/usr/share/VTKData/Data/Infovis/eg2.isi is in vtkdata 5.8.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265 33266 33267 33268 33269 33270 33271 33272 33273 33274 33275 33276 33277 33278 33279 33280 33281 33282 33283 33284 33285 33286 33287 33288 33289 33290 33291 33292 33293 33294 33295 33296 33297 33298 33299 33300 33301 33302 33303 33304 33305 33306 33307 33308 33309 33310 33311 33312 33313 33314 33315 33316 33317 33318 33319 33320 33321 33322 33323 33324 33325 33326 33327 33328 33329 33330 33331 33332 33333 33334 33335 33336 33337 33338 33339 33340 33341 33342 33343 33344 33345 33346 33347 33348 33349 33350 33351 33352 33353 33354 33355 33356 33357 33358 33359 33360 33361 33362 33363 33364 33365 33366 33367 33368 33369 33370 33371 33372 33373 33374 33375 33376 33377 33378 33379 33380 33381 33382 33383 33384 33385 33386 33387 33388 33389 33390 33391 33392 33393 33394 33395 33396 33397 33398 33399 33400 33401 33402 33403 33404 33405 33406 33407 33408 33409 33410 33411 33412 33413 33414 33415 33416 33417 33418 33419 33420 33421 33422 33423 33424 33425 33426 33427 33428 33429 33430 33431 33432 33433 33434 33435 33436 33437 33438 33439 33440 33441 33442 33443 33444 33445 33446 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 33462 33463 33464 33465 33466 33467 33468 33469 33470 33471 33472 33473 33474 33475 33476 33477 33478 33479 33480 33481 33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 33543 33544 33545 33546 33547 33548 33549 33550 33551 33552 33553 33554 33555 33556 33557 33558 33559 33560 33561 33562 33563 33564 33565 33566 33567 33568 33569 33570 33571 33572 33573 33574 33575 33576 33577 33578 33579 33580 33581 33582 33583 33584 33585 33586 33587 33588 33589 33590 33591 33592 33593 33594 33595 33596 33597 33598 33599 33600 33601 33602 33603 33604 33605 33606 33607 33608 33609 33610 33611 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 33681 33682 33683 33684 33685 33686 33687 33688 33689 33690 33691 33692 33693 33694 33695 33696 33697 33698 33699 33700 33701 33702 33703 33704 33705 33706 33707 33708 33709 33710 33711 33712 33713 33714 33715 33716 33717 33718 33719 33720 33721 33722 33723 33724 33725 33726 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 33762 33763 33764 33765 33766 33767 33768 33769 33770 33771 33772 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 33809 33810 33811 33812 33813 33814 33815 33816 33817 33818 33819 33820 33821 33822 33823 33824 33825 33826 33827 33828 33829 33830 33831 33832 33833 33834 33835 33836 33837 33838 33839 33840 33841 33842 33843 33844 33845 33846 33847 33848 33849 33850 33851 33852 33853 33854 33855 33856 33857 33858 33859 33860 33861 33862 33863 33864 33865 33866 33867 33868 33869 33870 33871 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33882 33883 33884 33885 33886 33887 33888 33889 33890 33891 33892 33893 33894 33895 33896 33897 33898 33899 33900 33901 33902 33903 33904 33905 33906 33907 33908 33909 33910 33911 33912 33913 33914 33915 33916 33917 33918 33919 33920 33921 33922 33923 33924 33925 33926 33927 33928 33929 33930 33931 33932 33933 33934 33935 33936 33937 33938 33939 33940 33941 33942 33943 33944 33945 33946 33947 33948 33949 33950 33951 33952 33953 33954 33955 33956 33957 33958 33959 33960 33961 33962 33963 33964 33965 33966 33967 33968 33969 33970 33971 33972 33973 33974 33975 33976 33977 33978 33979 33980 33981 33982 33983 33984 33985 33986 33987 33988 33989 33990 33991 33992 33993 33994 33995 33996 33997 33998 33999 34000 34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 34017 34018 34019 34020 34021 34022 34023 34024 34025 34026 34027 34028 34029 34030 34031 34032 34033 34034 34035 34036 34037 34038 34039 34040 34041 34042 34043 34044 34045 34046 34047 34048 34049 34050 34051 34052 34053 34054 34055 34056 34057 34058 34059 34060 34061 34062 34063 34064 34065 34066 34067 34068 34069 34070 34071 34072 34073 34074 34075 34076 34077 34078 34079 34080 34081 34082 34083 34084 34085 34086 34087 34088 34089 34090 34091 34092 34093 34094 34095 34096 34097 34098 34099 34100 34101 34102 34103 34104 34105 34106 34107 34108 34109 34110 34111 34112 34113 34114 34115 34116 34117 34118 34119 34120 34121 34122 34123 34124 34125 34126 34127 34128 34129 34130 34131 34132 34133 34134 34135 34136 34137 34138 34139 34140 34141 34142 34143 34144 34145 34146 34147 34148 34149 34150 34151 34152 34153 34154 34155 34156 34157 34158 34159 34160 34161 34162 34163 34164 34165 34166 34167 34168 34169 34170 34171 34172 34173 34174 34175 34176 34177 34178 34179 34180 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 34196 34197 34198 34199 34200 34201 34202 34203 34204 34205 34206 34207 34208 34209 34210 34211 34212 34213 34214 34215 34216 34217 34218 34219 34220 34221 34222 34223 34224 34225 34226 34227 34228 34229 34230 34231 34232 34233 34234 34235 34236 34237 34238 34239 34240 34241 34242 34243 34244 34245 34246 34247 34248 34249 34250 34251 34252 34253 34254 34255 34256 34257 34258 34259 34260 34261 34262 34263 34264 34265 34266 34267 34268 34269 34270 34271 34272 34273 34274 34275 34276 34277 34278 34279 34280 34281 34282 34283 34284 34285 34286 34287 34288 34289 34290 34291 34292 34293 34294 34295 34296 34297 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 34329 34330 34331 34332 34333 34334 34335 34336 34337 34338 34339 34340 34341 34342 34343 34344 34345 34346 34347 34348 34349 34350 34351 34352 34353 34354 34355 34356 34357 34358 34359 34360 34361 34362 34363 34364 34365 34366 34367 34368 34369 34370 34371 34372 34373 34374 34375 34376 34377 34378 34379 34380 34381 34382 34383 34384 34385 34386 34387 34388 34389 34390 34391 34392 34393 34394 34395 34396 34397 34398 34399 34400 34401 34402 34403 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 34422 34423 34424 34425 34426 34427 34428 34429 34430 34431 34432 34433 34434 34435 34436 34437 34438 34439 34440 34441 34442 34443 34444 34445 34446 34447 34448 34449 34450 34451 34452 34453 34454 34455 34456 34457 34458 34459 34460 34461 34462 34463 34464 34465 34466 34467 34468 34469 34470 34471 34472 34473 34474 34475 34476 34477 34478 34479 34480 34481 34482 34483 34484 34485 34486 34487 34488 34489 34490 34491 34492 34493 34494 34495 34496 34497 34498 34499 34500 34501 34502 34503 34504 34505 34506 34507 34508 34509 34510 34511 34512 34513 34514 34515 34516 34517 34518 34519 34520 34521 34522 34523 34524 34525 34526 34527 34528 34529 34530 34531 34532 34533 34534 34535 34536 34537 34538 34539 34540 34541 34542 34543 34544 34545 34546 34547 34548 34549 34550 34551 34552 34553 34554 34555 34556 34557 34558 34559 34560 34561 34562 34563 34564 34565 34566 34567 34568 34569 34570 34571 34572 34573 34574 34575 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607 34608 34609 34610 34611 34612 34613 34614 34615 34616 34617 34618 34619 34620 34621 34622 34623 34624 34625 34626 34627 34628 34629 34630 34631 34632 34633 34634 34635 34636 34637 34638 34639 34640 34641 34642 34643 34644 34645 34646 34647 34648 34649 34650 34651 34652 34653 34654 34655 34656 34657 34658 34659 34660 34661 34662 34663 34664 34665 34666 34667 34668 34669 34670 34671 34672 34673 34674 34675 34676 34677 34678 34679 34680 34681 34682 34683 34684 34685 34686 34687 34688 34689 34690 34691 34692 34693 34694 34695 34696 34697 34698 34699 34700 34701 34702 34703 34704 34705 34706 34707 34708 34709 34710 34711 34712 34713 34714 34715 34716 34717 34718 34719 34720 34721 34722 34723 34724 34725 34726 34727 34728 34729 34730 34731 34732 34733 34734 34735 34736 34737 34738 34739 34740 34741 34742 34743 34744 34745 34746 34747 34748 34749 34750 34751 34752 34753 34754 34755 34756 34757 34758 34759 34760 34761 34762 34763 34764 34765 34766 34767 34768 34769 34770 34771 34772 34773 34774 34775 34776 34777 34778 34779 34780 34781 34782 34783 34784 34785 34786 34787 34788 34789 34790 34791 34792 34793 34794 34795 34796 34797 34798 34799 34800 34801 34802 34803 34804 34805 34806 34807 34808 34809 34810 34811 34812 34813 34814 34815 34816 34817 34818 34819 34820 34821 34822 34823 34824 34825 34826 34827 34828 34829 34830 34831 34832 34833 34834 34835 34836 34837 34838 34839 34840 34841 34842 34843 34844 34845 34846 34847 34848 34849 34850 34851 34852 34853 34854 34855 34856 34857 34858 34859 34860 34861 34862 34863 34864 34865 34866 34867 34868 34869 34870 34871 34872 34873 34874 34875 34876 34877 34878 34879 34880 34881 34882 34883 34884 34885 34886 34887 34888 34889 34890 34891 34892 34893 34894 34895 34896 34897 34898 34899 34900 34901 34902 34903 34904 34905 34906 34907 34908 34909 34910 34911 34912 34913 34914 34915 34916 34917 34918 34919 34920 34921 34922 34923 34924 34925 34926 34927 34928 34929 34930 34931 34932 34933 34934 34935 34936 34937 34938 34939 34940 34941 34942 34943 34944 34945 34946 34947 34948 34949 34950 34951 34952 34953 34954 34955 34956 34957 34958 34959 34960 34961 34962 34963 34964 34965 34966 34967 34968 34969 34970 34971 34972 34973 34974 34975 34976 34977 34978 34979 34980 34981 34982 34983 34984 34985 34986 34987 34988 34989 34990 34991 34992 34993 34994 34995 34996 34997 34998 34999 35000 35001 35002 35003 35004 35005 35006 35007 35008 35009 35010 35011 35012 35013 35014 35015 35016 35017 35018 35019 35020 35021 35022 35023 35024 35025 35026 35027 35028 35029 35030 35031 35032 35033 35034 35035 35036 35037 35038 35039 35040 35041 35042 35043 35044 35045 35046 35047 35048 35049 35050 35051 35052 35053 35054 35055 35056 35057 35058 35059 35060 35061 35062 35063 35064 35065 35066 35067 35068 35069 35070 35071 35072 35073 35074 35075 35076 35077 35078 35079 35080 35081 35082 35083 35084 35085 35086 35087 35088 35089 35090 35091 35092 35093 35094 35095 35096 35097 35098 35099 35100 35101 35102 35103 35104 35105 35106 35107 35108 35109 35110 35111 35112 35113 35114 35115 35116 35117 35118 35119 35120 35121 35122 35123 35124 35125 35126 35127 35128 35129 35130 35131 35132 35133 35134 35135 35136 35137 35138 35139 35140 35141 35142 35143 35144 35145 35146 35147 35148 35149 35150 35151 35152 35153 35154 35155 35156 35157 35158 35159 35160 35161 35162 35163 35164 35165 35166 35167 35168 35169 35170 35171 35172 35173 35174 35175 35176 35177 35178 35179 35180 35181 35182 35183 35184 35185 35186 35187 35188 35189 35190 35191 35192 35193 35194 35195 35196 35197 35198 35199 35200 35201 35202 35203 35204 35205 35206 35207 35208 35209 35210 35211 35212 35213 35214 35215 35216 35217 35218 35219 35220 35221 35222 35223 35224 35225 35226 35227 35228 35229 35230 35231 35232 35233 35234 35235 35236 35237 35238 35239 35240 35241 35242 35243 35244 35245 35246 35247 35248 35249 35250 35251 35252 35253 35254 35255 35256 35257 35258 35259 35260 35261 35262 35263 35264 35265 35266 35267 35268 35269 35270 35271 35272 35273 35274 35275 35276 35277 35278 35279 35280 35281 35282 35283 35284 35285 35286 35287 35288 35289 35290 35291 35292 35293 35294 35295 35296 35297 35298 35299 35300 35301 35302 35303 35304 35305 35306 35307 35308 35309 35310 35311 35312 35313 35314 35315 35316 35317 35318 35319 35320 35321 35322 35323 35324 35325 35326 35327 35328 35329 35330 35331 35332 35333 35334 35335 35336 35337 35338 35339 35340 35341 35342 35343 35344 35345 35346 35347 35348 35349 35350 35351 35352 35353 35354 35355 35356 35357 35358 35359 35360 35361 35362 35363 35364 35365 35366 35367 35368 35369 35370 35371 35372 35373 35374 35375 35376 35377 35378 35379 35380 35381 35382 35383 35384 35385 35386 35387 35388 35389 35390 35391 35392 35393 35394 35395 35396 35397 35398 35399 35400 35401 35402 35403 35404 35405 35406 35407 35408 35409 35410 35411 35412 35413 35414 35415 35416 35417 35418 35419 35420 35421 35422 35423 35424 35425 35426 35427 35428 35429 35430 35431 35432 35433 35434 35435 35436 35437 35438 35439 35440 35441 35442 35443 35444 35445 35446 35447 35448 35449 35450 35451 35452 35453 35454 35455 35456 35457 35458 35459 35460 35461 35462 35463 35464 35465 35466 35467 35468 35469 35470 35471 35472 35473 35474 35475 35476 35477 35478 35479 35480 35481 35482 35483 35484 35485 35486 35487 35488 35489 35490 35491 35492 35493 35494 35495 35496 35497 35498 35499 35500 35501 35502 35503 35504 35505 35506 35507 35508 35509 35510 35511 35512 35513 35514 35515 35516 35517 35518 35519 35520 35521 35522 35523 35524 35525 35526 35527 35528 35529 35530 35531 35532 35533 35534 35535 35536 35537 35538 35539 35540 35541 35542 35543 35544 35545 35546 35547 35548 35549 35550 35551 35552 35553 35554 35555 35556 35557 35558 35559 35560 35561 35562 35563 35564 35565 35566 35567 35568 35569 35570 35571 35572 35573 35574 35575 35576 35577 35578 35579 35580 35581 35582 35583 35584 35585 35586 35587 35588 35589 35590 35591 35592 35593 35594 35595 35596 35597 35598 35599 35600 35601 35602 35603 35604 35605 35606 35607 35608 35609 35610 35611 35612 35613 35614 35615 35616 35617 35618 35619 35620 35621 35622 35623 35624 35625 35626 35627 35628 35629 35630 35631 35632 35633 35634 35635 35636 35637 35638 35639 35640 35641 35642 35643 35644 35645 35646 35647 35648 35649 35650 35651 35652 35653 35654 35655 35656 35657 35658 35659 35660 35661 35662 35663 35664 35665 35666 35667 35668 35669 35670 35671 35672 35673 35674 35675 35676 35677 35678 35679 35680 35681 35682 35683 35684 35685 35686 35687 35688 35689 35690 35691 35692 35693 35694 35695 35696 35697 35698 35699 35700 35701 35702 35703 35704 35705 35706 35707 35708 35709 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35720 35721 35722 35723 35724 35725 35726 35727 35728 35729 35730 35731 35732 35733 35734 35735 35736 35737 35738 35739 35740 35741 35742 35743 35744 35745 35746 35747 35748 35749 35750 35751 35752 35753 35754 35755 35756 35757 35758 35759 35760 35761 35762 35763 35764 35765 35766 35767 35768 35769 35770 35771 35772 35773 35774 35775 35776 35777 35778 35779 35780 35781 35782 35783 35784 35785 35786 35787 35788 35789 35790 35791 35792 35793 35794 35795 35796 35797 35798 35799 35800 35801 35802 35803 35804 35805 35806 35807 35808 35809 35810 35811 35812 35813 35814 35815 35816 35817 35818 35819 35820 35821 35822 35823 35824 35825 35826 35827 35828 35829 35830 35831 35832 35833 35834 35835 35836 35837 35838 35839 35840 35841 35842 35843 35844 35845 35846 35847 35848 35849 35850 35851 35852 35853 35854 35855 35856 35857 35858 35859 35860 35861 35862 35863 35864 35865 35866 35867 35868 35869 35870 35871 35872 35873 35874 35875 35876 35877 35878 35879 35880 35881 35882 35883 35884 35885 35886 35887 35888 35889 35890 35891 35892 35893 35894 35895 35896 35897 35898 35899 35900 35901 35902 35903 35904 35905 35906 35907 35908 35909 35910 35911 35912 35913 35914 35915 35916 35917 35918 35919 35920 35921 35922 35923 35924 35925 35926 35927 35928 35929 35930 35931 35932 35933 35934 35935 35936 35937 35938 35939 35940 35941 35942 35943 35944 35945 35946 35947 35948 35949 35950 35951 35952 35953 35954 35955 35956 35957 35958 35959 35960 35961 35962 35963 35964 35965 35966 35967 35968 35969 35970 35971 35972 35973 35974 35975 35976 35977 35978 35979 35980 35981 35982 35983 35984 35985 35986 35987 35988 35989 35990 35991 35992 35993 35994 35995 35996 35997 35998 35999 36000 36001 36002 36003 36004 36005 36006 36007 36008 36009 36010 36011 36012 36013 36014 36015 36016 36017 36018 36019 36020 36021 36022 36023 36024 36025 36026 36027 36028 36029 36030 36031 36032 36033 36034 36035 36036 36037 36038 36039 36040 36041 36042 36043 36044 36045 36046 36047 36048 36049 36050 36051 36052 36053 36054 36055 36056 36057 36058 36059 36060 36061 36062 36063 36064 36065 36066 36067 36068 36069 36070 36071 36072 36073 36074 36075 36076 36077 36078 36079 36080 36081 36082 36083 36084 36085 36086 36087 36088 36089 36090 36091 36092 36093 36094 36095 36096 36097 36098 36099 36100 36101 36102 36103 36104 36105 36106 36107 36108 36109 36110 36111 36112 36113 36114 36115 36116 36117 36118 36119 36120 36121 36122 36123 36124 36125 36126 36127 36128 36129 36130 36131 36132 36133 36134 36135 36136 36137 36138 36139 36140 36141 36142 36143 36144 36145 36146 36147 36148 36149 36150 36151 36152 36153 36154 36155 36156 36157 36158 36159 36160 36161 36162 36163 36164 36165 36166 36167 36168 36169 36170 36171 36172 36173 36174 36175 36176 36177 36178 36179 36180 36181 36182 36183 36184 36185 36186 36187 36188 36189 36190 36191 36192 36193 36194 36195 36196 36197 36198 36199 36200 36201 36202 36203 36204 36205 36206 36207 36208 36209 36210 36211 36212 36213 36214 36215 36216 36217 36218 36219 36220 36221 36222 36223 36224 36225 36226 36227 36228 36229 36230 36231 36232 36233 36234 36235 36236 36237 36238 36239 36240 36241 36242 36243 36244 36245 36246 36247 36248 36249 36250 36251 36252 36253 36254 36255 36256 36257 36258 36259 36260 36261 36262 36263 36264 36265 36266 36267 36268 36269 36270 36271 36272 36273 36274 36275 36276 36277 36278 36279 36280 36281 36282 36283 36284 36285 36286 36287 36288 36289 36290 36291 36292 36293 36294 36295 36296 36297 36298 36299 36300 36301 36302 36303 36304 36305 36306 36307 36308 36309 36310 36311 36312 36313 36314 36315 36316 36317 36318 36319 36320 36321 36322 36323 36324 36325 36326 36327 36328 36329 36330 36331 36332 36333 36334 36335 36336 36337 36338 36339 36340 36341 36342 36343 36344 36345 36346 36347 36348 36349 36350 36351 36352 36353 36354 36355 36356 36357 36358 36359 36360 36361 36362 36363 36364 36365 36366 36367 36368 36369 36370 36371 36372 36373 36374 36375 36376 36377 36378 36379 36380 36381 36382 36383 36384 36385 36386 36387 36388 36389 36390 36391 36392 36393 36394 36395 36396 36397 36398 36399 36400 36401 36402 36403 36404 36405 36406 36407 36408 36409 36410 36411 36412 36413 36414 36415 36416 36417 36418 36419 36420 36421 36422 36423 36424 36425 36426 36427 36428 36429 36430 36431 36432 36433 36434 36435 36436 36437 36438 36439 36440 36441 36442 36443 36444 36445 36446 36447 36448 36449 36450 36451 36452 36453 36454 36455 36456 36457 36458 36459 36460 36461 36462 36463 36464 36465 36466 36467 36468 36469 36470 36471 36472 36473 36474 36475 36476 36477 36478 36479 36480 36481 36482 36483 36484 36485 36486 36487 36488 36489 36490 36491 36492 36493 36494 36495 36496 36497 36498 36499 36500 36501 36502 36503 36504 36505 36506 36507 36508 36509 36510 36511 36512 36513 36514 36515 36516 36517 36518 36519 36520 36521 36522 36523 36524 36525 36526 36527 36528 36529 36530 36531 36532 36533 36534 36535 36536 36537 36538 36539 36540 36541 36542 36543 36544 36545 36546 36547 36548 36549 36550 36551 36552 36553 36554 36555 36556 36557 36558 36559 36560 36561 36562 36563 36564 36565 36566 36567 36568 36569 36570 36571 36572 36573 36574 36575 36576 36577 36578 36579 36580 36581 36582 36583 36584 36585 36586 36587 36588 36589 36590 36591 36592 36593 36594 36595 36596 36597 36598 36599 36600 36601 36602 36603 36604 36605 36606 36607 36608 36609 36610 36611 36612 36613 36614 36615 36616 36617 36618 36619 36620 36621 36622 36623 36624 36625 36626 36627 36628 36629 36630 36631 36632 36633 36634 36635 36636 36637 36638 36639 36640 36641 36642 36643 36644 36645 36646 36647 36648 36649 36650 36651 36652 36653 36654 36655 36656 36657 36658 36659 36660 36661 36662 36663 36664 36665 36666 36667 36668 36669 36670 36671 36672 36673 36674 36675 36676 36677 36678 36679 36680 36681 36682 36683 36684 36685 36686 36687 36688 36689 36690 36691 36692 36693 36694 36695 36696 36697 36698 36699 36700 36701 36702 36703 36704 36705 36706 36707 36708 36709 36710 36711 36712 36713 36714 36715 36716 36717 36718 36719 36720 36721 36722 36723 36724 36725 36726 36727 36728 36729 36730 36731 36732 36733 36734 36735 36736 36737 36738 36739 36740 36741 36742 36743 36744 36745 36746 36747 36748 36749 36750 36751 36752 36753 36754 36755 36756 36757 36758 36759 36760 36761 36762 36763 36764 36765 36766 36767 36768 36769 36770 36771 36772 36773 36774 36775 36776 36777 36778 36779 36780 36781 36782 36783 36784 36785 36786 36787 36788 36789 36790 36791 36792 36793 36794 36795 36796 36797 36798 36799 36800 36801 36802 36803 36804 36805 36806 36807 36808 36809 36810 36811 36812 36813 36814 36815 36816 36817 36818 36819 36820 36821 36822 36823 36824 36825 36826 36827 36828 36829 36830 36831 36832 36833 36834 36835 36836 36837 36838 36839 36840 36841 36842 36843 36844 36845 36846 36847 36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36859 36860 36861 36862 36863 36864 36865 36866 36867 36868 36869 36870 36871 36872 36873 36874 36875 36876 36877 36878 36879 36880 36881 36882 36883 36884 36885 36886 36887 36888 36889 36890 36891 36892 36893 36894 36895 36896 36897 36898 36899 36900 36901 36902 36903 36904 36905 36906 36907 36908 36909 36910 36911 36912 36913 36914 36915 36916 36917 36918 36919 36920 36921 36922 36923 36924 36925 36926 36927 36928 36929 36930 36931 36932 36933 36934 36935 36936 36937 36938 36939 36940 36941 36942 36943 36944 36945 36946 36947 36948 36949 36950 36951 36952 36953 36954 36955 36956 36957 36958 36959 36960 36961 36962 36963 36964 36965 36966 36967 36968 36969 36970 36971 36972 36973 36974 36975 36976 36977 36978 36979 36980 36981 36982 36983 36984 36985 36986 36987 36988 36989 36990 36991 36992 36993 36994 36995 36996 36997 36998 36999 37000 37001 37002 37003 37004 37005 37006 37007 37008 37009 37010 37011 37012 37013 37014 37015 37016 37017 37018 37019 37020 37021 37022 37023 37024 37025 37026 37027 37028 37029 37030 37031 37032 37033 37034 37035 37036 37037 37038 37039 37040 37041 37042 37043 37044 37045 37046 37047 37048 37049 37050 37051 37052 37053 37054 37055 37056 37057 37058 37059 37060 37061 37062 37063 37064 37065 37066 37067 37068 37069 37070 37071 37072 37073 37074 37075 37076 37077 37078 37079 37080 37081 37082 37083 37084 37085 37086 37087 37088 37089 37090 37091 37092 37093 37094 37095 37096 37097 37098 37099 37100 37101 37102 37103 37104 37105 37106 37107 37108 37109 37110 37111 37112 37113 37114 37115 37116 37117 37118 37119 37120 37121 37122 37123 37124 37125 37126 37127 37128 37129 37130 37131 37132 37133 37134 37135 37136 37137 37138 37139 37140 37141 37142 37143 37144 37145 37146 37147 37148 37149 37150 37151 37152 37153 37154 37155 37156 37157 37158 37159 37160 37161 37162 37163 37164 37165 37166 37167 37168 37169 37170 37171 37172 37173 37174 37175 37176 37177 37178 37179 37180 37181 37182 37183 37184 37185 37186 37187 37188 37189 37190 37191 37192 37193 37194 37195 37196 37197 37198 37199 37200 37201 37202 37203 37204 37205 37206 37207 37208 37209 37210 37211 37212 37213 37214 37215 37216 37217 37218 37219 37220 37221 37222 37223 37224 37225 37226 37227 37228 37229 37230 37231 37232 37233 37234 37235 37236 37237 37238 37239 37240 37241 37242 37243 37244 37245 37246 37247 37248 37249 37250 37251 37252 37253 37254 37255 37256 37257 37258 37259 37260 37261 37262 37263 37264 37265 37266 37267 37268 37269 37270 37271 37272 37273 37274 37275 37276 37277 37278 37279 37280 37281 37282 37283 37284 37285 37286 37287 37288 37289 37290 37291 37292 37293 37294 37295 37296 37297 37298 37299 37300 37301 37302 37303 37304 37305 37306 37307 37308 37309 37310 37311 37312 37313 37314 37315 37316 37317 37318 37319 37320 37321 37322 37323 37324 37325 37326 37327 37328 37329 37330 37331 37332 37333 37334 37335 37336 37337 37338 37339 37340 37341 37342 37343 37344 37345 37346 37347 37348 37349 37350 37351 37352 37353 37354 37355 37356 37357 37358 37359 37360 37361 37362 37363 37364 37365 37366 37367 37368 37369 37370 37371 37372 37373 37374 37375 37376 37377 37378 37379 37380 37381 37382 37383 37384 37385 37386 37387 37388 37389 37390 37391 37392 37393 37394 37395 37396 37397 37398 37399 37400 37401 37402 37403 37404 37405 37406 37407 37408 37409 37410 37411 37412 37413 37414 37415 37416 37417 37418 37419 37420 37421 37422 37423 37424 37425 37426 37427 37428 37429 37430 37431 37432 37433 37434 37435 37436 37437 37438 37439 37440 37441 37442 37443 37444 37445 37446 37447 37448 37449 37450 37451 37452 37453 37454 37455 37456 37457 37458 37459 37460 37461 37462 37463 37464 37465 37466 37467 37468 37469 37470 37471 37472 37473 37474 37475 37476 37477 37478 37479 37480 37481 37482 37483 37484 37485 37486 37487 37488 37489 37490 37491 37492 37493 37494 37495 37496 37497 37498 37499 37500 37501 37502 37503 37504 37505 37506 37507 37508 37509 37510 37511 37512 37513 37514 37515 37516 37517 37518 37519 37520 37521 37522 37523 37524 37525 37526 37527 37528 37529 37530 37531 37532 37533 37534 37535 37536 37537 37538 37539 37540 37541 37542 37543 37544 37545 37546 37547 37548 37549 37550 37551 37552 37553 37554 37555 37556 37557 37558 37559 37560 37561 37562 37563 37564 37565 37566 37567 37568 37569 37570 37571 37572 37573 37574 37575 37576 37577 37578 37579 37580 37581 37582 37583 37584 37585 37586 37587 37588 37589 37590 37591 37592 37593 37594 37595 37596 37597 37598 37599 37600 37601 37602 37603 37604 37605 37606 37607 37608 37609 37610 37611 37612 37613 37614 37615 37616 37617 37618 37619 37620 37621 37622 37623 37624 37625 37626 37627 37628 37629 37630 37631 37632 37633 37634 37635 37636 37637 37638 37639 37640 37641 37642 37643 37644 37645 37646 37647 37648 37649 37650 37651 37652 37653 37654 37655 37656 37657 37658 37659 37660 37661 37662 37663 37664 37665 37666 37667 37668 37669 37670 37671 37672 37673 37674 37675 37676 37677 37678 37679 37680 37681 37682 37683 37684 37685 37686 37687 37688 37689 37690 37691 37692 37693 37694 37695 37696 37697 37698 37699 37700 37701 37702 37703 37704 37705 37706 37707 37708 37709 37710 37711 37712 37713 37714 37715 37716 37717 37718 37719 37720 37721 37722 37723 37724 37725 37726 37727 37728 37729 37730 37731 37732 37733 37734 37735 37736 37737 37738 37739 37740 37741 37742 37743 37744 37745 37746 37747 37748 37749 37750 37751 37752 37753 37754 37755 37756 37757 37758 37759 37760 37761 37762 37763 37764 37765 37766 37767 37768 37769 37770 37771 37772 37773 37774 37775 37776 37777 37778 37779 37780 37781 37782 37783 37784 37785 37786 37787 37788 37789 37790 37791 37792 37793 37794 37795 37796 37797 37798 37799 37800 37801 37802 37803 37804 37805 37806 37807 37808 37809 37810 37811 37812 37813 37814 37815 37816 37817 37818 37819 37820 37821 37822 37823 37824 37825 37826 37827 37828 37829 37830 37831 37832 37833 37834 37835 37836 37837 37838 37839 37840 37841 37842 37843 37844 37845 37846 37847 37848 37849 37850 37851 37852 37853 37854 37855 37856 37857 37858 37859 37860 37861 37862 37863 37864 37865 37866 37867 37868 37869 37870 37871 37872 37873 37874 37875 37876 37877 37878 37879 37880 37881 37882 37883 37884 37885 37886 37887 37888 37889 37890 37891 37892 37893 37894 37895 37896 37897 37898 37899 37900 37901 37902 37903 37904 37905 37906 37907 37908 37909 37910 37911 37912 37913 37914 37915 37916 37917 37918 37919 37920 37921 37922 37923 37924 37925 37926 37927 37928 37929 37930 37931 37932 37933 37934 37935 37936 37937 37938 37939 37940 37941 37942 37943 37944 37945 37946 37947 37948 37949 37950 37951 37952 37953 37954 37955 37956 37957 37958 37959 37960 37961 37962 37963 37964 37965 37966 37967 37968 37969 37970 37971 37972 37973 37974 37975 37976 37977 37978 37979 37980 37981 37982 37983 37984 37985 37986 37987 37988 37989 37990 37991 37992 37993 37994 37995 37996 37997 37998 37999 38000 38001 38002 38003 38004 38005 38006 38007 38008 38009 38010 38011 38012 38013 38014 38015 38016 38017 38018 38019 38020 38021 38022 38023 38024 38025 38026 38027 38028 38029 38030 38031 38032 38033 38034 38035 38036 38037 38038 38039 38040 38041 38042 38043 38044 38045 38046 38047 38048 38049 38050 38051 38052 38053 38054 38055 38056 38057 38058 38059 38060 38061 38062 38063 38064 38065 38066 38067 38068 38069 38070 38071 38072 38073 38074 38075 38076 38077 38078 38079 38080 38081 38082 38083 38084 38085 38086 38087 38088 38089 38090 38091 38092 38093 38094 38095 38096 38097 38098 38099 38100 38101 38102 38103 38104 38105 38106 38107 38108 38109 38110 38111 38112 38113 38114 38115 38116 38117 38118 38119 38120 38121 38122 38123 38124 38125 38126 38127 38128 38129 38130 38131 38132 38133 38134 38135 38136 38137 38138 38139 38140 38141 38142 38143 38144 38145 38146 38147 38148 38149 38150 38151 38152 38153 38154 38155 38156 38157 38158 38159 38160 38161 38162 38163 38164 38165 38166 38167 38168 38169 38170 38171 38172 38173 38174 38175 38176 38177 38178 38179 38180 38181 38182 38183 38184 38185 38186 38187 38188 38189 38190 38191 38192 38193 38194 38195 38196 38197 38198 38199 38200 38201 38202 38203 38204 38205 38206 38207 38208 38209 38210 38211 38212 38213 38214 38215 38216 38217 38218 38219 38220 38221 38222 38223 38224 38225 38226 38227 38228 38229 38230 38231 38232 38233 38234 38235 38236 38237 38238 38239 38240 38241 38242 38243 38244 38245 38246 38247 38248 38249 38250 38251 38252 38253 38254 38255 38256 38257 38258 38259 38260 38261 38262 38263 38264 38265 38266 38267 38268 38269 38270 38271 38272 38273 38274 38275 38276 38277 38278 38279 38280 38281 38282 38283 38284 38285 38286 38287 38288 38289 38290 38291 38292 38293 38294 38295 38296 38297 38298 38299 38300 38301 38302 38303 38304 38305 38306 38307 38308 38309 38310 38311 38312 38313 38314 38315 38316 38317 38318 38319 38320 38321 38322 38323 38324 38325 38326 38327 38328 38329 38330 38331 38332 38333 38334 38335 38336 38337 38338 38339 38340 38341 38342 38343 38344 38345 38346 38347 38348 38349 38350 38351 38352 38353 38354 38355 38356 38357 38358 38359 38360 38361 38362 38363 38364 38365 38366 38367 38368 38369 38370 38371 38372 38373 38374 38375 38376 38377 38378 38379 38380 38381 38382 38383 38384 38385 38386 38387 38388 38389 38390 38391 38392 38393 38394 38395 38396 38397 38398 38399 38400 38401 38402 38403 38404 38405 38406 38407 38408 38409 38410 38411 38412 38413 38414 38415 38416 38417 38418 38419 38420 38421 38422 38423 38424 38425 38426 38427 38428 38429 38430 38431 38432 38433 38434 38435 38436 38437 38438 38439 38440 38441 38442 38443 38444 38445 38446 38447 38448 38449 38450 38451 38452 38453 38454 38455 38456 38457 38458 38459 38460 38461 38462 38463 38464 38465 38466 38467 38468 38469 38470 38471 38472 38473 38474 38475 38476 38477 38478 38479 38480 38481 38482 38483 38484 38485 38486 38487 38488 38489 38490 38491 38492 38493 38494 38495 38496 38497 38498 38499 38500 38501 38502 38503 38504 38505 38506 38507 38508 38509 38510 38511 38512 38513 38514 38515 38516 38517 38518 38519 38520 38521 38522 38523 38524 38525 38526 38527 38528 38529 38530 38531 38532 38533 38534 38535 38536 38537 38538 38539 38540 38541 38542 38543 38544 38545 38546 38547 38548 38549 38550 38551 38552 38553 38554 38555 38556 38557 38558 38559 38560 38561 38562 38563 38564 38565 38566 38567 38568 38569 38570 38571 38572 38573 38574 38575 38576 38577 38578 38579 38580 38581 38582 38583 38584 38585 38586 38587 38588 38589 38590 38591 38592 38593 38594 38595 38596 38597 38598 38599 38600 38601 38602 38603 38604 38605 38606 38607 38608 38609 38610 38611 38612 38613 38614 38615 38616 38617 38618 38619 38620 38621 38622 38623 38624 38625 38626 38627 38628 38629 38630 38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 38645 38646 38647 38648 38649 38650 38651 38652 38653 38654 38655 38656 38657 38658 38659 38660 38661 38662 38663 38664 38665 38666 38667 38668 38669 38670 38671 38672 38673 38674 38675 38676 38677 38678 38679 38680 38681 38682 38683 38684 38685 38686 38687 38688 38689 38690 38691 38692 38693 38694 38695 38696 38697 38698 38699 38700 38701 38702 38703 38704 38705 38706 38707 38708 38709 38710 38711 38712 38713 38714 38715 38716 38717 38718 38719 38720 38721 38722 38723 38724 38725 38726 38727 38728 38729 38730 38731 38732 38733 38734 38735 38736 38737 38738 38739 38740 38741 38742 38743 38744 38745 38746 38747 38748 38749 38750 38751 38752 38753 38754 38755 38756 38757 38758 38759 38760 38761 38762 38763 38764 38765 38766 38767 38768 38769 38770 38771 38772 38773 38774 38775 38776 38777 38778 38779 38780 38781 38782 38783 38784 38785 38786 38787 38788 38789 38790 38791 38792 38793 38794 38795 38796 38797 38798 38799 38800 38801 38802 38803 38804 38805 38806 38807 38808 38809 38810 38811 38812 38813 38814 38815 38816 38817 38818 38819 38820 38821 38822 38823 38824 38825 38826 38827 38828 38829 38830 38831 38832 38833 38834 38835 38836 38837 38838 38839 38840 38841 38842 38843 38844 38845 38846 38847 38848 38849 38850 38851 38852 38853 38854 38855 38856 38857 38858 38859 38860 38861 38862 38863 38864 38865 38866 38867 38868 38869 38870 38871 38872 38873 38874 38875 38876 38877 38878 38879 38880 38881 38882 38883 38884 38885 38886 38887 38888 38889 38890 38891 38892 38893 38894 38895 38896 38897 38898 38899 38900 38901 38902 38903 38904 38905 38906 38907 38908 38909 38910 38911 38912 38913 38914 38915 38916 38917 38918 38919 38920 38921 38922 38923 38924 38925 38926 38927 38928 38929 38930 38931 38932 38933 38934 38935 38936 38937 38938 38939 38940 38941 38942 38943 38944 38945 38946 38947 38948 38949 38950 38951 38952 38953 38954 38955 38956 38957 38958 38959 38960 38961 38962 38963 38964 38965 38966 38967 38968 38969 38970 38971 38972 38973 38974 38975 38976 38977 38978 38979 38980 38981 38982 38983 38984 38985 38986 38987 38988 38989 38990 38991 38992 38993 38994 38995 38996 38997 38998 38999 39000 39001 39002 39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 39022 39023 39024 39025 39026 39027 39028 39029 39030 39031 39032 39033 39034 39035 39036 39037 39038 39039 39040 39041 39042 39043 39044 39045 39046 39047 39048 39049 39050 39051 39052 39053 39054 39055 39056 39057 39058 39059 39060 39061 39062 39063 39064 39065 39066 39067 39068 39069 39070 39071 39072 39073 39074 39075 39076 39077 39078 39079 39080 39081 39082 39083 39084 39085 39086 39087 39088 39089 39090 39091 39092 39093 39094 39095 39096 39097 39098 39099 39100 39101 39102 39103 39104 39105 39106 39107 39108 39109 39110 39111 39112 39113 39114 39115 39116 39117 39118 39119 39120 39121 39122 39123 39124 39125 39126 39127 39128 39129 39130 39131 39132 39133 39134 39135 39136 39137 39138 39139 39140 39141 39142 39143 39144 39145 39146 39147 39148 39149 39150 39151 39152 39153 39154 39155 39156 39157 39158 39159 39160 39161 39162 39163 39164 39165 39166 39167 39168 39169 39170 39171 39172 39173 39174 39175 39176 39177 39178 39179 39180 39181 39182 39183 39184 39185 39186 39187 39188 39189 39190 39191 39192 39193 39194 39195 39196 39197 39198 39199 39200 39201 39202 39203 39204 39205 39206 39207 39208 39209 39210 39211 39212 39213 39214 39215 39216 39217 39218 39219 39220 39221 39222 39223 39224 39225 39226 39227 39228 39229 39230 39231 39232 39233 39234 39235 39236 39237 39238 39239 39240 39241 39242 39243 39244 39245 39246 39247 39248 39249 39250 39251 39252 39253 39254 39255 39256 39257 39258 39259 39260 39261 39262 39263 39264 39265 39266 39267 39268 39269 39270 39271 39272 39273 39274 39275 39276 39277 39278 39279 39280 39281 39282 39283 39284 39285 39286 39287 39288 39289 39290 39291 39292 39293 39294 39295 39296 39297 39298 39299 39300 39301 39302 39303 39304 39305 39306 39307 39308 39309 39310 39311 39312 39313 39314 39315 39316 39317 39318 39319 39320 39321 39322 39323 39324 39325 39326 39327 39328 39329 39330 39331 39332 39333 39334 39335 39336 39337 39338 39339 39340 39341 39342 39343 39344 39345 39346 39347 39348 39349 39350 39351 39352 39353 39354 39355 39356 39357 39358 39359 39360 39361 39362 39363 39364 39365 39366 39367 39368 39369 39370 39371 39372 39373 39374 39375 39376 39377 39378 39379 39380 39381 39382 39383 39384 39385 39386 39387 39388 39389 39390 39391 39392 39393 39394 39395 39396 39397 39398 39399 39400 39401 39402 39403 39404 39405 39406 39407 39408 39409 39410 39411 39412 39413 39414 39415 39416 39417 39418 39419 39420 39421 39422 39423 39424 39425 39426 39427 39428 39429 39430 39431 39432 39433 39434 39435 39436 39437 39438 39439 39440 39441 39442 39443 39444 39445 39446 39447 39448 39449 39450 39451 39452 39453 39454 39455 39456 39457 39458 39459 39460 39461 39462 39463 39464 39465 39466 39467 39468 39469 39470 39471 39472 39473 39474 39475 39476 39477 39478 39479 39480 39481 39482 39483 39484 39485 39486 39487 39488 39489 39490 39491 39492 39493 39494 39495 39496 39497 39498 39499 39500 39501 39502 39503 39504 39505 39506 39507 39508 39509 39510 39511 39512 39513 39514 39515 39516 39517 39518 39519 39520 39521 39522 39523 39524 39525 39526 39527 39528 39529 39530 39531 39532 39533 39534 39535 39536 39537 39538 39539 39540 39541 39542 39543 39544 39545 39546 39547 39548 39549 39550 39551 39552 39553 39554 39555 39556 39557 39558 39559 39560 39561 39562 39563 39564 39565 39566 39567 39568 39569 39570 39571 39572 39573 39574 39575 39576 39577 39578 39579 39580 39581 39582 39583 39584 39585 39586 39587 39588 39589 39590 39591 39592 39593 39594 39595 39596 39597 39598 39599 39600 39601 39602 39603 39604 39605 39606 39607 39608 39609 39610 39611 39612 39613 39614 39615 39616 39617 39618 39619 39620 39621 39622 39623 39624 39625 39626 39627 39628 39629 39630 39631 39632 39633 39634 39635 39636 39637 39638 39639 39640 39641 39642 39643 39644 39645 39646 39647 39648 39649 39650 39651 39652 39653 39654 39655 39656 39657 39658 39659 39660 39661 39662 39663 39664 39665 39666 39667 39668 39669 39670 39671 39672 39673 39674 39675 39676 39677 39678 39679 39680 39681 39682 39683 39684 39685 39686 39687 39688 39689 39690 39691 39692 39693 39694 39695 39696 39697 39698 39699 39700 39701 39702 39703 39704 39705 39706 39707 39708 39709 39710 39711 39712 39713 39714 39715 39716 39717 39718 39719 39720 39721 39722 39723 39724 39725 39726 39727 39728 39729 39730 39731 39732 39733 39734 39735 39736 39737 39738 39739 39740 39741 39742 39743 39744 39745 39746 39747 39748 39749 39750 39751 39752 39753 39754 39755 39756 39757 39758 39759 39760 39761 39762 39763 39764 39765 39766 39767 39768 39769 39770 39771 39772 39773 39774 39775 39776 39777 39778 39779 39780 39781 39782 39783 39784 39785 39786 39787 39788 39789 39790 39791 39792 39793 39794 39795 39796 39797 39798 39799 39800 39801 39802 39803 39804 39805 39806 39807 39808 39809 39810 39811 39812 39813 39814 39815 39816 39817 39818 39819 39820 39821 39822 39823 39824 39825 39826 39827 39828 39829 39830 39831 39832 39833 39834 39835 39836 39837 39838 39839 39840 39841 39842 39843 39844 39845 39846 39847 39848 39849 39850 39851 39852 39853 39854 39855 39856 39857 39858 39859 39860 39861 39862 39863 39864 39865 39866 39867 39868 39869 39870 39871 39872 39873 39874 39875 39876 39877 39878 39879 39880 39881 39882 39883 39884 39885 39886 39887 39888 39889 39890 39891 39892 39893 39894 39895 39896 39897 39898 39899 39900 39901 39902 39903 39904 39905 39906 39907 39908 39909 39910 39911 39912 39913 39914 39915 39916 39917 39918 39919 39920 39921 39922 39923 39924 39925 39926 39927 39928 39929 39930 39931 39932 39933 39934 39935 39936 39937 39938 39939 39940 39941 39942 39943 39944 39945 39946 39947 39948 39949 39950 39951 39952 39953 39954 39955 39956 39957 39958 39959 39960 39961 39962 39963 39964 39965 39966 39967 39968 39969 39970 39971 39972 39973 39974 39975 39976 39977 39978 39979 39980 39981 39982 39983 39984 39985 39986 39987 39988 39989 39990 39991 39992 39993 39994 39995 39996 39997 39998 39999 40000 40001 40002 40003 40004 40005 40006 40007 40008 40009 40010 40011 40012 40013 40014 40015 40016 40017 40018 40019 40020 40021 40022 40023 40024 40025 40026 40027 40028 40029 40030 40031 40032 40033 40034 40035 40036 40037 40038 40039 40040 40041 40042 40043 40044 40045 40046 40047 40048 40049 40050 40051 40052 40053 40054 40055 40056 40057 40058 40059 40060 40061 40062 40063 40064 40065 40066 40067 40068 40069 40070 40071 40072 40073 40074 40075 40076 40077 40078 40079 40080 40081 40082 40083 40084 40085 40086 40087 40088 40089 40090 40091 40092 40093 40094 40095 40096 40097 40098 40099 40100 40101 40102 40103 40104 40105 40106 40107 40108 40109 40110 40111 40112 40113 40114 40115 40116 40117 40118 40119 40120 40121 40122 40123 40124 40125 40126 40127 40128 40129 40130 40131 40132 40133 40134 40135 40136 40137 40138 40139 40140 40141 40142 40143 40144 40145 40146 40147 40148 40149 40150 40151 40152 40153 40154 40155 40156 40157 40158 40159 40160 40161 40162 40163 40164 40165 40166 40167 40168 40169 40170 40171 40172 40173 40174 40175 40176 40177 40178 40179 40180 40181 40182 40183 40184 40185 40186 40187 40188 40189 40190 40191 40192 40193 40194 40195 40196 40197 40198 40199 40200 40201 40202 40203 40204 40205 40206 40207 40208 40209 40210 40211 40212 40213 40214 40215 40216 40217 40218 40219 40220 40221 40222 40223 40224 40225 40226 40227 40228 40229 40230 40231 40232 40233 40234 40235 40236 40237 40238 40239 40240 40241 40242 40243 40244 40245 40246 40247 40248 40249 40250 40251 40252 40253 40254 40255 40256 40257 40258 40259 40260 40261 40262 40263 40264 40265 40266 40267 40268 40269 40270 40271 40272 40273 40274 40275 40276 40277 40278 40279 40280 40281 40282 40283 40284 40285 40286 40287 40288 40289 40290 40291 40292 40293 40294 40295 40296 40297 40298 40299 40300 40301 40302 40303 40304 40305 40306 40307 40308 40309 40310 40311 40312 40313 40314 40315 40316 40317 40318 40319 40320 40321 40322 40323 40324 40325 40326 40327 40328 40329 40330 40331 40332 40333 40334 40335 40336 40337 40338 40339 40340 40341 40342 40343 40344 40345 40346 40347 40348 40349 40350 40351 40352 40353 40354 40355 40356 40357 40358 40359 40360 40361 40362 40363 40364 40365 40366 40367 40368 40369 40370 40371 40372 40373 40374 40375 40376 40377 40378 40379 40380 40381 40382 40383 40384 40385 40386 40387 40388 40389 40390 40391 40392 40393 40394 40395 40396 40397 40398 40399 40400 40401 40402 40403 40404 40405 40406 40407 40408 40409 40410 40411 40412 40413 40414 40415 40416 40417 40418 40419 40420 40421 40422 40423 40424 40425 40426 40427 40428 40429 40430 40431 40432 40433 40434 40435 40436 40437 40438 40439 40440 40441 40442 40443 40444 40445 40446 40447 40448 40449 40450 40451 40452 40453 40454 40455 40456 40457 40458 40459 40460 40461 40462 40463 40464 40465 40466 40467 40468 40469 40470 40471 40472 40473 40474 40475 40476 40477 40478 40479 40480 40481 40482 40483 40484 40485 40486 40487 40488 40489 40490 40491 40492 40493 40494 40495 40496 40497 40498 40499 40500 40501 40502 40503 40504 40505 40506 40507 40508 40509 40510 40511 40512 40513 40514 40515 40516 40517 40518 40519 40520 40521 40522 40523 40524 40525 40526 40527 40528 40529 40530 40531 40532 40533 40534 40535 40536 40537 40538 40539 40540 40541 40542 40543 40544 40545 40546 40547 40548 40549 40550 40551 40552 40553 40554 40555 40556 40557 40558 40559 40560 40561 40562 40563 40564 40565 40566 40567 40568 40569 40570 40571 40572 40573 40574 40575 40576 40577 40578 40579 40580 40581 40582 40583 40584 40585 40586 40587 40588 40589 40590 40591 40592 40593 40594 40595 40596 40597 40598 40599 40600 40601 40602 40603 40604 40605 40606 40607 40608 40609 40610 40611 40612 40613 40614 40615 40616 40617 40618 40619 40620 40621 40622 40623 40624 40625 40626 40627 40628 40629 40630 40631 40632 40633 40634 40635 40636 40637 40638 40639 40640 40641 40642 40643 40644 40645 40646 40647 40648 40649 40650 40651 40652 40653 40654 40655 40656 40657 40658 40659 40660 40661 40662 40663 40664 40665 40666 40667 40668 40669 40670 40671 40672 40673 40674 40675 40676 40677 40678 40679 40680 40681 40682 40683 40684 40685 40686 40687 40688 40689 40690 40691 40692 40693 40694 40695 40696 40697 40698 40699 40700 40701 40702 40703 40704 40705 40706 40707 40708 40709 40710 40711 40712 40713 40714 40715 40716 40717 40718 40719 40720 40721 40722 40723 40724 40725 40726 40727 40728 40729 40730 40731 40732 40733 40734 40735 40736 40737 40738 40739 40740 40741 40742 40743 40744 40745 40746 40747 40748 40749 40750 40751 40752 40753 40754 40755 40756 40757 40758 40759 40760 40761 40762 40763 40764 40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40775 40776 40777 40778 40779 40780 40781 40782 40783 40784 40785 40786 40787 40788 40789 40790 40791 40792 40793 40794 40795 40796 40797 40798 40799 40800 40801 40802 40803 40804 40805 40806 40807 40808 40809 40810 40811 40812 40813 40814 40815 40816 40817 40818 40819 40820 40821 40822 40823 40824 40825 40826 40827 40828 40829 40830 40831 40832 40833 40834 40835 40836 40837 40838 40839 40840 40841 40842 40843 40844 40845 40846 40847 40848 40849 40850 40851 40852 40853 40854 40855 40856 40857 40858 40859 40860 40861 40862 40863 40864 40865 40866 40867 40868 40869 40870 40871 40872 40873 40874 40875 40876 40877 40878 40879 40880 40881 40882 40883 40884 40885 40886 40887 40888 40889 40890 40891 40892 40893 40894 40895 40896 40897 40898 40899 40900 40901 40902 40903 40904 40905 40906 40907 40908 40909 40910 40911 40912 40913 40914 40915 40916 40917 40918 40919 40920 40921 40922 40923 40924 40925 40926 40927 40928 40929 40930 40931 40932 40933 40934 40935 40936 40937 40938 40939 40940 40941 40942 40943 40944 40945 40946 40947 40948 40949 40950 40951 40952 40953 40954 40955 40956 40957 40958 40959 40960 40961 40962 40963 40964 40965 40966 40967 40968 40969 40970 40971 40972 40973 40974 40975 40976 40977 40978 40979 40980 40981 40982 40983 40984 40985 40986 40987 40988 40989 40990 40991 40992 40993 40994 40995 40996 40997 40998 40999 41000 41001 41002 41003 41004 41005 41006 41007 41008 41009 41010 41011 41012 41013 41014 41015 41016 41017 41018 41019 41020 41021 41022 41023 41024 41025 41026 41027 41028 41029 41030 41031 41032 41033 41034 41035 41036 41037 41038 41039 41040 41041 41042 41043 41044 41045 41046 41047 41048 41049 41050 41051 41052 41053 41054 41055 41056 41057 41058 41059 41060 41061 41062 41063 41064 41065 41066 41067 41068 41069 41070 41071 41072 41073 41074 41075 41076 41077 41078 41079 41080 41081 41082 41083 41084 41085 41086 41087 41088 41089 41090 41091 41092 41093 41094 41095 41096 41097 41098 41099 41100 41101 41102 41103 41104 41105 41106 41107 41108 41109 41110 41111 41112 41113 41114 41115 41116 41117 41118 41119 41120 41121 41122 41123 41124 41125 41126 41127 41128 41129 41130 41131 41132 41133 41134 41135 41136 41137 41138 41139 41140 41141 41142 41143 41144 41145 41146 41147 41148 41149 41150 41151 41152 41153 41154 41155 41156 41157 41158 41159 41160 41161 41162 41163 41164 41165 41166 41167 41168 41169 41170 41171 41172 41173 41174 41175 41176 41177 41178 41179 41180 41181 41182 41183 41184 41185 41186 41187 41188 41189 41190 41191 41192 41193 41194 41195 41196 41197 41198 41199 41200 41201 41202 41203 41204 41205 41206 41207 41208 41209 41210 41211 41212 41213 41214 41215 41216 41217 41218 41219 41220 41221 41222 41223 41224 41225 41226 41227 41228 41229 41230 41231 41232 41233 41234 41235 41236 41237 41238 41239 41240 41241 41242 41243 41244 41245 41246 41247 41248 41249 41250 41251 41252 41253 41254 41255 41256 41257 41258 41259 41260 41261 41262 41263 41264 41265 41266 41267 41268 41269 41270 41271 41272 41273 41274 41275 41276 41277 41278 41279 41280 41281 41282 41283 41284 41285 41286 41287 41288 41289 41290 41291 41292 41293 41294 41295 41296 41297 41298 41299 41300 41301 41302 41303 41304 41305 41306 41307 41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320 41321 41322 41323 41324 41325 41326 41327 41328 41329 41330 41331 41332 41333 41334 41335 41336 41337 41338 41339 41340 41341 41342 41343 41344 41345 41346 41347 41348 41349 41350 41351 41352 41353 41354 41355 41356 41357 41358 41359 41360 41361 41362 41363 41364 41365 41366 41367 41368 41369 41370 41371 41372 41373 41374 41375 41376 41377 41378 41379 41380 41381 41382 41383 41384 41385 41386 41387 41388 41389 41390 41391 41392 41393 41394 41395 41396 41397 41398 41399 41400 41401 41402 41403 41404 41405 41406 41407 41408 41409 41410 41411 41412 41413 41414 41415 41416 41417 41418 41419 41420 41421 41422 41423 41424 41425 41426 41427 41428 41429 41430 41431 41432 41433 41434 41435 41436 41437 41438 41439 41440 41441 41442 41443 41444 41445 41446 41447 41448 41449 41450 41451 41452 41453 41454 41455 41456 41457 41458 41459 41460 41461 41462 41463 41464 41465 41466 41467 41468 41469 41470 41471 41472 41473 41474 41475 41476 41477 41478 41479 41480 41481 41482 41483 41484 41485 41486 41487 41488 41489 41490 41491 41492 41493 41494 41495 41496 41497 41498 41499 41500 41501 41502 41503 41504 41505 41506 41507 41508 41509 41510 41511 41512 41513 41514 41515 41516 41517 41518 41519 41520 41521 41522 41523 41524 41525 41526 41527 41528 41529 41530 41531 41532 41533 41534 41535 41536 41537 41538 41539 41540 41541 41542 41543 41544 41545 41546 41547 41548 41549 41550 41551 41552 41553 41554 41555 41556 41557 41558 41559 41560 41561 41562 41563 41564 41565 41566 41567 41568 41569 41570 41571 41572 41573 41574 41575 41576 41577 41578 41579 41580 41581 41582 41583 41584 41585 41586 41587 41588 41589 41590 41591 41592 41593 41594 41595 41596 41597 41598 41599 41600 41601 41602 41603 41604 41605 41606 41607 41608 41609 41610 41611 41612 41613 41614 41615 41616 41617 41618 41619 41620 41621 41622 41623 41624 41625 41626 41627 41628 41629 41630 41631 41632 41633 41634 41635 41636 41637 41638 41639 41640 41641 41642 41643 41644 41645 41646 41647 41648 41649 41650 41651 41652 41653 41654 41655 41656 41657 41658 41659 41660 41661 41662 41663 41664 41665 41666 41667 41668 41669 41670 41671 41672 41673 41674 41675 41676 41677 41678 41679 41680 41681 41682 41683 41684 41685 41686 41687 41688 41689 41690 41691 41692 41693 41694 41695 41696 41697 41698 41699 41700 41701 41702 41703 41704 41705 41706 41707 41708 41709 41710 41711 41712 41713 41714 41715 41716 41717 41718 41719 41720 41721 41722 41723 41724 41725 41726 41727 41728 41729 41730 41731 41732 41733 41734 41735 41736 41737 41738 41739 41740 41741 41742 41743 41744 41745 41746 41747 41748 41749 41750 41751 41752 41753 41754 41755 41756 41757 41758 41759 41760 41761 41762 41763 41764 41765 41766 41767 41768 41769 41770 41771 41772 41773 41774 41775 41776 41777 41778 41779 41780 41781 41782 41783 41784 41785 41786 41787 41788 41789 41790 41791 41792 41793 41794 41795 41796 41797 41798 41799 41800 41801 41802 41803 41804 41805 41806 41807 41808 41809 41810 41811 41812 41813 41814 41815 41816 41817 41818 41819 41820 41821 41822 41823 41824 41825 41826 41827 41828 41829 41830 41831 41832 41833 41834 41835 41836 41837 41838 41839 41840 41841 41842 41843 41844 41845 41846 41847 41848 41849 41850 41851 41852 41853 41854 41855 41856 41857 41858 41859 41860 41861 41862 41863 41864 41865 41866 41867 41868 41869 41870 41871 41872 41873 41874 41875 41876 41877 41878 41879 41880 41881 41882 41883 41884 41885 41886 41887 41888 41889 41890 41891 41892 41893 41894 41895 41896 41897 41898 41899 41900 41901 41902 41903 41904 41905 41906 41907 41908 41909 41910 41911 41912 41913 41914 41915 41916 41917 41918 41919 41920 41921 41922 41923 41924 41925 41926 41927 41928 41929 41930 41931 41932 41933 41934 41935 41936 41937 41938 41939 41940 41941 41942 41943 41944 41945 41946 41947 41948 41949 41950 41951 41952 41953 41954 41955 41956 41957 41958 41959 41960 41961 41962 41963 41964 41965 41966 41967 41968 41969 41970 41971 41972 41973 41974 41975 41976 41977 41978 41979 41980 41981 41982 41983 41984 41985 41986 41987 41988 41989 41990 41991 41992 41993 41994 41995 41996 41997 41998 41999 42000 42001 42002 42003 42004 42005 42006 42007 42008 42009 42010 42011 42012 42013 42014 42015 42016 42017 42018 42019 42020 42021 42022 42023 42024 42025 42026 42027 42028 42029 42030 42031 42032 42033 42034 42035 42036 42037 42038 42039 42040 42041 42042 42043 42044 42045 42046 42047 42048 42049 42050 42051 42052 42053 42054 42055 42056 42057 42058 42059 42060 42061 42062 42063 42064 42065 42066 42067 42068 42069 42070 42071 42072 42073 42074 42075 42076 42077 42078 42079 42080 42081 42082 42083 42084 42085 42086 42087 42088 42089 42090 42091 42092 42093 42094 42095 42096 42097 42098 42099 42100 42101 42102 42103 42104 42105 42106 42107 42108 42109 42110 42111 42112 42113 42114 42115 42116 42117 42118 42119 42120 42121 42122 42123 42124 42125 42126 42127 42128 42129 42130 42131 42132 42133 42134 42135 42136 42137 42138 42139 42140 42141 42142 42143 42144 42145 42146 42147 42148 42149 42150 42151 42152 42153 42154 42155 42156 42157 42158 42159 42160 42161 42162 42163 42164 42165 42166 42167 42168 42169 42170 42171 42172 42173 42174 42175 42176 42177 42178 42179 42180 42181 42182 42183 42184 42185 42186 42187 42188 42189 42190 42191 42192 42193 42194 42195 42196 42197 42198 42199 42200 42201 42202 42203 42204 42205 42206 42207 42208 42209 42210 42211 42212 42213 42214 42215 42216 42217 42218 42219 42220 42221 42222 42223 42224 42225 42226 42227 42228 42229 42230 42231 42232 42233 42234 42235 42236 42237 42238 42239 42240 42241 42242 42243 42244 42245 42246 42247 42248 42249 42250 42251 42252 42253 42254 42255 42256 42257 42258 42259 42260 42261 42262 42263 42264 42265 42266 42267 42268 42269 42270 42271 42272 42273 42274 42275 42276 42277 42278 42279 42280 42281 42282 42283 42284 42285 42286 42287 42288 42289 42290 42291 42292 42293 42294 42295 42296 42297 42298 42299 42300 42301 42302 42303 42304 42305 42306 42307 42308 42309 42310 42311 42312 42313 42314 42315 42316 42317 42318 42319 42320 42321 42322 42323 42324 42325 42326 42327 42328 42329 42330 42331 42332 42333 42334 42335 42336 42337 42338 42339 42340 42341 42342 42343 42344 42345 42346 42347 42348 42349 42350 42351 42352 42353 42354 42355 42356 42357 42358 42359 42360 42361 42362 42363 42364 42365 42366 42367 42368 42369 42370 42371 42372 42373 42374 42375 42376 42377 42378 42379 42380 42381 42382 42383 42384 42385 42386 42387 42388 42389 42390 42391 42392 42393 42394 42395 42396 42397 42398 42399 42400 42401 42402 42403 42404 42405 42406 42407 42408 42409 42410 42411 42412 42413 42414 42415 42416 42417 42418 42419 42420 42421 42422 42423 42424 42425 42426 42427 42428 42429 42430 42431 42432 42433 42434 42435 42436 42437 42438 42439 42440 42441 42442 42443 42444 42445 42446 42447 42448 42449 42450 42451 42452 42453 42454 42455 42456 42457 42458 42459 42460 42461 42462 42463 42464 42465 42466 42467 42468 42469 42470 42471 42472 42473 42474 42475 42476 42477 42478 42479 42480 42481 42482 42483 42484 42485 42486 42487 42488 42489 42490 42491 42492 42493 42494 42495 42496 42497 42498 42499 42500 42501 42502 42503 42504 42505 42506 42507 42508 42509 42510 42511 42512 42513 42514 42515 42516 42517 42518 42519 42520 42521 42522 42523 42524 42525 42526 42527 42528 42529 42530 42531 42532 42533 42534 42535 42536 42537 42538 42539 42540 42541 42542 42543 42544 42545 42546 42547 42548 42549 42550 42551 42552 42553 42554 42555 42556 42557 42558 42559 42560 42561 42562 42563 42564 42565 42566 42567 42568 42569 42570 42571 42572 42573 42574 42575 42576 42577 42578 42579 42580 42581 42582 42583 42584 42585 42586 42587 42588 42589 42590 42591 42592 42593 42594 42595 42596 42597 42598 42599 42600 42601 42602 42603 42604 42605 42606 42607 42608 42609 42610 42611 42612 42613 42614 42615 42616 42617 42618 42619 42620 42621 42622 42623 42624 42625 42626 42627 42628 42629 42630 42631 42632 42633 42634 42635 42636 42637 42638 42639 42640 42641 42642 42643 42644 42645 42646 42647 42648 42649 42650 42651 42652 42653 42654 42655 42656 42657 42658 42659 42660 42661 42662 42663 42664 42665 42666 42667 42668 42669 42670 42671 42672 42673 42674 42675 42676 42677 42678 42679 42680 42681 42682 42683 42684 42685 42686 42687 42688 42689 42690 42691 42692 42693 42694 42695 42696 42697 42698 42699 42700 42701 42702 42703 42704 42705 42706 42707 42708 42709 42710 42711 42712 42713 42714 42715 42716 42717 42718 42719 42720 42721 42722 42723 42724 42725 42726 42727 42728 42729 42730 42731 42732 42733 42734 42735 42736 42737 42738 42739 42740 42741 42742 42743 42744 42745 42746 42747 42748 42749 42750 42751 42752 42753 42754 42755 42756 42757 42758 42759 42760 42761 42762 42763 42764 42765 42766 42767 42768 42769 42770 42771 42772 42773 42774 42775 42776 42777 42778 42779 42780 42781 42782 42783 42784 42785 42786 42787 42788 42789 42790 42791 42792 42793 42794 42795 42796 42797 42798 42799 42800 42801 42802 42803 42804 42805 42806 42807 42808 42809 42810 42811 42812 42813 42814 42815 42816 42817 42818 42819 42820 42821 42822 42823 42824 42825 42826 42827 42828 42829 42830 42831 42832 42833 42834 42835 42836 42837 42838 42839 42840 42841 42842 42843 42844 42845 42846 42847 42848 42849 42850 42851 42852 42853 42854 42855 42856 42857 42858 42859 42860 42861 42862 42863 42864 42865 42866 42867 42868 42869 42870 42871 42872 42873 42874 42875 42876 42877 42878 42879 42880 42881 42882 42883 42884 42885 42886 42887 42888 42889 42890 42891 42892 42893 42894 42895 42896 42897 42898 42899 42900 42901 42902 42903 42904 42905 42906 42907 42908 42909 42910 42911 42912 42913 42914 42915 42916 42917 42918 42919 42920 42921 42922 42923 42924 42925 42926 42927 42928 42929 42930 42931 42932 42933 42934 42935 42936 42937 42938 42939 42940 42941 42942 42943 42944 42945 42946 42947 42948 42949 42950 42951 42952 42953 42954 42955 42956 42957 42958 42959 42960 42961 42962 42963 42964 42965 42966 42967 42968 42969 42970 42971 42972 42973 42974 42975 42976 42977 42978 42979 42980 42981 42982 42983 42984 42985 42986 42987 42988 42989 42990 42991 42992 42993 42994 42995 42996 42997 42998 42999 43000 43001 43002 43003 43004 43005 43006 43007 43008 43009 43010 43011 43012 43013 43014 43015 43016 43017 43018 43019 43020 43021 43022 43023 43024 43025 43026 43027 43028 43029 43030 43031 43032 43033 43034 43035 43036 43037 43038 43039 43040 43041 43042 43043 43044 43045 43046 43047 43048 43049 43050 43051 43052 43053 43054 43055 43056 43057 43058 43059 43060 43061 43062 43063 43064 43065 43066 43067 43068 43069 43070 43071 43072 43073 43074 43075 43076 43077 43078 43079 43080 43081 43082 43083 43084 43085 43086 43087 43088 43089 43090 43091 43092 43093 43094 43095 43096 43097 43098 43099 43100 43101 43102 43103 43104 43105 43106 43107 43108 43109 43110 43111 43112 43113 43114 43115 43116 43117 43118 43119 43120 43121 43122 43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 43165 43166 43167 43168 43169 43170 43171 43172 43173 43174 43175 43176 43177 43178 43179 43180 43181 43182 43183 43184 43185 43186 43187 43188 43189 43190 43191 43192 43193 43194 43195 43196 43197 43198 43199 43200 43201 43202 43203 43204 43205 43206 43207 43208 43209 43210 43211 43212 43213 43214 43215 43216 43217 43218 43219 43220 43221 43222 43223 43224 43225 43226 43227 43228 43229 43230 43231 43232 43233 43234 43235 43236 43237 43238 43239 43240 43241 43242 43243 43244 43245 43246 43247 43248 43249 43250 43251 43252 43253 43254 43255 43256 43257 43258 43259 43260 43261 43262 43263 43264 43265 43266 43267 43268 43269 43270 43271 43272 43273 43274 43275 43276 43277 43278 43279 43280 43281 43282 43283 43284 43285 43286 43287 43288 43289 43290 43291 43292 43293 43294 43295 43296 43297 43298 43299 43300 43301 43302 43303 43304 43305 43306 43307 43308 43309 43310 43311 43312 43313 43314 43315 43316 43317 43318 43319 43320 43321 43322 43323 43324 43325 43326 43327 43328 43329 43330 43331 43332 43333 43334 43335 43336 43337 43338 43339 43340 43341 43342 43343 43344 43345 43346 43347 43348 43349 43350 43351 43352 43353 43354 43355 43356 43357 43358 43359 43360 43361 43362 43363 43364 43365 43366 43367 43368 43369 43370 43371 43372 43373 43374 43375 43376 43377 43378 43379 43380 43381 43382 43383 43384 43385 43386 43387 43388 43389 43390 43391 43392 43393 43394 43395 43396 43397 43398 43399 43400 43401 43402 43403 43404 43405 43406 43407 43408 43409 43410 43411 43412 43413 43414 43415 43416 43417 43418 43419 43420 43421 43422 43423 43424 43425 43426 43427 43428 43429 43430 43431 43432 43433 43434 43435 43436 43437 43438 43439 43440 43441 43442 43443 43444 43445 43446 43447 43448 43449 43450 43451 43452 43453 43454 43455 43456 43457 43458 43459 43460 43461 43462 43463 43464 43465 43466 43467 43468 43469 43470 43471 43472 43473 43474 43475 43476 43477 43478 43479 43480 43481 43482 43483 43484 43485 43486 43487 43488 43489 43490 43491 43492 43493 43494 43495 43496 43497 43498 43499 43500 43501 43502 43503 43504 43505 43506 43507 43508 43509 43510 43511 43512 43513 43514 43515 43516 43517 43518 43519 43520 43521 43522 43523 43524 43525 43526 43527 43528 43529 43530 43531 43532 43533 43534 43535 43536 43537 43538 43539 43540 43541 43542 43543 43544 43545 43546 43547 43548 43549 43550 43551 43552 43553 43554 43555 43556 43557 43558 43559 43560 43561 43562 43563 43564 43565 43566 43567 43568 43569 43570 43571 43572 43573 43574 43575 43576 43577 43578 43579 43580 43581 43582 43583 43584 43585 43586 43587 43588 43589 43590 43591 43592 43593 43594 43595 43596 43597 43598 43599 43600 43601 43602 43603 43604 43605 43606 43607 43608 43609 43610 43611 43612 43613 43614 43615 43616 43617 43618 43619 43620 43621 43622 43623 43624 43625 43626 43627 43628 43629 43630 43631 43632 43633 43634 43635 43636 43637 43638 43639 43640 43641 43642 43643 43644 43645 43646 43647 43648 43649 43650 43651 43652 43653 43654 43655 43656 43657 43658 43659 43660 43661 43662 43663 43664 43665 43666 43667 43668 43669 43670 43671 43672 43673 43674 43675 43676 43677 43678 43679 43680 43681 43682 43683 43684 43685 43686 43687 43688 43689 43690 43691 43692 43693 43694 43695 43696 43697 43698 43699 43700 43701 43702 43703 43704 43705 43706 43707 43708 43709 43710 43711 43712 43713 43714 43715 43716 43717 43718 43719 43720 43721 43722 43723 43724 43725 43726 43727 43728 43729 43730 43731 43732 43733 43734 43735 43736 43737 43738 43739 43740 43741 43742 43743 43744 43745 43746 43747 43748 43749 43750 43751 43752 43753 43754 43755 43756 43757 43758 43759 43760 43761 43762 43763 43764 43765 43766 43767 43768 43769 43770 43771 43772 43773 43774 43775 43776 43777 43778 43779 43780 43781 43782 43783 43784 43785 43786 43787 43788 43789 43790 43791 43792 43793 43794 43795 43796 43797 43798 43799 43800 43801 43802 43803 43804 43805 43806 43807 43808 43809 43810 43811 43812 43813 43814 43815 43816 43817 43818 43819 43820 43821 43822 43823 43824 43825 43826 43827 43828 43829 43830 43831 43832 43833 43834 43835 43836 43837 43838 43839 43840 43841 43842 43843 43844 43845 43846 43847 43848 43849 43850 43851 43852 43853 43854 43855 43856 43857 43858 43859 43860 43861 43862 43863 43864 43865 43866 43867 43868 43869 43870 43871 43872 43873 43874 43875 43876 43877 43878 43879 43880 43881 43882 43883 43884 43885 43886 43887 43888 43889 43890 43891 43892 43893 43894 43895 43896 43897 43898 43899 43900 43901 43902 43903 43904 43905 43906 43907 43908 43909 43910 43911 43912 43913 43914 43915 43916 43917 43918 43919 43920 43921 43922 43923 43924 43925 43926 43927 43928 43929 43930 43931 43932 43933 43934 43935 43936 43937 43938 43939 43940 43941 43942 43943 43944 43945 43946 43947 43948 43949 43950 43951 43952 43953 43954 43955 43956 43957 43958 43959 43960 43961 43962 43963 43964 43965 43966 43967 43968 43969 43970 43971 43972 43973 43974 43975 43976 43977 43978 43979 43980 43981 43982 43983 43984 43985 43986 43987 43988 43989 43990 43991 43992 43993 43994 43995 43996 43997 43998 43999 44000 44001 44002 44003 44004 44005 44006 44007 44008 44009 44010 44011 44012 44013 44014 44015 44016 44017 44018 44019 44020 44021 44022 44023 44024 44025 44026 44027 44028 44029 44030 44031 44032 44033 44034 44035 44036 44037 44038 44039 44040 44041 44042 44043 44044 44045 44046 44047 44048 44049 44050 44051 44052 44053 44054 44055 44056 44057 44058 44059 44060 44061 44062 44063 44064 44065 44066 44067 44068 44069 44070 44071 44072 44073 44074 44075 44076 44077 44078 44079 44080 44081 44082 44083 44084 44085 44086 44087 44088 44089 44090 44091 44092 44093 44094 44095 44096 44097 44098 44099 44100 44101 44102 44103 44104 44105 44106 44107 44108 44109 44110 44111 44112 44113 44114 44115 44116 44117 44118 44119 44120 44121 44122 44123 44124 44125 44126 44127 44128 44129 44130 44131 44132 44133 44134 44135 44136 44137 44138 44139 44140 44141 44142 44143 44144 44145 44146 44147 44148 44149 44150 44151 44152 44153 44154 44155 44156 44157 44158 44159 44160 44161 44162 44163 44164 44165 44166 44167 44168 44169 44170 44171 44172 44173 44174 44175 44176 44177 44178 44179 44180 44181 44182 44183 44184 44185 44186 44187 44188 44189 44190 44191 44192 44193 44194 44195 44196 44197 44198 44199 44200 44201 44202 44203 44204 44205 44206 44207 44208 44209 44210 44211 44212 44213 44214 44215 44216 44217 44218 44219 44220 44221 44222 44223 44224 44225 44226 44227 44228 44229 44230 44231 44232 44233 44234 44235 44236 44237 44238 44239 44240 44241 44242 44243 44244 44245 44246 44247 44248 44249 44250 44251 44252 44253 44254 44255 44256 44257 44258 44259 44260 44261 44262 44263 44264 44265 44266 44267 44268 44269 44270 44271 44272 44273 44274 44275 44276 44277 44278 44279 44280 44281 44282 44283 44284 44285 44286 44287 44288 44289 44290 44291 44292 44293 44294 44295 44296 44297 44298 44299 44300 44301 44302 44303 44304 44305 44306 44307 44308 44309 44310 44311 44312 44313 44314 44315 44316 44317 44318 44319 44320 44321 44322 44323 44324 44325 44326 44327 44328 44329 44330 44331 44332 44333 44334 44335 44336 44337 44338 44339 44340 44341 44342 44343 44344 44345 44346 44347 44348 44349 44350 44351 44352 44353 44354 44355 44356 44357 44358 44359 44360 44361 44362 44363 44364 44365 44366 44367 44368 44369 44370 44371 44372 44373 44374 44375 44376 44377 44378 44379 44380 44381 44382 44383 44384 44385 44386 44387 44388 44389 44390 44391 44392 44393 44394 44395 44396 44397 44398 44399 44400 44401 44402 44403 44404 44405 44406 44407 44408 44409 44410 44411 44412 44413 44414 44415 44416 44417 44418 44419 44420 44421 44422 44423 44424 44425 44426 44427 44428 44429 44430 44431 44432 44433 44434 44435 44436 44437 44438 44439 44440 44441 44442 44443 44444 44445 44446 44447 44448 44449 44450 44451 44452 44453 44454 44455 44456 44457 44458 44459 44460 44461 44462 44463 44464 44465 44466 44467 44468 44469 44470 44471 44472 44473 44474 44475 44476 44477 44478 44479 44480 44481 44482 44483 44484 44485 44486 44487 44488 44489 44490 44491 44492 44493 44494 44495 44496 44497 44498 44499 44500 44501 44502 44503 44504 44505 44506 44507 44508 44509 44510 44511 44512 44513 44514 44515 44516 44517 44518 44519 44520 44521 44522 44523 44524 44525 44526 44527 44528 44529 44530 44531 44532 44533 44534 44535 44536 44537 44538 44539 44540 44541 44542 44543 44544 44545 44546 44547 44548 44549 44550 44551 44552 44553 44554 44555 44556 44557 44558 44559 44560 44561 44562 44563 44564 44565 44566 44567 44568 44569 44570 44571 44572 44573 44574 44575 44576 44577 44578 44579 44580 44581 44582 44583 44584 44585 44586 44587 44588 44589 44590 44591 44592 44593 44594 44595 44596 44597 44598 44599 44600 44601 44602 44603 44604 44605 44606 44607 44608 44609 44610 44611 44612 44613 44614 44615 44616 44617 44618 44619 44620 44621 44622 44623 44624 44625 44626 44627 44628 44629 44630 44631 44632 44633 44634 44635 44636 44637 44638 44639 44640 44641 44642 44643 44644 44645 44646 44647 44648 44649 44650 44651 44652 44653 44654 44655 44656 44657 44658 44659 44660 44661 44662 44663 44664 44665 44666 44667 44668 44669 44670 44671 44672 44673 44674 44675 44676 44677 44678 44679 44680 44681 44682 44683 44684 44685 44686 44687 44688 44689 44690 44691 44692 44693 44694 44695 44696 44697 44698 44699 44700 44701 44702 44703 44704 44705 44706 44707 44708 44709 44710 44711 44712 44713 44714 44715 44716 44717 44718 44719 44720 44721 44722 44723 44724 44725 44726 44727 44728 44729 44730 44731 44732 44733 44734 44735 44736 44737 44738 44739 44740 44741 44742 44743 44744 44745 44746 44747 44748 44749 44750 44751 44752 44753 44754 44755 44756 44757 44758 44759 44760 44761 44762 44763 44764 44765 44766 44767 44768 44769 44770 44771 44772 44773 44774 44775 44776 44777 44778 44779 44780 44781 44782 44783 44784 44785 44786 44787 44788 44789 44790 44791 44792 44793 44794 44795 44796 44797 44798 44799 44800 44801 44802 44803 44804 44805 44806 44807 44808 44809 44810 44811 44812 44813 44814 44815 44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44832 44833 44834 44835 44836 44837 44838 44839 44840 44841 44842 44843 44844 44845 44846 44847 44848 44849 44850 44851 44852 44853 44854 44855 44856 44857 44858 44859 44860 44861 44862 44863 44864 44865 44866 44867 44868 44869 44870 44871 44872 44873 44874 44875 44876 44877 44878 44879 44880 44881 44882 44883 44884 44885 44886 44887 44888 44889 44890 44891 44892 44893 44894 44895 44896 44897 44898 44899 44900 44901 44902 44903 44904 44905 44906 44907 44908 44909 44910 44911 44912 44913 44914 44915 44916 44917 44918 44919 44920 44921 44922 44923 44924 44925 44926 44927 44928 44929 44930 44931 44932 44933 44934 44935 44936 44937 44938 44939 44940 44941 44942 44943 44944 44945 44946 44947 44948 44949 44950 44951 44952 44953 44954 44955 44956 44957 44958 44959 44960 44961 44962 44963 44964 44965 44966 44967 44968 44969 44970 44971 44972 44973 44974 44975 44976 44977 44978 44979 44980 44981 44982 44983 44984 44985 44986 44987 44988 44989 44990 44991 44992 44993 44994 44995 44996 44997 44998 44999 45000 45001 45002 45003 45004 45005 45006 45007 45008 45009 45010 45011 45012 45013 45014 45015 45016 45017 45018 45019 45020 45021 45022 45023 45024 45025 45026 45027 45028 45029 45030 45031 45032 45033 45034 45035 45036 45037 45038 45039 45040 45041 45042 45043 45044 45045 45046 45047 45048 45049 45050 45051 45052 45053 45054 45055 45056 45057 45058 45059 45060 45061 45062 45063 45064 45065 45066 45067 45068 45069 45070 45071 45072 45073 45074 45075 45076 45077 45078 45079 45080 45081 45082 45083 45084 45085 45086 45087 45088 45089 45090 45091 45092 45093 45094 45095 45096 45097 45098 45099 45100 45101 45102 45103 45104 45105 45106 45107 45108 45109 45110 45111 45112 45113 45114 45115 45116 45117 45118 45119 45120 45121 45122 45123 45124 45125 45126 45127 45128 45129 45130 45131 45132 45133 45134 45135 45136 45137 45138 45139 45140 45141 45142 45143 45144 45145 45146 45147 45148 45149 45150 45151 45152 45153 45154 45155 45156 45157 45158 45159 45160 45161 45162 45163 45164 45165 45166 45167 45168 45169 45170 45171 45172 45173 45174 45175 45176 45177 45178 45179 45180 45181 45182 45183 45184 45185 45186 45187 45188 45189 45190 45191 45192 45193 45194 45195 45196 45197 45198 45199 45200 45201 45202 45203 45204 45205 45206 45207 45208 45209 45210 45211 45212 45213 45214 45215 45216 45217 45218 45219 45220 45221 45222 45223 45224 45225 45226 45227 45228 45229 45230 45231 45232 45233 45234 45235 45236 45237 45238 45239 45240 45241 45242 45243 45244 45245 45246 45247 45248 45249 45250 45251 45252 45253 45254 45255 45256 45257 45258 45259 45260 45261 45262 45263 45264 45265 45266 45267 45268 45269 45270 45271 45272 45273 45274 45275 45276 45277 45278 45279 45280 45281 45282 45283 45284 45285 45286 45287 45288 45289 45290 45291 45292 45293 45294 45295 45296 45297 45298 45299 45300 45301 45302 45303 45304 45305 45306 45307 45308 45309 45310 45311 45312 45313 45314 45315 45316 45317 45318 45319 45320 45321 45322 45323 45324 45325 45326 45327 45328 45329 45330 45331 45332 45333 45334 45335 45336 45337 45338 45339 45340 45341 45342 45343 45344 45345 45346 45347 45348 45349 45350 45351 45352 45353 45354 45355 45356 45357 45358 45359 45360 45361 45362 45363 45364 45365 45366 45367 45368 45369 45370 45371 45372 45373 45374 45375 45376 45377 45378 45379 45380 45381 45382 45383 45384 45385 45386 45387 45388 45389 45390 45391 45392 45393 45394 45395 45396 45397 45398 45399 45400 45401 45402 45403 45404 45405 45406 45407 45408 45409 45410 45411 45412 45413 45414 45415 45416 45417 45418 45419 45420 45421 45422 45423 45424 45425 45426 45427 45428 45429 45430 45431 45432 45433 45434 45435 45436 45437 45438 45439 45440 45441 45442 45443 45444 45445 45446 45447 45448 45449 45450 45451 45452 45453 45454 45455 45456 45457 45458 45459 45460 45461 45462 45463 45464 45465 45466 45467 45468 45469 45470 45471 45472 45473 45474 45475 45476 45477 45478 45479 45480 45481 45482 45483 45484 45485 45486 45487 45488 45489 45490 45491 45492 45493 45494 45495 45496 45497 45498 45499 45500 45501 45502 45503 45504 45505 45506 45507 45508 45509 45510 45511 45512 45513 45514 45515 45516 45517 45518 45519 45520 45521 45522 45523 45524 45525 45526 45527 45528 45529 45530 45531 45532 45533 45534 45535 45536 45537 45538 45539 45540 45541 45542 45543 45544 45545 45546 45547 45548 45549 45550 45551 45552 45553 45554 45555 45556 45557 45558 45559 45560 45561 45562 45563 45564 45565 45566 45567 45568 45569 45570 45571 45572 45573 45574 45575 45576 45577 45578 45579 45580 45581 45582 45583 45584 45585 45586 45587 45588 45589 45590 45591 45592 45593 45594 45595 45596 45597 45598 45599 45600 45601 45602 45603 45604 45605 45606 45607 45608 45609 45610 45611 45612 45613 45614 45615 45616 45617 45618 45619 45620 45621 45622 45623 45624 45625 45626 45627 45628 45629 45630 45631 45632 45633 45634 45635 45636 45637 45638 45639 45640 45641 45642 45643 45644 45645 45646 45647 45648 45649 45650 45651 45652 45653 45654 45655 45656 45657 45658 45659 45660 45661 45662 45663 45664 45665 45666 45667 45668 45669 45670 45671 45672 45673 45674 45675 45676 45677 45678 45679 45680 45681 45682 45683 45684 45685 45686 45687 45688 45689 45690 45691 45692 45693 45694 45695 45696 45697 45698 45699 45700 45701 45702 45703 45704 45705 45706 45707 45708 45709 45710 45711 45712 45713 45714 45715 45716 45717 45718 45719 45720 45721 45722 45723 45724 45725 45726 45727 45728 45729 45730 45731 45732 45733 45734 45735 45736 45737 45738 45739 45740 45741 45742 45743 45744 45745 45746 45747 45748 45749 45750 45751 45752 45753 45754 45755 45756 45757 45758 45759 45760 45761 45762 45763 45764 45765 45766 45767 45768 45769 45770 45771 45772 45773 45774 45775 45776 45777 45778 45779 45780 45781 45782 45783 45784 45785 45786 45787 45788 45789 45790 45791 45792 45793 45794 45795 45796 45797 45798 45799 45800 45801 45802 45803 45804 45805 45806 45807 45808 45809 45810 45811 45812 45813 45814 45815 45816 45817 45818 45819 45820 45821 45822 45823 45824 45825 45826 45827 45828 45829 45830 45831 45832 45833 45834 45835 45836 45837 45838 45839 45840 45841 45842 45843 45844 45845 45846 45847 45848 45849 45850 45851 45852 45853 45854 45855 45856 45857 45858 45859 45860 45861 45862 45863 45864 45865 45866 45867 45868 45869 45870 45871 45872 45873 45874 45875 45876 45877 45878 45879 45880 45881 45882 45883 45884 45885 45886 45887 45888 45889 45890 45891 45892 45893 45894 45895 45896 45897 45898 45899 45900 45901 45902 45903 45904 45905 45906 45907 45908 45909 45910 45911 45912 45913 45914 45915 45916 45917 45918 45919 45920 45921 45922 45923 45924 45925 45926 45927 45928 45929 45930 45931 45932 45933 45934 45935 45936 45937 45938 45939 45940 45941 45942 45943 45944 45945 45946 45947 45948 45949 45950 45951 45952 45953 45954 45955 45956 45957 45958 45959 45960 45961 45962 45963 45964 45965 45966 45967 45968 45969 45970 45971 45972 45973 45974 45975 45976 45977 45978 45979 45980 45981 45982 45983 45984 45985 45986 45987 45988 45989 45990 45991 45992 45993 45994 45995 45996 45997 45998 45999 46000 46001 46002 46003 46004 46005 46006 46007 46008 46009 46010 46011 46012 46013 46014 46015 46016 46017 46018 46019 46020 46021 46022 46023 46024 46025 46026 46027 46028 46029 46030 46031 46032 46033 46034 46035 46036 46037 46038 46039 46040 46041 46042 46043 46044 46045 46046 46047 46048 46049 46050 46051 46052 46053 46054 46055 46056 46057 46058 46059 46060 46061 46062 46063 46064 46065 46066 46067 46068 46069 46070 46071 46072 46073 46074 46075 46076 46077 46078 46079 46080 46081 46082 46083 46084 46085 46086 46087 46088 46089 46090 46091 46092 46093 46094 46095 46096 46097 46098 46099 46100 46101 46102 46103 46104 46105 46106 46107 46108 46109 46110 46111 46112 46113 46114 46115 46116 46117 46118 46119 46120 46121 46122 46123 46124 46125 46126 46127 46128 46129 46130 46131 46132 46133 46134 46135 46136 46137 46138 46139 46140 46141 46142 46143 46144 46145 46146 46147 46148 46149 46150 46151 46152 46153 46154 46155 46156 46157 46158 46159 46160 46161 46162 46163 46164 46165 46166 46167 46168 46169 46170 46171 46172 46173 46174 46175 46176 46177 46178 46179 46180 46181 46182 46183 46184 46185 46186 46187 46188 46189 46190 46191 46192 46193 46194 46195 46196 46197 46198 46199 46200 46201 46202 46203 46204 46205 46206 46207 46208 46209 46210 46211 46212 46213 46214 46215 46216 46217 46218 46219 46220 46221 46222 46223 46224 46225 46226 46227 46228 46229 46230 46231 46232 46233 46234 46235 46236 46237 46238 46239 46240 46241 46242 46243 46244 46245 46246 46247 46248 46249 46250 46251 46252 46253 46254 46255 46256 46257 46258 46259 46260 46261 46262 46263 46264 46265 46266 46267 46268 46269 46270 46271 46272 46273 46274 46275 46276 46277 46278 46279 46280 46281 46282 46283 46284 46285 46286 46287 46288 46289 46290 46291 46292 46293 46294 46295 46296 46297 46298 46299 46300 46301 46302 46303 46304 46305 46306 46307 46308 46309 46310 46311 46312 46313 46314 46315 46316 46317 46318 46319 46320 46321 46322 46323 46324 46325 46326 46327 46328 46329 46330 46331 | FN ISI Export Format
VR 1.0
PT J
AU Arantes, GM
Chaimovich, H
TI Thiolysis and alcoholysis of phosphate tri- and monoesters with alkyl
and aryl leaving groups. An ab initio study in the gas phase
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID QUANTUM-MECHANICAL CALCULATIONS; MOLECULAR-ORBITAL METHODS;
GAUSSIAN-BASIS SETS; TRIMETHYL PHOSPHATE; PHOTOELECTRON-SPECTROSCOPY;
AQUEOUS-SOLUTION; INFRARED-SPECTROSCOPY; PROTEIN PHOSPHATASES;
CHEMICAL-REACTIONS; ESTER HYDROLYSIS
AB Phosphate esters are important compounds in living systems. Their
biological reactions with alcohol and thiol nucleophiles are catalyzed
by a large superfamily,if phosphatase enzymes. However, very little is
known about the intrinsic reactivity of these nucleophiles with
phosphorus centers. We have performed ab initio calculations on the
thiolysis and alcoholysis at phosphorus of trimethyl phosphate,
dimethyl phenyl phosphate, methyl phosphate, and phenyl phosphate.
Results in the gas phase are a reference for the study of the intrinsic
reactivity of these compounds. Thiolysis of triesters was much slower
and less favorable than the corresponding alcoholysis. Triesters
reacted through an associative mechanism. Monoesters can react by both
associative and dissociative mechanisms. The basicity of the attacking
and leaving groups and the possibility of proton transfers can modulate
the reaction mechanisms. Intermediates formed along associative
reactions did not follow empirically proposed rules for ligand
positioning. Our calculations also allow re-interpretation of some
experimental results, and new experiments are proposed to trace
reactions that are normally not observed, both in the gas phase and in
solution.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Arantes, GM, Univ Sao Paulo, Inst Quim, Av Lineu Prestes 748,
BR-05508900 Sao Paulo, Brazil.
EM gma@dinamicas.art.br
CR AHLRICHS R, 1989, CHEM PHYS LETT, V162, P165
AQVIST J, 1999, CHEM BIOL, V6, P71
ARANTES GM, 2004, THESIS U SAO PAULO
ASUBIOJO OI, 1977, J AM CHEM SOC, V99, P7707
AYALA PY, 1998, J CHEM PHYS, V108, P2314
BALLARD RE, 1987, CHEM PHYS LETT, V137, P125
BARFORD D, 1998, ANNU REV BIOPH BIOM, V27, P133
BIANCIOTTO M, 2002, J AM CHEM SOC, V124, P7573
BOLDYREV AI, 1996, ACCOUNTS CHEM RES, V29, P497
BUNTON CA, 1967, J AM CHEM SOC, V89, P1221
BUNTON CA, 1970, ACCOUNTS CHEM RES, V3, P257
CHANG NY, 1997, J PHYS CHEM A, V101, P8706
CHANG NY, 1998, J AM CHEM SOC, V120, P2156
CLELAND WW, 1995, FASEB J, V9, P1585
COLEMAN JE, 1992, ANNU REV BIOPH BIOM, V21, P441
COX JR, 1964, CHEM REV, V64, P317
CURTISS LA, 1996, J CHEM PHYS, V104, P5148
DANTZMAN CL, 1996, J AM CHEM SOC, V118, P11715
DEJAEGERE A, 1994, J CHEM SOC FARADAY T, V90, P1763
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DUBOURG A, 1982, J CHEM RES S, V7, P180
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FLORIAN J, 1998, J AM CHEM SOC, V120, P11524
FLORIAN J, 1998, J PHYS CHEM B, V102, P719
FRIEDMAN JM, 1988, J AM CHEM SOC, V110, P1268
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
GEORGE L, 1994, APPL SPECTROSC, V48, P7
GOLDSTEIN BJ, 1998, TYROSINE PHOSPOPROTE
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
GRYZYSKA P, 2002, J ORG CHEM, V67, P1214
GUNION RF, 1992, INT J MASS SPECTROM, V117, P601
GUTHRIE RD, 1989, ACCOUNTS CHEM RES, V22, P343
HARMONY MD, 1979, J PHYS CHEM REF DATA, V8, P619
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HELGAKER T, 2000, MOL ELECT STRUCTURE
HIRSCHFELDER JO, 1967, ADV CHEM PHYS, V12, P3
HODGES RV, 1980, J AM CHEM SOC, V102, P935
HOFF RH, 1998, J ORG CHEM, V63, P6680
HU CH, 1999, J PHYS CHEM A, V103, P5379
JACKSON MD, 2001, CHEM REV, V101, P2313
KHAN SA, 1970, J CHEM SOC B, P1172
KIRBY A, 1968, J AM CHEM SOC, V89, P415
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LENDVAY G, 1998, CHEM PHYS LETT, V297, P365
LESS RM, 1968, J CHEM PHYS, V48, P5299
LIAS SG, 1988, J PHYS CHEM REF D S1, V17, P1
LUM RC, 1992, J AM CHEM SOC, V114, P8619
MCCOMB RB, 1979, ALKALINE PHOSPHATES
MCQUARRIE DA, 1976, STAT MECH
MENEGON G, 2002, J PHYS CHEM A, V106, P9078
MERCERO JM, 2000, J COMPUT CHEM, V21, P43
MILLER B, 1962, J AM CHEM SOC, V84, P403
MOLLER C, 1934, PHYS REV, V46, P618
NELSON RD, 1967, NATL STD REF DATA SE, V10, P1
OCHTERSKI JW, 1999, WHITE PAPER VIBRATIO
OSBORN DL, 1998, CHEM PHYS LETT, V292, P651
PARR RG, 1996, DENSITY FUNCTIONAL T
PULAY P, 1988, J CHEM PHYS, V88, P4926
ROBIN MB, 1972, J ELECTRON SPECTROSC, V1, P13
SANTORO E, 1973, ORG MASS SPECTROM, V7, P589
SCHAFER A, 1992, J CHEM PHYS, V97, P2571
SCHLEGEL HB, 1987, ADV CHEM PHYS, V67, P249
SCHWARTZ RL, 2000, J ELECTRON SPECTROSC, V108, P163
SZABO A, 1989, MODERN QUANTUM CHEM
TAYLOR PR, 1992, LECT NOTES QUANTUM C, V1
THATCHER GRJ, 1989, ADV PHYS ORG CHEM, V25, P99
VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
VIDYA V, 1996, CHEM PHYS LETT, V258, P113
WESTHEIMER FH, 1968, ACCOUNTS CHEM RES, V1, P70
WESTHEIMER FH, 1987, SCIENCE, V235, P1173
WILSON EB, 1980, MOL VIBRATIONS THEOR
NR 72
TC 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUN 30
PY 2005
VL 109
IS 25
BP 5625
EP 5635
PG 11
SC Chemistry, Physical
GA 940CZ
UT ISI:000230122600013
ER
PT J
AU Rego, LGC
Abuabara, SG
Batista, VS
TI Model study of coherent quantum dynamics of hole states in
functionalized semiconductor nanostructures
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID HETEROGENEOUS ELECTRON-TRANSFER; CHARGE-TRANSFER; FEMTOSECOND
SPECTROSCOPY; MOLECULAR-DYNAMICS; SOLAR-CELLS; TIO2; SYSTEMS;
DECOHERENCE; ENVIRONMENT; NANOPARTICLES
AB Functionalization of semiconductor nanocrystals can be achieved by
anchoring organic ligands to the surface dangling bonds. The resulting
surface complexes often introduce electronic states in the
semiconductor band gap. These interband states sensitize the host
material for photoabsorption at frequencies characteristic of the
molecular adsorbates, leading to the well-known process of
photoexcitation and subsequent femtosecond interfacial electron
transfer. This paper investigates the relaxation dynamics of hole
states, energetically localized deep in the semiconductor band gap,
after the ultrafast electron-hole pair separation due to interfacial
electron transfer. Mixed quantum-classical methods, based on mean-field
nuclear dynamics approximated by ab initio density functional theory
molecular dynamics simulations, reveal superexchange hole tunneling
between adjacent adsorbate molecules in a model study of functionalized
TiO2-anatase nanostructures. It is shown that electronic coherences can
persist for hundreds of picoseconds under cryogenic and vacuum
conditions, despite the partial intrinsic decoherence induced by
thermal ionic motion, providing results of broad theoretical and
experimental interest. (c) 2005 American Institute of Physics.
C1 Univ Fed Santa Catarina, Dept Phys, BR-88040900 Florianopolis, SC, Brazil.
Yale Univ, Dept Chem, New Haven, CT 06520 USA.
RP Rego, LGC, Univ Fed Santa Catarina, Dept Phys, BR-88040900
Florianopolis, SC, Brazil.
CR ASBURY JB, 2001, J PHYS CHEM B, V105, P4545
AXT VM, 2004, REP PROG PHYS, V67, P433
BATISTA VS, 2002, PHYS REV LETT, V89
BAUER C, 2002, J PHYS CHEM B, V106, P12693
BENT SF, 2002, SURF SCI, V500, P879
BITTNER ER, 1995, J CHEM PHYS, V103, P8130
CERDA J, 2000, PHYS REV B, V61, P7965
FLORES SC, 2004, J PHYS CHEM B, V108, P6745
GERHARDS M, 1996, J CHEM PHYS, V104, P972
GLYNN S, 1972, INTRO APPL QUANTUM C
GONZALEZ RJ, 1997, PHYS REV B, V55, P7014
HAGFELDT A, 1995, CHEM REV, V95, P49
HAGFELDT A, 2000, ACCOUNTS CHEM RES, V33, P269
HOFFMANN R, 1988, REV MOD PHYS, V60, P601
HOHENESTER U, 2000, APPL PHYS LETT, V77, P1864
JACOBSON K, 1976, IMAGING SYSTEMS
JOOS E, 1985, Z PHYS B CON MAT, V59, P223
JOOS E, 1996, DECOHERENCE APPEARAN
KAMAT P, 1997, SEMICONDUCTOR NANOCL
KORMAN DBC, 1998, J PHYS CHEM-US, V92, P5196
KRESSE G, 1996, PHYS REV B, V54, P11169
LAASONEN K, 1993, PHYS REV B, V47, P10142
LIU Y, 1999, J PHYS CHEM B, V103, P2480
MILLER R, 1995, SURFACE ELECT TRANSF
MONCH W, 1993, SEMICONDUCTOR SURFAC
NOZIK AJ, 1996, J PHYS CHEM-US, V100, P13061
PECHUKAS P, 1969, PHYS REV, V181, P166
PERDEW J, 1991, ELECT STRUCTURE SOLI
PESIKA NS, 2002, J PHYS CHEM B, V106, P6985
PREZHDO OV, 1998, PHYS REV LETT, V81, P5294
RAMAKRISHNA G, 2004, J PHYS CHEM B, V108, P1701
RAMAKRISHNA S, 2003, J PHYS CHEM B, V107, P607
REGO LGC, UNPUB J AM CHEM SOC
REGO LGC, UNPUB QUANTUM INFORM
REGO LGC, 2003, J AM CHEM SOC, V125, P7989
RICE CR, 2000, NEW J CHEM, V24, P651
SCHNADT J, 2002, NATURE, V418, P620
SCHNADT J, 2003, J CHEM PHYS, V119, P12462
SCHOONMAN J, 2000, SOLID STATE IONICS, V135, P5
SHIOKAWA K, 2002, J CHEM PHYS, V117, P7852
SMITH BB, 1996, J CHEM PHYS, V205, P47
SMITH BB, 1999, J PHYS CHEM B, V103, P9915
STIER W, 2002, J PHYS CHEM B, V106, P8047
STIER W, 2003, J MOL STRUC-THEOCHEM, V630, P33
THOSS M, 2004, CHEM PHYS, V304, P169
VITTADINI A, 2000, J PHYS CHEM B, V104, P1300
VYDIANATHAN K, 2001, J MATER RES, V16, P1838
WANG ZL, 2004, J PHYS-CONDENS MAT, V16, R829
WHEELER DE, 1999, J PHYS CHEM A, V103, P4101
ZANARDI P, 1997, MOD PHYS LETT B, V11, P1085
ZUREK WH, 1981, PHYS REV D, V24, P1516
ZUREK WH, 1982, PHYS REV D, V26, P1862
ZUREK WH, 1993, PHYS REV LETT, V70, P1187
NR 53
TC 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD APR 15
PY 2005
VL 122
IS 15
AR 154709
DI ARTN 154709
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 927HQ
UT ISI:000229185400044
ER
PT J
AU Zhang, PH
Capaz, RB
Cohen, ML
Louie, SG
TI Theory of sodium ordering in NaxCoO2
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRON-GAS; SYSTEMS; COO2
AB The ordering of Na ions in NaxCoO2 is investigated systematically by
combining detailed density functional theory (DFT) studies with model
calculations. Various ground state ordering patterns are identified,
and they are in excellent agreement with available experimental
results. Our results suggest that the primary driving force for the Na
ordering is the screened Coulomb interaction among Na ions. Possible
effects of the Na ordering on the electronic structure of the CoO2
layer are discussed. We propose that the nonexistence of a charge
ordered insulating state at x=2/3 is due to the lack of a commensurate
Na ordering pattern, whereas an extremely stable Na ordering at x=0.5
enhances the charge ordering tendency, resulting in an insulating state
as observed experimentally.
C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA.
Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil.
