, P391
   OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
   OLIVATO PR, 1992, MAGN RESON CHEM, V30, P81
   OLIVATO PR, 1992, PHOSPHORUS SULFUR, V71, P107
   ROSS B, 1968, RJ518 IBM RES
   SHELDRICK EM, 1985, SHELX 86 CRYSTALLOGR
   SHELDRICK GM, 1976, SHELX PROGRAM CRYSTA
   WAGNER G, 1974, CHEM BER, V107, P68
   WLADISLAW B, 1980, J CHEM SOC P2, P453
NR 38
TC 21
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK MILTON ROAD, CAMBRIDGE, CAMBS,
   ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD AUG
PY 1996
IS 8
BP 1661
EP 1669
PG 9
SC Chemistry, Organic; Chemistry, Physical
GA VC214
UT ISI:A1996VC21400019
ER

PT J
AU Alejandre, J
   LozadaCassou, M
   Degreve, L
TI Effect of pore geometry on a confined hard sphere fluid
SO MOLECULAR PHYSICS
LA English
DT Article
ID ELECTRICAL DOUBLE-LAYER; EXTENSION HYPERNETTED-CHAIN; INTEGRAL-EQUATION
   APPROACH; ORNSTEIN-ZERNIKE EQUATION; DENSITY FUNCTIONAL THEORY; 3 POINT
   EXTENSION; MONTE-CARLO; PAIR CORRELATION; CHARGED WALL;
   STATISTICAL-MECHANICS
AB The structure of a hard sphere fluid confined by model slit and
   cylindrical pores is investigated. Results from grand canonical Monte
   Carlo (GCMC) simulations and from the hypernetted chain/mean spherical
   approximation (HNC/MSA) equation are reported. GCMC results are
   compared with those from the HNC/MSA equation, and agreement is good.
   The effect of confinement on liquids at the same chemical potentials is
   that the absorption of the hard sphere fluid into the pores decreases
   with increasing confinement, i.e., when going from planar to
   cylindrical geometry or by narrowing the pores. The adsorption on the
   pore walls has, in general, the opposite behaviour. For high bulk
   concentrations and certain values of cylindrical pore diameter the
   concentration profile is higher at the centre of the pore than next to
   the pore wall. A very strong, but continuous, transition occurs in the
   concentration profile, as a function of the cylinder's diameter. These
   results could be of some interest in catalysis studies.
C1 UNIV AUTONOMA METROPOLITANA IZTAPALAPA,DEPT FIS,MEXICO CITY 09340,DF,MEXICO.
   UNIV SAO PAULO,DEPT QUIM,FAC FILOSOFIA CIENCIAS & LETRAS,BR-14040 SAO PAULO,BRAZIL.
RP Alejandre, J, UNIV AUTONOMA METROPOLITANA IZTAPALAPA,DEPT QUIM,APARTADO
   POSTAL 55-534,MEXICO CITY 09340,DF,MEXICO.
CR ALEJANDRE J, 1990, CHEM PHYS LETT, V175, P111
   ALLEN MP, 1987, COMPUTER SIMULATION
   ATTARD P, 1989, J CHEM PHYS, V91, P3072
   BACQUET R, 1984, J PHYS CHEM-US, V88, P2660
   BALL PC, 1988, MOL PHYS, V63, P159
   BLUM L, J CHEM PHYS, V75, P5974
   BLUM L, 1981, J CHEM PHYS, V74, P1902
   CARNAHAN NF, 1969, J CHEM PHYS, V51, P635
   CARNIE SL, 1981, J CHEM PHYS, V74, P1293
   CICCOTTI G, 1990, SIMULATION LIQUIDS S
   DEGREVE L, 1993, J CHEM PHYS, V98, P8905
   DEGREVE L, 1995, MOL PHYS, V86, P759
   EVANS R, 1992, FUNDAMENTALS INHOMOG, CH3
   FELLER SE, 1993, MOL PHYS, V80, P721
   FELLER SE, 1994, J COLLOID INTERF SCI, V162, P208
   GONZALEZTOVAR E, 1989, J PHYS CHEM-US, V93, P3761
   GONZALEZTOVAR E, 1991, J CHEM PHYS, V95, P6784
   HENDERSON D, P ROY SOC LOND A MAT, V410, P409
   HENDERSON D, 1976, MOL PHYS, V31, P1291
   HENDERSON D, 1978, J CHEM PHYS, V69, P5441
   HENDERSON D, 1979, J ELECTROANAL CH INF, V102, P315
   HENDERSON D, 1995, CHEM PHYS LETT, V234, P25
   HENDERSON DJ, 1992, FUNDAMENTAL INHOMOGE
   HENDERSON JR, 1992, FUNDAMENTALS INHOMOG, CH2
   KJELLANDER R, 1984, CHEM PHYS LETT, V112, P49
   KJELLANDER R, 1988, CHEM PHYS LETT, V149, P102
   LOZADACASSOU M, 1981, CHEM PHYS LETT, V81, P472
   LOZADACASSOU M, 1981, J CHEM PHYS, V75, P1412
   LOZADACASSOU M, 1982, J CHEM PHYS, V77, P5150
   LOZADACASSOU M, 1982, J CHEM PHYS, V77, P5258
   LOZADACASSOU M, 1983, J PHYS CHEM-US, V87, P3279
   LOZADACASSOU M, 1984, J CHEM PHYS, V80, P3344
   LOZADACASSOU M, 1990, J CHEM PHYS, V92, P1194
   LOZADACASSOU M, 1990, J CHEM PHYS, V93, P1386
   LOZADACASSOU M, 1996, PHYS REV E A, V53, P522
   MARTINA E, 1983, CHEM PHYS LETT, V94, P205
   MCQUARRIE DA, 1976, STATISTICAL MECHANIC
   METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
   NICHOLSON D, 1982, COMPUTER SIMULATION
   NIELABA P, 1985, CHEM PHYS LETT, V117, P46
   OLIVARES W, 1980, J PHYS CHEM-US, V84, P863
   OUTHWAITE CW, 1991, ELECTROCHIM ACTA, V36, P1747
   OUTHWAITE CW, 1991, MOL PHYS, V74, P367
   PLISCHKE M, 1984, J PHYS CHEM-US, V88, P6544
   PLISCHKE M, 1986, P ROY SOC LOND A MAT, V404, P323
   PLISCHKE M, 1989, ELECTROCHIM ACTA, V34, P1863
   RICKAYZEN G, 1985, MOL PHYS, V55, P161
   ROSINBERG ML, 1984, J CHEM PHYS, V81, P3700
   SANCHEZSANCHEZ JE, 1992, CHEM PHYS LETT, V190, P202
   SLOTH P, 1990, J CHEM PHYS, V93, P1292
   SNOOK IK, 1980, J CHEM PHYS, V72, P2907
   TARAZONA P, 1987, MOL PHYS, V60, P573
   VALLEAU JP, 1991, J CHEM PHYS, V95, P520
   WIDOM B, 1963, J CHEM PHYS, V39, P2808
   WOOD WW, 1968, PHYSICS SIMPLE LIQUI, P115
   YEOMANS L, 1993, J CHEM PHYS, V98, P1436
   YOSHIZAWA H, 1993, J PHYS CHEM-US, V97, P11300
   ZHOU Y, 1989, MOL PHYS, V68, P1265
   ZHOU YQ, 1989, MOL PHYS, V66, P767
   ZHOU YQ, 1989, MOL PHYS, V66, P791
NR 60
TC 5
PU TAYLOR & FRANCIS LTD
PI LONDON
PA ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE
SN 0026-8976
J9 MOL PHYS
JI Mol. Phys.
PD AUG 10
PY 1996
VL 88
IS 5
BP 1317
EP 1336
PG 20
SC Physics, Atomic, Molecular & Chemical
GA VB761
UT ISI:A1996VB76100013
ER

PT J
AU Pliego, JR
   DeAlmeida, WB
TI Reaction paths for aqueous decomposition of CCl2
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
AB The potential energy surface (PES) for the H2O + CCl2 reaction was
   investigated at the ab initio SCF and MP2 levels of theory, employing
   the DZP basis set, in order to determine the mechanism of basic aqueous
   decomposition of CCl2. Several possible pathways were considered,
   including reactions with other H2O molecules and OH-. We have found
   that the first step corresponds to insertion of CCl2 into the O-H bond
   of water, resulting in the CHCl2OH species. This molecule loses HCl in
   one elimination reaction catalyzed by OH-, forming ClCHO. Again, OH-
   catalyzes the elimination of other HCl, resulting in CO, the
   decomposition product. The first step is the slow one, and we have used
   transition-state theory to estimate the rate constant for the aqueous
   decomposition of CCl2, The obtained rate constant was used for building
   a general picture of CHCl3, decomposition in basic aqueous solution.
   The results of the present study are in agreement with experimental
   observations.
C1 UNIV FED MINAS GERAIS,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BETHELL D, 1973, ORGANIC REACTIVE INT
   DUNNING TH, 1977, METHODS ELECTRONIC S
   FRANCISCO JS, 1993, J AM CHEM SOC, V115, P3761
   GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
   HINE J, 1950, J AM CHEM SOC, V72, P2438
   HINE J, 1954, J AM CHEM SOC, V76, P2688
   KIRMSE W, 1964, CARBENE CHEM
   PILEGO JR, 1996, CHEM PHYS LETT, V249, P136
   ROBINSON EA, 1961, J CHEM SOC, P1663
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
NR 10
TC 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD JUL 25
PY 1996
VL 100
IS 30
BP 12410
EP 12413
PG 4
SC Chemistry, Physical
GA UY938
UT ISI:A1996UY93800041
ER