RP Zhang, PH, Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
CR BALSYS RJ, 1996, SOLID STATE IONICS, V93, P279
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DEFONTAINE D, 1994, SOLID STATE PHYS, V47, P33
DELMAS C, 1981, SOL STATE IONICS, V3, P165
FOO ML, 2004, PHYS REV LETT, V92
HOHENBERG P, 1964, PHYS REV, V136, B864
HUANG Q, 2004, PHYS REV B, V70
HUANG Q, 2004, PHYS REV B, V70
KOHN W, 1965, PHYS REV, V140, A1133
LEE KW, 2004, PHYS REV B, V70
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
MOTRUNICH OI, 2004, PHYS REV B, V69
MUKHAMEDSHIN IR, 2004, PHYS REV LETT, V93
ONO Y, 2002, J SOLID STATE CHEM, V166, P177
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1981, PHYS REV B, V23, P5048
SHI YG, CONDMAT0306070
SOLER JM, 2002, J PHYS-CONDENS MAT, V14, P2745
SUGIYAMA J, 2004, PHYS REV B, V69
TAKADA K, 2003, NATURE, V422, P53
TROULLIER N, 1991, PHYS REV B, V43, P1993
VANDEWALLE A, 2002, J PHASE EQUILIB, V23, P248
ZANDBERGEN HW, 2004, PHYS REV B, V70
ZHANG PH, 2004, PHYS REV B, V70
NR 24
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD APR
PY 2005
VL 71
IS 15
AR 153102
DI ARTN 153102
PG 4
SC Physics, Condensed Matter
GA 921KJ
UT ISI:000228762900002
ER
PT J
AU Freire, RO
Rocha, GB
Simas, AM
TI Sparkle model for the calculation of lanthanide complexes: AM1
parameters for Eu(III), Gd(III), and Tb(III)
SO INORGANIC CHEMISTRY
LA English
DT Article
ID CAMBRIDGE STRUCTURAL DATABASE; IMAGING CONTRAST AGENTS; SIMPLE OVERLAP
MODEL; RARE-EARTH ELEMENTS; AB-INITIO; GADOLINIUM COMPLEXES;
INTERMEDIATE NEGLECT; ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURES; LU
AB Our previously defined Sparkle model (Inorg. Chem. 2004, 43, 2346) has
been reparameterized for Eu(III) as well as newly parameterized for
Gd(III) and Tb(III). The parameterizations have been carried out in a
much more extensive manner, aimed at producing a new, more accurate
model called Sparkle/AM1, mainly for the vast majority of all Eu(III),
Gd(I I), and Tb(III) complexes, which possess oxygen or nitrogen as
coordinating atoms. All such complexes, which comprise 80% of all
geometries present in the Cambridge Structural Database for each of the
three ions, were classified into seven groups. These were regarded as a
"basis" of chemical ambiance around a lanthanide, which could span the
various types of ligand environments the lanthanide ion could be
subjected to in any arbitrary complex where the lanthanide ion is
coordinated to nitrogen or oxygen atoms. From these seven groups, 15
complexes were selected, which were defined as the parameterization set
and then were used with a numerical multidimensional nonlinear
optimization to find the best parameter set for reproducing chemical
properties. The new parametorizations yielded an unsigned mean error
for all interatomic distances between the Eu(III) ion and the ligand
atoms of the first sphere of coordination (for the 96 complexes
considered in the present paper) of 0.09 angstrom, an improvement over
the value of 0.28 angstrom for the previous model and the value of 0.68
angstrom for the first model (Chem. Phys. Lett. 1994, 227, 349).
Similar accuracies have been achieved for Gd(III) (0.07 angstrom, 70
complexes) and Tb(III) (0.07 A, 42 complexes). Qualitative improvements
have been obtained as well; nitrates now coordinate correctly as
bidentate ligands. The results, therefore, indicate that Eu(Ill),
Gd(III), and Tb(III) Sparkle/AM1 calculations possess geometry
prediction accuracies for lanthanide complexes with oxygen or nitrogen
atoms in the coordination polyhedron that are competitive with present
day ab initio/effective core potential calculations, while being
hundreds of times faster.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
RP Simas, AM, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540
Recife, PE, Brazil.
EM simas@ufpe.br
CR ADAMO C, 1997, CHEM PHYS LETT, V268, P61
ADDING LC, 2001, CARDIOVASC DRUG REV, V19, P41
AIME S, 1998, CHEM SOC REV, V27, P19
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P407
ANIKIN NA, 2004, J CHEM PHYS, V121, P1266
ATAR E, 2004, ISRAEL MED ASSOC J, V6, P412
BINNEMANS K, 2002, CHEM REV, V102, P2303
BRUNO IJ, 2002, ACTA CRYSTALLOGR B 3, V58, P389
BUNZLI JCG, 2002, CHEM REV, V102, P1897
CAO XY, 2002, J MOL STRUC-THEOCHEM, V581, P139
CAO XY, 2003, MOL PHYS, V101, P2427
CARAVAN P, 1999, CHEM REV, V99, P2293
CORY MG, 1994, J CHEM PHYS, V100, P1353
COSENTINO U, 1997, J MOL STRUC-THEOCHEM, V392, P75
COSENTINO U, 1998, J PHYS CHEM A, V102, P4606
COSENTINO U, 2002, J AM CHEM SOC, V24, P4901
COSENTINO U, 2004, THEOR CHEM ACC, V111, P204
CULBERSON JC, 1987, THEOR CHIM ACTA, V71, P21
CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
CUNDARI TR, 1995, J CHEM PHYS, V103, P7058
DEANDRADE AVM, 1994, CHEM PHYS LETT, V227, P349
DESA GF, 1998, OPT MATER, V11, P23
DESA GF, 2000, COORDIN CHEM REV, V196, P165
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DOLG M, 1989, J CHEM PHYS, V90, P1730
DOLG M, 1989, THEOR CHIM ACTA, V75, P173
DOLG M, 1990, CHEM PHYS LETT, V174, P208
DOLG M, 1992, J CHEM PHYS, V97, P1162
DOLG M, 1995, CHEM PHYS, V195, P71
DOLG M, 2000, NIC SERIES, V1, P479
DORENBOS P, 2003, J SOLID STATE CHEM, V171, P133
EISENSTEIN O, 2002, J ORGANOMET CHEM, V647, P190
FAUSTINO WM, 2000, J MOL STRUC-THEOCHEM, V527, P245
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GAMEIRO CG, 1999, MATER SCI FORUM, V315, P249
GAO JL, 1996, REV COMP CH, V7, P119
HIROSAKI N, 2003, J ALLOY COMPD, V351, P31
KAUPP M, 1992, J AM CHEM SOC, V114, P8202
KIDO J, 2002, CHEM REV, V102, P2357
KURITA N, 2003, CHEM PHYS LETT, V372, P583
LANZA G, 1996, CHEM PHYS LETT, V255, P341
LEHN JM, 1990, ANGEW CHEM INT EDIT, V29, P304
LIDE DR, 2002, HDB CHEM PHYS
LIU WJ, 1997, J CHEM PHYS, V107, P3584
LIU WJ, 1998, INORG CHEM, V37, P1067
MALTA OL, 1982, CHEM PHYS LETT, V87, P27
MALTA OL, 1982, CHEM PHYS LETT, V88, P353
MONDRY A, 2004, J ALLOY COMPD, V374, P27
NAKAJIMA S, 2003, J PHYS CHEM B, V107, P2867
OBRIEN TA, 2000, J ELECTROCHEM SOC, V147, P792
OHNO K, 2001, CHEM PHYS LETT, V341, P387
OHNO K, 2001, J AM CHEM SOC, V123, P8161
PARKER D, 1998, J CHEM SOC PERK OCT, P2129
PERRIN L, 2003, ORGANOMETALLICS, V22, P5447
PERRIN L, 2004, NEW J CHEM, V10, P1255
REID MF, 1989, J LESS-COMMON MET, V148, P219
ROCHA GB, 2004, INORG CHEM, V43, P2346
RONDA CR, 1995, J ALLOY COMPD, V225, P534
ROSS RB, 1994, J CHEM PHYS, V100, P8145
SELVIN PR, 2002, ANNU REV BIOPH BIOM, V31, P275
STEWART JJP, 1996, INT J QUANTUM CHEM, V58, P133
THOMPSON LC, 1979, HDB PHYS CHEM RARE E
THUNUS L, 1999, COORDIN CHEM REV, V184, P125
TITMUSS SJ, 2000, CHEM PHYS LETT, V320, P169
TSUCHIYA T, 1999, J MOL STRUC-THEOCHEM, V461, P203
TSUCHIYA T, 2002, CHEM PHYS LETT, V361, P334
TSUKUBE H, 2002, CHEM REV, V102, P2389
VILLA A, 2000, J PHYS CHEM A, V104, P3421
NR 70
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD MAY 2
PY 2005
VL 44
IS 9
BP 3299
EP 3310
PG 12
SC Chemistry, Inorganic & Nuclear
GA 922CL
UT ISI:000228813400046
ER
PT J
AU Cabral, BJC
Canuto, S
TI The enthalpy of the O-H bond hornolytic dissociation: Basis-set
extrapolated density functional theory and coupled cluster calculations
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CORRELATION-ENERGY; GAS-PHASE; WAVE-FUNCTIONS; ENERGETICS; MOLECULES;
EXCHANGE; PHENOL; CONVERGENCE; RESPECT
AB The O-H bond homolytic dissociation of water, hydrogen peroxide,
methanol, phenol, and cathecol is investigated by density functional
theory (DFT) and ab initio coupled cluster calculations. DFT results
are based on several recently proposed functionals, including B98, PBE,
VSXC, and HCTH. The dependence of DFT results on the basis-set size is
discussed using correlation-consistent polarized (cc-pVXZ) basis-sets
(X = 2-5). A scheme proposed by Truhlar is used to extrapolate CCSD
energies. Basis-set extrapolated CCSD results for the O-H bond
homolytic dissociation enthalpies of phenol and cathecol are in
excellent agreement with experimental information. (c) 2005 Elsevier
B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Lisbon, Dept Quim & Bioquim, P-1649003 Lisbon, Portugal.
Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
EM canuto@if.usp.br
CR ANGEL LA, 2004, J PHYS CHEM A, V108, P8346
BAKALBASSIS EG, 2003, J PHYS CHEM A, V107, P8594
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BLANKSBY SJ, 2003, ACCOUNTS CHEM RES, V36, P255
BYRD EFC, 2001, J PHYS CHEM A, V105, P9736
CIZEK J, 1969, ADV CHEM PHYS, V14, P35
CORREIA CF, 2004, PHYS CHEM CHEM PHYS, V6, P2109
DETURI VF, 1998, INT J MASS SPECTROM, V175, P123
DILABIO GA, 1999, J PHYS CHEM A, V103, P1653
DOSANTOS RMB, 1998, J PHYS CHEM REF DATA, V27, P707
ESTACIO SG, 2004, J PHYS CHEM A, V108, P10834
FELLER D, 2000, J CHEM PHYS, V113, P485
FRISCH MJ, 2003, GAUSSIAN03 GUASSIAN
GUEDES RC, 2000, J PHYS CHEM A, V104, P6062
GUEDES RC, 2003, J PHYS CHEM B, V107, P4304
HALKIER A, 1998, CHEM PHYS LETT, V286, P243
HAMPRECHT FA, 1998, J CHEM PHYS, V109, P6264
ITOH S, 2000, COORDIN CHEM REV, V198, P3
KAGAN VE, 1998, ANN NY ACAD SCI, V854, P425
KAHN K, 2004, THEOR CHEM ACC, V111, P18
KENDALL RA, 1992, J CHEM PHYS, V96, P6796
LEE C, 1988, PHYS REV B, V37, P785
MARTIN JML, 1997, J CHEM PHYS, V106, P8620
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1997, PHYS REV LETT, V78, P1396
PETERSON KA, 1997, THEOR CHEM ACC, V97, P251
RUSCIC, 2002, J PHYS CHEM A, V106, P2727
SCHMIDER HL, 1998, J CHEM PHYS, V108, P9624
TRUHLAR DG, 1998, CHEM PHYS LETT, V294, P45
VANVOORHIS T, 1998, J CHEM PHYS, V109, P400
VARANDAS AJC, 2000, J CHEM PHYS, V113, P8880
WANG NX, 2004, J CHEM PHYS, V121, P7632
WEAVER EC, 1968, ANNU REV PLANT PHYS, V19, P283
WOON DE, 1993, J CHEM PHYS, V98, P1358
YAO XQ, 2003, J PHYS CHEM A, V107, P9991
NR 35
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 2
PY 2005
VL 406
IS 4-6
BP 300
EP 305
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 920FY
UT ISI:000228676000004
ER
PT J
AU Ferretti, A
Calzolari, A
Di Felice, R
Manghi, F
Caldas, MJ
Nardelli, MB
Molinari, E
TI First-principles theory of correlated transport through nanojunctions
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID STATES; HOLE
AB We report the inclusion of electron-electron correlation in the
calculation of transport properties within an ab initio scheme. A key
step is the reformulation of Landauer's approach in terms of an
effective transmittance for the interacting electron system. We apply
this framework to analyze the effect of shortrange interactions on Pt
atomic wires and discuss the coherent and incoherent correction to the
mean-field approach.
C1 INFM, Natl Ctr NanoStruct & BioSyst Surfaces, I-41100 Modena, Italy.
Univ Modena, Dipartimento Fis, I-41100 Modena, Italy.
Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
Oak Ridge Natl Lab, CCS, CSM, Oak Ridge, TN 37831 USA.
RP Ferretti, A, INFM, Natl Ctr NanoStruct & BioSyst Surfaces, I-41100
Modena, Italy.
CR AGRAIT N, 2003, PHYS REP, V377, P81
BRANDBYGE M, 2002, PHYS REV B, V65
CALANDRA C, 1994, PHYS REV B, V50, P2061
CALZOLARI A, 2004, PHYS REV B, V69
CALZOLARI A, 2004, WANT CODE
DATTA S, 1995, ELECT TRANSPORT MESO
DELANEY P, 2004, PHYS REV LETT, V93
DIVENTRA M, 2000, PHYS REV B, V61, P16207
EVERS F, 2004, PHYS REV B, V69
FERRETTI A, UNPUB
HAUG H, 1996, QUANTUM KINETICS TRA
JARILLOHERRERO P, 2004, NATURE, V429, P389
KOSOV DS, 2003, J CHEM PHYS, V119, P1
LIANG WJ, 2002, NATURE, V417, P725
MAHAN GD, 1981, MANY PARTICLE PHYS
MAITRA NT, 2003, PHYS REV B, V68
MANGHI F, 1997, PHYS REV B, V56, P7149
MARZARI N, 1997, PHYS REV B, V56, P12847
MEIR Y, 1992, PHYS REV LETT, V68, P2512
NARDELLI MB, 2001, PHYS REV B, V64
NG TK, 1996, PHYS REV LETT, V76, P487
ODOM TW, 2000, SCIENCE, V290, P1549
PARK J, 2002, NATURE, V417, P722
SERGUEEV N, 2002, PHYS REV B, V65
SPRINGER M, 1998, PHYS REV B, V57, P4364
TAYLOR J, 2001, PHYS REV B, V63
XUE YQ, 2002, CHEM PHYS, V281, P151
NR 27
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 25
PY 2005
VL 94
IS 11
AR 116802
DI ARTN 116802
PG 4
SC Physics, Multidisciplinary
GA 910IA
UT ISI:000227923200049
ER
PT S
AU Fileti, EE
Coutinho, K
Canuto, S
TI Is there a favorite isomer for hydrogen-bonded methanol in water?
SO ADVANCES IN QUANTUM CHEMISTRY, VOL 47
SE ADVANCES IN QUANTUM CHEMISTRY
LA English
DT Review
ID CARLO-QUANTUM-MECHANICS; SEQUENTIAL MONTE-CARLO; AB-INITIO CALCULATION;
THERMODYNAMIC PROPERTIES; AQUEOUS-SOLUTIONS; LIQUID WATER; MIXTURES;
SIMULATIONS; TRANSITION; ENERGIES
AB Sequential Monte Carlo/quantum-mechanical calculations of the
interaction energy of hydrogen-bonded methanol in liquid water give the
same result for methanol acting either as the proton donor or the
proton acceptor. For the complex-optintized cases, methanol acting as
the proton acceptor, CH3HO center dot center dot center dot H2O, is
more stable than the proton donor, CH3OH center dot center dot center
dot OH2, by similar to 0.5 kcal/mol. In the case of methanol in liquid
water, at room temperature, statistically converged results, using
counterpoise corrected MP2/aug-cc-pVDZ calculations, lead to the same
binding energy in both cases.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi Das Cruzes, CIIB, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Fileti, EE, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
BAKKAS N, 1993, J CHEM PHYS, V99, P3335
BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BELL TW, 2002, J AM CHEM SOC, V124, P14092
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BOLIS G, 1983, J AM CHEM SOC, V105, P355
BOYS SF, 1970, MOL PHYS, V19, P553
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
COUTINHO K, 2000, DICE VERSION 2 8 GEN
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2003, J MOL STRUC-THEOCHEM, V632, P235
DELBENE JE, 1971, J CHEM PHYS, V55, P4633
DIXIT S, 2002, NATURE, V416, P829
FILETI EE, 2003, J PHYS B-AT MOL OPT, V36, P399
FILETI EE, 2003, PHYS REV E, V67, P61504
FINNEY JL, 2000, J PHYS-CONDENS MAT, V12, A123
FRANKS F, 1966, Q REV CHEM SOC, V20, P1
FRANKS F, 1985, WATER SCI REV, V1, P171
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GONZALEZ L, 1998, J CHEM PHYS, V109, P139
GUO JH, 2003, PHYS REV LETT, V91
HUISKEN F, 1991, CHEM PHYS LETT, V180, P332
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225
KIM S, 1988, J PHYS CHEM-US, V92, P7216
LAAKSONEN A, 1997, J PHYS CHEM A, V101, P5910
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MEZEI M, 1981, J CHEM PHYS, V74, P622
PALINKAS G, 1991, CHEM PHYS, V158, P65
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
SATO H, 1999, J CHEM PHYS, V111, P8545
SOPER AK, 1993, PHYS REV LETT, V71, P4346
STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
STOCKMAN PA, 1997, J CHEM PHYS, V107, P3782
TANAKA H, 1992, J CHEM PHYS, V97, P2626
TSE YC, 1980, CHEM PHYS LETT, V75, P350
NR 38
TC 3
PU ELSEVIER ACADEMIC PRESS INC
PI SAN DIEGO
PA 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0065-3276
J9 ADVAN QUANTUM CHEM
PY 2004
VL 47
BP 51
EP 63
PG 13
GA BBV45
UT ISI:000228024400004
ER
PT J
AU MacLeod, JM
Miwa, RH
Srivastava, GP
McLean, AB
TI The electronic origin of contrast reversal in bias-dependent STM images
of nanolines
SO SURFACE SCIENCE
LA English
DT Article
DE silicon; bismuth; density functional calculations; scanning tunneling
microscopy; growth; low index single crystal surfaces; self-assembly;
surface electronic phenomena
ID SCANNING-TUNNELING-MICROSCOPY; SURFACE-STRUCTURE; SI(100) SURFACE;
AB-INITIO; BISMUTH; SI(001); LINES; NANOWIRE
AB Self-organized Bi lines that are only 1.5 nm wide can be grown without
kinks or breaks on Si(001) surfaces to lengths of up to 500 nm.
Constant-current topographical images of the lines, obtained with the
scanning tunneling microscope, have a striking bias dependence.
Although the lines appear darker than the Si terraces at biases below
approximate to\1.2\ V, the contrast reverses at biases above
approximate to\1.5\ V. Between these two ranges the lines and terraces
are of comparable brightness. It has been suggested that this bias
dependence may be due to the presence of a semiconductor-like energy
gap within the line. Using ab initio calculations it is demonstrated
that the energy gap is too small to explain the experimentally observed
bias dependence. Consequently, at this time, there is no compelling
explanation for this phenomenon. An alternative explanation is proposed
that arises naturally from calculations of the tunneling current, using
the Tersoff-Hamann approximation, and an examination of the electronic
structure of the line. (C) 2004 Elsevier B.V. All rights reserved.
C1 Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada.
Univ Fed Uberlandia, Fac Fis, BR-38400902 Uberlandia, MG, Brazil.
Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP McLean, AB, Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada.
EM mclean@physics.queensu.ca
CR APPELBAUM JA, 1976, PHYS REV B, V14, P588
BOWLER DR, 2000, PHYS REV B, V62, P7237
GAY SCA, 1998, J PHYS-CONDENS MAT, V10, P7751
GONZE X, 1991, PHYS REV B, V44, P8503
MACLEOD JM, 2003, REV SCI INSTRUM, V74, P2429
MACLEOD JM, 2004, MATER SCI TECH-LOND, V20, P951
MACLEOD JM, 2004, PHYS REV B, V70
MAGAUD L, 2002, PHYS REV B, V65
MIKI K, 1999, I PHYS C SER, V164, P167
MIKI K, 1999, PHYS REV B, V59, P14868
MIWA RH, 2002, PHYS REV B, V66
MIWA RH, 2002, SURF SCI, V507, P368
NAITOH M, 1997, SURF SCI, V377, P899
NAITOH M, 1999, APPL SURF SCI, V142, P38
NAITOH M, 2000, JPN J APPL PHYS 1, V39, P2793
NAITOH M, 2001, SURF SCI 2, V482, P1440
NORTHRUP JE, 1993, PHYS REV B, V47, P10032
OWEN JHG, 2002, PHYS REV LETT, V88
OWEN JHG, 2002, SURF SCI, V499, L124
OWEN JHG, 2003, SURF SCI, V527, L177
PERDEW JP, 1981, PHYS REV B, V23, P5048
SAITO A, 2003, JPN J APPL PHYS 1, V42, P2408
SHIMOMURA M, 2000, SURF SCI, V447, L169
TERSOFF J, 1985, PHYS REV B, V31, P805
NR 24
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD FEB 10
PY 2005
VL 576
IS 1-3
BP 116
EP 122
PG 7
SC Chemistry, Physical
GA 895OL
UT ISI:000226872600016
ER
PT J
AU Ramalho, TC
Buhl, M
TI Probing NMR parameters, structure and dynamics of 5-nitroimidazole
derivatives. Density functional study of prototypical radiosensitizers
SO MAGNETIC RESONANCE IN CHEMISTRY
LA English
DT Article
DE NMR; N-15 NMR; radiosensitizers; molecular dynamics simulations;
solvent effects; spin-spin coupling constants
ID POLARIZABLE CONTINUUM MODEL; VERTICAL ELECTRON-AFFINITY;
CHEMICAL-SHIFTS; AB-INITIO; CORRELATION-ENERGY; SHIELDING TENSORS;
DRUG-RESISTANCE; SPECTROSCOPY; SYSTEMS; DESIGN
AB The N-15 chemical shifts of metronidazole (1), secnidazole (2),
nimorazole (3) and tinidazole (4), radiosensitizers based on the
5-nitroimidazole motif, are reported. A detailed computational study of
1 is presented, calling special attention to the performance of various
theoretical methods in reproducing the C-13 and N-15 data observed in
solution. The most sophisticated approach involves density
functional-based Car-Parrinello molecular dynamics simulations (CPMD)
of 1 in aqueous solution (BP86 level) and averaging chemical shifts
over snapshots from the trajectory. In the NMR calculations for these
snapshots (performed at the B3LYP level), a small number of discrete
water molecules are retained, and the remaining bulk solution effects
are included via a polarizable continuum model (PCM). A similarly good
accord with experiment is obtained from much less involved, static
geometry optimization and NMR computation of pristine 1 employing a PCM
approach. Solvent effects on delta(N-15), which are of the order of up
to 20 ppm, are not due to changes in geometric parameters upon
solvation, but arise from the direct response of the electronic
wavefunction to the presence of the solvent, which can be represented
by discrete molecules and/or the dielectric bulk. Copyright (C) 2004
John Wiley Sons, Ltd.
C1 Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany.
Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, RJ, Brazil.
RP Buhl, M, Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470
Mulheim, Germany.
EM buel@mpi-muelheim.mpg.de
CR ALLEN MP, 1987, COMPUTER SIMULATION
AMES JR, 1987, LIFE SCI, V41, P1895
ANDERSON CJ, 1999, CHEM REV, V99, P2219
BARFIELD M, 1969, CHEM REV, V69, P757
BARFIELD M, 2003, MAGN RESON CHEM, V41, P344
BARONE V, 1996, RECENT ADV DENSITY 1, P287
BARONE V, 1998, J COMPUT CHEM, V19, P404
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BROWN JM, 1991, J NATL CANCER I, V83, P178
BROWN JM, 1999, CANCER RES, V59, P1391
BUHL M, 1991, ANGEW CHEM INT EDIT, V30, P1160
BUHL M, 1999, J COMPUT CHEM, V20, P91
BUHL M, 2001, CHEM-EUR J, V7, P4487
BUHL M, 2002, ANGEW CHEM INT EDIT, V4, P2312
BUHL M, 2002, PHYS CHEM CHEM PHYS, V4, P5508
BUHL M, 2002, THEOR CHEM ACC, V107, P336
BUHL M, 2004, J AM CHEM SOC, V126, P3310
CALVATEJADA N, 2002, J INORG BIOCHEM, V91, P339
CANCES TM, 1997, J CHEM PHYS, V107, P3032
CAR R, 1985, PHYS REV LETT, V55, P4487
CHAPMAN JD, 1996, BRIT J CANCER S27, V74, S204
CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
CHEN BC, 1983, HELV CHIM ACTA, V66, P1537
COSSI M, 1998, CHEM PHYS LETT, V286, P253
COSSI M, 2002, J CHEM PHYS, V117, P43
COSSI M, 2003, J CHEM PHYS, V118, P8863
COSSI M, 2003, J CHEM PHYS, V19, P8863
COSSI M, 2004, THEOR CHEM ACC, V111, P162
CREMER D, 1993, ISRAEL J CHEM, V33, P369
DACUNHA EFF, 2004, J THEOR COMPUT CHEM, V3, P1
DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
DITCHFIELD R, 1974, MOL PHYS, V27, P789
ERNST RR, 1987, PRINCIPLES NUCL MAGN
FRISCH MJ, 2003, GAUSSIAN 03
GRANT DM, 1996, ENCY NUCL MAGNETIC R, V1
HATHERILL JR, 1998, EAT BEAT CANC RES SC
HELGAKER T, 1999, CHEM REV, V99, P293
HELGAKER T, 2004, CALCULATION NMR EPR, P101
HORI H, 1997, BIOORGAN MED CHEM, V5, P591
HORIS H, 1994, ADV ENV SCI TECHNOLO, V28, P62
HUTTER J, 1995, CPMD VERSION 3 1A
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
KASAI S, 2001, BIOORGAN MED CHEM, V9, P453
KAUPP M, 2004, CALCULATIONS NMR ESR
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KUTZELNIGG W, 1990, NMR BASIC PRINCIPLES, V23, P165
LEE C, 1988, PHYS REV B, V37, P785
MALKIN VG, 1996, CHEM-EUR J, V2, P452
MARTIN GE, 1988, 2 DIMENSIONAL NMR ME
MCCOY CL, 1996, BRIT J CANCER S27, V74, S226
MCKILLOP A, 1983, TETRAHEDRON, V22, P3797
MENNUCCI B, 2001, J PHYS CHEM A, V105, P7287
MUNRONRANA ML, 2003, J AM CHEM SOC, V125, P3649
OROZCO M, 2000, CHEM REV, V100, P4187
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1986, PHYS REV B, V34, P7406
PIVNENKO NS, 2002, MAGN RESON CHEM, V40, P566
RAMALHO TC, 2003, MAGN RESON CHEM, V41, P981
RAMALHO TC, 2004, BIOPHYS CHEM, V110, P267
RAMALHO TC, 2004, J PHYS-CONDENS MAT, V16, P6159
SCHWEGLER E, 2000, PHYS REV LETT, V84, P2429
SEBASTIANI D, 2001, J PHYS CHEM A, V105, P1951
SILVESTRI R, 2000, BIOORG MED CHEM LETT, V10, P253
STILLINGER FH, 1974, J CHEM PHYS, V74, P3336
TEICHER BA, 1994, CANCER METAST REV, V13, P139
TOMIDA A, 1999, ANTI-CANCER DRUG DES, V14, P169
TORRENT M, 2001, J PHYS CHEM A, V105, P4546
TROULLIER N, 1991, PHYS REV B, V43, P1993
VIODE C, 1999, BIOCHEM PHARMACOL, V57, P549
ZILM KW, 1993, NATO ASI SER C-MATH, V386, P315
NR 71
TC 3
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0749-1581
J9 MAGN RESON CHEM
JI Magn. Reson. Chem.
PD FEB
PY 2005
VL 43
IS 2
BP 139
EP 146
PG 8
SC Chemistry, Multidisciplinary; Chemistry, Physical; Spectroscopy
GA 892KR
UT ISI:000226650000005
ER
PT J
AU Ludwig, V
Coutinho, K
Canuto, S
TI Sequential classical-quantum description of the absorption spectrum of
the hydrated electron
SO PHYSICAL REVIEW B
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATION; MONTE-CARLO; SOLVATED ELECTRON; EXCESS
ELECTRON; INTEGRAL-EQUATION; WATER CLUSTERS; LIQUID WATER; AB-INITIO;
TEMPERATURE; MECHANICS
AB A localized state of the electron in water is assumed to study the
absorption spectrum of the hydrated electron. A classical Monte Carlo
statistical mechanics simulation is used to generate the structure of
water in the field of the hydrated electron. These structures are used
in quantum mechanical calculations of the absorption spectrum using
time-dependent density-functional theory. The statistically converged
spectral distribution is in good agreement with experiment. The value
obtained here for the maximum of the absorption profile is 1.70 eV with
a half-width of 0.90 eV, in comparison with the corresponding
experimental values of 1.725 and 0.84 eV.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi das Cruzes, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
EM canuto@if.usp.br
CR ABRAMCZYK H, 1991, J PHYS CHEM-US, V95, P5749
AYOTTE P, 1997, J CHEM PHYS, V106, P811
BARKER JA, 1979, J CHEM PHYS, V70, P2914
BARNETT RN, 1990, J CHEM PHYS, V93, P6226
BARTCZAK WM, 2000, COMPUT CHEM, V24, P469
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BOERO M, 2003, PHYS REV LETT, V90
CANUTO S, 1997, ADV QUANTUM CHEM, V28, P90
CHANDLER D, 1981, J CHEM PHYS, V74, P4078
CHUEV GN, 2001, PHYS REV E 1, V63
CHUEV GN, 2003, J MOL LIQ, V105, P161
COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2002, COMPUTER CODE DICE V
FEYNMAN RP, 1965, QUANTUM MECH PATH IN
FILETI EE, 2003, PHYS REV E 1, V67
FRISCH MJ, 1998, COMPUTER CODE GAUSSI
HART AJ, 1963, J AM CHEM SOC, V84, P4090
HART AJ, 1970, HYDRATED ELECT
JOU FY, 1979, J PHYS CHEM-US, V83, P2383
KEVAN L, 1981, J PHYS CHEM-US, V85, P1628
KIM J, 1998, CHEM PHYS LETT, V297, P90
KIM KS, 1996, PHYS REV LETT, V76, P956
LEE C, 1988, PHYS REV B, V37, P785
LEE HM, 2003, J CHEM PHYS, V118, P9981
LUDWIG V, 2003, INT J QUANTUM CHEM, V95, P572
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MIURA S, 1994, J PHYS CHEM-US, V98, P9649
MOSTAFAVI M, 2004, CHEM PHYS LETT, V384, P52
MOTAKABBIR KA, 1992, J CHEM PHYS, V97, P2055
MURPHREY TH, 1993, J CHEM PHYS, V99, P515
NATORI M, 1966, J PHYS SOC JPN, V21, P1573
ROMERO C, 1989, J CHEM PHYS, V90, P1877
SCHLICK S, 1976, J CHEM PHYS, V64, P3153
SCHNITKER J, 1987, J CHEM PHYS, V86, P3471
SCHNITKER J, 1988, PHYS REV LETT, V60, P456
SHKROB IA, 2002, J PHYS CHEM A, V106, P9120
SOBOLEWSKI AL, 2003, PHYS CHEM CHEM PHYS, V5, P1130
SPRIK M, 1986, J STAT PHYS, V43, P967
STAIB A, 1995, J CHEM PHYS, V103, P2642
WALLQVIST A, 1987, J CHEM PHYS, V86, P6404
YANG CY, 2001, J CHEM PHYS, V114, P3598
ZHAN CG, 2003, J PHYS CHEM B, V107, P4403
NR 44
TC 3
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD DEC
PY 2004
VL 70
IS 21
AR 214110
DI ARTN 214110
PG 4
SC Physics, Condensed Matter
GA 884UF
UT ISI:000226111400043
ER
PT J
AU Rossato, J
Baierle, RJ
Fazzio, A
Mota, R
TI Vacancy formation process in carbon nanotubes: First-principles approach
SO NANO LETTERS
LA English
DT Article
ID ELECTRONIC-PROPERTIES; AB-INITIO; SYSTEMS; DEFORMATION; DEFECTS
AB The electronic and structural properties of a single-walled carbon
nanotube (SWNT) under mechanical deformation are studied using
first-principles calculations based on the density functional theory. A
force is applied over one particular C-atom with enough strength to
break the chemical bonds between the atom and its nearest neighbors,
leading to a final configuration represented by one tube with a vacancy
and an isolated C-atom inside the tube. Our investigation demonstrates
that there is a tendency that the first bond to break is the one most
parallel possible to the tube axis and, after, the remaining two other
bonds are broken. The analysis of the electronic charge densities, just
before and after the bonds breaking, helps to elucidate how the vacancy
is formed on an atom-by-atom basis. In particular, for tubes with a
diameter around 11 Angstrom, it is shown that the chemical bonds start
to break only when the externally applied force is of the order of 14
nN and it is independent of the chirality. The formation energies for
the vacancies created using this process are almost independent of the
chirality, otherwise the bonds broken and the reconstruction are
dependent.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Baierle, RJ, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
RS, Brazil.
EM rbaierle@smail.ufsm.br
CR AJAYAN PM, 1998, PHYS REV LETT, V81, P1437
BAIERLE RJ, 2001, PHYS REV B, V64
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHARLIER JC, 1996, PHYS REV B, V53, P11108
DAI HJ, 2002, SURF SCI, V500, P218
FAGAN SB, 2003, NANO LETT, V3, P289
FAGAN SB, 2003, PHYS REV B, V67
HANSSON A, 2000, PHYS REV B, V62, P7639
KRASHENINNIKOV AV, 2001, PHYS REV B, V63
KRASHENINNIKOVA AV, 2002, J VAC SCI TECHNOL B, V20, P728
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1981, PHYS REV B, V23, P5048
SANKEY OF, 1989, PHYS REV B, V40, P3979
SAYMAN O, 2002, J REINF PLAST COMP, V21, P1205
STONEHAM AM, 1998, APPL PHYS LETT, V72, P3142
TOULLIER N, 1993, PHYS REV B, V43, P1991
ZHU YF, 1999, APPL SURF SCI, V137, P83
NR 18
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JAN
PY 2005
VL 5
IS 1
BP 197
EP 200
PG 4
SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
GA 887TE
UT ISI:000226327600038
ER
PT J
AU Freire, RO
Rocha, GB
Albuquerque, RQ
Simas, AM
TI Efficacy of the semiempirical sparkle model as compared to ECP
ab-initio calculations for the prediction of ligand field parameters of
europium(III) complexes
SO JOURNAL OF LUMINESCENCE
LA English
DT Article
DE sparkle model; semiempirical methods; ab-initio methods; europium (III)
complexes
ID CAMBRIDGE STRUCTURAL DATABASE; SIMPLE OVERLAP MODEL; LANTHANIDE
COMPLEXES; SPECTROSCOPIC PROPERTIES; SUPRAMOLECULAR DEVICES; INTENSITY
PARAMETERS; CRYSTAL-STRUCTURES; LUMINESCENCE; CHEMISTRY; MECHANISM
AB The second version of the sparkle model for the calculation of
lanthanide complexes (SMLC II) as well as ab-initio calculations
(HF/STO-3G and HF/3-21G) have been used to calculate the geometries of
a series of europium (III) complexes with different coordination
numbers (CN = 7, 8 and 9), ligating atoms (O and N) and ligands (mono,
bi and polydentate). The so-called ligand field parameters, B-q(k)'s,
have been calculated from both SMLC II and ab-initio optimized
structures and compared to the ones calculated from crystallographic
data. The results show that the SMLC II model represents a significant
improvement over the previous version (SMLC) and has given good results
when compared to ab-initio methods, which demand a much higher
computational effort. Indeed, ab-initio methods take around a hundred
times more computing time than SMLC. As such, our results indicate that
our sparkle model can be a very useful and a fast tool when applied to
the prediction of both ground state geometries and ligand field
parameters of europium (III) complexes. (C) 2004 Elsevier B.V. All
rights reserved.
C1 UFPE, Dept Quim Fundamental, CCEN, BR-50590470 Recife, PE, Brazil.
RP Simas, AM, UFPE, Dept Quim Fundamental, CCEN, BR-50590470 Recife, PE,
Brazil.
EM simas@ufpe.br
CR ALBUQUERQUE RQ, 2000, CHEM PHYS LETT, V331, P519
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P407
ALPHA B, 1987, ANGEW CHEM INT EDIT, V26, P266
ANIKIN NA, 2003, PHYSCHEM0304005 CPS
AUZEL F, 1983, J PHYS-PARIS, V44, P201
BAZIN H, 2003, J FLUORESC, V12, P245
BRUNO IJ, 2002, ACTA CRYSTALLOGR B 3, V58, P389
CONSENTINO U, 2002, J AM CHEM SOC, V124, P4901
COSENTINO U, 1997, J MOL STRUC-THEOCHEM, V392, P75
DACOSTA NB, 2001, J MOL STRUC-THEOCHEM, V545, P131
DEANDRADE AVM, 1994, CHEM PHYS LETT, V349, P227
DEMESQUITA ME, 2002, INORG CHEM COMMUN, V5, P292
DEMESQUITA ME, 2003, J SOLID STATE CHEM, V171, P183
DEMESQUITA ME, 2004, J ALLOY COMPD, V366, P124
DEMESQUITA ME, 2004, J ALLOY COMPD, V374, P320
DESA GF, 2000, COORDIN CHEM REV, V196, P165
DOLG M, 1989, THEOR CHIM ACTA, V75, P173
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HEMMILA I, 1991, APPL FLUORESCENCE IM
HEMMILA I, 1995, J ALLOY COMPD, V225, P480
KURITA N, 2003, CHEM PHYS LETT, V372, P583
LEHN JM, 1990, ANGEW CHEM INT EDIT, V29, P1304
MALTA OL, 1982, CHEM PHYS LETT, V87, P27
MALTA OL, 1997, J LUMIN, V75, P255
MUKKALA VM, 1992, HELV CHIM ACTA, V75, P1578
NAKAJIMA S, 2003, J PHYS CHEM B, V107, P2867
OHNO K, 2001, CHEM PHYS LETT, V341, P387
OHNO K, 2001, J AM CHEM SOC, V123, P8161
PICHIERRI F, 2000, CHEM PHYS LETT, V322, P536
PIETRASZKIEWICZ M, 1993, PURE APPL CHEM, V65, P563
PORCHER P, 1999, PCCP PHYS CHEM CH PH, V1, P397
RABBE C, 2000, THEOR CHEM ACC, V104, P280
REN L, 2001, BIOCHEMISTRY-US, V40, P13906
ROCHA GB, 1999, MATER SCI FORUM, V315, P400
ROCHA GB, 2002, THESIS U FEDERAL PER
ROCHA GB, 2004, INORG CHEM, V43, P2346
SABBATINI N, 1993, COORDIN CHEM REV, V123, P201
STEWART JJP, 1993, MOPAC 93 00 MAN
STEWART JJP, 1996, INT J QUANTUM CHEM, V58, P133
TAYLOR DL, 1986, APPL FLUORESCENCE BI
YANG W, 2003, J PHYS CHEM B, V107, P5986
NR 42
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2313
J9 J LUMINESC
JI J. Lumines.
PD JAN
PY 2005
VL 111
IS 1-2
BP 81
EP 87
PG 7
SC Optics
GA 885JQ
UT ISI:000226153300010
ER
PT J
AU Martins, JBL
Longo, E
Salmon, ODR
Espinoza, VAA
Taft, CA
TI The interaction of H-2, CO, CO2, H2O and NH3 on ZnO surfaces: an Oniom
Study
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID LARGE CLUSTER-MODELS; ZINC-OXIDE SURFACES; PHOTOELECTRON-SPECTROSCOPY;
AB-INITIO; COORDINATION CHEMISTRY; ELECTRONIC-STRUCTURES;
CARBON-DIOXIDE; ADSORPTION; HYDROGEN; ZNO(10(1)OVER-BAR0)
AB We have used the Oniom method with three layers in order to study the
interaction of CO, H-2, H2O, NH3 and CO2 molecules with the ZnO (10
$(1) over bar $0) surfaces using a (ZnO)348 Cluster model. The layers
are divided into the high layer at the CCSD level, the medium layer at
the RHF level and the low level layer using the UFF force field method.
The orbital and binding energies of the adsorbed molecules, Mulliken
and ChelpG charges as well as geometrical parameters were analyzed and
compared with the available experimental and theoretical data. (C) 2004
Elsevier B.V. All rights reserved.
C1 DMF, Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Taft, CA, DMF, Ctr Brasileiro Pesquisas Fis, R Xavier Sigaud 150,
BR-22290180 Rio De Janeiro, Brazil.
EM catff@terra.com.br
CR AU CT, 1988, SURF SCI, V199, P507
BECKER T, 2001, SURF SCI, V486, L502
BOLIS V, 1989, J CHEM SOC FARAD T 1, V85, P855
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CASARIN M, 1994, SURF SCI, V303, P125
CASARIN M, 1999, APPL SURF SCI, V142, P192
CASARIN M, 1999, CHEM PHYS LETT, V300, P403
DAPRICH S, 1999, J MOL STRUCT THEOCHE, V462, P1
FRISCH MJ, 2003, GAUSSIAN 03
FUBINI B, 1982, J CHEM SOC F1, V78, P153
GAY RR, 1980, J AM CHEM SOC, V102, P6752
HERZBERG G, 1966, ELECT SPECTRA POLYAT
HOTAN W, 1979, SURF SCI, V83, P162
LIN JY, 1991, J AM CHEM SOC, V113, P8312
LIN JY, 1992, INORG CHEM, V31, P686
MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
MARTINS JBL, 1997, J MOL STRUC-THEOCHEM, V397, P147
MARTINS JBL, 1997, J MOL STRUC-THEOCHEM, V398, P457
MARTINS JBL, 2000, J MOL STRUC-THEOCHEM, V528, P161
MORIMOTO T, 1976, J PHYS CHEM-US, V80, P1876
NAGAO M, 1995, THERMOCHIM ACTA, V253, P221
NAKAZAWA M, 1995, APPL SURF SCI, V84, P309
OZAWA K, 2002, SURF REV LETT, V9, P717
PORTMANN S, 2000, CHIMIA, V54, P766
SCHAFTENAAR G, 2000, J COMPUT AID MOL DES, V14, P123
SOLOMON EI, 1993, CHEM REV, V93, P2623
TAFT CA, 2000, RECENT RES DEV QUANT, V1, P105
WANDER A, 2001, J PHYS CHEM B, V105, P6191
NR 28
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD DEC 21
PY 2004
VL 400
IS 4-6
BP 481
EP 486
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 881YU
UT ISI:000225906300037
ER
PT J
AU Fileti, EE
Chaudhuri, P
Canuto, S
TI Relative strength of hydrogen bond interaction in alcohol-water
complexes
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; AB-INITIO; INTERACTION ENERGIES; METHANOL
COMPLEXES; ELECTRON CORRELATION; QUANTUM-CHEMISTRY; GAS-PHASE;
CLUSTERS; TRIMERS; SPECTROSCOPY
AB Hydrogen binding energies are calculated for the different isomers of
1:1 complexes of methanol, ethanol and water using ab initio methods
from MP2 to CCSD(T). Zero-point energy vibration and counterpoise
corrections are considered and electron correlation effects are
analyzed. In methanol-water and ethanol-water the most stable
heterodimer is the one where the water plays the role of proton donor.
In methanol-ethanol the two isomers have essentially the same energy
and no favorite heterodimer could be discerned. The interplay between
the relative binding energy is briefly discussed in conjunction with
the incomplete mixing of alcohol-water systems. (C) 2004 Elsevier B.V.
All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Indian Assoc Cultivat Sci, Dept Theoret Phys, Calcutta 700032, W Bengal, India.
RP Canuto, S, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
EM canuto@if.usp.br
CR BAKKAS N, 1993, J CHEM PHYS, V99, P3335
BAKKAS N, 1995, CHEM PHYS LETT, V232, P90
BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BOYS SF, 1970, MOL PHYS, V19, P553
CLOUGH SA, 1973, J CHEM PHYS, V59
CURTISS LA, 1988, CHEM REV, V88, P827
DELBENE JE, 1971, J CHEM PHYS, V55, P4633
DELBENE JE, 1997, MOL INTERACTIONS VAN, P157
DIXIT S, 2002, NATURE, V416, P829
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
EHBRECHT M, 1997, J PHYS CHEM A, V101, P7768
FILETI EE, 2004, ADV QUANTUM CHEM, V47, P51
FRANKS F, 1966, Q REV CHEM SOC, V20, P1
FRANKS F, 1985, WATER SCI REV, V1, P171
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GONZALEZ L, 1998, J CHEM PHYS, V109, P139
GONZALEZ L, 1999, J CHEM PHYS, V111, P3855
GUO JH, 2003, PHYS REV LETT, V91
KIM S, 1988, J PHYS CHEM-US, V92, P7216
KIRSCHNER KN, 2001, J PHYS CHEM A, V105, P4150
LIDE DR, 1992, HDB CHEM PHYS
MANDADO M, 2003, CHEM PHYS LETT, V381, P22
MASELLA M, 1998, J CHEM PHYS, V108, P7141
MASELLA M, 1998, MOL PHYS, V95, P97
MO O, 1997, J CHEM PHYS, V107, P3592
PROVENCAL RA, 2000, J PHYS CHEM A, V104, P1423
RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
SHAW RA, 1990, J AM CHEM SOC, V112, P5401
SMITH BJ, 1990, J CHEM PHYS, V92, P1240
STOCKMAN PA, 1997, J CHEM PHYS, V107, P3782
SUM AK, 2000, J PHYS CHEM A, V104, P1121
TSUZUKI S, 1999, J CHEM PHYS, V110, P11906
TSUZUKI S, 2001, J CHEM PHYS, V114, P3949
VANERP TS, 2001, CHEM PHYS LETT, V333, P290
NR 35
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD DEC 21
PY 2004
VL 400
IS 4-6
BP 494
EP 499
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 881YU
UT ISI:000225906300039
ER
PT J
AU da Silva, AJR
Fazzio, A
dos Santos, RR
Oliveira, LE
TI First principles study of the ferromagnetism in Ga1-xMnxAs
semiconductors
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID III-V SEMICONDUCTORS; ELECTRONIC-STRUCTURE; TRANSPORT-PROPERTIES; HOLE
CONCENTRATION; GALLIUM-ARSENIDE; (GA,MN)AS; PSEUDOPOTENTIALS;
ACCEPTORS; ORIGIN
AB We have performed ab initio calculations within the density-functional
theory for Ga1-xMnxAs diluted semiconductors. Total energy results
unambiguously show that a quasi-localized hole, with predominant p-like
character, surrounds the fully polarized Mn up arrow d(5)-electrons.
The calculations indicate that the holes form a relatively
dispersionless impurity band, thus rendering effective-mass
descriptions of hole states open to challenge. We obtain estimates both
for the s = 1/2 hole and S = 5/2 Mn exchange coupling, and for the
distance dependence of the effective Mn-Mn exchange interaction. The
results demonstrate that the effective Mn-Mn coupling is always
ferromagnetic, and thus non-RKKY, and is intermediated by the
antiferromagnetic coupling of each Mn spin to the holes.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, RJ, Brazil.
UNICAMP, Inst Fis, BR-13083970 Campinas, SP, Brazil.
RP da Silva, AJR, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, SP, Brazil.
CR ABOLFATH M, 2001, PHYS REV B, V63
ASKLUND H, 2002, PHYS REV B, V66
BOUZERAR G, 2003, PHYS REV B, V68
CHAPMAN RA, 1967, PHYS REV LETT, V18, P443
DASILVA AJR, 2003, PHYSICA B, V340, P874
DIETL T, 1997, PHYS REV B, V55, P3347
DIETL T, 2001, PHYS REV B, V63
DOSSANTOS RR, 2002, J PHYS-CONDENS MAT, V14, P3751
DOSSANTOS RR, 2003, J APPL PHYS, V93, P1845
EDMONDS KW, 2002, APPL PHYS LETT, V81, P3010
HAYASHI T, 2001, APPL PHYS LETT, V78, P1691
KRESSE G, 1993, PHYS REV B, V47, P558
KRESSE G, 1996, PHYS REV B, V54, P11169
KRESSE G, 1999, PHYS REV B, V59, P1758
LINNARSSON M, 1997, PHYS REV B, V55, P6938
MATSUKURA F, 1998, PHYS REV B, V57, R2037
MORIYA R, 2003, J APPL PHYS, V93, P4603
OHNO H, 1992, PHYS REV LETT, V68, P2664
OHNO H, 1996, APPL PHYS LETT, V69, P363
OHNO H, 1999, J MAGN MAGN MATER, V200, P110
OHNO H, 2001, SOLID STATE COMMUN, V117, P179
OKABAYASHI J, 2001, PHYS REV B, V64
POTASHNIK SJ, 2001, APPL PHYS LETT, V79, P1495
POTASHNIK SJ, 2002, PHYS REV B, V66
SANDRATSKII LM, 2002, PHYS REV B, V66
SANVITO S, 2001, PHYS REV B, V63
SANYAL B, 2003, PHYS REV B, V68
SCHNEIDER J, 1987, PHYS REV LETT, V59, P240
SEONG MJ, 2002, PHYS REV B, V66
SINGLEY EJ, 2002, PHYS REV LETT, V89
VANDERBILT D, 1990, PHYS REV B, V41, P7892
VANESCH A, 1997, PHYS REV B, V56, P13103
YU KM, 2002, APPL PHYS LETT, V81, P844
YU KM, 2002, PHYS REV B, V65
ZHAO YJ, 2003, PHYS REV LETT, V90
ZHAO YJ, 2004, APPL PHYS LETT, V84, P3753
NR 36
TC 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD NOV 24
PY 2004
VL 16
IS 46
BP 8243
EP 8250
PG 8
SC Physics, Condensed Matter
GA 879HC
UT ISI:000225706000014
ER
PT J
AU Coutinho, K
Cabral, BJC
Canuto, S
TI Can larger dipoles solvate less? solute-solvent hydrogen bond and the
differential solvation of phenol and phenoxy
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CARLO-QUANTUM-MECHANICS; SEQUENTIAL MONTE-CARLO; O-H BOND; AB-INITIO;
WATER; DENSITY; ACETONITRILE; ENERGETICS; HYDRATION; LIQUIDS
AB Quantum mechanical calculations of the dipole moments and binding
energies of phenol and phenoxy radical in liquid acetonitrile and water
are made using hydrogen-bonded configurations extracted from Monte
Carlo simulations. We contend that the preferential solvation of phenol
(the lower dipole moment solute) over phenoxy derives from the
hydrogen-bond shell. The reconciliation with the usual understanding,
that larger dipole solvates better, is obtained if we consider not the
dipole moment of the isolated solute but, instead, the average dipole
moment in solution of the solute-solvent hydrogen-bonded solvation
shell. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi Cruzes, CIIB, BR-08701970 Mogi Das Cruzes, SP, Brazil.
Univ Lisbon, Fac Ciencias, Dept Quim & Bioquim, P-1749016 Lisbon, Portugal.
Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal.
RP Canuto, S, Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
EM canuto@if.usp.br
CR ALLEN MP, 1987, COMPUTER SIMULATION
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BESLER BH, 1990, J COMPUT CHEM, V11, P431
BOHM HJ, 1983, MOL PHYS, V49, P347
BOYS SF, 1970, MOL PHYS, V19, P553
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 2000, DICE GEN MONTE CARLO
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
COUTINHO K, 2003, J MOL STRUC-THEOCHEM, V632, P235
CRAMER CJ, 1999, CHEM REV, V99, P2161
FILETI EE, 2003, PHYS REV E, V67, P61504
FRISCH MJ, 1998, GAUSSIAN 98
GUEDES RC, 2000, J PHYS CHEM A, V104, P6062
GUEDES RC, 2003, J PHYS CHEM A, V107, P9197
GUEDES RC, 2003, J PHYS CHEM B, V107, P4304
ITOH S, 2000, COORDIN CHEM REV, V198, P3
JORGENSEN WL, 1993, J COMPUT CHEM, V14, P195
KRYACHKO ES, 2002, J PHYS CHEM A, V106, P731
LEE C, 1988, PHYS REV B, V37, P785
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MEZEI M, 1981, J CHEM PHYS, V74, P622
REICHARDT C, 1979, SOLVENT EFFECTS ORGA
RIVAIL JL, 1976, CHEM PHYS, V18, P233
SANTOS RMB, 1998, J PHYS CHEM REF DATA, V27, P707
SANTOS RMB, 1999, J CHEM THERMODYN, V31, P1483
SANTOS RMB, 2001, J AM CHEM SOC, V123, P12670
STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
TAPIA O, 1975, MOL PHYS, V29, P1653
WEAVER EC, 1968, ANNU REV PLANT PHYS, V19, P283
NR 30
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD DEC 1
PY 2004
VL 399
IS 4-6
BP 534
EP 538
PG 5
SC Physics, Atomic, Molecular & Chemical
GA 874ZS
UT ISI:000225389800045
ER
PT J
AU Alvarez-Puebla, RA
Dos Santos, DS
Aroca, RF
TI Surface-enhanced Raman scattering for ultrasensitive chemical analysis
of 1 and 2-naphthalenethiols
SO ANALYST
LA English
DT Article
ID SINGLE-MOLECULE DETECTION; SILVER ISLANDS; SERS; SPECTROSCOPY;
COLLOIDS; SPECTRA; MONOLAYERS
AB The results of the search for the optimal experimental conditions for
ultrasentitive chemical analysis of 1-naphthalenethiol (1-NAT) and
2-naphthalenethiol (2-NAT) using surface-enhanced Raman scattering
(SERS) are discussed. The report begins with a review of the
vibrational spectra, including infrared and Raman spectra of the target
molecules, and the interpretation of the observed frequencies aided by
local density functional theory (DFT) calculations at the
B3LYP/6-311G(d,p) level of theory. Several metal nanostructures were
tested for SERS activity, including island films and colloids of
silver, gold and copper. Correspondingly, the most effective laser line
for excitation in the visible and near infrared region was sought. The
achieved detection limit for 1-naphthalenethiol, and for
2-naphthalenethiol, on silver nanostructures is in the zeptomole regime.
C1 Univ Windsor, Sch Phys Sci, Mat & Surface Sci Grp, Windsor, ON N9B 3P4, Canada.
Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis & Ciencia Mat, BR-13562 Sao Carlos, SP, Brazil.
RP Aroca, RF, Univ Windsor, Sch Phys Sci, Mat & Surface Sci Grp, Windsor,
ON N9B 3P4, Canada.
EM raroca1@cogeco.ca
CR ABUEITTAH RH, 1972, APPL SPECTROSC, V26, P270
AROCA RF, 2000, J PHYS CHEM A, V104, P9500
CARRASCOFLORES EA, 2004, APPL SPECTROSC, V58, P555
CONSTANTINO CJL, 2001, ADV FUNCT MATER, V11, P65
CONSTANTINO CJL, 2001, ANAL CHEM, V73, P3674
CORNELL BA, 1997, NATURE, V387, P580
ERTL GR, 1997, HDB HETEROGENEOUS CA
FORESMAN JB, 1996, EXPLORING CHEM ELECT
FRANCHY R, 1998, REP PROG PHYS, V61, P691
FRISCH MJ, 2003, GAUSSIAN 03 REVISION
GOULET PJG, 2003, ANAL CHEM, V75, P1918
JOO TH, 1987, J RAMAN SPECTROSC, V18, P57
KAPOOR S, 2002, CHEM PHYS LETT, V354, P443
KIM C, 2002, LANGMUIR, V18, P3159
KNEIPP K, 1995, APPL SPECTROSC, V49, P780
KNEIPP K, 1999, CHEM REV, V99, P2957
MOSKOVITS M, 1984, J PHYS CHEM-US, V88, P5526
MOSKOVITS M, 2002, TOP APPL PHYS, V82, P215
OTTO A, 2002, J RAMAN SPECTROSC, V33, P593
REN B, 2003, J AM CHEM SOC, V125, P9598
SANCHEZCORTES S, 1994, J COLLOID INTERF SCI, V167, P428
SHORYGIN PP, 1997, J RAMAN SPECTROSC, V28, P383
SKADTCHENKO BO, 2001, SPECTROCHIM ACTA A, V57, P1009
TARLOV MJ, 1993, J AM CHEM SOC, V115, P5305
TOLAIEB B, 2003, CAN J ANAL SCI SPECT, V48, P139
TOLAIEB B, 2004, ANALYST, V129, P337
UCHIRO H, 1999, TETRAHEDRON LETT, V40, P3179
NR 27
TC 6
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0003-2654
J9 ANALYST
JI Analyst
PY 2004
VL 129
IS 12
BP 1251
EP 1256
PG 6
SC Chemistry, Analytical
GA 874FE
UT ISI:000225335500017
ER
PT J
AU Legoas, SB
Rodrigues, V
Ugarte, D
Galvao, DS
TI Contaminants in suspended gold chains: An ab initio molecular dynamics
study
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID NANOWIRES; CONDUCTANCE; ATOMS; MICROSCOPY; CLUSTERS; BULK
AB Recently, we have proposed that the origin of anomalously long
interatomic distances in suspended gold chains could be the result of
carbon contamination during sample manipulation [S. B. Legoas et al.,
Phys. Rev. Lett. 88, 076105 (2002)]. More recently, however, other
works have proposed that hydrogen instead of carbon should be the most
probable contaminant. We report ab initio molecular dynamics results
for different temperatures considering different possible contaminants.
Our results show that at nonzero temperatures (more realistic to
simulate the experimental conditions) hydrogen may be ruled out and
carbon atoms remain the best candidate for contamination.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Univ Fed Amazonas, Dept Fis, BR-69077000 Manaus, Amazonas, Brazil.
Lab Nacl Luz Sincrotron, BR-13084971 Campinas, SP, Brazil.
RP Galvao, DS, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
BR-13083970 Campinas, SP, Brazil.
EM galvao@ifi.unicamp.br
CR *EPAPS, EPRLTAO93071447 EPAP
AGRAIT N, 2003, PHYS REP, V377, P81
DELLEY B, 1990, J CHEM PHYS, V92, P508
DELLEY B, 2000, J CHEM PHYS, V113, P7756
HABERLEN OD, 1997, J CHEM PHYS, V106, P5189
HAKKINEN H, 1999, J PHYS CHEM B, V103, P8814
KOIZUMI H, 2001, ULTRAMICROSCOPY, V88, P17
KONDO Y, 1999, B AM PHYS SOC, V44, P312
KONDO Y, 2000, SCIENCE, V289, P606
LEGOAS SB, 2002, PHYS REV LETT, V88
NOVAES FD, 2003, PHYS REV LETT, V90
OHNISHI H, 1998, NATURE, V395, P780
OKAMOTO M, 1999, PHYS REV B, V60, P7808
PACCHIONI G, 1994, CHEM PHYS, V184, P125
PASCUAL JI, 1993, PHYS REV LETT, V71, P1852
REIMER L, 1997, SPRINGER SERIES OPTI
RODRIGUES V, 2000, PHYS REV LETT, V85, P4124
RODRIGUES V, 2001, PHYS REV B, V63
RODRIGUES V, 2003, PHYS REV LETT, V91
SANCHEZPORTAL D, 1999, PHYS REV LETT, V83, P3884
SKORODUMOVA NV, 2003, PHYS REV B, V67
SORENSEN MR, 1998, PHYS REV B, V57, P3283
TAKAI Y, 2001, PHYS REV LETT, V87
TOSATTI E, 2001, SCIENCE, V291, P288
WANG Y, 1991, PHYS REV B, V43, P8911
YANSON AI, 1998, NATURE, V395, P783
NR 26
TC 5
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 19
PY 2004
VL 93
IS 21
AR 216103
DI ARTN 216103
PG 4
SC Physics, Multidisciplinary
GA 872PU
UT ISI:000225220500052
ER
PT J
AU Cucinotta, CS
Ruini, A
Caldas, MJ
Molinari, E
TI Ab initio study of chemisorption reactions for carboxylic acids on
hydrogenated silicon surfaces
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Letter
ID FORMATION MECHANISMS; ALKYL MONOLAYERS; SPECTROSCOPY; CHEMISTRY;
MOLECULES
AB We study chemisorbed configurations of C3H6O2 on the extended H:Si(100)
surface, through first-principles density-functional calculations in a
supercell approach. We demonstrate that oxygen-bonded organic
monolayers on this silicon substrate is thermodynamically very stable,
and comparing several Si-O-C and Si-C linked configurations, we find
that the doubly-O-bonded configuration is favored and should lead to
ordered SAMs. We find, moreover, that the Si-O-C bridge in this case
does not block charge transfer from surface to molecule.
C1 Univ Modena, INFM, Natl Ctr NanoStruct & BioSystems Surfaces S3, I-41100 Modena, Italy.
Univ Modena, Dept Fis, I-41100 Modena, Italy.
Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
RP Cucinotta, CS, Univ Modena, INFM, Natl Ctr NanoStruct & BioSystems
Surfaces S3, Via Campi 213-A, I-41100 Modena, Italy.
EM c.cucinotta@unimo.it
CR BOUKHERROUB R, 2000, LANGMUIR, V16, P7429
BURIAK JM, 2002, CHEM REV, V102, P1271
CEROFOLINI GF, 2003, SEMICOND SCI TECH, V18, P423
GREEN WH, 1995, APPL PHYS LETT, V67, P1468
HWANG MJ, 1994, J AM CHEM SOC, V116, P2515
KOHN W, 1965, PHYS REV, V140, A1133
LEE EJ, 1996, J AM CHEM SOC, V118, P5375
LEHNER A, 2003, J APPL PHYS, V94, P2289
LINFORD MR, 1995, J AM CHEM SOC, V117, P3145
LOPINSKI GP, 2000, NATURE, V406, P48
MAJOR RC, 2001, LANGMUIR, V17, P5576
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
NORTHRUP JE, 1991, PHYS REV B, V44, P1419
PEI Y, 2003, LANGMUIR, V19, P7652
PERDEW JP, 1992, PHYS REV B, V46, P6671
SIEVAL AB, 1998, LANGMUIR, V14, P1759
ULMAN A, 1996, CHEM REV, V96, P1533
VANDERBILT D, 1990, PHYS REV B, V41, P7892
WINKLER A, 1994, J AM CHEM SOC, V116, P9233
ZHU XY, 2000, LANGMUIR, V16, P6766
NR 20
TC 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 11
PY 2004
VL 108
IS 45
BP 17278
EP 17280
PG 3
SC Chemistry, Physical
GA 869OM
UT ISI:000224993900003
ER
PT J
AU Nascimento, CS
Dos Santos, HF
De Almeida, WB
TI Theoretical study of the formation of the alpha-cyclodextrin hexahydrate
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID BETA-CYCLODEXTRIN; INCLUSION COMPLEXES; MOLECULAR-STRUCTURE; AB-INITIO;
WATER; ENERGY; TOPOGRAPHY; CRYSTAL; EQUILIBRIUM; HYDRATION
AB The alpha-ciclodextrin (alpha-CD) consist of six glucopyranose units.
The crystalline form I of alpha-CD is obtained in the solid state as
the hexahydrate structure (alpha-CD . 6H(2)O) containing two water
molecules inside and four outside the cavity. In this Letter, we report
a quantum chemical study of the formation of the alpha-cyclodextrin
hexahydrate using the semiempirical PM3 method and Density Functional
Theory (BLYP/6-31G(d,p) calculation). Distinct chemical processes are
considered for the calculation of the thermodynamic properties. We
found a good agreement with experimental data for entropy, enthalpy and
Gibbs free energy, which add support to the theoretical approach we
used. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Fed Minas Gerais, Dept Quim, ICEx, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
UFJF, Dept Quim, ICE, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
RP De Almeida, WB, Univ Fed Minas Gerais, Dept Quim, ICEx, LQCMM, Campus
Univ, BR-31270901 Belo Horizonte, MG, Brazil.
EM wagnar@netuno.qui.ufmg.br
CR BECKE AD, 1988, PHYS REV A, V38, P3098
BENSON SW, 1992, J AM CHEM SOC, V114, P4269
BILAL M, 1995, THERMOCHIM ACTA, V249, P63
BIRTTO MAF, 2004, IN PRESS QIM NOVA
CHACKO KK, 1981, J AM CHEM SOC, V103, P1708
CONNORS KA, 1997, CHEM REV, V97, P1325
CURTISS LA, 1979, J CHEM PHYS, V71, P2703
DASILVA AM, 1997, J CHEM SOC CHEM COMM, V465
DASILVA AMGM, 1996, J INCLUS PHENOM MOL, V25, P21
DASILVA AMM, 1996, CHEM COMMUN, P1871
DOSSANTOS HF, 2000, CHEM PHYS LETT, V319, P569
DOSSANTOS HF, 2002, CHEM PHYS, V280, P31
FERRARI AM, 1993, CHEM PHYS LETT, V212, P644
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GERMAIN P, 1998, J INCLUS PHENOM MOL, V31, P205
GREGORY JK, 1996, J PHYS CHEM-US, V100, P18014
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
KEUTSCH FN, 2003, CHEM REV, V103, P2533
KLOPPER W, 2000, PHYS CHEM CHEM PHYS, V2, P2227
LEE C, 1988, PHYS REV B, V37, P785
LINNERT W, 1992, CHEM PHYS, V161, P327
LIU K, 1996, SCIENCE, V271, P929
LUDWIG R, 2001, ANGEW CHEM INT EDIT, V40, P1808
MANOR PC, 1974, J AM CHEM SOC, V96, P3630
MCQUARRIE DA, 1973, STAT THERMODYNAMICS
NAIDOO KJ, 2004, J PHYS CHEM B, V108, P4236
PULITI R, 1998, CARBOHYD RES, V310, P1
SAENGER W, 1980, ANGEW CHEM INT EDIT, V19, P344
STEINER T, 1992, BIOCHEM BIOPH RES CO, V188, P1060
STEINER T, 1994, J AM CHEM SOC, V116, P5122
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
STILLINGER FH, 1980, SCIENCE, V209, P451
SZEJTLI J, 1998, CHEM REV, V98, P1743
WORMER PES, 2000, CHEM REV, V100, P4109
ZUBAVICUS Y, 2004, SCIENCE, V304, P974
NR 35
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD OCT 21
PY 2004
VL 397
IS 4-6
BP 422
EP 428
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 863DN
UT ISI:000224541000027
ER
PT J
AU Pliego, JR
TI Basic hydrolysis of formamide in aqueous solution: a reliable
theoretical calculation of the activation free energy using the
cluster-continuum model
SO CHEMICAL PHYSICS
LA English
DT Article
ID SOLVATION FREE-ENERGY; QUANTUM-MECHANICAL CALCULATIONS;
DIMETHYL-SULFOXIDE SOLUTIONS; DENSITY-FUNCTIONAL THEORY; BETA-LACTAM
ANTIBIOTICS; MONTE-CARLO SIMULATIONS; AB-INITIO; MOLECULAR-DYNAMICS;
HYDROXIDE ION; GAS-PHASE
AB The first step of the reaction of the hydroxide ion with formamide in
aqueous solution was studied by high level ab initio calculations and
including the solvent effect through the cluster-continuum model. This
hybrid discrete/continuum solvation model considers the ion explicitly
solvated by some solvent molecules and the bulk solvent is described by
a dielectric continuum (PCM). Two and three explicit water molecules
solvating the hydroxide ion were included to describe the transition
states. Our theoretical activation free energy barrier at 25 degreesC
is 23.4 kcal mol(-1), only 2.2 kcal mol(-1) higher than the
experimental value of 21.2 kcal mol(-1). We have also investigated a
general basic catalysis mechanism, where the hydroxide ion acts as a
base and one water molecule in its solvation shell is the nucleophile.
Our results indicate that this mechanism does not take place and the
real process is the direct nucleophilic attack of the hydroxide ion to
the carbonyl carbon. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Fed Santa Catarina, Dept Quim, BR-88040900 Florianopolis, SC, Brazil.
RP Pliego, JR, Univ Fed Santa Catarina, Dept Quim, BR-88040900
Florianopolis, SC, Brazil.
EM josef@qmc.ufsc.br
CR ALEMAN C, 1998, CHEM PHYS, V232, P151
ALEMAN C, 1999, CHEM PHYS LETT, V302, P461
ASTHAGIRI D, 2003, CHEM PHYS LETT, V371, P613
BAKOWIES D, 1999, J AM CHEM SOC, V121, P5712
BANDYOPADHYAY P, 2000, J CHEM PHYS, V113, P1104
BANDYOPADHYAY P, 2002, J CHEM PHYS, V116, P5023
BARONE V, 1997, J CHEM PHYS, V107, P3210
BARONE V, 1998, J PHYS CHEM-US, V102, P1195
BENDER ML, 1958, J AM CHEM SOC, V80, P1044
BRINCK T, 2002, J PHYS CHEM A, V106, P8827
BROWN RS, 1992, ACCOUNTS CHEM RES, V25, P481
CANCES E, 1997, J CHEM PHYS, V107, P3032
CANCES E, 2001, J CHEM PHYS, V114, P4744
CAR R, 1985, PHYS REV LETT, V55, P2471
CARLSON HA, 1993, J COMPUT CHEM, V14, P1240
CHENG A, 2000, J MOL GRAPH MODEL, V18, P273
CHIPMAN DM, 2002, J PHYS CHEM A, V106, P7413
CLAVERIE P, 1978, J PHYS CHEM-US, V82, P405
COSSI M, 1996, CHEM PHYS LETT, V255, P327
COSSI M, 2002, J CHEM PHYS, V117, P43
CRAMER CJ, 1999, CHEM REV, V99, P2161
CURUTCHET C, 2001, J COMPUT CHEM, V22, P1180
CURUTCHET C, 2003, J COMPUT CHEM, V24, P284
DAY PN, 1996, J CHEM PHYS, V105, P1968
FLORIS F, 1995, CHEM PHYS, V195, P207
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FREITAS LCG, 1992, J CHEM SOC FARADAY T, V88, P189
FRISCH MJ, 1994, GAUSSIAN 94
GAO J, 1992, J PHYS CHEM-US, V96, P537
GAO JL, 1996, ACCOUNTS CHEM RES, V29, P298
GAO JL, 1996, J AM CHEM SOC, V118, P4912
GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
GONCALVES PFB, 1999, CHEM PHYS LETT, V304, P438
GUTHRIE JP, 1974, J AM CHEM SOC, V96, P3608
HERMANS J, 1997, J AM CHEM SOC, V119, P2707
HINE J, 1981, J ORG CHEM, V46, P3186
HORI K, 1997, TETRAHEDRON, V53, P4317
HUMMER G, 1998, J PHYS CHEM A, V102, P7885
JOHNSON SL, 1967, ADV PHYS ORG CHEM, V5, P237
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1989, ACCOUNTS CHEM RES, V22, P184
KOLLMAN P, 1993, CHEM REV, V93, P2395
KOLLMAN PA, 2001, ACCOUNTS CHEM RES, V34, P72
LEVY RM, 1998, ANNU REV PHYS CHEM, V49, P531
LI JB, 1998, CHEM PHYS LETT, V288, P293
LI JB, 1999, THEOR CHEM ACC, V103, P9
LIM C, 1991, J PHYS CHEM-US, V95, P5610
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
MADURA JD, 1986, J AM CHEM SOC, V108, P2517
MARLIER JF, 1999, J AM CHEM SOC, V121, P4356
MARLIER JF, 2001, ACCOUNTS CHEM RES, V34, P283
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
MORAWETZ H, 1963, J AM CHEM SOC, V85, P463
OBRIEN JF, 1995, J PHYS CHEM-US, V99, P12759
OROZCO M, 1994, CHEM PHYS, V182, P237
PENG Z, 1993, J AM CHEM SOC, V115, P9640
PITARCH J, 1997, J PHYS CHEM B, V101, P3581
PITARCH J, 1998, J AM CHEM SOC, V120, P2146
PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
PLIEGO JR, 2000, J PHYS CHEM B, V104, P5155
PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
PLIEGO JR, 2002, CHEM PHYS LETT, V355, P543
PLIEGO JR, 2002, CHEM-EUR J, V8, P1945
PLIEGO JR, 2002, J PHYS CHEM A, V106, P7434
PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
POSTMA JPM, 1982, FARADAY S CHEM SOC, V17, P55
RICHARDSON WH, 1997, INT J QUANTUM CHEM, V61, P207
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SIEGBAHN PEM, 1996, J AM CHEM SOC, V118, P4442
SINGH UC, 1987, J AM CHEM SOC, V109, P1607
SITKOFF D, 1996, J PHYS CHEM-US, V100, P2744
SLEBOCKATILK H, 2002, CAN J CHEM, V80, P1343
SLEBOCKATILK H, 2003, J AM CHEM SOC, V125, P1851
STANTON RV, 1993, J PHYS CHEM-US, V97, P11868
STEFANOVICH EV, 1995, CHEM PHYS LETT, V244, P65
STRAATSMA TP, 1986, J CHEM PHYS, V85, P6720
STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
STRAIJBL M, 2002, J PHYS CHEM B, V106, P1333
STRAJBL M, 2000, J AM CHEM SOC, V122, P5354
TAWA GJ, 1998, J CHEM PHYS, V109, P4852
TOMASI J, 1994, CHEM REV, V94, P2027
TOMASI J, 2002, PHYS CHEM CHEM PHYS, V4, P5697
TOPOL IA, 1999, J CHEM PHYS, V111, P10998
TSE JS, 2003, ANNU REV PHYS CHEM, V53, P249
TUNON I, 1995, CHEM PHYS LETT, V241, P450
TUNON I, 1995, J PHYS CHEM-US, V99, P3798
VAIDEHI N, 1992, J CHEM PHYS, V97, P4264
WEINER SJ, 1985, J AM CHEM SOC, V107, P2219
WESOLOWSKI T, 1994, J PHYS CHEM-US, V98, P5183
WIBERG KB, 2000, J PHYS CHEM A, V104, P7625
WONG MW, 1991, J AM CHEM SOC, V113, P4776
ZHENG YJ, 1998, THEOCHEM-J MOL STRUC, V429, P41
NR 94
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD NOV 15
PY 2004
VL 306
IS 1-3
BP 273
EP 280
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 865AG
UT ISI:000224674000026
ER
PT J
AU Koiller, B
Capaz, RB
Hu, XD
Das Sarma, S
TI Shallow-donor wave functions and donor-pair exchange in silicon: Ab
initio theory and floating-phase Heitler-London approach
SO PHYSICAL REVIEW B
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; ELECTRONIC-STRUCTURE; QUANTUM COMPUTER;
GROUND-STATE; SEMICONDUCTORS; SI; PSEUDOPOTENTIALS; GERMANIUM; SYSTEMS
AB Electronic and nuclear spins of shallow donors in silicon are
attractive candidates for qubits in quantum computer proposals. Shallow
donor exchange gates are frequently invoked to perform two-qubit
operations in such proposals. We study shallow donor electron
properties in Si within the Kohn-Luttinger envelope function approach,
incorporating the full Bloch states of the six band edges of the Si
conduction band, obtained from ab initio calculations within the
density-functional and pseudopotential frameworks. Intervalley
interference between the conduction-band-edge states of Si leads to
oscillatory behavior in the charge distribution of one-electron bound
states and in the exchange coupling in two-electron states. The
behavior in the donor electron charge distribution is strongly
influenced by interference from the plane wave and periodic parts of
the Bloch functions. For two donors, oscillations in the exchange
coupling calculated within the Heitler-London (HL) approach are due to
the plane-wave parts of the Bloch functions alone, which are pinned to
the impurity sites. The robustness of this result is assessed by
relaxing the phase pinning to the donor sites. We introduce a more
general theoretical scheme, the floating-phase HL, from which the
previously reported donor exchange oscillatory behavior is
qualitatively and quantitatively confirmed. The floating-phase
formalism provides a "handle" on how to theoretically anticipate the
occurrence of oscillatory behavior in electronic properties associated
with electron bound states in more general confining potentials, such
as in quantum dots.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945 Rio De Janeiro, Brazil.
SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA.
Univ Maryland, Condensed Matter Theory Ctr, Dept Phys, College Pk, MD 20742 USA.
RP Koiller, B, Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528,
BR-21945 Rio De Janeiro, Brazil.
CR ALTARELLI M, 1979, PHYS REV LETT, V43, P1346
ANDRES K, 1981, PHYS REV B, V24, P244
BALDERESCHI A, 1970, PHYS REV B, V1, P4673
BOYKIN TB, 2004, APPL PHYS LETT, V84, P115
BUEHLER TM, 2002, NANOTECHNOLOGY, V13, P686
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
FAULKNER RA, 1969, PHYS REV, V184, P713
FEHER G, 1959, PHYS REV, V114, P1219
FRIESEN M, 2003, PHYS REV B, V67
FUCHS M, 1999, COMPUT PHYS COMMUN, V119, P67
GOEDECKER S, 1997, SIAM J SCI COMPUT, V18, P1605
GONZE X, 1996, PHYS REV B, V54, P4383
GONZE X, 2002, COMP MATER SCI, V25, P478
HERRING C, 1964, PHYS REV A-GEN PHYS, V134, A362
HOHENBERG P, 1964, PHYS REV, V136, B84
HU XD, 2000, PHYS REV A, V61
HU XD, 2001, PHYS REV A, V64
HURLEY AC, 1954, P ROY SOC LOND A MAT, V226, P179
IVEY JL, 1975, PHYS REV B, V11, P822
KANE BE, 1998, NATURE, V393, P133
KOHN W, 1957, SOLID STATE PHYS, V5, P257
KOHN W, 1965, PHYS REV, V140, A1133
KOILLER B, 2002, PHYS REV B, V66
KOILLER B, 2002, PHYS REV LETT, V88
KOILLER B, 2003, PHYS REV LETT, V90
LEVY J, 2001, PHYS REV A, V64
MADELUNG O, 1996, SEMICONDUCTORS BASIC
MARTINS AS, 2004, PHYS REV B, V69
MEIER F, 2003, PHYS REV LETT, V90
MIZEL A, 2004, PHYS REV LETT, V92
OBRIEN JL, 2001, PHYS REV B, V64
OVERHOF H, 2004, PHYS REV LETT, V92
PANTELIDES ST, 1978, REV MOD PHYS, V50, P797
PAYNE MC, 1992, REV MOD PHYS, V64, P1045
PERDEW JP, 1981, PHYS REV B, V23, P5048
RICHARDSON SL, 1987, PHYS REV B, V35, P1388
SCHENKEL T, 2003, J APPL PHYS, V94, P7017
SCHOFIELD SR, 2003, PHYS REV LETT, V91
SLATER JC, 1963, QUANTUM THEORY MOL S, V1
TROULLIER N, 1991, PHYS REV B, V43, P1993
VOYLES P, 2002, NATURE, V416, P827
WEILER H, 1984, PHYS REV B, V30, P2266
WELLARD CJ, 2003, PHYS REV B, V68
NR 43
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD SEP
PY 2004
VL 70
IS 11
AR 115207
DI ARTN 115207
PG 8
SC Physics, Condensed Matter
GA 858RN
UT ISI:000224209500040
ER
PT J
AU Tormena, CF
Rittner, R
Contreras, RH
Peralta, JE
TI Anomeric effect on geminal and vicinal J(HH) NMR coupling constants
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; CONFORMATIONAL-ANALYSIS; NEGATIVE
HYPERCONJUGATION; MOLECULAR-STRUCTURE; KARPLUS EQUATION; DOUBLE
RESONANCE; RELATIVE SIGNS; BOND LENGTHS; SOLVATION; CYCLOHEXANE
AB Trends for geminal ((2)J(HH)) and vicinal ((3)J(HH)) nuclear magnetic
resonance indirect spin-spin coupling constants, SSCCs, for
2-methylthiirane (5) and 2-methyloxirane (6) are studied both from
experimental and theoretical points of view to determine the influence
of hyperconjugative interactions on these couplings. These two
analogous compounds were chosen because it was expected that they
exhibit quite different anomeric effects. Hyperconjugative interactions
are investigated using the "natural bond orbital" method. Coupling
constants are calculated within the density functional theory including
all four scalar contributions, that is, the Fermi contact, the
spin-dipolar, and the paramagnetic and diamagnetic spin-orbital
contributions. Solvent dielectric effects are taken into account using
Tomasi's polarizable continuum model. Results for geminal couplings are
consistent with linear correlations connecting (2)J(HH) with the
coupling pathway occupation numbers taken from the literature. The
present analysis suggests that both (2)J(HH) and (2)J(HH) coupling
constants are sensitive probes to gauge the anomeric effect, as well as
other hyperconjugative interactions.
C1 Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Quim, BR-14040901 Ribeirao Preto, SP, Brazil.
Univ Estadual Campinas, Inst Quim, Phys Organ Chem Lab, BR-13084971 Campinas, SP, Brazil.
Univ Buenos Aires, Dept Phys, RA-1428 Buenos Aires, DF, Argentina.
RP Tormena, CF, Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao
Pret, Dept Quim, Av Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP,
Brazil.
EM tormena@ffclrp.usp.br
CR ALABUGIN IV, 2000, J ORG CHEM, V65, P3910
ALABUGIN IV, 2003, J AM CHEM SOC, V125, P14015
ALTONA C, 1996, ENCY NUCL MAGNETIC R, V8, P4909
ANDO I, 1984, J MOL LIQ, V27, P179
BARFIELD M, 1963, J AM CHEM SOC, V85, P1899
BARONE V, 2001, J COMPUT CHEM, V22, P1615
BARONE V, 2002, J PHYS CHEM A, V106, P5607
BECKE AD, 1988, PHYS REV A, V38, P3098
BENT HA, 1961, CHEM REV, V61, P275
CHUCK RJ, 1969, MOL PHYS, V16, P121
CLORAN F, 1999, J PHYS CHEM A, V103, P3783
CLORAN F, 2000, J AM CHEM SOC, V122, P6435
CONTRERAS RH, 2000, ANN R NMR S, V41, P55
CONTRERAS RH, 2000, PROG NUCL MAG RES SP, V37, P321
CONTRERAS RH, 2003, ANNU REP NMR SPECTRO, V51, P167
CUEVAS G, 1999, J PHYS CHEM A, V103, P932
CUEVAS G, 2002, J AM CHEM SOC, V124, P13088
ELIEL EL, 1968, J ORG CHEM, V33, P3754
ELIEL EL, 1994, STEREOCHEMSITRY ORGA
ELLEMAN DD, 1962, J MOL SPECTROSC, V9, P477
ESTEBAN AL, 2001, J PHYS CHEM A, V105, P5298
FREITAS MP, 2001, J PHYS ORG CHEM, V14, P317
FREITAS MP, 2003, J PHYS ORG CHEM, V16, P27
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GIL VMS, 1989, MAGN RESON CHEM, V27, P409
GLENDENING ED, 1998, NBO VERSION 3 1
GRAYSON M, 2000, MOL PHYS, V98, P1981
HANSEN MJ, 2002, MOL PHYS, V100, P2807
HANSEN PE, 1989, CHEM DOUBLE BONDED F, CH3
HELGAKER T, 1999, CHEM REV, V99, P293
HELGAKER T, 1999, DALTON VERSION 1 1
HELGAKER T, 2000, J CHEM PHYS, V113, P9402
HETENYI AN, 2003, J ORG CHEM, V68, P5705
HU SJ, 1997, J AM CHEM SOC, V119, P6360
IMAI K, 1990, MAGN RESON CHEM, V28, P668
JUARISTI E, 1995, CONFORMATIONAL BEHAV
KARPLUS M, 1959, J CHEM PHYS, V30, P11
KENDALL RA, 1992, J CHEM PHYS, V96, P6796
KING JF, 2000, J AM CHEM SOC, V122, P10308
KIRBY JA, 2000, STEREOELECTRONIC EFF
LEE C, 1988, PHYS REV B, V37, P785
LEMIEUX RU, 1969, CAN J CHEM, V47, P4427
MAHAIM C, 1985, HELV CHIM ACTA, V68, P2182
MALKINA OL, 2001, J PHYS CHEM A, V105, P9188
MANATT SL, 1965, J AM CHEM SOC, V87, P2220
MERTIUS S, 1981, CHEM PHYS, V55, P117
MERTIUS S, 1982, CHEM PHYS, V65, P239
MINCH MJ, 1994, CONCEPT MAGNETIC RES, V6, P41
MORRIS DG, 2001, STEREOCHEMISTRY
PERALTA JE, 2003, J CHEM PHYS LETT, V375, P452
PEREZ JE, 1990, J MOL STRUCT THEOCHE, V210, P193
PERLIN AS, 1969, TETRAHEDRON LETT, P2921
PERRIN CL, 2002, ACCOUNTS CHEM RES, V35, P28
POPLE JA, 1965, J CHEM PHYS, V42, P1339
POPLE JA, 1970, APPROXIMATE MOL ORBI
PROVASI PF, 2001, J CHEM PHYS, V115, P1981
PROVASI PF, 2003, INT J MOL SCI, V4, P231
RAMSEY NF, 1953, PHYS REV, V91, P303
REED AE, 1988, CHEM REV, V88, P899
REED AE, 1990, J AM CHEM SOC, V112, P1434
SPROVIERO EM, 2002, J PHYS CHEM A, V106, P7834
STENUTZ R, 2002, J ORG CHEM, V67, P949
STERNHELL S, 1969, QUART REV, V23, P236
SYCHROVSKY V, 2000, J CHEM PHYS, V113, P3530
TAHA AN, 2000, J PHYS CHEM A, V104, P2985
THOMAS WA, 1997, PROG NUCL MAG RE 3-4, V30, P183
VAARA J, 1997, J PHYS CHEM A, V101, P5069
WILIAMS DH, 1965, CHEM IND-LONDON, P506
WOLFE S, 1990, CAN J CHEM, V68, P1051
WONG TC, 1944, J CHEM SOC CHEM COMM, P1518
YOSHINAGA F, 2002, J CHEM SOC PERK T 2, P1494
NR 71
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 23
PY 2004
VL 108
IS 38
BP 7762
EP 7768
PG 7
SC Chemistry, Physical
GA 854RX
UT ISI:000223922100018
ER
PT J
AU Ramalho, TC
da Cunha, EFF
de Alencastro, RB
TI Solvent effects on C-13 and N-15 shielding tensors of nitroimidazoles
in the condensed phase: a sequential molecular dynamics/quantum
mechanics study
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID VERTICAL ELECTRON-AFFINITY; NMR CHEMICAL-SHIFTS; AB-INITIO;
COMPUTER-SIMULATION; NUCLEAR SHIELDINGS; MAGNETIC-RESONANCE;
HYDROGEN-BOND; LIQUID WATER; SPECTROSCOPY; RELAXATION
AB N-15-and C-13 NMR chemical shifts for three nitroimidazoles have been
calculated and compared with experimental data. The solvent effects on
NMR spectra were simulated with the polarizable continuum model (PCM)
and an alternative sequential molecular dynamics/quantum mechanics
methodology (S-MD/QM). The sampling of the structures for the quantum
mechanical calculations is made by using the interval of statistical
correlation obtained from the autocorrelation function of the energy.
Magnetic shielding tensors were evaluated at the GIAO-B3LYP level using
II' basis set. It has been shown that it is essential to incorporate
the dynamics and solvent effects in NMR calculations in the condensed
phase.
C1 Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany.
Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Phys Organ Chem Grp, BR-21949900 Rio De Janeiro, Brazil.
RP Ramalho, TC, Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470
Mulheim, Germany.
EM teo@ime.eb.br
CR *INRIA ENPC, 1989, SCIL V 2 7
ALLEN MP, 1987, COMPUTER SIMULATION
ANDERSON CJ, 1999, CHEM REV, V99, P2219
BARONE V, 1998, J COMPUT CHEM, V19, P404
BONDI A, 1964, J PHYS CHEM-US, V68, P441
CHAFIELD C, 1984, ANAL TIMES SERIES IN
CHAPMAN JD, 1996, BRIT J CANCER, V74, P204
CHEN BC, 1983, HELV CHIM ACTA, V66, P1537
CHESNUT DB, 1994, J MOL STRUCT THEOCHE, V314, P19
COSSI M, 1998, CHEM PHYS LETT, V253, P286
COSSI M, 2003, J CHEM PHYS, V118, P8863
COSSI M, 2004, THEOR CHEM ACC, V111, P162
CRAMER CJ, 1995, REV COMPUTATIONAL CH, V6
CUI Q, 2000, J PHYS CHEM B, V104, P3721
DACUNHA EFF, 2004, J THEOR COMPUT CHEM, V3, P1
DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
FIELD MJ, 1990, J COMPUT CHEM, V11, P700
FINCHAM D, 1986, J CHEM PHYS, V84, P4535
FRIEDBERG R, 1970, J CHEM PHYS, V52, P6049
FRISCH MJ, 2001, GAUSSIAN98 A 11 SOFT
HARRIS CD, 1996, QUANTITATIVE CHEM AN
HORI H, 1997, BIOORGAN MED CHEM, V5, P591
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
KUTZELNIGG W, 1999, IGLO METHOD AB INITI, V23
LAAKSONEN A, 1998, J CHEM PHYS, V108, P455
LAUFFER RB, 1987, CHEM REV, V87, P901
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MALKIN VG, 1996, CHEM-EUR J, V2, P452
MARTINS TLC, 2003, MAGN RESON CHEM, V41, P983
MCCOY CL, 1996, BRIT J CANCER S27, V74, S226
MCKILLOP A, 1983, TETRAHEDRON, V39, P3797
MENNUCCI B, 2001, J PHYS CHEM A, V105, P7287
MENNUCCI B, 2002, J AM CHEM SOC, V124, P1506
MIERTUS S, 1981, CHEM PHYS, V55, P117
ODELIUS M, 1993, J MAGN RESON SER A, V105, P289
PECUL M, 1999, CHEM PHYS, V248, P27
PECUL M, 2001, CHEM PHYS LETT, V333, P139
PFROMMER BG, 2000, J AM CHEM SOC, V122, P123
PIVNENKO NS, 2002, MAGN RESON CHEM, V40, P566
RAMALHO TC, 2002, J MOL STRUC-THEOCHEM, V580, P217
RAMALHO TC, 2003, INT J QUANTUM CHEM, V95, P267
RAMALHO TC, 2004, BIOPHYS CHEM, V110, P267
RAMALHO TC, 2004, J MOL STRUC-THEOCHEM, V676, P149
REICHARDT C, 1979, SOLVENTS SOLVENT EFF
RUUD K, 2003, INT J MOL SCI, V4, P119
SEBASTIANI D, 2001, J PHYS CHEM A, V105, P1951
SEGALL MD, 2002, J PHYS-CONDENS MAT, V14, P2957
STILLINGER FH, 1974, J CHEM PHYS, V74, P3336
SWOPE WC, 1982, J CHEM PHYS, V76, P637
TINOCO LW, 1999, J BRAZIL CHEM SOC, V10, P281
TOMASI J, 1994, CHEM REV, V94, P2027
VERLET L, 1967, PHYS REV, V159, P98
WANG P, 1991, J AM CHEM SOC, V113, P55
WARSHEL A, 1991, COMPUTER MODELING CH
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 57
TC 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD SEP 1
PY 2004
VL 16
IS 34
BP 6159
EP 6170
PG 12
SC Physics, Condensed Matter
GA 854LI
UT ISI:000223904000017
ER
PT J
AU Marques, M
Teles, LK
Scolfaro, LMR
Ferreira, LG
Leite, JR
TI Microscopic description of the phase separation process in
AlxGayIn1-x-yN quaternary alloys
SO PHYSICAL REVIEW B
LA English
DT Article
ID LIGHT-EMITTING-DIODES; SEMICONDUCTORS; INXALYGA1-X-YN; LUMINESCENCE;
EMISSION; GAP
AB Ab initio total energy electronic structure calculations are combined
with Monte Carlo simulations to study the thermodynamic properties of
AlxGayIn1-x-yN quaternary alloys. We provide a microscopic description
of the phase separation process by analyzing the thermodynamic behavior
of the different atoms with respect to the temperature and cation
contents. We obtained, at growth temperatures, the range of
compositions for the stable and unstable phases. The presence of Al in
InGaN is proven to "catalyze" the phase separation process for the
formation of the In-rich phase. Based on our results, we propose that
the ultraviolet emission currently seen in samples containing AlInGaN
quaternaries arises from the matrix of a random alloy, in which
composition fluctuations toward InGaN- and AlGaN-like alloys formation
may be present, and that a coexisting emission in the green-blue region
results from the In-rich segregated clusters.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Marques, M, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ADIVARAHAN V, 2001, APPL PHYS LETT, V79, P4240
CHEN CH, 2004, APPL PHYS LETT, V84, P1480
COWLEY JM, 1950, J APPL PHYS, V21, P24
FENG SW, 2003, APPL PHYS LETT, V82, P1377
FERREIRA LG, 1991, INT J SUPERCOMPUT AP, V5, P34
HIRAYAMA H, 2002, APPL PHYS LETT, V80, P207
KNEISSL M, 2003, APPL PHYS LETT, V82, P2386
KRESSE G, 1996, COMP MATER SCI, V6, P15
KUNG P, 2000, OPTO-ELECTRON REV, V8, P201
LEMOS V, 2000, PHYS REV LETT, V84, P3666
MARQUES M, UNPUB
MARQUES M, 2003, APPL PHYS LETT, V83, P890
MATSUOKA T, 1998, MRS INTERNET J N S R, V3
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
NAGAHAMA S, 2001, JPN J APPL PHYS PT 2, V40, L778
TAKAYAMA T, 2001, J APPL PHYS, V90, P2358
TAMULAITIS G, 2000, APPL PHYS LETT, V77, P2136
TELES LK, 2000, PHYS REV B, V62, P2475
TELES LK, 2002, J APPL PHYS, V92, P7109
YAMAGUCHI S, 1998, J CRYST GROWTH, V195, P309
YASAN A, 2002, APPL PHYS LETT, V81, P2151
NR 21
TC 3
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD AUG
PY 2004
VL 70
IS 7
AR 073202
DI ARTN 073202
PG 4
SC Physics, Condensed Matter
GA 851WG
UT ISI:000223716600007
ER
PT J
AU Pereira, RP
Rocco, AM
Bielschowsky, CE
TI Poly(ethylene oxide): Electronic structure, energetics, and vibrational
spectrum
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID AB-INITIO CALCULATIONS; POLY(METHYL METHACRYLATE) BLENDS; POLYMER
ELECTROLYTES; COMPLEXES; PEO; BEHAVIOR; LICLO4; ETHER
AB The electronic structure, energetics, and vibrational spectrum of
poly(ethylene oxide) (PEO) are determined from density functional
theoretical calculations on model systems (CH2CH2O)(n)X-2,
((EO)(n)X-2), where X is a termination group, such as methyl or
hydroxyl, and n varies from 2 to 8. Geometry optimization was performed
on these linear model systems chosen to represent the noncrystalline
conformer of PEO, and the convergence of selected properties (total
energy, vibrational spectra) was studied. To simulate the crystalline
conformer, geometry optimization and vibrational spectrum calculations
were carried out on a helical (EO)(6)(CH3)(2) model system.
Differential scanning calorimetry data were employed to determine the
crystalline fraction, used as weight for the simulation of total
vibrational spectra, based on the spectra of the two conformers. The
high resolution simulated spectra exhibited the contribution of
individual vibrational modes to the experimentally observed broad peaks
(or envelopes), while the simulated spectra with low resolution
exhibited good agreement with experimental data, indicating a strong
influence of the line width on the simulated spectra, caused by the
distribution of chain conformations in the experimental PEO sample. The
electronic structure of the linear (EO)(6)(CH3)(2) model system
exhibited localization of the frontier orbitals on the oxygen atoms,
where the border effect is highly pronounced, the orbitals localized on
the oxygen atoms closer to the termination being highly energetic. The
simulation of PEO by the finite size cluster approach utilizing
oligo(ethylene oxide) model systems with six units was shown to be a
good approximation to the calculation of electronic structure and
vibrational spectra.
C1 Univ Fed Rio de Janeiro, Inst Quim, Grp Espectroscopia Teor, BR-21945970 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, Grp Mat Condutores, BR-21945970 Rio De Janeiro, Brazil.
RP Pereira, RP, Univ Fed Rio de Janeiro, Inst Quim, Grp Espectroscopia
Teor, CT,Bloco A,Cidade Univ, BR-21945970 Rio De Janeiro, Brazil.
EM rpacheco@iq.ufrj.br
CR ABDURAHMAN A, 1999, J CHEM PHYS, V110, P8819
ABDURAHMAN A, 2000, CHEM PHYS, V257, P301
BABOUL AG, 1999, J AM CHEM SOC, V121, P7220
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BORODIN O, 2003, J PHYS CHEM B, V107, P6801
BOYS SF, 1966, QUANTUM THEORY ATOMS, P253
BRUCE PG, 1997, SOLID STATE ELECTROC
CIMMINO S, 1990, MAKROMOL CHEM, V191, P2447
DEPAOLI MA, 1997, J ELECTROANAL CHEM, V435, P217
EDMISTON C, 1963, REV MOD PHYS, V35, P457
JOHANSSON P, 1999, POLYMER, V40, P4399
JOHANSSON P, 2001, POLYMER, V42, P4367
JOHANSSON P, 2001, POLYMER, V42, P6573
KRISHNAN M, 2003, PHYS REV B, V68
KRIZ J, 1999, J PHYS CHEM A, V103, P8502
LI X, 1984, J POLYM SCI POL PHYS, V22, P1331
MACGLASHAN GS, 1999, NATURE, V398, P792
MARTINLITAS I, 2002, CHEM MATER, V14, P2166
MULLERPLATHE F, 1994, MACROMOLECULES, V27, P6040
MURATA K, 2000, ELECTROCHIM ACTA, V45, P1501
ROCCO AM, 2002, POLYMER, V43, P3601
ROCCO AM, 2003, EUR POLYM J, V39, P1925
ROCCO AM, 2003, POLYMER, V44, P361
SALOMON M, 1994, J PHYS CHEM-US, V98, P8234
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
TADOKORO H, 1984, POLYMER, V25, P147
TAKAHASHI Y, 1973, MACROMOLECULES, V6, P672
NR 28
TC 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD AUG 26
PY 2004
VL 108
IS 34
BP 12677
EP 12684
PG 8
SC Chemistry, Physical
GA 847XG
UT ISI:000223430800011
ER
PT J
AU Brewer, WD
Scherz, A
Sorg, C
Wende, H
Baberschke, K
Bencok, P
Frota-Pessoa, S
TI Direct observation of orbital magnetism in cubic solids
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID RAY CIRCULAR-DICHROISM; 3D IMPURITIES; DILUTE AUCO; FE; MAGNETIZATION;
FIELDS; COBALT; ATOMS
AB We present x-ray magnetic circular dichroism determinations of the
orbital/spin magnetic moment ratios of dilute 3d-series impurities in
Au (and Cu) host matrices. This is the first direct measurement of
considerable orbital moments in cubic symmetry for a localized impurity
in a bulk metal host. It is shown that the unquenching of orbital
magnetism depends on a delicate balance of hybridization effects
between the local impurity with the host and the filling of the 3d
states of the impurity. The results are accompanied by ab initio
calculations that support our experimental findings.
C1 Free Univ Berlin, Inst Expt Phys, D-14195 Berlin, Germany.
European Synchrotron Radiat Facil, F-38043 Grenoble, France.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Brewer, WD, Free Univ Berlin, Inst Expt Phys, Arnimallee 14, D-14195
Berlin, Germany.
EM brewer@physik.fu-berlin.de
CR BOYSEN J, 1973, SOLID STATE COMMUN, V12, P1095
CABRIA I, 2002, PHYS REV B, V65
CARRA P, 1993, PHYS REV LETT, V70, P694
CHEN CT, 1995, PHYS REV LETT, V75, P152
EBERT H, 1990, J APPL PHYS, V67, P4576
ERIKSSON O, 1990, PHYS REV B, V42, P2707
FRIEDEL J, 1958, NUOVO CIM SUPPL, V7, P287
FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
FROTAPESSOA S, 2001, J MAGN MAGN MATER 1, V226, P1021
FROTAPESSOA S, 2004, PHYS REV B, V69
GAMBARDELLA P, 2002, PHYS REV LETT, V88
GAMBARDELLA P, 2003, SCIENCE, V300, P1130
LEGOAS SB, 2000, PHYS REV B, V61, P10417
NARATH A, 1973, PHYS REV B, V7, P2195
RADO GT, 1973, MAGNETISM MAGNETIC P, V5
RIEGEL D, 1988, NATO ADV STUDY I E, V144, P327
SCHERZ A, 2002, PHYS REV B, V66
STEINER P, 1975, PHYS REV B, V12, P842
THOLE BT, 1988, PHYS REV B, V38, P3158
THOLE BT, 1992, PHYS REV LETT, V68, P1943
VANDERLAAN G, 1991, PHYS REV B B, V43, P13401
NR 21
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 13
PY 2004
VL 93
IS 7
AR 077205
DI ARTN 077205
PG 4
SC Physics, Multidisciplinary
GA 845VL
UT ISI:000223273300057
ER
PT J
AU Rino, JP
Ebbsjo, I
Branicio, PS
Kalia, RK
Nakano, A
Shimojo, F
Vashishta, P
TI Short- and intermediate-range structural correlations in amorphous
silicon carbide: A molecular dynamics study
SO PHYSICAL REVIEW B
LA English
DT Article
ID DENSITY-FUNCTIONAL-THEORY; X-RAY-ABSORPTION; CARBON ALLOYS; CHEMICAL
ORDER; NEUTRON-SCATTERING; PHOSPHATE-GLASSES; ATOMIC-STRUCTURE;
FINE-STRUCTURE; A-SI1-XCX-H; ICE
AB Short- and intermediate-range structural correlations in amorphous
silicon carbide (a-SiC) are studied in terms of partial pair
distributions, bond angle distribution functions, and shortest-path
ring statistics. A well relaxed sample is prepared following a slow
annealing schedule of the simulation at the experimental density of the
amorphous phase. The short-range correlation functions indicate a
locally ordered amorphous structure with heteronuclear bonds, Si-C,
with no phase separation, and no graphitic or diamond structures
present. The bond distances and coordination numbers are similar to
those in the crystalline phase. The rings statistics indicate an
intermediate-range topology formed by the rearrangement of tetrahedra
with the occurrence of corner and edge sharing units connecting two-
(similar to5% of total), three-, four-, and five-fold rings. The
presence of large size rings indicates the existence of nano-voids in
the structure, which explains the low density compared with the crystal
phase while keeping the same coordination number and bond distance.
These simulation results agree well with experimental results.
C1 Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Phys & Astron, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Comp Sci, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Biomed Engn, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
Univ Fed Sao Carlos, Dept Phys, BR-13560 Sao Carlos, SP, Brazil.
Univ Uppsala, Studsvik Neutron Res Lab, Nykoping, Sweden.
Kumamoto Univ, Dept Phys, Kumamoto, Japan.
RP Rino, JP, Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp &
Simulat, Los Angeles, CA 90089 USA.
CR ARMAND P, 1995, EUROPHYS LETT, V29, P549
CAR R, 1985, PHYS REV LETT, V55, P2471
CATTI M, 2001, PHYS REV LETT, V87
CATTI M, 2002, PHYS REV B, V65
CHASE MW, 1985, J PHYS CHEM REF DATA, V14, P1
COHEN ML, 1993, SCIENCE, V261, P307
EBBSJO I, 2000, J APPL PHYS, V87, P7708
EMIN D, 1987, NOV REFR SEM S HELD
FINOCCHI F, 1992, PHYS REV LETT, V68, P3044
FISHER GR, 1990, PHILOS MAG B, V61, P217
HEERA V, 1995, J APPL PHYS, V77, P2999
HEERA V, 1997, APPL PHYS LETT, V70, P3531
HIOKI T, 1986, J MATER SCI, V21, P1321
HOHENBERG P, 1964, PHYS REV, V136, B864
ISHIMARU M, 2002, PHYS REV LETT, V89
IVASHCHENKO VI, 2002, PHYS REV B, V66
IYETOMI H, 2000, J NON-CRYST SOLIDS, V262, P135
KALOYEROS AE, 1988, PHYS REV B, V38, P13099
KATAYAMA Y, 1981, PHILOS MAG B, V43, P283
KELIRES PC, 1991, EUROPHYS LETT, V14, P43
KELIRES PC, 1992, PHYS REV B, V46, P10048
KELIRES PC, 1993, SOLID STATE COMMUN, V87, P851
KELIRES PC, 1998, J NON-CRYST SOLIDS, V231, P200
KLUG DD, 1999, PHYS REV LETT, V83, P2584
KOLESNIKOV AI, 1999, PHYS REV B, V59, P3569
KOLESNIKOV AI, 1999, PHYSICA B, V263, P650
KRESSE G, 1994, PHYS REV B, V49, P14251
LEVINSHTEAEIN ME, 2001, PROPERTIES ADV SEMIC
LOONG CK, 1997, PHYSICA B, V241, P890
MARSHALL RC, 1974, SIL CARB 1973 P U S
MENEGHINI C, 1991, J NON-CRYST SOLIDS, V137, P75
MENEGHINI C, 1994, PHYS REV B, V50, P11535
MURA D, 1998, PHYS REV B, V58, P10357
OCONNOR JR, 1960, SILICON CARBIDE HIGH
PASCARELLI S, 1992, PHYS REV B, V45, P1650
PECHENIK A, 1999, COMPUTER AIDED DESIG
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PRICE DL, 1991, J PHYS-CONDENS MAT, V3, P9835
PRICE DL, 1994, J NON-CRYST SOLIDS, V177, P293
RINO JP, 1993, PHYS REV B, V47, P3053
ROVIRA PI, 1997, PHYS REV B, V55, P4426
SAMPATH S, 2003, PHYS REV LETT, V90
SEEKAMP J, 1998, J NON-CRYST SOLIDS A, V230, P474
SEKINE T, 1997, PHYS REV B, V55, P8034
SHIMOJO F, 2000, PHYS REV LETT, V84, P3338
SHIMOJO F, 2001, COMPUT PHYS COMMUN, V140, P303
SPROUL A, 1986, PHILOS MAG B, V54, P113
SUZUYA K, 1998, J NON-CRYST SOLIDS, V234, P650
TERSOFF J, 1989, PHYS REV B, V39, P5566
TERSOFF J, 1994, PHYS REV B, V49, P16349
THORPE MF, 1997, AMORPHOUS INSULATORS
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
VANDERBILT D, 1990, PHYS REV B, V41, P7892
WILLIAMS JM, 1983, NUCL INSTRUM METHODS, V209, P317
YOSHIDA M, 1993, PHYS REV B, V48, P10587
NR 55
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2004
VL 70
IS 4
AR 045207
DI ARTN 045207
PG 11
SC Physics, Condensed Matter
GA 843CO
UT ISI:000223053300026
ER
PT J
AU Bugs, MR
Forato, LA
Bortoleto-Bugs, RK
Fischer, H
Mascarenhas, YP
Ward, RJ
Colnago, LA
TI Spectroscopic characterization and structural modeling of prolamin from
maize and pearl millet
SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS
LA English
DT Article
DE pennisetin molecular model; zein molecular model; circular dichroism;
dynamic light scattering; small-angle X-ray scattering
ID PROTEIN SECONDARY STRUCTURE; NUCLEAR-MAGNETIC-RESONANCE; ALPHA-ZEIN
PROTEINS; X-RAY-SCATTERING; 3-DIMENSIONAL STRUCTURE;
CIRCULAR-DICHROISM; SEQUENCE-ANALYSIS; SPECTRA; EVOLUTION; GENES
AB Biophysical methods and structural modeling techniques have been used
to characterize the prolamins from maize (Zea mays) and pearl millet
(Pennisetum americanum). The alcohol-soluble prolamin from maize,
called zein, was extracted using a simple protocol and purified by gel
filtration in a 70% ethanol solution. Two protein fractions were
petrified from seed extracts of pearl millet with molecular weights of
25.5 and 7 kDa, as estimated by SDS-PAGE. The high molecular weight
protein corresponds to pennisetin, which has a high alpha-helical
content both in solution and the solid state, as demonstrated by
circular dichroism and Fourier transform infrared spectra. Fluorescence
spectroscopy of both fractions indicated changes in the tryptophan
microenvironments with increasing water content of the buffer.
Low-resolution envelopes of both fractions were retrieved by ab initio
procedures from small-angle X-ray scattering data, which yielded
maximum molecular dimensions of about 14 nm and 1 nm for pennisetin and
the low molecular weight protein, respectively, and similar values were
observed by dynamic light scattering experiments. Furthermore, H-1
nuclear magnetic resonance spectra of zein and pennisetin do not show
any signal below 0.9 ppm, which is compatible with more extended
solution structures. The molecular models for zein and pennisetin in
solution suggest that both proteins have an elongated molecular
structure which is approximately a prolate ellipsoid composed of
ribbons of folded alpha-helical segments with a length of about 14 run,
resulting in a structure that permits efficient packing within the seed
endosperm.
C1 Embrapa Instrumentacao Agropecuaria, BR-13560970 Sao Carlos, SP, Brazil.
Univ Sao Paulo, Inst Fis Sao Carlos, Grp Cristalog, BR-13566590 Sao Carlos, SP, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Quim, BR-14049901 Ribeirao Preto, SP, Brazil.
RP Colnago, LA, Embrapa Instrumentacao Agropecuaria, Rua 15 Novembro 1452,
BR-13560970 Sao Carlos, SP, Brazil.
EM colnago@cnpdia.embrapa.br
CR ARGOS P, 1982, J BIOL CHEM, V257, P9984
BIETZ JA, 1982, BIOCHEM GENET, V20, P1039
BUGS MR, 2001, PHOTOCHEM PHOTOBIOL, V74, P512
BYLER DM, 1986, BIOPOLYMERS, V25, P469
ELLIOTT MA, 1939, J AM CHEM SOC, V61, P718
FASMAN GD, 1996, CIRCULAR DICHROISM C
FORATO LA, 2000, BBA-PROTEIN STRUCT M, V1543, P106
FOSTER JF, 1945, J AM CHEM SOC, V67, P617
GARRATT R, 1993, PROTEINS, V15, P88
GLATTER O, 1982, SMALL ANGLE XRAY SCA
GUINIER A, 1955, SMALL ANGLE SCATTERI
HADDEN JM, 1995, BBA-PROTEIN STRUCT M, V1248, P115
HARIS PI, 1996, INFRARED SPECTROSCOP, P239
HEIDECKER G, 1991, GENOMICS, V10, P719
KELLERMANN G, 1997, J APPL CRYSTALLOGR 5, V30, P880
KRESTCHMER CB, 1957, J PHYS CHEM-US, V61, P1627
LAEMMLI UK, 1970, NATURE, V227, P680
LASKOWSKI RA, 1993, J APPL CRYSTALLOGR, V26, P283
MATSUSHIMA N, 1997, BBA-PROTEIN STRUCT M, V1339, P14
NELSON JW, 1986, PROTEINS, V1, P211
PEDERSEN K, 1982, CELL, V29, P1015
PELTON JT, 2000, ANAL BIOCHEM, V277, P167
POROD G, 1982, SMALL ANGLE XRAY SCA, P17
SAINANI MN, 1992, PLANT SCI, V83, P15
SVERGUN DI, 1992, J APPL CRYSTALLOGR, V25, P495
SVERGUN DI, 2001, BIOPHYS J, V80, P2946
TATHAM AS, 1993, J BIOL CHEM, V268, P26253
UNNEBERG P, 2001, PROTEINS, V42, P460
WILLIAMS JW, 1938, COLD SPRING HARB SYM, V6, P208
WOO YM, 2001, PLANT CELL, V13, P2297
NR 30
TC 3
PU SPRINGER
PI NEW YORK
PA 233 SPRING STREET, NEW YORK, NY 10013 USA
SN 0175-7571
J9 EUR BIOPHYS J BIOPHYS LETT
JI Eur. Biophys. J. Biophys. Lett.
PD JUL
PY 2004
VL 33
IS 4
BP 335
EP 343
PG 9
SC Biophysics
GA 841OU
UT ISI:000222941000007
ER
PT J
AU Fagan, SB
Souza, AG
Lima, JOG
Mendes, J
Ferreira, OP
Mazali, IO
Alves, OL
Dresselhaus, MS
TI 1,2-dichlorobenzene interacting with carbon nanotubes
SO NANO LETTERS
LA English
DT Article
ID AB-INITIO; RAMAN-SPECTROSCOPY; LARGE SYSTEMS; WATER
AB The interaction of 1,2-dichlorobenzene (DCB) with carbon nanotubes is
analyzed by experimental and theoretical methods. Using
first-principles calculations we studied the structural and electronic
behavior of DCB interacting with a semiconductor (8,10) single-wall
carbon nanotube (SWNT). We have found that the DCB weakly interacts
with a perfect SWNT surface, but this interaction is slightly stronger
when the SWNT surface has structural vacancies. Resonant Raman
experiments performed on DCB-adsorbed SWNTs confirm the weak DCB-SWNT
interaction, as suggested by the ab initio simulations.
C1 Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil.
Univ Estadual Campinas, Inst Quim, LQES, BR-13081970 Campinas, SP, Brazil.
MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA.
MIT, Dept Phys, Cambridge, MA 02139 USA.
RP Fagan, SB, Univ Fed Ceara, Dept Fis, Caixa Postal 6030,Campus Pici,
BR-60455900 Fortaleza, Ceara, Brazil.
EM solange@fisica.ufc.br
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
CORIO P, 2004, CHEM PHYS LETT, V383, P475
DAI HJ, 2002, SURF SCI, V500, P218
DASILVA LB, 2004, NANO LETT, V4, P65
DRESSELHAUS MS, 2000, ADV PHYS, V49, P705
DRESSELHAUS MS, 2001, CARBON NANOTUBES
DRESSELHAUS MS, 2002, CARBON, V40, P2043
FAGAN SB, 2003, PHYS REV B, V67
HILL GA, 1991, ENVIRON PROG, V10, P147
IIJIMA S, 1991, NATURE, V354, P36
ORDEJON P, 1996, PHYS REV B, V53
PENG S, 2000, NANOTECHNOLOGY, V11, P57
PENG XJ, 2003, CHEM PHYS LETT, V376, P154
PERDEW JP, 1981, PHYS REV B, V23, P5048
ROBERGE F, 2001, WATER SCI TECHNOL, V44, P287
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANKEY OF, 1989, PHYS REV B, V40, P3979
SOUZA AG, 2003, NANOTECHNOLOGY, V14, P1130
SUMANASEKERA GU, 1999, J PHYS CHEM B, V103, P4292
TROULLIER N, 1991, PHYS REV B, V43, P1993
NR 20
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2004
VL 4
IS 7
BP 1285
EP 1288
PG 4
SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
GA 839CX
UT ISI:000222762000022
ER
PT J
AU Kleinpeter, E
Seidl, PR
TI The gamma- and the delta-effects in C-13 NMR spectroscopy in terms of
nuclear chemical shielding (NCS) analysis
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE C-13 NMR spectroscopy; gamma- and delta-effects; steric hindrance;
partitions to natural chemical shieldings
ID AB-INITIO IGLO; MAGNETIC-RESONANCE; SUBSTITUENT DEPENDENCIES; SHIFTS;
SPECTRA; TENSORS; ANGLE
AB Carbon-13 NMR is widely used in the determination of the
stereochemistry of organic compounds. Changes in chemical shifts caused
by interactions of groups that are close in space normally result in
shielding of the carbon and deshielding of the hydrogen nuclei that are
involved. This is not always the case, however, and further work on the
origin of these effects would be desirable. Early applications of
theoretical methods to the study of NMR shielding parameters were not
particularly successful, but in recent years, the calculation of NMR
shielding parameters by theoretical methods has developed into a useful
and popular tool for structural studies by NMR. A promising approach to
the problem of distinguishing and evaluating stereochemical influences
on carbon and hydrogen chemical shifts is provided by natural chemical
shielding (NCS) analysis. This method allows a partitioning of
theoretical NMR shieldings into magnetic contributions from bonds and
lone pairs of the molecule using the natural bond orbital (NBO) method.
In order to investigate the origins of steric effects, we employed the
NCS analysis to axial/equatorial-Me-cyclohexane, norbornane and
exo/endo-Me-norbornane, in addition to n-pentane in the anti, gauche
and g(P) g(M) conformations. Our results indicate that distortions in
molecular structure due to steric effects can result in bond stretching
or compression or in angular distortions. Changes in bond lengths
result in the predictable shielding or deshielding of the nuclei that
are involved. Where the molecular framework may be distorted to
alleviate strain, chemical shifts appear to reflect changes in angles.
Copyright (C) 2004 John Wiley Sons, Ltd.
C1 Univ Potsdam, Inst Chem, D-14415 Potsdam, Germany.
Univ Fed Fluminense, Programa Posgrad Quim Organ, BR-24020150 Niteroi, RJ, Brazil.
RP Kleinpeter, E, Univ Potsdam, Inst Chem, POB 60 15 53, D-14415 Potsdam,
Germany.
EM kp@chem.uni-potsdam.de
CR BARFIELD M, 1990, J AM CHEM SOC, V112, P4747
BARFIELD M, 1993, J AM CHEM SOC, V115, P6916
BARFIELD M, 1993, NUCLEAR MAGNETIC SHI, P523
BARFIELD M, 1995, J AM CHEM SOC, V117, P2862
BARFIELD M, 1998, MAGN RESON CHEM, V36, P593
BLENDENIG ED, 2001, NBO 5 0
BOHMANN JA, 1997, J CHEM PHYS, V107, P1173
BORN R, 1994, MACROMOLECULES, V27, P1500
BORN R, 1995, MACROMOLECULES, V28, P7785
CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
DEDIOS AC, 1994, ANN REP NUCL MAGN RE, V29, P1
DEDIOS AC, 1994, J AM CHEM SOC, V116, P5307
DITCHFIELD R, 1974, MOL PHYS, V27, P789
FISHER J, 1992, MAGN RESON CHEM, V30, P338
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GRANT DM, 1964, J AM CHEM SOC, V86, P2984
GUNTHER H, 1995, NMR SPECTROSCOPY BAS
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HELGAKER T, 1999, CHEM REV, V99, P293
JIAO D, 1992, J AM CHEM SOC, V114, P3639
JIAO D, 1993, J AM CHEM SOC, V115, P10883
KLOD S, 2002, J CHEM SOC PERK T 2, P1506
KUROSU H, 1993, MAGN RESON CHEM, V31, P399
MANN G, 1978, MAGN RESON CHEM, V11, P561
PAUL EG, 1963, J AM CHEM SOC, V85, P2701
SEIDL PR, 1990, J MOL STRUCT THEOCHE, V204, P183
SEIDL PR, 1993, MAGN RESON CHEM, V31, P241
SEIDL PR, 1998, MAGN RESON CHEM, V36, P261
WADA M, 1995, MAGN RESON CHEM, V33, P453
WIBERG KB, 1987, J AM CHEM SOC, V109, P1001
WINSTEIN S, 1965, J AM CHEM SOC, V87, P5247
NR 31
TC 3
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD AUG
PY 2004
VL 17
IS 8
BP 680
EP 685
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 840TV
UT ISI:000222883700005
ER
PT J
AU Ramalho, TC
de Alencastro, RB
La-Scalea, MA
Figueroa-Villar, JD
TI Theoretical evaluation of adiabatic and vertical electron affinity of
some radiosensitizers in solution using FEP, ab initio and DFT methods
SO BIOPHYSICAL CHEMISTRY
LA English
DT Article
DE radiosensitizers; electron affinity; HF and DFT calculations
ID HYPOXIC CELL RADIOSENSITIZERS; DIFFERENCE THERMODYNAMIC INTEGRATION;
MOLECULAR-DYNAMICS SIMULATION; MST-SCRF CALCULATIONS; FREE-ENERGY;
BIOLOGICAL-ACTIVITY; PHOTOELECTRON-SPECTROSCOPY; VOLTAMMETRIC BEHAVIOR;
IONIZATION-POTENTIALS; DRUG-RESISTANCE
AB The biological activity of radiosensitizers is associated to their
electron affinity (EA), which can be divided in two main processes:
vertical and adiabatic. In this work, we calculated the EAs of
nitrofurans and nitroimidazoles (Fig. 2) using Hartree-Fock (HF) and
density functional theory (DFT) methods and evaluated solvent effects
(water and carbon tetrachloride) on EAs. For water, we combined the
polarized continuum model (PCM) and free energy perturbation (FEP)
(finite difference thermodynamic integration, FDTI) methods. For carbon
tetrachloride, we used the FDTI method. The values of adiabatic EA
obtained are in agreement with experimental data (deviations of 0.013
eV). The vertical EAs were calculated according to Cederbaum's outer
valence Green function (OVGF) method. This methodology, which relies on
theoretical aspects of free energy calculations on charged molecules in
solution, was used to select potential selective radiosensitizers from
recently reported compounds and could be helpful in the rational design
of new and more selective bioreductive anticancer drugs. (C) 2004
Elsevier B.V. All rights reserved.
C1 Inst Mil Engn, Dept Quim, BR-22290270 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Grp Fisicoquim Organ, BR-21949900 Rio De Janeiro, Brazil.
Univ Sao Paulo, Fac Ciencias Farmaceut, Dept Farm, BR-05508900 Sao Paulo, Brazil.
RP Figueroa-Villar, JD, Inst Mil Engn, Dept Quim, Praca Gen Tiburcio 80,
BR-22290270 Rio De Janeiro, Brazil.
EM figueroa@ime.eb.br
CR PC SPARTAN PRO 1 0 1
*BIOS MSI, 1995, BIOS MSI INS 2 VERS
ADAMS GE, 1976, RADIAT RES, V67, P550
ADAMS GE, 1979, INT J RADIAT BIOL, V35, P133
ADAMS GE, 1979, INT J RADIAT BIOL, V35, P151
AHMED AA, 1997, SPECTROCHIM ACTA A, V53, P335
AMES JR, 1987, LIFE SCI, V41, P1895
AQVIST J, 1990, J PHYS CHEM-US, V94, P8021
BACHS M, 1994, J COMPUT CHEM, V15, P446
BECKE AD, 1988, PHYS REV A, V38, P3098
BENAKLI K, 2002, HETEROCYCLES, V57, P1689
BRACUTI AJ, 1998, J CHEM CRYSTALLOGR, V28, P367
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BRETT AMO, 1997, ELECTROANAL, V9, P1132
BRETT AMO, 1999, METHOD ENZYMOL, V300, P314
BROWN JM, 1999, CANCER RES, V59, P1391
BU YX, 1998, THEOCHEM-J MOL STRUC, V422, P219
CAMMI R, 1997, THEORETICAL ASPECTS
CANCES E, 1997, J CHEM PHYS, V107, P3032
CHAPMAN JD, 1996, BRIT J CANCER, V74, P204
CHAUVIERE G, 2003, J MED CHEM, V46, P427
CHEN GX, 1998, CHEM PHYS LETT, V290, P211
CHEN M, 1998, J CHROMATOGR A, V825, P37
COLOMINAS C, 1999, CHEM PHYS, V240, P253
COLOMINAS C, 1999, J COMPUT CHEM, V20, P665
DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
FISCHER CF, 1987, PHYS REV LETT, V59, P2263
FRISCH MJ, 2001, GAUSSIAN
GOLDMAN P, 1986, BIOCHEM PHARMACOL, V35, P43
GUIMARAES CRW, 2002, J PHYS CHEM B, V106, P466
HALLIWELL B, 1985, FREE RADICALS BILOGY
HOHENBERG P, 1964, PHYS REV B, V136, P864
HORI H, 1997, BIOORGAN MED CHEM, V5, P591
HORIS H, 1994, ADV ENV SCI TECHNOLO
JARGER R, 2001, J MOL GRAPH MODEL, V13, P89
JOHNSON BG, 1993, J CHEM PHYS, V98, P5612
KASAI S, 2001, BIOORGAN MED CHEM, V9, P453
KING G, 1989, J CHEM PHYS, V91, P3647
KNOX RJ, 1981, BRIT J CANCER, V44, P741
KOHN W, 1965, PHYS REV, V140, A1133
KOLLMAN P, 1993, CHEM REV, V93, P2395
LASCALEA MA, 1999, J BRAZIL CHEM SOC, V10, P127
LASCALEA MA, 1999, QUIM NOVA, V22, P417
LISTER SG, 1992, INT J QUANTUM CHEM, V41, P293
LISTER SG, 1997, INT QUANTUM CHEM, V59, P135
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
MEZEI M, 1987, J CHEM PHYS, V86, P7084
MIERTUS S, 1981, CHEM PHYS, V55, P117
MOTTANETO DJ, 1992, INT J QUANTUM CHEM Q, V44, P743
OROZCO M, 1994, CHEM PHYS, V182, P237
ORTIZ JV, 1988, J CHEM PHYS, V89, P6348
PIRES JR, 2001, J MED CHEM, V44, P3673
PRAMANN A, 2001, CHEM PHYS LETT, V343, P99
PRESS WH, 1986, NUMERICAL RECIPES AR
REYNOLDS CA, 1988, J CHEM SOC CHEM COMM, P1434
REYNOLDS CA, 1990, J AM CHEM SOC, V112, P7545
RIENSTRAKIRACOFE JC, 2002, CHEM REV, V102, P231
SINGH UC, 1984, J COMPUT CHEM, V5, P129
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
TEICHER BA, 1994, CANCER METAST REV, V13, P139
TOMASI J, 1994, CHEM REV, V94, P2027
TOMASI J, 1999, J MOL STRUC-THEOCHEM, V464, P211
TOMIDA A, 1999, ANTI-CANCER DRUG DES, V14, P169
VIODE C, 1999, BIOCHEM PHARMACOL, V57, P549
VONNIESSEN W, 1984, COMPUT PHYS REP, V1, P57
WARDMAN P, 1976, BIOCHEM BIOPH RES CO, V69, P942
WARDMAN P, 1976, J CHEM SOC FARAD T 1, V72, P1377
WARDMAN P, 1980, RAD SENSITIZERS THEI, P83
WARSHEL A, 1985, CHEM PHYS LETT, V121, P124
WYMORE T, 1999, BIOPHYS J 2, V76, A57
NR 71
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-4622
J9 BIOPHYS CHEM
JI Biophys. Chem.
PD AUG 1
PY 2004
VL 110
IS 3
BP 267
EP 279
PG 13
SC Chemistry, Physical; Biochemistry & Molecular Biology; Biophysics
GA 836XM
UT ISI:000222589500008
ER
PT J
AU Orhan, E
Pontes, FM
Santos, MA
Leite, ER
Beltran, A
Andres, J
Boschi, TM
Pizani, PS
Varela, JA
Taft, CA
Longo, E
TI Combined experimental and theoretical study to understand the
photoluminescence of Sr1-xTiO3-x
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID THIN-FILMS; ABO(3) PEROVSKITES; STRONTIUM-TITANATE; ROOM-TEMPERATURE;
VISIBLE PHOTOLUMINESCENCE; AMORPHOUS SRTIO3; ABSORPTION EDGE; CHEMICAL
ROUTE; LEAD TITANATE; ENERGY-BANDS
AB A joint experimental and theoretical study has been carried out to
rationalize the results of visible photoluminescence measurements at
room temperature on Sr1-xTiO3-x (ST) perovskite thin films. From the
experimental side, ST thin films, x = 0 to 0.9, have been synthesized
following soft chemical processing, and the corresponding
photoluminescence properties have been measured. First principles
quantum mechanical techniques, based on density functional theory at
the B3LYP level, have been employed to study the electronic structure
of a crystalline, stoichiometric (x = 0) ST-s model and a
nonstoichiometric (SrO-deficient, x not equal 0) and structurally
disordered ST-d model. The relevance of the present theoretical and
experimental results of the photoluminescence behavior of ST is
discussed. The optical spectra and the calculations indicate that the
symmetry-breaking process on going from ST-s to ST-d creates electronic
levels in the valence band. Moreover, an analysis of the Mulliken
charge distribution reveals a charge gradient in the structure. These
combined effects seem to be responsible for the photoluminescence
behavior of deficient Sr1-xTiO3-x.
C1 Univ Estadual Paulista, Inst Quim, BR-14801907 Araraquara, SP, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
RP Orhan, E, Univ Estadual Paulista, Inst Quim, BR-14801907 Araraquara,
SP, Brazil.
EM emmanuelle.orhan@liec.ufscar.br
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BLASSE G, 1994, LUMINESCENT MAT
BLAZEY KW, 1971, PHYS REV LETT, V27, P146
BOUMA B, 1995, J PHYS CHEM SOLIDS, V56, P261
CANHAM LT, 1990, APPL PHYS LETT, V57, P1046
CAPIZZI M, 1970, PHYS REV LETT, V25, P1298
CARDONA M, 1965, PHYS REV A, V140, P651
COHEN MI, 1968, PHYS REV, V168, P929
EGLITIS RI, 2002, EUR PHYS J B, V27, P483
HEIFETS E, 2002, SURF SCI, V513, P211
JONES RO, 1989, REV MOD PHYS, V61, P689
KAHN AH, 1964, PHYS REV A, V135, P1321
KOKALJ A, 1999, J MOL GRAPH MODEL, V17, P176
LANCIOTTI F, 2002, APPL PHYS A-MATER, V74, P787
LEE C, 1988, PHYS REV B, V37, P785
LEITE ER, 2000, ADV MATER OPT ELECTR, V10, P235
LEITE ER, 2001, APPL PHYS LETT, V78, P2148
LEITE ER, 2002, APPL PHYS A-MATER, V74, P529
LEITE ER, 2003, J MATER SCI, V38, P1775
LEONELLI R, 1986, PHYS REV B, V33, P8649
LONGO E, 2004, IN PRESS PHYS REV B
MATTHEISS LF, 1972, PHYS REV B, V6, P4718
MO SD, 1999, PHYS REV B, V60, P2416
MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
NOLAND JA, 1954, PHYS REV, V94, P724
OBRIEN MCM, 1993, AM J PHYS, V61, P688
PINHEIRO CD, 2003, APPL PHYS A-MATER, V77, P81
PIZANI PS, 2000, APPL PHYS LETT, V77, P824
PIZANI PS, 2002, APPL PHYS LETT, V81, P253
PONTES FM, 2000, ADV MATER OPT ELECTR, V10, P81
PONTES FM, 2000, MATER LETT, V43, P249
PONTES FM, 2003, J LUMIN, V104, P175
PONTES FM, 2003, J MATER RES, V18, P659
PONTES FM, 2003, MATER CHEM PHYS, V77, P598
PONTES FM, 2003, MATER CHEM PHYS, V78, P227
RANGEL JH, 2002, J LUMIN, V99, P7
SAUNDERS V, 1998, CRYSTAL98 USERS MANU
SOLEDADE LEB, 2002, APPL PHYS A-MATER, V75, P629
URBACH F, 1953, PHYS REV, V92, P1324
WOOD DL, 1972, PHYS REV B-SOLID ST, V5, P3144
NR 40
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD JUL 1
PY 2004
VL 108
IS 26
BP 9221
EP 9227
PG 7
SC Chemistry, Physical
GA 832PJ
UT ISI:000222279100067
ER
PT J
AU Ferretti, A
Ruini, A
Bussi, G
Molinari, E
Caldas, MJ
TI Ab initio study of transport parameters in polymer crystals
SO PHYSICAL REVIEW B
LA English
DT Article
ID CONJUGATED POLYMERS; CHARGE-TRANSPORT; INTERCHAIN INTERACTIONS;
POLYTHIOPHENE CRYSTALS; CONDUCTING POLYMERS; CHAINS;
POLY(3-ALKYLTHIOPHENES); POLY(3-OCTYLTHIOPHENE); 1ST-PRINCIPLES;
COHERENT
AB Transfer integrals (TI's) are essential parameters in the calculation
of electron transport both in coherent and incoherent regimes. We show
that TI's for polymer crystals can be obtained from first principles,
starting from plane-wave density-functional calculations of the
electronic structure in the local-density approximation, and propose
methods at different levels of approximation. We demonstrate that
special choices of single-chain states can be used very effectively as
building blocks for the crystal electronic structure, thus allowing a
deeper insight into the transport properties of molecular crystals. We
apply this approach to polymer systems of great interest to molecular
electronics, such as poly-para-phenylene-vinylene and polythiophene in
different crystal packing morphologies, and show that it offers a very
powerful tool to understand and design the impact of intermolecular
interactions on conduction of organic crystals.
C1 Univ Modena & Reggio Emilia, INFM Natl Ctr Nanostruct & Biosyst Surface S3, I-41100 Modena, Italy.
Univ Modena & Reggio Emilia, Dipartimento Fis, I-41100 Modena, Italy.
Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
RP Ferretti, A, Univ Modena & Reggio Emilia, INFM Natl Ctr Nanostruct &
Biosyst Surface S3, Via Campi 213-A, I-41100 Modena, Italy.
EM ferretti.andrea@unimo.it
CR AHLSKOG M, 1996, PHYS REV B, V53, P15529
AMBROSCHDRAXL C, 1995, PHYS REV B, V51, P9668
BREDAS JL, 2002, P NATL ACAD SCI USA, V99, P5804
BREDAS JL, 2002, SYNTHETIC MET, V125, P107
BURROUGHES JH, 1990, NATURE, V347, P539
BUSSI G, 2002, APPL PHYS LETT, V80, P4118
BUTTIKER M, 1985, PHYS REV B, V31, P6207
BUTTIKER M, 1986, PHYS REV LETT, V57, P1761
CHEN D, 1990, PHYS REV B, V41, P6759
CHEN D, 1992, POLYMER, V33, P3116
CHEN TA, 1995, J AM CHEM SOC, V117, P233
CORNIL J, 2001, SYNTHETIC MET, V119, P1
DAVILA LYA, 2002, J COMPUT CHEM, V23, P1135
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
EMIN D, 1986, PHYS REV B, V33, P3973
FERRETTI A, 2003, PHYS REV LETT, V90
FRIEND RH, 1999, NATURE, V397, P121
GALVAO DS, 1989, PHYS REV LETT, V63, P786
HEY R, 1997, PHYS REV B, V55, P4231
HOLSTEIN T, 1959, ANN PHYS-NEW YORK, V8, P325
JOHANSSON A, 2001, PHYS REV LETT, V86, P3602
JOHANSSON A, 2002, PHYS REV B, V66
LANDAUER R, 1970, PHILOS MAG, V21, P863
MARCUS RA, 1985, BIOCHIM BIOPHYS ACTA, V811, P265
MARUMOTO K, 2003, CHEM PHYS LETT, V382, P541
MCCULLOUGH RD, 1993, J AM CHEM SOC, V115, P4910
MIZES HA, 1993, PHYS REV LETT, V70, P1505
NEWTON MD, 2000, INT J QUANTUM CHEM, V77, P255
NGUYEN TQ, 2000, APPL PHYS LETT, V76, P2454
PROSA TJ, 1995, PHYS REV B, V51, P159
PUSCHNIG P, 2001, SYNTHETIC MET, V119, P245
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROHLFING M, 1999, PHYS REV LETT, V82, P1959
RUINI A, 2002, PHYS REV LETT, V88
RUINI A, 2003, SYNTHETIC MET, V139, P755
SANTOS MA, UNPUB
SCHULZ PA, 1991, PHYS REV B, V44, P6073
SIEGRIST T, 1998, ADV MATER, V10, P379
SIRRINGHAUS H, 1998, SCIENCE, V280, P1741
SIRRINGHAUS H, 1999, NATURE, V401, P685
SLATER JC, 1954, PHYS REV, V94, P1498
WANG GM, 2003, J APPL PHYS 1, V93, P6137
YANG CY, 1998, POLYMER, V39, P2299
NR 43
TC 3
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAY
PY 2004
VL 69
IS 20
AR 205205
DI ARTN 205205
PG 10
SC Physics, Condensed Matter
GA 830BD
UT ISI:000222095700036
ER
PT J
AU Da Cunha, EFF
De Alencastro, RB
Ramalho, TC
TI Theoretical study of adiabatic and vertical electron affinity of
radiosensitizers in solution Part 2: Analogues of tirapazamine
SO JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE radiosensitizers; electron affinity; HF and DFT calculations
ID HYPOXIC CELL RADIOSENSITIZERS; MOLECULAR-DYNAMICS SIMULATION;
FREE-ENERGY; THERMODYNAMIC INTEGRATION; VOLTAMMETRIC BEHAVIOR;
AQUEOUS-SOLUTION; ANTICANCER DRUG; SOLID TUMORS; AB-INITIO; POTENTIALS
AB Tirapazamine is a radiosensitizer, whose biological activity is
associated to its electron affinity (EA). The electron affinity can be
divided in two main processes: Vertical and Adiabatic. In this work, we
calculated the EAs of nitroimidazoles (Fig. 2) using HF and DFT methods
and evaluated solvent effects (water and carbon tetrachloride) on EAs.
For water, we combined the Polarized Continuum Model (PCM) and free
energy perturbation (Finite Difference Thermodynamic Integration, FDTI)
methods. For carbon tetrachloride, we used the FDTI method. The values
of adiabatic EA obtained axe in agreement with experimental data
(deviations of 13.25 meV). The vertical EA were calculated according to
Cederbaum's Outer Valence Green Function (OVGF) method. This study,
which relays on theoretical aspects of free energy calculations on
charged molecules in solution, could be helpful in the rational design
of new and more selective bioreductive anticancer drugs.
C1 Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, Brazil.
Fed Univ Rio De Janeiro, Inst Quim, Dept Quim Organ, Grp Fis Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Da Cunha, EFF, Inst Militar Engn, Dept Quim, Praca Gen Tiburcio 80,
BR-22290270 Rio De Janeiro, Brazil.
CR ADAMS GE, 1976, RADIAT RES, V67, P550
ADAMS GE, 1979, INT J RADIAT BIOL, V35, P133
ADAMS GE, 1979, INT J RADIAT BIOL, V35, P151
AHYMED AA, 1997, SPECTROCHIM ACTA A, V53, P335
AQVIST J, 1990, J PHYS CHEM-US, V94, P8021
BACHS M, 1994, J COMPUT CHEM, V15, P446
BECKE AD, 1988, PHYS REV A, V38, P3098
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BRETT AMO, 1997, ELECTROANAL, V9, P1132
BROWN JM, 1993, BRIT J CANCER, V67, P1163
BROWN JM, 1999, CANCER RES, V59, P1391
CAMMI R, 1997, THEORETICAL ASPECTS
CANCES E, 1997, J CHEM PHYS, V107, P3032
CHEN GX, 1998, CHEM PHYS LETT, V290, P211
CHEN M, 1998, J CHROMATOGR A, V825, P37
COLIMAS C, 1999, CHEM PHYS, V240, P253
DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
DENNY WA, 2000, EXPERT OPIN INV DRUG, V9, P2889
FISCHER CF, 1987, PHYS REV LETT, V59, P2263
FRISCH MJ, 2001, GAUSSIAN INC PITTSB
FUCHS T, 2001, J CHEM CRYSTALLOGR, V31, P387
GUIMARAES CRW, 2002, J PHYS CHEM B, V106, P466
HAY MP, 2003, BR J MED CHEM, V46, P169
HOHENBERG P, 1964, PHYS REV, V136, B864
HORIS H, 1994, ADV ENV SCI TECHNOLO
JARGER R, 2001, J MOL GRAPH MODEL, V13, P89
JOHNSON BG, 1993, J CHEM PHYS, V98, P5612
KASAI S, 2001, BIOORGAN MED CHEM, V9, P453
KAZANSKY V, 2003, PHYS CHEM CHEM PHYS, V5, P31
KELSON AB, 1998, ANTI-CANCER DRUG DES, V13, P575
KING G, 1989, J CHEM PHYS, V91, P3647
KOHN W, 1965, PHYS REV, V140, A1133
KOLLMAN P, 1993, CHEM REV, V93, P2395
LASCALEA MA, 1999, J BRAZIL CHEM SOC, V10, P127
LASCALEA MA, 1999, QUIM NOVA, V22, P417
LEE WW, 1991, 9104028, WO
LISTER SG, 1992, INT J QUANTUM CHEM, V41, P293
LISTER SG, 1997, INT QUANTUM CHEM, V59, P135
LLOYD RV, 1991, MOL PHARMACOL, V40, P440
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
MEZEI M, 1987, J CHEM PHYS, V86, P7084
MIERTUS S, 1981, CHEM PHYS, V55, P117
MOTTANETO DJ, 1992, INT J QUANTUM CHEM Q, V44, P743
ORTIZ JV, 1988, J CHEM PHYS, V89, P6348
ORZCO M, 1994, CHEM PHYS, V182, P237
POSAKONY JJ, 1999, CAN J CHEM, V77, P182
PRAMANN A, 2001, CHEM PHYS LETT, V343, P99
PRESS WH, 1986, NUMERICAL RECIPES AR
RAMALHO TC, 2003, INT J QUANTUM CHEM, V95, P267
REYNOLDS CA, 1988, J CHEM SOC CHEM COMM, P1434
REYNOLDS CA, 1990, J AM CHEM SOC, V112, P7545
SINGH UC, 1984, J COMPUT CHEM, V5, P129
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
TEICHER BA, 1994, CANCER METAST REV, V13, P139
TOMASI J, 1994, CHEM REV, V94, P2027
TOMASI J, 1999, J MOL STRUC-THEOCHEM, V464, P211
TOMIDA A, 1999, ANTI-CANCER DRUG DES, V14, P169
VIODE C, 1999, BIOCHEM PHARMACOL, V57, P549
VONNIESSEN W, 1984, COMPUT PHYS REP, V1, P57
WARDMAN P, 1989, J PHYS CHEM REF DATA, V18, P1637
WARSHEL A, 1985, CHEM PHYS LETT, V121, P124
WYMORE T, 1999, BIOPHYS J 2, V76, A57
YUXIANQ B, 1998, J MOL STRUCT THEOCHE, V422, P219
NR 64
TC 4
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 912805, SINGAPORE
SN 0219-6336
J9 J THEOR COMPUT CHEM
JI J. Theor. Comput. Chem.
PD MAR
PY 2004
VL 3
IS 1
BP 1
EP 13
PG 13
SC Chemistry, Multidisciplinary
GA 820UD
UT ISI:000221414000001
ER
PT J
AU Ramalho, TC
da Cunha, EFF
de Alencastro, RB
TI A density functional study on the complexation of ethambutol with
divalent cations
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE ethambutol-metal complexes; mycobacterium tuberculosis; DFT
ID POLARIZABLE CONTINUUM MODEL; AB-INITIO; MYCOBACTERIUM-TUBERCULOSIS;
ENERGY; METAL; ARABINOGALACTAN; APPROXIMATION; SMEGMATIS; IRON
AB The influence of non-bonded interactions on the formation of ethambutol
(EMB) complexes with divalent cations was studied by DFT
(B3LYP/6-311++G**). An analysis of the natural bond order provided a
possible explanation for the difference in stability on (S, S), (R, R)
and (meso) EMB complexes as well as an evaluation of the structural and
electronic effects, applying non-bonded interactions. Due to
n(O7)/sigma*(C3-H) interactions, Gibbs energies can be rationalized in
terms of the stabilization of the complexes. Our results are in
agreement with experimental studies which show that the (S,
S)-configuration of EMB complexes is essential for activity against
Mycobacterium tuberculosis. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Lab Fisicoquim Organ, BR-21949900 Rio De Janeiro, Brazil.
Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, Brazil.
RP de Alencastro, RB, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ,
Lab Fisicoquim Organ, Ilha Fundao,CT,Bloco A,Sala 609, BR-21949900 Rio
De Janeiro, Brazil.
EM bicca@iq.ufrj.br
CR ARMITAGE IM, 1976, J AM CHEM SOC, V98, P5710
BARONE V, 1998, J COMPUT CHEM, V19, P404
BARREIRO EJ, 2000, J MOL STRUC-THEOCHEM, V532, P11
BECKE AD, 1988, PHYS REV A, V38, P3098
BHATTACHARYA RG, 1990, INDIAN J CHEM A, V29, P986
BLANCHARD JS, 1996, ANNU REV BIOCHEM, V65, P215
BURDA JV, 1996, J PHYS CHEM-US, V100, P7250
CAMMI R, 1997, THEORETICAL ASPECTS
CANCES E, 1997, J CHEM PHYS, V107, P3032
CAROLINE P, 1996, J PHYS CHEM-US, V100, P17797
CHO SG, 2000, J MOL STRUC-THEOCHEM, V532, P279
COMBA P, 2003, COORDIN CHEM REV, V238, P9
COSSI M, 1998, CHEM PHYS LETT, V286, P253
DAMOTTANETO DJ, 1992, INT J QUANTUM CHEM Q, V19, P225
DESSEN A, 1995, SCIENCE, V267, P1638
ELTAHER S, 2001, INT J QUANTUM CHEM, V82, P242
ESCUYER VE, 2001, J BIOL CHEM, V276, P48854
FRISCH MJ, 2001, GAUSSIAN
GIANNINI G, 1991, INORG CHEM, V30, P2853
GOBIN J, 1996, J EXP MED, V183, P1527
GURUROW TN, 1981, J AM CHEM SOC, V103, P477
HAUSLER H, 2001, BIOORG MED CHEM LETT, V11, P1679
HOOPS SC, 1991, J AM CHEM SOC, V113, P8262
JACKSON TA, 2002, J AM CHEM SOC, V124, P10833
KOLLMAN P, 1993, CHEM REV, V93, P2395
KOZAK SF, 1998, DIAGN MICR INFEC DIS, V30, P83
LOW BW, 1959, J AM CHEM SOC, V81, P4412
MADDRY JA, 1995, CHEMOTHERAPY, V106
MARCUS RA, 1988, CHEM REV, V88, P1492
PERDEW JP, 1986, PHYS REV B, V33, P8822
RAMALHO TC, 2001, J MOL STRUCT THEOCHE, V580, P217
RAMALHO TC, 2003, INT J QUANTUM CHEM, V95, P267
RAMALHO TC, 2003, P 12 S BRAS QUIM TEO
RAMASUBBU N, 1987, PHOSPHORUS SULFUR, V31, P221
SALZNER U, 1993, J AM CHEM SOC, V115, P10231
SPONER J, 1997, CHEM PHYS LETT, V267, P263
TAKAYAMA K, 1989, ANTIMICROB AGENTS CH, V33, P1493
TOMASI J, 1999, J MOL STRUC-THEOCHEM, V464, P211
WANG P, 1991, J AM CHEM SOC, V113, P55
NR 39
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAY 14
PY 2004
VL 676
IS 1-3
BP 149
EP 153
PG 5
SC Chemistry, Physical
GA 819YB
UT ISI:000221351100023
ER
PT J
AU Jalbout, AF
Basso, EA
Pontes, RM
Das, D
TI Hyperconjugative interactions in vinylic systems: the problem of the
barrier to methyl rotation in acetone
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE hyperconjugation; acetone; rotational barrier; natural bond orbital
ID SET MODEL CHEMISTRY; INTERNAL-ROTATION; ALIPHATIC-ALDEHYDES; TORSIONAL
SPECTRA; AB-INITIO; ENERGIES; MOLECULES; KETONES; ROTORS; ETHANE
AB The origin of the barrier to methyl rotation in acetone has been
studied through natural bond orbital theory. The analysis is divided in
two parts, one involving the stability of bonds and lone pairs and
other involving hyperconjugative donor-acceptor interactions. In the
first part, we observed that the carbon-carbon bond of the rotor is
destabilized upon rotation, and it represents the largest contribution
to the barrier among bond energy and lone pair components, in
accordance to studies of similar molecules. In addition, lone pairs
were found to play an important role. The analysis of hyperconjugation
effects showed that interactions involving the out-of-plane sigma CH
orbitals and sigma and pi CO orbitals contribute to increase the
rotational barrier, while analogous interactions involving the in-plane
CH bond are either null or antibarrier forming. By excluding the
mentioned donor-acceptor interactions during geometry optimization, it
was possible to estimate their influence on bond and lone pair
stabilities. From this analysis, it was observed that the
destabilization of bonds and lone pairs upon rotation is determined by
some of the considered hyperconjugative interactions, which led us to
conclude that the latter are the primary source of the rotational
barrier. Finally, a simple set of canonical structures is proposed to
describe this effect. The model showed to be useful in the qualitative
understanding of the rotational barrier in similar systems and even of
conformational preferences. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Estadual Maringa, Dept Quim, BR-87020900 Maringa, Parana, Brazil.
Univ New Orleans, Dept Chem, New Orleans, LA 70148 USA.
Dillard Univ, Dept Phys, New Orleans, LA 70112 USA.
RP Basso, EA, Univ Estadual Maringa, Dept Quim, Av Colombo 5790,
BR-87020900 Maringa, Parana, Brazil.
EM eabasso@uem.br
CR ALLEN LC, 1971, J AM CHEM SOC, V93, P6373
ALLINGER NL, 1991, J AM CHEM SOC, V113, P4505
BELL S, 2000, J PHYS CHEM A, V104, P514
BERRY RJ, 1995, J PHYS CHEM-US, V99, P10511
CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
COOTE ML, 2002, J PHYS CHEM A, V106, P12124
COSSEBARBI A, 1978, J MOL STRUCT, V49, P181
CURTISS LA, 1991, J CHEM PHYS, V94, P7221
DALE J, 1966, TETRAHEDRON, V22, P3373
DURIG JR, 1976, J MOL SPECTROSC, V62, P159
FLETCHER R, 1963, COMPUT J, V6, P163
FOSTER JP, 1980, J AM CHEM SOC, V102, P7211
FRISCH MJ, 2001, GAUSSIAN 98 REVISION
GLENDENING ED, 1995, NBO 3 0 PROGRAM MANU
GOODMAN L, 1996, J PHYS CHEM-US, V100, P2770
GOODMAN L, 1999, ACCOUNTS CHEM RES, V32, P983
GRONER P, 1987, J CHEM PHYS, V86, P565
GUIRGIS GA, 1998, SPECTROCHIM ACTA A, V54, P123
GUO D, 1996, J PHYS CHEM-US, V100, P12540
HEHRE WJ, 1976, J AM CHEM SOC, V98, P664
HINDERAKER MP, 2003, PROTEIN SCI, V12, P1188
JORGENSEN WL, 1971, J AM CHEM SOC, V93, P568
KARABATSOS GJ, 1965, J AM CHEM SOC, V87, P2864
LOWE JP, 1970, J AM CHEM SOC, V92, P3799
LU KT, 1995, J CHEM PHYS, V102, P6787
MONTGOMERY JA, 1994, J CHEM PHYS, V101, P5900
NYDEN MR, 1981, J CHEM PHYS, V75, P1843
OZKABAK AG, 1990, J AM CHEM SOC, V112, P7854
OZKABAK AG, 1991, CHEM PHYS LETT, V176, P19
PETERSSON GA, 1991, J CHEM PHYS, V94, P6081
POPHRISTIC V, 2001, NATURE, V411, P565
REED AE, 1985, J CHEM PHYS, V83, P1736
REED AE, 1988, CHEM REV, V88, P899
REED AE, 1991, ISRAEL J CHEM, V31, P277
SMEYERS YG, 1984, J MOL STRUCT THEOCHE, V16, P3
SMEYERS YG, 1993, J CHEM PHYS, V98, P2754
SWALEN JD, 1959, J CHEM PHYS, V31, P1562
WEINHOLD F, 1999, J CHEM EDUC, V76, P1141
WEINHOLD F, 2001, CHEM ED RES PRACT EU, V2, P91
WEINHOLD F, 2001, NATURE, V411, P539
WIBERG KB, 1995, J AM CHEM SOC, V117, P2201
NR 41
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAY 31
PY 2004
VL 677
IS 1-3
BP 167
EP 171
PG 5
SC Chemistry, Physical
GA 820WR
UT ISI:000221420900024
ER
PT J
AU Longo, E
Orhan, E
Pontes, FM
Pinheiro, CD
Leite, ER
Varela, JA
Pizani, PS
Boschi, TM
Lanciotti, F
Beltran, A
Andres, J
TI Density functional theory calculation of the electronic structure of
Ba0.5Sr0.5TiO3: Photoluminescent properties and structural disorder
SO PHYSICAL REVIEW B
LA English
DT Article
ID THIN-FILM; ABO(3) PEROVSKITES; OPTICAL-PROPERTIES; LUMINESCENCE;
BATIO3; SRTIO3; MICROSTRUCTURE; ABSORPTION; TITANATE
AB First-principles quantum-mechanical techniques, based on density
functional theory (B3LYP level) were employed to study the electronic
structure of ordered and deformed asymmetric models for Ba0.5Sr0.5TiO3.
Electronic properties are analyzed and the relevance of the present
theoretical and experimental results on the photoluminescence behavior
is discussed. The presence of localized electronic levels in the band
gap, due to the symmetry break, would be responsible for the visible
photoluminescence of the amorphous state at room temperature. Thin
films were synthesized following a soft chemical processing. Their
structure was confirmed by x-ray data and the corresponding
photoluminescence properties measured.
C1 Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Estadual Paulista, Inst Quim, BR-14801907 Araraquara, SP, Brazil.
Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
RP Longo, E, Univ Fed Sao Carlos, Dept Quim, Caixa Postal 676, BR-13565905
Sao Carlos, SP, Brazil.
EM liec@dq.ufscar.br
CR BANIECKI JD, 1999, J EUR CERAM SOC, V19, P1457
BARBOSA GA, 1978, J OPT SOC AM, V68, P610
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BERGLUND CN, 1967, PHYS REV, V164, P790
BOUMA B, 1995, J PHYS CHEM SOLIDS, V56, P261
CARDONA M, 1965, PHYS REV A, V140, P651
CHO WS, 1998, J ALLOY COMPD, V268, P78
DIEN E, 1999, J EUR CERAM SOC, V19, P1349
EDEN S, 1999, RADIAT EFF DEFECT S, V149, P107
EGLITIS RI, 2002, EUR PHYS J B, V27, P483
EGLITIS RI, 2002, J PHYS-CONDENS MAT, V14, P3735
GHOSEZ P, 1998, PHYS REV B, V58, P6224
HEIFETS E, 2001, PHYS REV B, V64
KOKALJ A, 1999, J MOL GRAPH MODEL, V17, P176
LEE C, 1988, PHYS REV B, V37, P785
LEITE ER, 2000, ADV MATER OPT ELECTR, V10, P235
LEITE ER, 2002, APPL PHYS A-MATER, V74, P529
LEONELLI R, 1985, SOLID STATE COMMUN, V54, P505
MENG JF, 1995, PHYS LETT A, V205, P72
MO SD, 1999, PHYS REV B, V60, P2416
MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
PINTO H, 2002, PHYS REV B, V65
PIZANI PS, 2000, APPL PHYS LETT, V77, P824
PIZANI PS, 2002, APPL PHYS LETT, V81, P253
PONTES FM, 2000, ADV MATER OPT ELECTR, V10, P81
PONTES FM, 2000, J MATER RES, V15, P1176
PONTES FM, 2002, J APPL PHYS, V91, P5972
PONTES FM, 2002, MATER CHEM PHYS, V77, P598
SAHA S, 2000, PHYS REV B, V62, P8828
SAUNDERS VR, 1998, CRYSTAL98 USERS MANU
SHUVAEVA V, 2000, PHYS REV B, V62, P2969
WEMPLE SH, 1970, PHYS REV B, V2, P2679
YUZYUK YI, 2002, PHYS REV B, V66
ZHU W, 2000, SENSOR ACTUAT B-CHEM, V65, P366
NR 34
TC 12
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2004
VL 69
IS 12
AR 125115
DI ARTN 125115
PG 7
SC Physics, Condensed Matter
GA 818QG
UT ISI:000221259000041
ER
PT J
AU da Silva, EZ
Novaes, FD
da Silva, AJR
Fazzio, A
TI Theoretical study of the formation, evolution, and breaking of gold
nanowires
SO PHYSICAL REVIEW B
LA English
DT Article
ID QUANTIZED CONDUCTANCE; LARGE SYSTEMS; ELECTRON-GAS; ENERGY;
PSEUDOPOTENTIALS; OSCILLATIONS; METALS; WIRES; ATOMS
AB Real time imaging experiments with metal nanowires (NWs), in particular
gold under stress, that show their formation, evolution, and breaking,
were obtained with high resolution electron microscopy. In order to
understand these results, we use density functional theory (DFT) based
methods to simulate the evolution of Au NWs. First we use a
tight-binding molecular dynamics (TBMD) method to understand the
mechanisms of formation of very thin gold NWs. We present realistic
simulations for the breaking of these NWs, whose main features are very
similar to the experimental results. We show how defects lead to the
formation of one-atom constrictions in the Au NW, which evolves into a
one-atom-thick necklace chain. Similarly to the experimental results,
we obtain that these necklaces can get as long as five-atoms from apex
to apex. Before breaking, we obtain relatively large Au-Au bond
distances, of the order of 3.0-3.1 Angstrom. A further pull of the wire
causes a sudden increase of one of the bond distances, indicating the
breaking of the NW. To get some more insight into the electronic
structure aspects of this problem, we considered several of our
tight-binding structures before breaking and studied them in detail
using an ab initio method based on the DFT. By pulling the wire
quasi-statically in this case, we also observed the breaking of the
wire at similar distances as in the TBMD. This result was independent
of the exchange-correlation potential used-either the local density
approximation (LDA) or the generalized gradient approximation (GGA).
The pulling force before rupture was obtained as 2.4 nN for the LDA,
and 1.9 nN for the GGA. Finally, we also present a detailed analysis of
the electronic structure properties for the Au neck atoms, such as the
density of states and charge densities, for some configurations before
the rupture.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP da Silva, EZ, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
BR-13083970 Campinas, SP, Brazil.
EM zacarias@ifi.unicamp.br
ajrsilva@if.usp.br
fazzio@if.usp.br
CR AGRAIT N, 1993, PHYS REV B, V47
ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BAHN SR, 2002, PHYS REV B, V66
BRANDBYGE M, 1995, PHYS REV B, V52, P8499
DASILVA EZ, IN PRESS COMPUT MAT
DASILVA EZ, 2001, PHYS REV LETT, V87
GIMZEWSKI JK, 1987, PHYSICA C, V38, P1284
GULSEREN O, 1998, PHYS REV LETT, V80, P3775
HAKKINEN H, 1999, J PHYS CHEM B, V103, P8814
HAMMER B, 1999, PHYS REV B, V59, P7413
HEURICH J, 2002, PHYS REV LETT, V88
HOHENBERG P, 1964, PHYS REV, V136, B864
IIJIMA S, 1991, NATURE, V354, P56
KIRCHHOFF F, 2001, PHYS REV B, V63
KOHN W, 1965, PHYS REV, V140, A1133
KONDO Y, 1997, PHYS REV LETT, V79, P3455
KONDO Y, 2000, SCIENCE, V289, P606
KRESSE G, 1993, PHYS REV B, V47, R558
KRESSE G, 1996, PHYS REV B, V54, P11169
KRUGER D, 2002, PHYS REV LETT, V89
LANDMAN U, 1990, SCIENCE, V248, P454
LEGOAS SB, 2002, PHYS REV LETT, V88
MEHL MJ, 1996, PHYS REV B, V54, P4519
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
MORELAND J, 1992, PHYSICA C, V191, P485
MULLER CJ, 1992, PHYS REV LETT, V69, P140
NOVAES FD, 2003, PHYS REV LETT, V90
OHNISHI H, 1998, NATURE, V395, P780
ORDEJON P, 1996, PHYS REV B, V53
OSHIMA Y, 2002, PHYS REV B, V65
PARK H, 2000, NATURE, V407, P57
PERDEW JP, 1992, PHYS REV B, V45, P13244
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
REICHERT J, 2002, PHYS REV LETT, V88
RIBEIRO FJ, 2003, PHYS REV B, V68
RODRIGUES V, 2000, PHYS REV LETT, V85, P4124
RODRIGUES V, 2001, PHYS REV B, V63
RUBIOBOLLINGER G, 2001, PHYS REV LETT, V87
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANCHEZPORTAL D, 1999, PHYS REV LETT, V83, P3884
SERENA PA, 1997, NANOWIRES, V340
SKORODUMOVA NV, 2003, PHYS REV B, V67
TAKAI Y, 2001, PHYS REV LETT, V87
TORRES JA, 1999, SURF SCI LETT, V83, P441
TOSATTI E, 2001, SCIENCE, V291, P288
TROULLIER N, 1991, PHYS REV B, V43, P1993
VANDERBILT D, 1990, PHYS REV B, V41, P7892
WEBB RA, 1985, PHYS REV LETT, V54, P2696
WIESENDANGER R, 1994, SCANNING PROBE MICRO
YANSON AI, 1998, NATURE, V395, P783
NR 50
TC 14
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2004
VL 69
IS 11
AR 115411
DI ARTN 115411
PG 11
SC Physics, Condensed Matter
GA 812BC
UT ISI:000220814000125
ER
PT J
AU Shimizu, K
Chaimovich, H
Farah, JPS
Dias, LG
Bostick, DL
TI Calculation of the dipole moment for polypeptides using the generalized
born-electronegativity equalization method: Results in vacuum and
continuum-dielectric solvent
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID INITIO QUANTUM-CHEMISTRY; POLARIZABLE FORCE-FIELD; ATOMIC CHARGES;
FLUCTUATING CHARGE; MODEL; SOLVATION; PARAMETERIZATION; DISTRIBUTIONS;
POTENTIALS; MOLECULES
AB The electronegativity equalization methodology, EEM, is frequently used
to calculate the charge distribution and reactivity index (e.g., local
softness and hardness, condensed Fukui function) of molecules. However,
recent work (Chelli, R. et al., J. Chem. Phys. 1999, 111, 8569) has
shown a serious shortcoming of EEM in the prediction of the
polarizability for large molecules. In this paper, our goal is to show
that we can obtain a reliable dipole moment for polypeptides in vacuum
and continuum-dielectric solvent using the constrained charge
approximation and the generalized Born-electronegativity equalization
method. Different EEM parameterizations were tested and compared to the
expected values of the dipole moment vector operator as calculated at
the ab initio B3LYP/6-311G(d,p) level. One EEM parameterization
(Bakowies, D., Thiel, W., J. Comput. Chem. 1996, 17, 87) when used with
the constrained charge approximation and the generalized
Born-electronegativity equalization method was comparable to the CM1
charge model (Storer et al., J. Comput.-Aided Mol. Des. 1995, 9, 87) in
the prediction of the dipole moment vector in vacuum and
continuum-dielectric solvent, but was calculated with a much greater
computational efficiency.
C1 Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA.
Univ Sao Paulo, Inst Chem, Dept Chem, Sao Paulo, SP, Brazil.
Univ Sao Paulo, Inst Chem, Dept Biochem, Sao Paulo, SP, Brazil.
Univ N Carolina, Dept Phys, Chapel Hill, NC 27599 USA.
Univ N Carolina, Program Mol & Cell Biophys, Chapel Hill, NC 27599 USA.
RP Dias, LG, Univ N Carolina, Dept Chem, Venable Hall CB 3290, Chapel
Hill, NC 27599 USA.
EM lgdias@email.unc.edu
CR BAKOWIES D, 1996, J COMPUT CHEM, V17, P87
BANKS JL, 1999, J CHEM PHYS, V110, P741
BASHFORD D, 2000, ANNU REV PHYS CHEM, V51, P129
BONDI A, 1964, J PHYS CHEM-US, V68, P441
BOTTCHER CJF, 1952, THEORY ELECT POLARIZ
CHELLI R, 1999, J CHEM PHYS, V111, P8569
CHELLI R, 2002, J CHEM PHYS, V117, P9175
CHO KH, 2001, J PHYS CHEM B, V105, P3624
CONG Y, 2000, CHEM PHYS LETT, V316, P324
CRAMER CJ, 1999, CHEM REV, V99, P2161
DEPPMEIER BJ, 1999, MACSPARTAN PRO VL 02
DIAS LG, 2002, CHEM PHYS, V282, P237
FRISCH MJ, 2003, GAUSSIAN 03 REVISION
GASTEIGER J, 1980, TETRAHEDRON, V36, P3219
GHOSH A, 1998, J PHYS CHEM B, V102, P10983
HAWKINS GD, 1999, AMSOL VERSION 6 6
JORGENSEN ML, 1996, J AN CHEM SOC, V113, P11225
KAMINSKI GA, 2002, J COMPUT CHEM, V23, P1515
LIPINSKI J, 1996, CHEM PHYS LETT, V262, P449
MENEGON G, 2002, PHYS CHEM CHEM PHYS, V4, P5933
MORTIER WJ, 1986, J AM CHEM SOC, V108, P4315
NILAR SH, 1996, THEOCHEM-J MOL STRUC, V363, P97
PASCUALAHUIR JL, 1994, J COMPUT CHEM, V15, P1127
PEARSON RG, 1986, J AM CHEM SOC, V108, P6109
RIBEIRO MCC, 2000, J CHEM PHYS, V113, P4722
RICK SW, 1996, J AM CHEM SOC, V118, P672
SHARP K, 1992, J PHYS CHEM-US, V96, P3822
STERN HA, 1999, J PHYS CHEM B, V103, P4730
STORER JW, 1995, J COMPUT AID MOL DES, V9, P87
TOMASI J, 1994, CHEM REV, V94, P2027
YANG ZZ, 1997, J PHYS CHEM A, V101, P6315
YORK DM, 1996, J CHEM PHYS, V104, P159
NR 32
TC 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD APR 1
PY 2004
VL 108
IS 13
BP 4171
EP 4177
PG 7
SC Chemistry, Physical
GA 807TT
UT ISI:000220524500033
ER
PT J
AU Pliego, JR
Riveros, JM
TI Free energy profile of the reaction between the hydroxide ion and ethyl
acetate in aqueous and dimethyl sulfoxide solutions: A theoretical
analysis of the changes induced by the solvent on the different
reaction pathways
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; CARBOXYLIC-ACID ESTERS; GAS-PHASE
REACTION; BASE-CATALYZED-HYDROLYSIS; CARBONYL OXYGEN EXCHANGE;
SOLVATION FREE-ENERGY; ALKALINE-HYDROLYSIS; AB-INITIO; METHYL FORMATE;
REACTION-MECHANISMS
AB An extensive analysis of the free energy profile for the reaction of
the hydroxide ion with ethyl acetate in both aqueous and dimethyl
sulfoxide (DMSO) solutions has been carried out using ab initio
calculations and including the solvent effect by the polarizable
continuum model. Different reaction pathways were investigated, such as
the usual B(AC)2 mechanism, the carbanion mechanism, the elimination
mechanism, and the S(N)2 mechanism. Our calculation agrees with the
view that in aqueous and DMSO solution basic hydrolysis occurs by the
B(AC)2 mechanism. In water, the predicted activation free energy value
is 17.6 kcal mol(-1), which is in very good agreement with the
experimental value of 18.8 kcal mol(-1). Using a new parametrization of
the polarizable continuum model adequate to describe anions and neutral
species in DMSO, the present study predicts a rate enhancement by a
factor of 435 in the reaction when going from water (protic solvent) to
DMSO (dipolar aprotic solvent). In this solvent, the activation free
energy is predicted to drop to 14.0 kcal mol(-1). Furthermore, our
results point out that the elimination mechanism is only 6.0 kcal
mol(-1) (DeltaG(Sol)(double dagger) = 20.0 kcal mol(-1)) less favorable
than the B(AC)2 mechanism in DMSO solution, and 8.4 kcal mol(-1) less
favorable in water. The S(N)2 and the carbanion mechanisms have
barriers above 30 kcal mol(-1) in water and DMSO and are thus highly
unfavorable. These results suggest the elimination mechanism can become
the dominant pathway in the basic hydrolysis of sterically crowded
esters at the carbonyl center.
C1 Univ Fed Santa Catarina, Dept Quim, CFM, BR-88040900 Florianopolis, SC, Brazil.
Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Pliego, JR, Univ Fed Santa Catarina, Dept Quim, CFM, BR-88040900
Florianopolis, SC, Brazil.
EM josef@qmc.ufsc.br
jmmigra@iq.usp.br
CR ALMERINDO GI, 2004, J PHYS CHEM A, V108, P166
BAKOWIES D, 1999, J AM CHEM SOC, V121, P5712
BARONE V, 1997, J CHEM PHYS, V107, P3210
BASAIF S, 1989, J AM CHEM SOC, V111, P2647
BENDER ML, 1956, J AM CHEM SOC, V78, P317
BENDER ML, 1958, J AM CHEM SOC, V80, P1044
BERNARDI F, 1993, J ORG CHEM, V58, P750
BORDWELL FG, 1988, ACCOUNTS CHEM RES, V21, P456
BRUICE TC, 1968, J AM CHEM SOC, V90, P7136
CANCES E, 1997, J CHEM PHYS, V107, P3032
CHANDRASEKHAR J, 2002, J PHYS CHEM B, V106, P8078
COSSI M, 1996, CHEM PHYS LETT, V255, P327
CUCCOVIA IM, 2000, J CHEM SOC PERK T 2, P1896
DEJAEGERE A, 1994, J CHEM SOC FARADAY T, V90, P1763
FRISCH MJ, 1994, GAUSSIAN 94
FUCHS R, 1974, J PHYS CHEM-US, V78, P1509
GUTHRIE JP, 1974, J AM CHEM SOC, V96, P3608
HABERFIELD P, 1972, J AM CHEM SOC, V94, P71
HAEFFNER F, 1999, J MOL STRUC-THEOCHEM, V459, P85
HILL TL, 1960, INTRO STAT THERMODYN
JENCKS WP, 1972, CHEM REV, V72, P705
JOHNSON SL, 1967, ADV PHYS ORG CHEM, V5, P237
JORGENSEN WL, 1987, ACS SYM SER, V353, P200
KAHN K, 2003, J PHYS CHEM B, V107, P6876
LINSTROM PJ, 2003, NIST CHEM WEBBOOK
LONGO RL, 2001, J BRAZIL CHEM SOC, V12, P52
LOPEZ X, 2003, J PHYS CHEM A, V107, P2304
MASSOVA I, 1999, J PHYS CHEM B, V103, P8628
MCMURRY J, 1976, ORG REACTIONS, V24, P187
MILLER WH, 1980, J CHEM PHYS, V72, P99
MUKHTAR TA, 2001, BIOCHEMISTRY-US, V40, P8877
OBRIEN JF, 1995, J PHYS CHEM-US, V99, P12759
PARKER AJ, 1969, CHEM REV, V69, P1
PENG Z, 1993, J AM CHEM SOC, V115, P9640
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
PLIEGO JR, 2001, CHEM-EUR J, V7, P169
PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
PLIEGO JR, 2002, CHEM PHYS LETT, V355, P543
PLIEGO JR, 2002, CHEM-EUR J, V8, P1945
PLIEGO JR, 2002, J PHYS CHEM A, V106, P371
PLIEGO JR, 2002, J PHYS CHEM A, V106, P7434
PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
PRANATA J, 1994, J PHYS CHEM-US, V98, P1180
REPIC O, 2001, ORG PROCESS RES DEV, V5, P519
ROBERTS DD, 1965, J ORG CHEM, V30, P3516
ROUX A, 1980, J SOLUTION CHEM, V9, P59
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SHAIN SA, 1968, J AM CHEM SOC, V90, P5848
SLEBOCKATILK H, 2002, CAN J CHEM, V80, P1343
SLEBOCKATILK H, 2003, J AM CHEM SOC, V125, P1851
SMITH MB, 2001, MARCHS ADV ORGANIC C
TANTILLO DJ, 1999, J ORG CHEM, V64, P3066
TOMASI J, 1994, CHEM REV, V94, P2027
TOMASI J, 1999, INT J QUANTUM CHEM, V75, P783
TOMASI J, 2002, PHYS CHEM CHEM PHYS, V4, P5697
WU ZJ, 2003, J AM CHEM SOC, V125, P3642
ZHAN CG, 2000, J AM CHEM SOC, V122, P1522
ZHAN CG, 2000, J AM CHEM SOC, V122, P2621
ZHAN CG, 2000, J PHYS CHEM A, V104, P7672
NR 60
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD APR 1
PY 2004
VL 108
IS 13
BP 2520
EP 2526
PG 7
SC Chemistry, Physical
GA 807TR
UT ISI:000220524300024
ER
PT J
AU Machado, AM
Masili, M
TI Variationally stable calculations for molecular systems:
Polarizabilities and two-photon ionization cross section for the
hydrogen molecule
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MATRIX-FLOQUET THEORY; INTENSE LASER FIELDS; MULTIPHOTON IONIZATION;
H-2 MOLECULE; DYNAMIC POLARIZABILITIES; DIPOLE POLARIZABILITIES;
OPTICAL-PROPERTIES; WAVE-FUNCTIONS; H-ATOM; HYPERPOLARIZABILITIES
AB The variationally stable method of Gao and Starace [B. Gao and A. F.
Starace, Phys. Rev. Lett. 61, 404 (1988); Phys. Rev. A 39, 4550 (1989)]
has been applied for the first time to the study of multiphoton
processes in molecular systems. The generalization in theory is
presented, as well as the calculation of properties such as the static
and dynamic polarizabilities of the hydrogen molecule and the
generalized two-photon ionization cross section. The Schwinger
variational iterative method [R. R. Lucchese and V. McKoy, Phys. Rev. A
21, 112 (1980)] has been applied in the achievement of the
photoelectron wave function, while a Hartree-Fock representation has
been used for the target. This research has been motivated by the
scarceness of ab initio calculations of molecular multiphoton
ionization cross sections in the literature. (C) 2004 American
Institute of Physics.
C1 Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
Ctr Univ Cent Paulista, BR-13563470 Sao Carlos, SP, Brazil.
RP Machado, AM, Univ Sao Paulo, Inst Fis Sao Carlos, Caixa Postal 369,
BR-13560970 Sao Carlos, SP, Brazil.
CR APALATEGUI A, 2002, J PHYS B-AT MOL OPT, V35, P1909
BERNS RM, 1981, MOL PHYS, V44, P1215
BISHOP DM, 1980, J CHEM PHYS, V72, P5125
BISHOP DM, 1987, PHYS REV A, V36, P2171
BISHOP DM, 1990, REV MOD PHYS, V62, P343
BONIN KD, 1994, INT J MOD PHYS B, V8, P3313
BURKE PG, 1991, J PHYS B ATOM MOL PH, V24, P761
BURKE PG, 2000, J PHYS B-AT MOL OPT, V33, P143
CAFFAREL M, 1993, PHYS REV A, V47, P3704
COLGAN J, 2001, J PHYS B-AT MOL OPT, V34, P2089
DALGARNO A, 1955, P ROY SOC LOND A MAT, V233, P70
FORD AL, 1973, PHYS REV A, V7, P418
GAO B, 1988, PHYS REV LETT, V61, P404
GAO B, 1989, PHYS REV A, V39, P4550
GAO B, 1990, J OPT SOC AM B, V7, P622
GIUSTISUZOR A, 1995, J PHYS B-AT MOL OPT, V28, P309
JASZUNSKI M, 1984, MOL PHYS, V52, P1209
JIANG TF, 1988, PHYS REV A, V38, P2347
KOBUS J, 2001, J PHYS B-AT MOL OPT, V34, P5127
KOLOS W, 1960, REV MOD PHYS, V32, P219
KOLOS W, 1967, J CHEM PHYS, V46, P1426
KULANDER KC, 1996, PHYS REV A, V53, P2562
LAMBROPOULOS P, 1998, PHYS REP, V305, P203
LANGHOFF PW, 1970, J CHEM PHYS, V52, P1435
LIU CR, 1992, PHYS REV A, V46, P5985
LUCCHESE RR, 1980, PHYS REV A, V21, P112
MACHADO LE, 1999, J CHEM PHYS, V110, P7228
MADSEN LB, 1998, J PHYS B-AT MOL OPT, V31, P87
MASILI M, 2000, PHYS REV A, V62
MASILI M, 2003, PHYS REV A, V68
MONZANI AL, 1999, PHYS REV A, V60, R21
PAN C, 1990, PHYS REV A, V41, P6271
PAPADOPOULOS MG, 1995, J CHEM PHYS, V102, P371
PLUMMER M, 1995, J PHYS B-AT MOL OPT, V28, P4073
PURVIS J, 1993, PHYS REV LETT, V71, P3943
REINSCH EA, 1985, J CHEM PHYS, V83, P5784
RYCHLEWSKI J, 1980, CHEM PHYS LETT, V73, P135
SAENZ A, 1999, J PHYS B-AT MOL OPT, V32, P5629
SAUER SPA, 1991, INT J QUANTUM CHEM, V39, P667
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SOBRINHO AA, 2001, J MOL STRUC-THEOCHEM, V539, P65
STARACE AF, 1987, PHYS REV A, V36, P1705
STASZEWSKA G, 2002, J MOL SPECTROSC, V212, P208
VANGISBERGEN SJA, 1998, PHYS REV A, V57, P2556
NR 44
TC 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD APR 22
PY 2004
VL 120
IS 16
BP 7505
EP 7511
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 810AA
UT ISI:000220676000032
ER
PT J
AU Costa, LAS
Rocha, WR
De Almeida, WB
Dos Santos, HF
TI The solvent effect on the aquation processes of the
cis-dichloro(ethylenediammine)platinum(II) using continuum solvation
models
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; ORGANIC-MOLECULES;
AB-INITIO; APPROXIMATION; DNA
AB The present Letter describes a systematic analysis of the solvent
effect on the hydrolysis process of an important cisplatin analogue
(cis-DEP). Self-consistent reaction field continuum models were used to
include the solvent effect at the HF, DFT and MP2 levels of theory. A
disagreement between the gas phase calculated (k(2) = 1.92 x 10(-11)
M-1 s(-1)) and experimental (k(2) = 4.4 x 10(-5) M-1 s(-1)) rate
constant for the second aquation reaction of cis-DEP was recently
reported by us. The value calculated in aqueous solution at the PCM-MP2
level was 2.87 x 10(-5) M-1 s(-1) in perfect accordance with
experiment. Calculations using spherical cavity SCRF model require
inclusion of high order multipole terms (up to octupole). (C) 2004
Elsevier B.V. All rights reserved.
C1 Univ Fed Juiz Fora, ICE, Dept Quim, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Minas Gerais, Dept Quim, ICEx, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
EPCAR, DEPENS, Dept Ensino Aeronaut, Comando Aeronaut, BR-36200000 Barbacena, MG, Brazil.
Univ Fed Pernambuco, CCEN, Dept Quim Fundamental, BR-50670901 Recife, PE, Brazil.
RP Dos Santos, HF, Univ Fed Juiz Fora, ICE, Dept Quim, NEQC, Campus Univ
Martelos, BR-36036330 Juiz De Fora, MG, Brazil.
EM helius@quimica.ufjf.br
CR BARONE V, 1997, J CHEM PHYS, V107, P3210
BONDI A, 1964, J PHYS CHEM-US, V68, P441
COLEY RF, 1973, INORG CHIM ACTA, V7, P573
CONNORS KA, 1990, CHEM KINETICS, P200
COSSI M, 1996, CHEM PHYS LETT, V255, P327
COSTA LAS, 2003, J CHEM PHYS, V118, P10584
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
FREY U, 1993, INORG CHEM, V32, P1333
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HAMBLEY TW, 2001, J CHEM SOC DALT 1007, P2711
HAY PJ, 1985, J CHEM PHYS, V82, P299
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
KIRKWOOD JG, 1938, J CHEM PHYS, V6, P506
MILLER SE, 1991, INORG CHIM ACTA, V190, P135
MUNK VP, 2003, INORG CHEM, V42, P3582
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
ORVILLETHOMAS WJ, 1972, INTERNAL ROTATION MO, P498
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1992, PHYS REV B, V46, P6671
RAYMOND E, 2002, MOL CANCER THER, V1, P227
WONG E, 1999, CHEM REV, V99, P2451
NR 21
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAR 21
PY 2004
VL 387
IS 1-3
BP 182
EP 187
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 804AV
UT ISI:000220272500032
ER
PT J
AU de Lazaro, S
Longo, E
Sambrano, JR
Beltran, A
TI Structural and electronic properties of PbTiO3 slabs: a DFT periodic
study
SO SURFACE SCIENCE
LA English
DT Article
DE lead; titanium oxide; density functional calculations; surface
electronic phenomena (work function; surface potential, surface states,
etc.); semiconducting surfaces
ID THIN-FILMS; VISIBLE PHOTOLUMINESCENCE; FERROELECTRIC MEMORIES;
PEROVSKITE TITANATES; SURFACE RELAXATION; ABO(3) PEROVSKITES;
FUNCTIONAL THEORY; DENSITY; BATIO3; BULK
AB Structural and electronic properties of the bulk and relaxed surfaces
(TiO2 and PbO terminated) of cubic PbTiO3 are investigated by means of
periodic quantum-mechanical calculations based on density functional
theory. It is observed that the difference in surface energies is small
and relaxations effects are most prominent for Ti and Ph surface atoms.
The electronic structure shows a splitting of the lowest conduction
bands for the TiO2 terminated surface and of the highest valence bands
for the PbO terminated slab. The calculated indirect band gap is: 3.18,
2.99 and 3.03 eV for bulk, TiO2 and PbO terminations, respectively. The
electron density maps show that the Ti-O bond has a partial covalent
character, whereas the Pb-O bonds present a very low covalency. (C)
2004 Elsevier B.V. All rights reserved.
C1 Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Estadual Paulista, Lab Simulacao Mol, BR-17033360 Bauru, SP, Brazil.
RP Sambrano, JR, Univ Jaume I, Dept Ciencies Expt, POB 6029, Castello
12080, Spain.
EM sambrano@fc.unesp.br
beltran@exp.uji.es
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BELTRAN A, 2001, CHEM PHYS LETT, V338, P224
BELTRAN A, 2001, SURF SCI, V490, P116
BIRCH F, 1978, J GEOPHYS RES, V83, P1257
CHEN ZX, 2001, CHEM PHYS, V270, P253
CHEN ZX, 2001, J PHYS CHEM B, V105, P5766
CHEN ZX, 2002, J PHYS CHEM B, V106, P9986
CHENG C, 2000, PHYS REV B, V62, P10409
COHEN RE, 2000, J PHYS CHEM SOLIDS, V61, P139
COX PA, 1998, ELECT STRUCTURE CHEM
DOVESI R, 1998, CRYSTAL98 USERS MANU
DURAND P, 1975, THEOR CHIM ACTA, V38, P283
GARCIA A, 1996, PHYS REV B, V54, P3817
GLAZER AM, 1978, ACTA CRYSTALLOGR B, V34, P1065
GONIAKOWSKI J, 1996, PHYS REV B, V53, P957
HEIFETS E, 1999, SURF REV LETT, V6, P1215
HEIFETS E, 2000, SURF SCI, V462, P19
HEIFETS E, 2001, PHYS REV B, V64
HEIFETS E, 2002, SURF SCI, V513, P211
HU CH, 1998, ENCY COMPUTATIONAL C
KOKALJ A, 1999, J MOL GRAPH MODEL, V17, P176
KRMAR M, 2003, PHYS REV B, V68
LANCIOTTI F, 2002, APPL PHYS A-MATER, V74, P787
LEE C, 1988, PHYS REV B, V37, P785
LEE SY, 2001, J CRYST GROWTH, V226, P247
LEITE ER, 2001, APPL PHYS LETT, V78, P2148
MEYER B, 1999, FARADAY DISCUSS, V114, P395
MURALT P, 2000, J MICROMECH MICROENG, V10, P136
MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
NELDER JA, 1965, COMPUT J, V7, P308
PISANI C, 1988, HARTREEFOCK AB INITI
PIZANI PS, 2000, APPL PHYS LETT, V77, P824
PIZANI PS, 2002, APPL PHYS LETT, V81, P253
SANI A, 2002, J PHYS-CONDENS MAT, V14, P10601
SCHWARTZ RN, 1995, APPL PHYS LETT, V67, P1352
SCOTT JF, 1989, SCIENCE, V246, P1400
SCOTT JF, 1989, SCIENCE, V246, P1549
SCOTT JF, 1995, PHYS WORLD, V8, P46
SENSATO FR, 2002, SURF SCI, V511, P408
TSENG YK, 1998, APPL PHYS LETT, V72, P3285
TYBELL T, 1998, APPL PHYS LETT, V72, P1454
ZHAO Q, 2002, SURF COAT TECH, V160, P173
NR 42
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD MAR 10
PY 2004
VL 552
IS 1-3
BP 149
EP 159
PG 11
SC Chemistry, Physical
GA 801VI
UT ISI:000220123000019
ER
PT J
AU Scopel, WL
da Silva, AJR
Orellana, W
Fazzio, A
TI Comparative study of defect energetics in HfO2 and SiO2
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; THERMAL-STABILITY; THIN-FILMS;
MOLECULAR-DYNAMICS; METALS; SUBSTRATE; SI(100); HAFNIUM; OXIDES; ZRO2
AB We perform ab initio calculations, based on density functional theory,
for substitutional and vacancy defects in the monoclinic hafnium oxide
(m-HfO2) and alpha-quartz (SiO2). The neutral oxygen vacancies and
substitutional Si and Hf defects in HfO2 and SiO2, respectively, are
investigated. Our calculations show that, for a large range of Hf
chemical potential, Si substitutional defects are most likely to form
in HfO2, leading to the formation of a silicate layer at the HfO2/Si
interface. We also find that it is energetically more favorable to form
oxygen vacancies in SiO2 than in HfO2, which implies that
oxygen-deficient HfO2 grown on top of SiO2 will consume oxygen from the
SiO2. (C) 2004 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Scopel, WL, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
EM fazzio@if.usp.br
CR BASTOS KP, 2002, APPL PHYS LETT, V81, P1669
BINGGELI N, 1991, PHYS REV B, V44, P4771
BUSH BW, 2002, MAT RES B, V27, P206
CALLEGARI A, 2001, J APPL PHYS, V90, P6466
CHO M, 2002, APPL PHYS LETT, V81, P3630
CHO MH, 2002, APPL PHYS LETT, V81, P472
FOSTER AS, 2002, PHYS REV B, V65
FOSTER AS, 2002, PHYS REV LETT, V89
GUTOWSKI M, 2002, APPL PHYS LETT, V80, P1897
JEON TS, 2001, APPL PHYS LETT, V78, P368
KANG J, 2003, PHYS REV B, V68
KATO H, 2002, J APPL PHYS, V92, P1106
KRESSE G, 1993, PHYS REV B, V47, P558
KRESSE G, 1993, PHYS REV B, V48, P13115
KRESSE G, 1996, COMP MATER SCI, V6, P15
LEE JH, 2002, PHYS REV B, V66
MISA V, 2002, MRS BULL, V27, P212
MULLER DA, 1999, NATURE, V399, P758
ORELLANA W, 2001, PHYS REV LETT, V87
ORELLANA W, 2003, PHYS REV LETT, V90
PARK BK, 2002, APPL PHYS LETT, V80, P2368
PARK J, 2002, J ELECTROCHEM SOC, V149, G89
PERDEW JP, 1992, PHYS REV B, V46, P6671
VANDERBILT D, 1990, PHYS REV B, V41, P7892
WANG SJ, 2003, APPL PHYS LETT, V82, P2047
NR 25
TC 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD MAR 1
PY 2004
VL 84
IS 9
BP 1492
EP 1494
PG 3
SC Physics, Applied
GA 778WJ
UT ISI:000189264100020
ER
PT J
AU Silva, CHTP
Almeida, P
Taft, CA
TI Density functional and docking studies of retinoids for cancer treatment
SO JOURNAL OF MOLECULAR MODELING
LA English
DT Article
DE density functional; docking; cancer treatment
ID NUCLEAR RECEPTOR; AB-INITIO; ACID; GAMMA; SELECTIVITY; ANALOGS;
BINDING; ALPHA
AB The retinoic acid receptor (RAR) and retinoid X receptor (RXR) are
members of the nuclear receptor superfamily. The ligand-binding domain
contains the ligand-dependent activation function. The isotypes
RARalpha,beta and gamma are distinct pharmacological targets for
retinoids involved in the treatment of various cancers and skin
diseases. There is thus considerable interest in synthetic retinoids
with isotype selectivity and reduced side effects. In this work we have
focused on the retinoid acid receptor and three of its panagonists. We
have carried out density functional geometry optimizations at the
B3LYP/6-31G* level, computed two types of atomic charges and also
electrostatic potentials. A docking program was used to investigate the
interactions between the receptor and the three ligands. A
theoretically more potent inhibitor, which was obtained by modifying
one of the retinoic acids investigated, is proposed.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
Univ Sao Paulo, Inst Fis Sao Carlos, Sao Carlos, SP, Brazil.
Inst Ciencias Saude, Dept Ciencias Biointeracao, Lab Biotecnol & Ecol Microrganismos, Salvador, BA, Brazil.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150,
BR-22290180 Rio De Janeiro, Brazil.
EM taft@cbpf.br
CR *ACC, 2000, INS 2 US GUID VERS 2
ADAMS J, 1993, NEUROTOXICOL TERATOL, V15, P193
ALLENBY G, 1994, J BIOL CHEM, V269, P16689
ARISSAWA M, 2003, INT J QUANTUM CHEM, V93, P422
BLANEY FE, 1999, INT J QUANTUM CHEM, V73, P97
EWING TJA, 2001, J COMPUT AID MOL DES, V15, P411
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 2002, GAUSSIAN 98 REVISION
GUDAS LJ, 1994, J BIOL CHEM, V269, P15399
HIXSON EJ, 1978, TOXICOL APPL PHARM, V44, P29
KLAHOLZ BP, 2000, J MOL BIOL, V302, P155
KLAHOLZ BP, 2000, P NATL ACAD SCI USA, V97, P6322
LEVIN AA, 1992, NATURE, V355, P359
MANGELSDORF DJ, 1990, NATURE, V345, P224
MARTINS JBL, 1998, INT J QUANTUM CHEM, V69, P117
MARTINS JBL, 2002, INT J QUANTUM CHEM, V90, P575
MOON RC, 1994, RETINOIDS BIOL CHEM, P573
MUCCIO DD, 1996, J MED CHEM, V39, P3625
NAZDAN AM, 1995, REPORTS MED CHEM, V30, P119
PAVAO AC, 2001, J PHYS CHEM A, V105, P5
PETKOVICH M, 1987, NATURE, V330, P444
PONDER MS, 2001, J MOL STRUC-THEOCHEM, V549, P39
ROSEN J, 1995, J MED CHEM, V38, P4855
ZHANG XK, 1992, NATURE, V358, P587
NR 24
TC 5
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 0948-5023
J9 J MOL MODEL
JI J. Mol. Model.
PD FEB
PY 2004
VL 10
IS 1
BP 38
EP 43
PG 6
SC Chemistry, Multidisciplinary; Computer Science, Interdisciplinary
Applications; Biochemistry & Molecular Biology; Biophysics
GA 774RK
UT ISI:000188998200007
ER
PT J
AU Gracia, L
Andres, J
Safont, VS
Beltran, A
TI DFT study of the reaction between VO2+ and C2H6
SO ORGANOMETALLICS
LA English
DT Review
ID POTENTIAL-ENERGY SURFACES; OXIDE CLUSTER CATIONS; GAS-PHASE CHEMISTRY;
ELECTRONIC-STRUCTURE ASPECTS; C-H BOND; SPIN-FORBIDDEN PROCESSES;
VANADIUM-OXIDE; AB-INITIO; TRANSITION-STATES; CROSSING POINTS
AB The molecular mechanisms of the reaction VO2+ ((1)A(1)/(3)A'') + C2H6
((1)A(g)) to yield V(OH)(2)(+) ((1)Sigma(+)/(3)Sigma(-)) + C2H4
((1)A(g)) and/or VO+ ((1)Delta/(3)Sigma) + H2O ((1)A(1)) + C2H4 (Ag-1)
have been investigated with density functional theory (DFT) at the
B3LYP/6-311G(2d,p) level. Calculations including geometry optimization,
vibrational analysis, and Gibbs free energy for the stationary points
on the reactive potential energy surfaces at both the singlet (s) and
first excited triplet (t) electronic states have been carried out. The
most thermodynamically and kinetically favorable pathway is the
formation of t-V(OH)(2)(+) + C2H4 along a four-step molecular mechanism
(insertion, two consecutive hydrogen transfers, and elimination). A
crossing point between s and t electronic states has been
characterized. A comparison with previous works on VO2+ + C2H4 (Gracia
et al. J. Phys. Chem. A 2003, 107, 3107-3120) and VO2+ + C3H8 (Engeser
et al. Organometallics 2003, 22, 3933-3943) reactions allows us a
rationalization of the different reactivity patterns. The catalytic
role of water molecules in the tautomerization process between hydrated
oxide cation, VO(H2O)(+,) and dihydroxide cation, V(OH)(2)(+), is
achieved by a water-assisted mechanism.
C1 Univ Jaume I, Dept Ciencias Expt, Castello 12080, Spain.
Univ Estadual Paulista, Lab Simulacao Mol, BR-17033360 Bauru, SP, Brazil.
RP Andres, J, Univ Jaume I, Dept Ciencias Expt, Box 224, Castello 12080,
Spain.
EM andres@exp.uji.es
CR ANGLADA JM, 1996, J AM CHEM SOC, V118, P4636
ANGLADA JM, 1997, J COMPUT CHEM, V18, P992
ARGYLE MD, 2002, J PHYS CHEM B, V106, P5421
ARMENTROUT PB, 1991, SCIENCE, V251, P175
ASCHI M, 1998, CHEM COMMUN 0307, P531
ASCHI M, 1999, J CHEM SOC PERK JUN, P1059
ASCHI M, 2000, INT J MASS SPECTROM, V201, P151
ASCHI M, 2001, CHEM PHYS, V265, P251
ASMIS KR, 2002, PHYS CHEM CHEM PHYS, V4, P1101
BARRIENTOS C, 1999, CHEM PHYS LETT, V306, P168
BEARPARK MJ, 1994, CHEM PHYS LETT, V223, P269
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BELL RC, 1998, J PHYS CHEM A, V102, P1733
BELL RC, 1998, J PHYS CHEM A, V102, P8293
BELL RC, 1999, J CLUST SCI, V10, P509
BELL RC, 1999, J PHYS CHEM A, V103, P1585
BELL RC, 1999, J PHYS CHEM A, V103, P2992
BELL RC, 2001, J CHEM PHYS, V114, P798
BOHME DK, 1992, INT J MASS SPECTROM, V115, P95
BOTTOMLEY F, 1988, ADV ORGANOMET CHEM, V28, P339
CALATAYUD M, 2001, CHEM PHYS LETT, V333, P493
CALATAYUD M, 2001, J PHYS CHEM A, V105, P9760
CALATAYUD M, 2001, THEOR CHEM ACC, V105, P299
CARTER EA, 1988, J PHYS CHEM-US, V92, P5679
CASSADY CJ, 1992, ORGANOMETALLICS, V11, P2367
CHANG AHH, 1993, J CHEM PHYS, V99, P6824
CORNEHL HH, 1997, CHEM-EUR J, V3, P1083
CUI Q, 1997, CHEM PHYS LETT, V272, P319
DANOVICH D, 1997, J AM CHEM SOC, V119, P1773
DAVIDSON ER, 2000, CHEM REV, V100, P351
DUNN KM, 1996, J PHYS CHEM-US, V100, P123
ELLER K, 1991, CHEM REV, V91, P1121
ENGESER M, 2003, ORGANOMETALLICS, V22, P3933
ESCRIBANO VS, 1990, J PHYS CHEM-US, V94, P8945
FARAZDEL A, 1991, J COMPUT CHEM, V12, P276
FIEDLER A, 1994, J AM CHEM SOC, V116, P10734
FIEDLER A, 1996, J AM CHEM SOC, V118, P9941
FIELICKE A, 2002, PHYS CHEM CHEM PHYS, V4, P2621
FOLTIN M, 1999, J CHEM PHYS, V111, P9577
FRISCH MJ, 1998, GAUSSIAN98 REVISION
FUKUI K, 1970, J PHYS CHEM-US, V74, P4161
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
GRACIA L, 2003, J PHYS CHEM A, V107, P3107
GREEN JC, 2002, J CHEM SOC DALTON, P1861
HARVEY JN, 1998, THEOR CHEM ACC, V99, P95
HARVEY JN, 1999, INT J MASS SPECTROM, V182, P85
HARVEY JN, 1999, PHYS CHEM CHEM PHYS, V1, P5555
HARVEY JN, 2000, J AM CHEM SOC, V122, P12401
HARVEY NH, 2000, COMPUTATIONAL ORGANO, P291
HEINEMANN C, 1996, INORG CHEM, V35, P2463
HENRICH VE, 1994, SURFACE SCI METAL OX, V45
HESS JS, 2002, J AM CHEM SOC, V124, P2454
IJJAALI F, 2001, PHYS CHEM CHEM PHYS, V3, P179
IRIKURA KK, 1989, J AM CHEM SOC, V111, P75
JENSEN F, 1992, J AM CHEM SOC, V114, P1596
KALEDIN AL, 1999, J CHEM PHYS, V111, P5004
KOGA N, 1985, CHEM PHYS LETT, V119, P371
KOOI SE, 1999, J PHYS CHEM A, V103, P5671
KOYANAGI GK, 2001, J PHYS CHEM A, V105, P4259
KRETZSCHMAR I, 1997, INT J MASS SPECTROM, V167, P103
KRETZSCHMAR I, 1997, J PHYS CHEM A, V101, P6252
LEE C, 1988, PHYS REV B, V37, P785
LEGROGNEC E, 2001, CHEM-EUR J, V7, P4572
LINKE D, 2002, J CATAL, V205, P16
MANAA MR, 1991, J CHEM PHYS, V95, P1808
MCIVER JW, 1974, ACCOUNTS CHEM RES, V7, P72
MUSAEV DG, 1996, J PHYS CHEM-US, V100, P11600
NGUYEN KA, 1993, J CHEM PHYS, V98, P3845
OGLIARO F, 2000, J AM CHEM SOC, V122, P8977
OIESTAD EL, 2000, J PHYS CHEM A, V104, P8382
OYAMA ST, 1990, J PHYS CHEM-US, V94, P5022
OYAMA ST, 1993, CATALYTIC SELECTIVE
PLATTNER DA, 1999, ANGEW CHEM INT EDIT, V38, P82
POLI R, 2003, CHEM SOC REV, V32, P1
POPE RM, 1992, ORGANOMETALLICS, V11, P2001
POPE RM, 1993, ORG MASS SPECTROM, V28, P1616
POPLE JA, 1987, J CHEM PHYS, V87, P5968
RAO CNR, 1995, TRANSITION METAL OXI
REED AE, 1985, J CHEM PHYS, V83, P735
REED AE, 1988, CHEM REV, V88, P899
RICCA A, 1997, J PHYS CHEM A, V101, P8949
RUTH K, 1998, J CATAL, V175, P16
SADYGOV RG, 1997, J CHEM PHYS, V107, P4994
SCHALLEY CA, 1998, J PHYS CHEM A, V102, P1021
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
SCHRODER D, 1994, INORG CHEM, V33, P5094
SCHRODER D, 1998, CHEM-EUR J, V4, P2550
SCHRODER D, 2000, ACCOUNTS CHEM RES, V33, P139
SCHRODER D, 2000, METAL OXO METAL PERO, P91
SHAIK S, 1995, HELV CHIM ACTA, V78, P1393
SHILOV AE, 1997, CHEM REV, V97, P2879
SHILOV AE, 1999, ACCOUNTS CHEM RES, V32, P763
SHIOTA Y, 2000, J AM CHEM SOC, V122, P12317
SMITH KM, 2000, NEW J CHEM, V24, P77
SMITH KM, 2001, CHEM-EUR J, V7, P1679
STEVENS JE, 1998, J CHEM PHYS, V108, P1452
TORRENT M, 2000, CHEM REV, V100, P439
VANKOPPEN PAM, 1990, J AM CHEM SOC, V112, P5663
VANKOPPEN PAM, 1991, J AM CHEM SOC, V113, P2359
VANKOPPEN PAM, 1994, J AM CHEM SOC, V116, P3780
VYBOISHCHIKOV SF, 2000, J PHYS CHEM A, V104, P10913
VYBOISHCHIKOV SF, 2001, J PHYS CHEM A, V105, P8588
WARREN DK, 1996, HETEROGENEOUS HYDROC
WESENDRUP R, 1995, ANGEW CHEM INT EDIT, V34, P2033
WILSEY S, 1999, J PHYS CHEM A, V103, P1669
YARKONY DR, 1993, J PHYS CHEM-US, V97, P4407
YARKONY DR, 1996, J PHYS CHEM-US, V100, P18612
YOSHIZAWA K, 1999, J AM CHEM SOC, V121, P147
YOSHIZAWA K, 1999, J CHEM PHYS, V111, P535
ZEMSKI KA, 2001, J PHYS CHEM A, V105, P10237
ZEMSKI KA, 2002, J PHYS CHEM B, V106, P6136
ZIEGLER T, 2002, J CHEM SOC DALT 0307, P642
NR 113
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD FEB 16
PY 2004
VL 23
IS 4
BP 730
EP 739
PG 10
SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
GA 772ZF
UT ISI:000188872700015
ER
PT J
AU Larico, R
Justo, JF
Machado, WVM
Assali, LVC
TI An ab initio investigation on nickel impurities in diamond
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE diamond; synthetic diamond; transition metals; nickel impurities
ID SYNTHETIC DIAMOND; POINT-DEFECTS; NI; CENTERS; TRANSITION; EPR
AB We carried out a theoretical investigation on the electronic and
structural properties of substitutional and interstitial nickel
impurities in diamond. The atomic structures, symmetries, acceptor and
donor transition energies, and formation energies of isolated Ni in
diamond were computed using a total energy all electron ab initio
methodology. Compared to available experimental data on the
electrically and optically active centers in synthetic diamond, our
results provide a new interpretation for the microscopic structure of
those active centers. (C) 2003 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Sao Paulo, Escola Politecn, BR-05424970 Sao Paulo, Brazil.
RP Assali, LVC, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
EM lassali@if.usp.br
CR BARBOSA KO, 2001, PHYSICA B, V308, P726
BEELER F, 1990, PHYS REV B, V41, P1603
BLAHA P, 1999, WIEN97 FULL POTENTIA
GERSTMANN U, 1999, PHYSICA B, V274, P632
HOFMANN DM, 1994, PHYS REV B, V50, P17618
HOFMANN DM, 1995, MATER SCI FORUM, V196, P79
ISOYA J, 1990, PHYS REV B, V41, P3905
ISOYA J, 1990, PHYS REV B, V42, P9843
JINLONG Y, 1994, PHYS REV B, V49, P15525
KOHN W, 1965, PHYS REV, V140, A1133
LOWTHER JE, 1995, PHYS REV B, V51, P91
LUDWIG GW, 1962, SOLID STATE PHYS, V13, P223
MASON PW, 1999, PHYS REV B, V60, P5417
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
NAZARE MH, 1991, PHYS REV B, V43, P14196
NAZARE MH, 2001, PHYSICA B, V308, P616
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
NR 17
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD DEC 31
PY 2003
VL 340
BP 84
EP 88
PG 5
SC Physics, Condensed Matter
GA 765TR
UT ISI:000188300200012
ER
PT J
AU Assali, LVC
Machado, WVM
Justo, JF
TI Transition metal impurities in 3C-SiC and 2H-SiC
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE silicon carbide; transition metals; LAPW methods
ID ELECTRONIC-PROPERTIES; SIC POLYTYPES; SILICON-CARBIDE; BAND-GAP; LEVEL;
TI; CENTERS; STATES; PAIRS; CR
AB The electronic and structural properties of 3d transition metal (TM)
impurities in 3C-SiC and 2H-SiC have been investigated by ab initio
calculations. The stability, spin states, formation and transition
energies of isolated Ti, V, and Cr impurities in several charge states
were computed. Our results were compared to available experimental
data. (C) 2003 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Sao Paulo, Escola Politecn, BR-05424970 Sao Paulo, Brazil.
RP Assali, LVC, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
EM lassali@if.usp.br
CR ACHTZIGER N, 1998, PHYS REV B, V57, P12181
ASSALI LVC, 1998, PHYS REV B, V58, P3870
BARANOV PG, 1999, PHYS SOLID STATE+, V41, P783
BARBOSA KO, 2001, PHYSICA B, V308, P726
BARBOSA KO, 2003, THESIS U SAO PAULO
BAUR J, 1997, PHYS STATUS SOLIDI A, V162, P153
BLAHA P, 1999, WIEN97 FULL POTENTIA
DALIBOR T, 1997, PHYS STATUS SOLIDI A, V162, P199
EVWARAYE AO, 1995, APPL PHYS LETT, V67, P3319
HOHENBERG P, 1964, PHYS REV B, V136, P864
JUSTO JF, 1999, INT J MOD PHYS B, V13, P2387
LEBEDEV AA, 1999, SEMICONDUCTORS+, V33, P107
MITCHEL WC, 1999, J APPL PHYS, V86, P5040
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
PASOLD G, 2000, MATER SCI FORUM, V353, P471
PATRICK L, 1974, PHYS REV B, V10, P5091
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
QTEISH A, 1993, PHYSICA B, V185, P366
RESHANOV SA, 2001, DIAM RELAT MATER, V10, P2035
SULEIMANOV YM, 2001, PHYSICA B, V308, P714
NR 20
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD DEC 31
PY 2003
VL 340
BP 116
EP 120
PG 5
SC Physics, Condensed Matter
GA 765TR
UT ISI:000188300200018
ER
PT J
AU Trasferetti, BC
Davanzo, CU
de Moraes, MAB
TI Infrared and Raman studies on films of organosiloxane networks produced
by PECVD
SO MACROMOLECULES
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; VIBRATIONAL-SPECTRA; PLASMA
POLYMERIZATION; SILICA FILM; AB-INITIO; OXYGEN; SPECTROSCOPY;
ABSORPTION; NITROGEN
AB The effect of the incorporation of oxygen and nitrogen on the structure
of films obtained by PECVD of hexamethyldisiloxane (HMDSO)-He-N-2 and
HMDSO-He-O-2 mixtures is investigated using infrared and Raman
spectroscopies. From transmittance spectra of films deposited onto
single-crystal KBr disks, the transverse optical (TO) and longitudinal
optical (LO) functions in the mid-infrared region were calculated. To
correlate structural aspects with the observed LO-TO splittings, an
identification analysis of functional group based on the infrared and
Raman literature was made. It was concluded that the structure of the
films deposited from HMDSO-He-O-2 discharges was strongly dependent on
the proportion of oxygen in the gas feed. In the absence of oxygen,
i.e., for a discharge of a HMDSO-He mixture, the resulting film
consisted of a network of interconnected siloxane and carbosilane
units. Addition of O-2 precluded the formation of methylene bridges and
induced the formation of a material enriched with Si-O-Si groups. Films
formed from the HMDSO-He-N-2 plasmas, on the other hand, consisted
mainly of interconnected siloxane and carbosilane units in addition to
a small quantity of silazane units. On the basis of these results, we
propose an interpretation for the variation of the LO-TO splitting
amplitude for the asymmetrical stretching mode (AS1) of Si-O in Si-O-Si
groups as a function of the oxygen or nitrogen incorporation into the
films.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Davanzo, CU, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
BR-13083970 Campinas, SP, Brazil.