PT J
AU Mota, CJA
   Esteves, PM
   deAmorim, MB
TI Theoretical studies of carbocations adsorbed over a large zeolite
   cluster. Implications on hydride transfer reactions
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID SHAPE-SELECTIVE CATALYSIS; HIGH-SILICA ZEOLITES; HYDROGEN-TRANSFER;
   HYDROXYL-GROUPS; CARBENIUM IONS; DEUTERIUM EXCHANGE; SN2-SN1 SPECTRUM;
   MOLECULAR-MODELS; CARBONIUM-IONS; HY ZEOLITES
AB A semiempirical MNDO study of simple alkylcarbenium ions (Me, Et, i-Pr,
   t-Bu) on a large and more realistic cluster, comprising a hexagonal
   prism and a sodalite unit (3) and simulating different adsorption sites
   on zeolite Y, was carried out. On going from H to bulky alkyl groups,
   there is an increasing tendency to stretch the Al-O bond length and to
   decrease the Si-O-Al bond angle. Nevertheless, the proton and the alkyl
   groups are covalently bonded to the framework, as expressed by the high
   bond orders, near unity. Adsorption on site O-4, located in the
   sodalite, is energetically disfavored by 2-4 kcal/mol relative to
   adsorption on site O-1, in the hexagonal prism. The MNDO calculations
   on cluster 3 showed a reasonable agreement with ab initio calculations
   of carbenium ions adsorbed on smaller clusters 1 and 2, except when
   adsorption on O-4 is considered, indicating that steric strain, due to
   the crystalline structure, plays an important role. Adsorption on
   Si-O-Si sites is about 45 kcal/mol higher in energy than the
   correspondent adsorption on Si-O-Al sites. This result may explain the
   observed experimental dependence of hydride transfer reactions with the
   structural Si/Al ratio, also suggesting the participation of the
   zeolite structure in the transition state.
C1 UNIV FED RIO DE JANEIRO,INST QUIM,BR-21949900 RIO JANEIRO,BRAZIL.
   UNIV FED RIO DE JANEIRO,NPPN,BR-21941540 RIO JANEIRO,BRAZIL.
RP Mota, CJA, PETROBRAS CENPES,ILHA FUNDAO Q 7,BR-21949900 RIO
   JANEIRO,BRAZIL.
CR ABBOT J, 1988, J CATAL, V113, P353
   ABBOT J, 1989, J CATAL, V115, P1
   ARONSON MT, 1989, J AM CHEM SOC, V111, P840
   BATES S, 1994, J MOL STRUCT THEOCHE, V306, P57
   BENTLEY TW, 1976, J AM CHEM SOC, V98, P7658
   BENTLEY TW, 1981, J AM CHEM SOC, V103, P5466
   BHATIA S, 1989, CATAL REV, V31, P431
   BIBBY DM, 1992, APPL CATAL A-GEN, V93, P1
   BITTENCOURT R, IN PRESS
   BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
   CATLOW CRA, 1992, MODELLING STRUCTURE
   CHANG CD, 1983, HYDROCARBONS METHANO
   CHEN NY, 1986, CATAL REV, V28, P185
   CHENG WC, 1989, J CATAL, V119, P354
   CORMA A, 1985, J CATAL, V93, P30
   CORMA A, 1985, J CATAL, V94, P445
   CORMA A, 1989, APPL CATAL, V47, P125
   CORMA A, 1989, J CATAL, V115, P551
   CORMA A, 1989, ZEOLITES FACTS FIGUR, P49
   CORMA A, 1994, J CATAL, V145, P171
   CSICSERY SM, 1984, ZEOLITES, V4, P202
   CZJZEK M, 1992, J PHYS CHEM-US, V96, P1535
   DAVIS ME, 1991, IND ENG CHEM RES, V30, P1675
   DAVIS ME, 1993, ACCOUNTS CHEM RES, V26, P111
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DUBSKY J, 1979, J MOL CATAL, V6, P321
   DWYER J, 1991, J CHEM SOC FARADAY T, V87, P783
   EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
   FORSTER H, 1987, ZEOLITES, V7, P508
   GALE JD, 1991, J CHEM SOC CHEM COMM, P178
   GORB LG, 1991, KINET KATAL, V32, P1114
   HABIB ET, 1990, HYDROCARBON CHEM FCC, P1
   HAW JF, 1989, J AM CHEM SOC, V111, P2052
   HAW JF, 1994, J AM CHEM SOC, V116, P7308
   HOSER H, 1987, APPL CATAL, V30, P11
   JACQUINOT E, 1990, APPL CATAL, V60, P101
   JIRAK Z, 1980, J PHYS CHEM SOLIDS, V41, P1089
   KASSAB E, 1993, J PHYS CHEM-US, V97, P9034
   KAZANSKY VB, 1989, J CATAL, V119, P108
   KAZANSKY VB, 1991, ACCOUNTS CHEM RES, V24, P379
   KAZANSKY VB, 1992, J MOL CATAL, V74, P257
   KAZANSKY VB, 1994, CATAL LETT, V28, P211
   KIRICSI I, 1988, J CHEM SOC F1, V82, P491
   KRAMER GJ, 1991, J AM CHEM SOC, V113, P6435
   KRAMER GJ, 1993, J AM CHEM SOC, V115, P2887
   KRAMER GJ, 1993, NATURE, V363, P529
   KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
   KUSTOV LM, 1981, J CATAL, V72, P149
   LECHER JA, 1994, CATAL LETT, V27, P91
   LUKYANOV DB, 1994, J CATAL, V145, P54
   LUKYANOV DB, 1994, J CATAL, V146, P87
   MEIER WM, 1987, ATLAS ZEOLITE STRUCT
   MORTIER WJ, 1968, J CATAL, V45, P367
   MOTA CJA, IN PRESS
   MOTA CJA, 1991, J CHEM SOC CHEM COMM, P171
   MOTA CJA, 1992, J AM CHEM SOC, V114, P1121
   MOTA CJA, 1993, NEW FRONTIERS CATALY, P463
   MOTA CJA, 1994, J CHEM SOC FARADAY T, V90, P2297
   MOTA CJA, 1995, IND ENG CHEM RES, V34, P4326
   OLSON DH, 1969, J CATAL, V13, P221
   OMALLEY PJ, 1988, J PHYS CHEM-US, V92, P3005
   OZIN GA, 1990, J PHYS CHEM-US, V94, P8289
   PINE LA, 1984, J CATAL, V85, P466
   REDONDO A, 1993, J PHYS CHEM-US, V97, P11754
   RICHARDSON BR, 1990, J AM CHEM SOC, V112, P2886
   ROCHETTES BM, 1990, J APPL CATAL, V58, P35
   SAUER J, 1989, CHEM REV, V89, P199
   SAUER J, 1990, CHEM PHYS LETT, V173, P26
   SCHERZER J, 1989, CATAL REV SCI ENG, V31, P215
   SCHRODER KP, 1992, CHEM PHYS LETT, V188, P320
   SENCHENYA IN, 1991, CATAL LETT, V8, P317
   SENCHENYA IN, 1991, CATALYSIS ADSORPTION, P653
   SHANNO DF, 1985, J OPTIMIZ THEORY APP, V46, P87
   SHERTUKDE PV, 1992, J CATAL, V136, P446
   SOMMER J, 1994, J AM CHEM SOC, V116, P5491
   SOMMER J, 1995, J AM CHEM SOC, V117, P1135
   STEPANOV AG, 1992, CATAL LETT, V13, P407
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STEWART JJP, 1989, J COMPUT CHEM, V10, P221
   SZOSTAK R, 1991, STUD SURF SCI CATAL, V58, P153
   TEUNISSEN EH, 1992, J PHYS CHEM-US, V96, P366
   TEUNISSEN EH, 1993, J PHYS CHEM-US, V97, P203
   VANSANTEN RA, 1994, ADV ZEOLITE SCI APPL, P273
   VANSANTEN RA, 1995, CHEM REV, V95, P637
   VAUGHAN DEW, 1988, CHEM ENG PROGR   FEB, P25
   VENUTO PB, 1979, FLUID CATALYTIC CRAC
   VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13713
   ZARDKOOHI M, 1987, J AM CHEM SOC, V109, P5278
   ZHAO YX, 1993, J CATAL, V140, P243
NR 90
TC 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD JUL 25
PY 1996
VL 100
IS 30
BP 12418
EP 12423
PG 6
SC Chemistry, Physical
GA UY938
UT ISI:A1996UY93800043
ER

PT J
AU Venezuela, PPM
   Fazzio, A
TI Ab initio study of N impurity in amorphous germanium
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; MOLECULAR-DYNAMICS; SILICON; NITROGEN; SYSTEMS;
   PSEUDOPOTENTIALS; SEMICONDUCTORS; CARBON; STATE; MODEL
AB The electronic and structural properties of N-atom-doped amorphous
   germanium are obtained by ab initio, total energy calculations. We find
   that the 3-fold coordinated N impurity (N-3) and the 4-fold coordinated
   N impurity (N-4) present negative effective Coulombic interactions.
   Analysis of these results shows that the electrical effect of n-type
   doping due to N atoms is not related only to chemical equilibrium
   between N-3 and N-4.
RP Venezuela, PPM, UNIV SAO PAULO,INST FIS,CP 66318,BR-05389970 SAO
   PAULO,SP,BRAZIL.
CR ANDERSON PW, 1975, PHYS REV LETT, V34, P953
   BACHELET GB, 1982, PHYS REV B, V26, P4199
   BARYAM Y, 1986, PHYS REV LETT, V56, P2203
   BARYAM Y, 1986, PHYS REV LETT, V57, P467
   BROWER KL, 1982, PHYS REV B, V26, P6040
   BYER W, 1984, SEMICONDUCTORS SEM C, V21, CH8
   CAR R, 1985, PHYS REV LETT, V55, P2471
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CHAMBOULEYRON I, 1993, APPL PHYS LETT, V62, P58
   CUNHA C, 1993, PHYS REV B, V48, P17806
   ELLIOTT SR, 1993, P 15 INT C AM SEM, V164
   ETHERINGTON G, 1982, J NONCRYST SOLIDS, V48, P265
   HOHENBERG P, 1964, PHYS REV, V136, B864
   KELIRES PC, 1993, PHYS REV B, V47, P1829
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   KOHN W, 1965, PHYS REV, V140, A1133
   LEE CH, 1994, PHYS REV B, V49, P11448
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   SCHULTZ PA, 1986, PHYS REV B, V34, P2532
   SPEAR WE, 1975, SOLID STATE COMMUN, V17, P1193
   STICH I, 1991, PHYS REV B, V44, P11092
   STREET RA, 1982, PHYS REV LETT, V49, P1187
   TAKANO Y, 1983, J NON-CRYST SOLIDS, V55, P325
   TERSOFF J, 1989, PHYS REV B, V39, P5566
   TERSOFF J, 1994, PHYS REV B, V49, P16349
   ZANATTA AR, 1992, PHYS REV B, V46, P2119
   ZHOU JH, 1993, J APPL PHYS, V74, P5086
NR 27
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUL 15
PY 1996
VL 77
IS 3
BP 546
EP 549
PG 4
SC Physics, Multidisciplinary
GA UW791
UT ISI:A1996UW79100034
ER