EM celso@iqm.unicamp.br
CR ALEXANDER MR, 1997, J PHYS CHEM B, V101, P3614
ANDERSON DR, 1974, ANAL SILICONES
BELLAMY LJ, 1975, INFRA RED SPECTRA CO
BERREMAN DW, 1963, PHYS REV, V130, P2193
CALZAFERRI G, 1994, J CHEM SOC DA, P3123
DACRUZ NC, 1998, J POLYM SCI POL PHYS, V36, P1873
DECIUS JC, 1968, J CHEM PHYS, V49, P1387
FLEISCHER H, 1999, J PHYS CHEM A, V103, P727
FURUSAWA T, 2001, ELECTROCHEM SOLID ST, V4, G31
GREEN ML, 1994, APPL PHYS LETT, V65, P848
GUITON TA, 1993, COLLOID SURFACE A, V74, P33
HAWRANEK JP, 1976, SPECTROCHIM ACTA A, V32, P99
HEAVENS O, 1964, PHYS THIN FILMS, V2, P120
HINDS BJ, 1998, J NONCRYST SOLIDS, V227, P507
INAGAKI N, 1983, J POLYM SCI POL CHEM, V21, P1847
JONES LH, 1991, J PHYS CHEM-US, V95, P2701
KAMITSOS EI, 1993, PHYS REV B, V48, P12499
KIRK CT, 1988, PHYS REV B, V38, P1255
KITTEL C, 1996, INTRO SOLID STATE PH
LEWIS HGP, 2000, CHEM MATER, V12, P3488
LEWIS HGP, 2001, J ELECTROCHEM SOC, V148, F212
MAGNI D, 2001, J PHYS D APPL PHYS, V34, P87
MARCHAND A, 1962, J CHIM PHYS PCB, V59, P1142
MARCOLLI C, 1999, APPL ORGANOMET CHEM, V13, P213
MATSUYAMA H, 1994, J APPL POLYM SCI, V51, P689
MCKEAN DC, COMMUNICATION
MCKEAN DC, 1970, SPECTROCHIM ACTA A, V26, P1815
MCKEAN DCC, 1999, SPECTROCHIM ACTA A, V55, P1485
ONO H, 1999, APPL PHYS LETT, V74, P203
PAI PG, 1986, J VAC SCI TECHNOL A, V4, P689
PASQUARELLO A, 1997, PHYS REV LETT, V79, P1766
PRYCE LHG, 2000, CHEM MATER, V12, P3488
RAU C, 1994, THIN SOLID FILMS, V249, P28
RIGNANESE GM, 1997, PHYS REV LETT, V79, P5174
SARNTHEIN J, 1997, SCIENCE, V275, P1925
SCARLETE M, 1994, CHEM MATER, V6, P977
SMITH AL, 1984, APPL SPECTROSC, V38, P822
SUGAHARA S, 1999, JPN J APPL PHYS 1, V38, P1428
SUGAHARA S, 2001, J ELECTROCHEM SOC, V148, F120
TEN YS, 1989, J PHYS CHEM-US, V93, P7208
THEIL JA, 1994, J VAC SCI TECHNOL 1, V12, P1365
THEIRICH D, 2003, J VACUUM, V71, P348
TRANSFERETTI B, 2003, J PHYS CHEM B, V107, P10699
TRASFERETTI BC, 2000, APPL SPECTROSC, V54, P502
TSU DV, 1989, PHYS REV B, V40, P1795
USAMI K, 2000, P 7 INT S QUANT EFF
WOLFE DM, 1999, J VAC SCI TECHNOL 2, V17, P2170
WROBEL AM, 1980, J MACROMOL SCI CHEM, V14, P321
WROBEL AM, 1983, J MACROMOL SCI CHEM, V20, P583
YAMAMOTO K, 1994, VIB SPECTROSC, V8, P1
NR 50
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD JAN 27
PY 2004
VL 37
IS 2
BP 459
EP 466
PG 8
SC Polymer Science
GA 766NU
UT ISI:000188383100034
ER
PT J
AU Larico, R
Assali, LVC
Machado, WVM
Justo, JF
TI Isolated nickel impurities in diamond: A microscopic model for the
electrically active centers
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SYNTHETIC DIAMOND; NI; EPR; ABSORPTION; PRESSURE; SITE
AB We present a theoretical investigation on the structural and electronic
properties of isolated nickel impurities in diamond. The atomic
structures, symmetries, formation and transition energies, and
hyperfine parameters of isolated interstitial and substitutional Ni
were computed using ab initio total energy methods. Based on our
results, we ultimately propose a consistent microscopic model which
explains several experimentally identified nickel-related active
centers in diamond. (C) 2004 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Sao Paulo, Escola Politecn, BR-05424970 Sao Paulo, Brazil.
RP Assali, LVC, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
EM lassali@if.usp.br
CR ANGUS JC, 1988, SCIENCE, V241, P913
BARBOSA KO, 2001, PHYSICA B, V308, P726
BLAHA P, 1999, WIEN97 FULL POTENTIA
COLLINS AT, 1989, J PHYS-CONDENS MAT, V1, P439
DAVIES G, 1989, EUROPHYS LETT, V9, P47
GOSS J, 1995, MATER SCI FORUM, V196, P67
HOFMANN DM, 1994, PHYS REV B, V50, P17618
HOFMANN DM, 1995, MATER SCI FORUM, V196, P79
HOHENBERG P, 1964, PHYS REV, V136, B864
ISOYA J, 1990, PHYS REV B, V41, P3905
ISOYA J, 1990, PHYS REV B, V42, P9843
JINLONG Y, 1994, PHYS REV B, V49, P15525
KOHN W, 1965, PHYS REV, V140, A1133
LOWTHER JE, 1995, PHYS REV B, V51, P91
LUDWIG GW, 1962, SOLID STATE PHYS, V13, P223
MASON PW, 1999, PHYS REV B, V60, P5417
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
NADOLINNY VA, 1999, J PHYS-CONDENS MAT, V11, P7357
NAZARE MH, 1991, PHYS REV B, V43, P14196
NAZARE MH, 2001, PHYSICA B, V308, P616
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
SINGH DJ, 1994, PLANEWAVES PSEUDOPOT
TWITCHEN DJ, 2000, PHYS REV B, V61, P9
NR 23
TC 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 2
PY 2004
VL 84
IS 5
BP 720
EP 722
PG 3
SC Physics, Applied
GA 767WX
UT ISI:000188497800026
ER
PT J
AU da Silva, LB
Fagan, SB
Mota, R
TI Ab initio study of deformed carbon nanotube sensors for carbon monoxide
molecules
SO NANO LETTERS
LA English
DT Article
ID LARGE SYSTEMS; ENERGETICS
AB Deformed single-wall carbon nanotubes (SWCNT) are investigated through
ab initio simulations as sensors to detect the presence of chemical
gases. Although the viability of using undeformed SWCNT devices has
been demonstrated for many molecules, there are important exceptions of
toxic gases, such as carbon monoxide, which are not detectable by these
sensors. To overcome this problem, recent interesting propositions have
been presented based on doping of impurity atoms into SWCNT. In this
paper, an alternative method is proposed using radial deformation,
which induces fundamental changes on the electronic properties of
SWCNT, allowing functionalization of the tube surface to detect the
presence of CO molecules.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil.
RP Mota, R, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
Brazil.
EM mota@ccne.ufsm.br
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BAIERLE RJ, 2001, PHYS REV B, V64
FAGAN SB, 2003, DIAM RELAT MATER, V12, P861
FAGAN SB, 2003, MATER CHARACT, V50, P183
FAGAN SB, 2003, NANO LETT, V3, P289
FAGAN SB, 2003, PHYS REV B, V67
KONG J, 2001, ADV MATER, V13, P1384
ORDEJON P, 1996, PHYS REV B, V53
PENG S, 2003, NANO LETT, V3, P513
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANKEY OF, 1989, PHYS REV B, V40, P3979
TROULLIER N, 1991, PHYS REV B, V43, P1993
NR 13
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JAN
PY 2004
VL 4
IS 1
BP 65
EP 67
PG 3
SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
GA 764YA
UT ISI:000188233200013
ER
PT J
AU Almerindo, GI
Tondo, DW
Pliego, JR
TI Ionization of organic acids in dimethyl sulfoxide solution: A
theoretical ab initio calculation of the pK(a) using a new
parametrization of the polarizable continuum model
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID COMPLETE BASIS-SET; DENSITY-FUNCTIONAL THEORY; QUANTUM-MECHANICAL
CALCULATIONS; SOLVATION FREE-ENERGY; CARBOXYLIC-ACIDS;
AQUEOUS-SOLUTION; GAS-PHASE; THERMODYNAMIC CYCLES; ALIPHATIC-ALCOHOLS;
HALOACETIC ACIDS
AB The pK(a) values of over 41 organic acids in dimethyl sulfoxide (DMSO)
solution were calculated using ab initio electronic structure methods
at MP2 and MP4 levels of electron correlation and including basis set
of 6-31+G(d) and 6-311+G(2df,2p) quality. The solvation was included
through the polarizable continuum model (PCM), using the recent
parametrization of Pliego and Riveros. The root-mean-square (RMS) error
over this set of molecules having different functional groups is only
2.2 units. A linear fit on this data set decreases this error by only
0.2 units, indicating that this empirical correction is not necessary.
The major error in the calculated pK(a) value was -5.3 units for the
CH3SO3H solute. Halogenated carboxylic acids have also presented a high
deviation (similar to4 units). An explanation for these high deviations
is the possibility of strong hydrogen-bond formation involving the
neutral acid molecule and DMSO. The pK(a) values were also calculated
using a combination of theoretical solvation data with experimental
gas-phase data. In this case, the RMS error increased to 2.3 units for
a set of 36 acids. Our results show that the performance of the PCM
model with a fixed atomic radius in DMSO solution is very superior to
its performance in aqueous solution, which is a behavior that can be
attributed to the presence of strong and specific solute-solvent
interactions of ionic solutes with water molecules. In addition, no
extensive parametrization of the PCM model is needed to describe the
solvation of anions in DMSO solution.
C1 Univ Fed Santa Catarina, Dept Quim, BR-88040900 Florianopolis, SC, Brazil.
RP Pliego, JR, Univ Fed Santa Catarina, Dept Quim, BR-88040900
Florianopolis, SC, Brazil.
EM josef@qmc.ufsc.br
CR ASHTHAGIRI D, 2003, CHEM PHYS LETT, V371, P613
BORDWELL FG, 1988, ACCOUNTS CHEM RES, V21, P456
CHIPMAN DM, 2002, J PHYS CHEM A, V106, P7413
COSSI M, 1996, CHEM PHYS LETT, V255, P327
CURUTCHET C, 2001, J COMPUT CHEM, V22, P1180
DASILVA CO, 1999, INT J QUANTUM CHEM, V74, P417
DASILVA CO, 1999, J PHYS CHEM A, V103, P11194
GAO JL, 1996, J AM CHEM SOC, V118, P4912
GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
GRANOVSKY A, 2003, PC GAMESS
JANG YH, 2001, J PHYS CHEM A, V105, P274
JORGENSEN WL, 1987, J AM CHEM SOC, V109, P6857
JORGENSEN WL, 1989, J AM CHEM SOC, V111, P4190
KALLIES B, 1997, J PHYS CHEM B, V101, P2959
KAWATA M, 1995, CHEM PHYS LETT, V240, P199
KLICIC JJ, 2002, J PHYS CHEM A, V106, P1327
LI J, 1996, INORG CHEM, V35, P4694
LI JB, 1998, CHEM PHYS LETT, V288, P293
LI JB, 1999, THEOR CHEM ACC, V103, P9
LIM C, 1991, J PHYS CHEM-US, V95, P5610
LINSTROM PJ, 2003, 69 NIST
LIPTAK MD, 2001, INT J QUANTUM CHEM, V85, P727
LIPTAK MD, 2001, J AM CHEM SOC, V123, P7314
LIPTAK MD, 2002, J AM CHEM SOC, V124, P6421
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
MARTIN RL, 1998, J PHYS CHEM A, V102, P3565
NAMAZIAN M, 2003, THEOCHEM, V620, P257
PERAKYLA M, 1999, PHYS CHEM CHEM PHYS, V1, P5643
PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
PLIEGO JR, 2002, CHEM PHYS LETT, V355, P543
PLIEGO JR, 2002, J PHYS CHEM A, V106, P7434
PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
PLIEGO JR, 2003, CHEM PHYS LETT, V367, P145
REICHARDT C, 1988, SOLVENTS SOLVENT EFF
RICHARDSON WH, 1997, INT J QUANTUM CHEM, V61, P207
SARACINO GAA, 2003, CHEM PHYS LETT, V373, P411
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHUURMANN G, 1998, J PHYS CHEM A, V102, P6706
SCHUURMANN G, 1999, CHEM PHYS LETT, V302, P471
SHAPLEY WA, 1998, J PHYS CHEM B, V102, P1938
SILVA CO, 2000, J PHYS CHEM A, V104, P2402
TOMASI J, 1999, INT J QUANTUM CHEM, V75, P783
TOMASI J, 2002, PHYS CHEM CHEM PHYS, V4, P5697
TOPOL IA, 1997, J PHYS CHEM A, V101, P10075
TOPOL IA, 2000, J PHYS CHEM A, V104, P866
TOPOL IA, 2000, J PHYS CHEM A, V104, P9619
TOTH AM, 2001, J CHEM PHYS, V114, P4595
TUNON I, 1992, J PHYS CHEM-US, V96, P9043
TUNON I, 1993, J AM CHEM SOC, V115, P2226
WIBERG KB, 1996, J COMPUT CHEM, V17, P185
WIBERG KB, 2000, J PHYS CHEM A, V104, P7625
NR 52
TC 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JAN 8
PY 2004
VL 108
IS 1
BP 166
EP 171
PG 6
SC Chemistry, Physical
GA 760MU
UT ISI:000187838500024
ER
PT J
AU Jorge, FE
Autschbach, J
Ziegler, T
TI On the origin of the optical activity in the d-d transition region of
tris-bidentate Co(III) and Rh(III) complexes
SO INORGANIC CHEMISTRY
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; CIRCULAR-DICHROISM SPECTRA; CO-ORDINATION
COMPOUNDS; METAL-COMPLEXES; CRYSTAL-STRUCTURE; COBALT(III) COMPLEXES;
RESPONSE THEORY; ROTATORY POWER; ABSOLUTE-CONFIGURATIONS; CHIROPTICAL
PROPERTIES
AB Time-dependent density functional theory (TD-DFT) has been employed to
calculate the rotatory strengths in the d-d transition region for
various tris-bidentate Co(III) and Rh(III) complexes. Optimized
structural parameters are also reported. Our results confirm a
previously proposed relationship between the azimuthal distortion of a
complex containing saturated tris(diamine) and its optical activity.
Formally d-d transitions are forbidden and should not exhibit optical
activity. However, it is shown here that the intensity of these bands
originates from a coupling of even ligand combination (participating in
the e(g) type LUMO) and an odd ligand combination (participating in the
t(2g) HOMO). For complexes containing planar unsaturated ligands, the
signs of the d-d bands observed from the single-crystal circular and
linear dichroisms are in accordance with the TD-DFT predictions. It is
shown that by using hypothetical Co(NH3)(6)(3+) complexes it is
possible to estimate the contribution from the azimuthal distortion to
the total rotatory strengths of the saturated tris(diamine) complexes.
A discussion is also provided of previous theoretical studies and the
way in which these investigations rationalized the optical activity.
C1 Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada.
Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES, Brazil.
SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA.
RP Ziegler, T, Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada.
EM ziegler@ucalgary.ca
CR AUTSCHBACH J, 2002, J CHEM PHYS, V116, P6930
AUTSCHBACH J, 2002, J CHEM PHYS, V116, P891
AUTSCHBACH J, 2002, J CHEM PHYS, V117, P581
AUTSCHBACH J, 2003, INORG CHEM, V42, P2867
BALLHAUSEN CJ, 1979, MOL ELECT STRUCTURES, P195
BAUERNSCHMITT R, 1996, CHEM PHYS LETT, V256, P454
BECKE AD, 1988, PHYS REV A, V38, P3098
BUTLER KR, 1971, J CHEM SOC A, P565
CASIDA ME, 1995, RECENT ADV DENSITY F, V1
CONDON EU, 1937, J CHEM PHYS, V5, P753
DIEDRICH C, 2003, J PHYS CHEM A, V107, P2524
DOBSON JF, 1998, ELECT DENSITY FUNCTI
EVANS RS, 1974, INORG CHEM, V13, P2185
FURCHE F, 2000, J AM CHEM SOC, V122, P1717
GORELSKY SI, 2001, J ORGANOMET CHEM, V635, P187
GROSS EKU, 1990, ADV QUANTUM CHEM, V21, P255
GROSS EKU, 1996, TOP CURR CHEM, V181, P81
GUERRA CF, 1995, METHODS TECHNIQUES C
IWATA M, 1969, ACTA CRYSTALLOGR B, V25, P2562
JAMORSKI C, 1996, J CHEM PHYS, V104, P5134
JUDKINS RR, 1974, INORG CHEM, V13, P945
KARIPIDES AG, 1964, J CHEM PHYS, V40, P674
KRUGER GJ, 1974, ACTA CRYSTALLOGR B, V30, P822
KURODA R, 1974, ACTA CRYSTALLOGR B, V30, P2126
KURODA R, 1976, B CHEM SOC JPN, V49, P433
LIEHR AD, 1964, J PHYS CHEM-US, V68, P665
MASON SF, 1965, CHEM COMMUN, P48
MASON SF, 1971, J CHEM SOC A, P667
MASON SF, 1973, FUNDAMENTAL ASPECTS
MASON SF, 1976, MOL PHYS, V31, P755
MCCAFFERY AJ, 1965, J CHEM SOC, P2883
MOFFITT W, 1956, J CHEM PHYS, V25, P1189
MOUCHARAFIEH NC, 1978, INORG CHEM, V17, P1220
NAGAO R, 1973, ACTA CRYSTALLOGR B, V29, P2438
NAKATSU K, 1962, B CHEM SOC JPN, V35, P832
PATCHKOVSKII S, 2002, J CHEM PHYS, V116, P7806
PERDEW JP, 1986, PHYS REV B, V33, P8822
PIPER TS, 1962, MOL PHYS, V5, P475
POPLE JA, 1979, INT J QUANTUM CHEM S, V13, P225
RICCIARDI G, 2000, J PHYS CHEM A, V104, P635
RICCIARDI G, 2001, J PHYS CHEM A, V105, P5242
RICHARDSON FS, 1971, J CHEM PHYS, V54, P2453
RICHARDSON FS, 1972, INORG CHEM, V11, P2366
ROSA A, 1999, J AM CHEM SOC, V121, P10356
ROSA A, 2001, J PHYS CHEM A, V105, P3311
SAITO Y, 1974, COORDIN CHEM REV, V13, P305
SHINADA M, 1964, J PHYS SOC JPN, V19, P1607
SOLOMON EI, 1999, INORGANIC ELECT STR, V2
SOLOMON EI, 1999, INORGANIC ELECT STRU, V1
STIEFEL EI, 1972, INORG CHEM, V11, P434
STRICKLAND RW, 1973, INORG CHEM, V12, P1025
TEVELDE G, 2001, J COMPUT CHEM, V22, P931
VANGISBERGEN SJA, 1995, J CHEM PHYS, V103, P9347
VANGISBERGEN SJA, 1999, COMPUT PHYS COMMUN, V118, P119
VANGISBERGEN SJA, 1999, J PHYS CHEM A, V103, P6835
VANGISBERGEN SJA, 2000, J COMPUT CHEM, V21, P1511
VONDREELE RB, 1971, AM CHE SOC, V93, P4936
VOSKO SH, 1980, CAN J PHYS, V58, P1200
ZIEGLER T, 2002, J CHEM SOC DALT 0307, P642
NR 59
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD DEC 29
PY 2003
VL 42
IS 26
BP 8902
EP 8910
PG 9
SC Chemistry, Inorganic & Nuclear
GA 759LX
UT ISI:000187740100044
ER
PT J
AU Carauta, ANM
de Souza, V
Hollauer, E
Tellez, CA
TI Vibrational study of dialkylphosphonates: di-n-propyl- and
di-i-propylphosphonates by semiempirical and ab initio methods
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE dialkylphosphonates; vibrational spectra; semiempirical AM1; ab initio
RHF/6-31G
ID ORGANOPHOSPHORUS COMPOUNDS; CONFORMATIONAL STABILITY; INFRARED-SPECTRA;
FORCE-FIELD; PHOSPHONATE; COMPLEXES; FREQUENCIES; RAMAN; ASSIGNMENTS;
DIESTER
AB Fourier transform infrared and Fourier transform Raman spectra of
n-C3H7 and i-C3H7 dialkylphosphonates have been obtained. Semiempirical
AM1 and the ab initio orbital molecular RHF/6-31G* theories have been
used to study the molecular geometry, and the harmonic vibrational
spectra with the purpose to assist the experimental assignments of
these compounds. An extensive discussion on the assignment of the C-C,
C-O, P-O and P=O stretching is carried out based on experimental data
of compounds which have the propyl and isopropyl groups, as well as
comparing the vibrational spectra of propane. Most of the RHF/6-31G*
and AM1 results, once applied the appropriate scaling factor, showed an
excellent agreement with the experimental wavenumbers. A few calculated
frequencies related to CC and CO stretching do not agree well with the
experimental trends. (C) 2003 Elsevier B.V. All rights reserved.
C1 Univ Fed Fluminense, Inst Quim, Dept Quim Geral & Inorgan, BR-24210150 Rio De Janeiro, Brazil.
INMETRO, Rio De Janeiro, Brazil.
Univ Fed Fluminense, Dept Quim Fis, Inst Quim, BR-24210150 Rio De Janeiro, Brazil.
RP Tellez, CA, Univ Fed Fluminense, Inst Quim, Dept Quim Geral & Inorgan,
Morro do Valonguinho S-N,Niteroi Ctr, BR-24210150 Rio De Janeiro,
Brazil.
CR BEELAMY LJ, 1952, J CHEM SOC, P475
BONE R, 1991, BIOCHEMISTRY-US, V30, P2263
BROYDEN CG, 1970, J I MATH APPL, V6, P222
CAO G, 1991, CHEM MATER, V3, P149
CHHIBA M, 1996, J MOL STRUCT, V384, P55
COOLIDGE MB, 1991, J COMPUT CHEM, V12, P948
DAASCH LW, 1951, ANAL CHEM, V23, P853
DESOUZA MC, 1995, THESIS IME BRAZIL
DEWAR MJS, 1978, J AM CHEM SOC, V100, P3607
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DURIG JR, 1992, J MOL STRUCT THEOCHE, V261, P133
DURIG JR, 1992, J RAMAN SPECTROSC, V23, P107
DURIG JR, 1994, J RAMAN SPECTROSC, V25, P132
DURIG JR, 1994, J RAMAN SPECTROSC, V25, P327
DURIG JR, 1995, J MOL STRUCT, V19, P350
DURIG JR, 1996, J MOL STRUCT, V375, P53
FELCMAN J, 2001, SYN REACT INORG MET, V31, P507
FLETCHER R, 1970, COMPUT J, V13, P317
FLORIAN J, 1998, J AM CHEM SOC, V120, P7959
GOLDFARB D, 1970, MATH COMPUT, V24, P23
GONZALEZ L, 1998, J CHEM PHYS, V109, P2685
HARKINS PC, 1996, J INORG BIOCHEM, V61, P25
HERLINGER AW, 1998, POLYHEDRON, V17, P1471
HIRSCHMANN R, 1997, J AM CHEM SOC, V119, P8177
KIM CU, 1991, J ORG CHEM, V56, P2642
KIM H, 1991, BIOCHEMISTRY-US, V30, P8171
KOCH R, 1995, J ORG CHEM, V60, P5861
MCCOMBIE H, 1945, J CHEM SOC, P380
MISRA AK, 1965, J APPL CHEM-USSR, V28, P187
RIES UJ, 1992, CHEM PHYS LIPIDS, V61, P225
SAINZDIAZ CI, 1995, J ORG CHEM, V60, P74
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SHANNO DF, 1970, MATH COMPUT, V24, P647
SNYDER RG, 1963, SPECTROCHIM ACTA, V19, P85
SNYDER RG, 1965, SPECTROCHIM ACTA, V21, P169
STAWINSKI J, 1991, NUCLEOS NUCLEOT, V10, P511
STEWART JJP, 1993, MOPAC 93 MANUAL REVI
SVERDLOV LM, 1974, VIBRATIONAL SPECTRA
TELLEZ CA, 2000, SPECTROCHIM ACTA A, V56, P1563
TELLEZ CA, 2000, SPECTROCHIM ACTA A, V56, P653
THOMAS LC, 1974, INTERPRETATION INFRA
NR 42
TC 3
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JAN
PY 2004
VL 60
IS 1-2
BP 41
EP 51
PG 11
SC Spectroscopy
GA 759RK
UT ISI:000187750500006
ER
PT J
AU De Abreu, HA
De Almeida, WB
Duarte, HA
TI pK(a) calculation of poliprotic acid: histamine
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; COMPLETE BASIS-SET; CORRELATION-ENERGY;
AB-INITIO; N-HYDROXYACETAMIDE; SOLVATION METHODS; GAS-PHASE; DENSITY;
IONS; APPROXIMATION
AB Various theoretical studies have been reported addressing the
performance of solvation models available to estimate pK(a) values.
However, no attention has been paid so far to the role played by the
electronic, thermal and solvation energy individual contributions to
the Gibbs free energy of the deprotonation process. In this work, we
decompose the total Gibbs free energy into three distinct terms and
then evaluate the dependence of each contribution on the level of
theory employed for its determination using different levels of theory.
The three possible pK(a)s of histamine have been estimated and compared
with available experimental data. We found that the electronic energy
term is sensitive to the level of theory and basis set, and, therefore,
could be also a source of error in the theoretical calculation of
pK(a)s. (C) 2003 Elsevier B.V. All rights reserved.
C1 UFMG, ICEx, Dept Quim, LQC MM, BR-31270901 Belo Horizonte, MG, Brazil.
RP Duarte, HA, UFMG, ICEx, Dept Quim, LQC MM, Av Antonio Carlos 6627,
BR-31270901 Belo Horizonte, MG, Brazil.
CR 1992, HDB CHEM PHYS
ADAM KR, 2002, J PHYS CHEM A, V106, P11963
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BRODSKAYA E, 2002, J PHYS CHEM B, V106, P6479
CHEN JG, 1998, J ORG CHEM, V63, P4611
CHIPMAN DM, 2002, J PHYS CHEM A, V106, P7413
COOKSON RF, 1974, CHEM REV, V74, P5
COSSI M, 1996, CHEM PHYS LETT, V255, P327
DOSSANTOS HF, 2002, CHEM PHYS, V280, P31
DOSSANTOS HF, 2002, THEOR CHEM ACC, V107, P229
DUARTE HA, 1998, J INORG BIOCHEM, V72, P71
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HOLMES F, 1962, J CHEM SOC, P2818
HOLMES F, 1969, J CHEM SOC, P113
KARMACHARYA R, 2001, J PHYS CHEM A, V105, P2563
KINSER RD, 2002, J PHYS CHEM A, V106, P9925
KLAMT A, 2003, J PHYS CHEM A, V107, P9380
LEE C, 1988, PHYS REV B, V37, P785
LIM C, 1991, J PHYS CHEM-US, V95, P5610
LIPTAK MD, 2001, J AM CHEM SOC, V123, P7314
MEJIAS JA, 2000, J CHEM PHYS, V113, P7306
MIEHLICH B, 1989, CHEM PHYS LETT, V157, P200
PERAKYLA M, 1996, J ORG CHEM, V61, P7420
PERDEW JP, 1986, PHYS REV B, V33, P8822
PLIEGO JR, 2000, CHEM PHYS LETT, V332, P597
PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
PLIEGO JR, 2003, CHEM PHYS LETT, V367, P145
SANTOS JMD, 2003, J INORG BIOCHEM, V95, P14
SARACINO GAA, 2003, CHEM PHYS LETT, V373, P411
SILVA CO, 1999, J PHYS CHEM A, V103, P11194
SZABO A, 1989, MODERN QUANTUM CHEM
TOTH AM, 2001, J CHEM PHYS, V114, P4595
NR 33
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JAN 1
PY 2004
VL 383
IS 1-2
BP 47
EP 52
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 759TL
UT ISI:000187752900010
ER
PT J
AU Schimpl, J
Petrilli, HM
Blochl, PE
TI Nitrogen binding to the FeMo-cofactor of nitrogenase
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AUGMENTED-WAVE METHOD; AZOTOBACTER-VINELANDII NITROGENASE;
DENSITY-FUNCTIONAL THEORY; IRON-MOLYBDENUM COFACTOR; ATOMIC-LEVEL
MECHANISM; MOFE-PROTEIN; KLEBSIELLA-PNEUMONIAE; MOLECULAR-DYNAMICS;
CENTRAL LIGAND; CRYSTALLOGRAPHIC STRUCTURE
AB Density functional calculations are presented to unravel the first
steps of nitrogen fixation of nitrogenase. The individual steps leading
from the resting state to nitrogen binding at the FeMo-cofactor with a
central nitrogen ligand are characterized. The calculations indicate
that the Fe-Mo cage opens as dinitrogen binds to the cluster. In the
resting state, the central cage is overall neutral. Electrons and
protons are transferred in an alternating manner. Upon dinitrogen
binding, one protonated sulfur bridge is broken. An axial and a bridged
binding mode of dinitrogen have been identified. Adsorption at the Mo
site has been investigated but appears to be less favorable than
binding at Fe sites.
C1 Tech Univ Clausthal, Inst Theoret Phys, D-38678 Clausthal Zellerfeld, Germany.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
RP Blochl, PE, Tech Univ Clausthal, Inst Theoret Phys, D-38678 Clausthal
Zellerfeld, Germany.
CR BENTON PMC, 2003, BIOCHEMISTRY-US, V42, P9102
BLOCHL P, 1986, J CHEM PHYS, V103, P7422
BLOCHL PE, 1994, PHYS REV B, V50, P17953
BLOCHL PE, 1996, ORGANOMETALLICS, V15, P4125
BLOCHL PE, 2003, B MATER SCI, V26, P33
BURGESS BK, 1996, CHEM REV, V96, P2983
CAR R, 1985, PHYS REV LETT, V55, P2471
CHRISTIANSEN J, 1995, J AM CHEM SOC, V117, P10017
DANCE I, 1997, CHEM COMMUN 0121, P165
DANCE I, 1998, CHEM COMMUN 0307, P523
DANCE I, 2003, CHEM COMMUN, V3, P324
DURRANT MC, 2001, BIOCHEM J 3, V355, P569
DURRANT MC, 2002, BIOCHEMISTRY-US, V41, P13934
DURRANT MC, 2002, BIOCHEMISTRY-US, V41, P13946
EADY R, 1997, J PHYS C SOLID STATE, V2, P611
EADY RR, 1996, CHEM REV, V96, P3013
EINSLE O, 2002, SCIENCE, V297, P1696
FISHER K, 2001, BIOCHEMISTRY-US, V40, P3333
GEORGIADIS MM, 1992, SCIENCE, V257, P1653
GRONBERG KLC, 1998, J AM CHEM SOC, V120, P10613
HARVEY I, 1998, INORG CHIM ACTA, V275, P150
HINNEMANN B, 2003, J AM CHEM SOC, V125, P1466
HOBBS D, 2000, PHYS REV B, V62, P11556
HOHENBERG P, 1964, PHYS REV B, V136, P864
KIM J, 1992, SCIENCE, V257, P1667
KIM JS, 1992, NATURE, V360, P553
KOHN W, 1965, PHYS REV, V140, A1133
KUBLER J, 1988, J PHYS F MET PHYS, V18, P469
LEE HI, 2003, J AM CHEM SOC, V125, P5604
LEIGH GJ, 2003, SCIENCE, V301, P55
LOVELL T, 2001, J AM CHEM SOC, V123, P12392
LOVELL T, 2002, J AM CHEM SOC, V124, P4546
LOVELL T, 2002, J BIOL INORG CHEM, V7, P735
LOVELL T, 2003, J AM CHEM SOC, V125, P8377
LOWE DJ, 1984, BIOCHEM J, V224, P895
MAYER SM, 1999, J MOL BIOL, V292, P871
MAYER SM, 2002, J CHEM SOC DA, V5, P802
MUNCK E, 1975, BIOCHIM BIOPHYS ACTA, V400, P32
ODA T, 1998, PHYS REV LETT, V80, P3622
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PETERS JW, 1997, BIOCHEMISTRY-US, V36, P1181
PICKETT CJ, 1996, J BIOL INORG CHEM, V1, P601
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024
ROD TH, 1999, PHYS REV LETT, V82, P4054
ROD TH, 2000, J AM CHEM SOC, V122, P12751
ROD TH, 2000, J CHEM PHYS, V112, P5343
SANDRATSKII LM, 1986, J PHYS F MET PHYS, V16, P43
SCHAFTENAAR G, 2000, J COMPUT AID MOL DES, V14, P123
SELLMANN D, 1996, J BIOL INORG CHEM, V1, P597
SELLMANN D, 1999, COORDIN CHEM REV, V190, P607
SELLMANN D, 2000, COORDIN CHEM REV, V200, P545
SIMPSON FB, 1984, SCIENCE, V224, P1095
SZILAGYI R, 2000, THEOCHEM, V506, P131
SZILAGYI RK, 2001, INORG CHEM, V40, P766
THORNELEY R, 1996, J BIOL INORG CHEM, V1, P575
THORNELEY RNF, 1984, BIOCHEM J, V224, P887
THORNELEY RNF, 1984, BIOCHEM J, V224, P903
TRUE AE, 1988, J AM CHEM SOC, V110, P1935
VENTERS RA, 1986, J AM CHEM SOC, V108, P3487
YANDULOV DV, 2003, SCIENCE, V301, P76
YOO SJ, 2000, J AM CHEM SOC, V122, P4926
NR 61
TC 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD DEC 24
PY 2003
VL 125
IS 51
BP 15772
EP 15778
PG 7
SC Chemistry, Multidisciplinary
GA 755XF
UT ISI:000187436200042
ER
PT J
AU Pereira, MS
Nascimento, MAC
TI Theoretical study on reactions catalyzed by gallium-substituted zeolites
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
DE zeolite; gallium; catalysis by zeolites
ID DEHYDROGENATION REACTION; AROMATIZATION; ZSM-5; GA; GALLOSILICATES;
ISOBUTANE; ACIDITY; PROPANE; ALKANES; STATE
AB The dehydrogenation and cracking reactions of light alkanes in
gallium-containing zeolites were studied using density functional
theory. Gallium isomorphically substituted, generating Bronsted acid
sites, was used in the computations. The following reactions were
examined: dehydrogenation of methane, ethane, propane, isobutane and
cracking of ethane, propane and isobutene, all catalyzed by the
framework gallium species. The cracking reaction seems to be favored
relative to the dehydrogenation when framework gallium species are
used. This behavior is also observed in aluminum-containing zeolites
(H-ZSM5). The geometries and energetics of the transition states found
for the gallium zeolites were compared with theoretical data for the
same transition states in aluminum zeolites. There seems to be no
significant difference between framework gallium and framework aluminum
species. Therefore the framework gallium should not be the species
responsible for the catalytic enhancement observed in
gallium-containing zeolites.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis,
Cidade Univ,CT,Bloco A,Sala 412, BR-21949900 Rio De Janeiro, Brazil.
CR *GAUSS INC, 1995, GAUSS 98
*SCHROD INC, 1998, JAG 3 5
BAYENSE CR, 1991, APPL CATAL, V72, P81
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BRABEC L, 1998, APPL CATAL A-GEN, V167, P309
BROCLAWIK E, 1995, J CHEM PHYS, V103, P2102
CHAO KJ, 1997, ZEOLITES, V18, P18
CHOUDHARY VR, 1996, J CATAL, V158, P34
CUSUMORO JA, 1992, PERSPECTIVES CATALYS
DOOLEY KM, 1992, APPL CATAL A-GEN, V84, P17
FRASH MV, 1995, J PHYS CHEM A, V103, P2102
FURTADO E, 2001, THEORETICAL ASPECTS, P39
FURTADO EA, 2001, PHYS STATUS SOLIDI A, V187, P275
GIANNETTO G, 1993, J CATAL, V145, P86
GUISNET M, 1992, APPL CATAL A-GEN, V89, P1
HIMEI H, 1995, J PHYS CHEM-US, V99, P12461
IGLESIA E, 1992, J CATAL, V134, P549
INUI T, 1987, IND ENG CHEM RES, V26, P647
LANH HD, 1993, APPL CATAL A-GEN, V103, P205
LEE C, 1988, PHYS REV B, V37, P786
LIU XS, 1992, J PHYS CHEM-US, V96, P3403
MEITZNER GD, 1993, J CATAL, V140, P209
MILAS I, 2001, CHEM PHYS LETT, V338, P67
MILAS I, 2003, CHEM PHYS LETT, V373, P379
MOWRY JR, 1985, ARAB J SCI ENG, V10, P36
MOWRY JR, 1985, OIL GAS J, V83, P128
PRICE GL, 1995, ZEOLITES, V15, P725
PRICE GL, 1998, J CATAL, V173, P12
STAVE MS, 1995, J PHYS CHEM-US, V99, P15046
SULIKOWSKI B, 1996, J PHYS CHEM-US, V100, P10323
TAKEGUCHI T, 1998, J CATAL, V175, P1
VAUGHAN DEW, 1988, CHEM ENG PROGR FEB, P25
VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13713
NR 33
TC 3
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD DEC
PY 2003
VL 110
IS 6
BP 441
EP 445
PG 5
SC Chemistry, Physical
GA 749YU
UT ISI:000186958300014
ER
PT J
AU Martins, TLC
Ramalho, TC
Figueroa-Villar, JD
Flores, AFC
Pereira, CMP
TI Theoretical and experimental C-13 and N-15 NMR investigation of
guanylhydrazones in solution
SO MAGNETIC RESONANCE IN CHEMISTRY
LA English
DT Article
DE NMR; N-15 NMR; C-13 NMR; chemical shifts; molecular dynamics; GIAO;
DFT; guanylhydrazones
ID SEQUENTIAL MONTE-CARLO; CHEMICAL-SHIFTS; AB-INITIO; SOLVENT;
DERIVATIVES; SIMULATION; CONTINUUM; AGENTS; RELAXATION; MOLECULES
AB Experimental and theoretical N-15 and C-13 NMR data for the three
nitrobenzaldehyde guanylhydrazones are reported. The theoretical data
were obtained using sequential molecular dynamics/quantum mechanics
methodology for the calculation of flexible molecules in a condensed
phase, followed by the use of the GIAO/DFT method with the 6-311G**
basis set. The experimental N-15 chemical shifts for the
guanylhydrazones are compared with the calculated shifts. Copyright (C)
2003 John Wiley Sons, Ltd.
C1 Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, RJ, Brazil.
Univ Fed Santa Maria, Dept Quim, BR-97105900 Santa Maria, RS, Brazil.
RP Figueroa-Villar, JD, Inst Militar Engn, Dept Quim, BR-22290270 Rio De
Janeiro, RJ, Brazil.
CR ALLEN MP, 1987, COMP SIMULATION LIQU
ANDREANI A, 2000, BIOORGAN MED CHEM, V8, P2359
BARONE V, 1998, J COMPUT CHEM, V19, P404
BAX A, 1983, J AM CHEM SOC, V105, P7188
BAX A, 1983, J MAGN RESON, V55, P301
BIEGER W, 1985, CHEM PHYS LETT, V115, P275
CARPY A, 1984, ACTA CRYSTALLOGR C, V40, P1265
CHAFIELD C, 1984, ANAL TIMES SERIES IN
CHESNUT DB, 1994, ANN REPORTS NMR SPEC, V29, P71
CHESTNUT DB, 1989, ANNU REP NMR SPECTRO, V21, P51
COLIMAS C, 1999, J COMPUT CHEM, V20, P665
COSSI M, 1998, CHEM PHYS LETT, V253, P286
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
FOYE WO, 1990, J PHARM SCI, V79, P527
FRIEDBERG R, 1970, J CHEM PHYS, V52, P6049
FRISCH MJ, 2001, GAUSSIAN 98W REVISIO
FUKUI H, 1987, MAGNET RESON REV, V11, P205
GADAD AK, 2000, EUR J MED CHEM, V35, P853
GAUSS J, 1995, J CHEM PHYS, V102, P251
HARRIS CD, 1996, QUANTITATIVE CHEM AN
HOLZER W, 1992, MONATSH CHEM, V123, P1163
KRATSCHMER R, 1976, J STAT PHYS, V15, P267
LUHMER M, 1998, PROG NUCL MAG RES 1, V33, P57
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MALKIN VG, 1993, CHEM PHYS LETT, V80, P204
MALKIN VG, 1994, J AM CHEM SOC, V116, P5898
MANOLO MG, 1986, EUR J MED CHEM, V21, P467
MENNUCCI B, 2001, J PHYS CHEM A, V105, P7287
MESSEDER JC, 1995, BIOORG MED CHEM LETT, V5, P3079
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
PIVNENKO NS, 2002, MAGN RESON CHEM, V40, P566
SCHRECKENBACH G, 1995, J PHYS CHEM-US, V99, P606
SCHRECKENBACH G, 1996, DENSITY FUNCTIONAL T
SUNDBERG RJ, 1990, J MED CHEM, V33, P298
TAI AW, 1984, J MED CHEM, V27, P236
TINOCO LW, 1999, J BRAZIL CHEM SOC, V10, P281
TINOCO LW, 1999, SPECTROSC LETT, V32, P941
TOMASI J, 1994, CHEM REV, V94, P2027
VERLET L, 1967, PHYS REV, V159, P98
WERBEL LM, 1985, EUR J MED CHEM, V20, P363
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
ZILM KW, 1993, NATO ASI SERIES C, V386
NR 46
TC 3
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0749-1581
J9 MAGN RESON CHEM
JI Magn. Reson. Chem.
PD DEC
PY 2003
VL 41
IS 12
BP 983
EP 988
PG 6
SC Chemistry, Multidisciplinary; Chemistry, Physical; Spectroscopy
GA 747CW
UT ISI:000186788500002
ER
PT J
AU Barbosa, PHR
Raposo, EP
Coutinho, MD
TI Microscopic description of an ising spin glass near the percolation
threshold
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID RANDOM-FIELD; RANDOM-EXCHANGE; ORDERED PHASE; MONTE-CARLO;
NONEQUILIBRIUM DYNAMICS; DILUTED ANTIFERROMAGNET; NEUTRON-SCATTERING;
SYSTEM FEXZN1-XF2; CRITICAL-BEHAVIOR; FE0.25ZN0.75F2
AB Monte Carlo results using a microscopic model to describe FexZn1-xF2
indicate that its spin-glass phase at x=0.25 and zero magnetic field is
characterized by the presence of antiferromagnetic fractal domains,
separated by random vacancies and strongly correlated in time. The
effective local random-field distribution corroborates this glassy
behavior, which emerges irrespective of ab initio competing
interactions and is a consequence of the fractal domain structure near
the percolation threshold, x(p)=0.24. The aging properties of the
system are in agreement with predictions of short-range stochastic
spin-glass models and with the droplets model for spin glass close to
percolation.
C1 Univ Fed Pernambuco, Dept Fis, Lab Fis Teor & Computac, BR-50670901 Recife, PE, Brazil.
Univ Fed Piaui, Dept Fis, BR-64048550 Teresina, PI, Brazil.
RP Barbosa, PHR, Univ Fed Pernambuco, Dept Fis, Lab Fis Teor & Computac,
BR-50670901 Recife, PE, Brazil.
CR BALLESTEROS HG, 1998, PHYS REV B, V58, P2740
BARBER WC, 2000, PHYS REV B, V61, P8960
BARBOSA PHR, 2000, J APPL PHYS 3, V87, P6531
BARBOSA PHR, 2001, J MAGN MAGN MATER 2, V226, P1293
BARBOSA PHR, 2001, MATER SCI FORUM, V373, P705
BARBOSA PHR, 2001, PHYSICA A, V295, P140
BARRAT A, 2001, PHYS REV LETT, V87
BARRETT PH, 1986, PHYS REV B, V34, P3513
BELANGER DP, 1986, PHYS REV B, V34, P452
BELANGER DP, 1991, PHYS REV B, V44, P2161
BELANGER DP, 1993, PHYS REV B, V47, P5051
BELANGER DP, 2000, BRAZ J PHYS, V30, P682
BERNARDI LW, 2001, PHYS REV LETT, V86, P720
BIRGENEAU RJ, 1983, PHYS REV B, V27, P6747
BRAY AJ, 1988, COMMENTS CONDENS MAT, V14, P21
CARTER AC, 2002, PHYS REV LETT, V88
CASTILLO HE, 2002, PHYS REV LETT, V88
ESSER J, 1997, PHYS REV B, V55, P5866
FISHER DS, 1986, PHYS REV LETT, V56, P1601
FISHER DS, 1988, PHYS REV B, V38, P373
FISHER DS, 1988, PHYS REV B, V38, P386
GUNNARSSON K, 1988, PHYS REV LETT, V61, P754
HED G, 2001, PHYS REV LETT, V86, P3148
HENLEY CL, 1985, PHYS REV LETT, V54, P2030
HUTCHINGS MT, 1970, J PHYS C, V3, P307
JONASON K, 1997, PHYS REV B, V56, P5404
JONSSON PE, 2002, PHYS REV LETT, V88
JONSSON PE, 2002, PHYS REV LETT, V89
KISKER J, 1996, PHYS REV B, V53, P6418
KRZAKALA F, 2001, PHYS REV LETT, V87
LUNDGREN L, 1986, PHYS REV B, V34, P8164
MEZARD M, 1987, SPIN GLASS THEORY
MONTENEGRO FC, COMMUNICATION
MONTENEGRO FC, 1988, J APPL PHYS 3, V63, P3755
MONTENEGRO FC, 1989, EUROPHYS LETT, V8, P382
MONTENEGRO FC, 1990, J APPL PHYS 2B, V67, P5243
MONTENEGRO FC, 1991, PHYS REV B, V44, P2155
OGIELSKI AT, 1985, PHYS REV B, V32, P7384
RAMMAL R, 1985, J PHYSIQUE LETT, V46, L667
RAMMAL R, 1985, PHYS REV LETT, V55, P649
RAPOSO EP, 1995, EUROPHYS LETT, V29, P507
RAPOSO EP, 1996, J MAGN MAGN MATER, V154, L155
RAPOSO EP, 1997, J APPL PHYS 2B, V81, P5279
RAPOSO EP, 1998, J APPL PHYS 2, V83, P6311
RAPOSO EP, 1998, PHYS REV B, V57, P3495
REZENDE SM, 1988, J PHYS-PARIS, V49, P1267
RIEGER H, 1993, J PHYS A, V26, L615
ROSALESRIVERA A, 2000, EUROPHYS LETT, V50, P264
ROSOV N, 1988, PHYS REV B, V37, P3265
SLANIC Z, 1999, PHYS REV LETT, V82, P426
TEMESVARI T, 2002, PHYS REV LETT, V89
YE F, 2002, PHYS REV LETT, V89
YOUNG AP, 1997, SPIN GLASSES RANDOM
NR 53
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 7
PY 2003
VL 91
IS 19
AR 197207
DI ARTN 197207
PG 4
SC Physics, Multidisciplinary
GA 740VR
UT ISI:000186422700045
ER
PT J
AU Sensato, FR
Custodio, R
Longo, E
Beltran, A
Andres, J
TI Electronic and structural properties of SnxTi1-xO2 solid solutions: a
periodic DFT study
SO CATALYSIS TODAY
LA English
DT Article
DE oxidation-reduction potential; electron-hole recombination; Fermi
level; SnO2-TiO2; periodic DFT calculation; photocatalysis
ID DENSITY-FUNCTIONAL THEORY; GAS-SENSING PROPERTIES; THIN-FILMS;
1ST-PRINCIPLES CALCULATIONS; THEORETICAL-ANALYSIS; SNO2(110) SURFACES;
TIO2-SNO2 SYSTEM; TIO2; ADSORPTION; SENSORS
AB The structural and electronic properties of selected compositions of
SnxTi1-xO2 solid solutions (x = 0, 1/24, 1/16, 1/12, 1/8, 1/6, 1/4,
1/2, 3/4, 5/6, 7/8, 11/12, 15/16, 23/24 and 1) were investigated by
means of periodic density functional theory (DFT) calculations at B3LYP
level. The calculations show that the corresponding lattice parameters
vary non-linearly with composition, supporting positive deviations from
Vegard's law in the SnxTi1-xO2 system. Our results also account for the
fact that chemical decomposition in SnxTi1-xO2 system is dominated by
composition fluctuations along [0 0 1] direction. A nearly continuous
evolution of the direct band gap and the Fermi level with the growing
value of x is predicted. Ti 3d states dominate the lower portion of the
conduction band of SnxTi1-xO2 solid solutions. Sn substitution for Ti
in TiO2 increases the oxidation-reduction potential of the oxide as
well as it renders the lowest energy transition to be indirect. These
two effects can be the key factors controlling the rate for the
photogenerated electron-hole recombination. These theoretical results
are capable to explain the enhancement of photoactivity in SnxTi1-xO2
solid solutions. (C) 2003 Elsevier B.V All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Jaume 1, Dept Ciencies Expt, Castello, Spain.
RP Sensato, FR, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13083970
Campinas, SP, Brazil.
CR ABEE MW, 2002, SURF SCI, V520, P65
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BEGINCOLIN S, 1996, J SOLID STATE CHEM, V127, P98
BELTRAN A, 2001, SURF SCI, V490, P116
BUENO PR, 2002, J AM CERAM SOC, V85, P282
BUENO PR, 2003, J EUR CERAM SOC, V23, P887
CALATAYUD M, 1999, SURF SCI, V430, P213
CATLOW CRA, 1990, NATURE, V347, P243
CATLOW CRA, 1993, J SOLID STATE CHEM, V106, P13
COHEN ML, 1997, INT J QUANTUM CHEM, V61, P603
COHEN RM, 1988, J AM CERAM SOC, V71, C401
COX PA, 1998, ELECT STRUCTURE CHEM
DURAND P, 1975, THEOR CHIM ACTA, V38, P283
DUSASTRE V, 1999, J MATER CHEM, V9, P445
EDELMAN F, 2000, MAT SCI ENG B-SOLID, V69, P386
FAHMI A, 1993, PHYS REV B, V47, P11717
GROSS A, 2003, THEORETICAL SURFACE
GUPTA PK, 1970, PHILOS MAG, V21, P611
HIRATA T, 1996, PHYS REV B, V53, P8442
HU CH, 1998, ENCY COMPUTATIONAL C
KOKALJ A, 1999, J MOL GRAPH MODEL, V17, P176
KONG LB, 2002, J ALLOY COMPD, V336, P315
LARACASTELLS MP, 2002, CHEM PHYS LETT, V354, P483
LEE C, 1988, PHYS REV B, V37, P785
LIN J, 1999, J CATAL, V183, P368
LINDAN PJD, 1997, FARADAY DISCUSS, V106, P135
MELLEFRANCO M, 2000, SURF SCI, V461, P54
MENETREY M, 2003, SURF SCI, V524, P49
MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
MUSCAT J, 2002, PHYS REV B, V65
NELDER JA, 1965, COMPUT J, V7, P308
OVIEDO J, 2000, SURF SCI, V463, P93
PARK M, 1975, J AM CERAM SOC, V58, P43
PISANI C, 1999, J MOL STRUC-THEOCHEM, V463, P125
RADECKA M, 1998, SENSOR ACTUAT B-CHEM, V47, P194
RADECKA M, 2001, THIN SOLID FILMS, V391, P247
RAMAMOORTHY M, 1994, PHYS REV B, V49, P16721
RANTALA TT, 1999, SURF SCI, V420, P103
SAUER J, 1989, CHEM REV, V89, P199
SAUNDERS VR, 1998, CRYST 98 US MAN U TO
SCHULTZ AH, 1968, PHILOS MAG, V18, P929
SENSATO FR, 2002, SURF SCI, V511, P408
SERMON PA, 1997, SOLID STATE IONICS 2, V101, P673
SILVI B, 1991, J PHYS CHEM SOLIDS, V52, P1005
TAI WP, 2002, SENSOR ACTUAT B-CHEM, V85, P154
YAMAGUCHI Y, 2002, J PHYS CHEM A, V106, P411
YANG J, 2002, J SOLID STATE CHEM, V165, P193
ZAKRZEWSKA K, 1997, THIN SOLID FILMS, V310, P161
ZAKRZEWSKA K, 2001, THIN SOLID FILMS, V391, P229
NR 49
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5861
J9 CATAL TODAY
JI Catal. Today
PD OCT 15
PY 2003
VL 85
IS 2-4
BP 145
EP 152
PG 8
SC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
GA 738FG
UT ISI:000186275600007
ER
PT J
AU Machado, M
Piquini, P
Mota, R
TI Electronic properties of selected BN nanocones
SO MATERIALS CHARACTERIZATION
LA English
DT Article
DE apex; BN; nanocones; atoms
ID BORON-NITRIDE NANOTUBES; CARBON NANOTUBES; DENSITY; FRUSTRATION;
STATES; GROWTH; CONES
AB The electronic properties of selected BN nanocones are investigated. In
particular, we have proposed one configuration for BN nanocones
associated with the 240degrees disclination as the most stable one
presenting as characteristic four pentagons at the apex and termination
in two atoms. This structure is simulated by clusters containing 58 B
plus N atoms and additional 12 H atoms to saturate the dangling bonds
at the edge. The geometric structure is obtained through molecular
mechanics optimization calculations. The density-functional theory is
employed to perform total energy calculations. The most stable
termination is obtained when the two terminating atoms are one B and
one N. For those cases where the two apex atoms are of the same kind,
the apex with B atoms is determined to present lower binding energy
than with N atoms. For the topologies studied, the local densities of
states are investigated near the apex of the nanocones and sharp
resonant states are found to dominate the electronic structure in the
region close to the Fermi energy. These BN nanocones with pentagonal
sites at their apex are proposed as good candidates for nanoprobes in
scanning microscopy and also for electron field emitters. (C) 2003
Elsevier Inc. All rights reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Machado, M, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
RS, Brazil.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENGU E, 2001, PHYS REV LETT, V86, P2385
BLASE X, 1998, PHYS REV LETT, V80, P1666
BOURGEOIS L, 2000, PHYS REV B, V61, P7686
CARROLL DL, 1997, PHYS REV LETT, V78, P2811
CHOI WB, 1999, APPL PHYS LETT, V75, P3129
CHOPRA NG, 1995, SCIENCE, V269, P966
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FOWLER PW, 1999, CHEM PHYS LETT, V299, P359
FOWLER PW, 1999, ELECT PROPERTIES NOV
FRISCH MJ, 1998, GAUSSIAN 98
GE M, 1994, CHEM PHYS LETT, V220, P192
GE MH, 1994, APPL PHYS LETT, V64, P710
KIM P, 1999, PHYS REV LETT, V82, P1225
LEE C, 1988, PHYS REV B, V37, P785
LIJIMA S, 1992, NATURE, V356, P776
MARTIN JML, 1996, CHEM PHYS LETT, V248, P95
MENON M, 1999, CHEM PHYS LETT, V307, P407
ROGERS KM, 2000, CHEM PHYS LETT, V332, P43
RUBIO A, 1994, PHYS REV B, V49, P5081
SEIFERT G, 1997, CHEM PHYS LETT, V268, P352
NR 21
TC 5
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1044-5803
J9 MATER CHARACT
JI Mater. Charact.
PD MAR
PY 2003
VL 50
IS 2-3
BP 179
EP 182
PG 4
SC Materials Science, Characterization & Testing
GA 737UJ
UT ISI:000186249900015
ER
PT J
AU Fagan, SB
Mota, R
Baierle, RJ
da Silva, AJR
Fazzio, A
TI Energetics and structural properties of adsorbed atoms and molecules on
silicon-doped carbon nanotubes
SO MATERIALS CHARACTERIZATION
LA English
DT Article
DE energetics; structural properties; silicon-doped carbon nanotubes
ID LARGE SYSTEMS; CLUSTERS; GAS
AB The energetics and structural properties of atoms and molecules on a
substitutional Si atom in single wall carbon nanotubes (SWCN) are
investigated using first principle calculations based on
density-functional theory. A detailed analysis is performed for the
geometry and the electronic structures of a Si-doped semiconducting
(10,0) carbon nanotube interacting with F, Cl, H, CH3, and SiH3. A
common feature for the systems with these atoms or molecules is the
presence of one half-filled level close to the top of the valence band.
The specific position of this level in the gap depends on the
chemisorbed species and the binding energy between this species and the
Si atom. (C) 2003 Elsevier Inc. All rights reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Ctr Univ Franciscano, Dept Ciencias Exatas, BR-97101032 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
RP Fagan, SB, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
Brazil.
EM sfagan@mail.ufsm.br
CR ALRUBAIEY N, 1998, J PHYS CHEM A, V102, P8564
ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BAIERLE RJ, 2001, PHYS REV B, V64
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DASH AK, 2002, J ALLOY COMPD, V344, P65
FYE JL, 1997, J PHYS CHEM A, V101, P1836
GULSEREN O, 2001, PHYS REV LETT, V87
KIMURA T, 1996, CHEM PHYS LETT, V256, P269
KONG J, 2000, SCIENCE, V287, P622
MICKELSON ET, 1998, CHEM PHYS LETT, V296, P188
ORDEJON P, 1996, PHYS REV B, V53
PENG S, 2000, NANOTECHNOLOGY, V11, P57
PERDEW JP, 1981, PHYS REV B, V23, P5048
RAY C, 1998, PHYS REV LETT, V80, P5365
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANKEY OF, 1989, PHYS REV B, V40, P3979
SRIVASTAVA D, 1999, PHYS REV LETT, V83, P2973
TRANKLER KA, 2001, ORGANOMETALLICS, V20, P5139
TROULLIER N, 1991, PHYS REV B, V43, P1993
YANG J, 2001, PHYS REV B, V64, P85420
ZHAO J, 2000, PHYS REV LETT, V85, P1706
ZHAO J, 2001, CONDENS MATTER, V1
NR 22
TC 3
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1044-5803
J9 MATER CHARACT
JI Mater. Charact.
PD MAR
PY 2003
VL 50
IS 2-3
BP 183
EP 187
PG 5
SC Materials Science, Characterization & Testing
GA 737UJ
UT ISI:000186249900016
ER
PT J
AU Guedes, RC
Coutinho, K
Cabral, BJC
Canuto, S
Correia, CF
dos Santos, RMB
Simoes, JAM
TI Solvent effects on the energetics of the phenol O-H bond: Differential
solvation of phenol and phenoxy radical in benzene and acetonitrile
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID SUBSTITUTED CYCLOPENTADIENYL RADICALS; CARLO-QUANTUM-MECHANICS; SMALL
CLUSTERS; BASIS-SET; PHOTOACOUSTIC CALORIMETRY; THERMAL-DECOMPOSITION;
TOTAL ENERGIES; AB-INITIO; HYDRATION; WATER
AB Monte Carlo statistical mechanics simulations, density-functional
theory calculations, time-resolved photoacoustic calorimetry, and
isoperibol reaction-solution calorimetry experiments were carried out
to investigate the solvation enthalpies and solvent effects on the
energetics of the phenol O-H bond in benzene and acetonitrile. A good
agreement between theoretical and experimental results is obtained for
the solvation enthalpies of phenol in benzene and acetonitrile. The
theoretical calculations also indicate that the differences between the
solvation enthalpies of phenol (PhOH) and phenoxy radical (PhO*) in
both benzene and acetonitrile are significantly smaller than previous
estimations based on the ECW model. The results for the solvation
enthalpies are used to obtain the O-H bond dissociation enthalpies in
benzene and acetonitrile. For benzene and acetonitrile, the theoretical
results of 89.4 +/- 1.2 and 90.5 +/- 1.7 kcal mol(-1), respectively,
are in good agreement with the experimental values (90.9 +/- 1.3 and
92.9 +/- 0.9 kcal mol(-1)), obtained by photoacoustic calorimetry. The
solute-solvent interaction energies of phenol and phenoxy radical with
both acetonitrile and benzene differ by less than 2 kcal mol-1. A
detailed analysis of the solvent contributions to the differential
solvation enthalpy is made in terms of the hydrogen bonds and the
solute-solvent interactions. Both PhOH and PhO* induce a significant,
although equivalent, solvent reorganization enthalpy. Finally, the
convergence of the solute-solvent interaction is analyzed as a function
of the distance to the solute and illustrates the advantages and
limitations of local models such as microsolvation and
hydrogen-bond-only models.
C1 Univ Lisbon, Fac Ciencias, Dept Quim & Bioquim, P-1749016 Lisbon, Portugal.
Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal.
Univ Mogi Cruzes, BR-08701970 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Algarve, Fac Engn Recursos Nat, P-8005139 Faro, Portugal.
RP Cabral, BJC, Univ Lisbon, Fac Ciencias, Dept Quim & Bioquim, P-1749016
Lisbon, Portugal.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BESLER BH, 1990, J COMPUT CHEM, V11, P431
BOHM HJ, 1983, MOL PHYS, V49, P347
BOYS SF, 1970, MOL PHYS, V19, P553
BRAY JA, 1999, J PHYS CHEM A, V103, P2214
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CHIPMAN DM, 1999, J PHYS CHEM A, V103, P11181
CORREIA CF, 2003, UNPUB J PHYS CHEM A
COUTINHO K, 2000, DICE GEN MONTE CARLO
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
COUTO PC, 2002, INT J QUANTUM CHEM, V86, P297
DIOGO HP, 1995, J CHEM THERMODYN, V27, P597
DIOGO HP, 2001, J ORGANOMET CHEM, V632, P188
DOSSANTOS RMB, 1998, J PHYS CHEM REF DATA, V27, P707
DOSSANTOS RMB, 1999, J CHEM THERMODYN, V31, P1483
DOSSANTOS RMB, 2001, J AM CHEM SOC, V123, P12670
DOSSANTOS RMB, 2002, J PHYS CHEM A, V106, P9883
DRAGO RS, 1993, INORG CHEM, V32, P2473
DRAGO RS, 1994, APPL ELECTROSTATIC C
FERNANDEZ JA, 1997, J CHEM PHYS, V107, P3363
FERNANDEZ JA, 1999, J CHEM PHYS, V110, P5159
FERNANDEZ JA, 1999, J CHEM PHYS, V110, P5183
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GUEDES RC, 2000, J PHYS CHEM A, V104, P6062
GUEDES RC, 2003, J PHYS CHEM B, V107, P4304
IRIKURA KK, 1998, ACS S SERIES, V677
ITOH S, 2000, COORDIN CHEM REV, V198, P3
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1990, J AM CHEM SOC, V112, P4768
JORGENSEN WL, 1993, J COMPUT CHEM, V14, P195
KAGAN VE, 1998, ANN NY ACAD SCI, P854
KATRITZKY AR, 1986, J AM CHEM SOC, V108, P7213
KIRKWOOD JG, 1935, J CHEM PHYS, V3, P300
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
KRYACHKO ES, 2002, J PHYS CHEM A, V106, P4267
LAZARIDIS T, 2000, J PHYS CHEM B, V104, P4964
LEE C, 1988, PHYS REV B, V37, P785
LEVCHUK VN, 1991, CHEM PHYS LETT, V185, P339
LIN CY, 1986, J PHYS CHEM-US, V90, P425
LIU RF, 1996, J PHYS CHEM-US, V100, P9314
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MCCLENMAN AL, 1963, TABLES EXPT DIPOLE M, V1
MOONEY DA, 1998, CHEM PHYS LETT, V294, P135
PARKER VD, 1993, J AM CHEM SOC, V115, P1201
PEDLEY JB, 1994, THERMODYNAMIC DATA S, V1
PETERSSON GA, 1988, J CHEM PHYS, V89, P2193
PLATZ J, 1998, J PHYS CHEM A, V102, P7964
SIBENER SJ, 1980, J CHEM PHYS, V72, P4341
SINGH UC, 1984, J COMPUT CHEM, V5, P129
STRAATSMA TP, 1989, J CHEM PHYS, V90, P3300
VOGEL GC, 1996, J CHEM EDUC, V73, P701
WAYNER DDM, 1995, J AM CHEM SOC, V117, P8737
WEAVER EC, 1968, ANNU REV PLANT PHYS, V19, P283
XANTHEAS SS, 1996, J CHEM PHYS, V104, P8821
YAO J, 1999, J CHEM PHYS, V110, P5174
ZWANZIG RW, 1954, J CHEM PHYS, V22, P1420
NR 57
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 30
PY 2003
VL 107
IS 43
BP 9197
EP 9207
PG 11
SC Chemistry, Physical
GA 736DQ
UT ISI:000186156000018
ER
PT J
AU Souza-Neto, NM
Ramos, AY
Tolentino, HCN
Favre-Nicolin, E
Ranno, L
TI Local anisotropy in strained manganite thin films
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID MAGNETIC-ANISOTROPY; MAGNETORESISTANCE; SPECTROSCOPY; DEPENDENCE
AB We report on an angular resolved x-ray absorption spectroscopy study of
the local atomic structure around the manganese ions in La0.7Sr0.3MnO3
thin films epitaxially grown on tensile and compressive substrates. Ab
initio calculations provide strong support to the analysis of the
experimental data and make possible the unambiguous derivation of a
model of local distortion around the manganese atoms, without
modification of the tilt angle Mn-O-Mn, among the octahedra. This
distortion, tending to localize the charge carriers, is the driving
parameter in the modifications of the magnetic and transport properties
observed in thin films with respect to bulk systems. (C) 2003 American
Institute of Physics.
C1 LNLS, BR-13084971 Campinas, Brazil.
UNICAMP, Inst Fis Gleb Wataghin, BR-13083970 Campinas, Brazil.
LMCP, CNRS, UMR 7590, Paris, France.
Univ Grenoble 1, CNRS, UPR 5051, Lab Louis Neel, Grenoble, France.
RP Souza-Neto, NM, LNLS, CP 6192, BR-13084971 Campinas, Brazil.
CR ANKUDINOV AL, 2002, PHYS REV B, V65
DHO J, 2003, APPL PHYS LETT, V82, P1434
MANCEAU A, 1992, AM MINERAL, V77, P1133
MILLIS AJ, 1998, J APPL PHYS, V83, P1588
MILLIS AJ, 1998, NATURE, V392, P147
MINIOTAS A, 2001, J APPL PHYS, V89, P2134
PRELLIER W, 2001, J PHYS-CONDENS MAT, V13, R915
QIAN Q, 2001, PHYS REV B, V63
RAMOS AY, 2003, AIP CONF PROC, V652, P456
RANNO L, 2002, APPL SURF SCI, V188, P170
STEENBECK K, 2002, APPL PHYS LETT, V80, P3361
TOLENTINO HCN, 2001, J SYNCHROTRON RADI 3, V8, P1040
TYSON TA, 1996, PHYS REV B, V53, P13985
URUSHIBARA A, 1995, PHYS REV B, V51, P14103
WU XW, 2000, PHYS REV B, V61, P501
NR 15
TC 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 27
PY 2003
VL 83
IS 17
BP 3587
EP 3589
PG 3
SC Physics, Applied
GA 734QQ
UT ISI:000186068400048
ER
PT J
AU de Oliveira, HCB
Fonseca, TL
Castro, MA
Amaral, OAV
Cunha, S
TI Theoretical study of the static first hyperpolarizability of
azo-enaminone compounds
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID CONJUGATED ORGANIC-MOLECULES; NONLINEAR-OPTICAL-PROPERTIES; BOND-LENGTH
ALTERNATION; AB-INITIO; ELECTRON CORRELATION; AROMATIC-COMPOUNDS;
DIPOLE-MOMENT; FIRST-ORDER; POLARIZABILITIES; DERIVATIVES
AB In this work the static electric properties of azo-enaminones, with
special emphasis to the vector component of the first
hyperpolarizability beta(vec), are determined at the Hartree-Fock (HF)
level with the electron correlation (EC) effects included through the
second-order Moller-Plesset perturbation theory (MP2). The ab initio
results, in accordance with previous semiempirical calculations, show
that appropriate choices of substituents to be incorporated to the
molecular structure can have a marked influence on the first
hyperpolarizability. An initial study about the changes on the
beta(vec) values of these compounds, as a result of the incorporation
of different donor groups, indicates that this property increases as
function of the donor group strength tending to a saturated value. A
comparison between our HF and MP2 results, for all compounds studied
here, show that the beta(vec) values are strongly affected by the
effects of the electron correlation correction. (C) 2003 American
Institute of Physics.
C1 Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
Univ Fed Bahia, Inst Quim, BR-41170290 Salvador, BA, Brazil.
RP de Oliveira, HCB, Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go,
Brazil.
CR ABE J, 1997, J PHYS CHEM B, V101, P576
ADANT C, 1997, J PHYS CHEM A, V101, P3025
BOSSHARD C, 1992, J APPL PHYS, V71, P1594
BOSSHARD C, 1995, ORGANIC NONLINEAR OP
BOURHILL G, 1994, J AM CHEM SOC, V116, P2619
BURKELAING M, 1976, ACTA CRYSTALLOGR, V32, P3216
CHEMLA DS, 1987, NONLINEAR OPTICAL PR, V1
CHEMLA DS, 1987, NONLINEAR OPTICAL PR, V2
DANIEL C, 1990, CHEM PHYS LETT, V171, P209
EBERLIN MN, 1990, J MOL STRUCT THEOCHE, V207, P143
EDAFIOGHO O, 2002, BIOORGAN MED CHEM, V10, P993
FIGEIREDO LJO, 1997, J ORG CHEM, V62, P1164
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GILLI P, 2000, J AM CHEM SOC, V122, P10405
HURST GJB, 1988, J CHEM PHYS, V89, P385
JACQUEMIN D, 1998, CHEM PHYS LETT, V284, P24
KANIS DR, 1994, CHEM REV, V94, P195
KETTMANN V, 2001, ACTA CRYSTALLOGR C 6, V57, P737
KUBICKI M, 2000, J MOL STRUCT, V525, P141
LALAMA SJ, 1979, PHYS REV A, V20, P1179
LEVINE BF, 1974, APPL PHYS LETT, V24, P445
MACHACEK V, 2000, MAGN RESON CHEM, V38, P293
MADER SR, 1994, SCIENCE, V265, P632
MARDER SR, 1991, SCIENCE, V252, P103
MAROULIS G, 1999, J PHYS CHEM A, V103, P4359
MEYERS F, 1994, J AM CHEM SOC, V116, P10703
NARINGREKAR VH, 1990, J PHARM SCI, V79, P138
OLIVEIRA LN, 2003, CHEM PHYS, V289, P221
OUDAR JL, 1977, J CHEM PHYS, V66, P2664
OUDAR JL, 1977, J CHEM PHYS, V67, P446
PRASAD P, 1991, INTRO NONLINEAR OPTI
RODRIGUES BL, 1996, ACTA CRYSTALLOGR C 3, V52, P705
SHMUELI U, 1973, J CHEM SOC P2, V2, P657
SIM F, 1993, J PHYS CHEM-US, V97, P1158
SIMUNEK P, 2002, J MOL STRUCT, V642, P41
SINGER KD, 1981, J CHEM PHYS, V75, P3572
STAHELIN M, 1993, J CHEM PHYS, V98, P5595
TIEMANN BG, 1993, J CHEM SOC CHEM COMM, P735
TOTO TT, 1995, CHEM PHYS LETT, V244, P59
TSUNEKAWA T, 1992, J PHYS CHEM-US, V96, P10268
WANG P, 1999, J PHYS CHEM A, V103, P7076
YANG ML, 2002, CHEM PHYS LETT, V354, P316
ZHU WH, 2002, CHEM PHYS LETT, V358, P1
NR 43
TC 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD OCT 22
PY 2003
VL 119
IS 16
BP 8417
EP 8423
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 731BW
UT ISI:000185865500024
ER
PT J
AU Perpetuo, GJ
Janczak, J
TI Three-dimensional self-assembly supramolecular structure of hydrogen
bonded melaminium citrate
SO POLISH JOURNAL OF CHEMISTRY
LA English
DT Article
DE melaminium; citrate; crystal structure; self-assembling; conformation;
hydrogen bond
ID ANHYDROUS CITRIC ACID; RAY CRYSTAL ANALYSIS; X-RAY; SOLID-STATE; TAPES;
TETRAHYDRATE; ARCHITECTURE; SECONDARY; ACONITASE; COMPLEXES
AB The melaminium dihydrogencitrate,
(C3H7N6)(HOOC-CH2-C(OH)(COOH)-CH2-COO), crystallizes from water
solution at room temperature in the P2(1)/c space group of the
monoclinic system with the lattice parameters of a = 5.531(1), b =
20.869(4), c = 11.282(2) Angstrom and beta = 99.96(3)degrees and Z = 4.
The crystals are built up from singly protonated at the one N-ring atom
melaminium cations that interact in a near linear fashion through a
pair of N-(HN)-N-... hydrogen bonds to form the centrosymmetric dimeric
structure. The dihydrogencitrate(-) anions interact in the head-to-tail
fashion via the terminal dissociated (COO-) and non-dissociated (COOH)
carboxyl groups to form O-(HO)-O-... hydrogen bonded zigzag infinite
chains. The hydroxyl group of dihydrogencitrate(-) ions is involved
into O-(HO)-O-... hydrogen bonds that linked together the
dihydrogencitrate(-) chains into two-dimensional network. The
centrosymmetric dimers of melaminiurn moieties interact with the sheets
of dihydrogencitrate(-) to form the three-dimensional hydrogen bonded
network. The conformation of the dihydrogencitrate(-) ion in the
crystal is compared with the conformation in the gas-phase obtained by
the ab-initio molecular orbital calculation.
C1 Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland.
Univ Fed Ouro Preto, Inst Ciencias Exatas & Biol, Dept Fis, BR-35400000 Ouro Preto, MG, Brazil.
RP Janczak, J, Polish Acad Sci, Inst Low Temp & Struct Res, POB 1410,
PL-50950 Wroclaw, Poland.
CR *KUMA KM 4 CCD SOF, 1999, VER 163 US GUID
ALLEN FH, 1987, J CHEM SOC P2, S1
ALLEN FH, 1993, CHEM DESIGN AUTOMATI, V8, P31
AUKERBY CB, 2001, AUST J CHEM, V54, P409
BATES RG, 1949, J AM CHEM SOC, V71, P1274
DESIRAJU GR, 1990, CRYSTAL ENG DESIGN O
DESIRAJU GR, 1995, ANGEW CHEM INT EDIT, V34, P2311
DESIRAJU GR, 1999, WEAK HYDROGEN BOND S
FRISCH MJ, 1995, GAUSSIAN94 REVISION
FYFE MCT, 1997, ACCOUNTS CHEM RES, V30, P393
GILLESPIE RJ, 1963, J CHEM EDUC, V40, P295
GILLESPIE RJ, 1992, CHEM SOC REV, V21, P59
GLUSKER JP, 1969, ACTA CRYSTALLOGR B, V25, P1066
GLUSKER JP, 1980, ACCOUNTS CHEM RES, V13, P345
JANCZAK J, 2001, ACTA CRYSTALLOGR 12, V57, P1431
JANCZAK J, 2001, ACTA CRYSTALLOGR C 1, V57, P123
JANCZAK J, 2001, ACTA CRYSTALLOGR C 7, V57, P873
JANCZAK J, 2001, ACTA CRYSTALLOGR C 9, V57, P1120
JANCZAK J, 2002, ACTA CRYSTALLOGR C 8, V58, O455
JANCZAK J, 2002, ACTA CRYSTALLOGR C, V58, O112
JANCZAK J, 2002, ACTA CRYSTALLOGR C, V58, O431
JANCZAK J, 2003, ACTA CRYSTALLOGR C 6, V59, O349
KRISCHE MJ, 2000, STRUCT BOND, V96, P3
MACDONALD JC, 1994, CHEM REV, V94, P2382
MARCHEWKA M, 2003, SOLID STATE SCI, V5, P643
MARTIN A, 1995, ACTA CRYSTALLOGR 10, V51, P2174
NORDMAN CE, 1960, ACTA CRYSTALLOGR, V13, P418
ROELOFSEN G, 1972, CRYST STRUCT COMMUN, V1, P23
ROW TNG, 1999, COORDIN CHEM REV, V183, P81
SHELDRICK GM, 1990, SHELXTL PROGRAM
SHELDRICK GM, 1997, SHELXL97 PROGRAM SOL
VARGHESE JN, 1977, ACTA CRYSTALLOGR B, V33, P2102
VISHWESHWAR P, 2002, J ORG CHEM, V67, P556
WHITESIDES GM, 1995, ACCOUNTS CHEM RES, V28, P81
ZACHARIAS DE, 1984, ACTA CRYSTALLOGR C, V40, P2100
ZERKOWSKI J, 1994, J AM CHEM SOC, V116, P2982
ZERKOWSKI JA, 1990, J AM CHEM SOC, V112, P9025
ZERKOWSKI JA, 1994, CHEM MATER, V6, P1250
ZERKOWSKI JA, 1994, J AM CHEM SOC, V116, P4298
NR 39
TC 4
PU POLISH CHEMICAL SOCIETY
PI WARSAW
PA C/O POLISH ACAD SCIENCES, INST PHYSICAL CHEMISTRY, UL KASPRZAKA 44/52,
01-224 WARSAW, POLAND
SN 0137-5083
J9 POLISH J CHEM
JI Pol. J. Chem.
PD OCT
PY 2003
VL 77
IS 10
BP 1323
EP 1337
PG 15
SC Chemistry, Multidisciplinary
GA 730VK
UT ISI:000185850700012
ER
PT J
AU Trasferetti, BC
Davanzo, CU
de Moraes, MAB
TI LO-TO splittings in plasma-deposited siloxane films
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID INFRARED-REFLECTANCE SPECTRA; CHEMICAL-VAPOR-DEPOSITION; GEL-DERIVED
SILICA; THIN-FILMS; VIBRATIONAL-SPECTRA; SI/SIO2 INTERFACE; AB-INITIO;
SPECTROSCOPY; OXYGEN; ABSORPTION
AB The present work presents LO and TO functions in the mid-infrared
region for thin films deposited from glow discharge plasmas of
tetramethylsilane (TMS) diluted either in Ar or O-2 or in mixtures of
these two gases. These functions were calculated through the
Kramers-Kronig analysis of transmittance spectra of the films supported
on KBr disks. To correlate structural aspects of the films with the
observed LO-TO splittings, a group frequency analysis based on the
literature was made. Such an analysis indicated that the films
deposited from the TMS Ar mixture were formed mainly by a
polycarbosilane skeleton, whereas those deposited from TMS-O-2 and
TMS-O-2-Ar were formed by a random network of four types of distorted
tetrahedra: (CH3)(3)SiO0.5, (CH3)(2)SiO, (CH3SiO1.5), and SiO2. From
the LO-TO splitting for the asymmetrical stretching mode of Si-O-Si
groups, the density and the presence of defects in samples obtained
from TMS-O-2 and TMS-O-2-Ar mixtures were evaluated. The number of
defects increased as the Ar-to-O-2 flow rate decreased. We also report
for the first time LO-TO splittings for bands related to the bending of
CH3 and to the stretching of the Si-C bond in Si(CH3)(x) groups. The
knowledge of such splittings is very important for a correct evaluation
of the infrared reflection -absorption spectra taken at oblique
incidence of thin films containing Si-O bonds and Si(CH3)(x) groups
deposited on metals.
C1 Univ Estadual Campinas, Inst Quim, BR-13083862 Campinas, SP, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13087970 Campinas, SP, Brazil.
RP Davanzo, CU, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
BR-13083862 Campinas, SP, Brazil.
CR ALLARA DL, 1985, LANGMUIR, V1, P52
ALMEIDA RM, 1992, PHYS REV B, V45, P161
ALMEIDA RM, 1996, PHYS REV B, V53, P14656
ANDERSON DR, 1974, ANAL SILICONES
BELLAMY LJ, 1975, INFRARED SPECTRA COM
BERREMAN DW, 1963, PHYS REV, V130, P2193
BLAKEMORE JS, 1995, SOLID STATE PHYSICS
DACRUZ NC, 1998, J POLYM SCI POL PHYS, V36, P1873
DECIUS JC, 1968, J CHEM PHYS, V49, P1387
DELEEUW SW, 1985, PHYS REV LETT, V55, P2879
DEVINE RAB, 1996, APPL PHYS LETT, V68, P3108
FLEISCHER H, 1999, J PHYS CHEM A, V103, P727
FURUSAWA T, 2001, ELECTROCHEM SOLID ST, V4, G31
GALEENER FL, 1976, PHYS REV LETT, V37, P1474
GUITON TA, 1993, COLLOID SURFACE A, V74, P33
HARBECKE B, 1985, APPL PHYS A-SOLID, V38, P263
HAWRANEK JP, 1976, SPECTROCHIM ACTA A, V32, P99
HINDS BJ, 1998, J NONCRYST SOLIDS, V227, P507
JONES LH, 1991, J PHYS CHEM-US, V95, P2701
KAMITSOS EI, 1993, PHYS REV B, V48, P12499
KAMITSOS EI, 1996, PHYS REV B, V53, P14659
KIRK CT, 1988, PHYS REV B, V38, P1255
KITTEL C, 1996, INTRO SOLID STATE PH
LEWIS HGP, 2000, CHEM MATER, V12, P3488
LEWIS HGP, 2001, J ELECTROCHEM SOC, V148, F212
LUCOVSKY G, 1980, SOL CELLS, V2, P431
LUCOVSKY G, 1998, J NONCRYST SOLIDS, V227, P1
MAGNI D, 2001, J PHYS D APPL PHYS, V34, P87
MARCHAND A, 1962, CHIM PHYS, V59, P1142
MARTINET C, 1997, J APPL PHYS, V81, P6996
MCKEAN DC, 1970, SPECTROCHIM ACTA A, V26, P1815
MCKEAN DCC, 1999, SPECTROCHIM ACTA A, V55, P1485
PAI PG, 1986, J VAC SCI TECHNOL A, V4, P689
PASQUARELLO A, 1997, PHYS REV LETT, V79, P1766
PAYNE MC, 1984, J NON-CRYST SOLIDS, V68, P351
QUEENEY KT, 2000, J APPL PHYS, V87, P1322
RAU C, 1994, THIN SOLID FILMS, V249, P28
SARNTHEIN J, 1997, SCIENCE, V275, P1925
SCARLETE M, 1994, CHEM MATER, V6, P977
SEKIMOTO K, 1982, PHYS REV B, V26, P3411
SMITH AL, 1984, APPL SPECTROSC, V38, P822
SMITH DY, 1985, HDB OPTICAL CONSTANT
SUGAHARA S, 1999, JPN J APPL PHYS 1, V38, P1428
SUGAHARA S, 2001, J ELECTROCHEM SOC, V148, F120
TEN YS, 1989, PHYS CHEM, V93, P7208
TRASFERETTI BC, UNPUB
TRASFERETTI BC, 2000, APPL SPECTROSC, V54, P502
TSU DV, 1989, PHYS REV B, V40, P1795
USAMI K, 2000, P 7 INT S QUANT EFF
WOLFE DM, 1999, J VAC SCI TECHNOL 2, V17, P2170
WROBEL AM, 1980, J MACROMOL SCI CHEM, V14, P321
YAMAMOTO K, 1994, VIB SPECTROSC, V8, P1
ZHANG CX, 1998, J AM CHEM SOC, V120, P8380
NR 53
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD OCT 2
PY 2003
VL 107
IS 39
BP 10699
EP 10708
PG 10
SC Chemistry, Physical
GA 726QC
UT ISI:000185609600005
ER
PT J
AU Ramalho, TC
Martins, TLC
Borges, LEP
Figueroa-Villar, JD
TI Influence of nonbonded interactions in the kinetics of formation of
chalcogenol esters from chalcogenoacetylenes
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE chalcogenoacetylene; chalcogenol ester; DFT; kinetics of formation;
nonbonded interactions; transition state
ID POLARIZABLE CONTINUUM MODEL; SELENAZOFURIN; TIAZOFURIN; CONTACTS;
THIAZOLE; SOLVENT; ENERGY; SULFUR; AGENT
AB The influence of nonbonded interactions in the kinetics of formation of
chalcogenol (thiol and selenol) esters from chalcogenoacetylenes was
studied by molecular modeling. Using semiempirical and density
functional theory methods it was possible to explain the differences
between the reaction rates for the analogous sulfur and selenium
chalcogenoacetylenes as well as evaluate the structural and electronic
effects (nonbonded interactions) on the formation of the esters. The
differences in the reaction rates can be explained in terms of the
carbocation stabilization by the chalcogen atom. It is proposed that
these differences are due to the differences in the intensity of the
dominant interaction pi(CO)(*)/n(Y) between the nonbonding orbitals of
sulfur and selenium with the vacant orbital of carbon in the cationic
transition state. (C) 2003 Wiley Periodicals, Inc.
C1 Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, Brazil.
RP Figueroa-Villar, JD, Inst Militar Engn, Dept Quim, Praca Gen Tiburcio
80, BR-22290270 Rio De Janeiro, Brazil.
CR BACA M, 1995, J AM CHEM SOC, V117, P1881
BARONE V, 1998, J COMPUT CHEM, V19, P404
BECKE AD, 1988, PHYS REV A, V38, P3089
BRAGA AL, 1999, J CHEM CRYSTALLOGR, V29, P77
BRAGA AL, 2001, SYNLETT MAR, P371
BRAGA AL, 2001, TETRAHEDRON, V57, P3297
BURLING FT, 1992, J AM CHEM SOC, V114, P2313
CAMMI R, 1994, J CHEM PHYS, V100, P7495
CANTOR CR, 1980, BIOPHYSICAL CHEM 1, CH5
CAROLINE P, 1996, J PHYS CHEM-US, V100, P17797
CHO SG, 2000, J MOL STRUC-THEOCHEM, V532, P279
COHENADDAD C, 1984, J CHEM SOC P2, P191
ELTAHER S, 2001, INT J QUANTUM CHEM, V20, P242
FRISCH MJ, 2001, GAUSSIAN 98 REVISION
GOLDSTEIN BM, 1983, J AM CHEM SOC, V105, P7416
GOLDSTEIN BM, 1985, J AM CHEM SOC, V107, P1394
GOLDSTEIN BM, 1988, J MED CHEM, V31, P1026
GOLDSTEIN BM, 1990, J AM CHEM SOC, V112, P8265
GURUROW TN, 1981, J AM CHEM SOC, V103, P477
HALGREN TA, 1996, J COMPUT CHEM, V17, P490
HEHRE WJ, 1999, PC SPAR TAN PRO
KUCSMAN A, 1985, ORGANIC SULFUR CHEM, CH4
LI HG, 2001, J AM CHEM SOC, V123, P2326
MOTTANETO DJ, 1992, J QUANTUM CHEM QUANT, V19, P225
MUKAIYAMA T, 1973, J AM CHEM SOC, V95, P4763
PERDEW JP, 1986, PHYS REV B, V33, P8822
RAMASUBBU N, 1987, PHOSPHORUS SULFUR, V31, P221
ROSENFIELD RE, 1977, J AM CHEM SOC, V99, P4860
SALZNER U, 1993, J AM CHEM SOC, V115, P10231
TOMASI J, 1994, CHEM REV, V94, P2027
WANG P, 1991, J AM CHEM SOC, V113, P55
WANG X, 1999, J AM CHEM SOC, V121, P8567
WIRTH T, 1998, J AM CHEM SOC, V120, P3376
NR 33
TC 4
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD NOV 5
PY 2003
VL 95
IS 3
BP 267
EP 273
PG 7
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 728CF
UT ISI:000185697100009
ER
PT J
AU Laschuk, EF
Martins, MM
Evangelisti, S
TI Ab initio potentials for weakly interacting systems: Homonuclear rare
gas dimers
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE ab initio; rare gas dimers; rovibrational spectroscopy; second virial
coefficient
ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; WAVE-FUNCTIONS;
ENERGY CURVES; INTERMOLECULAR INTERACTIONS; BENCHMARK CALCULATIONS;
SCHRODINGER-EQUATION; ELECTRIC PROPERTIES; NEON DIMER; AR-2
AB A series of high-level ab initio interatomic potentials for the
homonuclear rare gas dimers He-2, Ne-2, and Ar-2 is presented, with
predictions of rovibrational spectroscopic parameters and second virial
coefficients. These potentials were created by using d-aug-cc-pVnZ, n =
D,T,Q basis sets, NP4 and CCSD(T) correlation energy treatments, the
counterpoise correction to the basis set superposition error, and
extrapolation schemes for estimating complete basis set (CBS) limits. A
careful FCI correction was added to our best He-2 CCSD(T) potential.
The characteristic parameters D-e, R-e, k, and sigma of the ab initio
potentials were compared with those of reliable empirical and ab initio
potentials. Our best results for He-2 recovered 99.9% of Janzen's SAPT2
well depth. In the case of Ar-2, we recovered 99.8% of Aziz's HFDID1
well depth. For neon, second virial coefficients typically came to
within 0.5-1.0 cm(3)mol(-1) of experimental values and rovibrational
energy levels exhibited errors of about 1.4 cm(-1). Our best argon
results exhibited second virial coefficients in agreement of 0.25
cm(3)mol(-1) with experiment and rovibrational energy level errors
around 0.2 cm(-1). (C) 2003 Wiley Periodicals, Inc.
C1 Univ Fed Rio Grande Sul, Theoret Chem Grp, BR-91501970 Porto Alegre, RS, Brazil.
Univ Bologna, Theoret & Inorgan Chem Dept, Bologna, Italy.
RP Laschuk, EF, Univ Fed Rio Grande Sul, Theoret Chem Grp, BR-91501970
Porto Alegre, RS, Brazil.
CR ANDERSON JB, 2001, J CHEM PHYS, V115, P4546
AZIZ RA, 1989, CHEM PHYS, V130, P187
AZIZ RA, 1993, J CHEM PHYS, V99, P4518
BALINTKURTI GG, 1992, INT REV PHYS CHEM, V11, P317
BURDA JV, 1996, MOL PHYS, V89, P425
COLBOURN EA, 1976, J CHEM PHYS, V65, P1741
CYBULSKI SM, 1999, J CHEM PHYS, V111, P10520
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FERNANDEZ B, 1998, J CHEM PHYS, V109, P10255
FRISCH MJ, 1995, GAUSSIAN 98
GDANITZ RJ, 2000, J CHEM PHYS, V113, P5145
GDANITZ RJ, 2001, CHEM PHYS LETT, V348, P67
GROCHOLA G, 1998, MOL PHYS, V95, P471
HATTIG C, 1999, J CHEM PHYS, V111, P10099
HERMAN PR, 1988, J CHEM PHYS, V89, P4535
JANZEN AR, 1997, J CHEM PHYS, V107, P914
KENDALL RA, 1992, J CHEM PHYS, V96, P6796
KOCH H, 1999, J CHEM PHYS, V111, P10108
LEROY RJ, 1974, MOL PHYS, V28, P587
MARSTON CC, 1989, J CHEM PHYS, V91, P3571
TANAKA Y, 1972, J CHEM PHYS, V57, P2964
TAO FM, 1994, MOL PHYS, V81, P507
TELEGER C, 1999, J PHYS CHEM REF DATA, V28, P779
VANDEBOVENKAMP J, 1999, CHEM PHYS LETT, V309, P287
VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
VANMOURIK T, 1999, MOL PHYS, V96, P529
WERNER HJ, 1997, MOLPRO
WOON DE, 1993, J CHEM PHYS, V98, P1358
WOON DE, 1994, J CHEM PHYS, V100, P2838
WOON DE, 1994, J CHEM PHYS, V100, P2975
NR 30
TC 3
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD NOV 5
PY 2003
VL 95
IS 3
BP 303
EP 312
PG 10
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 728CF
UT ISI:000185697100014
ER
PT J
AU Alexandre, SS
Artacho, E
Soler, JM
Chacham, H
TI Small polarons in dry DNA
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID CHARGE MIGRATION; DOUBLE HELIX; LAMBDA-DNA; TRANSPORT; MODEL;
PSEUDOPOTENTIALS; CONDUCTIVITY; MOLECULES; DAMAGE; MOTION
AB We report ab initio calculations for positively charged fragments of
dry poly(dC)-poly(dG) DNA, with up to 4 C-G pairs. We find a strong
hole-lattice coupling and clear evidence for the formation of small
polarons. The largest geometry distortions occur in only one or two
base pairs. They involve the stretching of weak bonds within each base
pair, increasing the distance of positive hydrogens, and decreasing
that of negative oxygens, to the region in which the hole localizes. We
obtain an energy of similar to0.30 eV for the polaron formation, nearly
independent of the chain size. From it, we can estimate an activation
energy for polaron hopping of similar to0.15 eV, consistent with the
available experimental value.
C1 Univ Fed Minas Gerais, Dept Fis, ICEx, BR-30123970 Belo Horizonte, MG, Brazil.
Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England.
Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain.
RP Alexandre, SS, Univ Fed Minas Gerais, Dept Fis, ICEx, CP 702,
BR-30123970 Belo Horizonte, MG, Brazil.
CR ARTACHO E, IN PRESS MOL PHYS
BARNETT RN, 2001, SCIENCE, V294, P567
BERATAN DN, 1997, CHEM BIOL, V4, P3
BRUINSMA R, 2000, PHYS REV LETT, V85, P4393
CONWELL EM, 2000, P NATL ACAD SCI USA, V97, P4556
CUNIBERTI G, 2002, PHYS REV B, V65
DEMPLE B, 1994, ANNU REV BIOCHEM, V63, P915
DEPABLO PJ, 2000, PHYS REV LETT, V85, P4992
FINK HW, 1999, NATURE, V398, P407
GERVASIO FL, 2002, PHYS REV LETT, V89
HOLSTEIN T, 1959, ANN PHYS-NEW YORK, V8, P325
HOLSTEIN T, 1959, ANN PHYS-NEW YORK, V8, P343
KALOSAKAS G, 1998, PHYS REV B, V58, P3094
KELLEY SO, 1999, SCIENCE, V283, P375
KIM JN, 1995, PHYS REV B, V52, P1640
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
LOFT S, 1996, J MOL MED-JMM, V74, P297
MAHAN GD, 1986, MANY PARTICLE PHYSIC
MAKOV G, 1995, PHYS REV B, V51, P4014
ORDEJON P, 1995, PHYS REV B, V51, P1456
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PORATH D, 2000, NATURE, V403, P635
SARTOR V, 1999, J AM CHEM SOC, V121, P11027
SOLER JM, 2002, J PHYS-CONDENS MAT, V14, P2745
TRAN P, 2000, PHYS REV LETT, V85, P1564
TROULLIER N, 1991, PHYS REV B, V43, P1993
VERISSIMOALVES M, 2001, PHYS REV LETT, V86, P3372
YOO KH, 2001, PHYS REV LETT, V87
YU ZG, 2001, PHYS REV LETT, V86, P6018
ZHANG W, 2002, PHYS REV B, V66
NR 32
TC 18
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD SEP 5
PY 2003
VL 91
IS 10
AR 108105
DI ARTN 108105
PG 4
SC Physics, Multidisciplinary
GA 724KA
UT ISI:000185485700048
ER
PT J
AU Coutinho, K
Canuto, S
TI The sequential Monte Carlo-quantum mechanics methodology. Application
to the solvent effects in the Stokes shift of acetone in water
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Monte Carlo-quantum mechanics methodology; super-molecular calculation;
solvent effects
ID POLARIZABLE CONTINUUM MODEL; MOLECULAR-DYNAMICS SIMULATIONS;
INTEGRAL-EQUATION FORMALISM; FORBIDDEN VIBRONIC SPECTRA; PI-ASTERISK
TRANSITION; SELF-CONSISTENT-FIELD; LIQUID WATER; AQUEOUS-SOLUTION;
AB-INITIO; CONFIGURATION-INTERACTION
AB The sequential Monte Carlo quantum mechanics methodology is used to
obtain the solvent effects on the Stokes shift of acetone in water. One
of the great advantages of this methodology is that all the important
statistical information is known before running into the costly quantum
mechanical calculations. This advantage is discussed not only with
respect to the statistical correlation between the different structures
generated by the simulation but also in the proper identification of
hydrogen bonds in liquids. To obtain the solvent effects in the Stokes
shift of the n-pi* absorption transition of acetone in water,
quantum-mechanical calculations are performed in super-molecular
structures generated by NVT Monte Carlo simulation. The statistical
correlation between configurations is analyzed using the
auto-correlation function of the energy. The largest calculations
include one acetone and 170 water molecules. One-hundred INDO/CIS
super-molecular calculations are performed for each solvation shell to
obtain the statistical average value. The calculated solvatochromic
shift of the n-pi* absorption transition of acetone in water, compared
to gas phase, is similar to 1310 cm(-1) in good agreement with the
experimental blue shift of 1500 +/- 200 cm(-1). For the emission of the
relaxed excited state, the calculated shift is similar to 1850 cm(-1).
The total calculated solvent effect on the Stokes shift of acetone in
aqueous solution is thus 540 cm(-1). A detailed analysis of the
sampling of the configurations obtained in the Monte Carlo simulation
is made and it is shown that all results represent statistically
converged values. (C) 2003 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi das Cruzes, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
ANTONCZAK S, 1998, J AM CHEM SOC, V120, P8825
BABA M, 1985, J CHEM PHYS, V82, P3938
BAYLISS NS, 1954, J PHYS CHEM-US, V58, P1006
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BISWAS R, 1999, J PHYS CHEM A, V103, P2495
BLAIR JT, 1989, J AM CHEM SOC, V111, P6948
BROO A, 1997, J PHYS CHEM A, V101, P2478
CAMMI R, 1995, J COMPUT CHEM, V16, P1449
CAMMI R, 1998, J AM CHEM SOC, V120, P8834
CANCES E, 1997, J CHEM PHYS, V107, P3032
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CANUTO S, 2002, CURRENT DEV ATOMIC M, P127
CANUTO S, 2003, ADV QUANTUM CHEM, V41, P161
CHATFIELD C, 1984, ANAL TIME SERIES INT
CHIPOT C, 1991, CHEM PHYS LETT, V191, P287
CHRISTIANSEN O, 1999, J CHEM PHYS, V110, P1365
COSSI M, 2002, J CHEM PHYS, V117, P43
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 1997, DICE MONTE CARLO PRO
COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
CRAMER CJ, 1991, J AM CHEM SOC, V113, P8305
CRAMER CJ, 1999, CHEM REV, V99, P2161
DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
DEVRIES AH, 1996, INT J QUANTUM CHEM, V57, P1067
FIELD MJ, 1990, J COMPUT CHEM, V11, P700
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GAO JL, 1992, SCIENCE, V258, P631
GAO JL, 1994, J AM CHEM SOC, V116, P9324
GAO JL, 1997, J AM CHEM SOC, V119, P2962
HAYES WP, 1965, SPECTROCHIM ACTA, V21, P529
HONMA K, 1991, J CHEM PHYS, V94, P3496
HOUJOU H, 1997, J CHEM PHYS, V107, P5652
IFTIMIE R, 2000, J CHEM PHYS, V113, P4852
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
KARELSON MM, 1992, J PHYS CHEM-US, V96, P6949
KIRKWOOD JG, 1934, J CHEM PHYS, V2, P351
KLAMT A, 1993, J CHEM SOC P2, P799
KRATSCHMER R, 1976, J STAT PHYS, V15, P267
LEVY RM, 1990, J PHYS CHEM-US, V94, P4470
LIAO DW, 1999, J CHEM PHYS, V111, P205
MALASPINA T, 2002, J CHEM PHYS, P117
MARTIN ME, 2000, J CHEM PHYS, V113, P6308
MARTIN ME, 2002, J CHEM PHYS, V116, P1613
MENNUCCI B, 1998, J CHEM PHYS, V109, P2798
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
MEZEI M, 1981, J CHEM PHYS, V74, P622
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIKKELSEN KV, 1988, J CHEM PHYS, V89, P3086
MONARD G, 1999, ACCOUNTS CHEM RES, V32, P904
NAKA K, 1999, J CHEM PHYS, V110, P3484
OGILBY PR, 1999, ACCOUNTS CHEM RES, V32, P512
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
POULSEN TD, 1999, J CHEM PHYS, V111, P2678
RAHMAN A, 1971, J CHEM PHYS, V55, P3336
REICHHARDT C, 1979, SOLVENT EFFECTS ORGA
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
RIVAIL JL, 1976, CHEM PHYS, V18, P233
RIVAIL JL, 1998, J MOL GRAPH MODEL, V16, P272
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
ROCHA WR, 2001, CHEM PHYS LETT, V345, P171
ROCHA WR, 2002, THEOR CHEM ACC, V108, P31
SANCHEZ ML, 1995, J PHYS CHEM-US, V99, P15758
SATO H, 1999, J CHEM PHYS, V111, P8545
SERRANOANDRES L, 1997, INT J QUANTUM CHEM, V65, P167
SHIU YJ, 2001, J CHEM PHYS, V115, P4080
STILLINGER FH, 1974, J CHEM PHYS, V60, P1545
STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
SUPPAN P, 1997, SOLVATOCHROMISM
SVENSSON M, 1996, J PHYS CHEM-US, V100, P19357
TANG S, 1987, PHYS REV B, V36, P567
TAPIA O, 1975, MOL PHYS, V29, P1653
TENNO S, 1993, CHEM PHYS LETT, V214, P391
TENNO S, 1994, J CHEM PHYS, V100, P7443
THOMPSON MA, 1996, J PHYS CHEM-US, V100, P14494
THURBER MC, 1999, APPL PHYS B-LASERS O, V69, P229
TOMASI J, 1994, CHEM REV, V94, P2027
VANDUUREN BL, 1963, CHEM REV, V63, P325
VREVEN T, 2001, J CHEM PHYS, V115, P62
WARSHEL A, 1976, J MOL BIOL, V103, P227
ZENG J, 1993, J CHEM PHYS, V99, P1496
ZERNER MC, 1999, ZINDO SEMIEMPIRICAL
NR 85
TC 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD AUG 1
PY 2003
VL 632
SI Sp. Iss. SI
BP 235
EP 246
PG 12
SC Chemistry, Physical
GA 722VQ
UT ISI:000185399100019
ER
PT J
AU Branicio, PS
Rino, JP
Shimojo, F
Kalia, RK
Nakano, A
Vashishta, P
TI Molecular dynamics study of structural, mechanical, and vibrational
properties of crystalline and amorphous Gal-xInxAs alloys
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID SILICON-NITRIDE; PHONON DISPERSIONS; GALLIUM-ARSENIDE; SQUARE
NANOMESAS; SOLID-SOLUTIONS; GA1-XINXAS; FRACTURE; AMORPHIZATION;
BEHAVIOR; SIMULATION
AB Using an interaction potential scheme, molecular dynamics (MD)
simulations are performed to investigate structural, mechanical, and
vibrational properties of Ga1-xInxAs alloys in the crystalline and
amorphous phases. For the crystalline phase we find that: (i) Ga-As and
In-As bond lengths vary only slightly for different compositions; (ii)
the nearest-neighbor cation-cation distribution has a broad peak; and
(iii) there are two nearest-neighbor As-As distances in the As (anion)
sublattice. These MD results are in excellent agreement with extended
x-ray absorption fine structure and high-energy x-ray diffraction data
and also with ab initio MD simulation results. The calculated lattice
constant deviates less than 0.18% from Vegard's law. The calculated
phonon density of states exhibits a two-mode behavior for
high-frequency optical phonons with peaks close to those in binary
alloys (GaAs and InAs), which agrees well with a recent Raman study.
Calculated elastic constants show a significant nonlinear dependence on
the composition. For the amorphous phase, MD results show that: (i) the
nearest-neighbor cation-anion distribution splits into well-defined
As-Ga and As-In peaks as in the crystal phase; (ii) the cation-cation
distribution is similar to that in the crystal phase; and (iii) the
As-As distribution is quite different from that in the crystal, having
only one nearest-neighbor distance. (C) 2003 American Institute of
Physics.
C1 Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA.
Univ Fed Sao Carlos, Dept Fis, Sao Paulo, Brazil.
Kumamoto Univ, Dept Phys, Kumamoto 860, Japan.
RP Branicio, PS, Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp &
Simulat, Los Angeles, CA 90089 USA.
CR ALLEN MP, 1987, COMPUTER SIMULATION
BARONI S, 1990, PHYS REV LETT, V65, P84
BAZANT MZ, 1997, PHYS REV B, V56, P8542
BRANICIO PS, 2003, APPL PHYS LETT, V82, P1057
BRENNER DW, 2000, PHYS STATUS SOLIDI B, V217, P23
BRIGGS EL, 1996, PHYS REV B, V54, P14362
BRODSKY MH, 1968, PHYS REV LETT, V21, P990
CHATTERJEE A, 2000, APPL PHYS LETT, V77, P1132
CHELIKOWSKY JR, 1994, PHYS REV B, V50, P11355
COHEN ML, 1993, SCIENCE, V261, P307
EBBSJO I, 2000, J APPL PHYS, V87, P7708
FONG CY, 1976, PHYS REV B, V14, P5387
GEHRSITZ S, 1999, PHYS REV B, V60, P11601
GIANNOZZI P, 1991, PHYS REV B, V43, P7231
GROENEN J, 1998, PHYS REV B, V58, P10452
HOHENBERG P, 1964, PHYS REV B, V136, P864
KALIA RK, 1997, PHYS REV LETT, V78, P2144
KALIA RK, 1997, PHYS REV LETT, V78, P689
KODIYALAM S, 2001, PHYS REV LETT, V86, P55
KOHN W, 1983, INHOMOGENEOUS ELECT, P79
KRESSE G, 1994, PHYS REV B, V49, P14251
LI W, 1996, PHYS REV LETT, V77, P2241
MARTINS JL, 1984, PHYS REV B, V30, P6217
MIGLIORATO MA, 2002, PHYS REV B, V65
MIKKELSEN JC, 1982, PHYS REV LETT, V49, P1412
PATEL C, 1984, J MOL STRUCT, V115, P149
PAULING L, 1967, NATURE CHEM BOND
PETKOV V, 1999, PHYS REV LETT, V83, P4089
PHILIPS BA, 1995, PHYS REV LETT, V74, P3640
PHILLIPS JC, 1973, BONDS BANDS SEMICOND, P214
SHIMOJO F, 2001, COMPUT PHYS COMMUN, V140, P303
SU XT, 2001, APPL PHYS LETT, V78, P3717
SU XT, 2001, APPL PHYS LETT, V79, P4577
TERSOFF J, 1989, PHYS REV B, V39, P5566
TROULLIER N, 1991, PHYS REV B, V43, P8861
TSURUTA K, 1998, J AM CERAM SOC, V81, P433
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
VASHISHTA P, 1989, PHYS REV LETT, V62, P1651
VASHISHTA P, 1990, PHYS REV B, V41, P12197
VASHISHTA P, 1995, PHYS REV LETT, V75, P858
VEGARD L, 1921, Z PHYS, V5, P17
WALSH P, 2000, APPL PHYS LETT, V77, P4332
WALSH P, 2001, APPL PHYS LETT, V78, P3328
NR 43
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD SEP 15
PY 2003
VL 94
IS 6
BP 3840
EP 3848
PG 9
SC Physics, Applied
GA 723EN
UT ISI:000185419600023
ER
PT J
AU Meurer, EC
Gozzo, FC
Augusti, R
Eberlin, MN
TI The kinetic method as a structural diagnostic tool: ionized
alpha-diketones as loosely one-electron bonded diacylium ion dimers
SO EUROPEAN JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
ID POLYCYCLIC AROMATIC-HYDROCARBONS; QUADRUPOLE MASS SPECTROMETERS;
PROTON-BOUND DIMERS; GAS-PHASE ACIDITIES; RADICAL CATIONS;
THERMOCHEMICAL DETERMINATIONS; DISSOCIATION ENERGIES; IONIZATION
ENERGIES; ATTACHMENT SITES; CHIRAL ANALYSIS
AB The kinetic method is used to corroborate the description of ground
state ionized alpha-diketones as loosely electron-bonded acylium ion
dimers: R'-C=O+---e(-)---O+=C-R-2. The abundance ratio of both the
acylium ion fragments (RCO)-C-1* and (RCO+)-C-2 (summed to those of
their respective secondary fragments) formed upon low energy (5 eV)
collision-induced dissociation of several ionized alpha-diketones is
found to correlate linearly with the ionization energies (IEs) of the
corresponding (RCO.)-C-1 and (RCO.)-C-2 free radicals as predicted by
density functional theory calculations at the B3LY/P/6-311++G(d,p)
level. However, when these abundances are taken from 70 eV electron
ionization mass spectra, lower and sometimes inverted ratios
(2,3-pentanedione and 2,3-hexanedione) are observed. Inverted ratios
are also observed via charge-exchange mass spectrometry/mass
spectrometry (MS/MS) experiments for ionized 2,3-pentanodione formed
with relatively high internal energies. Ionized alpha-diketones are
found to display an effective temperature of 1705 K, which indicates an
intermediate loosely-bonded nature. B3LY/P/6-311++G(d,p) optimized
geometries and charge and spin densities also corroborate the
description of ground state ionized alpha-diketones as loosely
electron-bonded diacylium ion dimers.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
UFMG, Dept Chem, BR-31270901 Belo Horizonte, MG, Brazil.
RP Eberlin, MN, UNICAMP, Inst Chem, CP154, BR-13083970 Campinas, SP,
Brazil.
CR AUGUSTI DV, 2002, ANAL CHEM, V74, P3458
BAER T, 1997, J AM SOC MASS SPECTR, V8, P103
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BOAND G, 1983, J AM CHEM SOC, V105, P2203
BURINSKY DJ, 1984, J AM CHEM SOC, V106, P2770
CERDA BA, 1996, J AM CHEM SOC, V118, P11884
CERDA BA, 1998, J AM CHEM SOC, V120, P2437
CHEN G, 1996, J AM SOC MASS SPECTR, V7, P619
CHEN GD, 1997, ANAL CHEM, V69, P3641
CHEN GD, 1997, J MASS SPECTROM, V32, P1305
CHEN GD, 1997, J MASS SPECTROM, V32, P333
CHENG XH, 1993, J AM CHEM SOC, V115, P4844
COOKS RG, 1977, J AM CHEM SOC, V99, P1279
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
COOKS RG, 1998, ACCOUNTS CHEM RES, V31, P379
DAMRAUER R, 1988, J AM CHEM SOC, V110, P2005
DENAULT JW, 1998, J AM SOC MASS SPECTR, V9, P1141
DENAULT JW, 2000, J PHYS CHEM A, V104, P11290
DEPUY CH, 1984, J AM CHEM SOC, V106, P4051
DERRICK PJ, 1995, ADV MASS SPECTROM, V13, P23
DEVISSER SP, 1998, INT J MASS SPECTROM, V180, P43
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DRAHOS L, 1999, J MASS SPECTROM, V34, P79
DRAHOS L, 2001, J MASS SPECTROM, V36, P237
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GOZZO FC, 2001, J MASS SPECTROM, V36, P1140
GRESE RP, 1990, J AM SOC MASS SPECTR, V1, P172
GRIFFIN LL, 2002, INT J MASS SPECTROM, V217, P23
GUO JH, 1999, ANGEW CHEM INT EDIT, V38, P1755
HANLEY JH, 1992, J PHYS CHEM-US, V92, P5803
HARCOURT RD, 1997, J PHYS CHEM A, V101, P5962
JARROLD MF, 1987, J CHEM PHYS, V86, P3876
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KISHORE K, 2000, J PHYS CHEM A, V104, P9646
LIAS SG, 1988, J PHYS CHEM REF D S1, V17, P1
LIAS SG, 2001, ION ENERGETICS DATA
LUND KH, 1996, INT J MASS SPECTROM, V156, P203
MA SG, 1997, INT J MASS SPECTROM, V163, P89
MA SG, 1998, J MASS SPECTROM, V33, P943
MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
MCLUCKEY SA, 1983, INT J MASS SPECTROM, V52, P165
MCLUCKEY SA, 1984, ORG MASS SPECTROM, V19, P545
MURAD E, 1964, J CHEM PHYS, V41, P404
ROBINSON PJ, 1972, UNIMOLECULAR REACTIO
SCHROETER K, 1998, EUR J ORG CHEM APR, P565
SHEN WY, 1997, RAPID COMMUN MASS SP, V11, P71
STEVENSON DP, 1951, DISCUSS FARADAY SOC, P35
STOCKIGT D, 1995, INT J MASS SPECTROM, V150, P1
TAO WA, 1999, ANAL CHEM, V71, P4427
TAO WA, 2001, ANAL CHEM, V73, P1692
TAO WA, 2003, ANAL CHEM, V75, A25
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
TRIKOUPIS MA, 1999, J AM SOC MASS SPECTR, V10, P869
VEKEY K, 1997, ANAL CHEM, V69, P1700
WANG F, 1998, INT J MASS SPECTROM, V180, P195
WONG PSH, 1996, ANAL CHEM, V68, P4254
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
WONG PSH, 1997, J ORGANOMET CHEM, V539, P131
WRIGHT LG, 1982, INT J MASS SPECTROM, V42, P115
YANG SS, 1995, J MASS SPECTROM, V30, P807
YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
NR 63
TC 4
PU IM PUBLICATIONS
PI W SUSSEX
PA 6 CHARLTON MILL, CHARLTON, CHICHESTER,, W SUSSEX PO18 0HY, ENGLAND
SN 1469-0667
J9 EUR J MASS SPECTROM
JI Eur. J. Mass Spectrom.
PY 2003
VL 9
IS 4
BP 295
EP 304
PG 10
SC Physics, Atomic, Molecular & Chemical; Spectroscopy
GA 723XD
UT ISI:000185456100009
ER
PT J
AU Ruini, A
Bussi, G
Ferretti, A
Caldas, MJ
Molinari, E
TI Charge transport and radiative recombination in polythiophene crystals:
a first-principles study
SO SYNTHETIC METALS
LA English
DT Article
DE density-functional theory; optical absorption; charge transport;
polythiophene
ID ORGANIC SEMICONDUCTORS; SINGLE-CRYSTALS; AB-INITIO; GROWTH
AB We investigate two phases of polythiophene crystals by means of
first-principles calculations, focusing on the effect of the different
structure on charge transport parameters and luminescence quantum
yield. The resulting microscopic interpretation highlights the impact
of solid-state interchain coupling on both transport and emissive
properties of semiconducting polymer crystals. (C) 2003 Elsevier B.V.
All rights reserved.
C1 INFM, Natl Ctr NanoStruct & BioSyst Surfaces S3, Modena, Italy.
Univ Modena, Dipartimento Fis, I-41100 Modena, Italy.
Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
RP Ruini, A, INFM, Natl Ctr NanoStruct & BioSyst Surfaces S3, Modena,
Italy.
CR ACKERMANN J, 2002, THIN SOLID FILMS, V403, P157
BREDAS JL, 2002, P NATL ACAD SCI USA, V99, P5804
BUSSI G, 2002, APPL PHYS LETT, V80, P4118
DAVYDOV AS, 1962, THEORY MOL EXCITONS
FERRETTI A, 2003, PHYS REV LETT, V90
GEBAUER W, 1998, CHEM PHYS, V227, P33
GIGLI G, 1998, APPL PHYS LETT, V72, P1013
GRANSTROM M, 1999, SYNTHETIC MET, V102, P957
HOHENESTER U, 2001, PHYS REV B, V64
KOHN W, 1965, PHYS REV, V140, A1133
KOUKI F, 2000, J CHEM PHYS, V113, P385
MARCUS RA, 1985, BIOCHIM BIOPHYS ACTA, V811, P265
MARKS RN, 1995, EUROPHYS LETT, V32, P523
MOLLER S, 2000, PHYS REV B, V61, P15749
MUCCINI M, 2000, PHYS REV B, V62, P6296
PUSCHNIG P, 2001, SYNTHETIC MET, V119, P245
ROHLFING M, 1998, PHYS REV LETT, V81, P2312
ROHLFING M, 2000, PHYS REV B, V62, P4927
RUINI A, 2002, PHYS REV LETT, V88
RUINI A, 2002, RAD MATTER INTRACTIO, P155
SIEGRIST T, 1998, ADV MATER, V10, P379
SIRRINGHAUS H, 1998, SCIENCE, V280, P1741
SLATER JC, 1954, PHYS REV, V94, P1498
NR 23
TC 3
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD OCT 9
PY 2003
VL 139
IS 3
BP 755
EP 757
PG 3
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
Polymer Science
GA 721EG
UT ISI:000185303600050
ER
PT J
AU Coluci, VR
Braga, SF
Legoas, SB
Galvao, DS
Baughman, RH
TI Families of carbon nanotubes: Graphyne-based nanotubes
SO PHYSICAL REVIEW B
LA English
DT Article
ID GRAPHDIYNE SUBSTRUCTURES; ELECTRONIC-STRUCTURE; DEHYDROBENZOANNULENES;
MICROTUBULES; SYSTEM
AB New families of carbon single-walled nanotubes are proposed and their
electronic structures are investigated. These nanotubes, called
graphynes, result from the elongation of covalent interconnections of
graphite-based nanotubes by the introduction of yne groups. Analogously
to ordinary nanotubes, armchair, zigzag, and chiral graphyne nanotubes
are possible. We here predict the electronic properties of these
unusual nanotubes using tight-binding and ab initio density functional
methods. Of the three graphyne nanotube families analyzed here, two
provide metallic behavior for armchair tubes and either metallic or
semiconducting behavior for zigzag nanotubes. A diameter- and
chirality-independent band gap is predicted for the other investigated
graphyne family, as well as an oscillatory dependence of the effective
mass on nanotube diameter.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Univ Texas, NanoTech Inst, Richardson, TX USA.
Univ Texas, Dept Chem, Richardson, TX 75083 USA.
RP Coluci, VR, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
BR-13083970 Campinas, SP, Brazil.
CR ANTHONY JE, 1997, TETRAHEDRON LETT, V38, P3499
BAUGHMAN RH, 1987, J CHEM PHYS, V87, P6687
BELL ML, 2001, TETRAHEDRON, V57, P3507
CLEMENTI E, 1963, J CHEM PHYS, V38, P2686
COLUCI VR, UNPUB
CUMINGS J, 2000, SCIENCE, V289, P602
GALLAGHER ME, 2001, TETRAHEDRON LETT, V42, P7533
HALEY MM, 1997, ANGEW CHEM INT EDIT, V36, P836
HAMADA N, 1992, PHYS REV LETT, V68, P1579
HARIGAYA K, 1999, PCCP PHYS CHEM CH PH, V1, P1687
HOFFMANN R, 1963, J CHEM PHYS, V39, P1397
IIJIMA S, 1991, NATURE, V354, P56
KEHOE JM, 2000, ORG LETT, V2, P969
KIM P, 2001, PHYS REV LETT, V87
KOCIAK M, 2001, PHYS REV LETT, V86, P2416
KOPELMAN R, 1997, PHYS REV LETT, V78, P1239
LEGOAS SB, 2003, PHYS REV LETT, V90
MULLIKEN RS, 1949, J CHEM PHYS, V17, P1248
NARITA N, 1998, PHYS REV B, V58, P11009
NARITA N, 2000, PHYS REV B, V62, P11146
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
RANA D, 2001, CHEM PHYS LETT, V334, P314
RINZLER AG, 1995, SCIENCE, V269, P1550
SAITO R, 1992, PHYS REV B, V46, P1804
SINNOTT SB, 2001, CRIT REV SOLID STATE, V26, P145
SONODA M, 2001, ORG LETT, V3, P2419
SRINIVASAN M, 2000, ORG LETT, V2, P3849
TANS SJ, 1997, NATURE, V386, P474
TROULLIER N, 1991, PHYS REV B, V43, P1993
WALLACE PR, 1947, PHYS REV, V71, P622
WAN WB, 2001, J ORG CHEM, V66, P3893
ZHENG QS, 2002, PHYS REV LETT, V88
ZHOU YF, 2002, SOLID STATE COMMUN, V122, P307
NR 34
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL 15
PY 2003
VL 68
IS 3
AR 035430
DI ARTN 035430
PG 6
SC Physics, Condensed Matter
GA 719XD
UT ISI:000185229600144
ER
PT J
AU Orestes, E
Marcasso, T
Capelle, K
TI Density-functional calculation of ionization energies of
current-carrying atomic states
SO PHYSICAL REVIEW A
LA English
DT Article
ID INHOMOGENEOUS ELECTRON-GAS; STRONG MAGNETIC-FIELDS; EXCHANGE; SYSTEMS;
POTENTIALS; SUPERCONDUCTORS; APPROXIMATIONS; FORMALISM; SOLIDS
AB Current-density-functional theory is used to calculate ionization
energies of current-carrying atomic states. A recently proposed
perturbative approximation to full current-density-functional theory is
implemented and found to be numerically feasible. Different
parametrizations for the current-dependence of the density functional
are critically compared. Orbital currents in open-shell atoms turn out
to produce a small shift in the ionization energies. We find that
modern density functionals have reached an accuracy at which small
current-related terms appearing in open-shell configurations are not
negligible anymore, compared to the remaining difference to experiment.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil.
RP Orestes, E, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol,
Caixa Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR BAERENDS EJ, 1997, CHEM PHYS LETT, V265, P481
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 2002, J CHEM PHYS, V117, P6935
CAPELLE K, 1997, PHYS REV LETT, V78, P1872
CAPELLE K, 1999, PHYS REV A, V60, P733
CAPELLE K, 2000, EUROPHYS LETT, V49, P376
CAPELLE K, 2000, PHYS REV B, V61, P15228
CHEN JQ, 1996, PHYS REV A, V54, P3939
CHONG DP, 2002, J CHEM PHYS, V116, P1760
COLWELL SM, 1994, CHEM PHYS LETT, V217, P271
DREIZLER RM, 1990, DENSITY FUNCTIONAL T
EBERT H, 1997, EUROPHYS LETT, V40, P545
GUNNARSSON O, 1976, PHYS REV B, V13, P4274
HOHENBERG P, 1964, PHYS REV, V136, B864
KOHN W, 1996, J PHYS CHEM-US, V100, P12974
KOHN W, 1999, REV MOD PHYS, V71, P1253
KURTH S, 1999, PHYS REV LETT, V83, P2628
LEE AM, 1994, CHEM PHYS LETT, V229, P225
LEE AM, 1995, J CHEM PHYS, V103, P10095
LEE AM, 1999, PHYS REV A, V59, P209
LEE C, 1988, PHYS REV B, V37, P785
MACDONALD AH, 1979, J PHYS C SOLID STATE, V12, P2977
OLIVEIRA LN, 1988, PHYS REV LETT, V60, P2430
PARR RG, 1989, DENSITY FUNCTIONAL T
PERDEW JP, 1981, PHYS REV B, V23, P5048
PETERSILKA M, 2000, INT J QUANTUM CHEM, V80, P534
RAJAGOPAL AK, 1973, PHYS REV B, V7, P1912
RASOLT M, 1992, PHYS REV LETT, V69, P2563
STRANGE P, 1998, RELATIVISTIC QUANTUM
VIGNALE G, 1987, PHYS REV LETT, V59, P2360
VIGNALE G, 1988, PHYS REV B, V37, P10685
VIGNALE G, 1988, PHYS REV B, V37, P2502
VIGNALE G, 1990, ADV QUANTUM CHEM, V21, P235
VIGNALE G, 1992, PHYS REV B, V46, P10232
VIGNALE G, 1993, PHYS REV B, V47, P10105
NR 35
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD AUG
PY 2003
VL 68
IS 2
AR 022105
DI ARTN 022105
PG 6
SC Physics, Atomic, Molecular & Chemical; Optics
GA 719FC
UT ISI:000185192100011
ER
PT J
AU Borges, JC
Fischer, H
Craievich, AF
Hansen, LD
Ramos, CHI
TI Free human mitochondrial GrpE is a symmetric dimer in solution
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID HEAT-SHOCK PROTEINS; LAMBDA-DNA REPLICATION; NUCLEOTIDE EXCHANGE
FACTOR; ESCHERICHIA-COLI DNAK; SOLUTION SCATTERING; BIOLOGICAL
MACROMOLECULES; SWISS-MODEL; SYSTEM; GENE; BACTERIOPHAGE
AB The co-chaperone GrpE is essential for the activities of the Hsp70
system, which assists protein folding. GrpE is present in several
organisms, and characterization of homologous GrpEs is important for
developing structure-function relationships. Cloning, producing, and
conformational studies of the recombinant human mitochondrial GrpE are
reported here. Circular dichroism measurements demonstrate that the
purified protein is folded. Thermal unfolding of human GrpE measured
both by circular dichroism and differential scanning calorimetry
differs from that of prokaryotic GrpE. Analytical ultracentrifugation
data indicate that human GrpE is a dimer, and the sedimentation
coefficient agrees with an elongated shape model. Small angle x-ray
scattering analysis shows that the protein possesses an elongated shape
in solution and demonstrates that its envelope, determined by an ab
initio method, is similar to the high resolution envelope of
Escherichia coli GrpE bound to DnaK obtained from single crystal x-ray
diffraction. However, in these conditions, the E. coli GrpE dimer is
asymmetric because the monomer that binds DnaK adopts an open
conformation. It is of considerable importance for structural GrpE
research to answer the question of whether the GrpE dimer is only
asymmetric while bound to DnaK or also as a free dimer in solution. The
low resolution structure of human GrpE presented here suggests that
GrpE is a symmetric dimer when not bound to DnaK. This information is
important for understanding the conformational changes GrpE undergoes
on binding to DnaK.
C1 Lab Nacl Luz Sincroton, Ctr Biol Mol Estrutural, BR-13084971 Campinas, SP, Brazil.
UNICAMP, Inst Biol, Dept Bioquim, BR-13084971 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Fis, Dept Fis Aplicada, BR-05389970 Sao Paulo, Brazil.
Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA.
RP Ramos, CHI, Lab Nacl Luz Sincroton, Ctr Biol Mol Estrutural, POB 6192,
BR-13084971 Campinas, SP, Brazil.
CR ANG D, 1986, J BACTERIOL, V167, P25
BALDI P, 1999, BIOINFORMATICS, V15, P937
BORGES JC, 2001, GENET MOL BIOL, V24, P85
CHOGLAY AA, 2001, GENE, V267, P125
DELATORRE JG, 1997, EUR BIOPHYS J BIOPHY, V25, P361
DELATORRE JG, 2000, BIOPHYS J, V78, P719
EDELHOCH H, 1967, BIOCHEMISTRY-US, V6, P1948
FEIGIN LA, 1987, STRUCTURE ANAL SMALL, P83
FINK AL, 1999, PHYSIOL REV, V79, P425
FLAHERTY KM, 1990, NATURE, V346, P623
FRIEDMAN DI, 1984, MICROBIOL REV, V48, P299
GELINAS AD, 2002, J MOL BIOL, V323, P131
GETHING MJ, 1992, NATURE, V355, P33
GILL SC, 1989, ANAL BIOCHEM, V182, P319
GOLDBERG RJ, 1953, J PHYS CHEM-US, V57, P194
GRIMSHAW JPA, 2001, J BIOL CHEM, V276, P6098
GUEX N, 1997, ELECTROPHORESIS, V18, P2714
HARRISON CJ, 1997, SCIENCE, V276, P431
JOHNSON C, 1989, J BACTERIOL, V171, P1590
JOHNSON ML, 1981, BIOPHYS J, V36, P575
KELLERMANN G, 1997, J APPL CRYSTALLOGR 5, V30, P880
KONAREV PV, 2001, J APPL CRYSTALLOGR 4, V34, P527
KOZIN MB, 2001, J APPL CRYSTALLOGR 1, V34, P33
LAEMMLI UK, 1970, NATURE, V227, P680
LANGER T, 1992, NATURE, V356, P683
LIBEREK K, 1991, P NATL ACAD SCI USA, V88, P2874
MARTIN AS, 1997, ADV MATER OPT ELECTR, V7, P45
MAYER MP, 2001, ADV PROTEIN CHEM, V59, P1
MEHL AF, 2001, BIOCHEM BIOPH RES CO, V282, P562
NAYLOR DJ, 1998, J BIOL CHEM, V273, P21169
OSIPIUK J, 1993, J BIOL CHEM, V268, P4821
PEITSCH MC, 1995, BIO-TECHNOL, V13, P658
PEITSCH MC, 1996, BIOCHEM SOC T, V24, P274
PELHAM HRB, 1986, CELL, V46, P959
POROD G, 1982, SMALL ANGLE XRAY SCA, P17
SCHLICHER T, 1997, PLANT MOL BIOL, V33, P181
SCHONFELD HJ, 1995, J BIOL CHEM, V270, P2183
SCHRODER H, 1993, EMBO J, V12, P4137
SKOWYRA D, 1990, CELL, V62, P939
STAFFORD WF, 1994, METHOD ENZYMOL, V240, P478
SVERGUN D, 1995, J APPL CRYSTALLOGR 6, V28, P768
SVERGUN DI, 1991, ACTA CRYSTALLOGR A, V47, P736
SVERGUN DI, 1992, J APPL CRYSTALLOGR, V25, P495
SVERGUN DI, 1999, BIOPHYS J, V76, P2879
SZABO A, 1994, P NATL ACAD SCI USA, V91, P10345
VANHOLDE KE, 1978, BIOPOLYMERS, V17, P1397
WU B, 1994, J BACTERIOL, V176, P6965
ZYLICZ M, 1987, J BIOL CHEM, V262, P17437
ZYLICZ M, 1989, EMBO J, V8, P1601
NR 49
TC 3
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
J9 J BIOL CHEM
JI J. Biol. Chem.
PD SEP 12
PY 2003
VL 278
IS 37
BP 35337
EP 35344
PG 8
SC Biochemistry & Molecular Biology
GA 718UG
UT ISI:000185164400073
ER
PT J
AU da Silva, CO
Mennucci, B
Vreven, T
TI Combining microsolvation and polarizable continuum studies: New
insights in the rotation mechanism of amides in water
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID N BOND ROTATION; AB-INITIO; ELECTRON-DIFFRACTION; MOLECULAR-STRUCTURE;
INTERNAL-ROTATION; HYDROGEN-BOND; BARRIER; MODEL;
N,N-DIMETHYLAMINOACRYLONITRILE; N,N-DIMETHYLFORMAMIDE
AB We present a quantum mechanical investigation of the rotation
mechanisms of N,N-dimethylformamide (DMF) and NN-dimethylacetamide
(DMA) in water. This rotation can happen through two distinct
transition states known as TS1 and TS2, where the nitrogen lone pair is
on the opposite side of the oxygen atom or on the same side,
respectively. The analysis is focused on complementary descriptions of
the solvent, either represented by a limited number of explicit solvent
molecules (microsolvation), by an implicit (or continuum) solvation, or
by combinations of these two approaches. The combined approach
(microsolvation + continuum) can provide quantitative agreement with
the experimental results for the gas to solution shift of the
rotational barrier. For both amides, continuum effects alone are
sufficient to select the correct channels. However, hydrogen-bond
effects (via the explicit solvent molecules) are necessary to obtain
quantitative agreement with experiment, provided this is combined with
a continuum description. In the rotation in DMF, it seems that a single
water molecule is directly involved, while the other solvent molecules
act as a "mean field" (the bulk), which is well reproduced by a
polarizable continuum medium. The mechanism in DMA is less clear. In
gas phase the steric repulsive interactions between methyl groups make
TS1 clearly favored with respect to TS2. In water, the larger dipole
moment of TS2 produces an opposite effect with respect to the repulsion
interactions, making the corresponding channel less disfavored than in
gas phase. The results are compared with previous Monte Carlo
simulations, and this comparison is used to draw a more general picture
about how different descriptions of the solvent can take into account
long-range and mediated effects on one side and shorter-range and
dynamic effects on the other side.
C1 Univ Pisa, Dipartimento Chim & Chim Ind, Pisa, Italy.
Univ Fed Rio de Janeiro, Dept Quim, Rio De Janeiro, Brazil.
Gaussian Inc, N Haven, CT 06473 USA.
RP Vreven, T, Univ Pisa, Dipartimento Chim & Chim Ind, Via Risorgimento
35, Pisa, Italy.
CR BONDI A, 1964, J PHYS CHEM-US, V68, P441
CAMMI R, 1995, J COMPUT CHEM, V16, P1449
CANCES E, 1997, J CHEM PHYS, V107, P3032
CAPPELLI C, 2000, J CHEM PHYS, V112, P5382
CLAVERIE P, 1978, INTERMOLECULAR INTER
DRAKENBERG T, 1972, J PHYS CHEM-US, V76, P2178
DUFFY EM, 1992, J AM CHEM SOC, V114, P7535
FISCHER G, 1990, BIOCHEMISTRY-US, V29, P2205
FLORIS FM, 1991, J COMPUT CHEM, V12, P784
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 2002, DEV VERSION
GAO JL, 1993, J AM CHEM SOC, V115, P2930
KITANO M, 1973, B CHEM SOC JPN, V46, P384
LANGLEY CH, 2002, J PHYS CHEM A, V106, P5638
LEIS J, 2001, COMPUT CHEM, V25, P171
MENNUCCI B, 2002, J AM CHEM SOC, V124, P1506
MIERTUS S, 1981, CHEM PHYS, V55, P117
MOHAMED AA, 2001, J PHYS CHEM A, V105, P3259
PIEROTTI RA, 1976, CHEM REV, V76, P717
RABLEN PR, 1999, J AM CHEM SOC, V121, P218
RABLEN PR, 1999, J AM CHEM SOC, V121, P227
RAOS G, 1999, INT J QUANTUM CHEM, V74, P249
RE S, 2001, J PHYS CHEM A, V105, P7185
RIVELINO R, 2002, J PHYS CHEM B, V106, P12317
SCHREIBER SL, 1991, SCIENCE, V251, P283
SCHULTZ G, 1993, J PHYS CHEM-US, V97, P4966
SICINSKA D, 2002, J PHYS CHEM B, V106, P2708
VASSILEV NG, 2000, J MOL STRUCT, V522, P37
WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
NR 29
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 28
PY 2003
VL 107
IS 34
BP 6630
EP 6637
PG 8
SC Chemistry, Physical
GA 715JD
UT ISI:000184967600019
ER
PT J
AU Treu, O
Pinheiro, JC
Kondo, RT
Marques, RFC
Paiva-Santos, CO
Davolos, MR
Jafelicci, M
TI Development of basis sets to calculations of the electronic structure
of YMnO3
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Gaussian basis sets; contracted basis sets; dipole moments; total
energy; total atomic charges; YMnO3
ID COORDINATE HARTREE-FOCK; MOLECULAR-SYSTEMS; WAVE-FUNCTIONS;
GAUSSIAN-BASIS; AB-INITIO; FORMALISM; ATOMS
AB The generator coordinate Hartree-Fock method was used to develop
20s17p, 30s20p14d, and 30s21p16d Gaussian basis sets for the O ((3)p),
Mn (S-6), and Y (D-2) atoms, respectively. The Gaussian basis sets were
contracted to 20s17p/9s7p, 30s20p14d/11s7p7d, and 30s21p16d/14s7p7d and
utilized in calculations of total energy and orbital energies of the
(MnO1+)-Mn-5 and (YO1+)-Y-3 fragments to evaluate its quality in
molecular studies. Finally, the contracted basis set for O atom was
supplemented with one polarization function of d symmetry and used
along with the other contracted basis sets (for Mn and Y) to calculate
dipole moments, total energy, and total atomic charges in YMnO3 in
space group D-6h. The analysis of those properties showed that is
reasonable to believe that YMnO3 present behavior of piezoelectric
material. (C) 2003 Elsevier B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab Quim Teor & Computac, BR-66075110 Belem, Para, Brazil.
UNESP, Inst Quim, Araraquara, SP, Brazil.
Cooperat Ctr Educ Cient & Empreendedora Amazonia, BR-66601306 Belem, Para, Brazil.
Univ Sao Paulo, Ctr Informat Sao Carlos, Seccao Tecn Suporte, BR-13560970 Sao Carlos, SP, Brazil.
RP Pinheiro, JC, Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab
Quim Teor & Computac, CP 101101, BR-66075110 Belem, Para, Brazil.
CR CHAKRAVORY SJ, 1989, MOTEC MODERN TECHNIQ
DACOSTA HFM, 1991, CHEM PHYS, V154, P379
DACOSTA HFM, 1992, CHEM PHYS LETT, V192, P195
DUNNING TH, 1977, METHODS ELECT STRUCT
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GIORDAN M, 1997, CHEM PHYS LETT, V279, P396
JAFFE B, 1991, PIEZOELECTRIC CERAMI
JARDIM IN, 1999, J MOL STRUC-THEOCHEM, V464, P15
KOGA T, 1993, PHYS REV A B, V47, P4510
LUKASZEWICZ K, 1974, FERROELECTRICS, V7, P81
MCWEENY R, 1968, J CHEM PHYS, V49, P4852
MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SAVEDRA RML, 2002, J MOL STRUC-THEOCHEM, V587, P9
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
TREU O, UNPUB
NR 20
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JUL 4
PY 2003
VL 629
BP 21
EP 26
PG 6
SC Chemistry, Physical
GA 714CT
UT ISI:000184895300004
ER
PT J
AU Sambrano, JR
Vasconcellos, LA
Martins, JBL
Santos, MRC
Longo, E
Beltran, A
TI A theoretical analysis on electronic structure of the (110) surface of
TiO2-SnO2 mixed oxide
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE mixed oxide; titanium oxide; surface defects; clusters; ab initio
ID TIO2 THIN-FILMS; TITANIUM-DIOXIDE; ELECTRICAL-PROPERTIES; GAS SENSORS;
OPTICAL-PROPERTIES; OXYGEN VACANCIES; VARISTOR SYSTEM; PHOTOCATALYTIC
DEGRADATION; SOLID-SOLUTIONS; DOPING PROCESS
AB Mixed oxide compounds, such as TiO2-SnO2 system are widely used as gas
sensors and should also provide varistor properties modifying the TiO2
surface. Therefore, a theoretical investigation has been carried out
characterizing the effect of SnO2 on TiO2 addition on the electronic
structure by means of ab initio SCF-LCAO calculations using all
electrons. In order to take into account the finite size of the
cluster, we have used the point charge model for the (TiO2)(15) cluster
to study the effect on electronic structure of doping the TiO2 (110)
Surface. The contracted basis set for titanium (4322/42/3), oxygen
(33/3) and tin (43333/4333/43) atoms were used. The charge
distributions, dipole moments, and density of states of doping TiO2 and
vacancy formation are reported and analysed. (C) 2003 Elsevier B.V. All
rights reserved.
C1 Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
Univ Estadual Paulista, Lab Simulacao Mol, BR-17033360 Bauru, SP, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
RP Martins, JBL, Univ Brasilia, Inst Quim, Campus Univ,LQC Caixa Postal
04478, BR-70919970 Brasilia, DF, Brazil.
CR ANTUNES AC, 2000, J MATER SCI, V35, P1453
BELTRAN A, 2001, SURF SCI, V490, P116
BUENO PR, 1996, J MATER SCI LETT, V15, P2048
BUENO PR, 1998, J APPL PHYS, V84, P3700
BUENO PR, 2001, APPL PHYS LETT, V79, P48
BUENO PR, 2002, J AM CERAM SOC, V85, P282
CALATAYUD M, 1999, SURF SCI, V430, P213
CAO Y, 2000, CHEM MATER, V12, P3445
CARDONA M, 1965, PHYS REV, V137, P1467
DUSASTRE V, 1999, J MATER CHEM, V9, P965
EDELMAN F, 1999, SOLID STATE PHENOM, V67, P269
EDELMAN F, 2000, MAT SCI ENG B-SOLID, V69, P386
FAHMI A, 1993, PHYS REV B, V47, P11717
GERCHER VA, 1994, SURF SCI, V306, P279
GERCHER VA, 1994, SURF SCI, V312, P106
GERCHER VA, 1995, SURF SCI, V322, P177
GLASSFORD KM, 1992, PHYS REV B, V45, P3874
GLASSFORD KM, 1992, PHYS REV B, V46, P1284
GODIN TJ, 1993, PHYS REV B, V47, P6518
GONIAKOWSKI J, 1996, SURF SCI, V350, P145
HENRICH E, 1994, SURFACE SCI METAL OX
HENRICH VE, 1985, REP PROG PHYS, V48, P1481
HIRD B, 1997, SURF SCI, V385, L1023
HUZINAGA S, 1985, COMPUT PHYS REP, V2, P281
IIZUKA Y, 1997, CATAL TODAY, V36, P115
KOHL D, 1989, SENSOR ACTUATOR, V18, P71
KOKUSEN H, 1996, CATAL TODAY, V28, P191
KONG LB, 1998, J MATER SCI LETT, V17, P769
LEVY B, 1997, J PHYS CHEM B, V101, P1810
LIN J, 1999, J CATAL, V183, P368
LIU P, 2001, ACTA PHYS-CHIM SIN, V17, P265
MARUCCO JF, 1981, J PHYS CHEM SOLIDS, V42, P363
MEDVEDEVA NI, 1990, PHYS STATUS SOLIDI B, V160, P517
MO SD, 1995, PHYS REV B, V51, P13023
MUSCAT J, 2000, SURF SCI, V446, P119
NAIDU HP, 1998, J AM CERAM SOC, V81, P2176
NASR C, 1996, J PHYS CHEM-US, V100, P8436
OLIVEIRA MM, 2002, MATER CHEM PHYS, V74, P150
OLIVER PM, 1997, J MATER CHEM, V7, P563
PARK M, 1975, J AM CERAM SOC, V58, P43
PENNEWISS J, 1990, MATER LETT, V9, P219
PIANARO SA, 1995, J MATER SCI LETT, V14, P692
PIANARO SA, 1997, J MATER SCI LETT, V16, P634
RADECKA M, 1998, SENSOR ACTUAT B-CHEM, V47, P194
RANTALA T, 1998, SENSOR ACTUAT B-CHEM, V47, P59
RANTALA TS, 1996, J APPL PHYS, V79, P9206
RANTALA TT, 1999, SURF SCI, V420, P103
RICKERBY DG, 1998, NANOSTRUCT MATER, V10, P357
RITTNER F, 1998, PHYS REV B, V57, P4160
RITTNER F, 1999, LANGMUIR, V15, P1449
ROHRER GS, 1992, SURF SCI, V278, P146
SAKAI Y, 1982, J COMPUT CHEM, V3, P6
SAMBRANO JR, 1997, INT J QUANTUM CHEM, V65, P625
SAMBRANO JR, 2001, INT J QUANTUM CHEM, V85, P44
SANTOS MRC, 2001, J EUR CERAM SOC, V21, P161
SAUER J, 1989, CHEM REV, V89, P199
SCHELLING PK, 1998, PHYS REV B, V58, P1279
SCHIERBAUM KD, 1996, SURF SCI, V345, P261
SENSATO FR, 2001, J MOL STRUC-THEOCHEM, V541, P69
STASHANS A, 1996, J PHYS CHEM SOLIDS, V57, P1293
TADA H, 2000, J PHYS CHEM B, V104, P4585
TATEWAKI H, 1980, J COMPUT CHEM, V1, P205
TIT N, 1993, APPL SURF SCI, V65, P246
TIT N, 1993, NUOVO CIMENTO SOC IT, V15, P1405
VINODGOPAL K, 1995, ENVIRON SCI TECHNOL, V29, P841
VINODGOPAL K, 1996, CHEM MATER, V8, P2180
WATANABE Y, 1994, J NON-CRYST SOLIDS, V178, P84
YANG SL, 1995, J MATER RES, V10, P345
YUE LH, 1999, ACTA CHIM SINICA, V57, P1219
ZAKRZEWSKA K, 1997, ACTA PHYS POL A, V91, P899
ZAKRZEWSKA K, 1997, THIN SOLID FILMS, V310, P161
ZAKRZEWSKA K, 2001, THIN SOLID FILMS, V391, P229
NR 72
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JUL 4
PY 2003
VL 629
BP 307
EP 314
PG 8
SC Chemistry, Physical
GA 714CT
UT ISI:000184895300032
ER
PT J
AU Gordon, ML
Cooper, G
Morin, C
Araki, T
Turci, CC
Kaznatcheev, K
Hitchcock, AP
TI Inner-shell excitation spectroscopy of the peptide bond: Comparison of
the C 1s, N 1s, and O 1s spectra of glycine, glycyl-glycine, and
glycyl-glycyl-glycine
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID X-RAY-ABSORPTION; MILLIMETER WAVE SPECTRUM; EDGE XANES SPECTROSCOPY;
ADVANCED LIGHT-SOURCE; AMINO-ACIDS; PHOTOELECTRON-SPECTROSCOPY;
ELECTRONIC-STRUCTURE; GASEOUS GLYCINE; GAS-PHASE; MOLECULES
AB Oscillator strengths for C 1s, N 1s, and O 1s excitation spectra of
gaseous glycine and the dipeptide, glycyl glycine, have been derived
from inner-shell electron energy-loss spectroscopy recorded under
scattering conditions where electric dipole transitions dominate (2.5
keV residual energy, theta approximate to 2degrees). X-ray absorption
spectra of solid glycine, glycyl-glycine, glycyl-glycyl-glycine, and a
large protein, fibrinogen, were recorded in a scanning transmission
X-ray microscope. The experimental spectra are assigned through
interspecies comparisons and by comparison to ab initio computed
spectra of various conformations of glycine and glycylglycine.
Inner-shell excitation spectral features characteristic of the peptide
bond are readily identified by comparison of the spectra of gas-phase
glycine and glycyl-glycine. They include a clear broadening and a
similar to0.3 eV shift of the C 1s - pi*(C=O) peak and introduction of
a new pre-edge feature in the N 1s spectrum. These effects are due to
1s --> pi*(amide) transitions introduced with formation of the peptide
bond. Similar changes occur in the spectra of the solids. The
computational results support the interpretation of the experimental
inner-shell spectra and provide insight into electron density
distributions in the core excited states. Possible conformational
dependence of the inner-shell excitation spectra was explored by
computing the spectra of neutral glycine in its four most common
conformations, and of glycyl-glycine in planar and two twisted
conformations. A strong dependence of the computed C 1s, N 1s, and O 1s
spectra of glycylglycine on the conformation about the amide linkage
was confirmed by additional ab initio calculations of the
conformational dependence of the spectra of formamide.
C1 McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
Univ Fed Rio de Janeiro, Inst Quim, BR-21910 Rio De Janeiro, Brazil.
Univ Saskatchewan, Canadian Light Source, Saskatoon, SK S7N 5C6, Canada.
RP Hitchcock, AP, McMaster Univ, Dept Chem, 1280 Main St W, Hamilton, ON
L8S 4M1, Canada.
CR ABRAMOV YA, 2000, J PHYS CHEM B, V104, P2183
ADE H, 1998, EXPT METHODS PHYSICA, V32, P225
ADE H, 2002, CHEM APPL SYNCHROTRO, P285
BARONE V, 1995, J CHEM PHYS, V102, P364
BOESE J, 1997, J ELECTRON SPECTROSC, V85, P9
BOMBEN KD, 1988, ANAL CHEM, V60, P1393
BRION CE, 1982, AIP C P, V94, P429
BROWN RD, 1978, J CHEM SOC CHEM COMM, P547
CANNINGTON PH, 1979, J ELECT SPECTROSC RE, V15, P79
CANNINGTON PH, 1983, J ELECTRON SPECTROSC, V32, P139
CARRAVETTA V, 1998, J CHEM PHYS, V109, P1456
CSASZAR AG, 1992, J AM CHEM SOC, V114, P9568
DEBIES TP, 1974, J ELECTRON SPECTROSC, V3, P315
GODDARD WA, 1969, CHEM PHYS LETT, V3, P414
GODFREY PD, 1995, J AM CHEM SOC, V117, P2019
HASSELSTROM J, 1998, SURF SCI, V407, P221
HITCHCOCK AP, 1987, J ELECTRON SPECTROSC, V42, P11
HITCHCOCK AP, 1990, PHYSICA SCRIPTA T, V31, P159
HITCHCOCK AP, 1994, J ELECTRON SPECTROSC, V67, P1
HITCHCOCK AP, 2000, J ELECTRON SPECTROSC, V112, P9
HITCHCOCK AP, 2001, J SYNCHROTRON RADI 2, V8, P66
HITCHCOCK AP, 2002, J BIOMAT SCI-POLYM E, V13, P919
HU CH, 1993, J AM CHEM SOC, V115, P2923
HUZINGA S, 1984, GAUSSIAN BASIS SETS
ISHII I, 1987, J CHEM PHYS, V87, P4344
ISHII I, 1987, J CHEM PHYS, V87, P830
ISHII I, 1988, J ELECTRON SPECTROSC, V46, P55
JENSEN JH, 1991, J AM CHEM SOC, V113, P7917
JOLLY WL, 1984, ATOM DATA NUCL DATA, V31, P433
KAZNACHEYEV K, 2002, J PHYS CHEM A, V106, P3153
KILCOYNE ALD, 2003, J SYNCHROTRON RADI 2, V10, P125
KLASINC L, 1976, J ELECTRON SPECTROSC, V8, P161
KOSUGI N, 1980, CHEM PHYS LETT, V74, P490
KOSUGI N, 1987, THEOR CHIM ACTA, V72, P149
KOSUGI N, 2002, CHEM APPL SYNCHROTRO, P228
LESSARD RJ, UNPUB
LOO BW, 2001, J MICROSC-OXFORD 1, V204, P69
MEYERILSE W, 2001, J MICROSC-OXFORD 3, V201, P395
NYBERG M, 2000, J CHEM PHYS, V112, P5420
OUTKA DA, 1987, SURF SCI, V185, P53
RAMACHANDRAN GN, 1968, ADV PROTEIN CHEM, V23, P283
RAMEK M, 1991, THEOCHEM-J MOL STRUC, V81, P1
RICKER G, 1984, J ELECT SPECTROSC RE, V34, P327
SCHAFER L, 1980, J AM CHEM SOC, V102, P6566
SODHI RNS, 1984, J ELECTRON SPECTROSC, V34, P363
STEINBERGER IT, 1999, PHYS REV B, V60, P3995
STOHR J, 1992, SPRINGER TRACTS SURF
SUENRAM RD, 1978, J MOL SPECTROSC, V72, P372
SUENRAM RD, 1980, J AM CHEM SOC, V102, P7180
TANAKA M, 2001, J SYNCHROTRON RADI 2, V8, P1009
URQUHART SG, 2002, J PHYS CHEM B, V106, P8531
VAIRAVAMURTHY A, 2002, ENVIRON SCI TECHNOL, V36, P3050
WARWICK T, 2002, J SYNCHROTRON RADI 4, V9, P254
WEISS K, 1999, J CHEM PHYS, V111, P6834
YANG L, 1999, J SYNCHROTRON RADI 3, V6, P708
YU D, 1992, CAN J CHEM, V70, P1762
ZUBAVICHUS Y, UNPUB J ELECT SPECTR
NR 57
TC 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 14
PY 2003
VL 107
IS 32
BP 6144
EP 6159
PG 16
SC Chemistry, Physical
GA 710DC
UT ISI:000184664700004
ER
PT J
AU Treu, O
Pinheiro, JC
Kondo, RT
Marques, RFC
Paiva-Santos, CO
Davolos, MR
Jafelicci, M
TI Gaussian basis sets to the theoretical study of the electronic
structure of perovskite (LaMnO3)
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Gaussian basis sets; Generator Coordinate Hartree-Fock method;
perovskite; LaMnO3; piezoelectric
ID COORDINATE HARTREE-FOCK; DIATOMIC-MOLECULES; 2ND-ROW ATOMS; AB-INITIO;
OPTIMIZATION; CHOICE
AB The Generator Coordinate Hartree-Fock (GCHF) method is applied to
generate extended (20s14p), (30s19p13d), and (31s23p18d) Gaussian basis
sets for the 0, Mn, and La atoms, respectively. The role of the weight
functions (WFs) in the assessment of the numerical integration range of
the GCHF equations is shown. These basis sets are then contracted to
[5s3p] and [11s6p6d] for 0 and Mn atoms, respectively, and [17s11p7d]
for La atom by a standard procedure. For quality evaluation of
contracted basis sets in molecular calculations, we have accomplished
calculations of total and orbital energies in the Hartree-Fock-Roothaan
(HFR) method for (MnO1+)-Mn-5 and (LaO1+)-La-1 fragments. The results
obtained with the contracted basis sets are compared with values
obtained with the extended basis sets. The addition of one d
polarization function in the contracted basis set for 0 atom and its
utilization with the contracted basis sets for Mn and La atoms leads to
the calculations of dipole moment and total atomic charges of
perovskite (LaMnO3). The calculations were performed at the HFR level
with the crystal [LaMnO3](2) fragment in space group C-2v The values of
dipole moment, total energy, and total atomic charges showed that it is
reasonable to believe that LaMnO3 presents behaviour of piezoelectric
material. (C) 2003 Elsevier B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Naturais, Dept Quim, Lab Quim Teor & Computac, BR-66075110 Belem, Para, Brazil.
UNESP, Inst Quim, Araraquara, SP, Brazil.
Cooperat Ctr Educ Cientifica & Empreendedora Amaz, BR-66013060 Belem, Para, Brazil.
Univ Sao Paulo, Ctr Informat Sao Carlos, Seccao Tecn Suporte, BR-13560970 Sao Carlos, SP, Brazil.
RP Pinheiro, JC, Fed Univ Para, Ctr Ciencias Exatas & Naturais, Dept Quim,
Lab Quim Teor & Computac, CP 101101, BR-66075110 Belem, Para, Brazil.
CR CADY WG, 1964, PIEZOELECTRICITY
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DECASTRO EVR, 1999, CHEM PHYS, V243, P1
DUNNING TH, 1977, METHODS ELECT STRUCT
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GERLOCH M, 1994, TRANSITION METAL CHE
GOLDSCHMIDT VM, 1926, MAT NATURV KL, V2, P8
JAFFE B, 1971, PIEZOELECTRIC CERAMI
JARDIM IN, 1999, J MOL STRUC-THEOCHEM, V464, P15
KALTSOYANNIS N, 1999, F ELEMENTS
KAY HF, 1949, PHILOS MAG, V40, P1019
MILLINI R, 1994, J MATER SCI, V29, P4065
MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
PAVANI R, 1989, 518 RU IBM RES
PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
PINHEIRO JC, 1999, J MOL STRUC-THEOCHEM, V491, P81
PINHEIRO JC, 2000, INT J QUANTUM CHEM, V78, P15
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SAVEDRA RML, 2002, J MOL STRUC-THEOCHEM, V587, P9
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
NR 23
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD AUG 1
PY 2003
VL 631
BP 93
EP 99
PG 7
SC Chemistry, Physical
GA 707PD
UT ISI:000184518300011
ER
PT J
AU Beltran, A
Andres, J
Longo, E
Leite, ER
TI Thermodynamic argument about SnO2 nanoribbon growth
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID OXIDE NANOWIRES; CRYSTAL-GROWTH; TIN OXIDE; NANOTUBES; SURFACES;
MICROSTRUCTURE; TEMPERATURE; ENERGETICS; MECHANISM; DENSITY
AB Calculations based on density functional theory at Becke's
three-parameter exchange functional combined with the Lee-Yang-Parr
correlation functional (B3LYP) level and periodic slab models have been
done to obtain: (i) the surface energy per unit area of different
stoichiometric SnO2 surfaces, and (ii) by using a simple Wulff
construction equation-type, the thermodynamic stability associated to
the formation of nanoribbons from these surfaces has been obtained. In
agreement with previous theoretical studies, the (110) face is the
thermodynamically most stable surface. The present theoretical results
and high-resolution transmission electron microscopy data reveal that
the nanoribbons preferentially grow along the [101] crystal direction.
(C) 2003 American Institute of Physics.
C1 Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
Univ Fed Sao Carlos, Dept Chem, BR-13565905 Sao Carlos, SP, Brazil.
RP Beltran, A, Univ Jaume I, Dept Ciencies Expt, POB 6029 AP, Castello
12080, Spain.
CR ALIVISATOS AP, 1996, SCIENCE, V271, P993
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BRENNER SS, 1956, ACTA METALL, V4, P268
CALATAYUD M, 1999, SURF SCI, V430, P213
DAI ZR, 2001, SOLID STATE COMMUN, V118, P351
DAI ZR, 2002, J PHYS CHEM B, V106, P1274
DURAND P, 1975, THEOR CHIM ACTA, V38, P283
GROSS A, 2003, THEORETICAL SURFACE
HU JT, 1999, ACCOUNTS CHEM RES, V32, P435
HUANG MH, 2001, ADV MATER, V13, P113
KHARE SV, 2003, SURF SCI, V52, P75
LAW M, 2002, ANGEW CHEM, V114, P2511
LEE C, 1988, PHYS REV B, V37, P785
LEITE ER, 2000, ADV MATER, V12, P965
LEITE ER, 2002, J NANOSCI NANOTECHNO, V2, P125
MULHEARN PA, 1992, MODEL SIMUL MATER SC, V1, P233
MURRAY CB, 1995, SCIENCE, V270, P1335
MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
NEGISHI N, 1999, J MATER SCI LETT, V18, P515
OVIEDO J, 2000, SURF SCI, V463, P93
PAN ZW, 2001, SCIENCE, V291, P1947
PENN RL, 1998, SCIENCE, V281, P969
PENN RL, 1999, GEOCHIM COSMOCHIM AC, V63, P1549
POSTMA HWC, 2000, ADV MATER, V12, P1299
POSTMA HWC, 2001, SCIENCE, V293, P76
RAMAMOORTHY M, 1994, PHYS REV B, V49, P16721
SAUNDERS VR, 1998, CRYSTAL98 USERS MANU
SENSATO FR, 2002, SURF SCI, V512, P408
SLATER B, 1999, J PHYS CHEM B, V103, P10644
WAGNER RS, 1964, APPL PHYS LETT, V4, P89
WEBER IT, 2001, SENSOR ACTUAT B-CHEM, V72, P180
WULFF G, 1901, Z KRISTALLOGR, V34, P449
YANG PD, 1997, J MATER RES, V12, P2981
NR 33
TC 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUL 28
PY 2003
VL 83
IS 4
BP 635
EP 637
PG 3
SC Physics, Applied
GA 704JM
UT ISI:000184336600015
ER
PT J
AU deAzevedo, ER
Franco, RWA
Marletta, A
Faria, RM
Bonagamba, TJ
TI Conformational dynamics of phenylene rings in poly(p-phenylene
vinylene) as revealed by C-13 magic-angle-spinning exchange nuclear
magnetic resonance experiments
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID CENTERBAND-ONLY DETECTION; NMR CHARACTERIZATION; MOLECULAR MOTIONS; MAS
NMR; FILMS; SOLIDS; MORPHOLOGY; DEPENDENCE; RELAXATION; PRINCIPLES
AB Poly(p-phenylene vinylene) (PPV) has shown a great potential for
electro-optical applications due to its electroluminescent and
semiconducting properties. Such properties are directly related with
the polymer chain conformation and dynamics. Then, it is important to
understand in detail the local chain motions. In this work, three C-13
solid-state magic-angle-spinning (MAS) exchange NMR techniques were
used to study conformational dynamics of phenylene rings in PPV. The
standard 2D MAS exchange experiment was used to identify exchange
processes between equivalent and nonequivalent sites. Centerband-only
detection of exchange (CODEX) experiments were applied to determine the
amplitude of the phenylene ring flips and small-angle oscillations.
Additionally, a new version of the CODEX technique, which allows for
the selective observation of segments executing exchange between
non-equivalent sites, is demonstrated and applied to determine the
flipping fractions and the activation energies of the phenylene ring
rotations. It was found that, at -15 degreesC, (26+/-3)% of the rings
undergo 180degrees flips in the millisecond time scale, with average
imprecision of (30+/-5)degrees and activation energies of (23+/-3)
kJ/mol. Other (31+/-10)% of the rings perform only small-angle
oscillations with an average amplitude of (9+/-2)degrees. These results
corroborate previous experimental data and agree with recent ab initio
calculations of potential energies barriers in phenylenevinylene
oligomers. (C) 2003 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
RP Bonagamba, TJ, Univ Sao Paulo, Inst Fis Sao Carlos, Caixa Postal 369,
BR-13560970 Sao Carlos, SP, Brazil.
CR BIELECKI A, 1995, J MAGN RESON SER A, V116, P215
BJORKLUND TG, 2002, SYNTHETIC MET, V126, P295
BONAGAMBA TJ, 2001, J POLYM SCI POL PHYS, V39, P2444
CAPAZ RB, 2003, PHYS REV B, V67
CLAUDIO GC, 2001, CHEM PHYS, V276, P81
CONNOR C, 1985, CHEM PHYS LETT, V113, P123
CUMBRERA FL, 1993, J MATER SCI, V28, P5387
DAMLIN P, 1999, ELECTROCHIM ACTA, V44, P4087
DEAZEVEDO ER, 1999, J AM CHEM SOC, V121, P8411
DEAZEVEDO ER, 2000, CHEM PHYS LETT, V321, P43
DEAZEVEDO ER, 2000, J CHEM PHYS, V112, P8988
GROZEMA FC, 2002, J CHEM PHYS, V117, P11366
GULLION T, 1989, ADV MAGN RESON, V13, P57
HAGEMEYER A, 1989, ADV MAGN RESON, V13, P85
HALLIDAY DA, 1993, SYNTHETIC MET, V55, P902
HERZFELD J, 1980, J CHEM PHYS, V73, P6021
JEENER J, 1979, J CHEM PHYS, V71, P4546
KENTGENS APM, 1985, MACROMOLECULES, V18, P1045
KENTGENS APM, 1987, J CHEM PHYS, V87, P6859
KROPEWNICKI ML, 2002, SOLID STATE NUCL MAG, V22, P275
LUZ Z, 1992, ISRAEL J CHEM, V32, P145
LUZ Z, 2002, PROG NUCL MAG RES SP, V41, P83
MASSE MA, 1990, J MATER SCI, V25, P311
MEHRING M, 1982, HIGH RESOLUTION NMR
OU RQ, 2001, POLYM ENG SCI, V41, P1705
REICHERT D, 2000, SOLID STATE NUCL MAG, V18, P17
REICHERT D, 2001, J MAGN RESON, V151, P129
SAALWACHTER K, 2002, J MAGN RESON, V157, P17
SCHMIDT C, 1988, J MAGN RESON, V79, P269
SCHMIDTROHR K, 1994, MACROMOLECULES, V27, P4733
SCHMIDTROHR K, 1994, MULTIDIMENSIONAL SOL
SCHMIDTROHR K, 2002, ENCY NMR, V9, P633
SIMPSON JH, 1990, J POLYM SCI POL PHYS, V28, P1859
SIMPSON JH, 1992, J POLYM SCI POL PHYS, V30, P11
SIMPSON JH, 1992, MACROMOLECULES, V25, P3068
SZEVERENYI NM, 1983, J AM CHEM SOC, V105, P2579
TONELLI AE, 1989, NMR SPECTROSCOPY POL
TRETIAK S, 2002, PHYS REV LETT, V89
VANDONGENTORMAN.JD, 1978, J CHEM PHYS, V68, P3233
VEEMAN WS, 1984, PROG NUCL MAG RES SP, V16, P193
WEFING S, 1988, J CHEM PHYS, V89, P1234
WILLIAMS G, 1970, T FARADAY SOC, V66, P80
ZHONG GL, 2002, MOL CRYST LIQ CRYST, V377, P169
NR 43
TC 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD AUG 1
PY 2003
VL 119
IS 5
BP 2923
EP 2934
PG 12
SC Physics, Atomic, Molecular & Chemical
GA 702UE
UT ISI:000184242100050
ER
PT J
AU Fileti, EE
Coutinho, K
Malaspina, T
Canuto, S
TI Electronic changes due to thermal disorder of hydrogen bonds in
liquids: Pyridine in an aqueous environment
SO PHYSICAL REVIEW E
LA English
DT Article
ID CARLO-QUANTUM-MECHANICS; QUADRUPOLE COUPLING-CONSTANTS; AB-INITIO;
VANDERWAALS MOLECULES; (HCN)(N) CLUSTERS; INTERMOLECULAR FORCES; WATER
DIMER; SPECTROSCOPY; POLARIZABILITIES; FORMALDEHYDE
AB Combined Metropolis Monte Carlo computer simulation and
first-principles quantum mechanical calculations of pyridine in water
are performed to analyze the role of thermal disorder in the electronic
properties of hydrogen bonds in an aqueous environment. The simulation
uses the NVT ensemble and includes one pyridine and 400 water
molecules. Using a very efficient geometric-energetic criterion, the
hydrogen bonds between pyridine and water C5H5N---H2O are identified
and separated for subsequent quantum mechanical calculations of the
electronic and spectroscopic properties. Statistically uncorrelated
configurations composed of one pyridine and one water molecule are used
to represent the configuration space of the hydrogen bonds in the
liquid. The quantum mechanical calculations on these structures are
performed at the correlated second-order perturbation theory level and
all results are corrected for basis-set superposition error. The
results are compared with the equivalent electronic properties of the
hydrogen bond in the minimum-energy configuration. Charge transfer,
dipole moment, and dipole polarizabilities are calculated for the
thermally disordered and minimum-energy structures. In addition, using
the mean and anisotropic polarizabilities, the Rayleigh depolarizations
are obtained. All properties obtained for the thermally disordered
structures are represented by a statistical distribution and a
convergence of the average values is obtained. The results indicate
that the charge transfer, dipole moment, and average depolarization
ratios are systematically decreased in the liquid compared to the
optimized cluster. This study quantifies, using ab initio quantum
mechanics and statistical analysis, the important aspect of the thermal
disorder of the hydrogen bond in a liquid system.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi Cruzed, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
CR ABDURAHMAN A, 2002, PHYS REV B, V66
ALLEN MP, 1987, COMPUTER SIMULATION
BALL P, 2000, H2O BIOGRAPHY WATER
BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BAZTERRA VE, 2002, J CHEM PHYS, V117, P11158
BELL TW, 2002, J AM CHEM SOC, V124, P14092
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BERNSTEIN ER, 1990, ATOMIC MOL CLUSTERS
BLANCH EW, 2002, J PHYS CHEM A, V106, P4257
BONIN KD, 1997, ELECT DIPOLE POLARIZ
BOYS SF, 1970, MOL PHYS, V19, P553
BUCKINGHAM AD, 1983, J CHEM PHYS, V79, P6426
BUCKINGHAM AD, 1986, INT REV PHYS CHEM, V5, P107
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
CANUTO S, 1997, ADV QUANTUM CHEM, V28, P90
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CORNILESCU G, 1999, J AM CHEM SOC, V121, P2949
COUTINHO K, 2000, DICE VERSION 2 8
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
DINGLEY AJ, 1998, J AM CHEM SOC, V120, P8293
DYKSTRA CE, 1986, J MOL STRUCT THEOCHE, V135, P357
DYKSTRA CE, 1993, CHEM REV, V93, P2339
EISENBERG D, 1969, STRUCTURE PROPERTIES
FABELLINSKII IL, 1968, MOL SCATTERING LIGHT
FILETI EE, 2003, J PHYS B-AT MOL OPT, V36, P399
FINNEY JL, 2002, PHYS REV LETT, V88
FOWLER PW, 1983, MOL PHYS, V50, P1349
FRANKS F, 1972, WATER COMPREHENSIVE
GALE GM, 1999, PHYS REV LETT, V82, P1068
GHANTY TK, 2000, J AM CHEM SOC, V122, P1210
GUO JH, 2002, PHYS REV LETT, V89
HERZBERG G, 1945, INFRARED RAMAN SPECT
ISAACS ED, 1999, PHYS REV LETT, V82, P600
JEFFREY GA, 1997, INTRO HYDROGEN BOND
JENSEN L, 2002, J CHEM PHYS, V117, P3316
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1998, J MOL STRUCT THEOCHE, V424, P145
KING BF, 1995, J CHEM PHYS, V103, P333
KING BF, 1995, J CHEM PHYS, V103, P348
LUDWIG R, 1995, J PHYS CHEM-US, V99, P9681
LUDWIG R, 1997, J CHEM PHYS, V107, P499
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MAROULIS G, 2000, J CHEM PHYS, V113, P1813
MEZEI M, 1981, J CHEM PHYS, V74, P622
MORGENSTERN K, 2002, PHYS REV LETT, V88
MORITA A, 1999, J CHEM PHYS, V110, P11987
MOROKUMA K, 1977, ACCOUNTS CHEM RES, V10, P294
RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
REED AE, 1988, CHEM REV, V88, P899
RISCH MJ, 1998, GAUSSIAN 98 REVISION
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
SATO H, 1999, J CHEM PHYS, V111, P8545
SCHEINER S, 1997, HYDROGEN BONDING THE
SCOLES G, 1990, CHEM PHYSICS ATOMIC
STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
STONE AJ, 1997, J CHEM PHYS, V107, P1030
VANDERVAART A, 2002, J CHEM PHYS, V116, P7380
WILSON KR, 2000, PHYS REV LETT, V85, P4289
ZWIER TS, 1996, ANNU REV PHYS CHEM, V47, P205
NR 60
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUN
PY 2003
VL 67
IS 6
PN Part 1
AR 061504
DI ARTN 061504
PG 7
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 699XD
UT ISI:000184081000046
ER
PT J
AU Skaf, MS
Vechi, SM
TI Polarizability anisotropy relaxation in pure and aqueous
dimethylsulfoxide
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; SULFOXIDE-WATER MIXTURES; DEPOLARIZED
LIGHT-SCATTERING; FEMTOSECOND OPTICAL KERR; PERIODIC
BOUNDARY-CONDITIONS; LIQUID DIMETHYL-SULFOXIDE; INTERMOLECULAR
DYNAMICS; DIELECTRIC-PROPERTIES; COMPUTER-SIMULATION; ULTRAFAST DYNAMICS
AB A molecular dynamics simulation study is presented for the relaxation
of the polarizability anisotropy of liquid dimethylsulfoxide (DMSO) and
DMSO-water mixtures of DMSO mole fractions x(D)=0.05, 0.10, 0.25, 0.50,
and 0.75. The system's collective polarizability is computed through a
dipolar induction mechanism involving the intrinsic polarizability and
first hyperpolarizability tensors for water and DMSO, obtained from ab
initio quantum chemical calculations at the MP2/6-311++G(d,p) level.
The rotational-diffusion components of the anisotropy relaxation of the
pure liquids increase upon mixing to a maximum near 25% DMSO, showing
consistency with other dynamical properties of these mixtures. Features
of the optical Kerr effect (OKE) nuclear response of liquid water,
previously ascribed to hydrogen bonding distortions, show significant
enhancement upon addition of DMSO due to the formation of strong
DMSO-water H-bonds. The OKE spectrum for DMSO is in close agreement
with experimental measurements, but there are discrepancies for pure
water in the vicinity of 60 cm(-1), pointing to the existence of
inaccuracies in our description of OKE sensitive polarizability
fluctuations of water. The mixtures OKE spectra feature an enhancement
in the high frequency water librational band. (C) 2003 American
Institute of Physics.
C1 Univ Estadual Campinas, Inst Quim, BR-13084971 Campinas, SP, Brazil.
RP Skaf, MS, Univ Estadual Campinas, Inst Quim, Cx P 6154, BR-13084971
Campinas, SP, Brazil.
CR ALLEN MP, COMPUTER SIMULATION
AMEY RL, 1968, J PHYS CHEM-US, V72, P3358
BAKER ES, 1985, J PHYS CHEM-US, V89, P1730
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
BERNE BJ, 2000, DYNAMIC LIGHT SCATTE
BERTOLUZZA A, 1979, J RAMAN SPECTROSC, V8, P231
BORIN IA, 1998, CHEM PHYS LETT, V296, P125
BORYSOW J, 1985, MOL PHYS, V56, P913
BURSULAYA BD, 1997, J PHYS CHEM B, V101, P10994
BURSULAYA BD, 1998, J CHEM PHYS, V109, P4911
CABRAL JT, 2000, J CHEM PHYS, V113, P8736
CASTNER EW, 1995, J CHEM PHYS, V102, P653
CHALARIS M, 2002, J MOL LIQ, V98, P399
CHANG YJ, 1993, J CHEM PHYS, V99, P7289
CHO MH, 1993, J CHEM PHYS, V99, P2410
COWIE MG, 1964, CAN J CHEM, V39, P224
DELATORRE JC, 1983, ANN NY ACAD SCI, V411, P1
DELEEUW S, 1980, P ROY SOC LOND A MAT, V373, P57
DELEEUW SW, 1980, P ROY SOC LOND A MAT, V373, P27
DELEEUW SW, 1986, ANNU REV PHYS CHEM, V37, P245
FAURSKOVNIELSEN O, 1993, ANNU REP PROG CHEM C, V90, P3
FECKO CJ, 2002, J CHEM PHYS, V117, P1139
FOX MF, 1974, J CHEM SOC FARADAY T, V75, P1407
FOX T, 1998, J PHYS CHEM B, V102, P8070
FRIEDMAN JS, 1993, J CHEM PHYS, V99, P4960
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GEIGER LC, 1987, J CHEM PHYS, V87, P191
GEIGER LC, 1989, CHEM PHYS LETT, V159, P413
GORDALLA BC, 1986, MOL PHYS, V59, P817
HIGASHIGAKI Y, 1981, J PHYS CHEM-US, V85, P2531
HOCKNEY RW, 1970, METHOD COMPUT PHYS, V9, P136
JACOB SW, 1975, BIOL ACTIONS DIMETHY, V243
JANSEN TIC, 2001, J CHEM PHYS, V114, P10910
KAATZE U, 1989, J PHYS CHEM-US, V93, P5623
KIRCHNER B, 2002, J AM CHEM SOC, V124, P6206
KIYOHARA K, 2000, J CHEM PHYS, V112, P6338
LADANYI BM, 1985, CHEM PHYS LETT, V121, P351
LADANYI BM, 1995, J CHEM PHYS, V103, P6325
LADANYI BM, 1996, J CHEM PHYS, V105, P1552
LAI JTW, 1995, J SOLUTION CHEM, V24, P89
LIU HY, 1995, J AM CHEM SOC, V117, P4363
LUTHER BM, 2000, THESIS COLORADO STAT
LUZAR A, 1993, J CHEM PHYS, V98, P8160
LUZAR A, 1994, NATO ADV STUDIES I C, V435
LUZAR A, 1996, FARADAY DISCUSS, V103, P29
LUZAR A, 1996, NATURE, V379, P55
MADDEN PA, 1985, ULTRAFAST PHENOMENA, V4, P244
MARTIN D, 1975, DIMETHYL SULFOXIDE
MARTINS LR, 2003, J CHEM PHYS, V118, P5955
MCMORROW D, 1988, IEEE J QUANTUM ELECT, V24, P443
MCMORROW D, 1991, J PHYS CHEM-US, V95, P10395
MCMORROW D, 1996, J PHYS CHEM-US, V100, P10389
MILLER KJ, 1990, J AM CHEM SOC, V112, P8533
MRAZKOVA E, 2003, J PHYS CHEM A, V107, P1032
MUKAMEL S, 1999, PRINCIPLES NONLINEAR
PACAK P, 1987, J SOLUTION CHEM, V16, P71
PACKER KJ, 1971, T FARADAY SOC, V67, P1302
PALESE S, 1994, J PHYS CHEM-US, V98, P6308
PURANIK SM, 1992, J CHEM SOC FARADAY T, V88, P433
RAO BG, 1990, J AM CHEM SOC, V112, P3803
RIGHINI R, 1993, SCIENCE, V262, P1386
ROSENTHAL SJ, 1993, ULTRAFAST PHENOMENA
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327
SAFFORD GJ, 1969, J CHEM PHYS, V50, P2140
SAITO S, 1997, J CHEM PHYS, V106, P4889
SHEN DN, 2001, J PHYS CHEM B, V105, P6759
SHIROTA H, 2001, J AM CHEM SOC, V123, P12877
SKAF MS, 1997, J CHEM PHYS, V107, P7996
SKAF MS, 1999, J PHYS CHEM A, V103, P10719
SMITH NA, 1997, J PHYS CHEM A, V101, P9578
SMITH NA, 2000, J PHYS CHEM A, V104, P4223
SOPER AK, 1996, J PHYS CHEM-US, V100, P1357
STASSEN H, 1994, J CHEM PHYS, V100, P6318
STASSEN H, 1999, J CHEM PHYS, V110, P7382
STEFFEN T, 1998, J PHYS CHEM A, V102, P4213
TOKUHIRO T, 1974, J CHEM PHYS, V61, P2275
TOMMILA E, 1969, SUOM KEMISTIL B, V41, P172
TORII H, 2001, CHEM PHYS LETT, V353, P431
VAISMAN II, 1992, J AM CHEM SOC, V114, P7889
VISHNYAKOV A, 2001, J PHYS CHEM A, V105, P1702
WIEWIOR PP, 2002, J CHEM PHYS, V116, P4643
WINKLER K, 2000, J CHEM PHYS, V113, P4674
NR 82
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUL 22
PY 2003
VL 119
IS 4
BP 2181
EP 2187
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 700FY
UT ISI:000184103000035
ER
PT J
AU Dardenne, LE
Werneck, AS
Neto, MD
Bisch, PM
TI Electrostatic properties in the catalytic site of papain: A possible
regulatory mechanism for the reactivity of the ion pair
SO PROTEINS-STRUCTURE FUNCTION AND GENETICS
LA English
DT Article
DE papain; cysteine proteinases; electrostatic properties; enzymatic
catalysis; ab initio calculations; multicenter multipolar expansions
ID CYSTEINE PROTEASE PAPAIN; DISTRIBUTED MULTIPOLE ANALYSIS; MOLECULAR
CHARGE-DISTRIBUTION; ACTIVE-SITE; QUANTUM-CHEMISTRY; ENZYME CATALYSIS;
IONIZATION CHARACTERISTICS; DIELECTRIC-CONSTANTS; PROTEINASE ACTIVITY;
SERINE PROTEINASES
AB We present an analysis of the electrostatic properties in the catalytic
site of papain (EC 3.4.22.2), an archetype enzyme of the C1 cysteine
proteinase family, and we investigate their possible role in the
formation, stabilization and regulation of the Cys25((-))...His159((+))
catalytic ion pair. The electrostatic properties were computed using a
reassociation method based in multicentered multipolar expansions
obtained from ab initio quantum calculations of overlapping protein
fragments. Solvent effects were introduced by coupling the use of
multicentered multipolar expansions to two continuum boundary element
methods to solve the Poisson and the linearized Poisson-Boltzmann
equations. The electrostatic profile found in the proton transfer
region of papain showed that this enzyme has a well-defined
electrostatic environment to favor the formation and stabilization of
the catalytic ion pair. The papain catalytic site electrostatic profile
can be considered as an electrostatic fingerprint of the papain family
with the following characteristics: (i) the presence of a net electric
field highly aligned in the (Cys25)-SG-->(His159)-ND1 direction; (ii)
the electrostatic profile has a saddle-point character; (iii) it is
basically a local environmental effect. Furthermore, our analysis
describes a possible regulatory mechanism (the ESG-->ND1 attenuation
effect) controlling the ion pair reactivity and permits to infer the
Asp57 acidic residue as the most probable candidate to act as the
electrostatic modulator. (C) 2003 Wiley-Liss, Inc.
C1 Fed Univ Rio De Janeiro, Lab Fis Biol, Inst Biofis Carlos Chagas Filho, BR-21949900 Rio De Janeiro, RJ, Brazil.
LNCC, BR-25651070 Petropolis, RJ, Brazil.
UCB, Dept Fis, BR-72030170 Taguatinga, DF, Brazil.
Univ Brasilia, Inst Quim, BR-70910900 Brasilia, DF, Brazil.
RP Bisch, PM, Fed Univ Rio De Janeiro, Lab Fis Biol, Inst Biofis Carlos
Chagas Filho, CCS,Bloco G Ilha Fundao, BR-21949900 Rio De Janeiro, RJ,
Brazil.
CR ALTSCHUH D, 1994, PROTEIN ENG, V7, P769
ANGYAN J, 1983, J THEOR BIOL, V103, P349
ANGYAN JG, 1994, INT J QUANTUM CHEM, V52, P17
ARAD D, 1990, J AM CHEM SOC, V112, P491
BENTZIEN J, 1998, J PHYS CHEM B, V102, P2293
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
BERTI PJ, 1995, J MOL BIOL, V246, P273
BEVERIDGE AJ, 1996, PROTEIN SCI, V5, P1355
CAFFARENA ER, 2000, J MOL GRAPH MODEL, V18, P119
CAMMI R, 1995, J COMPUT CHEM, V16, P1449
CARTER CE, 2000, BIOCHEMISTRY-US, V39, P11005
CAZZULO JJ, 1997, BIOL CHEM, V378, P1
CHIPOT C, 1993, J PHYS CHEM-US, V97, P9788
COITINO EL, 1995, J COMPUT CHEM, V16, P20
COLONNA F, 1992, J COMPUT CHEM, V13, P1234
CONNOLLY ML, 1983, SCIENCE, V221, P709
CONNOLLY ML, 1993, MDS MOL DOT SURFACE
DARDENNE LE, 2001, J COMPUT CHEM, V22, P689
DAY PN, 1996, J CHEM PHYS, V105, P1968
DESIDERI A, 1992, J MOL BIOL, V223, P337
DEVRIES AH, 1995, J COMPUT CHEM, V16, P37
DIJKMAN JP, 1987, INT J QUANTUM CHEM Q, V14, P211
DIJKMAN JP, 1989, INT J QUANTUM CHEM, V35, P241
DRENTH J, 1976, BIOCHEMISTRY-US, V15, P3731
DUNCAN GD, 1992, J AM CHEM SOC, V114, P5784
EURENIUS KP, 1996, INT J QUANTUM CHEM, V60, P1189
FREITAG MA, 2000, J CHEM PHYS, V112, P7300
GARAVITO RM, 1977, BIOCHEMISTRY-US, V16, P5065
GARMER DR, 1998, PROTEINS, V31, P42
GILSON MK, 1988, PROTEINS, V3, P32
GOLDBLUM A, 1997, UNDERS CH R, V19, P295
GRESH N, 1984, THEOR CHIM ACTA, V66, P1
GRESH N, 1986, INT J QUANTUM CHEM, V29, P101
GRESH N, 1997, BIOPOLYMERS, V41, P145
GRIMSLEY GR, 1999, PROTEIN SCI, V8, P1843
HARRISON MJ, 1997, J AM CHEM SOC, V119, P12285
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33
HWANG JK, 1995, CHEM PHYS LETT, V243, P171
IKEUCHI Y, 1998, FEBS LETT, V437, P91
JUFFER AH, 1991, J COMPUT PHYS, V97, P144
KAMPHUIS IG, 1984, J MOL BIOL, V179, P233
KAMPHUIS IG, 1985, J MOL BIOL, V182, P317
LAMOTTEBRASSEUR J, 1990, J THEOR BIOL, V145, P183
LANGLET J, 1988, J PHYS CHEM-US, V92, P1617
LAVERY R, 1983, INT J QUANTUM CHEM, V24, P353
LEE B, 1971, J MOL BIOL, V55, P379
LEWIS SD, 1976, BIOCHEMISTRY-US, V15, P5009
LEWIS SD, 1981, BIOCHEMISTRY-US, V20, P48
LIMA APC, 2001, MOL BIOCHEM PARASIT, V114, P1
MCKERROW JH, 1993, ANNU REV MICROBIOL, V47, P821
MELLOR GW, 1993, BIOCHEM J 1, V294, P201
MELLOR GW, 1993, BIOCHEM J, V290, P289
MENARD R, 1990, BIOCHEMISTRY-US, V29, P6706
MENARD R, 1991, BIOCHEMISTRY-US, V30, P5531
MENARD R, 1991, PROTEIN ENG, V4, P307
MENARD R, 1995, BIOCHEMISTRY-US, V34, P464
MINIKIS RM, 2001, J PHYS CHEM A, V105, P3829
MONARD G, 1996, INT J QUANTUM CHEM, V58, P153
NAKAMURA H, 1996, Q REV BIOPHYS, V29, P1
NARAYSZABO G, 1997, UNDERS CH R, V19, P237
NOBLE MA, 2000, BIOCHEM J 3, V351, P723
PASCUTTI PG, 1999, J COMPUT CHEM, V20, P971
PERAHIA D, 1977, THEOR CHIM ACTA, V43, P207
PICKERSGILL RW, 1988, BIOCHEM J, V254, P235
PINITGLANG S, 1997, BIOCHEMISTRY-US, V36, P9968
PLOU FJ, 1996, J MOL BIOL, V257, P1088
POORNIMA CS, 1995, J COMPUT AID MOL DES, V9, P500
POORNIMA CS, 1995, J COMPUT AID MOL DES, V9, P513
RASHIN AA, 1987, J PHYS CHEM-US, V91, P6003
RIPOLL DR, 1993, P NATL ACAD SCI USA, V90, P5128
RULLMANN JAC, 1989, J MOL BIOL, V206, P101
RUSSELL AJ, 1987, NATURE, V328, P496
SANSCHAGRIN PC, 1998, PROTEIN SCI, V7, P2054
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHRODER E, 1993, FEBS LETT, V315, P38
SCHUTZ CN, 2001, PROTEINS, V44, P400
SHAM YY, 1998, BIOPHYS J, V74, P1744
SHARP KA, 1997, UNDERS CH R, V19, P199
SHENAI BR, 2000, J BIOL CHEM, V275, P29000
SIMONSON T, 2002, ACCOUNTS CHEM RES, V35, P430
SMITH LJ, 1995, BIOCHEMISTRY-US, V34, P10918
STONE AJ, 1981, CHEM PHYS LETT, V83, P233
STONE AJ, 1985, MOL PHYS, V56, P1047
TAYLOR MAJ, 1994, PROTEIN ENG, V7, P1267
TOPHAM CM, 1991, BIOCHEM J, V280, P79
VANGUNSTEREN WF, 1987, GRONINGEN MOL SIMULA
VERNET T, 1995, J BIOL CHEM, V270, P16645
VIGNEMAEDER F, 1988, J CHEM PHYS, V88, P4934
WARSHEL A, 1976, J MOL BIOL, V103, P227
WARSHEL A, 1991, COMPUTER MODELING CH, P140
WARSHEL A, 1998, J BIOL CHEM, V273, P27035
WARSHEL A, 1998, P NATL ACAD SCI USA, V95, P5950
WERNECK AS, 1998, THEOCHEM-J MOL STRUC, V427, P15
YOON BJ, 1990, J COMPUT CHEM, V11, P1080
NR 94
TC 6
PU WILEY-LISS
PI NEW YORK
PA DIV JOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0887-3585
J9 PROTEIN-STRUCT FUNCT GENET
JI Proteins
PD AUG 1
PY 2003
VL 52
IS 2
BP 236
EP 253
PG 18
SC Biochemistry & Molecular Biology; Genetics & Heredity
GA 697BW
UT ISI:000183923200012
ER
PT J
AU Arenzon, JJ
Levin, Y
Sellitto, M
TI Slow dynamics under gravity: a nonlinear diffusion model
SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
LA English
DT Article
DE granular matter; structural arrest; glass transition; compaction
dynamics
ID VIBRATED GRANULAR MATERIAL; LATTICE-GAS MODEL; GLASS-TRANSITION;
DENSITY-FLUCTUATIONS; COMPACTION; RELAXATION; MATTER; LIQUIDS; MEDIA;
CRYSTALLIZATION
AB We present an analytical and numerical study of a nonlinear diffusion
model which describes density relaxation of densely packed particles
under gravity and weak random (thermal) vibration, and compare the
results with Monte Carlo simulations of a lattice gas under gravity.
The dynamical equation can be thought of as a local density functional
theory for a class of lattice gases used to model slow relaxation of
glassy and granular materials. The theory predicts a jamming transition
line between a low-density fluid phase and a high-density glassy
regime, characterized by diverging relaxation time and logarithmic or
power-law compaction according to the specific form of the diffusion
coefficient. In particular, we show that the model exhibits
history-dependent properties, such as quasi-reversible-irreversible
cycle and memory effects-as observed in recent experiments, and
dynamical heterogeneities. (C) 2003 Elsevier Science B.V. All rights
reserved.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Arenzon, JJ, Univ Fed Rio Grande Sul, Inst Fis, CP 15051, BR-91501970
Porto Alegre, RS, Brazil.
CR BARRAT A, 2000, J PHYS A-MATH GEN, V33, P4401
BARRAT A, 2001, EUROPHYS LETT, V53, P297
BERG J, 2001, EUROPHYS LETT, V56, P784
BOUCHAUD JP, CONDMAT0211196
BOUCHAUD JP, 1997, SPIN GLASSES RANDOM
BOUTREUX T, 1997, PHYSICA A, V244, P59
BREY JJ, 1999, PHYS REV E B, V60, P5685
BREY JJ, 2001, PHYS REV E 1, V63
CLEMENT E, 1991, EUROPHYS LETT, V16, P133
DANNA G, 2001, NATURE, V413, P407
DANNA G, 2001, PHYS REV LETT, V87
DEGENNES PG, 1998, PHYSICA A, V261, P267
DURAN J, 2000, SANDS POWDERS GRAINS
EDWARDS SF, 1991, DISORDER CONDENSED M
EDWARDS SF, 1994, GRANULAR MATTER INTE
FRANZ S, 2002, PHYS REV E 1, V65
FUSCO C, 2002, PHYS REV E 1, V66
GOTZE W, 1992, REP PROG PHYS, V55, P241
HEAD DA, 2000, PHYS REV E B, V62, P2439
IMPARATO A, 2000, PHYS LETT A, V269, P154
JOSSERAND C, 2000, PHYS REV LETT, V85, P3632
KADANOFF LP, 1999, REV MOD PHYS, V71, P435
KNIGHT JB, 1995, PHYS REV E A, V51, P3957
KOB W, 1993, PHYS REV E, V48, P4364
KOVACS AJ, 1963, FORTSCH HOCHPOLYM FO, V3, P394
LAWLOR A, 2002, PHYS REV LETT, V89
LEVIN Y, 2000, PHYSICA A, V287, P100
LEVIN Y, 2001, EUROPHYS LETT, V55, P767
LIU AJ, 1998, NATURE, V396, P21
NICODEMI M, 1997, PHYS REV E, V55, P3962
NICOLAS M, 2000, EUR PHYS J E, V3, P309
NOWAK ER, 1997, POWDER TECHNOL, V94, P79
NOWAK ER, 1998, PHYS REV E B, V57, P1971
PELITI L, 1998, J PHYS IV, V8, PR6
PHILIPPE P, 2001, PHYS REV E 1, V63
POULIQUEN O, 1997, PHYS REV LETT, V79, P3640
PRADOS A, 2000, PHYSICA A, V284, P277
RICHERT R, 2002, J PHYS-CONDENS MAT, V14, R703
RITORT F, CONDMAT0210382
SELLITTO M, 2000, PHYS REV E A, V62, P7793
SELLITTO M, 2001, PHYS REV E 1, V63
SILLESCU H, 1999, J NON-CRYST SOLIDS, V243, P81
STARIOLO DA, 1997, PHYS REV E, V55, P4806
STRUIK LCE, 1978, PHYSICAL AGING AMORP
TOKUYAMA M, 1995, PHYSICA A, V216, P85
VANMEGEN W, 1998, PHYS REV E B, V58, P6073
VILLARRUEL FX, 2000, PHYS REV E B, V61, P6914
WARR S, 1996, EUROPHYS LETT, V36, P589
WILDMAN RD, 2000, PHYS REV E B, V62, P3826
WILDMAN RD, 2001, PHYS REV E 1, V63
YANG XY, 2002, PHYS REV LETT, V88
NR 51
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD JUL 15
PY 2003
VL 325
IS 3-4
BP 371
EP 395
PG 25
SC Physics, Multidisciplinary
GA 696VZ
UT ISI:000183909400006
ER
PT J
AU Capelle, K
TI Variational calculation of many-body wave functions and energies from
density functional theory
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID GENERATOR-COORDINATE METHOD; NONORTHOGONAL SLATER DETERMINANTS;
EXCITATION-ENERGIES; ELECTRON-GAS; DISCRETIZATION; SUPERPOSITION;
APPROXIMATION; STATES; ATOMS
AB A generating coordinate is introduced into the exchange-correlation
functional of density functional theory (DFT). The many-body wave
function is represented as a superposition of Kohn-Sham (KS) Slater
determinants arising from different values of the generating
coordinate. This superposition is used to variationally calculate
many-body energies and wave functions from solutions of the KS equation
of DFT. The method works for ground and excited states, and does not
depend on identifying the KS orbitals and energies with physical ones.
Numerical application to the Helium isoelectronic series illustrates
the method's viability and potential. (C) 2003 American Institute of
Physics.
C1 Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
RP Capelle, K, Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim Sao Carlos,
Caixa Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR ANDREJKOVICS I, 1998, CHEM PHYS LETT, V296, P489
ARICKX F, 1981, J COMPUT PHYS, V39, P272
BECKE AD, 1988, PHYS REV A, V38, P3098
BROECKHOVE J, 1979, Z PHYS A, V292, P243
CHATTOPADYAY P, 1978, Z PHYS A, V285, P7
DASILVA ABF, 1989, MOL PHYS, V68, P433
DASILVA ABF, 1993, CHEM PHYS LETT, V203, P201
DAVIDSON ER, 1991, PHYS REV A, V44, P7071
DEUMENS E, 1984, INT J QUANTUM CHEM, V18, P339
FUKUTOME H, 1988, PROG THEOR PHYS, V80, P417
GORLING A, 1999, PHYS REV A, V59, P3359
GRIFFIN JJ, 1957, PHYS REV, V108, P311
GROSS EKU, 1988, PHYS REV A, V37, P2805
HILL DL, 1953, PHYS REV, V89, P1106
HOHENBERG P, 1964, PHYS REV, V136, B864
JOHANSSON B, 1978, PHYSICA B, V94, P152
LASKOWSKI B, 1976, J CHEM PHYS, V69, P5222
LASKOWSKI B, 1976, QUANTUM SCI METHODS
LEE C, 1988, PHYS REV B, V37, P785
MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
PETERSILKA M, 1996, PHYS REV LETT, V76, P1212
SZABO A, 1989, MODERN QUANTUM CHEM
TENNO S, 1997, THEOR CHEM ACC, V98, P182
TOMITA N, 1996, CHEM PHYS LETT, V263, P687
NR 24
TC 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUL 15
PY 2003
VL 119
IS 3
BP 1285
EP 1288
PG 4
SC Physics, Atomic, Molecular & Chemical
GA 696YL
UT ISI:000183915100001
ER
PT J
AU Capaz, RB
Caldas, MJ
TI Ab initio calculations of structural and dynamical properties of
poly(p-phenylene) and poly(p-phenylene vinylene)
SO PHYSICAL REVIEW B
LA English
DT Article
ID VIBRATIONAL-SPECTRA; DOPED POLYPARAPHENYLENE; CRYSTAL-STRUCTURE;
PHASE-TRANSITION; X-RAY; PERDEUTERATED BIPHENYL; OPTICAL
INVESTIGATIONS; ELECTRONIC-STRUCTURE; CONJUGATED POLYMERS; PHENYLENE
VINYLENE
AB We perform ab initio calculations within the local density
approximation for infinite, isolated chains of poly(para-phenylene)
(PPP) and poly(para-phenylene-vinylene) (PPV). Phonon frequencies at
(k) over right arrow = (0) over right arrow and structural properties
are investigated with special focus on the ring-torsion barriers. Our
results for PPV indicate a planar geometry, while for PPP we find a
ring-torsion potential that is not affected by next-nearest-neighbor
rings. This suggests the existence of a multiply degenerate ground
state for PPP, with chiral, ordered, or random angle-alternating
configurations having the same energy. In addition, we couple these
results to a simple molecular-dynamics simulation in order to
investigate the finite temperature behavior of the systems.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil.
Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, Brazil.
RP Capaz, RB, Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528,
BR-21941972 Rio De Janeiro, Brazil.
CR ALMENNINGEN A, 1985, J MOL STRUCT, V128, P59
AMBROSCHDRAXL C, 1995, PHYS REV B, V51, P9668
BAITOUL M, 2000, POLYMER, V41, P6955
BASTIANSEN O, 1985, J MOL STRUCT, V128, P115
BAUDOUR JL, 1977, ACTA CRYSTALLOGR B, V33, P1773
BAUDOUR JL, 1978, ACTA CRYSTALLOGR B, V34, P625
BAUDOUR JL, 1991, ACTA CRYSTALLOGR B, V47, P935
BRADLEY DDC, 1987, J PHYS D APPL PHYS, V20, P1389
BREDAS JL, 1984, PHYS REV B, V29, P6761
CAPAZ RB, 1999, J MOL STRUC-THEOCHEM, V464, P31
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHEN D, 1990, PHYS REV B, V41, P6759
CHEN D, 1992, POLYMER, V33, P3116
CHOI CH, 1997, J PHYS CHEM A, V101, P3823
CUFF L, 1994, MACROMOLECULES, V27, P762
CUFF LL, 1994, J AM CHEM SOC, V116, P9269
DELUGEARD Y, 1976, ACTA CRYSTALLOGR, V32, P702
FINCHER CR, 1982, PHYS REV LETT, V48, P100
FINDER CJ, 1974, ACTA CRYSTALLOGR B, V30, P411
FRIEND RH, 1999, NATURE, V397, P121
FURUKAWA Y, 1991, SPECTROCHIM ACTA A, V47, P1367
GINDER JM, 1990, PHYS REV B, V41, P10674
HOHENBERG P, 1964, PHYS REV, V136, B864
HONG SY, 1990, PHYS REV B, V41, P11368
KOHN W, 1965, PHYS REV, V140, A1133
KOVACIC P, 1968, J APPL POLYM SCI, V12, P1735
MARTIN SJ, 1999, PHYS REV B, V59, P15133
ORION I, 1998, PHYS REV B, V57, P7050
PAPANEK P, 1994, PHYS REV B, V50, P15668
PAYNE MC, 1992, REV MOD PHYS, V64, P1045
PELOUS Y, 1989, SYNTHETIC MET, V29, E17
PERDEW JP, 1981, PHYS REV B, V23, P5048
RAKOVIC D, 1990, PHYS REV B, V41, P10744
RAPPE AM, 1990, PHYS REV B, V41, P1227
RIETVELD HM, 1970, ACTA CRYSTALLOGR B, V26, P693
SAKAMOTO A, 1992, J PHYS CHEM-US, V96, P1490
SHACKLETTE LW, 1979, SYNTHETIC MET, V1, P307
SIMPSON JH, 1992, J POLYM SCI POL PHYS, V30, P11
STAMM M, 1983, J PHYS-PARIS, V44, P667
STAMM M, 1985, MOL CRYST LIQ CRYST, V118, P281
TIAN B, 1991, J CHEM PHYS, V95, P3191
TIAN B, 1991, J CHEM PHYS, V95, P3198
TOUDIC B, 1983, SOLID STATE COMMUN, V47, P291
TUYAROT DE, 2000, PHYS REV B, V61, P7187
WANG WZ, 1994, PHYS REV B, V50, P6068
ZANNONI G, 1985, J CHEM PHYS, V82, P31
NR 46
TC 8
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2003
VL 67
IS 20
AR 205205
DI ARTN 205205
PG 9
SC Physics, Condensed Matter
GA 689GL
UT ISI:000183483200032
ER
PT J
AU Fagan, SB
Mota, R
da Silva, AJR
Fazzio, A
TI Ab initio study of an iron atom interacting with single-wall carbon
nanotubes
SO PHYSICAL REVIEW B
LA English
DT Article
ID TRANSITION-METAL ADATOMS; MOLECULAR-DYNAMICS; LARGE SYSTEMS; GRAPHITE;
MAGNETISM; GROWTH; IMPURITIES; ADSORPTION; PARTICLES; SPECTRA
AB The interaction of an iron atom with a single-wall carbon nanotube is
investigated using spin-polarized total-energy first-principles
calculations. A systematic study for the atom approaching the tube
surface, both from outside and inside, is presented for several
configurations to determine the equilibrium distances and the binding
energies. It is shown that when the atom interacts with the tube from
outside, a 3d(7) 4s(1) effective configuration is obtained and the
total magnetization is close to the atomic value. For the inside case,
as a consequence of higher hybridization and a confinement effect, the
magnetization decreases and the finally obtained effective
configuration is 3d(8) 4s(0).
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Fagan, SB, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
Brazil.
CR ANDRIOTIS AN, 2000, APPL PHYS LETT, V76, P3890
ANDRIOTIS AN, 2000, PHYS REV B, V61, P13393
ANDRIOTIS AN, 2000, PHYS REV LETT, V85, P3193
ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BINNS C, 1996, PHYS REV B, V53, P7451
BUMER M, 1995, SURF SCI, V327, P321
DAI HJ, 2002, SURF SCI, V500, P218
DRESSELHAUS MS, 2001, CARBON NANOTUBES
DUFFY DM, 1998, PHYS REV B, V58, P7443
FAZZIO A, 1984, PHYS REV B, V30, P3430
HOHENBERG P, 1964, PHYS REV, V136, B864
JOURNET C, 1997, NATURE, V388, P756
KATAYAMAYOSHIDA H, 1984, PHYS REV LETT, V53, P1256
KATAYAMAYOSHIDA H, 1985, PHYS REV B, V31, P7877
KOHN W, 1965, PHYS REV, V140, A1133
KONG K, 1999, PHYS REV B, V60, P6074
KRUGER P, 1998, PHYS REV B, V57, P5276
KRUGER P, 1999, PHYS REV B, V59, P15093
LEE YH, 1997, PHYS REV LETT, V78, P2393
MENON M, 2000, CHEM PHYS LETT, V320, P425
MINTMIRE JW, 1992, PHYS REV LETT, V68, P631
NARDELLI MB, 2001, PHYS REV B, V64
ORDEJON P, 1996, PHYS REV B, V53
PANDEY R, 2000, CHEM PHYS LETT, V321, P142
PENG SS, 1996, PHILOS MAG B, V73, P611
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANKEY OF, 1989, PHYS REV B, V40, P3979
SETLUR AA, 1998, J MATER RES, V13, P2139
TIBBETTS GG, 1987, CARBON, V25, P367
TROULLIER N, 1991, PHYS REV B, V43, P1993
TSUKAGOSHI K, 1999, NATURE, V401, P572
ZHANG Y, 2000, CHEM PHYS LETT, V331, P35
NR 33
TC 13
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2003
VL 67
IS 20
AR 205414
DI ARTN 205414
PG 5
SC Physics, Condensed Matter
GA 689GL
UT ISI:000183483200087
ER
PT J
AU Guerini, S
Piquini, P
TI Theoretical investigation of TiB2 nanotubes
SO MICROELECTRONICS JOURNAL
LA English
DT Article
DE TiB2 nanotubes; density of states; strain energy
ID HARTREE-FOCK
AB We investigated the energetic and electronic properties of zig-zag
titanium diboride (TiB2) nanotubes through ab initio density functional
theory. It is determined that an isolated (6,0) bilayered TiB2 nanotube
has a semiconductor character, with an energy gap of 1.32 eV. The
strain energy to form the (6,0) TiB2 nanotube is calculated to be 0.26
eV per unit formula. The electronic density of states of a three-layer
tube ((6,0) TiB2 + (12,0) B tube) shows a metallic behavior for this
system, which is consistent with previous calculations on similar
hypothetical nanotubes. (C) 2003 Elsevier Science Ltd. All rights
reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Piquini, P, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
RS, Brazil.
CR BARTHELAT JC, 1977, MOL PHYS, V33, P159
BLASE X, 1994, EUROPHYS LETT, V28, P225
CAUSA M, 1991, PHYS REV B, V43, P11937
CHERNOZATONSKII LA, 2001, JETP LETT, V74, P369
CHOPRA NG, 1995, SCIENCE, V269, P966
COTE M, 1998, PHYS REV B, V58, R4277
FELDMAN Y, 1995, SCIENCE, V267, P222
HACOHEN YR, 1998, NATURE, V395, P336
HARRIS PJF, 1999, CARBON NANOTUBES REL
LEE SM, 1999, PHYS REV B, V60, P7788
LI XY, 1996, J APPL PHYS, V80, P3860
LIJIMA S, 1991, NATURE, V354, P56
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PEROTTONI CA, 2000, J PHYS-CONDENS MAT, V12, P7205
QUANDT A, 2001, PHYS REV B, V64
SAUNDERS VR, 1998, CRYSTALS 98 USERS MA
SEIFERT G, 2000, CHEM PHYS LETT, V318, P355
SILVER AH, 1963, J CHEM PHYS, V38, P865
NR 19
TC 3
PU ELSEVIER ADVANCED TECHNOLOGY
PI OXFORD
PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,
OXFORD OX5 1GB, OXON, ENGLAND
SN 0026-2692
J9 MICROELECTR J
JI Microelectron. J.
PD MAY-AUG
PY 2003
VL 34
IS 5-8
BP 495
EP 497
PG 3
SC Engineering, Electrical & Electronic
GA 691LH
UT ISI:000183607400039
ER
PT J
AU Machado, M
Mota, R
Piquini, P
TI Electronic properties of BN nanocones under electric fields
SO MICROELECTRONICS JOURNAL
LA English
DT Article
DE electronic structures of nanoscale materials; nanocones; BN
ID EMISSION PROPERTIES; CARBON NANOTUBES; LARGE SYSTEMS; CONES
AB The electronic properties of BN nanocones with 240degrees disclination
under electric fields are investigated using first-principles
calculations based on the density-functional theory. The cones are
studied under the influence of electric fields, up to 1.13 V/Angstrom,
applied along the cone axis. The densities of states (DOS) of these BN
nanocones show different patterns depending on the termination two
atoms (BN, BB or NN) and the electric field strength. A decreasing of
the gap is observed with increasing field. The field emission
properties are very sensitive to the DOS and we show that the
termination atoms, as well as the electric field, contribute to enhance
the electron field emission. (C) 2003 Elsevier Science Ltd. All rights
reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Machado, M, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
RS, Brazil.
CR BAIERLE RJ, 2001, PHYS REV B, V64
BOURGEOIS L, 2000, PHYS REV B, V61, P7686
CHARLIER JC, 2001, PHYS REV LETT, V86, P5970
CHARLIER JC, 2002, NANO LETT, V2, P1191
MACHADO, 2003, EUR PHYS J D, V23, P91
MEUNIER V, 2002, APPL PHYS LETT, V81, P46
MOTA R, 2003, PHYS STATUS SOLIDI C, P799
ORDEJON P, 1996, PHYS REV B, V53
RUBIO A, 1994, PHYS REV B, V49, P5081
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
TERAUCHI M, 2000, CHEM PHYS LETT, V324, P359
ZHANG G, 2002, APPL PHYS LETT, V80, P2589
NR 12
TC 5
PU ELSEVIER ADVANCED TECHNOLOGY
PI OXFORD
PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,
OXFORD OX5 1GB, OXON, ENGLAND
SN 0026-2692
J9 MICROELECTR J
JI Microelectron. J.
PD MAY-AUG
PY 2003
VL 34
IS 5-8
BP 545
EP 547
PG 3
SC Engineering, Electrical & Electronic
GA 691LH
UT ISI:000183607400051
ER
PT J
AU Arissawa, M
Taft, CA
Felcman, J
TI Investigation of nucleoside analogs with anti-HIV activity
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE HIV; reverse transcriptase; drug-DNA interaction; nucleoside analogs
ID HUMAN-IMMUNODEFICIENCY-VIRUS; TYPE-1 REVERSE-TRANSCRIPTASE; BLOOD
MONONUCLEAR-CELLS; DRUG-RESISTANCE; AB-INITIO; 2',3'-DIDEOXYNUCLEOSIDE
ANALOGS; POPULATION ANALYSIS; ANTI-HIV-1 ACTIVITY; HUMAN-LYMPHOCYTES;
LAMIVUDINE 3TC
AB Although a relatively large number of drugs that inhibit human
immunodeficiency syndrome (HIV)-1 reverse transcriptase have been
developed-such as AZT, d4T, ddI, 3TC, and ddC, which are chain
terminating nucleoside analogs-resistance is still a major problem.
Atomic charges, regioselective patterns of chemical reactivity, and
other indices of biochemical activity may help us acquire a better
understanding of how the drugs work and the mechanism of drug
resistance. In this work, we investigated the above-mentioned
nucleoside analogs using the ab initio Hartree-Fock method with 3-21G,
3-21G*, 6-31G, 6-31G*, 6-31G**, and 6-31+G** basis sets as well as
B3LYP/6-31G**, including thus diffusion, polarization, and correlation
effects to obtain fully optimized geometric parameters. Vibrational
frequencies were calculated and we also investigated the effects of
solvents, Mulliken, and natural bond orbital charge distribution, as
well as hydrogen bond effects. We tried to correlate very low and very
high anti-HIV activity with charges, vibrational stretching
frequencies, interatomic distances, and the effect of solvents. (C)
2003 Wiley Periodicals, Inc.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290 Rio De Janeiro, Brazil.
Pontificia Univ Catolica Rio de Janeiro, Dept Quim, Rio De Janeiro, Brazil.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
Estatist, Rua Dr Xavier Sigaud,150, BR-22290 Rio De Janeiro, Brazil.