PT J
AU Ferraz, AC
   daSilva, RC
TI Atomic and electronic structures of Te adsorbed on GaAs(100) and
   InAs(100)
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; gallium arsenide; indium arsenide;
   tellurium
ID SURFACES; GAAS; GROWTH
AB We report results of density functional theory total energy and force
   calculations of Te covered GaAs- and InAs(100)-(2 X 1). The adsorption
   is studied for the coverages of 1/2 and 1 monolayer of Te. The atomic
   positions of the adsorbate and the three outermost substrate layers are
   fully relaxed and the equilibrium surface geometries are given. We
   discuss how the adsorption modifies the dean surface geometry and the
   electronic structures.
RP Ferraz, AC, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05389970 SAO
   PAULO,BRAZIL.
CR CAR R, 1985, PHYS REV LETT, V55, P2471
   CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
   CIBERT J, 1989, PHYS REV B, V39, P12047
   COHENSOLAL G, 1989, APPL PHYS LETT, V49, P1519
   COPEL M, 1989, PHYS REV LETT, V63, P632
   ETGENS VH, 1993, PHYS REV B, V47, P10607
   FELDMAN RD, 1986, APPL PHYS LETT, V48, P248
   GOBIL Y, 1989, SURF SCI, V211, P969
   GONZE X, 1991, PHYS REV B, V44, P8503
   GRANDJEAN N, 1992, PHYS REV LETT, V69, P799
   KIM TW, 1994, APPL PHYS LETT, V64, P2526
   MIWA RH, IN PRESS
   MONCKHORST HJ, 1976, PHYS REV B, V13, P5188
   NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
   OHNO T, 1991, SURF SCI, V255, P229
   PERDEW JP, 1981, PHYS REV B, V23, P5048
   QIAN GX, 1988, PHYS REV B, V38, P7649
   RODRIGUES WN, 1995, IN PRESS SOLID STATE
   SPINDT CJ, 1989, APPL PHYS LETT, V55, P861
NR 19
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD MAY 15
PY 1996
VL 352
BP 379
EP 382
PG 4
SC Chemistry, Physical
GA UV254
UT ISI:A1996UV25400072
ER

PT J
AU Ornellas, FR
   Iwata, S
TI Ab initio studies of silicon and nitrogen clusters: Cyclic or linear
   Si2N?
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS;
   PERTURBATION-THEORY; DERIVATIVES; ABINITIO; SPECTRUM; STATES; BOND;
   SICO; SINN
AB Theoretical studies are carried out on the doublet and quartet states
   of three isomeric forms of the species Si2N. Correlation effects on the
   structural parameters, harmonic frequencies, and relative energies are
   investigated at increasingly higher levels of theory (MP2, MP4, and
   CCSD(T)) and basis sets (DZP, cc-pVTZ-f, and cc-pVTZ). At the highest
   level of theory (CCSD(T)/cc-pVTZ) all three isomers are found to be
   thermodynamically stable species with the symmetric linear structure
   (SiNSi) as the global minimum; a symmetric cyclic structure (93.1
   degrees) lies only 4.90 kcal/mol higher in energy, while the asymmetric
   linear isomer (SiSiN) is much higher located (85.23 kcal/mol).
   Dissociation of the most stable isomer into the channels SiN + Si and
   Si-2 + N would require 123 and 148 kcal/mol, respectively, including
   the zero-point energies. Chemical bonding as reflected in bond
   distances indicates a SiN bond character intermediate between that of a
   single and a double bonds in the linear SiNSi isomer (1.644 Angstrom),
   changing then to a single bond in the cyclic structure (1.695 Angstrom)
   and a double bond in SiSiN (1.608 Angstrom). The energetics involved in
   various dissociation channels is also analyzed, as well as the strength
   of the vibronic interaction in the linear isomer estimated by the
   computation of the Renner parameter. A comparison with the molecules
   C2N, Si2C, Si2C-, and Si2O clearly shows structural and stability
   trends among these triatomics.
C1 INST MOLEC SCI,OKAZAKI,AICHI 444,JAPAN.
RP Ornellas, FR, UNIV SAO PAULO,INST QUIM,DEPT QUIM FUNDAMENTAL,CP
   26077,BR-05599970 SAO PAULO,BRAZIL.
CR ANDERSSON K, 1992, J CHEM PHYS, V96, P1218
   BALDRIDGE KK, 1987, ANNU REV PHYS CHEM, V38, P211
   BEAGLEY B, 1972, J STRUCT CHEM, V11, P371
   BOLDYREV AI, 1993, J PHYS CHEM-US, V97, P5875
   BOLDYREV AI, 1994, J PHYS CHEM-US, V98, P1427
   BOLTON EE, 1992, J CHEM PHYS, V97, P5586
   DAVIDSON ER, 1991, MODERN TECHNIQUES CO, P381
   DEKOCK RL, 1988, J CHEM PHYS, V89, P3016
   DEKOCK RL, 1989, INORG CHEM, V28, P1680
   DUNNING TH, 1977, MODERN THEORETICAL C, V3, P1
   DUNNING TH, 1989, J CHEM PHYS, V90, P1007
   FRISCH MJ, 1992, GAUSSIAN 92 REVISION
   GERHOLD G, 1972, AM J PHYS, V40, P988
   GOLDBERG N, 1994, J CHEM PHYS, V101, P2871
   GORDON MS, 1986, CHEM PHYS LETT, V126, P451
   GORDON MS, 1986, MOL STRUCTURES ENERG, V1, P101
   GORDON MS, 1990, J PHYS CHEM-US, V94, P5527
   GUELIN M, 1986, ASTRON ASTROPHYS, V157, L17
   HERZBERG G, 1933, Z PHYS CHEM B-CHEM E, V21, P410
   HERZBERG G, 1966, MOL SPECTRA MOL STRU, V3
   HIRAO K, 1993, CHEM PHYS LETT, V201, P59
   HUBER KP, 1979, MOL SPECTRA MOL STRU, V4
   IGNATYEV IS, 1992, J PHYS CHEM-US, V96, P7632
   IRAQI M, 1993, J PHYS CHEM-US, V97, P11371
   KAFAFI ZH, 1983, J PHYS CHEM-US, V87, P797
   KISHI R, IN PRESS
   KOLZLOWSKI PM, 1994, CHEM PHYS LETT, V222, P615
   KOLZLOWSKI PM, 1994, J CHEM PHYS, V100, P3672
   LEE TJ, 1984, J CHEM PHYS, V81, P356
   LEMBKE RR, 1977, J AM CHEM SOC, V99, P416
   LUKE BT, 1986, J AM CHEM SOC, V108, P260
   MARTIN JML, 1994, CHEM PHYS LETT, V226, P475
   MOLLER C, 1934, PHYS REV, V46, P618
   MURPHY RB, 1992, J CHEM PHYS, V97, P4974
   NAKANO H, 1993, CHEM PHYS LETT, V207, P372
   PETERSON KA, 1995, J PHYS CHEM-US, V99, P3898
   PRESILLAMARQUEZ JD, 1991, J CHEM PHYS, V95, P5612
   RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479
   RANKIN DW, 1990, J CHEM SOC, A1224
   RENNER R, 1934, Z PHYS, V92, P172
   RITTBY CML, 1991, J CHEM PHYS, V95, P5609
   SCHAEFER HF, 1982, ACCOUNTS CHEM RES, V15, P283
   SCHNICK W, 1993, ANGEW CHEM INT EDIT, V32, P806
   SCUSERIA GE, 1991, CHEM PHYS LETT, V176, P27
   TRUONG TN, 1986, J AM CHEM SOC, V108, P1775
   WALTENBURG HN, 1995, CHEM REV, V95, P1589
   WOON DE, 1993, J CHEM PHYS, V98, P1358
NR 47
TC 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD JUN 27
PY 1996
VL 100
IS 26
BP 10919
EP 10927
PG 9
SC Chemistry, Physical
GA UU477
UT ISI:A1996UU47700013
ER

PT J
AU Pliego, JR
   Resende, SM
   DeAlmeida, WB
TI Ab initio MP2 study of the HF center dot center dot center dot ClF
   complex using various extended basis sets and bond functions
SO THEORETICA CHIMICA ACTA
LA English
DT Article
DE van der Waals complex; transition states; extended basis sets; bond
   functions; electronic correlation
ID ABINITIO CALCULATIONS; SYSTEMS
AB The stationary points on the intermolecular potential energy surface
   (PES) for the HF ... CIF complex have been investigated at the
   second-order Moller-Plesset perturbation theory (MP2) level using
   various extended bais sets, including diffuse functions, and also bond
   functions. The last ones were placed at different intermolecular
   positions, for distinct stationary points. The basis set superposition
   errors (BSSE) were accounted for using the counterpoise method. Besides
   the anti-H-bonded and H-bonded minimum energy structures, four
   transition state structures were also located on the PES. It was shown
   that higher polarization functions are required for the description of
   the anti H-bonded isomer and diffuse functions had to be included for
   the H-bonded isomer. The bond functions are able to replace the f(Cl,
   F) and d(H) polarization functions at a lower computational cost.
   However, for the H-bonded isomer intramolecuIar electron correlation
   also plays an important role. So we have to use diffuse nucleus
   centered polarization functions for an adequate description of
   intermolecular and intramolecular correlation.
RP Pliego, JR, UFMG,LAB QUIM COMPUTAC & MODELAGEM MOL,DEPT
   QUIM,ICEX,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BONE RGA, 1990, THEOR CHIM ACTA, V78, P133
   BOYS SF, 1970, MOL PHYS, V19, P533
   CHALASINSKI G, 1988, CHEM REV, V88, P943
   CHALASINSKI G, 1994, CHEM REV, V94, P1723
   DEALMEIDA WB, 1991, THEOCHEM, V228, P191
   DEALMEIDA WB, 1993, J CHEM PHYS, V99, P5917
   DEALMEIDA WB, 1993, THEOCHEM, V285, P277
   DEALMEIDA WB, 1995, SPECTROCHIM ACTA A, V51, P653
   DUNNING TH, 1977, METHODS ELECT STRUCT, P1
   HOBZA P, 1981, CHEM PHYS LETT, V82, P469
   HOBZA P, 1988, CHEM REV, V88, P871
   HOBZA P, 1994, CHEM REV, V94, P1767
   HOBZA P, 1994, THEOR CHIM ACTA, V88, P233
   LEGON AC, 1994, FARADAY DISCUSS, V97, P19
   LEOPOLD KR, 1994, CHEM REV, V94, P1807
   NESBITT DJ, 1988, CHEM REV, V88, P843
   NEUSSER HJ, 1994, CHEM REV, V94, P1829
   NOVICK SE, 1976, J CHEM PHYS, V65, P5115
   RENDELL APL, 1987, J CHEM PHYS, V87, P535
   RESENDE SM, UNPUB
   RESENDE SM, 1995, J CHEM PHYS, V102, P4184
   SCHM, 1993, UJ, V14, P1347
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SLANINA Z, 1991, THEOCHEM, V235, P51
   SLANINA Z, 1994, THERMOCHIM ACTA, V231, P55
   TAO FM, 1992, CHEM PHYS LETT, V194, P162
   TAO FM, 1992, J CHEM PHYS, V97, P4989
   TAO FM, 1993, J CHEM PHYS, V98, P3049
   VANDERAVOIRD A, 1994, CHEM REV, V94, P1931
   VANLENTHE JH, 1987, ADV CHEM PHYS, V69, P522
   YAN YB, 1994, CHEM PHYS LETT, V230, P480
   ZHANG DH, 1995, J CHEM PHYS, V102, P2315
NR 32
TC 4
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010
SN 0040-5744
J9 THEOR CHIM ACTA
JI Theor. Chim. Acta
PD JUN
PY 1996
VL 93
IS 6
BP 333
EP 342
PG 10
SC Chemistry, Physical
GA UT564
UT ISI:A1996UT56400002
ER