CR ALBER F, 2000, PROTEIN SCI, V9, P2535
ALTONA C, 1972, J AM CHEM SOC, V94, P8205
BALZARINI J, 1989, BIOCHEM PHARMACOL, V38, P869
BIRNBAUM GI, 1988, BIOCHEM BIOPH RES CO, V151, P608
BOYER PL, 1994, P NATL ACAD SCI USA, V91, P4882
BROSSETTE T, 2001, TETRAHEDRON, V57, P8129
CAMERMAN A, 1987, P NATL ACAD SCI USA, V84, P8239
CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
CHOI Y, 2002, ORG LETT, V4, P305
CHU CK, 1988, BIOCHEM PHARMACOL, V37, P3543
CIUFFO GM, 1998, THEOCHEM-J MOL STRUC, V428, P155
COATES JAV, 1992, ANTIMICROB AGENTS CH, V36, P202
COLACINO E, 2001, TETRAHEDRON, V57, P8551
DECLERCQ E, 1989, NUCLEOS NUCLEOT, V8, P659
ELIEL EL, 1993, STEREOCHEMISTRY ORGA
FARAJ A, 2000, ANTIVIR RES, V47, P97
FIDANZA NG, 2001, J MOL STRUC-THEOCHEM, V543, P185
FISHER MA, 1994, J MOL RECOGNIT, V7, P211
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FOSTER JP, 1980, J AM CHEM SOC, V102, P7211
FRISCH MJ, 1998, GAUSSIAN98 REVISION
GALISTEO D, 1995, J MOL STRUCT, V350, P147
GAO WY, 1993, J CLIN INVEST, V91, P2326
GU ZX, 1992, J VIROL, V66, P7128
HARTE WE, 1991, BIOCHEM BIOPH RES CO, V175, P298
HERDEWIJN P, 1987, J MED CHEM, V30, P1270
HUANG HF, 1998, SCIENCE, V282, P1669
KIM HO, 1993, J MED CHEM, V36, P30
LIN TS, 1987, BIOCHEM PHARMACOL, V36, P2713
LIN TS, 1988, J MED CHEM, V31, P336
MAAG H, 1994, J MED CHEM, V37, P431
MARQUEZ VE, 1998, J AM CHEM SOC, V120, P2780
MARTINS JBL, 1998, INT J QUANTUM CHEM, V69, P117
MARTINS JBL, 2002, INT J QUANTUM CHEM, V90, P575
MCLEAN AR, 1995, REV MED VIROL, V5, P141
MICKLE T, 2000, ANTIMICROB AGENTS CH, V44, P2939
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NETO JDM, 1992, INT J QUANTUM CHEM Q, V19, P225
NISHIMURA Y, 1986, J MOL STRUCT, V146, P123
PAINTER GR, 1993, BIOCHEM BIOPH RES CO, V191, P1166
PAINTER GR, 2000, NUCLEOS NUCLEOT NUCL, V19, P13
PASTORANGLADA M, 1998, TRENDS PHARMACOL SCI, V19, P424
PERACH M, 1997, J MOL BIOL, V268, P648
PLAVEC J, 1992, J BIOCHEM BIOPH METH, V25, P253
QUAN YD, 1998, J MOL BIOL, V277, P237
REARDON JE, 1992, BIOCHEMISTRY-US, V31, P4473
REED AE, 1980, J AM CHEM SOC, V102, P7211
REED AE, 1985, J CHEM PHYS, V83, P735
REED AE, 1988, CHEM REV, V88, P899
SAENGER W, 1984, PRINCIPLES NUCLEIC A, P9
SARAFIANOS SG, 1999, P NATL ACAD SCI USA, V96, P10027
SCHINAZI RF, 1990, ANTIMICROB AGENTS CH, V34, P1061
SCHINAZI RF, 1992, ANTIMICROB AGENTS CH, V36, P672
SCHINAZI RF, 1993, ANTIMICROB AGENTS CH, V37, P875
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SOOK G, 1996, TETRAHEDRON, V52, P12643
TANTILLO C, 1994, J MOL BIOL, V243, P369
VANROEY P, 1988, J AM CHEM SOC, V110, P2277
VANROEY P, 1989, P NATL ACAD SCI USA, V86, P3929
WEINHOLD H, 1988, STRUCTURE SMALL MOL, P227
WONG MW, 1991, J AM CHEM SOC, V113, P4776
YOO SJ, 2002, BIOORGAN MED CHEM, V10, P215
ZHANG XG, 2002, J ORG CHEM, V67, P1016
NR 63
TC 5
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD JUL 5
PY 2003
VL 93
IS 6
BP 422
EP 432
PG 11
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 689WH
UT ISI:000183515600006
ER
PT J
AU Janczak, J
Perpetuo, GJ
TI Bis(melaminium) DL-malate tetrahydrate
SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS
LA English
DT Article
ID HYDROGEN; DIHYDRATE; SECONDARY; TAPES; ACID
AB The crystal structure of the title melaminium salt, bis(2,4,6-
triamino-1,3,5-triazin-1-ium) DL-malate tetrahydrate,
2C(3)H(7)N(6)(+).C4H4O52-.4H(2)O, consists of singly protonated
melaminium residues, DL-malate dianions and water molecules. The
melaminium residues are connected into chains by four N-H...N hydrogen
bonds, and these chains form a stacking structure along the c axis. The
DL-malate dianions form hydrogen-bonded chains and, together with
hydrogen-bonded water molecules, form a layer parallel to the ( 100)
plane. The conformation of the malate ion is compared with an ab initio
molecular-orbital calculation. The oppositely charged moieties, i.e.
the stacks of melaminium chains and hydrogen-bonded DL-malate anions
and water molecules, form a three-dimensional polymeric structure, in
which N-H...O hydrogen bonds stabilize the stacking.
C1 Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland.
Univ Fed Ouro Preto, Dept Fis, Inst Ciencias Exatas & Biolog, BR-35400000 Ouro Preto, MG, Brazil.
RP Janczak, J, Polish Acad Sci, Inst Low Temp & Struct Res, POB 1410,
PL-50950 Wroclaw, Poland.
CR *KUM DIFFR, 2000, KM 4 SOFTW VERS 163
ALLEN FH, 1987, J CHEM SOC P2, V2, P1
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380
DESIRAJU GR, 1990, CRYSTAL ENG DESIGN O
FRISCH JM, 1995, GAUSSIAN94 REVISION
GILLESPIE RJ, 1963, J CHEM EDUC, V40, P295
GILLESPIE RJ, 1992, CHEM SOC REV, V21, P59
JANCZAK J, 1999, ACTA CHEM SCAND, V53, P606
JANCZAK J, 2001, ACTA CRYSTALLOGR 12, V57, P1431
JANCZAK J, 2001, ACTA CRYSTALLOGR C 1, V57, P123
JANCZAK J, 2001, ACTA CRYSTALLOGR C 7, V57, P873
JANCZAK J, 2001, ACTA CRYSTALLOGR C 9, V57, P1120
JANCZAK J, 2002, ACTA CRYSTALLOGR C 6, V58, O339
JANCZAK J, 2002, ACTA CRYSTALLOGR C 8, V58, O455
KRISCHE MJ, 2000, STRUCT BOND, V96, P3
MACDONALD JC, 1994, CHEM REV, V94, P2383
PAULING L, 1960, NATURE CHEM BOND, V3, P260
PERPETUO GJ, 2002, ACTA CRYSTALLOGR C 2, V58, O112
PERPETUO GJ, 2002, ACTA CRYSTALLOGR C 7, V58, O431
ROW TNG, 1999, COORDIN CHEM REV, V183, P81
SHELDRICK GM, 1990, SHELXTL
SHELDRICK GM, 1997, SHELXS97 SHELXL97
SHERRINGTON DC, 2001, CHEM SOC REV, V30, P83
VANDERSLUIS P, 1985, ACTA CRYSTALLOGR C, V41, P956
VANDERSLUIS P, 1989, ACTA CRYSTALLOGR C, V45, P1406
ZERKOWSKI JA, 1994, CHEM MATER, V6, P1250
NR 26
TC 8
PU BLACKWELL MUNKSGAARD
PI COPENHAGEN
PA 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK
SN 0108-2701
J9 ACTA CRYSTALLOGR C-CRYST STR
JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun.
PD JUN
PY 2003
VL 59
PN Part 6
BP O349
EP O352
PG 4
SC Crystallography
GA 686WZ
UT ISI:000183345100047
ER
PT J
AU Costa, LAS
Rocha, WR
De Almeida, WB
Dos Santos, HF
TI The hydrolysis process of the
cis-dichloro(ethylenediamine)platinum(II): A theoretical study
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; AB-INITIO;
CONFORMATIONAL-ANALYSIS; ORGANIC-MOLECULES; ANTITUMOR DRUGS; CISPLATIN;
DNA; COMPLEXES; PATH
AB The hydrolysis process of the cisplatin analog
cis-dichloro(ethylenediamine)platinum(II) (cis-DEP) was theoretically
investigated at the Hartree-Fock, density functional theory and the
second order Moller-Plesset perturbation theory levels of calculation.
The stationary points on the gas phase potential energy surface for the
first and second hydrolysis steps were fully optimized and
characterized. For the first aquation process the gas phase results are
in satisfactory agreement with the experimental data. However in order
to reproduce the observed rate constant for the second hydrolysis step
it is essential to include the solvent effect. The structures and
energetic properties are similar to the values found for the parent
compound cisplatin, showing that the cis-DEP analog should be
considered as a potential drug concerning its hydrolysis process. (C)
2003 American Institute of Physics.
C1 Univ Fed Juiz de Fora, NEQC, Dept Quim, ICE, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Minas Gerais, LQC MM, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
EPCAR, DEPENS, BR-36200000 Barbacena, MG, Brazil.
Univ Fed Pernambuco, Dept Quim Fundamental, CCEN, BR-50740901 Recife, PE, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, NEQC, Dept Quim, ICE, Campus
Univ Martelos, BR-36036330 Juiz De Fora, MG, Brazil.
CR BANCROFT DP, 1990, J AM CHEM SOC, V112, P6860
BECKE AD, 1993, J CHEM PHYS, V98, P5648
CARLONI P, 1995, CHEM PHYS LETT, V234, P50
CARLONI P, 2000, J PHYS CHEM B, V104, P823
CHVAL Z, 2000, J MOL STRUC-THEOCHEM, V532, P59
COLEY RF, 1973, INORG CHIM ACTA, V7, P573
CONNORS KA, 1990, CHEM KINETICS, P200
CUNDARI TR, 1998, THEOCHEM-J MOL STRUC, V425, P51
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DOSSANTOS HF, 2002, CHEM PHYS, V280, P31
DOSSANTOS HF, 2002, THEOR CHEM ACC, V107, P229
EASTMAN A, 1983, BIOCHEMISTRY-US, V22, P3927
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
HAY PJ, 1985, J CHEM PHYS, V82, P299
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
JESTIN JL, 1994, INORG CHEM, V33, P4277
LOEHRER PJ, 1984, ANN INTERN MED, V100, P704
MARCELIS ATM, 1980, J INORG BIOCHEM, V13, P213
MILBURN GHW, 1966, J CHEM SOC A, P1609
MILLER SE, 1989, INORG CHIM ACTA, V166, P189
MILLER SE, 1991, INORG CHIM ACTA, V190, P135
MULLANEY M, 1997, INORG CHIM ACTA, V265, P275
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1992, PHYS REV B, V46, P6671
RAJSKI SR, 1998, CHEM REV, V98, P2723
ROSENBERG B, 1965, NATURE, V205, P689
ROSENBERG B, 1969, NATURE, V222, P385
SHERMAN SE, 1987, CHEM REV, V87, P1153
TEO BK, 1978, J AM CHEM SOC, V100, P3225
YAO S, 1994, INORG CHEM, V33, P6061
ZHANG Y, 2001, J AM CHEM SOC, V123, P9378
ZILBERBERG IL, 1997, THEOCHEM-J MOL STRUC, V418, P73
NR 36
TC 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 15
PY 2003
VL 118
IS 23
BP 10584
EP 10592
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 683AJ
UT ISI:000183124300025
ER
PT J
AU Rivelino, R
Chaudhuri, P
Canuto, S
TI Quantifying multiple-body interaction terms in H-bonded HCN chains with
many-body perturbation/coupled-cluster theories
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID AB-INITIO; QUANTUM-CHEMISTRY; (HCN)(N) CLUSTERS; HYDROGEN-CYANIDE;
WATER CLUSTERS; COMPLEXES; DELOCALIZATION; COOPERATIVITY; SPECTROSCOPY;
MOLECULE
AB Many-body perturbation/coupled-cluster calculations have been carried
out to investigate the multiple-body energy terms and their
contribution to the interaction energy of linear (HCN)(N) chains. All
minimum energy geometries of the clusters (N = 2-7) are obtained at the
second-order many-body perturbation (MP2) levels of theory. Electron
correlation and cooperative effects in the C-H...N hydrogen bonds are
also quantitatively characterized during the aggregation process. It is
found that the two- and three-body terms account for nearly all of the
total interaction energy, but all high-body terms increase with the
size of the cluster. Detailed numerical values are given for all the
many-body contributions of the (HCN)(N) chains. Electron correlation
effects are found to be important for the two- and three-body terms but
have decreased importance for the higher-body terms. Cooperative
effects are also investigated for the binding energy and dipole moment.
The dipole moments of the HCN oligomers are larger than the sum of the
individual monomers with differences ranging between 12% (N = 2) and
28% (N = 7). The limiting values for the binding energy and dipole
moment of (HCN)(N), per monomer, corresponding to very large N values,
are estimated to be 22.9 kJ/mol and 3.87 D, per monomer, respectively.
These results correspond to cooperative contributions of 5.8 kJ/mol to
the energy, and 1.0 D to the dipole moment. (C) 2003 American Institute
of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BHATTACHARYA BN, 1960, PHYS REV, V119, P144
BOYS SF, 1970, MOL PHYS, V19, P553
CABALEIROLAGO EM, 1998, J CHEM PHYS, V108, P3598
CAMPBELL EJ, 1983, CHEM PHYS, V76, P225
DESIRAJU GR, 2001, NATURE, V412, P397
DULMAGE WJ, 1951, ACTA CRYSTALLOGR, V4, P330
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FELSING WA, 1936, J AM CHEM SOC, V58, P1714
FRISCH MJ, 1998, GAUSSIAN 98
HANKINS D, 1970, J CHEM PHYS, V53, P4544
HEHRE WJ, 1986, AB INITIO MOL ORBITA, CH4
HEIKKILA A, 1999, J PHYS CHEM A, V103, P2945
HEIKKILA AT, 2000, J PHYS CHEM A, V104, P6637
HERSCHBACH D, 1999, REV MOD PHYS, V71, S411
HEYES DM, 1997, LIQUID STATE APPL MO
KING BF, 1995, J CHEM PHYS, V103, P333
KOFRANEK M, 1987, CHEM PHYS, V113, P53
KOFRANEK M, 1987, MOL PHYS, V61, P1519
LEGON AC, 1977, CHEM PHYS LETT, V47, P589
LIU K, 1996, SCIENCE, V271, P929
PALDUS J, 1999, ADV CHEM PHYS, V110, P1
PAULING L, 1960, NATURE CHEM BOND, P215
RINCON L, 2001, J CHEM PHYS, V114, P5552
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
RIVELINO R, 2001, J PHYS CHEM A, V105, P11260
RUOFF RS, 1988, J CHEM PHYS, V89, P138
SCHEIER P, 2000, PHYS REV LETT, V84, P55
SCHEINER S, 1997, HYDROGEN BONDING THE, CH5
SMETS J, 1998, CHEM PHYS LETT, V297, P451
STONE AJ, 1997, J CHEM PHYS, V107, P1030
SUHAI S, 1994, INT J QUANTUM CHEM, V52, P395
XANTHEAS SS, 1994, J CHEM PHYS, V100, P7523
NR 33
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 15
PY 2003
VL 118
IS 23
BP 10593
EP 10601
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 683AJ
UT ISI:000183124300026
ER
PT J
AU Freitas, MP
Tormena, CF
Rittner, R
Abraham, RJ
TI The utility of infrared spectroscopy for quantitative conformational
analysis at a single temperature
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE infrared spectroscopy; conformational analysis; molar absorption
coefficients; 2-bromocyclohexanone
ID R(0) STRUCTURAL PARAMETERS; AB-INITIO CALCULATIONS; VIBRATIONAL
ASSIGNMENT; RAMAN-SPECTRA; ELECTRONIC INTERACTION; NMR; SOLVATION;
STABILITY; ISOMERISM
AB The carbonyl stretching vibration of 2-bromocyclohexanone (1) has been
measured in a variety of solvents. It is shown that its component
intensities are not only dependent on the populations of the axial and
equatorial conformers, but are also dependent on the molar
absorptivities (epsilon) which are specific for each conformer in each
solvent. In CCl4, the axial and equatorial conformers have, values of
417 and 818 1 mol(-1) cm(-1), respectively, while in CH3CN solution,
the values were 664 and 293 1 mol(-1) cm(-1). These results are
supported by results of theoretical calculations of frequencies, which
gave an intensity of 223.8 kM mol(-1) (1782 cm(-1)) for the axial and
174.4 kM mol(-1) (1802 cm(-1)) for the equatorial conformer, indicating
that the axial conformer presents a larger molar absorptivity than the
equatorial one in the vapor phase. Moreover, the results presented here
clearly demonstrate that although infrared spectroscopy at a single
temperature can be an important auxiliary technique for conformational
analysis, it must not be used to quantify conformational preferences of
a molecule if the absorption molar coefficients for each conformer are
not known or not amenable to experimental determination. (C) 2003
Elsevier Science B.V. All rights reserved.
C1 UNICAMP, Inst Quim, Chim Organ Phys Lab, BR-13083862 Campinas, SP, Brazil.
Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Rittner, R, UNICAMP, Inst Quim, Chim Organ Phys Lab, Cx Postal 6154,
BR-13083862 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ALLINGER J, 1958, TETRAHEDRON, V2, P64
BASSO EA, 1993, J ORG CHEM, V58, P7865
BERVELT JP, 1968, SPECTROCHIM ACTA A, V24, P1411
BODOT H, 1967, B SOC CHIM FR, P870
CHEN CY, 1965, J CHEM SOC, P3700
DURIG JR, 2002, J MOL STRUCT, V607, P117
DURIG JR, 2002, SPECTROCHIM ACTA A, V58, P91
DURIG JR, 2002, STRUCT CHEM, V13, P1
GARBISCH EW, 1964, J AM CHEM SOC, V86, P1780
GUIRGIS GA, 2002, PHYS CHEM CHEM PHYS, V4, P1438
KLAEBOE P, 1957, ACTA CHEM SCAND, V11, P1677
OLIVATO PR, 1996, REV HETEROATOM CHEM, V15, P115
OLIVATO PR, 2002, J MOL STRUCT, V607, P87
PAN YH, 1967, CAN J CHEM, V45, P2943
PERRIN DD, 1988, PURIFICATION LAB CHE
RITTNER R, 1988, MAGN RESON CHEM, V26, P51
SHIRATORI Y, 1999, SPECTROCHIM ACTA A, V55, P2659
WOLFE S, 1967, J CHEM SOC CHEM COMM, P872
YOSHINAGA F, 2002, J CHEM SOC PERK T 2, P1494
NR 22
TC 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUN
PY 2003
VL 59
IS 8
BP 1783
EP 1789
PG 7
SC Spectroscopy
GA 680YB
UT ISI:000183006700014
ER
PT J
AU Milas, I
Nascimento, MAC
TI The dehydrogenation and cracking reactions of isobutane over the ZSM-5
zeolite
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; LIGHT ALKANES; AB-INITIO; ACIDIC CATALYSTS;
ISOMERIZATION; EXCHANGE; PROTON; HZSM-5; RATES
AB The dehydrogenation and cracking reactions of isobutane over zeolite
HZMS-5 were studied at the DFT/B3LYP level of calculation. The zeolite
was represented by the 'double-ring' 20T cluster. The activation
energies for the reactions were 9-12 kcal/mol lower than those obtained
with the linear 5T cluster. In both cases the attack of the acid site
proton was directly on a carbon atom of the substrate, and not on the
C-H and C-C bonds, evidencing carbonium-ion-type transition states. The
results suggest that the reactions should be competitive, although the
more hindered acid sites should favor the dehydrogenation over the
cracking reaction. (C) 2003 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Dept Quim Fis, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Dept Quim Fis, Inst Quim,
Cidade Univ,CT Bloco A,Sala 412, BR-21949900 Rio De Janeiro, Brazil.
CR *SCHR INC, 1998, JAG 3 5
AGARWAL N, 2002, IND ENG CHEM RES, V41, P4016
ASENSI MA, 1998, APPL CATAL A-GEN, V174, P163
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENCO L, 2001, MICRO MESO MAT, V41, P1
BENCO L, 2002, COMMUNICATION MAY
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BORONAT M, 2000, PHYS CHEM CHEM PHYS, V2, P3327
CORMA A, 1994, J CATAL, V145, P171
DEVRIES AH, 1999, J PHYS CHEM B, V103, P6133
FURTADO EA, 2001, PHYS STATUS SOLIDI A, V187, P275
KAZANSKY VB, 1989, J CATAL, V119, P108
KAZANSKY VB, 1996, APPL CATAL A-GEN, V146, P225
KISSIN YV, 1996, J CATAL, V163, P50
KOTREL S, 2000, MICROPOR MESOPOR MAT, V35, P11
MAKOV G, 1995, PHYS REV B, V51, P4014
MARTINEZMAGADAN JM, 2002, INT J QUANTUM CHEM, V88, P750
MILAS I, 2001, CHEM PHYS LETT, V338, P67
NARBESHUBER TF, 1997, J CATAL, V172, P127
NASCIMENTO MAC, 1999, J MOL STRUC-THEOCHEM, V464, P239
RAMACHANDRAN S, 1996, J PHYS CHEM-US, V100, P5898
ROZANSKA X, 2001, THEORETICAL ASPECTS, CH1
ROZANSKA X, 2002, J PHYS CHEM B, V106, P4652
SAUER J, 2000, J COMPUT CHEM, V21, P1470
STEFANADIS C, 1991, J MOL CATAL, V67, P363
TREESUKOL P, 2001, CHEM PHYS LETT, V350, P128
VIRUELA P, 1993, J PHYS CHEM-US, V97, P12719
VOSS AM, 2001, J AM CHEM SOC, V123, P2799
NR 28
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 20
PY 2003
VL 373
IS 3-4
BP 379
EP 384
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 681BG
UT ISI:000183016300023
ER
PT J
AU Verissimo-Alves, M
Koiller, B
Chacham, H
Capaz, RB
TI Electromechanical effects in carbon nanotubes: Ab initio and analytical
tight-binding calculations
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC-STRUCTURE; LARGE SYSTEMS; MICROTUBULES; JUNCTIONS
AB We perform ab initio calculations of charged graphene and single-wall
carbon nanotubes (CNTs). A wealth of electromechanical behaviors is
obtained. (1) Both nanotubes and graphene expand upon electron
injection. (2) Upon hole injection, metallic nanotubes and graphene
display a nonmonotonic behavior. Upon increasing hole densities, the
lattice constant initially contracts, reaches a minimum, and then
starts to expand. The hole densities at minimum lattice constants are
0.3 \e\/atom for graphene and between 0.1 and 0.3\e\/atom for the
metallic nanotubes studied. (3) Semiconducting CNT's with small
diameters (dless than or similar to20 Angstrom) always expand upon hole
injection. (4) Semiconducting CNT's with large diameters (dgreater than
or similar to20 Angstrom) display a behavior intermediate between those
of metallic and large-gap CNT's. (5) The strain versus extra charge
displays a linear plus power-law behavior, with characteristic
exponents for graphene, metallic, and semiconducting CNT's. All these
features are physically understood within a simple tight-binding
total-energy model.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil.
Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
Univ Fed Minas Gerais, Dept Fis, ICEx, BR-30123970 Belo Horizonte, MG, Brazil.
RP Verissimo-Alves, M, Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio
De Janeiro, Brazil.
CR BAUGHMAN RH, 1999, SCIENCE, V284, P1340
CUMINGS J, 2000, SCIENCE, V289, P602
DRESSELHAUS MS, 1981, ADV PHYS, V30, P139
FISCHER JE, 1996, J PHYS CHEM SOLIDS, V57, R9
FORRO L, 2000, SCIENCE, V289, P560
GARTSTEIN YN, 2002, PHYS REV LETT, V89
HAMADA N, 1992, PHYS REV LETT, V68, P1579
IIJIMA S, 1991, NATURE, V354, P56
KERTESZ M, 1983, MATERIALS RES SOC P, V20, P141
KIM P, 1999, SCIENCE, V286, P2148
MAZZONI MSC, 2000, PHYS REV B, V61, P7312
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PONCHARAL P, 1999, SCIENCE, V283, P1513
REICH S, 2001, PHYS REV B, V64
SAITO R, 1992, APPL PHYS LETT, V60, P2204
SAITO R, 1998, PHYSICAL PROPERTIES
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANCHEZPORTAL D, 1999, PHYS REV B, V59, P12678
TANS SJ, 1998, NATURE, V393, P49
TROULLIER N, 1991, PHYS REV B, V43, P1993
VERISSIMOALVES M, 2001, PHYS REV LETT, V86, P3372
WILDOER JWG, 1998, NATURE, V391, P59
YAO Z, 1999, NATURE, V402, P273
YOON YG, 2001, PHYS REV LETT, V86, P688
NR 26
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD APR 15
PY 2003
VL 67
IS 16
AR 161401
DI ARTN 161401
PG 4
SC Physics, Condensed Matter
GA 677TT
UT ISI:000182824200017
ER
PT J
AU Machado, MP
Piquini, P
Mota, R
TI Energetics and electronic properties of BN nanocones with pentagonal
rings at their apexes
SO EUROPEAN PHYSICAL JOURNAL D
LA English
DT Article
ID BORON-NITRIDE NANOTUBES; CARBON NANOTUBES; CONES; GROWTH; FRUSTRATION;
STATES
AB The geometric structures, energetics and electronic properties of the
recently discovered BN nanocones are investigated using
first-principles calculations based on the density-functional theory.
We have proposed one particular structure for BN nanocones associated
with the 240degrees disclination, derived by the extraction of four
60degrees segments, presenting as characteristic four pentagons at the
apex and termination in two atoms. The cones are simulated by three
clusters containing 58 B plus N atoms and additional 12 H atoms to
saturate the dangling bonds at the edge. The most stable configuration
is obtained when the two terminating atoms are one B and one N. For the
cases where the two terminating atoms are of the same kind, the tip
with B atoms is determined to have lower binding energy than with N
atoms. The local densities of states of these BN nanocones are
investigated and sharp states are found in the regions close (below and
above) to the Fermi energy.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Machado, MP, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
RS, Brazil.
CR AHLRICHS R, 1989, CHEM PHYS LETT, V162, P165
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BLASE X, 1998, PHYS REV LETT, V80, P1666
BOURGEOIS L, 1999, ACTA CRYSTALLOGR A 2, V55, P168
BOURGEOIS L, 2000, PHYS REV B, V61, P7686
CARROLL DL, 1997, PHYS REV LETT, V78, P2811
CHARLIER JC, 2001, PHYS REV LETT, V86, P5970
CHOI WB, 1999, APPL PHYS LETT, V75, P3129
FOWLER PW, 1999, CHEM PHYS LETT, V299, P359
GE M, 1994, CHEM PHYS LETT, V220, P192
GE MH, 1994, APPL PHYS LETT, V64, P710
IIJIMA S, 1992, NATURE, V356, P776
KIM P, 1999, PHYS REV LETT, V82, P1225
KRISHNAN A, 1997, NATURE, V388, P451
MARTIN JML, 1996, CHEM PHYS LETT, V248, P95
MENON M, 1999, CHEM PHYS LETT, V307, P407
MOTA R, 2003, PHYS STAT SOL C
ROGERS KM, 2000, CHEM PHYS LETT, V332, P43
RUBIO A, 1994, PHYS REV B, V49, P5081
SEIFERT G, 1997, CHEM PHYS LETT, V268, P352
TERAUCHI M, 2000, CHEM PHYS LETT, V324, P359
TREACY MMJ, 2001, MAT RES S P, V673
NR 22
TC 5
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6060
J9 EUR PHYS J D
JI Eur. Phys. J. D
PD APR
PY 2003
VL 23
IS 1
BP 91
EP 93
PG 3
SC Physics, Atomic, Molecular & Chemical
GA 679HN
UT ISI:000182914800012
ER
PT J
AU Bhering, DL
Ramirez-Solis, A
Mota, CJA
TI A density functional theory based approach to extraframework aluminum
species in zeolites
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID COMPACT EFFECTIVE POTENTIALS; EXTRA-FRAMEWORK ALUMINUM; EXPONENT
BASIS-SETS; Y-TYPE ZEOLITES; H-Y; LEWIS ACIDITY; DEALUMINATION;
CRACKING; MODELS; SITES
AB The structures of six different extraframework aluminum (EFAL) species,
possibly present in zeolites, were studied by density functional theory
methods. A T-6 cluster (T = Si, Al), with different Si/Al ratios, was
used to simulate the real zeolite Y structure and the coordination of
the chosen EFAL species (Al3+, Al(OH)(2+), AlO+, AI(OH)(2)(+), AlO(OH),
and Al(OH)(3)) The monovalent cations prefer to attain bicoordination
with the framework AlO4- moiety, while di- and trivalent cations
usually achieve tetracoordination. One important result is that, in all
cases, coordination occurs with the oxygen atoms nearest to the
framework aluminum ones. A single water molecule addition to the
optimized Al3+.T-6 cluster produces a strongly exothermic reaction,
leading to formation of a hydroxyaluminum cation and an acidic site on
the zeolite. The addition of a second water molecule produces only
minor energetic and structural changes.
C1 Fed Univ Rio De Janeiro, Inst Quim, Dept Quim Organ, BR-21949900 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Dept Fis, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Fed Univ Rio De Janeiro, Inst Quim, Dept Quim Organ, Cidade
Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR BENCO L, 2002, J CATAL, V209, P480
BERAN S, 1990, J PHYS CHEM-US, V94, P335
BEYERLEIN RA, 1997, TOP CATAL, V4, P27
BIAGLOW AI, 1994, J CATAL, V148, P213
BORODZINSKI A, 1980, CAN J CHEM ENG, V58, P219
CARVAJAL R, 1990, J CATAL, V125, P121
CATANA G, 2001, J PHYS CHEM B, V105, P4904
CORMA A, 1990, APPL CATAL, V59, P267
CUSUMANO JA, 1992, PERSPECTIVES CATALYS
DATKA J, 1981, J CHEM SOC F1, V77, P2877
FLEISCH TF, 1986, J CATAL, V118, P85
FRISCH MJ, 1998, GAUSSIAN 98
FRITZ PO, 1989, J CATAL, V118, P85
GUISNET M, 1990, CATAL LETT, V4, P299
HABIB ET, 1990, HYDROCARBON CHEM FCC, P1
HEHRE WJ, 1986, AB INITIO MOL ORBITA
JACOBS PA, 1979, J PHYS CHEM-US, V83, P1174
KEIR D, 1988, ZEOLITES, V8, P228
KUEHNE MA, 1997, J CATAL, V171, P293
LEE C, 1988, PHYS REV B, V37, P785
LONYI F, 1992, J CATAL, V136, P566
LUKINSKAS P, 2001, APPL CATAL A-GEN, V209, P193
MARYNEN P, 1984, ZEOLITES, V4, P287
MOTA CJA, 1994, J CHEM SOC FARADAY T, V90, P227
NACE D, 1980, IND ENG CHEM PROD RD, V58, P219
OLAH GA, 1985, SUPERACIDS
PINE LA, 1984, J CATAL, V85, P466
PINES H, 1981, CHEM CATALYTIC HYDRO
REMY MJ, 1996, J PHYS CHEM-US, V100, P12440
RUIZ JM, 1997, J PHYS CHEM B, V101, P1733
SCHERZER J, 1984, ACS SYM SER, V248, P157
SHANNON RD, 1985, J PHYS CHEM-US, V89, P4778
SOKOL AA, 2000, ADV MATER, V12, P1801
SOKOL AA, 2002, J PHYS CHEM B, V106, P6163
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1992, CAN J CHEM, V70, P612
TUNG SE, 1968, J CATAL, V10, P166
UMANSKY BS, 1990, J CATAL, V124, P97
UMANSKY BS, 1990, J CATAL, V127, P128
WANG QL, 1991, J CATAL, V130, P459
WANG QL, 1991, J CATAL, V130, P471
WARD JW, 1976, ADV CHEM SER, V171, P118
XU T, 1994, J AM CHEM SOC, V116, P1962
ZHIDOMIROV GM, 1999, CATAL TODAY, V51, P397
NR 44
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD MAY 8
PY 2003
VL 107
IS 18
BP 4342
EP 4347
PG 6
SC Chemistry, Physical
GA 676BX
UT ISI:000182733000018
ER
PT J
AU Fischer, H
Dias, SMG
Santos, MAM
Alves, AC
Zanchin, N
Craievich, AF
Apriletti, JW
Baxter, JD
Webb, P
Neves, FAR
Ribeiro, RCJ
Polikarpov, I
TI Low resolution structures of the retinoid X receptor DNA-binding and
ligand-binding domains revealed by synchrotron x-ray solution scattering
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID DIRECT SHAPE DETERMINATION; THYROID-HORMONE RECEPTORS; SMALL-ANGLE
SCATTERING; NUCLEAR RECEPTORS; BIOLOGICAL MACROMOLECULES; TETRAMER
FORMATION; CRYSTAL-STRUCTURE; RXR-ALPHA; ACID; HETERODIMERS
AB Nuclear receptors are ligand-inducible transcription factors that share
structurally related DNA-binding (DBD) and ligand-binding (LBD)
domains. Biochemical and structural studies have revealed the modular
nature of DBD and LBD. Nevertheless, the domains function in concert in
vivo. While high-resolution crystal structures of nuclear receptor DBDs
and LBDs are available, there are no x-ray structural studies of
nuclear receptor proteins containing multiple domains. We report the
solution structures of the human retinoid X receptor DBD-LBD
(hRXRalphaDeltaAB) region. We obtained ab initio shapes of
hRXRalphaDeltaAB dimer and tetramer to 3.3 and 1.7 nm resolutions,
respectively, and established the position and orientation of the DBD
and LBD by fitting atomic coordinates of hRXRalpha DBD and LBD. The
dimer is U-shaped with DBDs spaced at similar to2 nm in a head to head
orientation forming an angle of about 10degrees with respect to each
other and with an extensive interface area provided by the LBD. The
tetramer is a more elongated X-shaped molecule formed by two dimers in
head to head arrangement in which the DBDs are extended from the
structure and spaced at about 6 nm. The close proximity of DBDs in
dimers may facilitate homodimer formation on DNA, however, for the
homodimer to bind to a DNA element containing two directly repeated
half-sites, one of the DBDs would need to rotate with respect to the
other element. By contrast, the separation of DBDs in the tetramers may
account for their decreased ability to recognize DNA.
C1 Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
Lab Nacl Luz Sincrotron, BR-13084971 Campinas, SP, Brazil.
Univ Calif San Francisco, Ctr Diabet, Metab Res Unit, San Francisco, CA 94143 USA.
Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA.
Univ Brasilia, Dept Ciencias Farmaceut, BR-70900910 Brasilia, DF, Brazil.
RP Polikarpov, I, Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao
Carlos, Av Trabalhador Sao Carlense 400, BR-13560970 Sao Carlos, SP,
Brazil.
CR BOURGUET W, 1995, NATURE, V375, P377
CHAWLA A, 2001, SCIENCE, V294, P1866
CHEN HW, 1995, P NATL ACAD SCI USA, V92, P422
CHEN ZP, 1998, J MOL BIOL, V275, P55
DELATORRE JG, 2000, BIOPHYS J, V78, P719
DEURQUIZA AM, 2000, SCIENCE, V290, P2140
EGEA PF, 2000, EMBO J, V19, P2592
EGEA PF, 2001, J MOL BIOL, V307, P557
EVANS RM, 1988, SCIENCE, V240, P889
FEIGIN LA, 1987, STRUCTURE ANAL SMALL, P83
GAMPE RT, 2000, GENE DEV, V14, P2229
GUINIER A, 1955, SMALL ANGLE SCATTERI
HORWITZ KB, 1996, MOL ENDOCRINOL, V10, P1167
KASTNER P, 1995, CELL, V83, P859
KELLERMANN G, 1997, J APPL CRYSTALLOGR 5, V30, P880
KERSTEN S, 1995, BIOCHEMISTRY-US, V34, P13717
KERSTEN S, 1995, BIOCHEMISTRY-US, V34, P14263
KONAREV PV, 2001, J APPL CRYSTALLOGR 4, V34, P527
KOZIN MB, 2001, J APPL CRYSTALLOGR 1, V34, P33
LAZAR MA, 1993, ENDOCR REV, V14, P184
LIN BC, 1997, J BIOL CHEM, V272, P9860
MAGLI E, 2000, RRD PATTERN RECOGN I, V1, P1
MANGELSDORF DJ, 1991, CELL, V66, P555
MANGELSDORF DJ, 1995, CELL, V83, P841
MARIMUTHU A, 2002, MOL ENDOCRINOL, V16, P271
MORAS D, 1998, CURR OPIN CELL BIOL, V10, P384
MUKHERJEE R, 1997, NATURE, V386, P407
MUKHERJEE R, 1998, ARTERIOSCL THROM VAS, V18, P272
POROD G, 1982, SMALL ANGLE XRAY SCA, P17
RASTINEJAD F, 1995, NATURE, V375, P203
RASTINEJAD F, 2000, EMBO J, V19, P1045
RIBEIRO RC, 1992, MOL ENDOCRINOL, V6, P1142
RIBEIRO RCJ, 1994, ENDOCRINOLOGY, V135, P2076
RIBEIRO RCJ, 1998, RECENT PROG HORM RES, V53, P351
RIBEIRO RCJ, 2001, J BIOL CHEM, V276, P14987
SHANNON CE, 1949, MATH THEORY COMMUNIC
SPORN MB, 1994, RETINOIDS BIOL CHEM
STURMANN HB, 1970, J PHYS CHEM-US, V72, P177
SVERGUN D, 1995, J APPL CRYSTALLOGR 6, V28, P768
SVERGUN DI, 1991, ACTA CRYSTALLOGR A, V47, P736
SVERGUN DI, 1992, J APPL CRYSTALLOGR, V25, P495
SVERGUN DI, 1996, ACTA CRYSTALLOGR A 3, V52, P419
SVERGUN DI, 1997, J APPL CRYSTALLOGR 5, V30, P798
SVERGUN DI, 1999, BIOPHYS J, V76, P2879
TSAI MJ, 1994, ANNU REV BIOCHEM, V63, P451
WURTZ JM, 1996, NAT STRUCT BIOL, V3, P87
YEN PM, 1992, J BIOL CHEM, V267, P3565
ZHAO Q, 1998, MOL CELL, V1, P849
ZHAO Q, 2000, J MOL BIOL, V296, P509
NR 49
TC 3
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
J9 J BIOL CHEM
JI J. Biol. Chem.
PD MAY 2
PY 2003
VL 278
IS 18
BP 16030
EP 16038
PG 9
SC Biochemistry & Molecular Biology
GA 675EL
UT ISI:000182680000074
ER
PT J
AU Autschbach, J
Jorge, FE
Zlegler, T
TI Density functional calculations on electronic circular dichroism
spectra of chiral transition metal complexes
SO INORGANIC CHEMISTRY
LA English
DT Article
ID EXCHANGE-CORRELATION POTENTIALS; D-3 LANTHANIDE(III) COMPLEXES; F-F
TRANSITIONS; EXCITATION-ENERGIES; RESPONSE THEORY; OPTICAL-ACTIVITY;
CHIROPTICAL PROPERTIES; MAGNETIC-PROPERTIES; ORGANIC-MOLECULES; MODEL
AB Time-dependent density functional theory (TD-DFT) has for the first
time been applied to the computation of circular dichroism (CD) spectra
of transition metal complexes, and a detailed comparison with
experimental spectra has been made. Absorption spectra are also
reported. Various Co-III complexes as well as [Rh(en)(3)](3+) are
studied in this work. The resulting simulated CD spectra are generally
in good agreement with experimental spectra after corrections for
systematic errors in a few of the lowest excitation energies are
applied. This allows for an interpretation and assignment of the
spectra for the whole experimentally accessible energy range (UV/vis).
Solvent effects on the excitations are estimated via inclusion of a
continuum solvent model. This significantly improves the computed
excitation energies for charge-transfer bands for complexes of charge
+3, but has only a small effect on those for neutral or singly charged
complexes. The energies of the weak d-to-d transitions of the Co
complexes are systematically overestimated due to deficiencies of the
density functionals. These errors are much smaller for the 4d metal
complex. Taking these systematic errors and the effect of a solvent
into consideration, TD-DFT computations are demonstrated to be a
reliable tool in order to assist with the assignment and interpretation
of CD spectra of chiral transition metal complexes.
C1 Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada.
Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES, Brazil.
RP Autschbach, J, Univ Erlangen Nurnberg, Lehrstuhl Theoret Chem,
Egerlandstr 3, D-91058 Erlangen, Germany.
CR AUTSCHBACH J, IN PRESS
AUTSCHBACH J, UNPUB
AUTSCHBACH J, 2002, J CHEM PHYS, V116, P6930
AUTSCHBACH J, 2002, J CHEM PHYS, V116, P891
AUTSCHBACH J, 2002, J CHEM PHYS, V117, P581
BAIK MH, 2000, J AM CHEM SOC, V122, P9143
BALLHAUSEN CJ, 1979, MOL ELECT STRUCTURES
BAUERNSCHMITT R, 1996, CHEM PHYS LETT, V256, P454
BEATTIE JK, 1971, ACCOUNTS CHEM RES, V4, P253
BECKE AD, 1988, PHYS REV A, V38, P3098
BEDDOE PG, 1968, INORG NUCL CHEM LETT, V4, P433
BROWN A, 1971, J CHEM SOC A, P751
CALDWELL DJ, 1971, THEORY OPTICAL ACTIV
CASIDA ME, 1995, RECENT ADV DENSITY F, V1
CASIDA ME, 1998, INT J QUANTUM CHEM, V70, P933
CASIDA ME, 2000, J CHEM PHYS, V113, P7062
CHARNEY E, 1979, MOL BASIS OPTICAL AC
CONDON EU, 1937, REV MOD PHYS, V9, P432
COREY EJ, 1959, J AM CHEM SOC, V81, P2620
CRAMER CJ, 1999, CHEM REV, V99, P2161
CRAMER CJ, 2002, ESSENTIALS COMPUTATI
DIAZACOSTA I, 2001, J PHYS CHEM A, V105, P238
DOBSON JF, 1998, RECENT PROGR NEW DIR
DOUGLAS BE, 1980, ACS S SERIES, V119
EVANS RS, 1974, INORG CHEM, V13, P2185
FRANTZ J, 2002, G3DATA
FREEDMAN TB, 2002, J PHYS CHEM A, V106, P3560
FURCHE F, 2000, J AM CHEM SOC, V122, P1717
FURCHE F, 2001, J CHEM PHYS, V114, P5982
GORELSKY SI, 2001, J ORGANOMET CHEM, V635, P187
GROSS EKU, 1990, ADV QUANTUM CHEM, V21, P255
GROSS EKU, 1996, TOP CURR CHEM, V181, P81
GRUNING M, 2001, J CHEM PHYS, V114, P652
GUERRA CF, 1995, METHODS TECHNIQUES C
HANSEN AE, 1980, ADV CHEM PHYS, V44, P545
HE YN, 2001, J AM CHEM SOC, V123, P11320
HEARSON JA, 1977, INORG CHIM ACTA, P95
JAMORSKI C, 1996, J CHEM PHYS, V104, P5134
JUDKINS RR, 1974, INORG CHEM, V13, P945
KLAMT A, 1993, J CHEM SOC P2, P799
KLAMT A, 1996, J PHYS CHEM-US, V100, P3349
KOOTSTRA F, 2000, J CHEM PHYS, V112, P6517
KRAL M, 1973, THEOR CHIM ACTA, V30, P339
KRAL M, 1979, THEOR CHIM ACTA, V50, P355
KURODA R, 1994, CIRCULAR DICHROISM P
LARSSON R, 1968, J CHEM SOC A, P1310
MALKIN VG, 1995, MODERN DENSITY FUNCT, V2
MASON SF, 1969, J CHEM SOC A, P1442
MASON SF, 1976, MOL PHYS, V31, P755
MASON SF, 1977, J CHEM SOC DA, P937
MCCAFFERY AJ, 1965, J CHEM SOC CHEM COMM, V3, P49
MCCAFFERY AJ, 1965, J CHEM SOC, P2883
MCCAFFERY AJ, 1965, J CHEM SOC, P5094
MCCAFFERY AJ, 1968, J CHEM SOC A, P1304
MCCAFFERY AJ, 1969, J CHEM SOC A, P1428
MENNUCCI B, 2002, J PHYS CHEM A, V106, P6102
MOSCOWITZ A, 1962, ADV CHEM PHYS, V4, P67
NAKANISHI K, 1994, CIRCULAR DICHROISM P
ODDERSHEDE J, 1978, ADV QUANTUM CHEM, V11, P275
ODDERSHEDE J, 1987, AB INITION METHODS Q, V2
PARR RG, 1989, DENSITY FUNCTIONAL T
PATCHKOVSKII S, 2000, J AM CHEM SOC, V122, P3506
PATCHKOVSKII S, 2001, J CHEM PHYS, V115, P26
PERDEW JP, 1986, PHYS REV B, V33, P8822
PYE CC, 1999, THEOR CHEM ACC, V101, P396
RICCIARDI G, 2000, J PHYS CHEM A, V104, P635
RICCIARDI G, 2001, J PHYS CHEM A, V105, P5242
RICHARDSON FS, 1982, J CHEM PHYS, V76, P1595
ROSA A, 1999, J AM CHEM SOC, V121, P10356
ROSA A, 2001, J PHYS CHEM A, V105, P3311
SAXE JD, 1982, J CHEM PHYS, V76, P1607
SCHIPPER PE, 1978, J AM CHEM SOC, V100, P1433
SCHIPPER PRT, 2000, J CHEM PHYS, V112, P1344
SCHLAFER HL, 1969, BASIC PRINCIPLES LIG
SOLOMON EI, 1999, INORGANIC ELECT STRU, V1
STRICKLAND RW, 1973, INORG CHEM, V12, P1025
TEVELDE G, 2001, J COMPUT CHEM, V22, P931
TOMASI J, 1994, CHEM REV, V94, P2027
TOZER DJ, 1998, J CHEM PHYS, V109, P10180
VANGISBERGEN SJA, 1995, J CHEM PHYS, V103, P9347
VANGISBERGEN SJA, 1998, PHYS REV A, V57, P2556
VANGISBERGEN SJA, 1999, COMPUT PHYS COMMUN, V118, P119
VANGISBERGEN SJA, 1999, J PHYS CHEM A, V103, P6835
VANGISBERGEN SJA, 2000, J COMPUT CHEM, V21, P1511
VOLOSOV A, 1994, CIRCULAR DICHROISM P
VOSKO SH, 1980, CAN J PHYS, V58, P1200
ZIEGLER T, 2002, J CHEM SOC DALT 0307, P642
NR 87
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD MAY 5
PY 2003
VL 42
IS 9
BP 2867
EP 2877
PG 11
SC Chemistry, Inorganic & Nuclear
GA 674RU
UT ISI:000182650400012
ER
PT J
AU Lima, NA
Silva, MF
Oliveira, LN
Capelle, K
TI Density functionals not based on the electron gas: Local-density
approximation for a luttinger liquid
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SOLVABLE SEMICONDUCTOR MODEL; DIMENSIONAL HUBBARD-MODEL; FORMALISM
AB By shifting the reference system for the local-density approximation
(LDA) from the electron gas to other model systems, one obtains a new
class of density functionals, which by design account for the
correlations present in the chosen reference system. This strategy is
illustrated by constructing an explicit LDA for the one-dimensional
Hubbard model. While the traditional ab initio LDA is based on a Fermi
liquid (the three-dimensional interacting electron gas), this one is
based on a Luttinger liquid. First applications to inhomogeneous
Hubbard models, including one containing a localized impurity, are
reported.
C1 Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, Sao Paulo, Brazil.
Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, Sao Paulo, Brazil.
RP Lima, NA, Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao Carlos,
Caixa Postal 369, BR-13560970 Sao Carlos, Sao Paulo, Brazil.
CR ARYASETIAWAN F, 1998, REP PROG PHYS, V61, P237
BEDURFTIG G, 1998, PHYS REV B, V58, P10225
BETHE H, 1931, Z PHYS, V71, P205
CAPELLE K, CONDMAT0209245
GUNNARSSON O, 1986, PHYS REV LETT, V56, P1968
HOHENBERG P, 1964, PHYS REV, V136, B864
KOHN W, 1965, PHYS REV, V140, A1133
KOHN W, 1999, REV MOD PHYS, V71, P1253
LIEB EH, 1968, PHYS REV LETT, V20, P1445
LIMA NA, 2002, EUROPHYS LETT, V60, P601
MAJEWSKI JA, 1992, PHYS REV B, V46, P12219
OGATA M, 1990, PHYS REV B, V41, P2326
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
ROJO AG, 1989, PHYS REV B, V39, P2685
RUNGE E, 1996, ANN PHYS-LEIPZIG, V5, P333
SCHLOTTMANN P, 1997, INT J MOD PHYS B, V11, P355
SCHONHAMMER K, 1995, PHYS REV B, V52, P2504
SCHULZ HJ, 1990, PHYS REV LETT, V64, P2831
SEB P, 1996, PHYS REV B, V53, P328
SHAM LJ, 1988, PHYS REV LETT, V60, P1582
SVANE A, 1988, PHYS REV B, V37, P9919
SZABO A, 1989, MODERN QUANTUM CHEM
VOIT J, 1995, REP PROG PHYS, V58, P977
VONDERLINDEN W, 1992, PHYS REP, V220, P53
WHITE SR, 1992, PHYS REV LETT, V69, P2863
XIE YN, 1998, PHYS REV B, V58, P12721
ZVYAGIN AA, 1997, PHYS REV B, V56, P300
NR 27
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD APR 11
PY 2003
VL 90
IS 14
AR 146402
DI ARTN 146402
PG 4
SC Physics, Multidisciplinary
GA 668XH
UT ISI:000182320100037
ER
PT J
AU Jellinek, J
Acioli, PH
TI Converting Kohn-Sham eigenenergies into electron binding energies
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; SELF-INTERACTION CORRECTION; TO-METAL
TRANSITION; PHOTOELECTRON-SPECTROSCOPY; MAGNESIUM CLUSTERS; REMOVAL
ENERGIES; APPROXIMATION; EIGENVALUE; BEHAVIOR; NEON
AB A new accurate scheme for converting the Kohn-Sham eigenenergies into
electron binding energies is formulated. The accuracy of the scheme is
illustrated in applications to ten atoms and three molecules. (C) 2003
American Institute of Physics.
C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA.
Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil.
RP Jellinek, J, Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL
60439 USA.
CR ACIOLI PH, IN PRESS EUR PHYS D
ACIOLI PH, 2002, PHYS REV LETT, V89
AKOLA J, 2000, EUR PHYS J D, V8, P93
AKOLA J, 2000, PHYS REV B, V62, P13216
BECKE AD, 1988, PHYS REV A, V38, P3098
DUFFY P, 1993, ORG MASS SPECTROM, V28, P321
GODBOUT N, 1992, CAN J CHEM, V70, P560
HAMEL S, 2002, J CHEM PHYS, V116, P8276
HAMEL S, 2002, J ELECTRON SPECTROSC, V123, P345
HARRIS M, 1999, CHEM PHYS LETT, V303, P420
HOHENBERG P, 1964, PHYS REV, V136, B864
JANAK JF, 1978, PHYS REV B, V18, P7165
JELLINEK J, 2002, J PHYS CHEM A, V106, P10919
JELLINEK J, 2003, J PHYS CHEM A, V107, P1670
KIMURA K, 1981, HDB HEI PHOTOELECTRO
KLEINMAN L, 1997, PHYS REV B, V56, P12042
KLEINMAN L, 1997, PHYS REV B, V56, P16029
KOHN W, 1965, PHYS REV, V140, A1133
LEVY M, 1984, PHYS REV A, V30, P2745
LIDE DR, 2001, CRC HDB CHEM PHYSICS
NESBET RK, 1997, PHYS REV A, V56, P2665
NORMAN MR, 1983, PHYS REV B, V28, P2135
PERDEW JP, 1981, PHYS REV B, V23, P5048
PERDEW JP, 1982, PHYS REV LETT, V49, P1691
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1997, PHYS REV B, V56, P16021
SEVIER KD, 1979, ATOM DATA NUCL DATA, V24, P323
SHIRLEY DA, 1977, PHYS REV B, V15, P544
THOMAS OC, 2002, PHYS REV LETT, V89
TRICKEY SB, 1986, PHYS REV LETT, V56, P881
VANLONKHUYZEN H, 1984, CHEM PHYS, V89, P313
VOSKO SH, 1980, CAN J PHYS, V58, P1200
WANG LS, 1998, Z PHYS CHEM 1-2, V203, P45
NR 33
TC 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAY 1
PY 2003
VL 118
IS 17
BP 7783
EP 7796
PG 14
SC Physics, Atomic, Molecular & Chemical
GA 668DY
UT ISI:000182276100008
ER
PT J
AU Treu, O
Kondo, RT
Pinheiro, JC
TI Contracted GTF basis sets applied to the theoretical interpretation of
the Raman spectrum of hexaaquachromium(III) ion
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE contracted basis sets; GTF basis sets; generator coordinate
Hartree-Fock method; vibrational properties of molecular species;
theoretical interpretation of the Raman spectrum
ID COORDINATE HARTREE-FOCK; GAUSSIAN-BASIS; AB-INITIO; ATOMS; CHOICE
AB Contracted GTF basis sets designed with aid of the Generator Coordinate
Hartree-Fock (GCHF) method for H(S-2), O2-(IS), and Cr3+(F-4) atomic
species are applied to perform theoretical interpretation of the Raman
spectrum of hexaaquachromium(III) ion. The 16s, 16s10p, and 24s17p13d
GTF basis sets were contracted to [4s] for H atom, [6s4p], and [9s6p3d]
for O2- and Cr3+, respectively, by Dunning's scheme. For Cr3+, the
[9s6p3d] basis set was enriched with f polarization function and used
in combination com [4s] and [6s4p] in the study of our interest. The
results obtained in this report show that the contracted GTF basis sets
used are a useful alternative for the theoretical interpretation of
Raman spectrum of hexaaquachromium(III) ion and that GCHF method is an
effective alternative to selection of GTF basis sets for theoretical
study of vibrational properties of poliatomic species. (C) 2003
Elsevier Science B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab Quim Teor & Computac, BR-66075110 Belem, Para, Brazil.
UNESP, Inst Quim, Araraquara, SP, Brazil.
Univ Sao Paulo, Ctr Informat Sao Carlos, Secao Suporte, BR-13560970 Sao Carlos, SP, Brazil.
Cooperat Ctr Educ Cient & Empreendedore Amazonia, BR-66013060 Belem, Para, Brazil.
RP Pinheiro, JC, Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab
Quim Teor & Computac, CP 10101, BR-66075110 Belem, Para, Brazil.
CR CHAKRAVORTY SJ, 1989, MODERN TECHNIQUES CO
DACOSTA HFM, 1987, MOL PHYS, V62, P91
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GOORDSON DZ, 1982, J PHYS CHEM-US, V86, P659
JACOBS H, 1987, Z ANORG ALLG CHEM, V546, P33
JARDIM IN, 1999, J MOL STRUC-THEOCHEM, V464, P15
MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MOHELLEM JR, 1987, J CHEM PHYS, V86, P5043
MOROSIN B, 1966, ACTA CRYSTALLOGR, V21, P280
PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SAVEDRA RML, UNPUB
SAVEDRA RML, 2002, J MOL STRUC-THEOCHEM, V587, P9
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
SOPOTRAJANOV B, 1999, J MOL STRUCT, V482, P109
STEFOV V, 1993, J MOL STRUCT, V293, P97
NR 18
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 25
PY 2003
VL 624
BP 153
EP 157
PG 5
SC Chemistry, Physical
GA 666HC
UT ISI:000182170700019
ER
PT J
AU Zamora, MA
Masman, MF
Bombasaro, JA
Freile, ML
Cechinel, V
Lopez, SN
Zacchino, SA
Enriz, RD
TI Conformational and electronic study of
N-phenylalkyl-3,4-dichloromaleimides: Ab initio and DFT study
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE maleimides; ab initio and DFT calculations; conformational study;
antifungal activity
ID FUNGAL CELL-WALL; GEOMETRICAL ALGORITHM; SPACE GASCOS; SEARCH;
ELECTROSTATICS; RECOGNITION; MECHANISM; MOLECULES
AB A conformational and electronic study on
N-phenylalkyl-3,4-dichloromaleimides, a new series of antifungal
compounds, was carried out. In this study ab initio [RHF/3-21G and
RHF/6-31G(d)] and density functional theory (B3LYP/6-31G(d))
calculations were performed. The effect of solvent (water) was taken
into account by performing calculations with the isodensity polarizable
continuum model method. The electronic study of the compounds was
carried out using molecular electrostatic potentials. The presence of
two symmetrical aromatic systems reduces notably the conformational
possibilities of these maleimides. The results permit the recognition
of the minimal structural requirements for the production of the
antifungal response; a 3,4-dichloroimido ring and a benzene ring appear
to be indispensable. Also, theoretical calculations suggest that the
optimum interatomic distance between these moieties is about 3.5-5.0
Angstrom. (C) 2003 Wiley Periodicals, Inc.
C1 Univ Nacl San Luis, Fac Quim Bioquim & Farm, Dept Quim, RA-5700 San Luis, Argentina.
UNPSJB, Fac Ciencias Nat, Dept Quim, RA-9000 Comodoro Rivadavia, Chubut, Argentina.
Univ Vale Itajai, CCS, NIQFAR, Itajai, SC, Brazil.
Univ Nacl Rosario, Fac Ciencias Bioquim & Farmaceut, RA-2000 Rosario, Santa Fe, Argentina.
RP Enriz, RD, Univ Nacl San Luis, Fac Quim Bioquim & Farm, Dept Quim,
Chacabuco 917, RA-5700 San Luis, Argentina.
CR *WAV INC, 1996, PC SPARTAN PRO
ALLINGER NL, 1977, J AM CHEM SOC, V99, P8127
BANDYOPADHYAY P, 2000, J CHEM PHYS, V113, P1104
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5618
CARRUPT PA, 1991, METHOD ENZYMOL, V203, P638
CSIZMADIA IG, 1974, CHEM THIOL GROUP, CH1
FARKAS O, 1996, THEOCHEM-J MOL STRUC, V367, P25
FEIGEL M, 1966, J MOL STRUCT THEOCHE, V366, P83
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
FROMTLING RA, 1999, DRUG NEW PERSPECT, V12, P557
GREELING P, 1996, THEORETICAL COMPUTAT, V3, P587
JAUREGUI EA, 1997, TEMAS ACTUALES QUIMI, V29, P327
JHON JS, 1999, J PHYS CHEM A, V103, P5436
LEE C, 1988, PHYS REV B, V37, P785
LOPEZ SN, UNPUB BIOORG MED CHE
LOPEZ SN, 2001, BIOORGAN MED CHEM, V9, P1999
MEADOWS DH, 1969, J MOL BIOL, V45, P491
MIERTUS S, 1981, CHEM PHYS, V55, P117
NARAYSZABO G, 1995, CHEM REV, V95, P829
NORTH ACT, 1989, J MOL GRAPHICS, V7, P67
PETERSON MR, 1978, J AM CHEM SOC, V100, P6911
PETERSON MR, 1982, RECENT ADV, V3, P190
POLILZER P, 1991, CHEM APPL ATOMIC MOL
POLITZER P, 1991, REV COMPUTATIONAL CH, V2, CH7
RADKIEWICZ JL, 1996, J AM CHEM SOC, V118, P9148
RODRIQUEZ CF, 1996, THEOCHEM-J MOL STRUC, V363, P131
ROGERS P, 1973, FEBS LETT, V36, P330
SANTAGATA LN, 1999, J MOL STRUC-THEOCHEM, V465, P33
SANTAGATA LN, 2000, J MOL STRUC-THEOCHEM, V507, P89
SANTAGATA LN, 2001, J MOL STRUC-THEOCHEM, V536, P173
SANTAGATA LN, 2001, J MOL STRUC-THEOCHEM, V571, P91
SARAI A, 1989, J THEOR BIOL, V140, P137
SCROCCO E, 1973, TOP CURR CHEM, V42, P95
SHUKLA MK, 2000, J COMPUT CHEM, V21, P826
URBINA JM, 2000, BIOORGAN MED CHEM, V8, P691
VILLAGRA SE, 2001, J MOL STRUC-THEOCHEM, V549, P217
WALSH TJ, 1992, EMERGING TARGETS ANT, P349
WHITE TC, 1998, CLIN MICROBIOL REV, V11, P382
ZACCHINO SA, IN PRESS NEED NEW AT
ZACCHINO SA, 1999, J NAT PROD, V62, P1353
NR 42
TC 5
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD MAY 15
PY 2003
VL 93
IS 1
BP 32
EP 46
PG 15
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 667HY
UT ISI:000182226700004
ER
PT J
AU Oliveira, LN
Amaral, OAV
Castro, MA
Fonseca, TL
TI Static polarizabilities of doubly charged polyacetylene oligomers:
basis set and electron correlation effects
SO CHEMICAL PHYSICS
LA English
DT Article
DE polarizabilities; polyacetylene oligomers; charged bipolarons
ID VARIATIONAL PERTURBATIONAL TREATMENT; DYNAMIC DIPOLE POLARIZABILITIES;
NONLINEAR-OPTICAL PROPERTIES; BOND-LENGTH ALTERNATION; STABLE ATOMIC
ANIONS; PUSH-PULL POLYENES; CONJUGATED CHAINS; FIRST
HYPERPOLARIZABILITY; LINEAR-POLARIZABILITIES; POLARONS
AB Ab initio calculations, carried out with different basis sets, for the
static longitudinal linear polarizability, alpha(L), and second order
hyperpolarizability, gamma(L), Of Small doubly charged polyacetylene
(PA) chains, are presented. The polarizabilities were calculated using
the Hartree-Fock (HF) method while the electron correlation effects
were included through the second-order Moller-Plesset perturbation
theory (MP2). Positively and negatively charged bipolarons were
studied. The results obtained for positive and negative chains show
that the ionization state effect decreases more rapidly, as the chain
length is increased, for alpha(L) than for gamma(L). For both types of
charged chains, the incorporation of the electron correlation increases
the alpha(L) and gamma(L) values, as compared to the HF values. A
comparison between the results obtained using the standard 6-31G basis
set and augmented versions of this set, obtained by the addition of
diffuse and polarization functions, shows that 6-31G basis set does not
provide a good description of the negative chains studied here and that
the addition of extra diffuse functions on the basis set is needed in
order to obtain reliable estimates for polarizabilities, specially for
gamma(L). (C) 2003 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
RP Fonseca, TL, Univ Fed Goias, Inst Fis, Campus 2,Caixa Postal 131,
BR-74001970 Goiania, Go, Brazil.
CR AHLHEIM M, 1996, SCIENCE, V271, P335
AN Z, 2001, J CHEM PHYS, V114, P1010
ANDRADE OP, 2002, MOL PHYS, V100, P1975
BEZERRA AG, 1999, J CHEM PHYS, V111, P1
BISHOP DM, 1991, J CHEM PHYS, V95, P2646
BISHOP DM, 1992, J CHEM PHYS, V97, P5255
BOSSHARD CH, 1995, ORGANIC NONLINEAR OP
BOUDREAUX DS, 1983, PHYS REV B, V28, P6927
BREDAS JL, 1982, PHYS REV B, V26, P5843
CANUTO S, 1994, PHYS REV A, V49, P3515
CASTRO MA, 1996, PHYS REV A, V53, P3664
CHAMPAGNE B, 1997, J CHEM PHYS, V107, P5433
CHAMPAGNE B, 2002, J CHEM PHYS, V116, P3935
COSTA MF, 1999, PHYS LETT A, V263, P186
DEMELO CP, 1987, CHEM PHYS LETT, V140, P537
DEMELO CP, 1988, J CHEM PHYS, V88, P2558
DEMELO CP, 1988, J CHEM PHYS, V88, P2567
DEMELO CP, 1996, CHEM PHYS LETT, V28, P261
FONSECA TL, 2001, SYNTHETIC MET, V123, P11
FRISCH MJ, 1995, GAUSSIAN 94 REV
HURST GJB, 1988, J CHEM PHYS, V89, P385
JACQUEMIN D, 1997, INT J QUANTUM CHEM, V65, P679
JACQUEMIN D, 1998, CHEM PHYS LETT, V284, P24
JACQUEMIN D, 1998, THEOCHEM-J MOL STRUC, V425, P69
KANIS DR, 1994, CHEM REV, V94, P195
KIRTMAN B, 1990, CHEM PHYS LETT, V175, P601
LUIS JM, 1997, J CHEM PHYS, V107, P1501
LUIS JM, 1999, J CHEM PHYS, V111, P875
MADER SR, 1994, SCIENCE, V265, P632
MARDER SR, 1994, SCIENCE, V263, P511
MAROULIS G, 1999, J PHYS CHEM A, V103, P4359
MEYERS F, 1994, J AM CHEM SOC, V116, P10703
PRASAD P, 1991, INTRO NONLINEAR OPTI
SCHMALZLIN E, 1997, CHEM PHYS LETT, V280, P551
STAHELIN M, 1993, J CHEM PHYS, V98, P5595
STAHELIN M, 1996, J OPT SOC AM B, V13, P2401
SUHAI S, 1983, CHEM PHYS LETT, V96, P619
TOTO JL, 1995, CHEM PHYS LETT, V245, P660
TOTO TT, 1995, CHEM PHYS LETT, V244, P59
VERBIEST T, 1997, J MATER CHEM, V7, P2175
VILLAR HO, 1988, PHYS REV B, V37, P2520
NR 41
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD APR 15
PY 2003
VL 289
IS 2-3
BP 221
EP 230
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 665DH
UT ISI:000182104000004
ER
PT J
AU Gonzales-Ormeno, PG
Petrilli, HM
Schon, CG
TI Ab-initio calculations of the formation energies of BCC-based
superlattices in the Fe-Al system
SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
LA English
DT Article
ID ROOM-TEMPERATURE DUCTILITY; FE3AL-BASED ALLOYS; IRON ALUMINIDES;
PHASE-DIAGRAMS; GROUND-STATE; ORDER; TENSILE; NICKEL; FE3AL; FCC
AB First-principles calculations of the total energies of A2 iron and
Aluminum, B2 (FeAl), B32 (FeAl) and D0(3) (Fe3Al and FeAl3) compounds
were performed in the frame of density functional theory (DFT) using
the Full Potential - Linear Augmented Plane Wave method (FP-LAPW).
These results have been used to obtain formation energies of the
respective ground states. The calculated formation energies of the
D0(3) (Fe3Al) and B2 (FeAl) compounds show excellent agreement with
available calorimetric data on standard enthalpies of formation of
Fe-Al alloys up to 50 at.% aluminum. As the Fe-Al system has a
controversial magnetic behavior when described by ab-initio methods in
the DFT, this agreement is remarkable. (C) 2003 Elsevier Science Ltd.
All rights reserved.
C1 Univ Sao Paulo, Escola Politecn, Dept Met & Mat Engn, Computat Mat Sci Lab, BR-05508900 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, BR-05508900 Sao Paulo, Brazil.
RP Schon, CG, Univ Sao Paulo, Escola Politecn, Dept Met & Mat Engn,
Computat Mat Sci Lab, Av Prof Mello Moraes 2463, BR-05508900 Sao Paulo,
Brazil.
EM schoen@usp.br
CR ALEXANDER DJ, 1998, MAT SCI ENG A-STRUCT, V258, P276
BAGNO P, 1989, PHYS REV B, V40, P1997
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
BOGNER J, 1998, PHYS REV B, V58, P14922
CHEN Q, 2001, J PHASE EQUILIB, V22, P631
DEEVI SC, 1996, INTERMETALLICS, V4, P357
DEEVI SC, 1997, PROG MATER SCI, V42, P177
DEFONTAINE D, 1995, CALPHAD, V19, P499
ELDRIDGE J, 1964, T TMS AIME, V230, P226
FERRO R, 2000, THERMOCHIM ACTA, V347, P103
HACK K, 1996, SGTE CASEBOOK THERMO
HUANG YD, 1999, MAT SCI ENG A-STRUCT, V263, P75
HUANG YD, 2001, INTERMETALLICS, V9, P119
HUANG YD, 2001, INTERMETALLICS, V9, P331
INDEN G, 1981, PHYSICA B, V103, P82
INDEN G, 1990, Z METALLKD, V81, P770
INDEN G, 1991, PHASE TRANSFORMATION, P499
KOHN W, 1965, PHYS REV, V140, A1133
KUBASCHEWSKI O, 1982, IRON BINARY PHASE DI
LECHERMANN F, 2002, PHYS REV B, V65
LIU CT, 1998, MAT SCI ENG A-STRUCT, V258, P84
MOHN P, 2001, PHYS REV LETT, V87
MORRIS DG, 1997, SCRIPTA MATER, V37, P71
NOGUEIRA RN, 2002, J PHYS-CONDENS MAT, V14, P1067
OELSEN W, 1937, MITT KAISER WILHELM, V19, P1
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PICKART SJ, 1961, PHYS REV, V123, P1163
RADCLIFFE SV, 1961, ACTA METALL, V9, P169
RZYMAN K, 2000, CALPHAD, V24, P309
SCHON CG, 1997, J CHIM PHYS PCB, V94, P1143
SCHON CG, 1998, ACTA MATER, V46, P4219
SCHON CG, 1998, THESIS U DORTMUND GE
SCHON CG, 1999, CALPHAD, V23, P3
VILLARS P, 1985, PEARSONS HDB CRYSTAL
NR 34
TC 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0364-5916
J9 CALPHAD-COMPUT COUP PHASE DIA
JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
PD DEC
PY 2002
VL 26
IS 4
BP 573
EP 582
PG 10
SC Chemistry, Physical; Thermodynamics
GA 657TK
UT ISI:000181682300007
ER
PT J
AU Bechstedt, F
Furthmuller, J
Ferhat, M
Teles, LK
Scolfaro, LMR
Leite, JR
Davydov, VY
Ambacher, O
Goldhahn, R
TI Energy gap and optical properties of In(x)Gal(1-x)N
SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; BAND-GAP; INXGA1-XN ALLOYS;
STRUCTURAL-PROPERTIES; EPITAXIAL LAYERS; INDIUM NITRIDE; INN;
SEMICONDUCTORS; 1ST-PRINCIPLES; CRYSTALS
AB We present ab initio calculations of the electronic structure and the
optical properties of InxGa1-xN. They are completed by studies of the
strain influence on the alloys. The results are critically discussed in
the light of recent experiments. We find an energy gap of InN < 1 eV
and a nonparabolic absorption edge. The strong variation of the alloy
gap with the In molar fraction is described by a composition-dependent
bowing parameter. The tendency of spinodal decomposition is suppressed
by biaxial strain. Its extent depends on the realization of strain
accommodation.
C1 Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743 Jena, Germany.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Carlos, SP, Brazil.
Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia.
Tech Univ, Ctr Micro & Nanotechnol, D-98693 Ilmenau, Germany.
Tech Univ Ilmenau, Inst Phys, D-98684 Ilmenau, Germany.
RP Bechstedt, F, Univ Jena, Inst Festkorpertheorie & Theoret Opt, Max Wien
Pl 1, D-07743 Jena, Germany.
EM bechstedt@ifto.physik.uni-jena.de
CR ADOLPH B, 2001, PHYS REV B, V63
BECHSTEDT F, 1988, PHYS REV B, V38, P7710
BECHSTEDT F, 2002, J CRYST GROWTH, V246, P315
BECHSTEDT F, 2002, LOW DIMENSIONAL NITR, P11
BU Y, 1993, J VAC SCI TECHNOL A, V11, P2931
DAVYDOV VY, 2002, PHYS STATUS SOLIDI B, V229, R1
DAVYDOV VY, 2002, PHYS STATUS SOLIDI B, V230, R4
FERHAT M, 2002, APPL PHYS LETT, V80, P1394
FERHAT M, 2002, PHYS REV B, V65
GROSSNER U, 1998, PHYS REV B, V58, R1722
GUO Q, 1997, SOLID STATE COMMUN, V83, P721
GUO QX, 1994, JPN J APPL PHYS PT 1, V33, P2453
GUO QX, 1998, PHYS REV B, V58, P15304
KIM MH, 1999, PHYS STATUS SOLIDI A, V176, P269
KRESSE G, 1996, COMP MATER SCI, V6, P15
LAMBRECHT WRL, 1997, SOLID STATE ELECTRON, V41, P195
LAMBRECHT WRL, 2002, SOLID STATE COMMUN, V121, P549
LISCHKA K, 2002, APPL PHYS LETT, V88, P769
ODONNELL KP, 2000, MAT RES SOC S, V595
PERSSON C, 2001, J PHYS-CONDENS MAT, V13, P8945
RIEGER MM, 1995, PHYS REV B, V52, P16567
SHAN W, 1996, APPL PHYS LETT, V69, P3315
STAMPFL C, 1999, PHYS REV B, V59, P5529
TABATA A, 1999, APPL PHYS LETT, V74, P362
TABATA A, 2002, APPL PHYS LETT, V80, P769
TANSLEY TL, 1986, J APPL PHYS, V59, P3241
TELES LK, UNPUB
TELES LK, 2000, PHYS REV B, V62, P2475
TELES LK, 2001, PHYS REV B, V63
WENZIEN B, 1995, PHYS REV B, V51, P14701
NR 30
TC 29
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0031-8965
J9 PHYS STATUS SOLIDI A-APPL RES
JI Phys. Status Solidi A-Appl. Res.
PD FEB
PY 2003
VL 195
IS 3
BP 628
EP 633
PG 6
SC Physics, Condensed Matter
GA 656GA
UT ISI:000181599300027
ER
PT J
AU Fagan, SB
da Silva, LB
Mota, R
TI Ab initio study of radial deformation plus vacancy on carbon nanotubes:
Energetics and electronic properties
SO NANO LETTERS
LA English
DT Article
ID LARGE SYSTEMS; CONDUCTANCE
AB The effects of radial deformation and single vacancy on the electronic
properties of a single-wall carbon nanotube are studied through ab
initio method. Different paths are considered: the tube is deformed and
subsequently a vacancy is produced, or a vacancy is created and the
tube is deformed later. The involved energies, band structures, and
densities of states following several paths are discussed, and a simple
way to induce fundamental changes on the electronic properties is
proposed.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Mota, R, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
Brazil.
EM mota@ccne.ufsm.br
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BAIERLE RJ, 2001, PHYS REV B, V64
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DRESSELHAUS MS, 2000, CARBON NANOTUBES SYN
FAGAN SB, 2003, PHYS REV B, V67
GULSEREN O, 2001, PHYS REV LETT, V87
GULSEREN O, 2002, PHYS REV B, V65
HANSSON A, 2000, PHYS REV B, V62, P7639
IGAMI M, 1999, J PHYS SOC JPN, V68, P716
MAITI A, 2002, PHYS REV LETT, V88
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1981, PHYS REV B, V23, P5048
ROCHEFORT A, 1999, PHYS REV B, V60, P13824
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANKEY OF, 1989, PHYS REV B, V40, P3979
SRIVASTAVA D, 1999, PHYS REV LETT, V83, P2973
TROULLIER N, 1991, PHYS REV B, V43, P1993
NR 17
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2003
VL 3
IS 3
BP 289
EP 291
PG 3
SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
GA 656AN
UT ISI:000181586600004
ER
PT J
AU Schiwietz, G
Grande, PL
TI The role of basic energy-loss processes in layer-resolved surface
investigations with ions
SO CURRENT APPLIED PHYSICS
LA English
DT Article
DE electronic energy-loss distribution; stopping power; backscattering;
coupled-channel calculations; protons; aluminum surface; innershell
ionizaton
ID SCATTERING EXPERIMENTS; ANGULAR-DEPENDENCE; HE; INCIDENT; BARE
AB Ab initio quantum mechanical calculations have been performed for the
energy loss of protons backscattered from an Al surface. Results from
first-order perturbation theory are compared to full numerical
atomic-orbital coupled-channel calculations. It is shown that both
inner shells and non-perturbative effects are important for the
understanding of ion energy-loss spectra. (C) 2002 Elsevier Science
B.V. All rights reserved.
C1 Hahn Meitner Inst Berlin GmbH, Abt SF4, Bereich Strukturforsch, D-14109 Berlin, Germany.
Univ Fed Rio Grande Sul, Inst Fis, BR-91501470 Porto Alegre, RS, Brazil.
RP Schiwietz, G, Hahn Meitner Inst Berlin GmbH, Abt SF4, Bereich
Strukturforsch, Glienicker Str 100, D-14109 Berlin, Germany.
CR DOSSANTOS JHR, 1997, PHYS REV B, V55, P4332
FRENKEN JWM, 1986, NUCL INSTRUM METH B, V17, P334
GRANDE PL, UNPUB
GRANDE PL, 1991, PHYS REV A, V44, P2984
GRANDE PL, 1993, PHYS REV A, V47, P1119
GRNDE PL, 1998, NUCL INSTRUM METH B, V136, P125
SCHIWIETZ G, 1990, PHYS REV A, V42, P296
SCHIWIETZ G, 1992, NUCL INSTRUM METH B, V69, P10
SCHIWIETZ G, 1994, PHYS REV LETT, V72, P2159
SCHULTE WH, 2001, NUCL INSTRUM METH B, V183, P16
NR 10
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1567-1739
J9 CURR APPL PHYS
JI Curr. Appl. Phys.
PD FEB
PY 2003
VL 3
IS 1
BP 35
EP 37
PG 3
SC Materials Science, Multidisciplinary; Physics, Applied
GA 657FV
UT ISI:000181656100008
ER
PT J
AU Ornellas, FR
Resende, SM
Machado, FBC
Roberto-Neto, O
TI A high level theoretical investigation of the N2O4 -> 2 NO2
dissociation reaction: Is there a transition state?
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID POTENTIAL-ENERGY FUNCTION; DINITROGEN TETROXIDE; AB-INITIO;
ELECTRON-DIFFRACTION; GAS; TEMPERATURE; DYNAMICS; ABINITIO
AB The N2O4-->2 NO2 dissociation reaction was investigated at a high level
of theory using the couple cluster with all single and double
excitations and connected triples [CCSD(T)] and complete active space
self-consistent field approaches, and the cc-pVDZ, aug-cc-pVDZ, and
cc-pVTZ basis sets. Only at the coupled cluster level a first-order
saddle point was found connecting reactant and products. Collectively,
structural, vibrational, and thermodynamic data for the three
stationary points represent the best theoretical description of this
reaction system to date, and are in good agreement with available
experimental results. Unimolecular transition state theory rate
constants (k(infinity)) were also evaluated at 250, 298.15, and 350 K.
At the CCSD(T)/cc-pVTZ level of calculation these results are
0.62x10(1), 1.90x10(3), and 1.66x10(5) s(-1), respectively. Known
experimental results at 298 K vary from 1.7x10(5) to 1.0x10(6) s(-1).
Including an estimate for basis set superposition error, we predict
DeltaH(298)(0) for the dissociation reaction to be 12.76 kcal/mol
(Expt. 13.1-13.7 kcal/mol). (C) 2003 American Institute of Physics.
C1 Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05513970 Sao Paulo, Brazil.
Ctr Tecn Aeroesp, Dept Quim, Inst Tecnol Aeronaut, BR-12228900 Sao Paulo, Brazil.
Inst Estudos Avancados, BR-1228840 Sao Jose Dos Campos, Brazil.
RP Ornellas, FR, Univ Sao Paulo, Inst Quim, Dept Quim Fundamental,
BR-05513970 Sao Paulo, Brazil.
CR BAUSCHLICHER CW, 1983, J AM CHEM SOC, V105, P745
BIBART CH, 1974, J CHEM PHYS, V61, P1284
BIRD GR, 1964, J CHEM PHYS, V40, P3378
BORDEN WT, 1996, ACCOUNTS CHEM RES, V29, P67
BORISENKO KB, 1997, J MOL STRUCT, V121, P413
BOYS SF, 1970, MOL PHYS, V19, P553
CARRINGTON T, 1953, J PHYS CHEM-US, V57, P418
CARTWRIGHT BS, 1966, CHEM COMMUN, V3, P82
CHER M, 1962, J CHEM PHYS, V37, P2564
DOMENECH JL, 1994, J CHEM PHYS, V100, P6993
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
ELYOUSSOUFI Y, 1997, SPECTROCHIM ACTA A, V53, P881
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GIAUQUE WF, 1938, J CHEM PHYS, V6, P40
GIVAN A, 1989, J CHEM PHYS, V90, P6135
GUTMAN A, 1962, J CHEM PHYS, V36, P98
HISATSUNE IC, 1961, J PHYS CHEM-US, V65, P2249
HOZBA P, 1988, CHEM REV, V88, P871
JACOX ME, 1984, J PHYS CHEM REF DATA, V13, P945
KATO T, 1996, J CHEM PHYS, V105, P4511
KOHATA K, 1982, J PHYS CHEM-US, V86, P602
KOPUT J, 1993, CHEM PHYS LETT, V204, P183
KOPUT J, 1995, CHEM PHYS LETT, V240, P553
KVICK A, 1982, J CHEM PHYS, V76, P3754
LEE TJ, 1995, QUANTUM MECH ELECT S, P47
LIDE DR, 1994, CRC HDB CHEM PHYSICS
LIU RF, 1993, J PHYS CHEM-US, V97, P4413
LOUIS RV, 1965, J CHEM PHYS, V42, P857
MACHADO FBC, 2002, CHEM PHYS LETT, V352, P120
MCCLELLAND BW, 1972, J CHEM PHYS, V56, P4541
MCKEE ML, 1995, J AM CHEM SOC, V117, P1629
MORINO Y, 1983, J MOL SPECTROSC, V98, P330
PASTIRK I, 2001, CHEM PHYS LETT, V349, P71
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V479, P157
SHEN Q, 1998, J PHYS CHEM A, V102, P6470
STEINFELD JI, 1989, CHEM KINETICS DYNAMI
WANG XF, 1998, THEOCHEM-J MOL STRUC, V432, P55
WERNER HJ, 1985, J CHEM PHYS, V82, P5053
WERNER HJ, 1988, J CHEM PHYS, V89, P5803
WERNER HJ, 2000, MOLPRO
WESOLOWSKI SS, 1997, J CHEM PHYS, V106, P7178
YANG JA, 1991, J PHYS CHEM-US, V95, P9221
NR 42
TC 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAR 1
PY 2003
VL 118
IS 9
BP 4060
EP 4065
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 646DC
UT ISI:000181018700018
ER
PT J
AU Branicio, PS
Kalia, RK
Nakano, A
Rino, JP
Shimojo, F
Vashishta, P
TI Structural, mechanical, and vibrational properties of Ga1-xInxAs
alloys: A molecular dynamics study
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ABSORPTION FINE-STRUCTURE; RANDOM SOLID-SOLUTIONS
AB Structural, mechanical, and vibrational properties of Ga1-xInxAs (0less
than or equal toxless than or equal to1) random solid solutions are
investigated with classical and ab initio molecular-dynamics
simulations. We find that the Ga-As and In-As bond lengths change only
slightly as a function of x, despite the large lattice mismatch
(similar to7%) between GaAs and InAs crystals. The nearest
cation-cation distance has a broad distribution, whereas the nearest
neighbor anion-anion distance distribution has two distinct peaks. The
elastic constants exhibit a significant nonlinear dependence on x. The
phonon density-of-states exhibits two high-frequency optical modes.
These results are in excellent agreement with experiments. (C) 2003
American Institute of Physics.
C1 Univ So Calif, Dept Phys & Astron, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Mat Sci & Engn, Los Angeles, CA 90089 USA.
Univ Fed Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
Kumamoto Univ, Kumamoto, Japan.
RP Branicio, PS, Univ So Calif, Dept Phys & Astron, Collaboratory Adv Comp
& Simulat, Los Angeles, CA 90089 USA.
CR BAZANT MZ, 1997, PHYS REV B, V56, P8542
BOYCE JB, 1989, J CRYST GROWTH, V98, P37
BRENNER DW, 2000, PHYS STATUS SOLIDI B, V217, P23
BRIGGS EL, 1996, PHYS REV B, V54, P14362
BRODSKY MH, 1968, PHYS REV LETT, V21, P990
CHELIKOWSKY JR, 1994, PHYS REV B, V50, P11355
COHEN ML, 1993, SCIENCE, V261, P307
EBBSJO I, 2000, J APPL PHYS, V87, P7708
GIANNOZZI P, 1991, PHYS REV B, V43, P7231
GROENEN J, 1998, PHYS REV B, V58, P10452
HOHENBERG P, 1964, PHYS REV B, V136, P864
MARTINS JL, 1984, PHYS REV B, V30, P6217
MIGLIORATO MA, 2002, PHYS REV B, V65
MIKKELSEN JC, 1982, PHYS REV LETT, V49, P1412
MIKKELSEN JC, 1983, PHYS REV B, V28, P7130
PATREL C, 1984, J MOL STRUCT, V115, P149
PAULING L, 1967, NATURE CHEM BOND
PHILLIPS JC, 1973, BONDS BANDS SEMICOND, P214
SHIMOJO F, 2001, COMPUT PHYS COMMUN, V140, P303
TROULLIER N, 1991, PHYS REV B, V43, P8861
VEGARD L, 1921, Z PHYS, V5, P17
NR 21
TC 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 17
PY 2003
VL 82
IS 7
BP 1057
EP 1059
PG 3
SC Physics, Applied
GA 644KR
UT ISI:000180917000019
ER
PT J
AU Fileti, EE
Rivelino, R
Canuto, S
TI Rayleigh light scattering of hydrogen bonded clusters investigated by
means of ab initio calculations
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
ID WATER-METHANOL COMPLEXES; MATRIX-ISOLATION; BASIS-SET;
ELECTRON-CORRELATION; INTERACTION ENERGY; DIMER; POLARIZABILITIES;
HYPERPOLARIZABILITY; SPECTRA; HCN-H2O
AB Ab initio calculations of depolarization ratios and intensities of
classically scattered light, in terms of dipole polarizabilities and
polarizability anisotropies, are reported for different hydrogen bonded
molecular clusters. Five different groups of organic heterodimers
formed with water are considered: HCHO...H2O, CH3HO...H2O, HCOOH...H2O,
CH3CN...H2O, and (CH3)(2)CO...H2O, together with the water dimer
H2O...H2O. The geometries of all complexes have been optimized by means
of the second-order Moller-Plesset many-body perturbation theory (MP2),
using the augmented correlation-consistent basis set with polarized
valence of double-zeta quality (aug-cc-pVDZ). The calculated average
dipole polarizabilities of the isolated molecules are in good agreement
with available experimental results. The calculations are then extended
to the complexes and, from these, the Rayleigh scattering activities
and depolarization ratio changes, upon hydrogen bond formation, are
obtained and analysed. The differences in activity and depolarization
for Rayleigh scattered radiation between two groups of isomers, (i)
HCN...H2O and H2O...HCN and (ii) CH3HO...H2O and CH3OH...OH2, have also
been investigated.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Fileti, EE, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BAKKAS N, 1993, J CHEM PHYS, V99, P3335
BAKKAS N, 1995, CHEM PHYS LETT, V232, P90
BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BELL AJ, 1993, J PHYS D APPL PHYS, V26, P994
BONIN KD, 1997, ELECT DIPOLE POLARIS
BUCKINGHAM AD, 1967, ADV CHEM PHYS, V12, P107
BUCKINGHAM AD, 1988, CHEM REV, V88, P827
BUSH AM, 1998, J PHYS CHEM A, V102, P6457
CASTRO MA, 1993, J PHYS B-AT MOL OPT, V26, P4301
CERNUSAK I, 1986, PHYS REV A, V33, P814
COHEN HD, 1965, J CHEM PHYS S, V43, P34
COULING VW, 2001, J PHYS CHEM A, V105, P4365
COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
CURTISS LA, 1975, J MOL SPECTROSC, V55, P1
DIERCKSEN GHF, 1975, THEOR CHIM ACTA, V36, P249
DIERCKSEN GHF, 1988, CHEM PHYS LETT, V153, P93
DIXIT S, 2002, NATURE, V416, P829
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
DYKSTRA CE, 1989, J CHEM PHYS, V91, P6472
ENGDAHL A, 1987, J CHEM PHYS, V86, P4831
FABELLINSKII IL, 1968, MOL SCATTERING LIGHT
FEYEREISEN MW, 1996, J PHYS CHEM-US, V100, P2993
FRISCH MJ, 1985, J PHYS CHEM-US, V89, P3664
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GONZALEZ L, 1998, J CHEM PHYS, V109, P139
HEIKKILA A, 1999, J PHYS CHEM A, V103, P2945
HERZBERG G, 1945, INFRARED RAMAN SPECT
HUISKEN F, 1991, CHEM PHYS LETT, V180, P355
KIRSCHNER KN, 2001, J PHYS CHEM A, V105, P4150
LIDE R, 1992, HDB CHEM PHYSICS
LIU K, 1996, SCIENCE, V271, P929
LOVAS FJ, 1978, J PHYS CHEM REF DATA, V7, P1445
MAROULIS G, 2000, J CHEM PHYS, V113, P1813
MAROULIS G, 2001, J PHYS B-AT MOL OPT, V34, P3727
MEULENBROEKS RFG, 1992, PHYS REV LETT, V69, P1379
MICALI N, 1996, PHYS REV E, V54, P1720
NAKAGAWA S, 1997, CHEM PHYS LETT, V278, P272
ODUTOLA JA, 1980, J CHEM PHYS, V72, P5062
PARK HS, 1999, J PHYS CHEM B, V103, P2355
RAMAN CV, 1930, MOL SCTATTERIN LIGHT, P267
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
RIVELINO R, 2002, J MOL STRUCT, V615, P259
SCHUTZ M, 1997, J CHEM PHYS, V107, P4597
STOCKMAN PA, 1997, J CHEM PHYS, V107, P3782
TERAGISHI Y, 1999, J ELECTROANAL CHEM, V473, P132
TSUZUKI S, 1999, J CHEM PHYS, V110, P11906
WEI DQ, 2002, J CHEM PHYS, V116, P6028
WILSON EB, 1980, MOL VIBRATIONS THEOR
XANTHEAS SS, 1993, J CHEM PHYS, V99, P8774
XANTHEAS SS, 1996, J CHEM PHYS, V104, P8821
ZHOU T, 2000, J PHYS CHEM A, V104, P2204
NR 51
TC 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS-B-AT MOL OPT PHYS
JI J. Phys. B-At. Mol. Opt. Phys.
PD JAN 28
PY 2003
VL 36
IS 2
BP 399
EP 408
PG 10
SC Physics, Atomic, Molecular & Chemical; Optics
GA 642YT
UT ISI:000180835500021
ER
PT J
AU Borges, I
Varandas, AM
Rocha, AB
Bielschowsky, CE
TI Forbidden transitions in benzene
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Herzberg-Teller effect; vibronic coupling; complete active space self
consistent field wavefunctions
ID JET-COOLED BENZENE; ELECTRONIC-TRANSITION; AB-INITIO; SPECTRA; ACETONE;
STATES
AB We have computed the optical oscillator strengths for the
symmetry-forbidden transitions 1 B-1(2u) <-- (X) over tilde and 1
B-1(1u) <-- (X) over tilde for benzene through vibronic coupling.
Electronic transition dipole moments were calculated at the complete
active space self consistent field level along the normal coordinates.
Optical oscillator strengths for the sum of the total vibronic
excitations are compared with available theoretical and experimental
results. (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Dept Fisicoquim, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Coimbra, Dept Quim, P-3049 Coimbra, Portugal.
Univ Fed Rio de Janeiro, Inst Fis, BR-21945 Rio De Janeiro, Brazil.
RP Borges, I, Univ Fed Rio de Janeiro, Dept Fisicoquim, Inst Quim, Cidade
Univ,CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR ALBRECHT AC, 1960, J CHEM PHYS, V33, P169
BERGER R, 1998, J PHYS CHEM A, V102, P7157
BERNHARDSSON A, 2000, J CHEM PHYS, V112, P2798
BRITH M, 1971, J CHEM PHYS, V54, P5104
CALLOMON JH, 1966, PHILOS T ROY SOC A, V259, P499
CHRISTIANSEN O, 1998, J CHEM PHYS, V108, P3987
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FISHER G, 1977, CHEM PHYS LETT, V49, P427
GOODMAN L, 1991, J PHYS CHEM-US, V95, P9044
HARRIS DC, 1989, SYMMETRY SPECTROSCOP
HEHRE WJ, 1972, J CHEM PHYS, V62, P2921
HERZBERG G, 1933, Z PHYS CHEM B-CHEM E, V21, P410
HIRAYA A, 1991, J CHEM PHYS 1, V94, P7700
KOPPEL H, 1984, ADV CHEM PHYS, V57, P59
LIAO DW, 1999, J CHEM PHYS, V111, P205
METZ F, 1977, CHEM PHYS LETT, V51, P8
MURRELL JN, 1956, P PHYS SOC LOND A, V69, P245
ORLANDI G, 1994, J CHEM PHYS, V100, P2458
PANTOS E, 1978, J MOL SPECTROSC, V72, P36
ROCHA AB, 2000, CHEM PHYS, V253, P51
ROCHA AB, 2001, CHEM PHYS LETT, V337, P331
ROCHA AB, 2001, J MOL STRUC-THEOCHEM, V539, P145
ROCHE M, 1974, J CHEM PHYS, V60, P1193
ROOS BO, 1992, CHEM PHYS LETT, V192, P5
SCHUMM S, 2000, J PHYS CHEM A, V104, P10648
SMALL GJ, 1971, J CHEM PHYS, V54, P3300
STEPHENSON TA, 1984, J CHEM PHYS, V81, P1060
WERNER HJ, 2000, MOLPRO
ZIEGLER L, 1974, J CHEM PHYS, V60, P3558
NR 29
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD FEB 3
PY 2003
VL 621
IS 1-2
BP 99
EP 105
PG 7
SC Chemistry, Physical
GA 640FE
UT ISI:000180677000012
ER
PT J
AU Capelle, K
Gyorffy, BL
TI Exploring dynamical magnetism with time-dependent density-functional
theory: From spin fluctuations to Gilbert damping
SO EUROPHYSICS LETTERS
LA English
DT Article
ID FERROMAGNETS; STATE
AB We use time-dependent spin-density-functional theory to study dynamical
magnetic phenomena. First, we recall that the local-spin-density
approximation (LSDA) fails to account correctly for magnetic
fluctuations in the paramagnetic state of iron and other itinerant
ferromagnets. Next, we construct a gradient-dependent density
functional that does not suffer from this problem of the LSDA. This
functional is then used to derive, for the first time, the
phenomenological Gilbert equation of micromagnetics directly from
time-dependent density-functional theory. Limitations and extensions of
Gilbert damping are discussed on this basis, and some comparisons with
phenomenological theories and experiments are made.
C1 Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim, BR-13560970 Sao Carlos, SP, Brazil.
Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
RP Capelle, K, Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim, Caixa
Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR ANTROPOV VP, 1995, PHYS REV LETT, V75, P729
BROWN WF, 1978, MICROMAGNETICS
CAPELLE K, 2001, PHYS REV LETT, V87
EDWARDS DM, 1984, J MAGN MAGN MATER, V45, P151
GABAUER R, 2000, PHYS REV B, V61, P6459
GROSS EKU, 1996, TOPICS CURRENT CHEM, V181
GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337
HALILOV SV, 1998, PHYS REV B, V58, P293
LIFSHITZ EM, 1980, COURSE THEORETICAL P, V9
LONZARICH GG, 1985, J PHYS C SOLID STATE, V18, P4339
MOHN P, 1987, J PHYS F MET PHYS, V17, P2421
MORIYA T, 1956, PROG THEOR PHYS, V16, P23
MURATA KK, 1972, PHYS REV LETT, V29, P285
NIU Q, 1998, PHYS REV LETT, V80, P2205
PRINZ GA, 1998, SCIENCE, V282, P1660
RUNGE E, 1984, PHYS REV LETT, V52, P997
SAVRASOV SY, 1998, PHYS REV LETT, V81, P2570
SCHREFL T, 2001, ADV SOLID STATE PHYS, V41, P623
SCHWITALLA J, 2001, PHYS REV B, V63
TSERKOVNYAK Y, 2002, PHYS REV LETT, V88
URBAN R, 2001, PHYS REV LETT, V87
VANLEEUWEN R, 1999, PHYS REV LETT, V82, P3863
WOLF SA, 2001, SCIENCE, V294, P1488
NR 23
TC 5
PU E D P SCIENCES
PI LES ULIS CEDEXA
PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
ULIS CEDEXA, FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD FEB
PY 2003
VL 61
IS 3
BP 354
EP 360
PG 7
SC Physics, Multidisciplinary
GA 639PN
UT ISI:000180638600011
ER
PT J
AU Freedman, TB
Cao, XL
Oliveira, RV
Cass, QB
Nafie, LA
TI Determination of the absolute configuration and solution conformation
of gossypol by vibrational circular dichroism
SO CHIRALITY
LA English
DT Article
DE vibrational circular dichroism; gossypol; DFT calculations; absolute
configuration; solution conformation
ID TUMOR-CELL LINES; BREAST-CANCER; ENANTIOMERS
AB Vibrational circular dichroism (VCD) measurements and density
functional theory (DFT) calculations were used to obtain the first
definitive assignment of the absolute configuration for the
polyphenolic binaphpthyl dialdehyde gossypol and a determination of the
solution conformation in CDCl3. VCD spectra recorded for the two
resolved enantiomers are near mirror images and excellent agreement
between the observed IR and VCD spectra and intensity calculations
carried out at the DFT (B3LYP/6-31G*) level establish the absolute
configurations of (+)-gossypol as P and (-)-gossypol as M, with two
conformations in CDCl3 solution that differ in isopropyl group
orientation.
C1 Syracuse Univ, Dept Chem, Ctr Sci & Technol 1 014, Syracuse, NY 13244 USA.
Univ Fed Sao Carlos, Dept Chem, BR-13565905 Sao Carlos, SP, Brazil.
RP Freedman, TB, Syracuse Univ, Dept Chem, Ctr Sci & Technol 1 014,
Syracuse, NY 13244 USA.
CR BRZEZINSKI B, 1990, J MOL STRUCT, V220, P261
BUSHUNOW P, 1999, J NEURO-ONCOL, V43, P79
CASS QB, 1991, PHYTOCHEMISTRY, V30, P2655
CASS QB, 1995, 18 ANN M BRAZ CHEM S
CASS QB, 2002, J LIQ CHROMATOGR R T, V25, P819
CHEESEMAN JR, 1996, CHEM PHYS LETT, V252, P211
DUKOR RK, 2000, ENCY ANAL CHEM INSTR, P662
DYATKIN AB, 2002, CHIRALITY, V14, P215
FISH RG, 1995, TETRAHEDRON-ASYMMETR, V6, P873
FREEDMAN TB, 2002, HELV CHIM ACTA, V85, P1160
FRISCH MJ, 1998, GAUSSIAN 98
HARADA N, 1983, CIRCULAR DICHROIC SP
HRON RJ, 1999, J AM OIL CHEM SOC, P76
HUANG L, 1988, COLLECT CZECH CHEM C, V53, P2664
IBRAGIMOV BT, 1981, KHIM PRIR SOEDIN, V5, P664
JAROSZEWSKI JW, 1992, CHIRALITY, V4, P216
JAROSZEWSKI JW, 1992, PLANTA MED, V58, P454
LINDBERG MC, 1987, INT J ANDROL, V10, P619
MEYERS AI, 1998, TETRAHEDRON, V54, P10493
NAFIE LA, 2000, APPL SPECTROSC, V54, P1634
NAFIE LA, 2000, CIRCULAR DICHROISM P, P97
NAFIE LA, 2000, ENCY SPECTROSCOPY, P2391
NAFIE LA, 2001, INFRARED RAMAN SPECT, P15
POLAVARAPU PL, 2000, FRESEN J ANAL CHEM, V366, P727
SCHMIDT JH, 1990, J AGR FOOD CHEM, V38, P505
SEGAL SJ, 1985, GOSSYPOL POTENTIAL A
SEIDMAN AD, 1998, INVEST MED, V46, A213
SHAH RD, 2001, CURR OPIN DRUG DISC, V4, P764
SHELLEY MD, 1999, CANCER LETT, V135, P171
SHELLEY MD, 2000, ANTI-CANCER DRUG, V11, P209
SOLLADIECAVALLO A, 2001, TETRAHEDRON-ASYMMETR, V12, P2605
SOLLADIECAVALLO A, 2001, TETRAHEDRON-ASYMMETR, V12, P2703
SOLLADIECAVALLO A, 2002, EUR J ORG CHEM JUN, P1788
SONENBERG M, 1988, CONTRACEPTION, V37, P247
STEPHENS PJ, 2000, CHIRALITY, V12, P172
TALIPOV SA, 1985, KHIM PRIR SOEDIN, V6, P835
VANPOZNAK C, 2001, BREAST CANCER RES TR, V66, P239
WAITES GMH, 1998, INT J ANDROL, V21, P8
WANG XH, 2000, LIFE SCI, V67, P2663
XU C, 1982, SCI SINICA SER B, V25, P1194
ZHOU RH, 1988, CONTRACEPTION, V37, P239
NR 41
TC 16
PU WILEY-LISS
PI NEW YORK
PA DIV JOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0899-0042
J9 CHIRALITY
JI Chirality
PD FEB
PY 2003
VL 15
IS 2
BP 196
EP 200
PG 5
SC Chemistry, Analytical; Chemistry, Medicinal; Chemistry, Organic;
Pharmacology & Pharmacy
GA 640PH
UT ISI:000180696800014
ER
PT J
AU Duarte, HA
Duani, H
De Almeida, WB
TI Ab initio correlated comparative study of the torsional potentials for
2,2-bipyrrole and 2,2 '-bifuran five membered heterocyclic dimers
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID GAUSSIAN-BASIS SETS; MOLECULAR CALCULATIONS; CONDUCTING POLYMERS;
INTERNAL-ROTATION; POLYPYRROLE; ATOMS; 2,2'-BITHIOPHENE; APPROXIMATION;
BITHIOPHENE; EXCHANGE
AB This Letter reports an MP4(SDQ) ab initio investigation of the electron
correlation and basis set effects on the torsional potentials for
2,2'-bipyrrole and 2,2'-bifuran. Pople's standard basis sets and
Dunning's double-zeta (D95**) and correlated consistent basis sets
(aug-cc-pVDZ) were employed. We also included for the first time
thermal corrections to the ab initio relative energies. The torsional
potentials were fitted to a truncated Fourier expansion. Our
MP4(SDQ)/6-311++G** and MP4(SDQ)/aug-cc-pVDZ improved levels show an
agreement within ca. 2 U mol(-1), indicating that convergence has been
virtually achieved. Therefore, our new torsional energy data should be
used as reference for further studies. (C) 2003 Elsevier Science B.V.
All rights reserved.
C1 Univ Fed Minas Gerais, LQC MM, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, Univ Fed Minas Gerais, LQC MM, Dept Quim, ICEx,
BR-31270901 Belo Horizonte, MG, Brazil.