PT J
AU Resende, SM
   DeAlmeida, WB
TI A theoretical study of tunneling in the (HCCH)(2) complex
SO CHEMICAL PHYSICS
LA English
DT Article
ID RESOLUTION INFRARED-SPECTROSCOPY; POTENTIAL-ENERGY SURFACE; ACETYLENE
   DIMER; MICROWAVE; ABINITIO; (HF)2; SPECTRUM; MOTION
AB The internal motion in the acetylene dimer has been investigated at the
   ab initio Moller-Plesset second-order perturbation theory (MP2) level,
   employing the double-zeta plus polarization function (DZP) basis set.
   Basis set superposition errors (BSSE) corrections were included using
   the counterpoise method. A two-dimensional (2D) Hamiltonian for the
   tunneling motion, considering the two bending modes in the dimer plane
   was solved variationally, using as the potential energy function a
   two-dimensional ab initio intermolecular potential energy surface
   (PES), Coupling of the intramolecular vibration and dimer internal
   rotation has been neglected. Also, the synchronized one-dimensional
   (1D) tunneling motion was obtained through a change of variables which
   allowed the separation of the motion along the minimum energy path and
   the one perpendicular to it. Anharmonicity corrections were also added
   to the 1D procedure to reach the 2D results. The calculated splitting
   of transition frequencies are compared with the experimental data. The
   1D Hamiltonian including anharmonicity corrections is shown to be a
   very efficient and computational inexpensive procedure for treating the
   tunneling motion.
C1 UNIV FED MINAS GERAIS,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR ALTHORPE SC, 1991, CHEM PHYS LETT, V187, P345
   BERNSTEIN E, 1990, ATOMIC MOL CLUSTERS
   BONE RGA, 1990, THEOR CHIM ACTA, V78, P133
   BOYS SF, 1970, MOL PHYS, V19, P533
   BRYANT GW, 1988, J CHEM SOC F2, V84, P1443
   BUMGARNER RE, 1991, CHEM PHYS LETT, V176, P123
   DEALMEIDA WB, 1993, CHEM PHYS, V169, P185
   DEALMEIDA WB, 1993, J CHEM PHYS, V99, P5617
   DEALMEIDA WB, 1993, J PHYS CHEM-US, V97, P2560
   DEALMEIDA WB, 1993, MOL PHYS, V78, P1351
   DEALMEIDA WB, 1993, MOL STRUCT THEOCHEM, V285, P77
   DEALMEIDA WB, 1994, MOL PHYS, V81, P1397
   DEALMEIDA WB, 1995, SPECTROCHIM ACTA A, V51, P653
   DUNNING TH, 1970, J CHEM PHYS, V53, P2823
   FRASER GT, 1988, J CHEM PHYS, V89, P6028
   FRASER GT, 1989, J CHEM PHYS, V90, P2097
   FRASER GT, 1989, J CHEM PHYS, V90, P6077
   HA TK, 1993, J PHYS CHEM-US, V97, P11415
   HOBZA P, 1988, CHEM REV, V88, P871
   MAKAREWICZ J, 1993, J CHEM PHYS, V99, P3694
   MILLER RE, 1984, J CHEM PHYS, V80, P5453
   MOLLER C, 1934, PHYS REV, V46, P618
   OHSHIMA Y, 1988, CHEM PHYS LETT, V147, P1
   PLIEGO JR, 1996, IN PRESS THEORET CHI
   PRICHARD D, 1987, CHEM PHYS LETT, V135, P9
   PRICHARD DG, 1988, J CHEM PHYS, V89, P115
   RESENDE SM, 1995, J CHEM PHYS, V102, P4184
   RICE JK, 1990, J CHEM PHYS, V92, P6408
   SADLEJ J, 1994, J CHEM PHYS, V100, P4272
   SCHMIDT MW, 1990, QCPE B, V10, P52
   SUNI II, 1993, J CHEM PHYS, V98, P988
   TENNYSON J, 1982, J CHEM PHYS, V77, P5664
   VONPUTTKAMER K, 1987, MOL PHYS, V62, P1047
   ZHANG DH, 1995, J CHEM PHYS, V102, P2315
NR 34
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD MAY 15
PY 1996
VL 206
IS 1-2
BP 1
EP 8
PG 8
SC Physics, Atomic, Molecular & Chemical
GA UP170
UT ISI:A1996UP17000001
ER

PT J
AU Alves, JLA
   Alves, HWL
   deCastilho, CMC
TI Hydrogen, oxygen and chlorine adsorption on Ag(110) surface: A cluster
   calculation
SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
   TECHNOLOGY
LA English
DT Article
DE hydrogen; oxygen; chlorine; adsorption; silver
ID EFFECTIVE CORE POTENTIALS; MOLECULAR CALCULATIONS
AB The adsorption of atoms on Ag(110) surfaces has been widely
   investigated both theoretically and experimentally. The importance of
   the (110) face results from the much better catalytic properties of the
   single crystal Ag(110) compared with polycrystalline samples. The aim
   of this work is to study the systems Ag(110): H, O, Cl by means of
   rigorous ab initio quantum-chemical calculations. We have investigated
   several possible binding sites, geometries, elastic constants, binding
   energies and charge distributions for H, O and Cl on Ag(110) surfaces
   simulated by clusters Ag, (n = 3,10).
C1 UNIV FED BAHIA,INST FIS,BR-40210340 SALVADOR,BA,BRAZIL.
RP Alves, JLA, FDN ENSINO SUPER SAO DEL REI,FUNREI,DEPT CIENCIAS NAT,PRACA
   D HELVECIO,74,BR-36300000 SAO JOAO REI,MG,BRAZIL.
CR FRISCH MJ, 1992, GAUSSIAN 92
   HAY PJ, 1985, J CHEM PHYS, V82, P270
   HAY PJ, 1985, J CHEM PHYS, V82, P299
   MARTIN RL, 1983, SURF SCI, V130, P283
   SELMANI A, 1986, INT J QUANTUM CHEM, V29, P829
   SELMANI A, 1988, SURF SCI, V206, P279
   WADT WR, 1985, J CHEM PHYS, V82, P284
NR 7
TC 6
PU ELSEVIER SCIENCE SA LAUSANNE
PI LAUSANNE 1
PA PO BOX 564, 1001 LAUSANNE 1, SWITZERLAND
SN 0921-5107
J9 MATER SCI ENG B-SOLID STATE M
JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
PD FEB
PY 1996
VL 37
IS 1-3
BP 139
EP 141
PG 3
SC Materials Science, Multidisciplinary; Physics, Condensed Matter
GA UM735
UT ISI:A1996UM73500025
ER

PT J
AU Pereira, GK
   Donate, PM
   Galembeck, SE
TI Electronic structure of hydroxylated derivatives of the flavylium cation
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE anthocyanins; computational study; electronic structure; flavonoids;
   flavylium cation
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; ORGANIC-MOLECULES;
   BASIS-SETS; ANTHOCYANINS
AB The electronic structure of the flavylium cation (1) and those of some
   of its hydroxylated derivatives were studied by semiempirical and ab
   initio molecular orbital methods. This ion presents a small resonance
   in the pyrylium group (C-ring), which is not conjugated to the phenyl
   group (B-ring). The planarity of the molecule is due to a hydrogen bond
   between the oxygen atom in C-ring and some hydrogen atoms in B-ring.
   There is also a repulsive interaction between hydrogen atoms of these
   rings. The theoretical locations of the sites of nucleophilic and
   electrophilic attack corresponds to those experimentally observed.
   Monohydroxylation does not cause important alterations in the
   electronic structure of the cation (1) except for the substitution on
   C(4'), which causes the appearance of resonance between B- and C-rings.
C1 UNIV SAO PAULO,FAC FILOSOFIA CIENCIAS & LETRAS RIBEIRAO PRET,DEPT QUIM,BR-14049901 RIBEIRAO PRET,SP,BRAZIL.
CR BAKER J, 1986, J COMPUT CHEM, V7, P385
   BENT HA, 1961, CHEM REV, V61, P275
   BESLER BH, 1990, J COMPUT CHEM, V11, P431
   BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
   BROUILLARD R, 1988, FLAVONOIDS ADV RES 1, P525
   BUSETTA PB, 1974, ACTA CRYSTALLOGR B, V30, P1448
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
   FLEMING I, 1976, FRONTIER ORBITALS OR
   GOTO T, 1991, ANGEW CHEM INT EDIT, V30, P17
   GUEDES MC, 1993, THESIS U CAMPINAS CA
   HARBORNE JB, 1988, FLAVONOIDS ADV RES 1, P1
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   HOLTON TA, 1994, TRENDS BIOTECHNOL, V12, P40
   HUHEEY JE, 1972, INORGANIC CHEM PRINC
   IACOBUCCI GA, 1983, TETRAHEDRON, V39, P3005
   KOES RE, 1994, BIOESSAYS, V16, P123
   LISTER CE, 1994, J SCI FOOD AGR, V64, P155
   MERLIN JC, 1994, PHYTOCHEMISTRY, V35, P227
   MERLIN JC, 1994, SPECTROCHIM ACTA A, V50, P703
   NESSLER CL, 1994, TRANSGENIC RES, V3, P109
   RASTELLI G, 1993, J MOL STRUCT THEOCHE, V279, P157
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
   SCHWINN KE, 1994, PHYTOCHEMISTRY, V35, P145
   STEWART JJP, 1990, J COMPUT AID MOL DES, V4, P1
   UENO K, 1977, ACTA CRYSTALLOGR B, V33, P111
   UENO K, 1977, ACTA CRYSTALLOGR B, V33, P114
NR 27
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD MAR 29
PY 1996
VL 363
IS 1
BP 87
EP 96
PG 10
SC Chemistry, Physical
GA UH856
UT ISI:A1996UH85600007
ER

PT J
AU Abraham, RJ
   Jones, AD
   Warne, MA
   Rittner, R
   Tormena, CF
TI Conformational analysis .27. NMR, solvation and theoretical
   investigation of conformational isomerism in fluoro- and
   1,1-difluoro-acetone
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID SUBSTITUTED CARBONYL-COMPOUNDS; VIBRATIONAL ASSIGNMENT;
   INTERNAL-ROTATION; ABINITIO CALCULATIONS; ELECTRONIC INTERACTION;
   BARRIERS; STABILITY; FLUOROACETONE; CHLORIDE; SPECTRA
AB The solvent and temperature dependence of the H-1 and C-13 NMR spectra
   of fluoroacetone (FA), 1,1-difluoroacetone (DFA) and
   1,1,1-trifluoroacetone (TFA) are reported and the (4)J(HF), (1)J(CF)
   and (2)J(CF) couplings analysed using ab initio calculations and
   solvation theory.
   In FA the energy difference (E(cis) - E(tr)) between the cis (F-C-C=O 0
   degrees) and trans (F-C-C=O 180 degrees) conformers is 2.2 kcal mol(-1)
   in the vapour, decreasing to 1.0 kcal mol(-1) in CCl4 solution and to
   -0.6 kcal mol(-1) in the pure liquid.
   In DFA the conformational equilibrium is between the less polar cis
   (H-C-C=O 0 degrees) and a gauche conformation (H-C-C=O 104 degrees).
   The energy difference (E(g) - E(cis)) is +0.8 kcal mol(-1) in the
   vapour, decreasing to 0.1 kcal mol(-1) in CCl4 solution and to -0.6
   kcal mol(-1) in the pure liquid.
   The vapour state energy difference for FA compares well with that
   calculated (2.8 kcal mol(-1) at MP4/6-31G*). DFA calculations at this
   level gave only one minimum in the potential surface corresponding to
   the cis form, A minimum for the gauche conformer was only found when
   sol solvation was included in the ab initio calculations, or at much
   larger basis sets (6-311++G**).
   The conformer couplings obtained show that the (4)J(HF) coupling
   (F-C-C-CH3) is proportional to cos(2) theta, where theta is the F-C-C-C
   dihedral angle. The (1)J(CF) and (2)J(CF) couplings also show a
   pronounced orientation dependence which could be of particular utility
   in those cases where other couplings are not present.
C1 UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13083970 CAMPINAS,SP,BRAZIL.
RP Abraham, RJ, UNIV LIVERPOOL,DEPT CHEM,POB 147,LIVERPOOL L69
   3BX,MERSEYSIDE,ENGLAND.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
   ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
   ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
   ABRAHAM RJ, 1994, J CHEM SOC P2, P949
   ABRAHAM RJ, 1995, J CHEM SOC P2, P1973
   CHOI SC, 1985, CAN J CHEM, V63, P836
   COOK BR, 1967, J CHEM PHYS, V47, P1700
   CROWDER GA, 1967, J CHEM PHYS, V47, P367
   DURIG JR, 1989, J CHEM PHYS, V90, P6840
   DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
   DURIG JR, 1991, J MOL STRUCT, V242, P179
   DURIG JR, 1991, J RAMAN SPECTROSC, V22, P141
   EWING DF, 1972, J CHEM SOC P2, P701
   FOREMAN JB, 1993, EXPLORING CHEM ELECT
   FRISCH MJ, 1992, GAUSSIAN 92
   GUERRERO SA, 1983, J CHEM SOC PERK T 2, P1053
   JONES GIL, 1973, J MOL STRUCT, V18, P1
   JONES VIP, 1970, J CHEM SOC B, P1719
   KAISEN CR, 1982, THESIS U ESTADUAL CA
   KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P1124
   KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P3572
   KHAN AY, 1969, J CHEM PHYS, V50, P1801
   LUMBROSO H, 1987, J MOL STRUCT, V162, P131
   OLIVATO PR, 1992, CAN J APPL SPECTROSC, V37, P37
   PHAN HV, 1993, SPECTROCHIM ACTA A, V49, P1967
   SAEGEBARTH E, 1967, J CHEM PHYS, V46, P3088
   SAEGEBARTH E, 1970, J CHEM PHYS, V52, P3555
   SHAPIRO BL, 1970, J MAGN RESON, V3, P336
   SHAPIRO BL, 1973, J MAGN RESON, V10, P65
   SHAPIRO BL, 1973, J MAGN RESON, V11, P355
   SHAPIRO BL, 1973, J MAGN RESON, V9, P305
   VANEIJCK BP, 1972, J MOL STRUCT, V11, P67
   VEKEN BJV, 1993, J MOL STRUCT, V293, P55
   WEAST RC, HDB CHEM PHYSICS
   WOLFE S, 1972, ACCOUNTS CHEM RES, V5, P102
   WOODWARD AJ, 1970, J MOL SPECTROSC, V35, P127
   WOODWARD AJ, 1970, J PHYS CHEM-US, V74, P798
NR 37
TC 26
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK MILTON ROAD, CAMBRIDGE, CAMBS,
   ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD APR
PY 1996
IS 4
BP 533
EP 539
PG 7
SC Chemistry, Organic; Chemistry, Physical
GA UF122
UT ISI:A1996UF12200010
ER

PT J
AU Gozzo, FC
   Sorrilha, AEPM
   Eberlin, MN
TI The generation, stability, dissociation and ion molecule chemistry of
   sulfinyl cations in the gas phase
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID MASS-SPECTROMETRY; ELECTRON-IMPACT; ORBITAL METHODS; ACYLIUM IONS;
   BASIS SETS; INTERMEDIATE; SUBSTITUTION; ISOMERS; C2H3O+
AB Sulfinyl cations [R-S+-O (R = CH3, Ph, Cl, CH3O and C2H5O)] have been
   demonstrated by MO calculations in conjunction with pentaquadrupole
   multidimensional (2D and 3D) MS(2) and MS(3) mass spectrometric
   experiments to be stable and easily accessible gas phase species, and
   their dissociation and ion/molecule chemistry have been studied.
   Potential energy surface diagrams indicate that the sulfoxides
   (CH3)(2)S=O, Ph(2)S=O, Cl2S=O, (CH3O)(2)S=O and (C2H5O)(2)S=O do not
   undergo rearrangement upon dissociative ionization, yielding the
   corresponding sulfinyl cations as primary fragments, Ph(CH3)S=O-+., on
   the other hand, is predicted to isomerize to CH3-S-O-Ph(+.) via a
   four-membered ring transition state, yielding upon further CH3. loss
   the isomeric ion S=O+-Ph. The sulfinyl cations were found by ab initio
   calculations to be much more stable than their S=O+-R isomers, hence
   isomerization via [1,2-R] shifts is not expected, Direct cleavage of
   the R-SO+ bonds and/or processes that are preceded by isomerization
   dominate the low-energy collision dissociation chemistry of the
   sulfinyl cations, thus providing limited structural information. On the
   other hand, a general and structurally diagnostic ion/molecule reaction
   with 2-methyl-1,3-dioxolane occurs for all the sulfinyl cations
   yielding abundant net oxirane (C2H4O) addition products. The reaction
   probably occurs via a transketalization-like mechanism that leads to
   cyclic 2-thia-1,3-dioxolanylium ions. This reactivity parallels that of
   several acylium (R-C+=O) and thioacylium ions (R-C+=S), and is not
   shared by the isomeric ions SO+-Ph and CH2=S+-OH. While the
   corresponding acylium ions react extensively with isoprene by [4 +
   2(+)] cycloaddition, only the phenylsulfinyl cation Ph-S+=O yields an
   abundant cycloadduct.
C1 STATE UNIV CAMPINAS UNICAMP,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR *MIN SUP CTR INC, 1993, XMOL VER 1 3 1
   APPEL R, 1966, CHEM BER, V99, P3108
   ATTINA M, 1983, J AM CHEM SOC, V105, P1122
   BAAR BV, 1986, J CHEM SOC CHEM COMM, P1607
   BASHER MM, UNPUB
   BEAUGRAND C, 1989, ADV MASS SPECTROM A, V11, P256
   BLICKE FF, 1942, ORG REACTIONS, V1, P303
   BOGERT MT, 1933, J AM CHEM SOC, V55, P3741
   BOWERS MT, 1979, GAS PHASE ION CHEM
   BOWIE JH, 1966, TETRAHEDRON, V22, P3515
   BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR
   BUSH KL, 1989, MASS SPECTROMETRY MA
   CAREY FA, 1983, ADV ORGANIC CHEM
   CARLSEN L, 1988, J AM CHEM SOC, V110, P6701
   CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
   CHAPMAN JR, 1993, PRACTICAL ORGANIC MA
   CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
   EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
   EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
   EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
   EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
   FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
   FRISCH MJ, 1992, GAUSSIAN92
   GORDON MS, 1980, CHEM PHYS LETT, V76, P163
   GOZZO FC, 1993, P 41 ASMS C MASS SPE, P974
   GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
   GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
   GU M, 1992, J AM CHEM SOC, V114, P7146
   HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
   HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
   JOHNSTONE RAW, 1979, MASS SPECTROMETRY, V5, P277
   JULIANO VF, IN PRESS ANAL CHEM
   KHMELNITSKII RA, 1977, RUSS CHEM REV, V46, P46
   KIM JK, 1982, J AM CHEM SOC, V104, P4624
   KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
   KUMAKURA M, 1978, J PHYS CHEM-US, V82, P639
   LINDNER E, 1968, ANGEW CHEM INT EDIT, V7, P548
   LIU LK, 1983, ORG MASS SPECTROM, V18, P22
   LU L, 1995, J MASS SPECTROM, V30, P581
   MANNICH C, 1936, CHEM BER, V69, P2299
   MCGIBBON GA, 1994, CHEM PHYS LETT, V218, P499
   MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
   MCLAFFERTY FW, 1993, INTERPRETATION MASS
   MEYERSON S, 1964, ANAL CHEM, V36, P1294
   MOLLER C, 1934, PHYS REV, V46, P618
   MORRISON JD, 1986, 34TH P AM SOC MASS S, P222
   MUKAIYAMA T, 1982, ORG REACTIONS, V28, P203
   NIXON WB, 1978, INT J MASS SPECTROM, V26, P115
   NOBES RH, 1983, J AM CHEM SOC, V105, P309
   OLAH GA, 1964, FRIEDELCRAFTS RELATE, V3
   OLAH GA, 1974, J AM CHEM SOC, V96, P3581
   OLAH GA, 1976, CARBONIUM IONS, V5, P2049
   OLAH GA, 1980, ANGEW CHEM INT EDIT, V19, P812
   PARADISI C, 1988, ORG MASS SPECTROM, V23, P521
   PEERS AM, 1975, INT J MASS SPECTROM, V16, P321
   PIHLAJA K, 1988, CHEM SULPHONES SULPH, P125
   PIHLAJA K, 1988, ORG MASS SPECTROM, V23, P770
   POTZINGER P, 1975, Z NATURFORSCH A, V30, P340
   RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
   ROLSTON JH, 1969, J AM CHEM SOC, V91, P1469
   SABLIER M, 1994, TETRAHEDRON LETT, V35, P2895
   SCHWARTZ JC, 1989, INT J MASS SPECTROM, V3, P305
   SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
   SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
   SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
   STALEY RH, 1977, J AM CHEM SOC, V99, P5964
   TURECEK F, 1983, ORG MASS SPECTROM, V18, P608
   TURECEK F, 1984, MASS SPECTROM REV, V3, P85
   TURECEK F, 1989, J AM CHEM SOC, V111, P7696
   WEBER R, 1980, ORG MASS SPECTROM, V15, P138
   YANG SS, 1995, J MASS SPECTROM, V30, P807
NR 73
TC 17
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK MILTON ROAD, CAMBRIDGE, CAMBS,
   ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD APR
PY 1996
IS 4
BP 587
EP 596
PG 10
SC Chemistry, Organic; Chemistry, Physical
GA UF122
UT ISI:A1996UF12200020
ER