CR AYALA PY, 1998, J CHEM PHYS, V108, P2315
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P1372
BECKE AD, 1993, J CHEM PHYS, V98, P5648
CASIDA ME, 1996, DEMON SOFTWARE DEMON
CHADWICK JE, 1994, J PHYS CHEM-US, V98, P3631
CHUANG YY, 2000, J CHEM PHYS, V112, P1221
DIAZ AF, 1979, J CHEM SOC CHEM COMM, P635
DIAZ AF, 1998, J CHEM SOC CHEM COMM, P183
DOSSANTOS HF, 2002, CHEM PHYS, V280, P31
DUARTE HA, 2000, J CHEM PHYS, V113, P4206
DUNNING TH, 1976, MODERN THEORETICAL C, V3, P1
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FRISCH MJ, 1995, GAUSSIAN 94
GHOSHAL SK, 1989, CHEM PHYS LETT, V158, P65
HEEGER AJ, 1988, REV MOD PHYS, V60, P781
INGANAS O, 1988, SYNTHETIC MET, V22, P395
KANAZAWA KK, 1980, SYNTHETIC MET, V1, P329
KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
KUANI H, 2003, IN PRESS P 11 BRAZ S
LEE C, 1988, PHYS REV B, V37, P785
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
MILLEFIORI S, 1998, J CHEM SOC FARADAY T, V94, P25
NYGAARD L, 1969, J MOL STRUCT, V3, P491
ORTI E, 1987, J PHYS CHEM-US, V91, P545
ORTI E, 1995, J PHYS CHEM-US, V99, P4955
PATIL AO, 1988, CHEM REV, V88, P183
PREZYNA LA, 1991, MACROMOLECULES, V24, P5283
PROYNOV EI, 1995, INT J QUANTUM CHEM S, V29, P61
SKOTHEIM TA, 1986, HDB CONDUCTING POLYM, V1
STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
SZABO A, 1996, MODERN QUANTUM CHEM
TRUHLAR DG, 1991, J COMPUT CHEM, V12, P266
VIRUELA PM, 1998, INT J QUANTUM CHEM, V70, P303
WOON DE, 1993, J CHEM PHYS, V98, P1358
NR 36
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD FEB 7
PY 2003
VL 369
IS 1-2
BP 114
EP 124
PG 11
SC Physics, Atomic, Molecular & Chemical
GA 642GE
UT ISI:000180795200017
ER
PT J
AU Novaes, FD
da Silva, AJR
da Silva, EZ
Fazzio, A
TI Effect of impurities in the large Au-Au distances in gold nanowires
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID LARGE SYSTEMS; ATOMS; MICROSCOPY; WIRE
AB Experimentally obtained atomically thin gold nanowires have presented
exceedingly large Au-Au interatomic distances before they break. Since
no theoretical calculations of pure gold nanowires have been able to
produce such large distances, we have investigated, through ab initio
calculations, how impurities could affect them. We have studied the
effect of H, B, C, N, O, and S impurities on the nanowire electronic
and structural properties, in particular how they affect the maximum
Au-Au bond length. We find that the most likely candidates to explain
the distances in the range of 3.6 Angstrom and 4.8 Angstromare H and S
impurity atoms, respectively.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
UNICAMP, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Novaes, FD, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BAHN SR, 2002, PHYS REV B, V66
DASILVA EZ, UNPUB
DASILVA EZ, 2001, PHYS REV LETT, V87
HOHENBERG P, 1964, PHYS REV, V136, B864
KOHN W, 1965, PHYS REV, V140, A1133
KOIZUMI H, 2001, ULTRAMICROSCOPY, V88, P17
KONDO Y, 2000, SCIENCE, V289, P606
LEGOAS SB, 2002, PHYS REV LETT, V88
MEHREZ H, 2002, PHYS REV B, V65
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
OHNISHI H, 1998, NATURE, V395, P780
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
RODRIGUES V, 2001, PHYS REV B, V63
RUBIOBOLLINGER G, 2001, PHYS REV LETT, V87
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SKORODUMOVA NV, CONDMAT0203162
TAKAI Y, 2001, PHYS REV LETT, V87
TORRES JA, 1999, SURF SCI LETT, V83, P441
TOSATTI E, 2001, SCIENCE, V291, P288
TROULLIER N, 1991, PHYS REV B, V43, P1993
UNTIEDT C, 2002, PHYS REV B, V66
YANSON AI, 1998, NATURE, V395, P783
NR 24
TC 20
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JAN 24
PY 2003
VL 90
IS 3
AR 036101
DI ARTN 036101
PG 4
SC Physics, Multidisciplinary
GA 638PJ
UT ISI:000180579200037
ER
PT J
AU Junqueira, GMA
Rocha, WR
De Almeida, WB
Dos Santos, HF
TI Theoretical analysis of the oxocarbons: The solvent and counter-ion
effects on the structure and spectroscopic properties of the squarate
ion
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID DIFFERENTIAL-OVERLAP TECHNIQUE; MOLECULAR-ORBITAL METHODS; MONTE-CARLO;
INTERMEDIATE NEGLECT; RAMAN-SPECTROSCOPY; CROCONATE DIANION; BASIS SET;
TRANSITION; WATER; COMPLEXES
AB The squarate anion and their coordination compounds with Li+, Na+ and
K+ are studied in gas phase and aqueous solution using ab initio
quantum chemical methods and a sequential Monte Carlo/quantum
mechanical procedure. The infrared and Raman spectra were calculated
and the vibrational modes assigned at the second order Moller-Plesset
perturbation (MP2) level of theory, employing standard split-valence
basis set with inclusion of polarization and diffuse functions
(6-31G(d), 6-31+G(d), 6-311+G(d), 6-311+G(2d), 6-311+G(2df)) on the O
and C atoms. The vibrational analysis showed an important role played
by the polarization functions on the low frequency vibrations. The
solvent and counter-ions effects on the electronic spectrum are
analyzed showing that both should be included in the calculation in
order to reproduce the observed UV spectrum. This conclusion supports
our previous analysis on the oxocarbon series.
C1 Univ Fed Juiz de Fora, NEQC, Dept Quim, ICE, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Pernambuco, Dept Quim Fundamental, CCEN, BR-50740901 Recife, PE, Brazil.
Univ Fed Minas Gerais, LQC MM, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, NEQC, Dept Quim, ICE, Campus
Martelos, BR-36036330 Juiz De Fora, MG, Brazil.
CR 1992, HDB CHEM PHYSICS
AIHARA J, 1981, J AM CHEM SOC, V103, P1633
ALLEN MP, 1987, COMPUTER SIMULATION
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 1997, DICE MONTE CARLO PRO
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
DAMM W, 1997, J COMPUT CHEM, V18, P1995
DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
DEMIRANDA SG, 2002, J BRAZIL CHEM SOC, V13, P324
DEOLIVEIRA LFC, 1991, J MOL STRUCT, V245, P215
DEOLIVEIRA LFC, 1992, J MOL STRUCT, V269, P85
DEOLIVEIRA LFC, 1999, J MOL STRUCT, V510, P97
DORY M, 1994, J CHEM SOC FARADAY T, V90, P2319
DUMESTRE F, 1998, J CHEM SOC DA, V24, P4131
EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
EGGERDING D, 1975, J AM CHEM SOC, V97, P207
FABRE PL, 2000, ELECTROCHIM ACTA, V45, P2697
FARNELL L, 1981, J MOL STRUCT, V76, P1
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GLICK MD, 1964, INORG CHEM, V3, P1712
GLICK MD, 1966, INORG CHEM, V5, P289
GONCALVES NS, 1996, ACTA CRYSTALLOGR C 3, V52, P622
HA TK, 1986, J MOL STRUCT, V137, P183
HEAD JD, 1986, CHEM PHYS LETT, V131, P359
ITO M, 1963, J AM CHEM SOC, V85, P2580
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JUNQUEIRA GMA, 2001, PHYS CHEM CHEM PHYS, V3, P3499
JUNQUEIRA GMA, 2002, PHYS CHEM CHEM PHYS, V4, P2517
JUNQUEIRA GMA, 2002, PHYS CHEM CHEM PHYS, V4, P2919
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LOPES JGS, 2001, SPECTROCHIM ACTA A, V57, P399
MACINTYRE WM, 1964, J CHEM PHYS, V42, P3563
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
PETERSSON GA, 1991, J CHEM PHYS, V94, P6081
PUEBLA C, 1986, J MOL STRUCT THEOCHE, V137, P171
QUINONERO D, 2001, CHEM PHYS LETT, V350, P331
RIBEIRO MCC, 2002, PHYS CHEM CHEM PHYS, V4, P2917
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHA WR, 2001, CHEM PHYS LETT, V127, P335
SANTOS PS, 1991, J MOL STRUCT, V243, P223
SEITZ G, 1992, CHEM REV, V92, P1227
SPASSOVA M, 2000, J MOL STRUC-THEOCHEM, V528, P151
TAKAHASHI M, 1978, CHEM PHYS, V35, P293
TORII H, 1995, J MOL STRUCT THEOCHE, V334, P15
VON RP, 2000, J ORG CHEM, V65, P426
WEST R, 1960, J AM CHEM SOC, V82, P6204
WEST R, 1963, J AM CHEM SOC, V85, P2577
WEST R, 1963, J AM CHEM SOC, V85, P2586
WEST R, 1979, J AM CHEM SOC, V101, P1710
WEST R, 1981, J AM CHEM SOC, V103, P5073
ZERNER MC, 1980, J AM CHEM SOC, V102, P589
ZHAO B, 1992, CAN J CHEM, V70, P135
NR 55
TC 3
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2003
VL 5
IS 3
BP 437
EP 445
PG 9
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 635YG
UT ISI:000180427300002
ER
PT J
AU El Akramine, O
Lester, WA
Krokidis, X
Taft, CA
Guimaraes, TC
Pavao, AC
Zhu, R
TI Quantum Monte Carlo study of the CO interaction with a dimer model
surface for Cr(110)
SO MOLECULAR PHYSICS
LA English
DT Article
ID ELECTRON LOCALIZATION FUNCTION; METAL-SURFACES; EFFECTIVE POTENTIALS;
WAVE-FUNCTIONS; CLUSTERS; ATOMS; DISSOCIATION; SIMULATIONS; MOLECULES;
SOLIDS
AB The chemisorption of CO on a Cr( 110) surface is investigated using the
quantum Monte Carlo method in the diffusion Monte Carlo (DMC) variant
and a model Cr2CO cluster. The present results are consistent with the
earlier ab initio HF study with this model that showed the tilted/
near-parallel orientation as energetically favoured over the
perpendicular arrangement. The DMC energy difference between the two
orientations is larger (1.9 eV) than that computed in the previous
study. The distribution and reorganization of electrons during CO
adsorption on the model surface are analysed using the topological
electron localization function method that yields electron populations,
charge transfer and clear insight on the chemical bonding that occurs
with CO adsorption and dissociation on the model surface.
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA.
Accelrys, Mat Sci, F-91898 Orsay, France.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
Chinese Acad Sci, LNM, Inst Mech, Beijing 100864, Peoples R China.
RP Lester, WA, Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci,
Berkeley, CA 94720 USA.
CR ANDERSON JB, 1999, REV COMP CH, V13, P133
ASPURUGUZIK A, UNPUB
BADER RFW, 1990, ATOMS MOL QUANTUM TH
BAGUS PS, 1983, PHYS REV B, V28, P5423
BARTLETT RJ, 1990, CHEM PHYS LETT, V165, P513
BAUSCHLICHER CW, 1986, J CHEM PHYS, V85, P354
BECKE AD, 1990, J CHEM PHYS, V92, P5397
BELOHOREC P, 1993, J CHEM PHYS, V98, P6401
BLYHOLDER G, 1964, J PHYS CHEM-US, V68, P2772
BOYS SF, 1969, P ROY SOC LOND A MAT, V310, P43
CEYER ST, 1988, ANNU REV PHYS CHEM, V39, P479
CHRISTIANSEN PA, 1991, J CHEM PHYS, V95, P361
FLAD HJ, 1997, J CHEM PHYS, V107, P7951
FOULKES WMC, 2001, REV MOD PHYS, V73, P33
GREEFF CW, 1997, J CHEM PHYS, V106, P6412
GROSSMAN JC, 2000, J AM CHEM SOC, V122, P705
GROSSMAN JC, 2001, PHYS REV LETT, V86, P472
GUIMARAES TC, 1997, PHYS REV B, V56, P7001
HAMMOND BL, 1994, MONTE CARLO METHODS
HARKLESS JA, 2001, J CHEM PHYS, V113, P2680
KROKIDIS X, 1997, J PHYS CHEM A, V101, P7277
KROKIDIS X, 1998, NEW J CHEM, P1341
KROKIDIS X, 1999, CHEM PHYS LETT, V314, P534
LESTER WS, 1997, RECENT ADV QUANTUM M
LUECHOW A, 2000, ANNU REV PHYS CHEM, V51, P501
MEHANDRU SP, 1986, SURF SCI, V169, L281
MITAS L, 1994, PHYS REV A, V49, P4411
MITAS L, 1996, ADV CHEM PHYS, V93, P1
NOURY S, 1997, TOPOLOGICAL MOL DESC
NOURY S, 1999, COMPUT CHEM, V23, P597
OVCHARENKO IV, 2001, J CHEM PHYS, V114, P9028
PAVAO AC, 1991, PHYS REV B, V44, P1910
PAVAO AC, 1994, PHYS REV B, V50, P1868
PAVAO AC, 1995, SURF SCI, V323, P340
PAVAO AC, 1999, J MOL STRUC-THEOCHEM, V458, P99
PAVAO AC, 2001, J PHYS CHEM A, V105, P5
PEPKE E, 1993, SCIAN
PLUMMER EW, 1985, SURF SCI, V158, P58
PORTER AR, 2001, J CHEM PHYS, V114, P7795
ROTHSTEIN SM, 1996, INT J QUANTUM CHEM, V60, P803
SCHAUTZ F, 1998, THEOR CHEM ACC, V99, P231
SCHMIDT KE, 1990, J CHEM PHYS, V93, P4172
SELVI B, 1994, NATURE, V371, P683
SHINN ND, 1984, PHYS REV LETT, V53, P2481
SILVI B, 2000, J PHYS CHEM A, V104, P947
SOKOLOVA S, 2000, CHEM PHYS LETT, V320, P421
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
SUNG SS, 1985, J AM CHEM SOC, V107, P578
TAFT CA, 1999, INT REV PHYS CHEM, V18, P163
XIAO C, 2001, J MOL STRUC-THEOCHEM, V549, P181
NR 50
TC 4
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0026-8976
J9 MOL PHYS
JI Mol. Phys.
PY 2003
VL 101
IS 1-2
BP 277
EP 285
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 633QC
UT ISI:000180293100030
ER
PT J
AU Freitas, MP
Tormena, CF
Rittner, R
Abraham, RJ
TI Conformational analysis of trans-2-halocyclohexanols and their methyl
ethers: a H-1 NMR, theoretical and solvation approach
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE trans-1,2-disubstituted cyclohexanes; conformational analysis; NMR;
density functional theory
ID AB-INITIO; ISOMERISM; CYCLOHEXANES; OH
AB The conformational equilibria of trans-1-methoxy-2-chloro- (1),
trans-1-methoxy-2-bromo- (2) and trans-1-methoxy-2-iodocyclohexane (3),
and their corresponding alcohols (4-6), were studied through a combined
method of NMR, theoretical calculations and solvation theory. They can
be described in terms of the axial-axial and equatorial-equatorial
conformations, taking into account the main rotamers of each of these
conformations. From the NMR experiments at 183 K in (CDCl2)-Cl-2-CS2,
it was possible to observe proton H-2 in the ax-ax and eq-eq conformers
separately for 1 and 2, but not for 3, which gave directly their
populations and conformer energies. In the alcohols the proportion of
the ax-ax. conformer was too low to be detected by NMR under these
conditions. Those HH couplings together with the values at room
temperature, in a variety of solvents allowed the determination of the
solvent dependence of the conformer energies and hence the vapor state
energy difference. The DeltaE (E-ax-E-eq) values in the vapor state for
1, 2 and 3 are -0.05, 0.20 and 0.55 kcal mol(-1), respectively,
increasing to 1.10, 1.22 and 1.41 kcal mol(-1) in CD3CN solution (I
kcal = 4.184 kJ). For 4-6 the eq-eq conformation is always much more
stable in both non-polar and polar solvents, with energy differences
ranging from 1.78, 1.94 and 1.86 kcal mol(-1) (in CCl4) to 1.27, 1.49
and 1.54 kcal mol(-1) (in DMSO), respectively. Comparison of the
hydroxy and methoxy compounds gives the intramolecular hydrogen bonding
energy for the alcohols as 1.40, 1.36 and 1.00 kcal mol(-1) (in CCl4)
for 4, 5 and 6, respectively. Copyright (C) 2002 John Wiley Sons, Ltd.
C1 UNICAMP, Phys Organ Chem Lab, Inst Quim, BR-13084971 Campinas, SP, Brazil.
Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Rittner, R, UNICAMP, Phys Organ Chem Lab, Inst Quim, Caixa Postal 6154,
BR-13084971 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, J CHEM SOC PERK SEP, P1949
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ALLINGER J, 1958, TETRAHEDRON, V2, P64
ALLINGER NL, 1958, J AM CHEM SOC, V80, P5476
BAJWA JS, 1991, TETRAHEDRON LETT, V32, P3021
BASSO EA, 1993, J ORG CHEM, V58, P7865
BERVELT JP, 1968, SPECTROCHIM ACTA A, V24, P1411
BODOT H, 1967, B SOC CHIM FR, P870
CARRENO MC, 1990, TETRAHEDRON, V46, P5649
COLLIN P, 1995, MONOSACCHARIDES THEI
CRAIG NC, 1997, J AM CHEM SOC, V119, P4789
EPIOTIS ND, 1973, J AM CHEM SOC, V95, P3087
FREITAS MP, 2001, J MOL STRUCT, V570, P175
FREITAS MP, 2001, J PHYS ORG CHEM, V14, P317
FRISCH MJ, 1998, GAUSSIAN 98
GANGULY B, 2000, J ORG CHEM, V65, P558
GUSS CO, 1955, J AM CHEM SOC, V77, P2549
JONES DC, 1928, J CHEM SOC, P1193
KAY JB, 1970, J PHARM PHARMACOL, V22, P214
LAGOWSKI JJ, 1976, CHEM NONAQUEOUS SOLV, V3
LI ZH, 2001, J PHYS CHEM A, V105, P10890
RABLEN PR, 1999, J CHEM SOC PERK AUG, P1719
ROCKWELL GD, 1996, AUST J CHEM, V49, P379
SENDEROWITZ H, 1997, THEOCHEM-J MOL STRUC, V395, P123
SOSNOVSKII GM, 1990, ZH ORG KHIM, V26, P911
TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
WIBERG KB, 1990, J PHYS CHEM-US, V94, P6956
WOLFE S, 1967, J CHEM SOC CHEM COMM, P872
ZEFIROV NS, 1976, TETRAHEDRON, V32, P1211
ZEFIROV NS, 1978, TETRAHEDRON, V34, P2953
NR 33
TC 4
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD JAN
PY 2003
VL 16
IS 1
BP 27
EP 33
PG 7
SC Chemistry, Organic; Chemistry, Physical
GA 635PB
UT ISI:000180407000005
ER
PT J
AU Miwa, RH
Srivastava, GP
TI Self-organized Bi lines on the Si(001) surface: A theoretical study
SO PHYSICAL REVIEW B
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; ELECTRONIC-STRUCTURE; SI(100) SURFACE;
BISMUTH; X-1); PSEUDOPOTENTIALS; NANOWIRE; GROWTH; CHAINS; STATE
AB We have performed an ab initio theoretical study of the stability,
atomic geometry, and electronic structure of the self-organized Bi
lines on the Si(001) surface. We have examined the two currently
proposed models and two new hybrid models for the structure of Bi
lines. Our results confirm the model proposed by Miki , in which the Bi
lines are formed by Bi dimers parallel to the surrounding Si dimers,
with a missing dimer row between the Bi dimers. However, in contrast to
the proposal of symmetrically disposed surface Si dimers (i.e., with no
buckling) by Miki , our total-energy calculations indicate that the
buckling of the Si dimers is an exothermic process, reducing the
surface total energy by 0.11 eV/dimer. Our theoretically simulated
scanning tunneling microscopy results suggest a low density of states
close to the valence-band maximum, localized on the Bi lines,
supporting the recently proposed model of quantum antiwire systems for
Bi lines on the Si(001) surface.
C1 Univ Fed Uberlandia, Fac Fis, BR-38400902 Uberlandia, MG, Brazil.
Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP Miwa, RH, Univ Fed Uberlandia, Fac Fis, Caixa Postal 593, BR-38400902
Uberlandia, MG, Brazil.
CR ABUKAWA T, 1995, SURF SCI, V325, P33
BOWLER DR, 2000, PHYS REV B, V62, P7237
BUNK O, 1999, PHYS REV B, V59, P12228
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHO JH, 2001, PHYS REV B, V64
DABROWSKI J, 1992, APPL SURF SCI, V56, P15
GAY SCA, 1999, PHYS REV B, V60, P1488
GONZE X, 1991, PHYS REV B, V44, P8503
JENKINS SJ, 1996, J PHYS-CONDENS MAT, V8, P6641
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
LOUIE SG, 1982, PHYS REV B, V26, P1738
MIKI K, 1999, PHYS REV B, V59, P14868
MIKI K, 1999, SURF SCI, V421, P397
MIWA RH, 2001, SURF SCI, V473, P123
MIWA RH, 2002, SURF SCI, V507, P368
NAITOH M, 1997, SURF SCI, V377, P899
NAITOH M, 1999, APPL SURF SCI, V142, P38
NAITOH M, 2000, JPN J APPL PHYS 1, V39, P2793
NAITOH M, 2001, SURF SCI 2, V482, P1440
NAKAMURA J, 2001, PHYS REV B, V63
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
PERDEW JP, 1981, PHYS REV B, V23, P5048
SHIMOMURA M, 2000, SURF SCI, V447, L169
TERSOFF J, 1985, PHYS REV B, V31, P805
TUTUNCU HM, 1997, PHYS REV B, V56, P4656
TUTUNCU HM, 2000, SURF SCI, V454, P504
YEOM HW, 1999, PHYS REV LETT, V82, P4898
NR 27
TC 9
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD DEC 15
PY 2002
VL 66
IS 23
AR 235317
DI ARTN 235317
PG 6
SC Physics, Condensed Matter
GA 633JL
UT ISI:000180279400084
ER
PT J
AU Gomez, JA
Guenzburger, D
TI Hyperfine fields and field gradients of thin films of
face-centred-cubic Fe on Cu(001)
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; FCC IRON FILMS; GAMMA-FE; FE/CU(001)
OVERLAYERS; COMPLEX RECONSTRUCTION; ELECTRONIC-STRUCTURE;
MAGNETIC-PROPERTIES; FIRST-PRINCIPLES; ULTRATHIN FILMS; GROUND-STATE
AB The discrete variational method in density functional theory was
employed to perform first-principles electronic structure calculations
for embedded clusters representing thin films of face-centred-cubic Fe
on a Cu(001) substrate. 3, 4 and 5 ML of Fe were investigated; the
ferromagnetic and several types of antiferromagnetic spin
configurations were considered. Layer-by-layer calculations of the
contact and dipolar components of the magnetic hyperfine field are
reported, as well as electric-field gradients at the surface and
interface layers. Significant field gradients were found at the
surfaces. Clusters modelling the interdiffusion of Fe and Cu between
two layers at the interface were also investigated, to determine the
effects on the properties.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil.
RP Gomez, JA, Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150,
BR-22290180 Rio De Janeiro, RJ, Brazil.
CR ABRAGAM A, 1961, PRINCIPLES NUCL MAGN
ALLENSPACH R, 1994, J MAGN MAGN MATER, V129, P160
ASADA T, 1997, PHYS REV LETT, V79, P507
BLAHA P, 1988, PHYS REV B, V37, P2792
CEPERLEY D, 1978, PHYS REV B, V18, P3126
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DUNN JH, 1996, PHYS REV B, V54
ELLERBROCK RD, 1995, PHYS REV LETT, V74, P3053
ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
ELLIS DE, 1970, PHYS REV B, V2, P2887
ELLIS DE, 1999, ADV QUANTUM CHEM, V34, P51
FERNANDO GW, 1988, PHYS REV B, V38, P3016
FU CL, 1987, PHYS REV B, V35, P925
GOMEZ JA, 2001, J MAGN MAGN MATER 1, V226, P381
GOMEZ JA, 2001, PHYS REV B, V63
GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
GUENZBURGER D, 1995, PHYS REV B, V51, P12519
GUENZBURGER D, 1995, PHYS REV B, V52, P13390
GUO GY, 1996, HYPERFINE INTERACT, V97, P11
GUO GY, 1996, PHYS REV B, V53, P2492
HALBAUER R, 1983, J MAGN MAGN MATER, V35, P55
HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V1
HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2
HEINZ K, 1996, SURF SCI, V352, P942
KEUNE W, 1989, PHYSICA B, V161, P269
KEUNE W, 1996, J APPL PHYS 1, V79, P4265
KIRK KJ, 2000, CONTEMP PHYS, V41, P61
LI C, 1990, J MAGN MAGN MATER, V83, P51
LI DQ, 1994, PHYS REV LETT, V72, P3112
LINDGREN B, 1990, EUROPHYS LETT, V11, P555
MACEDO WAA, 1988, PHYS REV LETT, V61, P475
MACEDO WAA, 1991, J MAGN MAGN MATER, V93, P552
MAGNAN H, 1991, PHYS REV LETT, V67, P859
MORONI EG, 1999, J MAGN MAGN MATER, V198, P551
MORONI EG, 1999, J PHYS-CONDENS MAT, V11, L35
MORUZZI VL, 1986, PHYS REV B, V34, P1784
MRYASOV ON, 1992, PHYS REV B, V45, P12330
MULLER S, 1995, PHYS REV LETT, V74, P765
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
PARR RG, 1989, DENSITY FUNCTIONAL A
PEDUTO PR, 1997, BRAZ J PHYS, V27, P574
PESCIA D, 1987, PHYS REV LETT, V58, P2126
PIZZINI S, 1995, PHYS REV LETT, V74, P1470
POPESCU V, 2000, PHYS REV B, V61, P15241
QIAN D, 2001, PHYS REV LETT, V87
SCHMITZ D, 1999, PHYS REV B, V59, P4327
SPISAK D, 2000, PHYS REV B, V61, P16129
STRAUB M, 1996, PHYS REV LETT, V77, P743
SZUNYOGH L, 1997, PHYS REV B, V55, P14392
THOMASSEN J, 1992, PHYS REV LETT, V69, P3831
UHL M, 1992, J MAGN MAGN MATER, V103, P314
UJFALUSSY B, 1996, PHYS REV B, V54, P9883
VOSKO SH, 1980, CAN J PHYS, V58, P1200
WANG CS, 1985, PHYS REV LETT, V54, P1852
WUTTIG M, 1993, SURF SCI, V282, P237
ZHARNIKOV M, 1996, PHYS REV LETT, V76, P4620
NR 58
TC 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD DEC 2
PY 2002
VL 14
IS 47
BP 12311
EP 12328
PG 18
SC Physics, Condensed Matter
GA 634DC
UT ISI:000180323900011
ER
PT J
AU Machado, AED
de Miranda, JA
Guilardi, S
Nicodem, DE
Severino, D
TI Photophysics and spectroscopic properties of
3-benzoxazol-2-yl-chromen-2-one
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE photophysics; coumarin derivative; molecular structure; electronic
structure; PM3; ZINDO/S; ab initio
ID DERIVATIVES; COUMARINS; COMPOUND; SOLVENT; STATE; AM1
AB The photophysics of 3-benzoxazol-2-yl-chromen-2-one was studied in
different solvents. High molar absorptivities, between 14 800 and 22
900 dm(3)/mol cm, were observed for the absorption peak related to the
S-0 --> S-1 transition which suggests a pi --> pi*character. This
compound presents a limited solvatochromism, attributed to the
benzoxazole group, and high fluorescence quantum yields, Phi(f). The
fluorescence quantum yield is lowered with the increase of solvent
polarity, favouring the participation of internal conversion as
deactivation path of the S, state. The Stokes shift shows that the
excited state is stabilised with increasing solvent polarity. The
dipole moment was estimated by ab initio calculations as being between
5.28 and 5.62 Debye for S-1, and 4.75 Debye for S-0. Phosphorescence
was not observed. A small but not negligible quantum yield of singlet
oxygen generation ((Phi(Delta) = 0.15) was measured in chloroform. The
geometric parameters obtained by semi-empirical calculation (PM3) are
in good agreement with crystallographic data, showing a r.m.s.
deviation of 0.153 Angstrom for the superposition of both structures.
The predicted structure is all planar, while the crystallographic data
reveal a dihedral angle of 6.5degrees, between the coumarin and
benzoxazole rings. The theoretical description of the electronic
spectra, obtained from a PM3 CI calculation, shows excellent agreement
with the experimental data. Deviations lower than 2% are observed in
the predicted absorption maxima, with best results when solvation is
considered. For electronic states calculation, ZINDO/S gave a better
prediction of excited state energies, with a deviation lower than 7%
for the S, energy. The most probable sequence for the first four
excited states is: T-1(npi*) < T-2(pipi*) < S-1(pipi*) < S-2(npi*). (C)
2002 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Uberlandia, Inst Quim, Lab Fotoquim, GFQL, BR-38400089 Uberlandia, MG, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, Lab Espectroscopia Resolvida Tempo, BR-21949900 Rio De Janeiro, Brazil.
RP Machado, AED, Univ Fed Uberlandia, Inst Quim, Lab Fotoquim, GFQL, POB
593, BR-38400089 Uberlandia, MG, Brazil.
CR 1999, HYPERCHEMISTRY 5 11
ARBELOA TL, 1993, J PHYS CHEM-US, V97, P4704
DEMELO JSS, 1994, J PHYS CHEM-US, V98, P6054
DREXHAGE KH, 1973, TOPICS APPL PHYSICS, V1
EATON DF, 1988, PURE APPL CHEM, V60, P1107
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GAO F, 2000, DYES PIGMENTS, V47, P231
GILBERT A, 1991, ESSENTIALS MOL PHOTO
GUILARDI S, UNPUB
JONES G, 1994, J PHYS CHEM-US, V98, P13028
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
KRASOVITSKII BM, 1988, ORGANIC LUMINESCENT, CH7
LAKOWICZ JR, 1999, PRINCIPLES FLUORESCE
LIPPERT E, 1955, Z NATURFORSCHG A, V10, P541
LUAN XH, UNPUB ADV COLOUR SCI
MACHADO AED, 2001, J PHOTOCH PHOTOBIO A, V141, P109
MACHADO AEH, UNPUB
MACHADO AEH, 2001, J PHOTOCH PHOTOBIO A, V146, P72
MCCARTHY PK, 1993, J PHYS CHEM-US, V97, P12205
MIRANDA JA, 2001, THESIS U FEDERAL UBE
RAJU BB, 1994, J PHYS CHEM-US, V98, P8903
RAJU BB, 1998, J PHOTOCH PHOTOBIO A, V116, P135
REICHARDT C, 1988, SOLVENTS SOLVENT EFF
SCHMIDT R, 1994, J PHOTOCH PHOTOBIO A, V79, P11
SILVERSTEIN RM, 1991, SPECTROMETRIC IDENTI
TURRO NJ, 1991, MODERN MOL PHOTOCHEM
WHEELOCK CE, 1959, J AM CHEM SOC, V81, P1348
NR 27
TC 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JAN 1
PY 2003
VL 59
IS 2
BP 345
EP 355
PG 11
SC Spectroscopy
GA 626PY
UT ISI:000179882900017
ER
PT J
AU Bruns, RE
Haiduke, RLA
do Amaral, AT
TI The linear relationship between Koopmans' and hydrogen bond energies
for some simple carbonyl molecules
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE hydrogen bonding; atomic charges; Koopmans' energy; QSAR
ID DIPOLE-MOMENT DERIVATIVES; FIELD ANALYSIS; AB-INITIO;
CONFORMATIONAL-ANALYSIS; SEMIEMPIRICAL METHODS; INFRARED INTENSITIES;
ATOMIC CHARGES; POLAR TENSORS; DESCRIPTORS; POTENTIALS
AB Recently Galabov and Bobadova-Parvanova have shown that the energy of
hydrogen bond formation calculated at the HF/6-31G(d,p) level is highly
correlated with the molecular electrostatic potential at the acceptor
site for a number of simple carbonyl compounds. Here it is shown that
the electrostatic potential can be replaced by Koopmans' energy. The
correlation between this energy and the hydrogen bond formation energy
is just as high as the one observed by Galabov and Bobadova-Parvanova.
The Siegbahn simple potential relating Koopmans' energies and GAPT
charges shows that the hydrogen bond energy is not simply correlated
with the charge of the acceptor site because the charges on the
neighboring atoms are also important in the hydrogen bonding process.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Bruns, RE, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13083970
Campinas, SP, Brazil.
CR BESLER BH, 1990, J COMPUT CHEM, V11, P431
BIARGE JF, 1961, ANALES REAL SOC ES A, V57, P81
BOBADOVAPARVANOVA P, 1998, J PHYS CHEM A, V102, P1815
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BUREAU R, 1996, QUANT STRUCT-ACT REL, V15, P373
CIOSLOWSKI J, 1989, J AM CHEM SOC, V111, P8333
DEOLIVEIRA AE, 2000, J PHYS CHEM A, V104, P5320
FOLKERS G, 1993, 3D QSAR DRUG DESIGN, P583
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GALABOV B, 1999, J PHYS CHEM A, V103, P6793
GANCIA E, 2000, J COMPUT AID MOL DES, V14, P293
GUADAGNINI PH, 1997, J AM CHEM SOC, V119, P4224
HAIDUKE RLA, 2002, J PHYS CHEM A, V106, P1824
KARELSON M, 1996, CHEM REV, V96, P1027
KROEMER RT, 1996, J COMPUT CHEM, V17, P1296
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NAVAJAS C, 1996, QUANT STRUCT-ACT REL, V15, P189
OVEREND J, 1963, INFRARED SPECTROSCOP, CH10
PERSON WB, 1974, J CHEM PHYS, V61, P1040
RECANATINI M, 1996, J COMPUT AID MOL DES, V10, P74
TONMUNPHEAN S, 1998, J COMPUT AID MOL DES, V12, P397
WALLER CL, 1993, J MED CHEM, V36, P2390
WILSON EB, 1955, MOL VIBRATIONS
NR 23
TC 3
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD NOV-DEC
PY 2002
VL 13
IS 6
BP 800
EP 805
PG 6
SC Chemistry, Multidisciplinary
GA 627DC
UT ISI:000179914600011
ER
PT J
AU de Andrade, J
Boes, ES
Stassen, H
TI Computational study of room temperature molten salts composed by
1-alkyl-3-methylimidazolium cations-force-field proposal and validation
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID IONIC LIQUIDS; CHLOROALUMINATE MELTS; MOLECULAR-DYNAMICS; IMIDAZOLIUM
SALTS; SIMULATIONS; CATALYSIS; SOLVENTS; SPECTROSCOPY; CHLORIDE; SEARCH
AB We present a complete force field for liquid-state simulations on ionic
liquids containing 1-ethyl-3-methylimidazolium and
1-n-butyl-3-methylimidazolium cations and the tetrachloroaluminate and
tetrafluoroborate anions. The force field is compatible with the AMBER
methodology and is easily extendable to other dialkylimidazolium salts.
On the basis of the general AMBER procedures to develop lacking
intramolecular parameters and the RESP approach to calculate the atomic
point charges, we obtained an all-atom force field which was validated
against the experimental density, diffusion coefficient, vibrational
frequencies, as well as X-ray (crystal state) and neutron (liquid
state) diffraction structural data. Moreover, molecular mechanics
calculations for the developed force field produce the cation's
structures and dipole moments in very good agreement with quantum
mechanical ab initio calculations. In addition, a basic study
concerning the simulated liquid structure in terms of the radial
distribution functions has been undertaken using molecular dynamics
simulation. In summary, we achieved a very consistent picture in the
computed data for the four room-temperature molten salts.
C1 Univ Fed Rio Grande Sul, Inst Quim, Grp Quim Teor, BR-91540000 Porto Alegre, RS, Brazil.
RP Stassen, H, Univ Fed Rio Grande Sul, Inst Quim, Grp Quim Teor,
BR-91540000 Porto Alegre, RS, Brazil.
CR AKDENIZ Z, 1999, Z NATURFORSCH A, V54, P180
ALLEN MP, 1987, COMPUTER SIMULATIONS
BAYLY CI, 1993, J PHYS CHEM-US, V97, P10269
BOLM C, 1999, ANGEW CHEM INT EDIT, V38, P907
CAMPBELL JLE, 1994, INORG CHEM, V33, P3340
CASE DA, 1999, AMBER, V6
CHITRA R, 1997, J PHYS CHEM B, V101, P5437
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179
DEANDRADE J, 2002, J PHYS CHEM B, V106, P3546
DUDEK MJ, 1998, J COMPUT CHEM, V19, P548
DUPONT J, 2000, CHEM-EUR J, V6, P2377
DUPONT J, 2000, J BRAZIL CHEM SOC, V11, P337
DYMEK CJ, 1989, INORG CHEM, V28, P1472
ELAIWI A, 1995, J CHEM SOC DA, P3467
FANNIN AA, 1984, J PHYS CHEM-US, V88, P2614
FISH RH, 1999, CHEM-EUR J, V5, P1677
FOX T, 1998, J PHYS CHEM B, V102, P8070
FRANCL MM, 1982, J CHEM PHYS, V77, P3654
GORDON CM, 1998, J MATER CHEM, V8, P2627
GOUGH CA, 1992, J COMPUT CHEM, V13, P963
HAGIWARA R, 2000, J FLUORINE CHEM, V105, P221
HANKE CG, 2001, MOL PHYS, V99, P801
HANKE CG, 2002, GREEN CHEM, V4, P107
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HUGHES DJ, 1955, US ATOMIC ENERGY COM
JESSOP PG, 1999, CHEM REV, V99, P475
KAUPP G, 1994, ANGEW CHEM INT EDIT, V33, P1452
KAUPP G, 1994, ANGEW CHEM, V106, P1519
LARIVE CK, 1995, J PHYS CHEM-US, V99, P12409
LIDE DR, 1999, HDB CHEM PHYSICS
LYUBARTSEV AP, 2000, COMPUT PHYS COMMUN, V128, P565
MARTYNA GJ, 1996, MOL PHYS, V87, P1117
MAYO SL, 1990, J PHYS CHEM-US, V94, P8897
MENG Z, 2002, J MOL STRUC-THEOCHEM, V585, P119
PAPPU RV, 1998, J PHYS CHEM B, V102, P9725
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SHAH JK, 2002, GREEN CHEM, V4, P112
SUAREZ PAZ, 1998, J CHIM PHYS PCB, V95, P1626
TAKAHASHI S, 1995, INORG CHEM, V34, P2990
TAKAHASHI S, 1999, Z PHYS CHEM 2, V209, P209
TOSI MP, 1993, ANNU REV PHYS CHEM, V44, P173
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
WASSERSCHEID P, 2000, ANGEW CHEM INT EDIT, V39, P3772
WELTON T, 1999, CHEM REV, V99, P2071
WILKES JS, 1982, INORG CHEM, V21, P1263
NR 45
TC 32
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD DEC 26
PY 2002
VL 106
IS 51
BP 13344
EP 13351
PG 8
SC Chemistry, Physical
GA 628GQ
UT ISI:000179985100035
ER
PT J
AU Oliveira, HPM
Camargo, AJ
Macedo, LG
Gehlen, MH
da Silva, ABF
TI Synthesis, structure, electronic and vibrational spectra of
9-(diethylamino)-benzo(a)phenoxazin-7-ium-5-N-methacrylamide
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE dye laser; Nile Blue; photophysical properties; DFT calculations
ID DENSITY-FUNCTIONAL THERMOCHEMISTRY; NILE-RED; ZIRCONIUM-PHOSPHATE;
PROTON-TRANSFER; DYES; FLUORESCENCE; ANISOTROPY; EXCHANGE; DYNAMICS;
BLUE
AB The electronic and vibrational spectra of
9-(Diethylamino)-benzo(a)phenoxazin-7-ium-5-N-methacrylamide (Nile
Blue-5-N-methacrylamide) are measured, and the results are compared
with the theoretical values obtained by quantum chemical calculations.
The geometry, electronic transitions, charge distribution, and the IR
normal modes of this new dye and of its precursor Nile Blue have been
computed by using Density Functional Theory (DFT) method with the
functional B3LYP and the 6-31G(d) Gaussian basis set. The molecular
properties of the two dyes, predicted and observed, are very similar in
the electronic ground state. In the excited state, however, the longer
lifetime and larger fluorescence quantum yield of the Nile
Blue-5-methacrylamide is ascribed to an inhibition of the twisted
intramolecular charge transfer (TICT) process, when the NH2 is
substituted by the methacrylamide in the 5-position of the aromatic
extended ring of the dye. The change in charge density of the N atom in
5-position, as well as the difference in dipole moment and ionization
potential of the two dyes molecules, explain the attenuation of TICT
process. The vibration spectra of both dyes are simulated properly by
using the DFT method. (C) 2002 Elsevier Science B.V. All rights
reserved.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
RP Gehlen, MH, Univ Sao Paulo, Inst Quim Sao Carlos, CP 780, BR-13560970
Sao Carlos, SP, Brazil.
CR BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1992, J CHEM PHYS, V96, P2155
BECKE AD, 1993, J CHEM PHYS, V98, P5648
DEBACKER S, 1996, J PHYS CHEM-US, V100, P512
DIAS LC, 1999, CHEM PHYS LETT, V302, P505
DUNKERS J, 1995, SPECTROCHIM ACTA A, V51, P1061
DUTT GB, 1991, J CHEM PHYS, V94, P5360
DUTTA AK, 1996, J PHOTOCH PHOTOBIO A, V93, P57
GHONEIM N, 2000, SPECTROCHIM ACTA A, V56, P1003
GOLINI CM, 1998, J FLUORESC, V8, P395
GROFCSIK A, 1996, CHEM PHYS LETT, V250, P261
GROFCSIK A, 2000, J MOL STRUCT, V555, P15
KICQ P, 1987, BIOELECTROCH BIOENER, V17, P277
LEE C, 1988, PHYS REV B, V37, P785
MALINAUSKAS A, 2000, J ELECTROANAL CHEM, V484, P55
NAKASHIMA K, 1993, LANGMUIR, V9, P2825
PESSOA CA, 1997, J ELECTROANAL CHEM, V431, P23
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SOMLOI J, 1992, SPECTROCHIM ACTA A, V48, P77
SOUTAR I, 1996, J PHOTOCH PHOTOBIO A, V102, P87
VISWANATHAN K, 1996, J PHOTOCH PHOTOBIO A, V95, P245
WONG MW, 1996, CHEM PHYS LETT, V256, P391
NR 22
TC 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD DEC
PY 2002
VL 58
IS 14
BP 3103
EP 3111
PG 9
SC Spectroscopy
GA 620CD
UT ISI:000179514900007
ER
PT J
AU Menegon, G
Shimizu, K
Farah, JPS
Dias, LG
Chaimovich, H
TI Parameterization of the electronegativity equalization method based on
the charge model 1
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID ATOMIC CHARGES; AB-INITIO; ELECTROSTATIC POTENTIALS; MOLECULES;
HARDNESS; POLARIZABILITY; DEPENDENCE; CHEMISTRY
AB Fast calculation of charge distributions in molecules is feasible in
the electronegativity equalization method, EEM. Atomic
electronegativities and hardnesses, fundamental parameters in EEM, were
obtained here by using CM1 atomic charges at semiempirical PM3 level as
targets. A new optimization approach composed of Genetic and Simplex
algorithms is also described. The correlation between EEM and CM1
charges improved considerably (correlation coefficient improved from
0.931 to 0.977, standard deviation from 0.079 to 0.032 and Fisher's F
from 31 627 to 102 977, for 4093 data points) in comparison to previous
EEM parameters ( L. G. Dias et al., Chem. Phys., 2002, 282, 237, ref.
23). Atomic parameters obtained here are discussed and compared to
other EEM schemes and to parameters derived from empirical approaches.
C1 Univ Sao Paulo, Inst Chem, Dept Biochem, Sao Paulo, Brazil.
Univ Sao Paulo, Inst Chem, Dept Chem, Sao Paulo, Brazil.
RP Menegon, G, Univ Sao Paulo, Inst Chem, Dept Biochem, Sao Paulo, Brazil.
CR BADER RFW, 1981, ADV QUANTUM CHEM, V14, P63
BAKOWIES D, 1996, J COMPUT CHEM, V17, P87
BANKS JL, 1999, J CHEM PHYS, V110, P741
BAYLY CI, 1993, J PHYS CHEM-US, V97, P10269
CHAMBERS CC, 1996, J PHYS CHEM-US, V100, P16385
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
CHO KH, 2001, J PHYS CHEM B, V105, P3624
CONG Y, 2000, CHEM PHYS LETT, V316, P324
DEPROFT F, 1993, J PHYS CHEM-US, V97, P1826
DIAS LG, 2002, CHEM PHYS, V282, P237
GOLDBERG DE, 1989, GENETIC ALGORITHMS S
HAWKINS GD, 1999, AMSOL VERSION6 6
KOMATSUZAKI T, 1996, MOL SIMULAT, V16, P321
KOMOROWSKI L, 1987, CHEM PHYS, V114, P55
LI JB, 1998, J PHYS CHEM A, V102, P1820
LIU YP, 1998, J CHEM PHYS, V108, P4739
LOWDIN PO, 1950, J CHEM PHYS, V18, P365
MARTIN B, 2000, INT J QUANTUM CHEM, V77, P473
MILLER KJ, 1990, J AM CHEM SOC, V112, P8533
MORTIER WJ, 1985, J AM CHEM SOC, V107, P829
MORTIER WJ, 1986, J AM CHEM SOC, V108, P4315
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NALEWAJSKI RF, 1988, INT J QUANT CHEM S, V22, P349
NO KT, 1993, J AM CHEM SOC, V115, P2005
PARR RG, 1989, DENSITY FUNCTIONAL T
PEARSON RG, 1988, INORG CHEM, V27, P734
PRESS WH, 1992, NUMERICAL RECIPES FO
REED AE, 1985, J CHEM PHYS, V83, P735
RIBEIRO MCC, 1999, J CHEM PHYS, V110, P11445
RIBEIRO MCC, 2000, J CHEM PHYS, V113, P4722
STORER JW, 1995, J COMPUT AID MOL DES, V9, P87
TOUFAR H, 1996, J PHYS CHEM-US, V100, P15383
YANG ZZ, 1997, J PHYS CHEM A, V101, P6315
NR 33
TC 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2002
VL 4
IS 24
BP 5933
EP 5936
PG 4
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 620XD
UT ISI:000179558000003
ER
PT J
AU Pereira, AS
Perottoni, CA
da Jornada, JAH
Leger, JM
Haines, J
TI Compressibility of AlB2-type transition metal diborides
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID TITANIUM DIBORIDE; STATE
AB The pressure behaviour of a series of transition metal borides has been
studied both experimentally and by means of ab initio calculations.
X-ray diffraction patterns measured up to similar to50 GPa for VB2 and
ZrB2 show no obvious phase transition. Bulk moduli of 322 and 317 GPa,
respectively, were obtained using a Murnaghan equation of state.
Hartree-Fock LCCO (linear combination of crystal orbitals) calculations
performed for TiB2 have allowed its compression behaviour to be
studied. The bulk modulus obtained (292 GPa) and the proposed important
contribution of the interlayer interaction to the elastic behaviour
under high pressure are consistent with the experimental results for
the other borides.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
UFRGS, Escola Engn, BR-90035190 Porto Alegre, RS, Brazil.
Univ Caxias Sul, Ctr Ciencias Exatas & Tecnol, BR-95070560 Caxias Do Sul, RS, Brazil.
Inst Nacl Metrol Normalizacao & Qualidade Ind, Duque De Caxias, RJ, Brazil.
Lab Proprietes Mecan & Thermodynam Mat, Villetaneuse, France.
Univ Montpellier 2, Lab Phys Chim Mat Condensee, Montpellier, France.
RP Pereira, AS, Univ Fed Rio Grande Sul, Inst Fis, Caixa Postal 15051,
BR-91501970 Porto Alegre, RS, Brazil.
CR CHEN XL, 2001, J PHYS-CONDENS MAT, V13, L723
CUTLER RA, 1991, ENG PROPERTIES BORID
MUNRO RG, 2000, J RES NATL INST STAN, V105, P709
PEROTTONI CA, 2000, J PHYS-CONDENS MAT, V12, P7205
PISANI C, 1988, SPRINGER LECT NOTES, V48
VAJEESTON P, 2001, PHYS REV B, V63
NR 6
TC 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD NOV 11
PY 2002
VL 14
IS 44
BP 10615
EP 10618
PG 4
SC Physics, Condensed Matter
GA 620PL
UT ISI:000179541700043
ER
PT J
AU Rivelino, R
Coutinho, K
Canuto, S
TI A Monte Carlo-quantum mechanics study of the solvent-induced spectral
shift and the specific role of hydrogen bonds in the conformational
equilibrium of furfural in water
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID LIQUID WATER; AB-INITIO; ROTATIONAL BARRIERS; MOLECULAR-STRUCTURE;
SPECTROSCOPY; SIMULATION; DYNAMICS; NMR; TRANSITION; ISOMERISM
AB The solvation shift of the lowest absorption transition of furfural in
water is analyzed as a function of the rotation angle for the
interconversion between the two conformations, OO-cis and OO-trans, of
furfural. In total, 20 Monte Carlo NPT simulations are performed,
corresponding to different rotation angles of the carbonyl group. The
solvation shift of the n-pi* state is calculated to be 1230 +/- 45
cm(-1) in the most stable OO-cis form. This calculated shift is found
to be essentially independent of the rotation angle. The hydrogen bonds
between furfural and water are also analyzed along the interconversion
path. These hydrogen bonds are found to be equivalent, both in number
and in binding energy, for all rotation angles. The results for the
solvent-induced spectral shift and the hydrogen bond interactions
confirm that in water they make no preference for any rotamer of
furfural and lead to small contribution to the entropic activation
barrier of furfural in protic solvents.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi Cruzes, CIIB, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ABRAHAM RJ, 1972, TETRAHEDRON, V28, P3015
ABRAHAM RJ, 1974, INTERNAL ROTATIONAL, CH13
ABRAHAM RJ, 1982, TETRAHEDRON, V38, P3245
ALEN MP, 1987, COMPUTER SIMULATION
ALLEN G, 1955, CAN J CHEM, V33, P1055
ALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
BAIN AD, 1997, J PHYS CHEM A, V101, P7182
BALDRIDGE KK, 2000, J CHEM PHYS, V113, P7519
BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BENASSI R, 1987, ADV HETEROCYCL CHEM, V41, P75
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BIRNSTOCK F, 1976, THEOR CHIM ACTA, V42, P311
BRAATHEN GO, 1986, J MOL STRUCT, V145, P45
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CANUTO S, 2002, IN PRESS ADV QUANTUM
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 1997, MONTE CARLO PROGRAM
COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HIRAOKA H, 1968, J CHEM PHYS, V48, P2185
JOHNSON P, 2001, J ECON THEORY, V100, P1
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225
KAMIYA H, 1998, HYBRIDOMA, V17, P87
LITTLE TS, 1989, SPECTROCHIM ACTA A, V45, P789
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MARTIN ML, 1970, TETRAHEDRON LETT, V39, P3407
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
MEZEI M, 1981, J CHEM PHYS, V74, P622
MILLER FA, 1967, SPECTROCHIM ACTA A, V23, P891
MIYAHARA Y, 1996, THEOCHEM-J MOL STRUC, V364, P131
MONNIG F, 1965, Z NATURFORSCH A, V20, P1323
MONTAUDO G, 1973, TETRAHEDRON, V29, P3915
MORADIEZ N, 1998, THEOCHEM-J MOL STRUC, V453, P49
PETRONGOLO C, 1976, CHEM PHYS LETT, V42, P512
RAHMAN A, 1971, J CHEM PHYS, V55, P3336
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
ROQUES B, 1970, TETRAHEDRON, V26, P3555
SALMAN SR, 1982, ORG MAGN RESONANCE, V20, P151
STILLINGER FH, 1974, J CHEM PHYS, V60, P1545
STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
ZERNER MC, 1997, ZINDO SEMIEMPIRICAL
NR 48
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 28
PY 2002
VL 106
IS 47
BP 12317
EP 12322
PG 6
SC Chemistry, Physical
GA 620QJ
UT ISI:000179543800035
ER
PT J
AU Teles, LK
Scolfaro, LMR
Leite, JR
Furthmuller, J
Bechstedt, F
TI Phase diagram, chemical bonds, and gap bowing of cubic InxAl1-xN
alloys: Ab initio calculations
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID FIRST-PRINCIPLES CALCULATIONS; MOLECULAR-BEAM EPITAXY; FORCE-FIELD
MODEL; STRUCTURAL-PROPERTIES; SEMICONDUCTOR ALLOYS; INXGA1-XN; ENERGY;
REGION; INGAN; INN
AB Thermodynamic, structural, and electronic properties of cubic InxAl1-xN
alloys are studied by combining first-principles total energy
calculations and the generalized quasichemical approach. Results for
bond-lengths, second-nearest-neighbors distances, and bond angles in
the alloy are presented. The calculated phase diagram of the alloy
shows a broad and asymmetric miscibility gap. The gap fluctuations in
the alloy allow for the definition of a minimum gap and an average gap
with different bowing parameters, that can provide an explanation for
the discrepancies found in the experimental values for the bowing
parameter. It is also found that lattice matched In0.2Al0.8N with GaN
is suitable to form a barrier material for electronic and
optoelectronic nitride based devices. (C) 2002 American Institute of
Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743 Jena, Germany.
RP Teles, LK, Univ Sao Paulo, Inst Fis, CP66318, BR-05315970 Sao Paulo,
Brazil.
CR ABERNATHY CR, 1995, J VAC SCI TECHNOL 1, V13, P716
CHEN AB, 1995, SEMICONDUCTOR ALLOYS
DAVYDOV VY, 2002, PHYS STATUS SOLIDI B, V229, R1
FERHAT M, 2002, PHYS REV B, V65
GOANO M, 2000, J APPL PHYS, V88, P6476
GOLDHAHN R, 2000, APPL PHYS LETT, V76, P291
GUO QX, 1995, J CRYST GROWTH, V146, P462
ITO T, 2000, PHYS STATUS SOLIDI B, V217, R7
KIM KS, 1997, APPL PHYS LETT, V71, P800
KRESSE G, 1996, COMP MATER SCI, V6, P15
LEMOS V, 2000, PHYS REV LETT, V84, P3666
LIMA AP, 1999, J CRYST GROWTH, V201, P396
LUKITSCH MJ, 2001, APPL PHYS LETT, V79, P632
MATSUOKA T, 1997, APPL PHYS LETT, V71, P105
NAKAMURA S, 1997, BLUE LASER DIODE GAN
OKUMURA H, 1998, J CRYST GROWTH, V189, P390
PANKOVE JI, 1998, SEMICONDUCT SEMIMET, V50, P127
PEARTON SJ, 1994, APPL PHYS LETT, V64, P3643
PEARTON SJ, 1995, APPL PHYS LETT, V67, P2329
PENG T, 1997, APPL PHYS LETT, V71, P243
SAITO T, 1999, PHYS REV B, V60, P1701
SCOLFARO LMR, 2002, PHYS STATUS SOLIDI A, V190, P15
SHER A, 1987, PHYS REV B, V36, P4279
TABATA A, 1999, APPL PHYS LETT, V74, P362
TABATA A, 2002, APPL PHYS LETT, V80, P769
TAKAYAMA T, 2000, JPN J APPL PHYS 1, V39, P5057
TAKAYAMA T, 2001, J CRYST GROWTH, V222, P29
TELES LK, 2000, PHYS REV B, V62, P2475
TELES LK, 2001, PHYS REV B, V63
TELES LK, 2002, APPL PHYS LETT, V80, P1177
VANSCHILFGAARDE M, 1997, J CRYST GROWTH, V178, P8
WEI SH, 1990, PHYS REV B, V41, P8240
WRIGHT AF, 1995, APPL PHYS LETT, V66, P3465
YAMAGUCHI S, 1998, J CRYST GROWTH, V195, P309
ZUNGER A, 1994, STATICS DYNAMICS ALL, P361
NR 35
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD DEC 15
PY 2002
VL 92
IS 12
BP 7109
EP 7113
PG 5
SC Physics, Applied
GA 619UD
UT ISI:000179495100021
ER
PT J
AU Levin, Y
TI Electrostatic correlations: from plasma to biology
SO REPORTS ON PROGRESS IN PHYSICS
LA English
DT Review
ID ONE-COMPONENT PLASMA; DIPOLAR HARD-SPHERES; CHARGED COLLOIDAL
PARTICLES; HYPERNETTED-CHAIN APPROXIMATION; 2-DIMENSIONAL COULOMB GAS;
VAPOR-LIQUID CONDENSATION; DENSITY-FUNCTIONAL THEORY; DEBYE-HUCKEL
THEORY; RESTRICTED PRIMITIVE MODEL; MONTE-CARLO SIMULATIONS
AB Electrostatic correlations play an important role in physics, chemistry
and biology. In plasmas they result in thermodynamic instability
similar to the liquid-gas phase transition of simple molecular fluids.
For charged colloidal suspensions the electrostatic correlations are
responsible for screening and colloidal charge renormalization. In
aqueous solutions containing multivalent counterions they can lead to
charge inversion and flocculation. In biological systems the
correlations account for the organization of cytoskeleton and the
compaction of genetic material. In spite of their ubiquity, the true
importance of electrostatic correlations has come to be fully
appreciated only quite recently. In this paper, we will review the
thermodynamic consequences of electrostatic correlations in a variety
of systems ranging from classical plasmas to molecular biology.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
RP Levin, Y, Univ Fed Rio Grande Sul, Inst Fis, Caixa Postal 15051,
BR-91501970 Porto Alegre, RS, Brazil.
CR ALEXANDER S, 1984, J CHEM PHYS, V80, P5776
ALLAHYAROV E, 1998, PHYS REV LETT, V81, P1334
ALLEN R, 2001, PHYS CHEM CHEM PHYS, V3, P4177
ANDELMAN D, 2000, CR ACAD SCI IV-PHYS, V1, P1153
ARENZON JJ, 1999, EUR PHYS J B, V12, P79
ARIEL G, CONDMAT0206361
ARRHENIUS S, 1887, Z PHYS CHEM, V1, P631
AUFFINGER P, 1996, FARADAY DISCUSS, V103, P151
AUFFINGER P, 1998, CURR OPIN STRUC BIOL, V8, P227
BANERJEE S, 1998, J STAT PHYS, V93, P109
BARBOSA MC, 2000, EUROPHYS LETT, V52, P80
BARRAT JL, 1996, ADV CHEM PHYS, V94, P1
BAUS M, 1980, PHYS REP, V59, P1
BELLONI L, 1986, PHYS REV LETT, V57, P2026
BELLONI L, 1993, J CHEM PHYS, V98, P8080
BELLONI L, 1998, COLLOID SURFACE A, V140, P227
BELLONI L, 2000, J PHYS-CONDENS MAT, V12, R549
BJERRUM N, 1926, KGL DANSKE VIDENSKAB, V7, P1
BLOCH F, 1930, Z PHYS, V61, P206
BLOOMFIELD VA, 1991, BIOPOLYMERS, V31, P1471
BLOOMFIELD VA, 1997, BIOPOLYMERS, V44, P269
BORUKHOV I, 2002, J CHEM PHYS, V117, P462
BOWEN WR, 1998, NATURE, V393, P663
CAILLOL JM, 1993, J CHEM PHYS, V98, P9835
CAILLOL JM, 1994, J CHEM PHYS, V100, P2161
CAILLOL JM, 1997, J CHEM PHYS, V107, P1565
CAMP PJ, 1999, J CHEM PHYS, V111, P9000
CHAN DYC, 2001, LANGMUIR, V17, P4202
CHAPLICK AV, 1971, SOV PHYS JETP, V35, P395
CHAPMAN DL, 1913, PHILOS MAG, V25, P475
CHUI ST, 1976, PHYS REV B, V14, P4978
CRANDALL RS, 1971, PHYS LETTERS A, V34, P404
CROCKER JC, 1994, PHYS REV LETT, V73, P352
CURTIN WA, 1985, PHYS REV A, V32, P2909
DEBYE P, 1923, PHYS Z, V24, P185
DEGENNES PG, 1970, PHYS KONDENS MATER, V11, P189
DEGENNES PG, 1976, J PHYS-PARIS, V37, P1461
DERJAGUIN BV, 1941, ACTA PHYSICOCHIMICA, V14
DESERNO M, CONDMAT0202029
DESERNO M, CONDMAT0206126
DESERNO M, 2001, ELECTROSTATIC EFFECT, V46
DIEHL A, 2001, EUROPHYS LETT, V53, P86
DIEHL A, 2001, PHYS REV E 1, V64
DOBRYNIN AV, 1995, J PHYS II, V5, P677
DOBRYNIN AV, 1996, MACROMOLECULES, V29, P2974
EBELING W, 1968, Z PHYS CHEM-LEIPZIG, V238, P400
FALKENHAGEN H, 1971, IONIC INTERACTIONS
FELGNER PL, 1989, NATURE, V337, P387
FELGNER PL, 1997, SCI AM, V276, P86
FERNANDEZNIEVES A, 2000, LANGMUIR, V16, P4090
FERNANDEZNIEVES A, 2001, PHYS REV E 1, V63
FIREY B, 1977, PHYS REV A, V15, P2072
FISHER ME, 1981, PHYS REV LETT, V47, P421
FISHER ME, 1993, PHYS REV LETT, V71, P3826
FISHER ME, 1994, J CHEM PHYS, V101, P2273
FISHER ME, 1995, J STAT PHYS, V79, P1
FISHER ME, 1996, PHYS REV LETT, V77, P3561
FLORESMENA JE, 2001, PHYS REV E 2, V63
FRIEDMANN T, 1997, SCI AM, V276, P80
FUOSS RM, 1951, P NATL ACAD SCI USA, V37, P579
GANN RC, 1979, PHYS REV B, V20, P326
GILSON MK, 1985, J MOL BIOL, V184, P503
GLASSTONE S, 1946, TXB PHYSICAL CHEM
GOLESTANIAN R, 1999, PHYS REV LETT, V82, P4456
GOLESTANIAN R, 2000, EUROPHYS LETT, V52, P47
GONZALESTOVAR E, 1985, J CHEM PHYS, V83, P361
GOSULE LC, 1976, NATURE, V259, P333
GOULDING D, 1998, MOL PHYS, V95, P649
GOULDING D, 1999, EUROPHYS LETT, V46, P407
GOUY G, 1910, J PHYS-PARIS, V9, P457
GRIER DG, UNPUB COMMUNICATION
GRIER DG, 2000, J PHYS-CONDENS MAT, V12, A85
GRIER DG, 2000, PHYS REV E, V61, P980
GRIMES CC, 1979, PHYS REV LETT, V42, P795
GROH B, 1994, PHYS REV E, V50, P3814
GROH B, 1996, PHYS REV E, V54, P1687
GROH B, 1997, PHYS REV LETT, V79, P749
GRONBECHJENSEN N, 1997, PHYS REV LETT, V78, P2477
GRONBECHJENSEN N, 1998, PHYSICA A, V261, P74
GROOT RD, 1991, J CHEM PHYS, V95, P9191
GROSBERG AY, 2002, REV MOD PHYS, V74, P329
GULDBRAND L, 1984, J CHEM PHYS, V80, P2221
HA BY, CONDMAT0003162
HA BY, 1997, PHYS REV LETT, V79, P1289
HA BY, 1999, EUROPHYS LETT, V46, P624
HANSEN JP, 1976, THEORY SIMPLE LIQUID
HANSEN JP, 2000, ANNU REV PHYS CHEM, V51, P209
HIGGS PG, 1991, J CHEM PHYS, V94, P1543
HOPE MJ, 1998, MOL MEMBR BIOL, V15, P1
ISRAELACHVILI JN, 1976, J CHEM SOC FARADAY T, V72, P1525
JANCOVICI B, 1982, J STAT PHYS, V28, P43
JANCOVICI B, 1982, J STAT PHYS, V29, P263
KANTOR Y, 1995, PHYS REV E, V51, P1299
KARDAR M, 1999, REV MOD PHYS, V71, P1233
KEPLER GM, 1994, PHYS REV LETT, V73, P356
KHOKHLOV AR, 1980, J PHYS A, V13, P979
KHOLODENKO AL, 1995, PHYS REV LETT, V74, P4679
KHRAPUNOV SN, BIOCH BIOPHYSICA ACT, V1351, P213
KJELLANDER R, 1984, CHEM PHYS LETT, V112, P49
KJELLANDER R, 1986, J PHYS CHEM-US, V90, P1230
KLEIN R, 2001, PURE APPL CHEM, V73, P1705
KLIMENKO SM, 1967, J MOL BIOL, V23, P523
KORNYSHEV AA, 1999, PHYS REV LETT, V82, P4138
KORNYSHEV AA, 2000, PHYS REV E B, V62, P2576
KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181
KUHN P, 1998, CHEM PHYS LETT, V298, P5
KUHN PS, 1998, MACROMOLECULES, V31, P8347
KUHN PS, 1999, PHYSICA A, V274, P8
LANDAU LD, 1937, PHYS Z SOWJETUNION, V11, P26
LARSEN AE, 1996, PHYS REV LETT, V76, P3862
LAU AWC, 2000, PHYS REV LETT, V84, P4116
LEE N, 2001, MACROMOLECULES, V34, P3446
LEVIN Y, 1994, PHYS REV LETT, V73, P2716
LEVIN Y, 1995, EUROPHYS LETT, V31, P513
LEVIN Y, 1996, EUROPHYS LETT, V34, P405
LEVIN Y, 1996, PHYSICA A, V225, P164
LEVIN Y, 1998, EUROPHYS LETT, V41, P123
LEVIN Y, 1998, PHYSICA A, V257, P408
LEVIN Y, 1999, PHYS REV LETT, V83, P1159
LEVIN Y, 1999, PHYS REV LETT, V83, P2680
LEVIN Y, 1999, PHYSICA A, V265, P432
LI XJ, 1994, EUROPHYS LETT, V26, P683
LINSE P, 1999, PHYS REV LETT, V83, P4208
LINSE P, 2000, J CHEM PHYS, V112, P3917
LINSE P, 2000, J CHEM PHYS, V113, P4359
LOBASKIN V, 2000, J MOL LIQ, V84, P131
LOWEN H, 1993, J CHEM PHYS, V98, P3275
LOWEN H, 1994, J CHEM PHYS, V100, P6738
LOZADACASSOU M, 1982, J CHEM PHYS, V77, P5150
LUIJTEN E, CONDMAT0112388
LUIJTEN E, UNPUB
MANNING GS, 1969, J CHEM PHYS, V51, P924
MANNING GS, 1978, Q REV BIOPHYS, V11, P179
MANSOORI GA, 1969, J CHEM PHYS, V51, P4958
MARCUS RA, 1955, J CHEM PHYS, V23, P1057
MATEESCU EM, 1999, EUROPHYS LETT, V46, P493
MCMILLAN WG, 1945, J CHEM PHYS, V13, P276
MERMIN ND, 1968, PHYS REV, V171, P272
MESSINA R, CONDMAT0111335
MESSINA R, 2000, PHYS REV LETT, V85, P872
MESSINA R, 2001, PHYS REV E 1, V64
MICKA U, 1999, LANGMUIR, V15, P4033
MINNHAGEN P, 1987, REV MOD PHYS, V59, P1001
NARAYANAN T, 1994, PHYS REV LETT, V73, P3002
NARAYANAN T, 1995, J CHEM PHYS, V102, P8118
NELSON DR, 1983, PHASE TRANSITIONS CR, P1
NETZ R, CONDMAT0203364
NETZ RR, 1999, EUROPHYS LETT, V45, P726
NEU JC, 1999, PHYS REV LETT, V82, P1072
NG KC, 1974, J CHEM PHYS, V61, P2680
NGUYEN TT, CONDMAT0005304
NGUYEN TT, 2000, J CHEM PHYS, V112, P2562
NGUYEN TT, 2000, J CHEM PHYS, V113, P1110
NGUYEN TT, 2000, PHYS REV LETT, V85, P1568
NINHAM BW, 1971, J THEOR BIOL, V31, P405
NORDHOLM S, 1984, CHEM PHYS LETT, V105, P302
ODIJK T, 1998, BIOPHYS J, V75, P1223
ONSAGER L, 1933, CHEM REV, V13, P1933
OOSAWA F, 1971, POLYELECTROLYTES
ORKOULAS G, 1996, J CHEM PHYS, V104, P7205
ORKOULAS G, 1999, J CHEM PHYS, V110, P1581
OVERBEEK JTG, 1987, J CHEM PHYS, V87, P4406
PALBERG T, 1994, PHYS REV LETT, V72, P786
PANAGIOTOPOULOS AZ, 1902, PHYS REV LETT, V88
PARK SY, 1998, BIOPHYS J, V75, P714
PARK SY, 1999, EUROPHYS LETT, V46, P493
PATEY GN, 1980, J CHEM PHYS, V72, P5763
PEIERLS RE, 1935, ANN I H POINCARE, V5, P177
PELTA J, 1996, BIOPHYS J, V71, P48
PELTA J, 1996, J BIOL CHEM, V271, P5656
PENFOLD R, 1990, J CHEM PHYS, V92, P1915
PENFOLD R, 1998, J PHYS CHEM B, V102, P8599
PITZER KS, 1995, J PHYS CHEM-US, V99, P13070
PODGORNIK R, 1998, PHYS REV LETT, V80, P1560
POLLOCK EL, 1973, PHYS REV A, V8, P3110
QUESADAPEREZ M, 2000, PHYS REV E, V61, P574
ROBBINS MO, 1988, J CHEM PHYS, V88, P3286
ROGERS FJ, 1983, PHYS REV A, V28, P2990
ROUZINA I, 1996, J PHYS CHEM-US, V100, P9977
RUSHBROOKE GS, 1973, MOL PHYS, V26, P1199
RUSSEL WB, 1989, COLLOIDAL DISPERSION
SABIR AK, 1998, MOL PHYS, V93, P405
SADER JE, 1999, J COLLOID INTERF SCI, V213, P268
SAMINATHAN M, 1999, BIOCHEMISTRY-US, V38, P3821
SCHMIDT A, 1999, J CHEM PHYS, V110, P113
SCHMIDT AB, 2001, PHYSICA A, V293, P21
SEAR RP, 1996, PHYS REV LETT, V76, P2310
SHKLOVSKII BI, 1999, PHYS REV E B, V60, P5802
SHKLOVSKII BI, 1999, PHYS REV LETT, V82, P3628
SOGAMI I, 1984, J CHEM PHYS, V81, P6320
SOLIS FJ, 1999, PHYS REV E B, V60, P4496
SOLIS FJ, 2000, J CHEM PHYS, V112, P2030
SPASSOV V, 1998, PROTEIN SCI, V7, P554
SQUIRES TM, 2001, PHYS REV LETT, V86, P5266
STEVENS MJ, 1990, EUROPHYS LETT, V12, P81
STEVENS MJ, 1995, J CHEM PHYS, V103, P1669
STEVENS MJ, 1996, J CHEM PHYS, V104, P5209
STILCK JF, 2002, J STAT PHYS, V106, P287
STREY HH, 1998, CURR OPIN STRUC BIOL, V8, P309
TAMASHIRO MN, UNPUB
TAMASHIRO MN, 1999, PHYSICA A, V268, P24
TANAKA M, 2001, J CHEM PHYS, V115, P567
TANG JX, 1996, BER BUNSEN PHYS CHEM, V100, P796
TANG JX, 1996, J BIOL CHEM, V271, P8556
TANG JX, 1997, EUR J BIOCHEM, V247, P432
TARAZONA P, 1985, PHYS REV A, V31, P2672
TARNASHIRO MN, 1998, PHYSICA A, V258, P341
TATA BVR, 1992, PHYS REV LETT, V69, P3778
TATA BVR, 1994, PHYS REV LETT, V72, P787
TAVARES JM, 1997, PHYS REV E, V56, P6252
TORRIE GM, 1980, J CHEM PHYS, V73, P5807
TOTSUJI H, 1975, J PHYS SOC JPN, V39, P253
TOTSUJI H, 1976, J PHYS SOC JPN, V40, P857
TRIZAC E, CONDMAT0201510
TRIZAC E, UNPUB
TRIZAC E, 1999, PHYS REV E A, V60, P6530
TRIZAC E, 2000, PHYS REV E A, V62, R1465
VANDERWAALS JD, 1873, THESIS LEIDEN
VANLEEUWEN ME, 1993, PHYS REV LETT, V71, P3991
VANROIJ R, 1996, PHYS REV LETT, V76, P3348
VANROIJ R, 1997, PHYS REV LETT, V79, P3082
VELAZQUEZ ES, 1997, PHYSICA A, V244, P453
VERWEY EJW, 1948, THEORY STABILITY LYO
VONGRUNBERG HH, 2001, EUROPHYS LETT, V55, P580
WARREN PB, 2000, J CHEM PHYS, V112, P4683
WEEKS JD, 1981, PHYS REV B, V24, P1530
WEIS JJ, 1993, PHYS REV LETT, V71, P2729
WEISS P, 1907, J PHYS, V6, P667
WENNERSTROM H, 1982, J CHEM PHYS, V76, P4665
WIEGAND S, 1998, J CHEM PHYS, V109, P9038
YAN QL, 1999, J CHEM PHYS, V111, P9509
NR 231
TC 117
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0034-4885
J9 REP PROGR PHYS
JI Rep. Prog. Phys.
PD NOV
PY 2002
VL 65
IS 11
BP 1577
EP 1632
PG 56
SC Physics, Multidisciplinary
GA 619JH
UT ISI:000179472500001
ER
PT J
AU Acioli, PH
Jellinek, J
TI Electron binding energies of anionic magnesium clusters and the
nonmetal-to-metal transition
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MG CLUSTERS; DENSITY; APPROXIMATION; GAS; NA
AB The binding energies of the two most external electrons in Mg-n(-), n =
2-22, clusters are computed using the gradient-corrected density
functional theory and a new scheme for converting the Kohn-Sham
eigenenergies into electron removal energies. The computations are
performed for the anionic clusters considered in the most stable
configurations of both Mg-n(-) and Mg-n. The results are compared with
photoelectron spectroscopy data [O. C. Thomas et al., following Letter,
Phys. Rev. Lett. 89, 213403 (2002)], and their implications for the
finite-size analog of the nonmetal-to-metal transition are analyzed.
C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA.
Univ Brasilia, Inst Fis, Nucleo Fis Atom Mol & Fluidos, BR-70919970 Brasilia, DF, Brazil.
RP Acioli, PH, Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL
60439 USA.
CR ACIOLI PH, IN PRESS
AKOLA J, 2001, EUR PHYS J D, V16, P21
BARAILLE I, 1998, J PHYS-CONDENS MAT, V10, P10969
BECKE AD, 1988, PHYS REV A, V38, P3098
DAVIDSON ER, 1997, J CHEM PHYS, V106, P2331
DELALY P, 1992, PHYS REV B, V45, P3838
DIEDERICH T, 2001, PHYS REV LETT, V86, P4807
ERIKSSON LA, 1995, J CHEM PHYS, V103, P1050
GONG XG, 1993, PHYS LETT A, V181, P459
GUPTA RP, 1976, PHYS REV LETT, V36, P1194
JELLINEK J, IN PRESS
JELLINEK J, 2002, J PHYS CHEM A, V106, P10919
KOHN A, 2001, PHYS CHEM CHEM PHYS, V3, P711
KUMAR V, 1991, PHYS REV B, V44, P8243
LEE TJ, 1990, J CHEM PHYS, V93, P6636
PERDEW JP, 1986, PHYS REV B, V33, P8822
REUSE F, 1990, PHYS REV B, V41, P11743
RIEMANN SM, 1997, PHYS REV B, V56, P12147
ROTHLISBERGER U, 1992, J CHEM PHYS, V96, P1248
THOMAS OC, 2002, PHYS REV LETT, V89
WADT WR, 1985, J CHEM PHYS, V82, P284
NR 21
TC 15
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 18
PY 2002
VL 89
IS 21
AR 213402
DI ARTN 213402
PG 4
SC Physics, Multidisciplinary
GA 612HH
UT ISI:000179068000015
ER
PT J
AU Frota-Pessoa, S
Klautau, AB
Legoas, SB
TI Influence of interface mixing on the magnetic properties of Ni/Pt
multilayers
SO PHYSICAL REVIEW B
LA English
DT Article
ID REAL-SPACE; ANISOTROPY; FE; NI; IMPURITIES; MOMENTS
AB Motivated by existing experimental data, we study here the influence of
interface mixing on the magnetic behavior of Ni-6/Pt-5(111)
multilayers. In the present ab initio calculations the mixing,
restricted to the interface layers, was simulated by ordered
two-dimensional Ni-Pt lattices. Two different degrees of mixing of the
components at the interface were considered-namely, 25% and 50%. The
perfect interface was also calculated and for some of the systems
orbital moments were obtained. We find that interface mixing explains
rather well the observed magnetic moment profile for Ni sites. But even
with the inclusion of orbital contributions, the theoretical results
tend to underestimate the induced moment at the Pt sites found
experimentally.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Fed Univ Para, Dept Fis, BR-66059 Belem, Para, Brazil.
Univ Estadual Campinas, Inst Fis, Campinas, SP, Brazil.
RP Frota-Pessoa, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR ANDERSEN OK, 1975, PHYS REV B, V12, P3060
ANDERSEN OK, 1985, HIGHLIGHTS CONDENSED
BEER N, 1984, ELECT STRUCTURE COMP
ERIKSSON O, 1990, PHYS REV B, V42, P2707
FROTAPESSOA S, UNPUB
FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
FROTAPESSOA S, 1993, PHYS REV LETT, V71, P4206
HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215
KIRSCH R, 2002, EUROPHYS LETT, V59, P430
KLAUTAU AB, 1999, PHYS REV B, V60, P3421
KLAUTAU AB, 2002, SURF SCI, V497, P385
KRISHNAN R, 1993, J APPL PHYS 2B, V73, P6433
LEGOAS SB, 2000, PHYS REV B, V61, P10417
NOUGUEIRA RN, 2001, J PHYS CONDENS MATT, V14, P1067
PARRA RE, 1979, J APPL PHYS, V50, P7522
PEDUTO PR, 1991, PHYS REV B, V44, P13283
POULOPOULOS P, 1995, J MAGN MAGN MATER 1, V140, P613
POULOPOULOS P, 2001, J APPL PHYS, V89, P3874
SHIN SC, 1998, APPL PHYS LETT, V73, P393
STOEFFLER D, 1991, PHYS REV B, V44, P10389
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
WILHELM F, 2000, PHYS REV B, V61, P8647
WILHELM F, 2000, PHYS REV LETT, V85, P413
NR 23
TC 5
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD OCT 1
PY 2002
VL 66
IS 13
AR 132416
DI ARTN 132416
PG 4
SC Physics, Condensed Matter
GA 612HG
UT ISI:000179067900030
ER
PT J
AU Orellana, W
Ferraz, AC
TI Stability and electronic structure of hydrogen-nitrogen complexes in
GaAs
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID GALLIUM-ARSENIDE; AB-INITIO; PSEUDOPOTENTIALS; DEFECTS
AB We investigate the stability and electronic properties of defects
formed by a substitutional nitrogen in GaAs (N-As) plus interstitial
hydrogen atoms using first-principles total-energy calculations. We
find the formation of strong N-As-H bond when a single H atom is
incorporated in the lowest-energy bond centered (BC) position. This
defect induces an electrically active level in the GaAs band gap. When
two H atoms are incorporated, we find the stable N-As-H-2* complex as
the lowest-energy configuration, with one H atom at the BC position and
the second H atom at an antibonding position. The electronic structure
of this complex shows the passivation of the gap level restoring the
GaAs band gap. (C) 2002 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Orellana, W, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BALDASSARRI G, 2001, APPL PHYS LETT, V78, P3472
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BONAPASTA AA, 1995, PHYS REV B, V51, P4172
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
ESTREICHER SK, 1995, MAT SCI ENG R, V14, P319
FRANCOEUR S, 1998, APPL PHYS LETT, V72, P1857
HOHENBERG P, 1964, PHYS REV B, V136, P864
JANOTTI A, 2002, PHYS REV LETT, V88
KOHN W, 1965, PHYS REV, V140, A1133
KOHN W, 1985, PHYS REV A, V140, P2471
LOUIE SG, 1982, PHYS REV B, V26, P1738
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
ORELLANA W, 1997, THESIS U SAO PAULO
ORELLANA W, 2001, APPL PHYS LETT, V78, P1231
PAVESI L, 1992, PHYS REV B, V46, P4621
POLIMENI A, 2001, PHYSICA B, V308, P850
TROULLIER N, 1991, PHYS REV B, V43, P1993
ZHANG Y, 2000, PHYS REV B, V61, P7579
ZHANG Y, 2001, PHYS REV B, V63
NR 19
TC 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 11
PY 2002
VL 81
IS 20
BP 3816
EP 3818
PG 3
SC Physics, Applied
GA 611XB
UT ISI:000179042200038
ER
PT J
AU Braga, SF
Galvao, DS
TI A semiempirical study on the electronic structure of
10-deacetylbaccatin-III
SO JOURNAL OF MOLECULAR GRAPHICS & MODELLING
LA English
DT Article
DE paclitaxel; taxoids; baccatin; semiempirical methods; molecular orbital
calculations
ID POLYCYCLIC AROMATIC-HYDROCARBONS; IDENTIFY CARCINOGENIC ACTIVITY;
SIDE-CHAIN; ANTIMITOTIC ACTIVITY; PACLITAXEL TAXOL(R);
MOLECULAR-STRUCTURE; CRYSTAL-STRUCTURE; PACIFIC YEW; AB-INITIO; ANALOGS
AB We performed a conformational and electronic analysis for
10-deacetylbaccatin-III (DBAC) using well-known semiempirical methods
(parametric method 3 (PM3) and Zerner's intermediate neglect of
differential overlap (ZINDO)) coupled to the concepts of total and
local density of states (LDOS). Our results indicate that regions
presented by paclitaxel (Taxol(R)) as important for the biological
activity can be traced out by the electronic features present in DBAC.
These molecules differ only by a phenylisoserine side chain. Compared
to paclitaxel, DBAC has a simpler structure in terms of molecular size
and number of degrees of freedom (d.f.). This makes DBAC a good
candidate for a preliminary investigation of the taxoid family. Our
results question the importance of the oxetane group, which seems to be
consistent with recent experimental data. (C) 2002 Elsevier Science
Inc. All rights reserved.
C1 Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, BR-13091970 Campinas, SP, Brazil.
RP Galvao, DS, Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, CP
6165, BR-13091970 Campinas, SP, Brazil.
CR *EIU, 1990, EIU MARK EUR TRAD RE
*MOPAC, MOPAC PROGR VERS 6 0
BALLONE P, 1999, J PHYS CHEM A, V103, P3097
BARONE PMVB, 1996, PHYS REV LETT, V77, P1186
BARONE PMVB, 1999, J MOL STRUC-THEOCHEM, V465, P219
BARONE PMVB, 2000, J MOL STRUC-THEOCHEM, V505, P55
BAUMANN H, 1999, J COMPUT CHEM, V20, P396
BOLIVARMARINEZ LE, 1996, J PHYS CHEM-US, V100, P11029
BOLIVARMARINEZ LE, 1999, J PHYS CHEM B, V103, P2993
BRAGA RS, 2000, J CHEM INF COMP SCI, V40, P1377
BRAGA SF, IN PRESS STRUCTURE A
CAMPBELL SJ, 1995, ACS SYM SER, V583, P58
CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
CHEN SH, 1995, ACS SYM SER, V583, P247
COMMERCON A, 1995, ACS SYM SER, V583, P233
CYRILLO M, 1999, J MOL STRUC-THEOCHEM, V464, P267
DEWAR MJS, 1977, J AM CHEM SOC, V99, P5231
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DEWAR MJS, 1990, J COMPUT CHEM, V11, P541
DOSSANTOS HF, 1995, J MOL STRUC-THEOCHEM, V335, P129
DUBOIS J, 1993, TETRAHEDRON, V49, P6533
EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
FARINA V, 1995, CHEM PHARM TAXOL
GALVAO DS, 1993, J CHEM PHYS, V98, P3016
GAO Q, 1995, ACTA CRYSTALLOGR, V51, P2995
GAO Q, 1996, TETRAHEDRON LETT, V37, P3425
GAO Q, 1996, TETRAHEDRON, V52, P2291
GEORG GI, 1995, ACS SYM SER, V583, P217
GORB L, 1998, THEOCHEM-J MOL STRUC, V425, P137
GUENARD D, 1993, ACCOUNTS CHEM RES, V26, P160
GUERITTEVOEGELEIN F, 1991, J MED CHEM, V34, P992
HOLTON RA, 1994, J AM CHEM SOC, V116, P1597
HOLTON RA, 1994, J AM CHEM SOC, V116, P1599
JAYASINGHE LR, 1994, J MED CHEM, V37, P2981
JEFFORD CW, 1995, THEOCHEM-J MOL STRUC, V337, P31
JENKINS P, 1996, CHEM BRIT, V11, P43
KISLOV VV, 1999, INTERNET J CHEM, V2, P1
KOLL A, 2000, J MOL STRUCT, V552, P193
LEVINE IN, 1991, QUANTUM CHEM
LI YK, 2000, BIOCHEMISTRY-US, V39, P281
LODISH H, 1995, MOL CELL BIOL
LOZYNSKI M, 1995, TETRAHEDRON LETT, V36, P8849
LYTHGOE B, 1968, ALKALOIDS, V10, P597
MASTROPAOLO D, 1995, P NATL ACAD SCI USA, V92, P6920
MCKINNEL RG, 1998, BIOL BASIS CANC
MILANESIO M, 1999, J MED CHEM, V42, P291
NICOLAOU KC, 1994, NATURE, V367, P630
PALAFOX MA, 1999, J MOL STRUC-THEOCHEM, V459, P239
RIDLEY JE, 1976, THEOR CHIM ACTA, V42, P223
RUDDON RW, 1987, CANC BIOL
SANTO LLD, 1999, J MOL STRUC-THEOCHEM, V464, P273
SCANO P, 1991, J COMPUT CHEM, V12, P172
SNYDER JP, 2000, J AM CHEM SOC, V122, P724
SOOS ZG, 1994, J PHYS CHEM-US, V98, P1029
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
STIERLE A, 1995, ACS SYM SER, V583, P81
SUFFNESS M, 1995, ACS SYM SER, V583, P1
SUGIMURA T, 1992, SCIENCE, V258, P603
SWINDELL CS, 1991, J MED CHEM, V34, P1176
VENDRAME R, IN PRESS J CHEM INF
VENDRAME R, 1999, J CHEM INF COMP SCI, V39, P1094
WANG MM, 2000, J ORG CHEM, V65, P1059
WESSJOHANN L, 1994, ANGEW CHEM INT EDIT, V33, P959
WILLIAMS HJ, 1996, J MED CHEM, V39, P1555
ZERNER MC, 1991, REV COMPUTATIONAL CH, V2, P313
NR 66
TC 3
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1093-3263
J9 J MOL GRAPH MODEL
JI J. Mol. Graph.
PD AUG
PY 2002
VL 21
IS 1
BP 57
EP 70
PG 14
SC Computer Science, Interdisciplinary Applications; Biochemical Research
Methods; Biochemistry & Molecular Biology; Crystallography
GA 611LX
UT ISI:000179019900008
ER
PT J
AU Dalpian, GM
Venezuela, P
da Silva, AJR
Fazzio, A
TI Ab initio calculations of vacancies in SixGe1-x
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SILICON; ALLOYS
AB Ab initio calculations are used to investigate the structural and
electronic properties of vacancies in SixGe1-x. The (+ +), (+), (0),
and (-) charge states are studied and the substitutional disorder of
the alloy is considered explicitly. We found a linear relationship
between the effective-U for the system formed by the ( + +), ( +), and
(0) charge states and the number of Si atoms in the first neighborhood
of a vacancy (N-Si). The effective-U is positive when N-Si is zero, and
it is negative when N-Si is 2 and 4. In all cases, the absolute value
of the effective-U in the alloy is significantly smaller than its value
for pure Si and pure Ge. (C) 2002 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Dalpian, GM, Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ,
Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BARAFF GA, 1980, PHYS REV B, V21, P5662
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BOGUSLAWSKI P, 1999, PHYS REV B, V59, P1567
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
FAZZIO A, 2000, PHYS REV B, V61, P2401
HASSLEIN H, 1998, PHYS REV LETT, V80, P2626
JANOTTI A, 1999, PHYSICA B, V273, P575
LENTO J, 2000, APPL PHYS LETT, V77, P232
STURM JC, 2000, PROPERTIES SIGE SIGE, P305
VENEZUELA P, 2001, PHYS REV B, V64
VENEZUELA P, 2002, PHYS REV B, V65
VRIJEN R, 2000, PHYS REV A, V62
WATKINS GD, 1980, PHYS REV LETT, V44, P593
WATKINS GD, 1986, DEEP CTR SEMICONDUCT, P147
WEI SH, 1990, PHYS REV B, V42, P9622
NR 16
TC 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 28
PY 2002
VL 81
IS 18
BP 3383
EP 3385
PG 3
SC Physics, Applied
GA 609BB
UT ISI:000178881800025
ER
PT J
AU Giroldo, T
Riveros, JM
TI Keto-enol isomerization of gas-phase 2 '-methylacetophenone molecular
ions probed by high-temperature near-blackbody-induced dissociation,
ion-molecule reactions, and ab initio calculations
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID INFRARED RADIATIVE DISSOCIATION; HYDRATED ALUMINUM CATIONS; TANDEM
MASS-SPECTROMETRY; CNH2NO RADICAL CATIONS; UNIMOLECULAR DISSOCIATION;
MULTIPHOTON DISSOCIATION; ACTIVATION-ENERGIES; LASER PHOTODISSOCIATION;
THERMAL-DISSOCIATION; CARBONYL-COMPOUNDS
AB The thermal dissociation of several substituted acetophenone molecular
ions induced by infrared radiation from a hot wire has been studied in
a Fourier transform ion cyclotron resonance spectrometer. The
temperature dependence of the dissociation rate constants reveals that
the 2'-methylacetophenone molecular ion is characterized by a much
higher activation energy for dissociation than other acetophenones.
This molecular ion also exhibits a very different behavior with respect
to charge-transfer reactions. Unlike molecular ions obtained from other
isomeric acetophenones, the 2'-methylacetophenone M+. ion does not
promote charge exchange with dimethyl disulfide but does undergo
relatively slow electron transfer with ferrocene (IE = 6.74 eV). Ab
initio calculations at the MP2/6-31G(d) level predict that the
2-MeC6H4COCH3+. ion (1) can undergo facile tautomerization to the much
more stable enol ion 2,2'-(CH2C6H4C+)-C-.(OH)CH3, by a 1,4-hydrogen
migration (calculated energy barrier of 20 kJ mol(-1)). The calculated
recombination energy of this ion is in good agreement with the
observations from the charge-exchange experiments. A full analysis of
the potential energy surface suggests that, at low ionizing energies
(less than or equal to 11.5 eV), essentially all of the long-lived
molecular ions have isomerized to 2. The present example reveals the
versatility and some of the advantages of the high-temperature
near-blackbody-induced dissociation (hot wire emission) for probing
structural problems in ion chemistry.
C1 Univ Sao Paulo, Inst Quim, BR-05515970 Sao Paulo, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05515970
Sao Paulo, Brazil.
CR AASERUD DJ, 1997, INT J MASS SPECTROM, V167, P705
ANDREWS L, 1981, J AM CHEM SOC, V103, P99
BAR R, 1982, CHEM PHYS LETT, V91, P440
BARKOW A, 1995, EUR MASS SPECTROM, V1, P525
BAYKUT G, 1985, J AM CHEM SOC, V107, P8036
BEYER M, 1996, J AM CHEM SOC, V118, P7386
BEYER M, 1999, J PHYS CHEM A, V103, P671
BOMBACH R, 1983, J AM CHEM SOC, V105, P4205
BOMSE DS, 1979, J AM CHEM SOC, V101, P5503
BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P1
BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P203
BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR, P162
BURSEY MM, 1966, J AM CHEM SOC, V88, P529
CENTINEO G, 1978, J MOL STRUCT, V44, P203
CHAMOTROOKE J, 2000, INT J MASS SPECTROM, V195, P385
DAS PK, 1979, J AM CHEM SOC, V101, P6965
DUNBAR RC, 1991, J CHEM PHYS, V95, P2537
DUNBAR RC, 1994, J PHYS CHEM-US, V98, P8705
DUNBAR RC, 1998, SCIENCE, V279, P194
FOX BS, 2001, J PHYS CHEM A, V105, P6386
FREITAS MA, 2000, J AM CHEM SOC, V122, P7768
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GAMBI A, 1980, SPECTROCHIM ACTA A, V36, P871
GAUMANN T, 1991, J AM SOC MASS SPECTR, V2, P372
GRELLMANN KH, 1983, CHEM PHYS LETT, V95, P195
HAAG R, 1977, HELV CHIM ACTA, V60, P2595
HEINRICH N, 1988, J AM CHEM SOC, V110, P8183
HEYDORN LN, 2001, Z PHYS CHEM 2, V215, P141
HOLMES JL, 1980, J AM CHEM SOC, V102, P1591
JOCKUSCH RA, 1997, ANAL CHEM, V69, P1119
JOCKUSCH RA, 2000, J PHYS CHEM A, V104, P3188
KUKOL A, 1993, ORG MASS SPECTROM, V28, P1107
LEE SW, 1998, J AM CHEM SOC, V120, P11758
LEE SW, 1999, J AM CHEM SOC, V121, P10152
LI WK, 1993, J CHEM PHYS, V99, P8440
LIFSHITZ C, 1993, INT J MASS SPECTROM, V125, R7
LIN CY, 1996, J PHYS CHEM-US, V100, P19659
LIN CY, 1996, J PHYS CHEM-US, V100, P655
LITTLE DP, 1994, ANAL CHEM, V66, P2809
MARCINEK A, 1992, J CHEM SOC P2, P1353
MCLOUGHLIN RG, 1979, ORG MASS SPECTROM, V14, P434
MCLUCKEY SA, 1997, J MASS SPECTROM, V32, P461
MEYERSON S, 1957, J AM CHEM SOC, V79, P1058
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 2001, J AM SOC MASS SPECTR, V12, P150
MORGON NH, 1996, J PHYS CHEM-US, V100, P18048
MOURGUES P, 1993, ORG MASS SPECTROM, V28, P193
PEIRIS DM, 1996, INT J MASS SPECTROM, V159, P169
PRICE WD, 1996, ANAL CHEM, V68, P859
PRICE WD, 1997, J PHYS CHEM B, V101, P664
RABBIH MA, 1980, ORG MASS SPECTROM, V15, P195
RABBIH MA, 1981, INDIAN J PURE APPL P, V19, P335
REBRIONROWE C, 2000, J CHEM PHYS, V113, P3039
RIVEROS JM, 1998, PURE APPL CHEM, V70, P1969
RODRIGUEZCRUZ SE, 1998, J AM CHEM SOC, V120, P5842
RYAN MF, 1992, J AM CHEM SOC, V114, P8611
SCHNIER PD, 1998, ANAL CHEM, V70, P3033
SCHNIER PD, 1998, J AM CHEM SOC, V120, P9605
SCHWARZ H, 1978, TOP CURR CHEM, V73, P232
SCHWARZ H, 1985, ADV MASS SPECTROM, V10, P13
SENA M, UNPUB
SENA M, 1994, RAPID COMMUN MASS SP, V8, P1031
SENA M, 1997, J PHYS CHEM A, V101, P4384
SENA M, 2000, CHEM-EUR J, V6, P785
SENA M, 2001, ADV MASS SPECTROM, V15, P783
SENA M, 2001, THESIS U SAO PAULO S
SHIN SK, 1990, J AM CHEM SOC, V112, P2066
SILVA MLP, 1997, INT J MASS SPECTROM, V165, P83
STIRK KM, 1992, J AM CHEM SOC, V114, P8604
STRITTMATTER EF, 1999, J AM SOC MASS SPECTR, V10, P1095
THOLMANN D, 1994, J PHYS CHEM-US, V98, P2002
THORNE LR, 1984, GAS PHASE ION CHEM, V3, P42
TURECEK F, 1990, CHEM ENOLS, P95
UECHI GT, 1992, J CHEM PHYS, V96, P8897
VANDEREST G, 2000, INT J MASS SPECTROM, V195, P385
WOODIN RL, 1979, CHEM BIOCH APPL LASE, V4, P355
XAVIER LA, 1998, INT J MASS SPECTROM, V179, P223
NR 77
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 24
PY 2002
VL 106
IS 42
BP 9930
EP 9938
PG 9
SC Chemistry, Physical
GA 607LA
UT ISI:000178792000038
ER
PT J
AU Basso, EA
Pontes, RM
TI Further studies on the rotational barriers of Carbamates. An NMR and
DFT analysis of the solvent effect for Cyclohexyl N,N-dimethylcarbamate
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE carbamates; rotational barriers; DFT calculations; SCRF theory
ID C-N BOND; INTERNAL-ROTATION; AB-INITIO; HARTREE-FOCK; AMIDES;
N,N-DIMETHYLFORMAMIDE; RESONANCE; THIOFORMAMIDE; SUBSTITUENT; FORMAMIDE
AB The solvent effect on the Gibbs energy of activation for rotation
around the (C=O)-N bond in cyclohexyl N,N-dimethylcarbamate was
investigated by dynamic NMR spectroscopy and density-functional theory
at the B3LYP/6-311 + G** level. The experimental barriers were about 15
kcal mol(-1) with no appreciable variation when the solvent polarity
was changed. A reaction field model was applied to theoretically
mediate the solvent effect and the results were comparable to the
experimental data. An analysis, based on the Onsager solvation theory,
showed that the solvent effect on rotational barriers can be understood
employing the total molecular dipole moment, the difference between the
dipole moments of the ground and the transition state structures, or
both, as appropriate. (C) 2002 Elsevier Science B.V. All rights
reserved.
C1 Univ Estadual Maringa, Dept Quim, BR-87020900 Maringa, Parana, Brazil.
RP Basso, EA, Univ Estadual Maringa, Dept Quim, Av Colombo 5790,
BR-87020900 Maringa, Parana, Brazil.
CR ALLERHAND A, 1966, J AM CHEM SOC, V88, P3185
BASSO EA, 2001, J BRAZIL CHEM SOC, V12, P215
BECKE AD, 1993, J CHEM PHYS, V98, P1372
COX C, 1998, J ORG CHEM, V63, P2426
DRAKENBERG T, 1972, J PHYS CHEM-US, V76, P2178
DUFFI EM, 1992, J AM CHEM SOC, V114, P7235
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
KINCAID JF, 1941, CHEM REV, V28, P301
KIRKWOOD JG, 1934, J CHEM PHYS, V2, P351
LAIDIG KE, 1996, J AM CHEM SOC, V118, P1737
LAUVERGNAT D, 1997, J AM CHEM SOC, V119, P9478
LEE C, 1988, PHYS REV B, V37, P785
LEMASTER CB, 1989, J PHYS CHEM-US, V93, P1307
LIM KT, 1987, J PHYS CHEM-US, V91, P2716
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
PENG C, 1994, ISRAEL J CHEM, V33, P449
PENG CY, 1996, J COMPUT CHEM, V17, P49
PLIEGO JR, 2001, J PHYS CHEM A, V30, P7241
RABLEN PR, 1999, J AM CHEM SOC, V121, P218
RABLEN PR, 2000, J ORG CHEM, V65, P7930
ROSS BD, 1984, J AM CHEM SOC, V106, P2451
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
STEWART WE, 1970, CHEM REV, V70, P517
TOMASI J, 1994, CHEM REV, V94, P2027
VASSILEV NG, 1999, J MOL STRUCT, V484, P39
WIBERG KB, 1992, J AM CHEM SOC, V114, P831
WIBERG KB, 1993, J AM CHEM SOC, V115, P9234
WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
WONG MW, 1991, J PHYS CHEM-US, V95, P8491
NR 29
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD OCT 18
PY 2002
VL 594
IS 3
BP 199
EP 206
PG 8
SC Chemistry, Physical
GA 602MM
UT ISI:000178509100009
ER
PT J
AU Tutuncu, HM
Miotto, R
Srivastava, GP
Tse, JS
TI Phonons on group-III nitride (110) surfaces
SO PHYSICAL REVIEW B
LA English
DT Article
ID BOND-CHARGE MODEL; DENSITY-FUNCTIONAL CALCULATIONS; AB-INITIO;
LATTICE-DYNAMICS; FIRST-PRINCIPLES; GALLIUM NITRIDE; SEMICONDUCTOR
SURFACES; ELECTRONIC-PROPERTIES; SI(001)(2X1) SURFACE; EPITAXIAL LAYERS
AB We have applied the adiabatic bond-charge model within a supercell
approach to study the lattice dynamics of group-III nitride (110)
surfaces. The structural and electronic information necessary for these
calculations is obtained from using the ab initio pseudopotential
method. The phonon dispersion curves for the group-III nitride (110)
surfaces are presented and compared with each other in detail. From
this comparison, it is found that the InN(110) and GaN(110) surfaces
show similar dynamical behavior due to their large cation-anion mass
differences. It is pointed out that in general surface phonon modes on
group-III nitride (110) can be related to their counterparts on
non-nitride III-V(110) and II-VI(110) surfaces provided that results
are scaled with respect to the reduced mass and lattice constant
differences. The rotational phonon mode predicted for other
semiconductor surfaces is also identified for the group-III nitride
(110) surfaces.
C1 Sakarya Univ, Fen Edebiyat Fak, Fiz Bolumu, Adapazari, Turkey.
Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP Tutuncu, HM, Sakarya Univ, Fen Edebiyat Fak, Fiz Bolumu, Adapazari,
Turkey.
CR AGRAWAL BK, 1998, SURF SCI, V405, P54
ALLAN DC, 1984, PHYS REV LETT, V53, P826
ALVES JLA, 1991, PHYS REV B, V44, P6188
AZUHATA T, 1995, J PHYS CONDENS MATT, V7, P1949
AZUHATA T, 1995, J PHYS CONDENS MATT, V7, L129
BECHSTEDT F, 2000, PHYS REV B, V62, P8003
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
CHEN XJ, 1995, PHYS REV B, V52, P2348
DOLL GL, 1994, PROPERTIES GROUP, V3
EREMETS MI, 1995, PHYS REV B, V52, P8854
FILIPPIDIS L, 1996, PHYS STATUS SOLIDI B, V198, P621
FRITSCH J, 1999, PHYS REP, V309, P209
GROSSNER U, 1998, PHYS REV B, V58, R1722
HARTEN U, 1987, EUROPHYS LETT, V4, P833
JAFFE JE, 1996, PHYS REV B, V53, R4209
JENKINS SJ, 1994, J PHYS-CONDENS MAT, V6, P8781
KARCH K, 1997, PHYS REV B, V56, P7404
KARCH K, 1998, PHYS REV B, V57, P7043
LOUIE SG, 1982, PHYS REV B, V26, P1738
MIOTTO R, 1999, PHYS REV B, V59, P3008
MIOTTO R, 1999, SURF SCI, V426, P75
MIOTTO R, 2000, SOLID STATE COMMUN, V115, P67
NIENHAUS H, 1995, SURF SCI, V328, L561
NIENHAUS H, 1997, PHYS REV B, V56, P13194
PERDEW JP, 1981, PHYS REV B, V23, P5048
POLLMANN J, 1986, APPL PHYS A-SOLID, V41, P21
RAJPUT BD, 1996, PHYS REV B, V53, P9052
RUSTAGI KC, 1979, SOLID STATE COMMUN, V18, P673
SANJURJO JA, 1983, PHYS REV B, V28, P5479
SIEGLE H, 1995, SOLID STATE COMMUN, V96, P943
SRIVASTAVA GP, 1997, REP PROG PHYS, V60, P561
SWARTS CA, 1981, SURF SCI, V110, P400
TABATA A, 1996, J APPL PHYS 1, V79, P4137
TABATA A, 1999, APPL PHYS LETT, V74, P362
TAKAGI N, 1999, PHYS REV B, V60, P10919
TROULLIER N, 1991, PHYS REV B, V43, P1993
TUTUNCU HM, 1996, J PHYS-CONDENS MAT, V8, P1345
TUTUNCU HM, 1997, PHYS REV B, V56, P4656
TUTUNCU HM, 1999, PHYS REV B, V59, P4925
TUTUNCU HM, 2000, PHYS REV B, V62, P15797
TUTUNCU HM, 2000, PHYS REV B, V62, P5028
TUTUNCU HM, 2002, APPL PHYS LETT, V80, P3322
TUTUNCU HM, 2002, PHYSICA B, V316, P190
WEBER W, 1974, PHYS REV LETT, V33, P371
WEBER W, 1977, PHYS REV B, V15, P4789
ZANGWILL A, 1992, PHYSICS SURFACES
ZAPOL P, 1997, J PHYS-CONDENS MAT, V9, P9517
NR 47
TC 5
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD SEP 15
PY 2002
VL 66
IS 11
AR 115304
DI ARTN 115304
PG 11
SC Physics, Condensed Matter
GA 601RG
UT ISI:000178461000050
ER
PT J
AU Menegon, G
Loos, M
Chaimovich, H
TI Ab initio study of the thiolysis of trimethyl phosphate ester in the
gas phase
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PROTEIN-TYROSINE-PHOSPHATASE; VIBRATIONAL FREQUENCIES;
AQUEOUS-SOLUTION; HYDROLYSIS; REACTIVITY; MECHANISMS; CATALYSIS;
SPECTROSCOPY; INSIGHTS; ATTACK
AB Phosphate esters are key compounds in important biological reactions,
One family of enzymes, PTPases, catalyze the dephosphorylation of
tyrosine residues from other proteins by a cystein side-chain
nucleophilic attack at tyrosin phosphate. Very little is known about
the intrinsic reactivity of thiol nucleophiles with phosphor-us
centers. To explore this important reaction, we have performed ab
initio calculations on the trimethyl phosphate ester (TMP) thiolysis by
(CH3S)(-). Results in the gas phase indicate that attack at TMP carbon
is essentially predominant over phosphorus. Mechanisms are A(n)D(n) and
exoergic for reaction at carbon and A(n) + D-n with large activation
barriers and endoergic reaction for attack on phosphorus. A
trigonal-bipyramid intermediate was formed upon (CH3S)(-) reaction at
phosphorus and two different and competitive pathways were found for
the elimination of methoxide from this intermediate. One of the
elimination pathways is positioned in-line to the thiol group, as
proposed in the enzymatic mechanism. If PTPases work by the same
mechanism as the gas-phase reaction, these enzymes should drastically
lower the activation barriers for attack at phosphorus.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Menegon, G, Univ Sao Paulo, Inst Quim, Av Lineu Prestes 748,
BR-05508900 Sao Paulo, Brazil.