PT J
AU Blaszkowski, SR
   Nascimento, MAC
   vanSanten, RA
TI Activation of C-H and C-C bonds by an acidic zeolite: A density
   functional study
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID MOLECULAR-SIEVES; OPTIMIZATION; ENERGIES; APPROXIMATION; BEHAVIOR;
   GEOMETRY
AB Density functional theory is used to determine transition states and
   the corresponding energy barriers of the reactions related to C-H bond
   activation of hydrogen exchange and dehydrogenation of ethane catalyzed
   by a protonated zeolite as well as hydride transfer between methanol
   and a methoxide (CH3-zeolite) species. Additionally the C-C bond
   activation involved in the acid catalyzed cracking reaction of ethane
   was investigated. The computed activation barriers are 118 for hydrogen
   exchange, 202 for hydride transfer, 292 for cracking and finally 297
   for dehydrogenation, all in kilojoules per mole. For the cracking
   reaction, two different transition states with the same activation
   barrier have been obtained, dependent on the approach of the ethane
   molecule to the zeolite cluster. A study of the relation between
   acidity and the structure of the zeolite shows that the transition
   state for the hydrogen exchange reaction is rather covalent and its
   geometry resembles the well-known carbonium ion, while the others are
   rather ionic carbenium ions. From the calculated activation barriers as
   well as vibrational, rotational, and translational partition functions,
   reaction rate constants have been evaluated by means of the transition
   state reaction rate theory.
C1 EINDHOVEN UNIV TECHNOL,SCHUIT INST CATALYSIS,INORGAN CHEM LAB,5600 MB EINDHOVEN,NETHERLANDS.
   EINDHOVEN UNIV TECHNOL,CATALYSIS THEORY GRP,5600 MB EINDHOVEN,NETHERLANDS.
RP Blaszkowski, SR, FED UNIV RIO DE JANEIRO,DEPT QUIM FIS,INST QUIM,CIDADE
   UNIV,BLOCO A,BR-21949900 RIO JANEIRO,BRAZIL.
CR ANDZELM J, 1987, CHEM PHYS LETT, V142, P169
   ANDZELM J, 1992, J CHEM PHYS, V96, P1280
   BECKE AD, 1988, PHYS REV A, V38, P3098
   BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
   BLASZKOWSKI SR, 1995, J PHYS CHEM-US, V99, P11728
   BOHME DK, 1975, INTERACTIONS IONS MO, P489
   CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
   COLLINS SJ, 1995, J CATAL, V153, P94
   CORMA A, 1994, J CATAL, V145, P58
   ENGELHARDT J, 1995, J CATAL, V151, P1
   EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
   FAN LY, 1992, J AM CHEM SOC, V114, P10890
   FROST AA, 1961, KINETICS MECHANISMS
   GILBERT RG, 1990, THEORY UNIMOLECULAR
   GODBOUT N, 1992, CAN J CHEM, V70, P560
   HEAD JD, 1989, ADV QUANTUM CHEM, V20, P239
   HEHRE WJ, 1986, AB INITIO MOL ORBITA
   HOCEVAR S, 1992, J CATAL, V135, P518
   HOHENBERG P, 1964, PHYS REV B, V136, P864
   HOUTE JJ, 1992, INT J MASS SPECTROM, V155, P173
   KAZANSKY VB, 1994, CATAL LETT, V27, P345
   KAZANSKY VB, 1994, CATAL LETT, V28, P211
   KOHN W, 1965, PHYS REV, V140, A1133
   KRAMER GJ, 1993, J AM CHEM SOC, V115, P2887
   KRAMER GJ, 1993, NATURE, V363, P529
   KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
   LERCHER JA, 1994, CATAL LETT, V27, P91
   MCIVER JW, 1971, CHEM PHYS LETT, V10, P303
   MEUSINGER J, 1995, J CATAL, V152, P189
   MOORE JW, 1990, KINETICS MECHANISM
   MOULIJN JA, 1995, STUDIES SURFACE SCI, V79, P69
   ONO Y, 1992, CATAL REV SCI ENG, V34, P179
   PERDEW JP, 1986, PHYS REV B, V33, P8822
   ROBERTS JD, 1981, BASIC PRINCIPLES ORG, P121
   SHLEGEL HB, 1987, AB INITIO METHODS QU
   STACH H, 1993, PURE APPL CHEM, V65, P2193
   STEFANADIS C, 1991, J MOL CATAL, V67, P363
   VANSANTE RA, 1990, NATO ASI SER B-PHYS, V221, P227
   VANSANTEN RA, 1995, J CHEM REV, V95, P637
   VOSKO SH, 1980, CAN J PHYS, V58, P1200
   WILSON EB, 1955, MOL VIBRATIONS
   YALURIS G, 1995, J CATAL, V153, P65
NR 42
TC 76
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD FEB 29
PY 1996
VL 100
IS 9
BP 3463
EP 3472
PG 10
SC Chemistry, Physical
GA TX766
UT ISI:A1996TX76600024
ER

PT J
AU daSilva, JBP
   daCosta, NB
   Ramos, MN
   Fausto, R
TI Vibrational spectra and structure of the cis and trans conformers of
   methyl nitrite: An ab initio MO study
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
ID ABINITIO CALCULATIONS; MICROWAVE-SPECTRA; PHASE
AB The vibrational and conformational properties exhibited by nethyl
   nitrite (CH3ON=O) were studied by ab initio MO methods (HF-SCF and MP2)
   using both the 6-31G and 6-311G basis sets without or with the
   inclusion of diffuse and/or polarization functions, Fully optimized
   geometries, relative stabilities, dipole moments and harmonic force
   fields for both the cis and trans conformers of this molecule were
   determined and the results compared with available experimental data.
   In agreement with the experimental results, the calculations involving
   polarization functions at the MP2 level of theory indicate that the
   most stable conformer of methyl nitrite is the planar cis conformer,
   where the methyl group is eclipsing the N=O bond, while the trans form
   was predicted to have a higher energy than this form by about 4 kJ
   mol(-1) The conformational dependence of some relevant structural
   parameters was used to characterize the most important intramolecular
   interactions present in the studied conformers, and their calculated
   infrared spectra were used to review previous assignments of the
   experimentally observed bands for both the normal and deuterated
   (CD3ON=O) species. Chemometrics methods (principal components and
   two-level factorial designing) were used both to analyze the effect of
   changing the basis set and level of theory used to perform the
   calculations, and to aid comparison between the experimental and
   calculated vibrational spectra.
C1 UNIV COIMBRA,DEPT QUIM,P-3049 COIMBRA,PORTUGAL.
   UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50740250 RECIFE,PE,BRAZIL.
CR *INF INC, 1991, EIN SIGHT PATT REC S
   BAUER SH, 1980, J PHYS CHEM-US, V84, P2507
   BODENBINDER M, 1994, J PHYS CHEM-US, V98, P6441
   BOX GEP, 1978, STATISTICS EXPT
   BROWN HW, 1964, J MOL SPECTROSC, V13, P305
   CHAUVEL JP, 1983, J PHYS CHEM-US, V87, P1622
   CONBOY CB, 1986, J PHYS CHEM-US, V90, P4353
   CORDELL FR, 1980, J MOL STRUCT, V64, P57
   CORKILL MJ, 1978, 7 AUST S MOL STRUCT
   FARIA MDG, 1990, BUILD G VIBRAT
   FARIA MDG, 1990, TRANSFORMER VERSION
   FELDER P, 1979, CHEM PHYS LETT, V66, P283
   FELDER P, 1981, SPECTROCHIM ACTA, V37, P337
   FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
   FRISCH MJ, 1992, GAUSSIAN 92
   FUHER F, 1976, NATL RES COUNCIL CAN, V15, P1
   GHOSH PN, 1980, CHEM PHYS, V53, P39
   GHOSH PN, 1981, SPECTROCHIM ACTA A, V37, P347
   GORDON MS, 1980, CHEM PHYS LETT, V163, P76
   GRAY P, 1963, T FARADAY SOC, V59, P347
   INGLEFIELD PT, 1968, MOL PHYS, V15, P65
   KLABOE P, 1967, SPECTROCHIM ACTA   A, V23, P2957
   KRISHNAN R, 1980, J CHEM PHYS, V192, P690
   LEES RM, 1968, J CHEM PHYS, V48, P5299
   MAVDIA KV, 1979, MULTIVARIATE ANAL, CH8
   PULAY P, 1979, J AM CHEM SOC, V101, P2550
   ROOK FL, 1982, J MOL SPECTROSC, V93, P101
   SCARMINIO IS, 1989, TRAC-TREND ANAL CHEM, V8, P326
   SCHLEGEL HB, 1975, THESIS QUEENS U KING
   STIDHAM HD, 1990, J RAMAN SPECTROSC, V21, P615
   SUTO E, 1991, J COMPUT CHEM, V12, P885
   TARTE PJ, 1979, J AM CHEM SOC, V101, P2550
   TEIXEIRADIAS JJC, 1986, J MOL STRUCT, V133, P199
   TOMAGAWA K, 1984, J MOL STRUCT, V125, P131
   TURNER PH, 1979, J CHEM SOC F2, V2, P317
   TURNER PH, 1979, J PHYS CHEM-US, V83, P1473
   VANDERVEKEN BJ, 1989, J MOL STRUCT THEOCHE, V200, P413
   VANDERVEKEN BJ, 1990, J PHYS CHEM-US, V94, P4029
NR 38
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD JAN 22
PY 1996
VL 375
IS 1-2
BP 153
EP 180
PG 28
SC Chemistry, Physical
GA TX261
UT ISI:A1996TX26100014
ER

PT J
AU Tanabe, FKJ
   Morgon, NH
   Riveros, JM
TI Relative gas-phase bromide and iodide affinity of simple solvent
   molecules determined by FT-ICR
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID TRANSFORM MASS-SPECTROMETRY; HALIDE-IONS; CHLORIDE-ION; EQUILIBRIA
   MEASUREMENTS; EXCHANGE EQUILIBRIA; IMPULSE EXCITATION; BRONSTED ACIDS;
   BOND STRENGTHS; NEGATIVE-IONS; COMPLEXES
AB The gas-phase ion/molecule reaction of CH3O- with bromo- and
   iodobenzene has been used to generate Br-(CH3OH) and I-(CH3OH) ions in
   an FT-ICR spectrometer. These ions are shown to undergo rapid solvent
   exchange with molecules of comparable or higher halide affinity. The
   equilibrium constants have been determined for these exchange reactions
   and the relative bromide free-energy affinity at 335 K (-Delta G
   degrees/kcal mol(-1)) is shown to increase in the order H2O (0.0) <
   CH3OH (1.07) < CH3CN (1.51) similar to C2H5OH (1.53) < i-C3H7OH (1.88)
   < CH3NO2 (2.34). For I-, a similar trend is observed except that C2H5OH
   < CH3CN. Ab initio calculations were carried out at the MP4(SDTQ) level
   with geometry optimization at the MP2 level and using the generator
   coordinate method to add diffuse functions to the Br basis set. Changes
   in entropies for the gas-phase equilibrium experiments were estimated
   from the calculated vibrational frequencies, and the enthalpies of
   solvation were derived by using the reported value for Br-(CH3OH) as a
   reference point.
C1 UNIV SAO PAULO,INST QUIM,BR-05599970 SAO PAULO,BRAZIL.
CR ABBOUD JLM, 1989, J AM CHEM SOC, V111, P8960
   ARSHADI M, 1970, J PHYS CHEM-US, V74, P1475
   BURDETT NA, 1982, J CHEM SOC F1, V78, P2997
   CALDWELL G, 1984, J AM CHEM SOC, V106, P967
   CALDWELL GW, 1989, ORG MASS SPECTROM, V24, P8
   CASTLEMAN AW, 1986, CHEM REV, V86, P589
   DANGNHU M, 1990, J MOL SPECTROSC, V140, P412
   DOUGHERTY RC, 1974, ORG MASS SPECTROM, V8, P81
   DUNBAR RC, 1994, J PHYS CHEM-US, V98, P8705
   DUNNING TH, 1977, METHODS ELECTRONIC S, CH1
   EVANS DH, 1987, J CHEM PHYS, V86, P2927
   FAIGLE JFG, 1976, J AM CHEM SOC, V98, P2049
   FRISCH C, 1992, GAUSSIAN 92 REVISION
   GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
   GRAUL ST, 1990, J AM CHEM SOC, V112, P2517
   HEHRE WJ, 1986, AB INITIO MOL ORBITA, CH6
   HIRAOKA K, 1988, J PHYS CHEM-US, V92, P3943
   HIRAOKA K, 1991, INT J MASS SPECTROM, V109, P133
   HIRAOKA K, 1993, CHEM PHYS LETT, V208, P491
   HIRAOKA K, 1993, J AM SOC MASS SPECTR, V4, P58
   HOP CECA, 1990, INT J MASS SPECTROM, V101, P191
   ISOLANI PC, 1992, QUIM NOVA, V15, P351
   KATRITZKY AR, 1990, J AM CHEM SOC, V112, P2472
   KEBARLE P, 1972, IONS ION PAIRS ORGAN, V1
   KEBARLE P, 1979, PURE APPL CHEM, V51, P63
   KEESEE RG, 1980, CHEM PHYS LETT, V74, P139
   KEESEE RG, 1986, J PHYS CHEM REF DATA, V15, P1011
   LARSON JW, 1983, J AM CHEM SOC, V105, P2944
   LARSON JW, 1984, CAN J CHEM, V62, P675
   LARSON JW, 1984, J AM CHEM SOC, V106, P517
   LINNERT HV, COMMUNICATION
   LINNERT HV, UNPUB
   LINNERT HV, 1993, J CHEM SOC CHEM COMM, P48
   LINNERT HV, 1994, INT J MASS SPECTROM, V140, P165
   MCIVER RT, 1989, INT J MASS SPECTROM, V89, P343
   MCIVER RT, 1989, REV SCI INSTRUM, V60, P400
   MORGON NH, 1995, CHEM PHYS LETT, V235, P436
   MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
   PAUL GJC, 1991, J AM CHEM SOC, V113, P1148
   PITZER KS, 1942, J CHEM PHYS, V10, P428
   RIVEROS JM, 1973, J AM CHEM SOC, V95, P4066
   RIVEROS JM, 1991, J AM CHEM SOC, V113, P1053
   SENA M, 1994, RAPID COMMUN MASS SP, V8, P1031
   SIECK LW, 1985, J PHYS CHEM-US, V89, P5552
   SIEVERS HL, 1995, J AM CHEM SOC, V117, P2313
   THOLMANN D, 1994, J PHYS CHEM-US, V98, P2002
   VANDEGUCHTE WJ, 1990, INT J MASS SPECTROM, V95, P317
   VANDERHART WJ, 1988, INT J MASS SPECTROM, V82, P17
   WADT WR, 1985, J CHEM PHYS, V82, P284
   YAMABE S, 1986, CHEM PHYS LETT, V131, P261
   YAMDAGNI R, 1972, J AM CHEM SOC, V94, P2940
NR 51
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD FEB 22
PY 1996
VL 100
IS 8
BP 2862
EP 2866
PG 5
SC Chemistry, Physical
GA TX257
UT ISI:A1996TX25700014
ER

PT J
AU Schmidt, TM
   Fazzio, A
   Caldas, MJ
TI Germanium negative-U center in GaAs
SO PHYSICAL REVIEW B
LA English
DT Article
ID DX-CENTER; PERSISTENT PHOTOCONDUCTIVITY; ALXGA1-XAS ALLOYS;
   HYDROSTATIC-PRESSURE; DEEP DONORS; GE; SEMICONDUCTORS; STATES; SI;
   ENERGETICS
AB The DX center related to the Ge impurity in GaAs is investigated by ab
   initio pseudopotential calculations within the local-density
   aproximation. Our results indicate that the behavior of the Ge-Ga
   defect is qualitatively different from the broken-bond model usually
   associated to Si-Ga, even if the electronic structure behaves in a very
   similar way. Indeed, for the Ge impurity our calculations show that
   already for breathing-mode relaxations of the Ge neighbors, in T-d
   symmetry, a negative-U behavior is found, and many details of the
   experimental data can be explained.
C1 UNIV FED UBERLANDIA,DEPT CIENCIAS FIS,BR-38400902 UBERLANDIA,MG,BRAZIL.
RP Schmidt, TM, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05389970 SAO
   PAULO,BRAZIL.
CR BAJ M, COMMUNICATION
   BAJ M, 1993, PHYS REV LETT, V71, P3529
   BAJ M, 1994, MATER SCI FORUM, V143, P1019
   BOURGOIN J, 1981, SPRINGER SERIES SOLI, V22
   CALDAS MJ, 1990, INT J QUANTUM CHEM S, V24, P563
   CALDAS MJ, 1990, PHYS REV LETT, V65, P2046
   CALDAS MJ, 1994, SOLID STATE COMMUN, V89, P493
   CAR R, 1985, PHYS REV LETT, V55, P2471
   CHADI DJ, 1973, PHYS REV B, V8, P5747
   CHADI DJ, 1988, PHYS REV LETT, V61, P873
   CHADI DJ, 1989, PHYS REV B, V39, P10063
   DABROWSKI J, 1988, PHYS REV LETT, V60, P2183
   DABROWSKI J, 1992, MATER SCI FORUM, V83, P735
   DISSANAYAKE A, 1992, PHYS REV B, V45, P13996
   DMOCHOWSKI JE, 1990, 20TH P INT C PHYS SE, V1, P658
   FAZZIO A, 1984, PHYS REV B, V30, P3430
   FAZZIO A, 1993, 21 P INT C BEIJ, V1, P1713
   FAZZIO A, 1993, 21 P INT C BEIJ, V2, P1713
   FUJISAWA T, 1990, JPN J APPL PHYS PT 2, V29, L388
   FURTHMULLER J, 1992, PHYS REV B, V46, P3839
   GHOSH S, 1992, PHYS REV B, V46, P7533
   IHM J, 1979, J PHYS C SOLID STATE, V12, P4409
   JONES R, 1991, PHYS REV B, V44, P3407
   KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
   KUMAGAI O, 1984, APPL PHYS LETT, V45, P1322
   LANG DV, 1979, PHYS REV B, V19, P1015
   LI MF, 1987, PHYS REV B, V36, P4531
   MEHRAN F, 1972, SOLID STATE COMMUN, V11, P661
   MOONEY PM, 1990, J APPL PHYS, V67, R1
   MORGAN TN, 1986, PHYS REV B, V34, P2664
   MOSSER V, 1991, PHYS REV LETT, V66, P1737
   PANTELIDES ST, 1974, PHYS REV           B, V10, P638
   SAARINEN K, 1994, PHYS REV B, V49, P8005
   SAITO M, 1993, MOD PHYS LETT B, V7, P1567
   SAITO M, 1993, PHYS REV B, V47, P13205
   SCHMIDT TM, UNPUB
   SCHMIDT TM, 1992, SOLID STATE COMMUN, V82, P83
   SKIERBISZEWSKI C, 1993, APPL PHYS LETT, V63, P3209
   SLATER JC, 1974, SELF CONSISTENT FIEL, V4
   STUMPF RS, UNPUB
   SUSKI T, 1991, J APPL PHYS, V69, P3087
   TACHIKAWA M, 1985, JPN J APPL PHYS PT 2, V24, L893
   THEIS TN, 1991, J ELECTRON MATER, V20, P35
   VANDERWEL PJ, 1993, J PHYS-CONDENS MAT, V5, P5001
   YAMAGUCHI E, 1991, J PHYS SOC JPN, V60, P3093
NR 45
TC 10
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD JAN 15
PY 1996
VL 53
IS 3
BP 1315
EP 1321
PG 7
SC Physics, Condensed Matter
GA TU290
UT ISI:A1996TU29000063
ER

PT J
AU Pliego, JR
   DeAlmeida, WB
TI Searching for the ylide structure. An ab initio study of the H2O...CCl2
   complex
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DICHLOROCARBENE
AB The potential energy surface (PES) for the H2O...CCl2 complex has been
   investigated at the self-consistent field level with a DZP basis set in
   order to search for stationary points and to verify the possible
   formation of an ylide species. Six stationary points were located on
   the PES, being one minimum, three first-order transition sates (TS) and
   two second-order TS structures. A stable ylide species was not found,
   and an explanation for this is given based on electrostatic grounds,
   The unique minimum corresponds to an H-bond structure, with a
   dissociation energy of 845.5 cm(-1), calculated including zero point
   energy correction, a more extended basis set, electron correlation
   effects at the MP2 level and taking into account basis set
   superposition errors employing the counterpoise method.
RP Pliego, JR, UFMG,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM
   MOLEC,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BETHELL D, 1973, ORGANIC REACTIVE INT
   BOYS SF, 1970, MOL PHYS, V19, P553
   BUCKINGHAM AD, 1988, CHEM REV, V88, P963
   CAI ZL, 1993, CHEM PHYS LETT, V210, P481
   CARTER EA, 1988, J CHEM PHYS, V88, P1752
   CHALASINSKI G, 1994, CHEM REV, V94, P1723
   CHATEAUNEUF JE, 1990, J AM CHEM SOC, V112, P3217
   DEALMEIDA WB, 1993, J PHYS CHEM-US, V97, P2560
   DEALMEIDA WB, 1994, CHEM PHYS LETT, V231, P283
   DEALMEIDA WB, 1994, MOL PHYS, V81, P1397
   DEALMEIDA WB, 1995, SPECTROCHIM ACTA A, V51, P653
   DUNNING TH, 1977, METHODS ELECTRONIC S
   GOBBI A, 1993, J CHEM SOC CHEM COMM, P1162
   GUTSEV GL, 1991, J PHYS CHEM-US, V95, P7220
   HOBZA P, 1988, CHEM REV, V88, P71
   KIM SJ, 1991, J CHEM PHYS, V94, P2063
   KIRMSE W, 1964, CARBENE CHEM
   MOSS RA, 1989, ACCOUNTS CHEM RES, V22, P15
   PLIEGO JR, UNPUB
   RESENDE SM, 1995, J CHEM PHYS, V102, P4184
   RUSSO N, 1992, J CHEM PHYS, V97, P5031
   SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
NR 22
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JAN 26
PY 1996
VL 249
IS 1-2
BP 136
EP 140
PG 5
SC Physics, Atomic, Molecular & Chemical
GA TR918
UT ISI:A1996TR91800023
ER

PT J
AU Giordan, M
   Custodio, R
   Trigo, JR
TI Pyrrolizidine alkaloids necine bases: Ab initio, semiempirical, and
   molecular mechanics approaches to molecular properties
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
ID BUTTERFLIES DANAUS-PLEXIPPUS; ARCTIID MOTH; PARAMETERS; OPTIMIZATION
AB The structural stabilities of endo and exo conformations of retronecine
   and heliotridine molecules were analyzed using different ab initio,
   semiempirical, and molecular mechanics methods. All electron and
   pseudopotential nb initio calculations at the Hartree-Fock level of
   theory with 6-31G* and CEP-31G* basis sets provided structures in
   excellent agreement with available experimental results obtained from
   X-ray crystal structure and H-1-NMR (nuclear magnetic resonance)
   studies in D2O solutions. The exo conformations showed a greater
   stability for both molecules. The most significant difference between
   the calculations was found in the ring planarity of heliotridine, whose
   distortion was associated with the interaction between the O(11)H group
   and the C(1)-C(2) double bond as well as with a hydrogen bond between
   O(11)H and N(4). The discrepancy between pseudopotential and
   all-electron optimized geometries was reduced after inclusion of the
   innermost electrons of C(1), C(2), and N(4) in the core potential
   calculation. The MNDO, AM1, and PM3 semiempirical results showed poor
   agreement with experimental data. The five-membered rings were observed
   to be planar for AM1 and MNDO calculations. The PM3 calculations for
   exo-retronecine showed a greater stability than the endo conformer, in
   agreement with ab initio results. A good agreement was observed between
   MM3 and nb initio geometries, with small differences probably due to
   hydrogen bonds. While exo-retronecine was calculated to be more stable
   than the endo conformer, the MM3 calculations suggested that
   endo-heliotridine was slightly more stable than the exo form. (C) 1996
   by John Wiley & Sons, Inc.
C1 UNIV ESTADUAL CAMPINAS,INST BIOL,DEPT ZOOL,LAB ECOL QUIM,BR-13081970 CAMPINAS,SP,BRAZIL.
RP Giordan, M, UNIV ESTADUAL CAMPINAS,DEPT FISICOQUIM,INST
   QUIM,BR-13081970 CAMPINAS,SP,BRAZIL.
CR ALLINGER NL, MM392 QCPE IND U
   ALLINGER NL, 1989, J AM CHEM SOC, V111, P8551
   ALLINGER NL, 1989, J AM CHEM SOC, V111, P8566
   ALLINGER NL, 1989, J AM CHEM SOC, V111, P8576
   BOPPRE M, 1986, NATURWISSENSCHAFTEN, V73, P17
   BOPPRE M, 1990, J CHEM ECOL, V16, P165
   CULVENOR CCJ, 1965, AUST J CHEM, V18, P1605
   DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
   DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
   EDGAR JA, 1975, PHIL T R SOC LOND B, V272, P467
   EDGAR JA, 1979, EXPERIENTIA, V35, P1447
   FERGUSON DM, 1992, J COMPUT CHEM, V13, P525
   FRISCH MJ, 1992, GAUSSIAN 92
   GELBAUM LT, 1985, ACTA CRYSTALLOGR C, V41, P1342
   HARTMANN T, 1988, CELL CULTURE SOMATIC, V5, P277
   HARTMANN T, 1995, ALKALOIDS CHEM BIOL, V9, P155
   HAY DG, 1982, ACTA CRYSTALLOGR B, V38, P155
   HEHRE WJ, 1986, AB INITIO MOL ORBITA, P137
   KARPLUS M, 1963, J AM CHEM SOC, V85, P2870
   KELLEY RB, 1987, EXPERIENTIA, V43, P943
   LEMPEREUR KM, 1989, J NAT PRODUCTS, V52, P360
   MACKAY MF, 1982, ACTA CRYSTALLOGR B, V38, P2754
   MACKAY MF, 1983, ACTA CRYSTALLOGR C, V39, P785
   MATTOCKS AR, 1972, PHYTOCHEMICAL ECOLOG, P179
   MATTOCKS AR, 1986, CHEM TOXICOLOGY PYRR
   NISHIDA R, 1991, AGR BIOL CHEM TOKYO, V55, P1787
   RIZAK AFM, 1991, NATURALLY OCCURRING, P1
   RIZAK AFM, 1991, NATURALLY OCCURRING, P211
   STELLJES ME, 1990, J CHEM ECOL, V16, P1459
   STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
   STEWART JJP, 1989, J COMPUT CHEM, V10, P209
   STEWART JJP, 1989, J COMPUT CHEM, V10, P221
   STOECKLIEVANS H, 1976, HELV CHIM ACTA, V59, P2168
   STOECKLIEVANS H, 1982, ACTA CRYSTALLOGR B, V38, P1617
   SUSSMAN JL, 1973, ACTA CRYSTALLOGR B, V29, P2918
   TRIGO JR, 1993, ALCALOIDES PIRROLIZI
   TRIGO JR, 1993, J CHEM ECOL, V19, P669
   TRIGO JR, 1994, J CHEM ECOL, V20, P2603
   VILKOV LV, 1983, DETERMINATION GEOMET
   WODAK SJ, 1975, ACTA CRYSTALLOGR B, V31, P569
NR 40
TC 7
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD JAN 30
PY 1996
VL 17
IS 2
BP 156
EP 166
PG 11
SC Chemistry, Multidisciplinary
GA TM791
UT ISI:A1996TM79100003
ER

PT J
AU DeAzevedo, ALMS
   Neto, BB
   Scarminio, IS
   DeOliveira, AE
   Bruns, RE
TI A chemometric analysis of ab initio vibrational frequencies and
   infrared intensities of methyl fluoride
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
ID DIPOLE-MOMENT DERIVATIVES; THEORETICAL THERMOCHEMISTRY; ANALYTIC
   EVALUATION; MOLECULES; SIGNS; HEATS; CH3F
AB Factorial design and principal component analyses are applied to CH3F
   infrared frequencies and intensities calculated from ab initio wave
   functions. In the factorial analysis, the quantitative effects of
   changing from a 6-31G to a 6-311G basis, of including polarization and
   diffuse orbitals, and of correcting for electron correlation using the
   second-order Moller-Plesset procedure are determined for all
   frequencies and intensities. The most significant main effect observed
   for the frequencies corresponds to the shift from Hartree-Fock to MP2
   calculations, which tends to lower all frequency values by
   approximately 100 cm(-1). For the intensities, the main effects are
   larger for the CF stretching and the CH3 asymmetric stretching modes.
   Interaction effects between two or more of the four factors are found
   to be of minor importance, except for the interaction between
   correlation and polarization. The principal component analysis
   indicates that wave functions with polarization and diffuse orbitals at
   the second-order Moller-Plesset level provide the best estimates for
   the harmonic frequencies, but not for the intensities. For the
   frequencies, the first principal component distinguishes between MP2
   and Hartree-Fock calculations, while the second component separates the
   wave functions with polarization orbitals from those without these
   orbitals. For the intensities, the separation is similar but less well
   defined. This analysis also shows that wave function optimization to
   calculate accurate intensities is more difficult than an optimization
   for frequencies. (C) 1996 by John Wiley & Sons, Inc.
C1 UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13081970 CAMPINAS,SP,BRAZIL.
   UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50739 RECIFE,PE,BRAZIL.
   UNIV ESTADUAL LONDRINA,DEPT QUIM,LONDRINA,PARANA,BRAZIL.
CR BARROW GM, 1952, P ROY SOC LOND A MAT, V213, P27
   BLOM CE, 1978, J MOL SPECTROSC, V70, P449
   BOX GEP, 1978, STATISTICS EXPT
   DILAURO C, 1966, J MOL SPECTROSC, V21, P386
   DUNCAN JL, 1972, MOL PHYS, V24, P553
   FRISCH MJ, 1992, GAUSSIAN 92
   KONDO S, 1982, J CHEM PHYS, V76, P809
   MARDIA KV, 1979, MULTIVARIATE ANAL, CH8
   MILLER MD, 1989, J PHYS CHEM-US, V93, P4495
   NEWTON JH, 1976, J CHEM PHYS, V64, P3036
   PERSON WB, 1977, J CHEM PHYS, V66, P1442
   PERSON WB, 1982, VIBRATIONAL INTENSIT, P271
   POPLE JA, 1985, J PHYS CHEM-US, V89, P2198
   POPLE JA, 1987, J PHYS CHEM-US, V91, P155
   RUSSELL JW, 1966, J CHEM PHYS, V45, P3383
   SCARMINIO IS, 1989, TRAC-TREND ANAL CHEM, V8, P326
   SIMANDIRAS ED, 1987, CHEM PHYS, V114, P9
   SOSA C, 1987, J CHEM PHYS, V86, P6937
   STANTON JF, 1989, J CHEM PHYS, V90, P3241
   SUTO E, 1991, J COMPUT CHEM, V12, P885
   SUTO E, 1993, J MOL STRUCT THEOCHE, V282, P81
   YAMAGUCHI Y, 1986, J CHEM PHYS, V84, P2262
NR 22
TC 6
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD JAN 30
PY 1996
VL 17
IS 2
BP 167
EP 177
PG 11
SC Chemistry, Multidisciplinary
GA TM791
UT ISI:A1996TM79100004
ER

EF