CR ADMIRAAL SJ, 2000, J AM CHEM SOC, V122, P2145
AHN N, 2001, CHEM REV, V101
ASUBIOJO OI, 1977, J AM CHEM SOC, V99, P7707
AYALA PY, 1998, J CHEM PHYS, V108, P2314
BARFORD D, 1998, ANNU REV BIOPH BIOM, V27, P133
BILLING GD, 1996, INTRO MOL DYNAMICS C
BUNTON CA, 1970, ACCOUNTS CHEM RES, V3, P257
BUNTON CA, 1997, J PHYS ORG CHEM, V10, P221
CHANG NY, 1997, J PHYS CHEM A, V101, P8706
CHANG NY, 1998, J AM CHEM SOC, V120, P2156
CLELAND WW, 1995, FASEB J, V9, P1585
COX JR, 1964, CHEM REV, V64, P317
DANTZMAN CL, 1996, J AM CHEM SOC, V118, P11715
DEJAEGERE A, 1994, J CHEM SOC FARADAY T, V90, P1763
FLORIAN J, 1997, J AM CHEM SOC, V119, P5473
FLORIAN J, 1998, J AM CHEM SOC, V120, P11524
FLORIAN J, 1998, J PHYS CHEM B, V102, P719
FRISCH MJ, 1998, GAUSSIAN 98 REV A 9
FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
GEORGE L, 1997, J PHYS CHEM A, V101, P2459
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
GUTHRIE RD, 1989, ACCOUNTS CHEM RES, V22, P343
HODGES RV, 1980, J AM CHEM SOC, V102, P935
JACKSON MD, 2001, CHEM REV, V101, P2313
LIM C, 1990, J AM CHEM SOC, V112, P5872
LUM RC, 1992, J AM CHEM SOC, V114, P8619
MCQUARRIE DA, 1973, STAT THERMODYNAMICS
MERCERO JM, 2000, J COMPUT CHEM, V21, P43
MOLLER C, 1934, PHYS REV, V46, P618
OCHTERSKI JW, 1999, WHITE PAPER VIBRATIO
PANNIFER ADB, 1998, J BIOL CHEM, V273, P10454
POPLE JA, 1993, ISRAEL J CHEM, V33, P345
SHAIK SS, 1992, THEORETICAL ASPECTS
STRECK R, 1996, J MOL STRUCT, V376, P277
THATCHER GRJ, 1989, ADV PHYS ORG CHEM, V25, P99
WESTHEIMER FH, 1968, ACCOUNTS CHEM RES, V1, P70
WESTHEIMER FH, 1987, SCIENCE, V235, P1173
YLINIEMELA A, 1993, J AM CHEM SOC, V115, P3032
ZHANG ZY, 1993, BIOCHEMISTRY-US, V32, P9340
NR 39
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 3
PY 2002
VL 106
IS 39
BP 9078
EP 9084
PG 7
SC Chemistry, Physical
GA 598JU
UT ISI:000178273400014
ER
PT J
AU Martins, JBL
Perez, MA
Silva, CHT
Taft, CA
Arissawa, M
Longo, E
Mello, PC
Stamato, FMLG
Tostes, JGR
TI Theoretical ab initio study of ranitidine
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE ab initio; ranitidine; conformation
ID HELICOBACTER-PYLORI INFECTION; CITRATE PLUS CLARITHROMYCIN;
DUODENAL-ULCER; ACTIVATION MECHANISM; BISMUTH CITRATE; RECEPTOR MODEL;
H-2-RECEPTOR ANTAGONISTS; HISTAMINE H-2-RECEPTOR; MOLECULAR MECHANISM;
GASTRIC PH
AB The presence of a heterocyclic ring containing a basic center linked
via a methylene chain to a substituted guanidine or thiourea polar side
chain, such as found in the H2-antagonist metiamide, which has an
imidazole heterocyclic ring, has often been identified as one of the
requirements for H-2-antagonist activity. In ranitidine, on the other
hand, the imidazole ring is substituted for a furan ring, yielding a
more active biological H2 antagonist. hi this work, we have used the ab
initio Hartree-Fock (HF) and second-order Moller-Plesset (MP2) methods
in order to investigate the open and folded ranitidine conformations,
of the type observed in metiamide. Five basis sets (3-21G, 3-21+G**,
6-31G, 6-31+G**, and 6-31+G**) were used in order to obtain fully
optimized geometric parameters that indicated good agreement with the
experimental crystallographic data, We have also investigated in this
work the effects of solvents in both ranitidine and metiamide.
Monocationic ranitidine was also investigated. All our results,
indicate that, as in metiamide, the folded conformation is also
preferred. We have investigated Mulliken and natural bond order (NBO)
charge distributions, electrostatic and hydrogen bond effects on
stabilizing the conformations and discussed the interactions of
ranitidine with the biological receptor. (C) 2002 Wiley Periodicals,
Inc.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estat, BR-22290180 Rio De Janeiro, Brazil.
Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
Univ Estadual Ponta Grossa, Dept Quim, BR-84031510 Ponta Grossa, Parana, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Estadual Norte Fluminense, Lab Ciencias Quim, Ctr Ciencias Exatas & Tecnol, BR-18015620 Campos, RJ, Brazil.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
Estat, R Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil.
CR BARDHAN KD, 1998, AM J GASTROENTEROL, V93, P380
BARDITCHCROVO PA, 1998, ANTIVIR RES, V38, P209
BARTLETT JA, 1998, J INFECT DIS, V177, P231
BLACK JW, 1975, J MED CHEM, V18, P905
BUSCHAUER A, 1989, RECEPTOR PHARM FUNCT, P293
CHIARI G, 1983, J CHEM SOC P2, V1, P1815
DURANT GJ, 1975, J MED CHEM, V18, P905
EGGLESTON A, 1998, GUT, V42, P13
ERICKS JC, 1993, MOL PHARMACOL, V44, P886
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRANKE R, 1984, THEORETICAL DRUG DES
FRISCH MJ, 1995, GAUSSIAN 94
GANELLIN CR, 1973, J MED CHEM, V16, P610
GANELLIN CR, 1973, J MED CHEM, V16, P620
GANELLIN CR, 1974, MOL QUANTUM PHARM, P43
GANELLIN CR, 1982, PHARM HISTAMINE RECE, P10
GANTZ I, 1992, J BIOL CHEM, V267, P20840
GIRALDO J, 1992, MOL PHARMACOL, V42, P373
GIRALDO J, 1999, BIOCHEM PHARMACOL, V58, P343
GREEN JP, 1977, P NATL ACAD SCI USA, V74, P5697
HARRISON AM, 1998, CRIT CARE MED, V26, P1433
ISHIDA T, 1990, ACTA CRYSTALLOGR C, V46, P1893
KANEKO H, 1998, BBA-MOL BASIS DIS, V1407, P193
KIER LB, 1986, J MED CHEM, V11, P441
KIMURA E, 1984, CHEM PHARM BULL, V32, P3569
KLOTZ U, 1991, PHARMACOL THERAPEUT, V50, P233
KOJICPRODIC B, 1982, ACTA CRYSTALLOGR B, V38, P1837
KUIPERS EJ, 1997, BAILLIERE CLIN INF D, V4, P395
LANZA FL, 1998, HELICOBACTER, V3, P212
LEFF P, 1997, TRENDS PHARMACOL SCI, V18, P355
LIN JH, 1991, CLIN PHARMACOKINET, V20, P218
LUQUE FJ, 1990, J CHIM PHYS PCB, V87, P1569
MACRI G, 1998, AM J GASTROENTEROL, V93, P925
MANES G, 1998, ITAL J GASTROENTEROL, V30, P28
MARTINS JBL, 1998, INT J QUANTUM CHEM, V38, P727
MAZZUREK AP, 1987, MOL PHARMACOL, V31, P345
MEINING A, 1998, ALIMENT PHARM THERAP, V12, P735
MIERTUS S, 1982, CHEM PHYS, V65, P239
MOLDEN G, 1999, SCAFTENAAR CAOS
NAGY PI, 1994, J AM CHEM SOC, V116, P4898
NEER EJ, 1995, CELL, V80, P249
NETZER P, 1998, ALIMENT PHARM THERAP, V12, P337
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
PAPPA KA, 1998, CURR THER RES CLIN E, V59, P454
PARDO L, 1991, MOL PHARMACOL, V40, P980
PARDO L, 1997, EUR J PHARMACOL, V335, P73
PARKMAN HP, 1998, DIGEST DIS SCI, V43, P497
PARKMAN HP, 1998, GUT, V42, P243
PORRO GB, 1998, ALIMENT PHARM THERAP, V12, P355
POZZATO P, 1998, ALIMENT PHARM THERAP, V12, P447
PROUT K, 1974, ACTA CRYSTALLOGR B, V30, P2284
PULLMAN B, 1974, MOL PHARMACOL, V10, P360
REGGIO P, 1986, J MED CHEM, V29, P2412
REILLY TG, 1998, ALIMENT PHARM THERAP, V12, P469
RICHARDS WG, 1977, QUANTUM PHARM
RODGERS PT, 1998, PHARMACOTHERAPY, V18, P404
SARAN A, 1992, IND J BIOCH BIOPHYS, V29, P54
SIMANOWSKI UA, 1998, DIGESTION, V59, P314
SMEYERS YG, 1985, J MOL STRUCT THEOCHE, V123, P431
SMEYERS YG, 1985, P 5 EUR QSAR S VCH W, P374
SMEYERS YG, 1990, J MOL STRUCT THEOCHE, V207, P157
STAMATO FML, 1990, J MOL STRUCT THEOCHE, V210, P447
STAMATO FML, 1992, J MOL STRUCT THEOCHE, V254, P505
TOPIOL S, 1984, J MED CHEM, V27, P1531
TOPIOL S, 1987, J COMPUT CHEM, V8, P142
VEIDIS MV, 1969, J CHEM SOC A, V17, P2659
VOGELSANGER B, 1991, J AM CHEM SOC, V113, P7864
WEINSTEIN H, 1976, MOL PHARMACOL, V12, P738
WEINSTEIN H, 1976, MOL PHARMACOL, V12, P738
WEINSTEIN H, 1986, MOL PHARMACOL, V29, P28
NR 70
TC 6
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD OCT 15
PY 2002
VL 90
IS 2
BP 575
EP 586
PG 12
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 595UE
UT ISI:000178126500011
ER
PT J
AU Rivelino, R
Ludwig, V
Rissi, E
Canuto, S
TI Theoretical studies of hydrogen bonding in water-cyanides and in the
base pair Gu-Cy
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE ab initio; hydrogen bond; water-cyanides; base pair
ID DENSITY-FUNCTIONAL-THEORY; PI-ASTERISK TRANSITION; AB-INITIO;
MOLECULAR-INTERACTIONS; SOLVATOCHROMIC SHIFTS; ELECTRON CORRELATION;
CORRELATION-ENERGY; QUANTUM-CHEMISTRY; BONDED COMPLEXES; ACETONE
AB Density-functional (DFF) and many-body-perturbation theories (MIBPT/CC)
are used to study the hydrogen bonding in the water-cyanide complexes
H-C=N...H2O, H3C-C=N...H2O and (CH3)(3)C-C=N...H2O. Structures, binding
energies and changes in vibrational frequencies are analyzed. The
calculated C=N stretching frequency is found to shift to the blue upon
complexation in H-C=N...H2O and H3C-C=N...H2O. To investigate electron
correlation effects on the binding energies of these complexes,
single-point calculations are performed at the MBPT/CC (MP2, MP3, MP4,
CCSD and CCSD(T)) levels using the optimized MP2 geometries. Binding
energies are also obtained at different levels of DFT (B3LYP and PW91)
and compared with the MBPT/CC results. All calculations include
corrections for basis set superposition error (BSSE) and zero-point
vibrational energies. Additionally, the triple hydrogen-bonded.
guanine-cytosine (Gu-Cy) base pair is analyzed. The binding energy of
the Watson-Crick model for Gu-Cy is calculated using the Hartree-Fock
calculations and DFT (B3LYP and BP86) methods. The results for the
hydrogen bonding distances and binding energies are in good agreement
with experimental and recent theoretical values. The calculated dipole
moment of the Gu-Cy complex is compared with the direct vector sum of
the isolated bases. After taking into account the BSSE effects we find
that the electron polarization due to the hydrogen binding leads to an
increase of similar to20% of the calculated dipole moment of the
complex. (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, POB 66318, BR-05315970 Sao Paulo,
Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BERTRAN J, 1998, J AM CHEM SOC, V120, P8159
BISWAS R, 1997, J MOL BIOL, V270, P511
BONG DT, 2001, ANGEW CHEM INT EDIT, V40, P988
BOYS SF, 1970, MOL PHYS, V19, P553
BRANDL M, 1999, THEOR CHEM ACC, V101, P103
COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
CRUZAN JD, 1996, SCIENCE, V271, P59
DAMEWOOD JR, 1987, J PHYS CHEM-US, V91, P3449
DELBENE JE, 1997, INTERMOLECULAR INTER
DESFRANCOIS C, 1995, SCIENCE, V269, P1707
DEVRIES AH, 1995, THESIS U GRONINGEN
DEVRIES AH, 1996, INT J QUANTUM CHEM, V57, P1067
ELSTNER M, 2001, J CHEM PHYS, V114, P5149
FOX T, 1992, CHEM PHYS LETT, V191, P33
GAO JL, 1994, J AM CHEM SOC, V116, P9324
GOGONEA V, 1999, J PHYS CHEM A, V103, P5171
GOULD IR, 1994, J AM CHEM SOC, V116, P2493
GUERRA CF, 2000, J AM CHEM SOC, V122, P4117
GUTOWSKY HS, 1992, J CHEM PHYS, V96, P5808
HEIKKILA A, 1999, J PHYS CHEM A, V103, P2945
HEIKKILA AT, 2000, J PHYS CHEM A, V104, P6637
HOBZA P, 2000, CHEM REV, V100, P4253
JEFFREY GA, 1991, HYDROGEN BONDING BIO
KARLSTROM G, 1982, THEOR CHIM ACTA, V61, P1
KURDI L, 1987, CHEM PHYS, V92, P92
LAASONEN K, 1993, J CHEM PHYS, V99, P9081
LATAJKA Z, 1987, J CHEM PHYS, V87, P1194
LEE C, 1988, PHYS REV B, V37, P785
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
MEYER M, 2001, J COMPUT CHEM, V22, P109
PAPPALARDO RR, 1993, CHEM PHYS LETT, V212, P12
PARR RG, 1983, ANNU REV PHYS CHEM, V34, P631
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1992, PHYS REV B, V45, P13244
PERDEW JP, 1996, PHYS REV B, V54, P16533
PIMENTEL GC, 1971, ANNU REV PHYS CHEM, V22, P347
PORTMANN S, 2000, J CHEM PHYS, V113, P9577
RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
RINCON L, 2001, J CHEM PHYS, V114, P5552
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
RIVELINO R, 2001, J PHYS CHEM A, V105, P11260
SAENGER W, 1984, PRINCIPLES NUCL ACID
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANTAMARIA R, 1994, J COMPUT CHEM, V15, P981
SCHEINER S, 1997, HYDROGEN BONDING THE
SCHEINER S, 2001, J BIOL CHEM, V276, P9832
SPONER J, 1996, J PHYS CHEM-US, V100, P1965
STEINER T, 1992, J AM CHEM SOC, V114, P10146
SUHAI S, 1995, J PHYS CHEM-US, V99, P1172
THOMPSON MA, 1996, J PHYS CHEM-US, V100, P14492
TSUZUKI S, 2001, J CHEM PHYS, V114, P3949
VANDERVAART A, 2000, J COMPUT CHEM, V21, P1494
VANDERVAART A, 2000, J PHYS CHEM B, V104, P9554
VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
WATSON JD, 1953, NATURE, V171, P737
XANTHEAS SS, 1994, J CHEM PHYS, V100, P7523
YANSON IK, 1979, BIOPOLYMERS, V18, P1149
YE YJ, 2000, J COMPUT CHEM, V21, P1109
NR 62
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD SEP 26
PY 2002
VL 615
IS 1-3
BP 257
EP 266
PG 10
SC Chemistry, Physical
GA 594XC
UT ISI:000178076800028
ER
PT J
AU Ramos, LE
Furthmuller, J
Scolfaro, LMR
Leite, JR
Bechstedt, F
TI Substitutional carbon in group-III nitrides: Ab initio description of
shallow and deep levels
SO PHYSICAL REVIEW B
LA English
DT Article
ID CUBIC BORON-NITRIDE; PERIODIC BOUNDARY-CONDITIONS; TOTAL-ENERGY
CALCULATIONS; MOLECULAR-BEAM EPITAXY; WAVE BASIS-SET; THIN-FILMS; GAN;
RELAXATION; GROWTH; ALN
AB We present ab initio pseudopotential plane-wave calculations for the
neutral and negatively charged carbon impurity on a nitrogen site in
group-III nitrides. Ultrasoft non-norm-conserving Vanderbilt
pseudopotentials allow the use of extremely large supercells up to 2744
atoms. These supercells attenuate the defect-defect interaction and,
hence, give an accurate description of the resulting acceptor levels in
BN, AlN, GaN, and InN. We calculate atomic geometries and energetical
positions of the defect levels, Franck-Condon shifts, and formation
energies. The defect stability and the transition of the shallow-deep
character are discussed along the series BN, AlN, GaN, and InN. For GaN
we calculate a hole activation energy of about 0.2 eV in correspondence
with photoluminescence and temperature-dependent Hall measurements.
C1 Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743 Jena, Germany.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Ramos, LE, Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743
Jena, Germany.
CR ABERNATHY CR, 1995, APPL PHYS LETT, V66, P1969
AMBACHER O, 1998, J PHYS D APPL PHYS, V31, P2653
AS DJ, 1998, PHYS STATUS SOLIDI B, V210, P445
AS DJ, 1999, MRS INT J NITRIDE SE
AS DJ, 2001, J PHYS-CONDENS MAT, V13, P8923
BIRKLE U, 1999, MRS INT J NITRIDE SE
BOGUSLAWSKI P, 1996, APPL PHYS LETT, V69, P233
BOGUSLAWSKI P, 1997, PHYS REV B, V56, P9496
DAVYDOV VY, 2002, PHYS STATUS SOLIDI B, V229, R1
EDGAR JH, 1994, PROPERTIES GROUP 3 N
FEYNMAN RP, 1939, PHYS REV, V56, P340
FISCHER S, 1995, APPL PHYS LETT, V67, P1298
FURTHMULLER J, 2000, PHYS REV B, V61, P4576
GORCZYCA I, 1997, MRS INTERNET J N S R, V2
GORCZYCA I, 1997, SOLID STATE COMMUN, V101, P747
GORCZYCA I, 1999, PHYS REV B, V60, P8147
GROSSNER U, 1998, PHYS REV B, V58, R1722
GROSSNER U, 1999, APPL PHYS LETT, V74, P3851
GUBANOV VA, 1996, APPL PHYS LETT, V69, P227
HOHENBERG P, 1964, PHYS REV, V136, B864
JANAK JF, 1978, PHYS REV B, V18, P7165
JENKINS DW, 1989, PHYS REV B, V39, P3317
KANTOROVICH LN, 1999, J PHYS-CONDENS MAT, V11, P6159
KANTOROVICH LN, 1999, PHYS REV B, V60, P15476
KOHLER U, 2001, PHYSICA B, V308, P126
KOHN W, 1965, PHYS REV, V140, A1139
KRESSE G, 1996, COMP MATER SCI, V6, P15
KRESSE G, 1996, PHYS REV B, V54, P11169
LAASONEN K, 1992, PHYS REV B, V45, P4122
LIMA AP, 1999, J CRYST GROWTH, V201, P396
LU M, 1994, APPL PHYS LETT, V64, P1514
MAKOV G, 1995, PHYS REV B, V51, P4014
MARQUES M, 2001, P 25 INT C PHYS SEM, P1411
MONEMAR B, 1974, PHYS REV B, V10, P676
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
NEUGEBAUER J, 1996, FESTKOR A S, V35, P25
OKUMURA H, 1998, MATER SCI FORUM 1-2, V264, P1167
ORELLANA W, 2000, PHYS REV B, V62, P10135
PANKOVE JI, 1971, OPTICAL PROCESSES SE
PERDEW JP, 1981, PHYS REV B, V23, P5048
PETROV I, 1992, APPL PHYS LETT, V60, P2491
POWELL RC, 1993, J APPL PHYS, V73, P189
RAMOS LE, 2001, PHYS REV B, V63
RUBIO A, 1993, PHYS REV B, V48
SLATER JC, 1972, ADVANCES QUANTUM CHE, V6, P1
STAMPFL C, 2000, PHYS REV B, V61, P7846
SURH MP, 1991, PHYS REV B, V43, P9126
TABATA A, 1999, APPL PHYS LETT, V74, P362
TANG X, 1998, APPL PHYS LETT, V72, P1501
TELES LK, 1999, PHYS STATUS SOLIDI B, V216, P541
THOMPSON MP, 2001, J APPL PHYS, V89, P3331
VANDEWALLE CG, 1993, PHYS REV B, V47, P9425
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
WENTORF RH, 1957, J CHEM PHYS, V26, P956
WIDMAYER P, 1999, PHYS REV B, V59, P5233
YI GC, 1997, APPL PHYS LETT, V70, P357
ZHANG SB, 1991, PHYS REV LETT, V67, P2339
NR 57
TC 8
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 15
PY 2002
VL 66
IS 7
AR 075209
DI ARTN 075209
PG 9
SC Physics, Condensed Matter
GA 593AV
UT ISI:000177969800082
ER
PT J
AU Yoshinaga, F
Tormena, CF
Freitas, MP
Rittner, R
Abraham, RJ
TI Conformational analysis of 2-halocyclohexanones: an NMR, theoretical
and solvation study
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID STEREOCHEMICAL CONSEQUENCES; ORGANIC-MOLECULES; ISOMERISM; PAIRS
AB The conformational equilibria of 2-fluoro-, 2-chloro- and
2-iodo-cyclohexanone have been determined in various solvents by
measurement of the J(2-3) couplings. The observed couplings were
analysed using theoretical and solvation calculations to give both the
conformer energies in the solvents studied plus the vapour phase
energies and the coupling constants in the distinct conformers. These
plus previous results for the 2-bromo compound give the conformer
energies and couplings of all the 2-halocyclohexanones. In the 2-fluoro
compound the axial conformation is the most stable one in the vapour
phase (E-eq - E-ax = 0.45 kcal mol(-1)), while the equatorial conformer
predominates in all the solvents studied. The other haloketones show
similar behaviour, but the energy difference in the vapour phase is
larger (E-eq - E-ax = 1.05, 1.50 and 1.90 kcal mol(-1), for the chloro,
bromo and iodo compounds respectively) and the axial conformer is still
the prevailing conformer in CCl4 solution for the chloro and bromo
ketones and is the major form in all solvents for the iodo compound.
The vapour state conformer energies for the fluoro and chloro compounds
are in complete agreement with the ab initio calculated energies, but
those for the bromo and iodo are not in such good agreement. Both the
ab initio calculations and molecular mechanics are used to discuss the
origins of the conformer energies. It is shown that the interaction
between the C2 halogen and the C=O oxygen in the equatorial conformer
is strongly attractive for fluorine, much less so for chlorine, ca.
zero for bromine and repulsive for iodine. Comparison of the conformer
couplings obtained here with calculated values show generally good
agreement.
C1 Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
Inst Quim, Phys Organ Chem Lab, BR-13083970 Campinas, SP, Brazil.
RP Abraham, RJ, Univ Liverpool, Dept Chem, POB 147, Liverpool L69 3BX,
Merseyside, England.
CR *SER SOFTW, PCMODEL VERS 7 1
ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, J CHEM SOC PERK SEP, P1949
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ABRAHAM RJ, 2001, J CHEM SOC PERK T 2, P815
ALLINGER NL, 1958, J AM CHEM SOC, V80, P5476
BASSO EA, 1993, J ORG CHEM, V58, P7865
BEDOUKIAN PZ, 1945, J AM CHEM SOC, V67, P1430
EISENSTEIN O, 1974, TETRAHEDRON, V30, P1717
ELIEL EL, 1994, STEREOCHEMISTRY ORGA
ELIEL EL, 1994, STEREOCHEMISTRY ORGA, P696
EPIOTIS ND, 1973, J AM CHEM SOC, V95, P3087
FORESMAN JB, 1996, EXPLORING CHEM ELECT
FREITAS MP, 2001, J PHYS ORG CHEM, V14, P317
FRISCH MJ, 1998, GAUSSIAN 98
GARBISCH EW, 1964, J AM CHEM SOC, V86, P1780
HAASNOOT CAG, 1980, TETRAHEDRON, V36, P2783
PAN YH, 1967, CAN J CHEM, V45, P2943
RABLEN PR, 1999, J CHEM SOC PERK AUG, P1719
SENDEROWITZ H, 1997, THEOCHEM-J MOL STRUC, V395, P123
TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
WEAST RC, 1985, HDB CHEM PHYSICS
WIBERG KB, 1990, J PHYS CHEM-US, V94, P6956
WOLFE S, 1972, ACCOUNTS CHEM RES, V5, P102
ZEFIROV NS, 1978, TETRAHEDRON, V34, P2953
NR 28
TC 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1472-779X
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2002
IS 9
BP 1494
EP 1498
PG 5
SC Chemistry, Organic; Chemistry, Physical
GA 587ZQ
UT ISI:000177675300002
ER
PT J
AU Rocha, WR
Martins, VM
Coutinho, K
Canuto, S
TI Solvent effects on the electronic absorption spectrum of formamide
studied by a sequential Monte Carlo/quantum mechanical approach
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
DE formamide; QM/MM; solvent effects; absorption spectrum; Monte Carlo
simulation
ID CIRCULAR-DICHROISM CALCULATIONS; CARLO-QUANTUM-MECHANICS;
N-METHYLACETAMIDE; AB-INITIO; EXCITED-STATES; HYDROGEN-BOND; LIQUID
WATER; POTENTIAL FUNCTIONS; AMIDE CHROMOPHORE; AQUEOUS-SOLUTION
AB Sequential Monte Carlo/quantum mechanical calculations are performed to
study the solvent effects on the electronic absorption spectrum of
formamide (FMA) in aqueous solution, varying from hydrogen bonds to the
outer solvation shells. Full quantum-mechanical intermediate neglect of
differential overlap/singly excited configuration interaction
calculations are performed in the supermolecular structures generated
by the Monte Carlo simulation. The largest calculation involves the
ensemble average of 75 statistically uncorrelated quantum mechanical
results obtained with the FMA solute surrounded by 150 water solvent
molecules. We find that the n --> pi* transition suffers a blueshift of
1,600 cm(-1) upon solvation and the pi --> pi* transition undergoes a
redshift of 800 cm(-1). On average, 1.5 hydrogen bonds are formed
between FMA and water and these contribute with about 20% and about 30%
of the total solvation shifts of the n --> pi* and pi --> pi*
transitions, respectively. The autocorrelation function of the energy
is used to sample configurations from the Monte Carlo simulation, and
the solvation shifts are shown to be converged values.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Fed Juiz Fora, Dept Quim, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Mogi Cruzes, CCET, BR-08710970 Mogi das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BESLEY NA, 1998, J PHYS CHEM A, V102, P10791
BESLEY NA, 1999, J AM CHEM SOC, V121, P8559
BESLEY NA, 2000, J MOL STRUC-THEOCHEM, V506, P161
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CANUTO S, 2002, IN PRESS ADV QUANTUM
CLARK LB, 1995, J AM CHEM SOC, V117, P7974
CONTADOR JC, 1996, J CHEM PHYS, V104, P5539
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 1997, DICE MONTE CARLO PRO
COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
DAMM W, 1997, J COMPUT CHEM, V18, P1995
DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
DELBENE JE, 1975, J CHEM PHYS, V62, P1961
FIELD MJ, 1990, J COMPUT CHEM, V11, P700
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GAO JL, 1992, SCIENCE, V258, P631
GINGELL JM, 1997, CHEM PHYS, V220, P191
HIRST JD, 1996, J PHYS CHEM-US, V100, P13487
HIRST JD, 1997, J PHYS CHEM A, V101, P4821
HIRST JD, 1998, J CHEM PHYS, V109, P782
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JORGENSEN WL, 1985, J AM CHEM SOC, V107, P1489
KRAUSS M, 1997, J CHEM PHYS, V107, P5771
KUZNETSOVA LM, 1996, J MOL STRUCT, V380, P23
LUDWIG R, 1997, J PHYS CHEM A, V101, P8861
MARCHESE FT, 1984, J PHYS CHEM-US, V88, P5692
MCCREERY JH, 1976, J AM CHEM SOC, V98, P7198
MEZEI M, 1981, J CHEM PHYS, V74, P622
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
ROCHA WR, 2001, CHEM PHYS LETT, V345, P171
SCHWEITZERSTENNER R, 1998, J PHYS CHEM A, V102, P118
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P12190
SIELER G, 1997, J AM CHEM SOC, V119, P1720
SIM F, 1992, J AM CHEM SOC, V114, P4391
SOBOLEWSKI AL, 1995, J PHOTOCH PHOTOBIO A, V89, P89
STILINGER FH, 1974, J CHEM PHYS, V60, P3336
SZALAY PG, 1997, CHEM PHYS LETT, V270, P406
VANHOLDE KE, 1998, PRINCIPLES PHYSICAL
WARSHEL A, 1976, J MOL BIOL, V103, P227
WOODY RW, 1995, METHOD ENZYMOL, V246, P34
WOODY RW, 1999, J CHEM PHYS, V111, P2844
WOODY RW, 1999, J PHYS CHEM B, V103, P8984
ZERNER MC, ZINDO SEMIEMPIRICAL
NR 50
TC 5
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD JUL
PY 2002
VL 108
IS 1
BP 31
EP 37
PG 7
SC Chemistry, Physical
GA 584XM
UT ISI:000177494100005
ER
PT J
AU Miotto, R
Ferraz, AC
TI A theoretical study of C2H2 adsorption on the Ge(001) surface
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; surface relaxation and reconstruction;
chemisorption; germanium; silicon
ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS; ORGANIC-MOLECULES;
SI(001) SURFACE; ACETYLENE; SI(100)
AB Using a first-principles pseudopotential technique, we have
investigated the adsorption of C2H2, on the Ge(0 01) surface. We have
found that, at low temperatures, the di-sigma bond configuration is the
most stable structure from the energetic point of view. According to
our calculations, it is not possible to conclude if C2H2 adsorbs
preferentially on alternate or adjacent dimer sites. The di-sigma
adsorbed system is characterized by symmetric and slightly elongated
Ge-Ge dimers, and by a symmetric C-C bond with length close to the
double carbon bond length of the ethylene molecule. Our total energy
calculations suggest that other meta-stable configurations, like the
1,2-hydrogen transfer model, are also possible. This behaviour was also
observed for the silicon based system. In addition, we present
theoretical scanning tunneling microscopy images and calculated
vibrational modes for the adsorbed system with a view to contribute to
further experimental investigations. (C) 2002 Elsevier Science B.V. All
rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Miotto, R, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR *NIST, 2000, NIST CHEM WEBB
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BOONE AJ, 1998, INT J QUANTUM CHEM, V70, P925
DYSON AJ, 1997, SURF SCI, V375, P45
HAMERS RJ, 1999, JPN J APPL PHYS 1, V38, P3879
HIPPS KW, 2001, SCIENCE, V294, P536
KITTEL C, 1996, INTRO SOLID STATE PH
LIDE DR, 1995, HDB CHEM PHYSICS
LIU HB, 1998, SURF SCI, V416, P354
MEZHENNY S, 2001, CHEM PHYS LETT, V344, P7
MIOTTO R, 2000, PHYS REV B, V62, P13623
MIOTTO R, 2002, PHYS REV B, V65, P75401
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PILING MJ, 1995, REACTION KINETICS
REMEDIAKIS IN, 1999, PHYS REV B, V59, P5536
SORESCU DC, 2000, J PHYS CHEM B, V104, P8259
SRIVASTAVA GP, 1990, PHYSICS PHONONS
SRIVASTAVA GP, 1997, REP PROG PHYS, V60, P561
SRIVASTAVA GP, 1999, THEORETICAL MODELLIN
TERBORG R, 2000, PHYS REV B, V61, P16697
TOSCANO M, 1989, J MOL CATAL, V55, P101
TROULLIER N, 1991, PHYS REV B, V43, P1993
XU SH, 1999, PHYS REV B, V60, P11586
XU SH, 2000, PHYS REV LETT, V84, P939
NR 24
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD AUG 1
PY 2002
VL 513
IS 3
BP 422
EP 430
PG 9
SC Chemistry, Physical
GA 581XH
UT ISI:000177319500007
ER
PT J
AU Pliego, JR
Riveros, JM
TI Theoretical calculation of pK(a) using the cluster-continuum model
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID COMPLETE BASIS-SET; SOLVATION FREE-ENERGY; AB-INITIO; AQUEOUS-SOLUTION;
CARBOXYLIC-ACIDS; ORGANIC-COMPOUNDS; HALOACETIC ACIDS; HYDROXIDE ION;
GAS-PHASE; ABSOLUTE
AB The pK(a)'s of 17 species from - 10 to 50 were calculated using the ab
initio MP2/6-311+G(2df,2p) level of theory and inclusion of solvent
effects by the cluster-continuum model, a hybrid approach that combines
gas-phase clustering by explicit solvent molecules and solvation of the
cluster by the dielectric continuum. In addition, the pure continuum
methods SM5.42R and PCM were also used for comparison purposes. Species
such as alcohols, carboxylic acids, phenol, acetaldehyde and its
hydrate, thiols, hydrochloric acid, amines, and ethane were included.
Our results show that the cluster-continuum model yields much better
agreement with experiment than do the above-mentioned pure continuum
methods, with a rms error of 2.2 pK(a) units as opposed to 7 pK(a)
units for the SM5.42R and PCM methods. The good performance of the
cluster-continuum model can be attributed to the introduction of strong
and specific solute-solvent interactions with the molecules in the
first solvation shell of ions. This feature decreases the dielectric
continuum contribution to the difference in the solvation free energy
between ions, making the method less susceptible to error because of
the continuum contribution to solvation. Because the method is not
based on extensive parametrizations and it is shown to fare well for
several functional groups, the present results suggest that this method
could be used as a general approach for predicting reliable pK(a)
values.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, Brazil.
CR *NIST, 2001, NIST CHEM WEBB
ALBERT A, 1984, DETERMINATION IONIZA
BARONE V, 1997, J CHEM PHYS, V107, P3210
BENNAIM A, 1978, J PHYS CHEM-US, V82, P792
COSSI M, 1996, CHEM PHYS LETT, V255, P327
DASILVA CO, 1999, INT J QUANTUM CHEM, V74, P417
DASILVA CO, 1999, J PHYS CHEM A, V103, P11194
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 1995, GAUSSIAN 94
GAO JL, 1996, J AM CHEM SOC, V118, P4912
HILL TL, 1960, INTRO STAT THERMODYN
JANG YH, 2001, J PHYS CHEM A, V105, P274
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1987, J AM CHEM SOC, V109, P6857
JORGENSEN WL, 1989, J AM CHEM SOC, V111, P4190
KALLIES B, 1997, J PHYS CHEM B, V101, P2959
KAWATA M, 1995, CHEM PHYS LETT, V240, P199
KLICIC JJ, 2002, J PHYS CHEM A, V106, P1327
KOLLMAN P, 1993, CHEM REV, V93, P2395
LI J, 1996, INORG CHEM, V35, P4694
LI J, 1999, GAMESOL
LI JB, 1999, THEOR CHEM ACC, V103, P9
LIM C, 1991, J PHYS CHEM-US, V95, P5610
LIPTAK MD, 2001, INT J QUANTUM CHEM, V85, P727
LIPTAK MD, 2001, J AM CHEM SOC, V123, P7314
PITARCH J, 1998, J AM CHEM SOC, V120, P2146
PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
PLIEGO JR, 2000, J PHYS CHEM B, V104, P5155
PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
PLIEGO JR, 2002, CHEM-EUR J, V8, P1945
PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
RICHARD JP, 1999, J AM CHEM SOC, V121, P715
RICHARDSON WH, 1997, INT J QUANTUM CHEM, V61, P207
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHUURMANN G, 1998, J PHYS CHEM A, V102, P6706
SHAPLEY WA, 1998, J PHYS CHEM B, V102, P1938
SILVA CO, 2000, J PHYS CHEM A, V104, P2402
TOPOL IA, 1997, J PHYS CHEM A, V101, P10075
TOTH AM, 2001, J CHEM PHYS, V114, P4595
TUNON I, 1992, J PHYS CHEM-US, V96, P9043
TUNON I, 1993, J AM CHEM SOC, V115, P2226
WIBERG KB, 2000, J PHYS CHEM A, V104, P7625
NR 42
TC 38
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 15
PY 2002
VL 106
IS 32
BP 7434
EP 7439
PG 6
SC Chemistry, Physical
GA 582LZ
UT ISI:000177353700024
ER
PT J
AU Kirsch, R
Prandolini, MJ
Beutler, O
Brewer, WD
Gruyters, M
Kapoor, J
Riegel, D
Ebert, H
Frota-Pessoa, S
TI The formation of orbital moments on iron impurities in Ag1-xAux alloys
SO EUROPHYSICS LETTERS
LA English
DT Article
ID LOCAL ENVIRONMENT; HYPERFINE FIELDS; ALKALI-METALS; CO; FE; SURFACES;
3D; MAGNETISM; SPIN; NI
AB Using the high specificity and sensitivity of the in-beam perturbed
gamma-ray angular distribution method, we have investigated the
magnetic behavior of very dilute Fe-54 probes in Ag1-xAux alloys. The
nuclear damping time and local susceptibility of Fe are found to depend
strongly on its local environment, showing inhomogeneous line
broadening as well as discrete magnetic responses due to the different
configurations of Ag/Au nearest neighbors. The results can be
understood with the aid of ab initio calculations of electronic
structure, magnetic moments and hyperfine fields. They underline the
central importance of orbital magnetism for understanding the
experimental results.
C1 Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany.
Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany.
Univ Munich, D-81377 Munich, Germany.
USP, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Kirsch, R, Free Univ Berlin, Fachbereich Phys, Arnimallee 14, D-14195
Berlin, Germany.
CR AKAI H, 1999, HYPERFINE INTERACT, V121, P3
BLUGEL S, 1987, PHYS REV B, V35, P3271
EBERT H, 1988, Z PHYS B, V73, P77
EBERT H, 2000, LECT NOTES PHYS, V535, P191
ERIKSSON O, 1990, PHYS REV B, V42, P2707
FARLE M, 1998, REP PROG PHYS, V61, P755
FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
GRUYTERS M, 2000, PHYS REV LETT, V85, P1582
GUO GY, 2000, PHYS REV B, V62, P14609
HJORTSTAM O, 1996, PHYS REV B, V53, P9204
JACCARINO V, 1965, PHYS REV LETT, V15, P258
KIRSCH R, UNPUB
KITCHENS TA, 1974, PHYS REV B, V9, P344
LEGOAS SB, 2000, PHYS REV B, V61, P10417
METZ A, 1994, PHYS REV LETT, V73, P3161
PUGACZOWAMICHALSKA M, 1998, J MAGN MAGN MATER, V185, P35
RIEGEL D, 1988, NATO ADV STUDY I E, V144, P327
RIEGEL D, 1998, AUST J PHYS, V51, P157
STEINER P, 1975, PHYS REV B, V12, P842
TISCHER M, 1995, PHYS REV LETT, V75, P1602
UBA S, 1998, PHYS REV B, V57, P1534
NR 21
TC 6
PU E D P SCIENCES
PI LES ULIS CEDEXA
PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
ULIS CEDEXA, FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD AUG
PY 2002
VL 59
IS 3
BP 430
EP 436
PG 7
SC Physics, Multidisciplinary
GA 581QP
UT ISI:000177304600018
ER
PT J
AU Davila, LYA
Caldas, MJ
TI Applicability of MNDO techniques AM1 and PM3 to ring-structured polymers
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE structural properties; torsion angles; semiempirical models; ab initio;
electronic structure
ID ELECTRONIC-PROPERTIES; SEMIEMPIRICAL METHODS; CONJUGATED POLYMERS;
ADJACENT RINGS; TORSION ANGLE; POLYANILINE; PARAMETERS; OPTIMIZATION;
EVOLUTION; VINYLENE)
AB Semiempirical Hartree-Fock techniques are widely used to study
properties of long ring-structured chains, although these types of
systems were not included in the original parametrization ensembles.
These techniques are very useful for an ample class of studies, and
their predictive power should be tested. We present here a study of the
applicability of some techniques from the NDDO family (MNDO, AM1, and
PM3) to the calculation of the ground state geometries of a specific
set of molecules with the ring-structure characteristic. For this we
have chosen to compare results against ab initio Restricted
Hartree-Fock 6-31G(d,p) calculations, extended to Moller-Plesset 2
perturbation theory for special cases. The systems investigated
comprise the orthobenzoquinone (O2C6H4) molecule and dimers
(O2C6H4)(2), as well as trimers of polyaniline, which present
characteristics that extend to several systems of interest in the field
of conducting polymers, such as ring structure and heterosubstitution.
We focus on the torsion between rings, because this angle is known to
affect strongly the electronic and optical properties of conjugated
polymers. We find that AM1 is always in qualitative agreement with the
ab initio results, and is thus indicated for further studies of longer,
more complicated chains.
C1 USP, Inst Fis, BR-66318 Sao Paulo, Brazil.
RP Caldas, MJ, USP, Inst Fis, BR-66318 Sao Paulo, Brazil.
CR *IND U, MOPAC 6 0 PROGR 464
AMBROSCHDRAXL C, 1995, PHYS REV B, V51, P9668
BRAGA SF, IN PRESS
BREDAS JL, 1985, J CHEM PHYS, V83, P1323
BREDAS JL, 1991, PHYS REV B, V44, P6002
BURROUGHES JH, 1990, NATURE, V347, P539
CAPAZ RB, 1999, J MOL STRUC-THEOCHEM, V464, P31
COULSON CA, 1947, P ROY SOC LOND A MAT, V191, P39
DACOSTA PG, 1993, PHYS REV B, V47, P1800
DAVILA LYA, 2001, SYNTHETIC MET, V119, P241
DEWAR MJS, 1964, J COMPUT CHEM, V86, P4550
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DEWAR MJS, 1990, J COMPUT CHEM, V11, P541
DOSSANTOS HF, 1995, J MOL STRUC-THEOCHEM, V335, P129
FRISCH MJ, 1995, GAUSSIAN 94 GAUSSIAN
GALVAO DS, 1989, PHYS REV LETT, V63, P786
GALVAO DS, 1990, J CHEM PHYS, V93, P2848
GALVAO DS, 1993, J CHEM PHYS, V98, P3016
GORB L, 1998, THEOCHEM-J MOL STRUC, V425, P137
KOLL A, 2000, J MOL STRUCT, V552, P193
LIPKOWITZ KB, 1991, REV COMPUTATIONAL CH, V2, P313
MACDIARMID AG, 1987, SYNTHETIC MET, V18, P285
PARISER R, 1953, J CHEM PHYS, V21, P466
POPLE JA, 1965, J CHEM PHYS, V43, S129
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SCANO P, 1991, J COMPUT CHEM, V12, P172
SEGAL GA, 1977, MODERN THEORETICAL A, V7
SHIRAKAWA H, 1977, J CHEM SOC CHEM COMM, P578
STAFSTROM S, 1986, SYNTHETIC MET, V14, P297
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
STEWART JJP, 1990, J COMPUT CHEM, V11, P543
NR 33
TC 11
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD SEP
PY 2002
VL 23
IS 12
BP 1135
EP 1142
PG 8
SC Chemistry, Multidisciplinary
GA 578ER
UT ISI:000177104900002
ER
PT J
AU Dabrowski, J
Mussig, HJ
Zavodinsky, V
Baierle, R
Caldas, MJ
TI Mechanism of dopant segregation to SiO2/Si(001) interfaces
SO PHYSICAL REVIEW B
LA English
DT Article
ID TRANSIENT ENHANCED DIFFUSION; PHOSPHORUS PILE-UP; POINT-DEFECTS; DOSE
LOSS; ELECTRONIC-STRUCTURE; SI-SIO2 INTERFACE; SILICON DIOXIDE; MODEL;
SI; PSEUDOPOTENTIALS
AB Dopant atoms can segregate to SiO2/Si(001) interfaces and be
deactivated there. Using phosphorus as a typical example of a donor and
guided by results of ab initio calculations, we present a model of
donor segregation. We find that P is trapped at the interface in the
form of threefold-coordinated atoms. The atomic detailed configuration
and the process of P incorporation depend on P concentration C-P in the
vicinity of the interface. At low C-P, phosphorus atoms prefer to
substitute Si atoms with dangling bonds. At high C-P, phosphorus pairs
are formed. At intermediate C-P, (around 10(17)-10(19) cm(-3))
segregation occurs to sites associated with interface roughness and to
interface Si-Si bridges, and is mediated by diffusion and annihilation
of Si dangling bonds and by reoxidation during oxide annealing. Making
diffusion of dangling bonds more difficult (for example, by
nitridation) should, therefore, reduce the trapping efficiency of
SiO2/Si(001) in the technologically important regime of intermediate
C-P.
C1 IHP, D-15236 Frankfurt, Germany.
Inst Automat & Control Proc, Vladivostok 690041, Russia.
Univ Fed Santa Maria, Dept Fis, BR-9711030 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
RP Dabrowski, J, IHP, Technol Pk 25, D-15236 Frankfurt, Germany.
CR ASENOV A, 1998, P SISPAD 98, P223
ASENOV A, 1999, IEEE T COMPUT AID D, V18, P1558
BACHELET GB, 1982, PHYS REV B, V26, P4199
BAIERLE R, 1999, PHYSICA B, V273, P260
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BOTT E, 1998, J MATH PHYS, V39, P3393
CALDAS MJ, 1990, PHYS REV LETT, V65, P2046
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHOU NJ, 1974, APPL PHYS LETT, V24, P200
DABROWSKI J, 1998, SURF SCI, V411, P54
DABROWSKI J, 1999, ADV SOLID STATE PHYS, V38, P565
DABROWSKI J, 2000, J VAC SCI TECHNOL B, V18, P2160
DABROWSKI J, 2000, SILICON SURFACES FOR, P360
DABROWSKI J, 2000, SPECIAL DEFECTS SEMI, P23
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DUNHAM ST, 1992, J APPL PHYS, V71, P685
DUNHAM ST, 1992, J ELECTROCHEM SOC, V139, P2628
FAHEY PM, 1989, REV MOD PHYS, V61, P289
GRIFFIN PB, 1995, APPL PHYS LETT, V67, P482
HAMANN DR, 1989, PHYS REV B, V40, P2980
HUNTER LP, 1976, HDB SEMICONDUCTOR EL, P1
JARAIZ M, 1996, APPL PHYS LETT, V68, P409
JOHANNESSEN JS, 1978, J APPL PHYS, V49, P4453
KASNAVI R, 1998, P SISPAD 98, P48
KASNAVI R, 2000, J APPL PHYS, V87, P2255
KHAVRYUTCHENKO VD, 1993, DYQUAMOD DYNAMICAL Q
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
LAU F, 1989, APPL PHYS A-SOLID, V49, P671
LUCOVSKY G, 1996, J VAC SCI TECHNOL B, V14, P2832
METHFESSEL M, 2000, IN PRESS LECT NOTES
NORTHRUP JE, 1993, PHYS REV B, V47, P6791
ORLOWSKI M, 1989, APPL PHYS LETT, V55, P1762
PACKAN PA, 1999, SCIENCE, V285, P2079
PERDEW JP, 1981, PHYS REV B, V23, P5048
QUEIROLO G, 1980, J ELECTROCHEM SOC, V127, P2438
SAKAMOTO H, 1997, P SISPAD 97, P81
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SATO Y, 1993, J ELECTROCHEM SOC, V140, P2679
SATO Y, 1995, J ELECTROCHEM SOC, V142, P655
SATO Y, 1995, J ELECTROCHEM SOC, V142, P660
SATO Y, 1997, J ELECTROCHEM SOC, V144, P2548
SCHWARZ SA, 1981, J ELECTROCHEM SOC, V128, P1101
STOLK PA, 1997, J APPL PHYS, V81, P6031
SZE SM, 1981, PHYSICS SEMICONDUCTO
TAKEDA S, 1995, PHYS REV B, V51, P2148
VUONG HH, 1996, IEEE T ELECTRON DEV, V43, P1144
VUONG HH, 1997, P SISPAD 97, P85
VUONG HH, 1998, P SISPAD 98, P380
VUONG HH, 2000, J VAC SCI TECHNOL B, V18, P428
ZAYETZ VA, 1990, CLUSTER Z1 QUANTUM C
NR 50
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 15
PY 2002
VL 65
IS 24
AR 245305
DI ARTN 245305
PG 11
SC Physics, Condensed Matter
GA 577CA
UT ISI:000177043100064
ER
PT J
AU Savedra, RML
Pinheiro, JC
Treu, O
Kondo, RT
TI Gaussian basis sets by generator coordinate Hartree-Fock method to ab
initio calculations of electron affinities of enolates
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Gaussian basis sets; GCHFM; electron affinities; calculations of
enolates; electron affinities of enolates
ID FIRST-ROW ATOMS; DIATOMIC-MOLECULES; 2ND-ROW ATOMS; CHOICE;
CONTRACTION; EQUATIONS; EXCHANGE; VERSION; BASES; CO
AB The Generator Coordinate Hartree-Fock (GCHF) method is employed to
generate uncontracted 15s and 18s11p gaussian basis sets for the H, C
and O atoms, respectively. These basis sets are then contracted to 3s
and 4s H atom and 6s5p, for C and O atoms by a standard procedure. For
quality evaluation of contracted basis sets in molecular calculations,
we have accomplished calculations of total and orbital energies in the
Hartree-Fock-Roothaaii (HFR) approach for CH, C-2 and CO molecules. The
results obtained with the uncontracted basis sets are compared with
values obtained with the standard D95, 6-311G basis sets and with
values reported in the literature. The 4s and 6s5p basis sets are
enriched with polarization and diffuse functions for atoms of the
parent neutral systems and of the enolates anions (cycloheptanone
enolate, 2,5-dimethyleyelopentanone enolate, 4-heptanone enolate, and
di-isopropyl ketone enolate) from the literature, in order to assess
their performance in ab initio molecular calculations, and applied for
calculations of electron affinities of the enolates. The calculations
were performed at the DFT (BLYP and B3LYP) and HF levels and compared
with the corresponding experimental values and with those obtained by
using other 6-3 1 + +G((*)) and 6-311 + +G((*)) basis sets from
literature. For the enolates studied, the differences between the
electron affinities obtained with GCHF basis sets, at the B3LYP level,
and the experimental values are -0.001, -0,014, -0.001, and -0.001 eV.
(C) 2002 Elsevier Science B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab Quim Teor & Computac, BR-66075110 Belem, Para, Brazil.
CEAM, Cooperat Ctr Educ Cient & Empreendedora Amazonia, BR-66013060 Belem, Para, Brazil.
Univ Estadual Paulista, Inst Quim Araraquara, BR-14801970 Araraquara, SP, Brazil.
Univ Sao Paulo, Ctr Informat Sao Carlos, Secao Suporte, BR-13560970 Sao Carlos, SP, Brazil.
RP Pinheiro, JC, Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab
Quim Teor & Computac, Caixa Postal 101101, BR-66075110 Belem, Para,
Brazil.
CR BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
CADE PE, 1967, J CHEM PHYS, V47, P614
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DACOSTA HFM, 1987, MOL PHYS, V62, P91
DACOSTA HFM, 1992, CHEM PHYS LETT, V192, P195
DASILVA ABF, 1989, MOL PHYS, V68, P433
DECASTRO EVR, 1999, CHEM PHYS, V243, P1
DRZAIC PS, 1984, GAS PHASE ION CHEM, V3
DUNNING TH, 1997, METHODS ELECT STRUCT
EVANS DA, 1984, ASYMMETRIC SYNTHESIS, V3
FISCHER CF, 1977, HARTREE FOCK METHOD
FRISCH MJ, 1995, GAUSSIAN 94 REV
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HUZINAGA S, 1985, CAN J CHEM, V63, P1812
JARDIM IN, 1999, J MOL STRUC-THEOCHEM, V464, P15
LEE C, 1988, PHYS REV B, V37, P785
MEKELBURGER HB, 1991, COMPREHENSIVE ORGANI, V2
MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
MOHALLEM JR, 1987, J CHEM PHYS, V86, P5043
NARAYSZABO G, 1987, APPL QUANTUM CHEM
PAVANI P, 1989, RJ518 IBM RES
PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
PINHEIRO JC, 1999, J MOL STRUC-THEOCHEM, V491, P81
PINHEIRO JC, 2000, INT J QUANTUM CHEM, V78, P15
PINHEIRO JC, 2001, J MOL STRUC-THEOCHEM, V539, P29
PYYKKO P, 1987, MOL PHYS, V60, P597
RAFFENETTI RC, 1973, J CHEM PHYS, V58, P4452
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SIMONS J, 1987, CHEM PHYS REV, V8, P535
NR 31
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JUL 5
PY 2002
VL 587
BP 9
EP 17
PG 9
SC Chemistry, Physical
GA 576TA
UT ISI:000177020100002
ER
PT J
AU Vilela, AFA
Neto, JJS
Mundim, KC
Mundim, MSP
Gargano, R
TI Fitting potential energy surface for reactive scattering dynamics
through generalized simulated annealing
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID OPTIMIZATION
AB We propose a stochastic optimization technique, based on generalized
simulated annealing (GSA), as a new option to fit potential energy
surfaces (PES) for reactive scattering dynamics. In order to show this,
we reproduced the PES of the Na + HF --> NaF + H reaction utilizing the
ab initio calculation as well as the trial function published by Lagan
et al. Topological studies were done on the Na + HF GSA PES considering
a great number of the nuclear configurations. These studies showed that
the quality of the Na + HF GSA PES is comparable to the Na + HF PES
obtained by Lagan et al. (C) 2002 Published by Elsevier Science B.V.
C1 Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil.
RP Gargano, R, Univ Brasilia, Inst Fis, Caixa Postal 04455, BR-70919970
Brasilia, DF, Brazil.
CR AREAS EPG, 1995, J PHYS CHEM-US, V99, P14885
BARTOSZEK FE, 1981, J CHEM PHYS, V74, P3400
CEPERLY D, 2001, SCIENCE, V539, P215
CURADO EMF, 1991, J PHYS A, V24, P3187
DUREN R, 1989, J CHEM SOC FARAD T 8, V85, P1017
GARGANO R, 1998, J CHEM PHYS, V108, P6266
GARGANO R, 2001, J MOL STRUC-THEOCHEM, V539, P215
KIRKPATRICK S, 1983, SCIENCE, V220, P671
KIRKPATRICK S, 1984, J STAT PHYS, V34, P975
LAGANA A, 1996, LECT NOTES COMPUT SC, V1041, P361
LAGANA A, 1997, J CHEM PHYS, V106, P10222
LOESCH HJ, 1989, J CHEM SOC FARADAY T, V85, P1052
MIRANDA MP, 1999, CHEM PHYS LETT, V309, P257
MORET MA, 1998, J COMPUT CHEM, V19, P647
MUNDIM KC, 1996, INT J QUANTUM CHEM, V58, P373
MUNDIM KC, 1998, PHYSICA A, V252, P405
SZU H, 1987, PHYS LETT A, V122, P157
TSALLIS C, 1988, J STAT PHYS, V52, P479
WEISS PS, 1988, CHEM PHYS, V126, P93
NR 19
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JUN 27
PY 2002
VL 359
IS 5-6
BP 420
EP 427
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 576XN
UT ISI:000177032600011
ER
PT J
AU Malaspina, T
Coutinho, K
Canuto, S
TI Ab initio calculation of hydrogen bonds in liquids: A sequential Monte
Carlo quantum mechanics study of pyridine in water
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-INTERACTIONS; BIOLOGICAL INTEREST; AQUEOUS-SOLUTIONS;
AROMATIC BASES; REACTION FIELD; SOLVENT; COMPLEXES; SPECTROSCOPY;
SIMULATION; DYNAMICS
AB A systematic procedure based on the sequential Monte Carlo quantum
mechanics (S-MC/QM) methodology has been used to obtain hydrogen bond
strength and structures in liquids. The system considered is pyridine
in water. The structures are generated by NVT Monte Carlo simulation,
of one pyridine molecule and 400 water molecules. The hydrogen bonds
are obtained using a geometric and energetic procedure. Detailed
analysis shows that 62% of the configurations have one hydrogen bond.
In the average, pyridine in liquid water makes 1.1 hydrogen bonds. The
sampling of the structures for the quantum mechanical calculations is
made using the interval of statistical correlation obtained by the
autocorrelation function of the energy. A detailed statistical analysis
is presented and converged results are obtained. The QM calculations
are performed at the ab initio MP2/6-31+G(d) level and the results are
compared with the optimized 1:1 cluster. Our results using QM
calculations on 155 structures making one hydrogen bond gives an
average binding energy of 3.7 kcal/mol, after correcting for basis set
superposition error, indicating that in the liquid the binding energy
is about 2/3 of the corresponding binding in the optimized cluster. (C)
2002 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi das Cruzes, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
AQUINO AJA, 2002, J PHYS CHEM A, V106, P1862
BENEDICT WS, 1956, J CHEM PHYS, V24, P1139
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BERNSTEIN ER, 1990, ATOMIC MOL CLUSTERS
BLAIR JT, 1989, J AM CHEM SOC, V111, P6948
BOYS SF, 1970, MOL PHYS, V19, P553
BROVCHENKO IV, 1997, J CHEM PHYS, V106, P7756
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
CAMINATI W, 1998, J PHYS CHEM A, V102, P8097
CANUTO S, IN PRESS ADV QUANTUM
CANUTO S, 1997, ADV QUANTUM CHEM, V28, P90
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CHATFIELD C, 1984, ANAL TIME SERIES INT
COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
COUTINHO K, 2000, DICE VERSION 2 8 GEN
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
CRAMER CJ, 1999, CHEM REV, V99, P2161
CRUZAN JD, 1996, SCIENCE, V271, P59
DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
DELBENE JE, 1995, J PHYS CHEM-US, V99, P10705
DKHISSI A, 2000, J PHYS CHEM A, V104, P2112
EVANS GT, 2001, J CHEM PHYS, V115, P1440
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GAO JL, 1994, J AM CHEM SOC, V116, P9324
GILLI G, 2000, J MOL STRUCT, V552, P1
HOBZA P, 2000, CHEM REV, V100, P4253
INNES KK, 1988, J MOL SPECTROSC, V132, P492
JEFFREY GA, 1991, HYDROGEN BONDING BIO
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1998, J MOL STRUCT THEOCHE, V424, P145
KARELSON MM, 1992, J PHYS CHEM-US, V96, P6949
KAWAHARA S, 1999, J PHYS CHEM A, V103, P8516
KLAMT A, 1993, J CHEM SOC P2, V2, P799
KRATSCHMER R, 1976, J STAT PHYS, V15, P267
LADANYI BM, 1993, ANNU REV PHYS CHEM, V44, P335
LADANYI BM, 1995, J MOL STRUCT THEOCHE, V335, P181
LIDE DR, 1992, HDB CHEM PHYSICS
LUQUE FJ, 2000, THEOR CHEM ACC, V103, P343
MAES G, 1997, J MOL STRUCT, V410, P315
MARTOPRAWIRO MA, 1995, MOL PHYS, V85, P573
MELANDRI S, 1998, J AM CHEM SOC, V120, P11504
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
MEZEI M, 1981, J CHEM PHYS, V74, P622
MIERTUS S, 1981, CHEM PHYS, V55, P117
MULLERKRUMBHAAR H, 1973, J STAT PHYS, V8, P1
OPADHYAY DM, 2001, INT J QUANTUM CHEM, V81, P90
PERRIN CL, 1997, ANNU REV PHYS CHEM, V48, P511
PIMENTEL GC, 1971, ANNU REV PHYS CHEM, V22, P347
RAHMAN A, 1971, J CHEM PHYS, V55, P3336
RINCON L, 2001, J CHEM PHYS, V114, P5552
RIVAIL JL, 1976, CHEM PHYS, V18, P233
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
RIVELINO R, 2001, J PHYS CHEM A, V105, P11260
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
ROCHA WR, 2001, CHEM PHYS LETT, V345, P171
SCHEINER S, 1997, HYDROGEN BONDING THE
SCHEINER S, 2001, J BIOL CHEM, V276, P9832
SCOLES G, 1990, CHEM PHYSICS ATOMIC
SMETS J, 1999, J MOL STRUCT, V476, P27
STILLINGER FH, 1974, J CHEM PHYS, V60, P1545
STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
SZCZESNIAK MM, 1986, J MOL STRUCT THEOCHE, V135, P179
TANG S, 1987, PHYS REV B, V36, P567
TAPIA O, 1975, MOL PHYS, V29, P1653
TOMASI J, 1994, CHEM REV, V94, P2027
TOMASI J, 2000, THEOR CHEM ACC, V103, P196
VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
XANTHEAS SS, 1994, J CHEM PHYS, V100, P7523
ZENG J, 1993, J CHEM PHYS, V99, P1496
ZWIER TS, 1996, ANNU REV PHYS CHEM, V47, P205
NR 74
TC 19
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUL 22
PY 2002
VL 117
IS 4
BP 1692
EP 1699
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 572DM
UT ISI:000176758200034
ER
PT J
AU Miotto, R
Ferraz, AC
Srivastava, GP
TI Comparative study of the adsorption of C2H4 on the Si(001) and Ge(001)
surfaces
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; surface relaxation and reconstruction;
chemisorption; vibrations of adsorbed molecules; silicon; germanium
ID SI(100)-(2X1) SURFACE; ETHYLENE ADSORPTION; FIRST-PRINCIPLES;
ACETYLENE; SPECTROSCOPY; SI(100)(2X1); BEHAVIOR; STATES; X-1
AB Using a first-principles pseudopotential method we have compared the
interaction processes involved in the adsorption of ethylene on the
silicon and germanium surfaces. We have found that, at low
temperatures, the di-sigma bond configuration is the most stable
structure from the energetic point of view. According to our
calculations C2H4 adsorbs preferentially on the alternate dimer sites,
corresponding to a coverage of 0.5 ML. The di-sigma adsorbed system is
characterized by symmetric and slightly elongated Si-Si (Ge-Ge) dimers,
and by a symmetric C-C bond close to the single carbon bond length of
the ethane molecule. The electronic band structure derived from our
calculations suggest that the adsorption of the C2H4 molecule leaves a
surface state in the fundamental band gap that is mainly localized
around the adsorbate. Finally, our ab initio vibrational spectra
further support the di-sigma model for the ethylene adsorption on
IV(001)-(2 x 2). (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP Miotto, R, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
CAO PL, 1993, J PHYS-CONDENS MAT, V5, P2887
CHO JH, 2001, PHYS REV B, V63
CLEMEN L, 1992, SURF SCI, V268, P205
HUANG C, 1994, SURF SCI, V315, L953
LAL P, 1999, J CHEM PHYS, V110, P10545
LIDE DR, 1995, HDB CHEM PHYSICS
MATSUI F, 2000, PHYS REV B, V62, P5036
MAYNE AJ, 1993, SURF SCI, V284, P247
MIOTTO R, 2001, PHYS REV B, V63
PAN W, 1997, J CHEM PHYS, V107, P3981
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PILLING MJ, 1995, REACTION KINETICS
ROCHET F, 1998, PHYS REV B, V58, P11029
SORESCU DC, 2000, J PHYS CHEM B, V104, P8259
SRIVASTAVA GP, 1990, PHYSICS PHONONS
TERBORG R, 2000, PHYS REV B, V61, P16697
TROULLIER N, 1991, PHYS REV B, V43, P1993
WIDDRA W, 1998, PHYS REV LETT, V80, P4269
YOSHINOBU J, 1987, J CHEM PHYS, V87, P7332
NR 20
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD JUN 1
PY 2002
VL 507
BP 12
EP 17
PG 6
SC Chemistry, Physical
GA 569CV
UT ISI:000176583700004
ER
PT J
AU Miwa, RH
Schmidt, TM
Srivastava, GP
TI Ab initio study of the self-organised Bi-lines on the SK(001) surface
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; surface electronic phenomena (work
function, surface potential, surface states, etc.); bismuth;
self-assembly
ID SCANNING-TUNNELING-MICROSCOPY; ELECTRONIC-STRUCTURE; BISMUTH; SI(001);
NANOWIRE; CHAINS; STATE; X-1)
AB We have perfomed an ab initio theoretical study of the stability,
atomic geometry and electronic structure of the self-organised Bi-lines
on the Si(0 0 1) surface. Our results show that the Bi-lines are formed
by Bi-dimers parallel to the surrounding Si-dimers, with a missing
dimer row between the Bi-dimers. In contrast to a recently proposed
model of symmetrically disposed surface Si-dimers (i.e. with no
buckling). our total energy calculations indicate that the buckling of
the Si-dimers is an exothermic process, reducing the surface total
energy by 0.11 eV/dimer. Our theoretically simulated STM results
suggest a low density of states close to the valence band maximum,
localized on the Bi-lines, supporting a recently proposed model of
quantum antiwire systems for Bi-lines on the Si(0 0 1) surface. (C)
2002 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Uberlandia, Fac Fis, BR-38400902 Uberlandia, MG, Brazil.
Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP Miwa, RH, Univ Fed Uberlandia, Fac Fis, CP 593, BR-38400902 Uberlandia,
MG, Brazil.
CR ABUKAWA T, 1995, SURF SCI, V325, P33
BOWLER DR, 2000, PHYS REV B, V62, P7237
BUNK O, 1999, PHYS REV B, V59, P12228
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DABROWSKI J, 1992, APPL SURF SCI, V56, P15
GAY SCA, 1999, PHYS REV B, V60, P1488
GONZE X, 1991, PHYS REV B, V44, P8503
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
LOUIE SG, 1982, PHYS REV B, V26, P1739
MIKI K, 1999, PHYS REV B, V59, P14868
MIKI K, 1999, SURF SCI, V421, P397
MIWA RH, 2001, SURF SCI, V473, P123
NAITOH M, 1999, APPL SURF SCI, V142, P38
NAITOH M, 2000, JPN J APPL PHYS 1, V39, P2793
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
PERDEW JP, 1981, PHYS REV B, V23, P5048
SHIMOMURA M, 2000, SURF SCI, V447, L169
TERSOFF J, 1985, PHYS REV B, V31, P805
TUTUNCU HM, 1997, PHYS REV B, V56, P4656
TUTUNCU HM, 2000, SURF SCI, V454, P504
YEOM HW, 1999, PHYS REV LETT, V82, P4898
NR 21
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD JUN 1
PY 2002
VL 507
BP 368
EP 373
PG 6
SC Chemistry, Physical
GA 569CV
UT ISI:000176583700067
ER
PT J
AU Freire, HJP
Egues, JC
TI Subband structure of II-VI modulation-doped magnetic quantum wells
SO BRAZILIAN JOURNAL OF PHYSICS
LA English
DT Article
ID ELECTRICAL SPIN INJECTION; SEMICONDUCTOR HETEROSTRUCTURE; TRANSPORT;
MAGNETORESISTANCE; SUPERLATTICES; DENSITY
AB Here we investigate the spin-dependent subband structure of
newly-developed Mn-based modulation-doped quantum wells. In the
presence of an external magnetic field, the s-d exchange coupling
between carriers and localized d electrons of the Mn impurities gives
rise to large spin splittings resulting in a magnetic-field dependent
subband structure. Within the framework of the effective-mass
approximation, we self-consistently calculate the subband structure at
zero temperature using Density Functional Theory (DFT) with a Local
Spin Density Approximation (LSDA). We present results for the
magnetic-field dependence of the subband structure of shallow
ZnSe/ZnCdMnSe modulation doped quantum wells. Our results show a
significant contribution to the self-consistent potential due to the
exchange-correlation term. These calculations are the first step in the
study of a variety of interesting spin-dependent phenomena, e.g.,
spin-resolved transport and many-body effects in polarized
two-dimensional electron gases.
C1 Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis Informat, BR-13560970 Sao Carlos, SP, Brazil.
RP Freire, HJP, Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis Informat,
BR-13560970 Sao Carlos, SP, Brazil.
CR AWSCHALOM DD, 1999, J MAGN MAGN MATER, V200, P130
BARAFF GA, 1981, PHYS REV B, V24, P2274
BERRY JJ, 2000, J VAC SCI TECHNOL B, V18, P1692
CHANG K, 2001, SOLID STATE COMMUN, V120, P181
CROOKER SA, 1995, PHYS REV LETT, V75, P505
EGUES JC, 1998, PHYS REV LETT, V80, P4578
EGUES JC, 2001, PHYS REV B, V64
FIEDERLING R, 1999, NATURE, V402, P787
FURDYNA JK, 1988, J APPL PHYS, V64, P29
GUNNARSSON O, 1976, PHYS REV B, V13, P4274
GUO Y, 2001, PHYS REV B, V64
JONKER BT, 2000, PHYS REV B, V62, P8180
KNOBEL R, 2000, PHYSICA E, V6, P786
OHNO Y, 1999, NATURE, V402, P790
SCHMIDT G, 2001, PHYS REV LETT, V87
SMORCHKOVA I, 1996, APPL PHYS LETT, V69, P1640
SMORCHKOVA IP, 1997, PHYS REV LETT, V78, P3571
STORMER HL, 1983, SCIENCE, V220, P1241
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
VONKLITZING K, 1980, PHYS REV LETT, V45, P494
NR 20
TC 3
PU SOCIEDADE BRASILEIRA FISICA
PI SAO PAULO
PA CAIXA POSTAL 66328, 05315-970 SAO PAULO, BRAZIL
SN 0103-9733
J9 BRAZ J PHYS
JI Braz. J. Phys.
PD JUN
PY 2002
VL 32
IS 2
BP 327
EP 330
PG 4
SC Physics, Multidisciplinary
GA 568BF
UT ISI:000176522000021
ER
PT J
AU Perpetuo, GJ
Janczak, J
TI 3-Amino-1,2,4-triazine
SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS
LA English
DT Article
ID HYDROGEN; DIHYDRATE; SECONDARY; COMPLEXES; TAPES
AB In the crystal structure of 3-amino-1,2,4-triazine, C3H4N4, the
molecules form hydrogen-bonded chains that are almost parallel to the b
axis (3.2degrees), and which are inclined to the a and c axes by
similar to21 and similar to69degrees, respectively. The distortion of
the 1,2,4-triazine ring in the crystal is compared with gas-phase ab
initio molecular-orbital calculations.
C1 Univ Fed Ouro Preto, Inst Ciencias Exatas & Biol, Dept Fis, BR-35400000 Ouro Preto, MG, Brazil.
Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland.
RP Janczak, J, Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Quim,
BR-31270901 Belo Horizonte, MG, Brazil.
CR *SIEM AN XRAY INST, 1991, XSCANS US MAN VERS 2
ALLEN FH, 1987, J CHEM SOC P2, V2, P1
FRISCH MJ, 1995, GAUSSIAN94
GILLESPIE RJ, 1963, J CHEM EDUC, V40, P295
GILLESPIE RJ, 1992, CHEM SOC REV, V21, P59
JANCZAK J, 1999, ACTA CHEM SCAND, V53, P606
JANCZAK J, 2001, ACTA CRYSTALLOGR 12, V57, P1431
JANCZAK J, 2001, ACTA CRYSTALLOGR C 1, V57, P123
JANCZAK J, 2001, ACTA CRYSTALLOGR C 7, V57, P873
JANCZAK J, 2001, ACTA CRYSTALLOGR C 9, V57, P1120
JANCZAK J, 2002, ACTA CRYSTALLOGR C 6, V58, O339
KRISCHE MJ, 2000, STRUCT BOND, V96, P3
MACDONALD JC, 1994, CHEM REV, V94, P2383
MATHIAS JP, 1994, J AM CHEM SOC, V116, P4316
PAULING L, 1960, NATURE CHEM BOND, P262
PERPETUO GJ, 2002, ACTA CRYSTALLOGR C 2, V58, O112
ROW TNG, 1999, COORDIN CHEM REV, V183, P81
SHELDRICK GM, 1990, SHELXTL
SHELDRICK GM, 1997, SHELXL97
SHELDRICK GM, 1997, SHELXS97
SHERRINGTON DC, 2001, CHEM SOC REV, V30, P83
ZERKOWSKI JA, 1994, J AM CHEM SOC, V116, P4298
NR 22
TC 3
PU BLACKWELL MUNKSGAARD
PI COPENHAGEN
PA 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK
SN 0108-2701
J9 ACTA CRYSTALLOGR C-CRYST STR
JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun.
PD JUL
PY 2002
VL 58
PN Part 7
BP O431
EP O432
PG 2
SC Crystallography
GA 568WF
UT ISI:000176567300047
ER
PT J
AU Sensato, FR
Custodio, R
Calatayud, M
Beltran, A
Andres, J
Sambrano, JR
Longo, E
TI Periodic study on the structural and electronic properties of bulk,
oxidized and reduced SnO2(110) surfaces and the interaction with O-2
SO SURFACE SCIENCE
LA English
DT Article
DE ab initio quantum chemical method and calculations; density functional
calculations; models of surface chemical reactions; chemisorption;
surface electronic phenomena (work function, surface potential, surface
states. etc.); oxygen; tin oxides; semiconducting surfaces
ID OXYGEN VACANCIES; THEORETICAL-ANALYSIS; FUNCTIONAL THEORY; TIN OXIDES;
THIN-FILM; SNO2 110; PHOTOEMISSION; ADSORPTION; ANTIMONY; METHANE
AB The structural and electronic properties of bulk and both oxidized and
reduced SnO2(110) surfaces as well as the adsorption process of O-2 on
the reduced surface have been investigated by periodic DFT calculations
at B3LYP level. The lattice parameters, charge distribution, density of
states and band structure are reported for the bulk and surfaces.
Surface relaxation effects have been explicitly taken into account by
optimizing slab models of nine and seven atomic layers representing the
oxidized and reduced surfaces, respectively. The conductivity behavior
of the reduced SnO2(110) surface is explained by a distribution of the
electrons in the electronic states in the band gap induced by oxygen
vacancies. Three types of adsorption approaches of O-2 on the four-fold
tin at the reduced SuO(2)(110) surface have been considered. The most
exothermic channel corresponds to the adsorption of O-2 parallel to the
surface and to the four-fold tin row, and it is believed to be
associated with the formation of a peroxo O-2(2-) species. The
chemisorption of O-2 on reduced SnO2(110) surface causes a significant
depopulation of states along the band gap and it is shown to trap the
electrons in the chemisorbed complex producing an electron-depleted
space-charge layer in the inner surface region of the material in
agreement with some experimental evidences. (C) 2002 Elsevier Science
B.V. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
Univ Estadual Paulista, Dept Matemat, BR-17030360 Bauru, SP, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Sensato, FR, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13083970
Campinas, SP, Brazil.
CR ANTUNES AC, 2001, J MATER SCI-MATER EL, V12, P69
BAUR WH, 1956, ACTA CRYSTALLOGR, V9, P515
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BOYS SF, 1970, MOL PHYS, V19, P553
BUENO PR, 2000, J APPL PHYS, V88, P6545
CALATAYUD M, 1999, SURF SCI, V430, P213
CASSIASANTOS MR, 2001, J EUR CERAM SOC, V21, P161
CATLOW CRA, 1990, NATURE, V347, P243
CAVICCHI R, 1990, J VAC SCI TECHNOL 2, V8, P2347
CHANG SC, 1980, J VAC SCI TECHNOL, V17, P366
COX DF, 1988, PHYS REV B, V38, P2072
COX PA, 1982, SURF SCI, V123, P179
DURAND P, 1975, THEOR CHIM ACTA, V38, P283
GERCHER VA, 1995, SURF SCI, V322, P177
GOBBY PL, 1976, P 13 C PHYS SEM AMST
GODIN TJ, 1993, PHYS REV B, V47, P6518
GREENWOOD NN, 1994, CHEM ELEMENTS
HAINES J, 1997, PHYS REV B, V55, P11144
HENRICH VE, 1994, SURFACE SCI METAL OX
JONES FH, 1997, SURF SCI, V376, P367
KAWABE T, 2000, SURF SCI, V448, P101
KAWAZOE Y, 2001, MATER DESIGN, V22, P61
KOHL D, 1989, SENSOR ACTUATOR, V18, P71
KOJALJ A, 1999, J MOL GRAPH MODEL, V17, P176
LEE C, 1988, PHYS REV B, V37, P785
LINDAN PJD, 2000, CHEM PHYS LETT, V328, P325
MANASSIDIS I, 1995, SURF SCI, V339, P258
MARKOVITS A, 1997, J MOL CATAL A-CHEM, V119, P195
MELLEFRANCO M, 2000, SURF SCI, V461, P54
MISHRA KC, 1995, PHYS REV B, V51, P13972
MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
NAGASAWA Y, 1999, SURF SCI, V435, P226
OVIEDO J, 2000, SURF SCI, V467, P35
PISANI C, 1999, J MOL STRUC-THEOCHEM, V463, P125
POWELL MJD, 1970, NUMERICAL METHODS NO
RANTALA TT, 1999, SURF SCI, V420, P103
ROBERTSON J, 1979, J PHYS C SOLID STATE, V12, P4767
SAUER J, 1989, CHEM REV, V89, P199
SAUNDERS VR, 1998, CRYSTAL98 USERS MANU
SENSATO FR, 2001, J MOL STRUC-THEOCHEM, V541, P69
SHEN GL, 1992, VACUUM, V43, P1129
SHERWOOD PMA, 1990, PHYS REV B, V41, P10151
SLATER B, 1999, J PHYS CHEM B, V103, P10644
SLATER B, 2000, CHEM COMMUN, P1235
SZUBER J, 2000, SENSOR ACTUAT B-CHEM, V70, P177
TAFT CA, 2000, RECENT RES DEV QUANT, V1
THEMLIN JM, 1990, PHYS REV B, V42, P11914
THEMLIN JM, 1992, PHYS REV B, V46, P2460
YAMAGUCHI Y, 1998, INT J QUANTUM CHEM, V69, P669
YAMAGUCHI Y, 1999, INT J QUANTUM CHEM, V74, P423
YAMAGUCHI Y, 2000, CHEM PHYS LETT, V316, P477
YAMAZOE N, 1991, SENSOR ACTUAT B-CHEM, V5, P7
NR 52
TC 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD JUN 10
PY 2002
VL 511
IS 1-3
BP 408
EP 420
PG 13
SC Chemistry, Physical
GA 569CY
UT ISI:000176584000048
ER
PT J
AU Dos Santos, HF
Rocha, WR
De Almeida, WB
TI On the evaluation of thermal corrections to gas phase ab initio
relative energies: implications to the conformational analysis study of
cyclooctane
SO CHEMICAL PHYSICS
LA English
DT Article
DE ab initio; DFT; thermal correction; conformational population; low
frequency modes
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-BASIS SETS; MECHANICS CALCULATIONS;
ELECTRON-DIFFRACTION; ORGANIC-MOLECULES; APPROXIMATION; ATOMS;
EXCHANGE; MINIMUM; SPECTRA
AB In this paper we present an investigation of the influence of the
thermal correction on the conformational population for the boat-chair
(BC) and CROWN forms of the cyclooctane molecule, calculated using
quantum mechanical ab initio Hartree-Fock (HF), MP2, MP4SDQ, CCSD and
density functional methods (B3LYP, BLYP, BP86) in conjunction with
various basis sets. A previous experimental gas phase electron
diffraction study pointed out that the BC is either the exclusive or at
least the strongly predominant form in gas phase at room temperature.
We therefore analyzed the performance of various levels of calculation
for the evaluation of the relative conformational population and also
the role played by the thermal correction to gas phase calculated
relative energies. It turns out that the thermal correction is very
sensitive to the presence of low frequency modes that are indeed
internal rotations and need to be treated separately, in what the
cyclooctane molecule is concerned. Once internal rotations were
considered, it can be seen that the HF level of calculation produces
very satisfactory values for thermal correction, compared to MP2.
Therefore, it can be used in single-point energy calculations employing
a high correlated level of theory (MP4SDQ, CCSD), leading to a quite
trustable Gibbs free energy difference data. When thermal energies are
not corrected for low frequency internal rotation modes, a range of
contrasting results is obtained by varying both the quantum mechanical
approach and the basis set. (C) 2002 Elsevier Science B.V. All rights
reserved.
C1 LQC MM, BR-31270970 Belo Horizonte, MG, Brazil.
UFMG, ICEx, Dept Quim, BR-31270970 Belo Horizonte, MG, Brazil.
NEQC, BR-36036330 Juiz de Fora, MG, Brazil.
UFJF, ICE, Dept Quim, BR-36036330 Juiz de Fora, MG, Brazil.
RP De Almeida, WB, LQC MM, BR-31270970 Belo Horizonte, MG, Brazil.
CR ALMENNINGEN A, 1966, ACTA CHEM SCAND, V20, P2689
ANET FAL, 1973, J AM CHEM SOC, V95, P4424
ANET FAL, 1974, FORTSCHR CHEM FORSCH, V45, P169
AYALA PY, 1998, J CHEM PHYS, V108, P2315
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P1372
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BRECKNELL DJ, 1985, J MOL STRUCT THEOCHE, V124, P343
BURGI HB, 1968, HELV CHIM ACTA, V51, P1514
BURKERT U, 1982, MOL MECH
CHANG G, 1989, J AM CHEM SOC, V111, P4379
CHUANG YY, 2000, J CHEM PHYS, V112, P1221
DEALMEIDA VB, 2000, QUIM NOVA, V23, P600
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DOBLER M, 1966, HELV CHIM ACTA, V49, P2492
DOROFEEVA OV, 1985, J PHYS CHEM-US, V89, P252
DOROFEEVA OV, 1990, J STRUCT CHEM, V31, P153
DOSSANTOS HF, 2002, IN PRESS THEORET CHE
DUARTE HA, 2000, J CHEM PHYS, V113, P4206
DUARTE HA, 2001, ANN 11 BRAZ S THEOR
DUNNING TH, 1976, MODERN THEORETICAL C, V3, P1
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
EGMOND JV, 1969, TETRAHEDRON, V25, P2693
ELIEL EL, 1965, CONFORMATIONAL ANAL
FERGUSON DM, 1992, J COMPUT CHEM, V13, P525
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HARIHARAN PC, 1974, MOL PHYS, V27, P2309
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HENRICKSON JB, 1964, J AM CHEM SOC, V86, P4854
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LEE C, 1988, PHYS REV B, V37, P785
LIPTON M, 1988, J COMPUT CHEM, V9, P343
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
MCQUARRIE DA, 1997, PHYSICAL CHEM MOL AP
MCQUARRIE DA, 1999, MOL THERMODYNAMICS
MEIBOOM S, 1977, J CHEM PHYS, V66, P4041
MOLLER C, 1934, PHYS REV, V46, P618
PAKES PW, 1981, J PHYS CHEM-US, V85, P2476
PERDEW JP, 1986, PHYS REV B, V33, P8822
ROCHA WR, 1998, J COMPUT CHEM, V19, P524
ROUNDS TC, 1978, VIB SPECTRA STRUCT, V7, P238
SAUNDERS M, 1987, J AM CHEM SOC, V109, P3150
SRINIVASAN R, 1971, TETRAHEDRON, V27, P1009
STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
TRUHLAR DG, 1971, J MOL SPECTROSC, V38, P415
TRUHLAR DG, 1991, J COMPUT CHEM, V12, P266
WOON DE, 1993, J CHEM PHYS, V98, P1358
NR 50
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD JUN 15
PY 2002
VL 280
IS 1-2
BP 31
EP 42
PG 12
SC Physics, Atomic, Molecular & Chemical
GA 566UY
UT ISI:000176447700003
ER
PT J
AU Junqueira, GMA
Rocha, WR
De Almeida, WB
Dos Santos, HF
TI Theoretical analysis of the oxocarbons: The role played by the solvent
and counter-ions in the electronic spectrum of the deltate ion
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID DIFFERENTIAL-OVERLAP TECHNIQUE; MONTE-CARLO; INTERMEDIATE NEGLECT;
CROCONATE DIANION; SPECTROSCOPY; WATER; TRANSITION; FORMALDEHYDE;
COMPLEXES; LITHIUM
AB The structure and spectroscopic properties of the deltate anion are
calculated in the gas phase using ab initio quantum chemical methods
and in aqueous solution through a sequential Monte Carlo-quantum
mechanical procedure. The effects of the solvent and counter-ions on
the electronic spectrum are analyzed, showing that both should be
included in the calculation in order to reproduce the observed UV
spectrum. For the smallest cyclic oxocarbon, the deltate anion, the
calculated electronic transitions were 254 and 246 nm considering the
[Li-2(C3O3)(H2O)(20)] species. This is in accordance with the expected
behavior for the oxocarbon series, predicting absorption bands close to
200 nm for the deltate anion.
C1 Univ Fed Juiz de Fora, ICE, Dept Quim, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Minas Gerais, ICEx, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, ICE, Dept Quim, NEQC, Campus
Martelos, BR-36036330 Juiz De Fora, MG, Brazil.
CR 1992, HDB CHEM PHYSICS
AIHARA J, 1981, J AM CHEM SOC, V103, P1633
ALLEN MP, 1987, COMPUTER SIMULATION
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
COUTINHO K, DICE MONTE CARLO PRO
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
DEOLIVEIRA LFC, 1999, J MOL STRUCT, V510, P97
DORY M, 1994, J CHEM SOC FARADAY T, V90, P2319
DUMESTRE F, 1998, J CHEM SOC DA, V24, P4131
EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
EGGERDING D, 1975, J AM CHEM SOC, V97, P207
FABRE PL, 2000, ELECTROCHIM ACTA, V45, P2697
FARNELL L, 1981, J MOL STRUCT, V76, P1
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GLICK MD, 1964, INORG CHEM, V3, P1712
GLICK MD, 1966, INORG CHEM, V5, P289
GONCALVES NS, 1996, ACTA CRYSTALLOGR C 3, V52, P622
HA TK, 1986, J MOL STRUCT, V137, P183
HEAD JD, 1986, CHEM PHYS LETT, V131, P359
ITO M, 1963, J AM CHEM SOC, V85, P2580
JORGENSEN WL, BOSS VERSION 3 5 BIO
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JUNQUEIRA GMA, 2001, PHYS CHEM CHEM PHYS, V3, P3499
LOPES JGS, 2001, SPECTROCHIM ACTA A, V57, P399
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
PUEBLA C, 1986, J MOL STRUCT THEOCHE, V137, P171
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHA WR, 2001, CHEM PHYS LETT, V127, P335
SANTOS PS, 1991, J MOL STRUCT, V243, P223
SCHLEYER PV, 2000, J ORG CHEM, V65, P426
SEITZ G, 1992, CHEM REV, V92, P1227
TAKAHASHI M, 1978, CHEM PHYS, V35, P293
TORII H, 1995, J MOL STRUCT THEOCHE, V334, P15
WEST R, 1960, J AM CHEM SOC, V82, P6204
WEST R, 1963, J AM CHEM SOC, V85, P2577
WEST R, 1963, J AM CHEM SOC, V85, P2586
WEST R, 1979, J AM CHEM SOC, V101, P1710
WEST R, 1981, J AM CHEM SOC, V103, P5073
ZERNER MC, ZINDO SEMIEMPIRICAL
ZERNER MC, 1980, J AM CHEM SOC, V102, P589
ZHAO B, 1992, CAN J CHEM, V70, P135
NR 44
TC 4
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2002
VL 4
IS 12
BP 2517
EP 2523
PG 7
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 563FY
UT ISI:000176246700006
ER
PT J
AU de Paiva, R
Alves, JLA
Nogueira, RA
de Oliveira, C
Alves, HWL
Scolfaro, LMR
Leite, JR
TI Theoretical study of the AlxGa1-xN alloys
SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
TECHNOLOGY
LA English
DT Article
DE GaN; AlN; AlGaN; alloys; effective masses
ID ALUMINUM NITRIDE; ZINCBLENDE GAN; SEMICONDUCTORS; ALN
AB In this work we use a first-principles method based on the density
functional theory, the full-potential linear augmented plane-wave
method (FPLAPW), in order to calculate the electronic structures of the
Al(x)Gal(1-x)N alloys in the cubic modification. We adopt a model which
allows the simulation of the composition x = 0.0, 0.25, 0.50, 0.75 and
1.0. We obtain the equilibrium lattice parameters, the bulk moduli, the
formation energies, the miscibility curves and the effective masses of
the conduction and valence bands in the [100], [111] and [110]
directions. The results can be used in the parameterization of theories
based on effective hamiltonians. To our knowledge, this is the first
time such a systematic ab initio study of effective masses of these
semiconductor alloys is accomplished. (C) 2002 Elsevier Science B.V.
All rights reserved.
C1 UFMG, Dept Fis, BR-13081970 Belo Horizonte, MG, Brazil.
FUNREI, Dept Ciencias Nat, BR-36300000 Sao Joao Del Rei, MG, Brazil.
USP, LNMS, Dept Fis Mat & Mecan, BR-05389970 Sao Paulo, Brazil.
RP de Paiva, R, UFMG, Dept Fis, CP 702, BR-13081970 Belo Horizonte, MG,
Brazil.
CR ALBANESI EA, 1993, PHYS REV B, V48, P17841
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHEN AB, 1996, SEMICONDUCTOR ALLOYS
FAN WJ, 1996, J APPL PHYS, V79, P188
FANCIULLI M, 1993, PHYS REV B, V48, P15144
GERLICH D, 1986, J PHYS CHEM SOLIDS, V47, P437
MIWA K, 1993, PHYS REV B, V48, P7897
NAKAMURA S, 1997, BLUE LASER DIODE
SUZUKI M, 1995, PHYS REV B, V52, P8132
WEI SH, 1988, PHYS REV B, V37, P8958
WETTLING W, 1984, SOLID STATE COMMUN, V50, P33
WIMMER E, 1981, PHYS REV B, V24, P864
WRIGHT AF, 1995, PHYS REV B, V51, P7866
WU YF, 1996, APPL PHYS LETT, V69, P1438
YEH CY, 1992, PHYS REV B, V46, P10086
YEH CY, 1994, PHYS REV B, V50, P2715
NR 17
TC 3
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5107
J9 MATER SCI ENG B-SOLID STATE M
JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
PD MAY 30
PY 2002
VL 93
IS 1-3
BP 2
EP 5
PG 4
SC Materials Science, Multidisciplinary; Physics, Condensed Matter
GA 560NY
UT ISI:000176089200002
ER
PT J
AU de Oliveira, LFC
Edwards, HGM
Velozo, ES
Nesbitt, M
TI Vibrational spectroscopic study of brazilin and brazilein, the main
constituents of brazilwood from Brazil
SO VIBRATIONAL SPECTROSCOPY
LA English
DT Article
DE brazilin; brazilein; Brazilwood; FT-Raman spectroscopy
ID HARMONIC FORCE-FIELD; CAESALPINIA-SAPPAN; AB-INITIO; RAMAN-SPECTRA;
1,4-BENZOQUINONE; NU(2); WOOD; MICE
AB In this work, the vibrational spectra (FT-Raman and infrared spectra)
of brazilin, the major component of brazilwood Caesalpinia echinata
(from Bahia, Brazil), and brazilein, the oxidised pigment, are
investigated. The FT-Raman spectra of the compounds show different
patterns in the carbonyl stretching region, where brazilein presents a
Raman feature at 1697 cm(-1) that is tentatively assigned to a coupled
vibrational mode described by C=O and aromatic C=C stretching. Infrared
measurements are used to support this assignment. The spectral region
between 1700 and 1500 cm(-1) is also proposed as a fingerprint for
brazilin and brazilein. Comparisons with some quinones and polyalcohols
as parent molecules and other deep red resin pigments such as "dragon's
blood" are undertaken to assist the vibrational assignment. As a test
of the spectroscopic protocol for the identification of these pigments
in natural brazilwoods, an 80-year-old archival specimen of Caesalpinia
echinata was analysed non-destructively and the feature of brazilein
shown from the Raman spectrum. (C) 2002 Elsevier Science B.V. All
rights reserved.
C1 Univ Bradford, Dept Chem & Forens Sci, Bradford BD7 1DP, W Yorkshire, England.
Univ Fed Juiz De Fora, Dept Quim, Inst Ciencias Exatas, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Bahia, Fac Farm, BR-41170290 Salvador, BA, Brazil.
Royal Bot Gardens, Ctr Econ Bot, Richmond TW9 3AE, Surrey, England.
RP de Oliveira, LFC, Univ Bradford, Dept Chem & Forens Sci, Bradford BD7
1DP, W Yorkshire, England.
CR BAEK NI, 2000, ARCH PHARM RES, V23, P344
BECKER ED, 1991, J PHYS CHEM-US, V95, P2818
DEFILIPPS RA, 1998, ARCH NATURAL HIST, V25, P103
EDWARDS HGM, 2001, IN PRESS SPECTROCH A
FUKE C, 1985, PHYTOCHEMISTRY, V24, P2403
HWANG GS, 1998, ARCH PHARM RES, V21, P774
KHIL LY, 1999, BIOCHEM PHARMACOL, V58, P1705
KIM DS, 1997, PHYTOCHEMISTRY, V46, P177
KIM SG, 1998, ARCH PHARM RES, V21, P140
MATSUNAGA M, 2000, J WOOD SCI, V46, P253
MOK MS, 1998, ARCH PHARM RES, V21, P769
NONELLA M, 1997, CHEM PHYS LETT, V280, P91
OH SR, 1998, PLANTA MED, V64, P140
PERKIN AG, 1918, NATURAL ORGANIC COLO
SPOLITI M, 1997, THEOCHEM-J MOL STRUC, V390, P139
SZABO A, 1999, J MOL STRUCT, V510, P215
XIE YW, 2000, LIFE SCI, V67, P1913
YANG KM, 2000, ARCH PHARM RES, V23, P626
ZHAN CG, 1998, CHEM PHYS, V230, P45
ZHAN CG, 2000, J MOL STRUC-THEOCHEM, V531, P33
ZHAO XJ, 1996, CHEM PHYS LETT, V262, P643
NR 21
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0924-2031
J9 VIB SPECTROSC
JI Vib. Spectrosc.
PD APR 26
PY 2002
VL 28
IS 2
BP 243
EP 249
PG 7
SC Chemistry, Analytical; Chemistry, Physical; Spectroscopy
GA 556LV
UT ISI:000175852000004
ER
PT J
AU Venezuela, P
Dalpian, GM
da Silva, AJR
Fazzio, A
TI Vacancy-mediated diffusion in disordered alloys: Ge self-diffusion in
Si1-xGex
SO PHYSICAL REVIEW B
LA English
DT Article
ID NATIVE POINT-DEFECTS; AB-INITIO; FIRST-PRINCIPLES; BORON-DIFFUSION;
SILICON; PSEUDOPOTENTIALS; GERMANIUM; SYSTEMS
AB A model is proposed for vacancy mediated diffusion in disordered
alloys, with particular application to Ge self-diffusion in Si1-xGex.
We argue that if the vacancies formation energies (VFE) have a strong
dependence on the configuration of nearest neighbor (NN) atoms, there
will be preferential diffusion paths for some concentrations. For
Si1-xGex we show that the VFE vary linearly from 2 to 3 eV as the
number of NN Ge atoms varies from 4 to 0. Thus, the equilibrium
population of the various kinds of vacancies changes significantly with
x, and the diffusion proceeds by paths that do not necessarily resemble
the concentration of the alloy.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Venezuela, P, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BLOCHL PE, 1993, PHYS REV LETT, V70, P2435
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BRACHT H, 2000, NATURE, V408, P69
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DORENBOS P, 1987, PHYS REV B, V35, P5766
FAHEY P, 1989, APPL PHYS LETT, V54, P843
FAZZIO A, 2000, PHYS REV B, V61, P2401
HOHENBERG P, 1964, PHYS REV B, V136, P864
JANOTTI A, 1999, PHYSICA B, V273, P575
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KOHAN AF, 2000, PHYS REV B, V61, P15019
KOHN W, 1965, PHYS REV, V140, A1133
PERDEW JP, 1981, PHYS REV B, V23, P5048
PUSKA MJ, 1998, PHYS REV B, V58, P1318
SADIGH B, 1999, PHYS REV LETT, V83, P4341
URAL A, 1999, PHYS REV LETT, V83, P3454
VENEZUELA P, 2001, PHYS REV B, V64
VRIJEN R, 2000, PHYS REV A, V62
WEI SH, 1990, PHYS REV B, V42, P9622
WERNER M, 1985, PHYS REV B, V32, P3930
WINDL W, 1999, PHYS REV LETT, V83, P4345
ZANGENBERG NR, 2001, PHYS REV LETT, V87
NR 23
TC 10
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2002
VL 65
IS 19
AR 193306
DI ARTN 193306
PG 4
SC Physics, Condensed Matter
GA 556QR
UT ISI:000175860900018
ER
PT J
AU Bussi, G
Ruini, A
Molinari, E
Caldas, MJ
Puschnig, P
Ambrosch-Draxl, C
TI Interchain interaction and Davydov splitting in polythiophene crystals:
An ab initio approach
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SEXITHIOPHENE SINGLE-CRYSTALS; QUANTUM-WIRE STRUCTURES;
OPTICAL-SPECTRA; OLIGOTHIOPHENES; EXCITATIONS; EMISSION; POLYMERS
AB The crystal-induced energy splitting of the lowest excitonic state in
polymer crystals, the so-called Davydov splitting Delta, is calculated
with a first-principles density-matrix scheme. We show that different
crystalline arrangements lead to significant variations in Delta, from
below to above the thermal energy k(B)T at room temperature, with
relevant implications on the luminescence efficiency. This is one more
piece of evidence supporting the fact that control of interchain
interactions and solid-state packing is essential for the design of
efficient optical devices. (C) 2002 American Institute of Physics.
C1 Univ Modena & Reggio Emilia, INFMS3, I-41100 Modena, Italy.
Univ Modena & Reggio Emilia, Dipartimento Fis, I-41100 Modena, Italy.
Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
Karl Franzens Univ Graz, Inst Theoret Phys, A-8010 Graz, Austria.
RP Bussi, G, Univ Modena & Reggio Emilia, INFMS3, Via Campi 213-A, I-41100
Modena, Italy.
CR CALDAS MJ, 2001, APPL PHYS LETT, V79, P2505
CORNIL J, 2001, SYNTHETIC MET, V119, P1
DAVYDOV AS, 1962, THEORY MOL EXCITONS
GARNIER F, 1998, APPL PHYS LETT, V72, P2087
GEBAUER W, 1998, CHEM PHYS, V227, P33
GIGLI G, 2001, APPL PHYS LETT, V78, P1493
HOHENESTER U, 2001, PHYS REV B, V64
KOHN W, 1965, PHYS REV, V140, A1133
KOUKI F, 2000, J CHEM PHYS, V113, P385
MOLLER S, 2000, PHYS REV B, V61, P15749
MUCCINI M, 2000, PHYS REV B, V62, P6296
OELKRUG D, 1996, THIN SOLID FILMS, V284, P267
PUSCHNIG P, 2001, SYNTHETIC MET, V119, P245
ROHLFING M, 2000, PHYS REV B, V62, P4927
ROSSI F, 1996, PHYS REV B, V53, P16462
ROSSI F, 1996, PHYS REV LETT, V76, P3642
RUINI A, IN PRESS PHYS REV LE
SCHON JH, 2000, SCIENCE, V290, P963
SIEGRIST T, 1998, ADV MATER, V10, P379
SIRRINGHAUS H, 1998, SCIENCE, V280, P1741
TALIANI C, 1999, HDB OLIGO POLYTHIOPH, P361
VANDERHORST JW, 2000, PHYS REV B, V61, P15817
NR 22
TC 12
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 3
PY 2002
VL 80
IS 22
BP 4118
EP 4120
PG 3
SC Physics, Applied
GA 555BB
UT ISI:000175771800012
ER
PT J
AU Hitchcock, AP
Johnston, S
Tyliszczak, T
Turci, CC
Barbatti, M
Rocha, AB
Bielschowsky, CE
TI Generalized oscillator strengths for C 1s excitation of acetylene and
ethylene
SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
LA English
DT Article
DE generalized oscillator strength; electron scattering; EELS; quadrupole
transitions
ID INNER-SHELL EXCITATION; IMPACT CORE EXCITATION; ENERGY-LOSS
SPECTROSCOPY; ELECTRON-IMPACT; C-1S PHOTOIONIZATION; MOMENTUM-TRANSFER;
SHAPE RESONANCES; MOLECULES; SF6; C2H2
AB The generalized oscillator strength profiles for discrete C 1s excited
states of C2H2 and C2H4 have been derived from angle-dependent
inelastic electron scattering cross-sections measured with 1300 eV
final electron energy. The measured GOS profiles for the strong C
1s-->pi* transition in each species are compared to theoretical
calculations computed within the first Born approximation, using
ab-initio generalized multi structural wave functions. These wave
functions include relaxation, correlation and hole localization
effects. Theory predicts large quadrupole contributions to the pi* GOS
of each species, analogous to those previously reported for computed
GOS profiles for O 1s-->pi* excitation of CO2. We find good agreement
between experiment and theory as to the shape of the pi* GOS but, when
the relative GOS extracted from the experimental data is normalized to
the optical oscillator strength at K-2=0, the magnitude is in better
agreement with the GOS computed for only the dipole channel than for
the sum of the dipole and quadrupole channels. (C) 2002 Elsevier
Science B.V. All rights reserved.
C1 McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
Univ Fed Rio de Janeiro, Inst Quim, BR-21910900 Rio De Janeiro, Brazil.
RP Hitchcock, AP, McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
CR BARTH A, 1980, CHEM PHYS, V46, P149
BETHE H, 1930, ANN PHYS-BERLIN, V5, P325
BIELSCHOWSKY CE, 1992, PHYS REV A, V45, P7942
BONHAM RA, 1979, ELECTRON SPECTROSCOP, V3, P127
BRION CE, 1972, MTP INT REV SCI 1, V5, P55
BRION CE, 1982, AIP C P, V94, P429
DEMIRANDA MP, 1993, J MOL STRUCT, V282, P71
DEMIRANDA MP, 1994, PHYS REV A, V49, P2399
EUSTATIU IG, 1999, CHEM PHYS LETT, V300, P676
EUSTATIU IG, 2000, CHEM PHYS, V257, P235
EUSTATIU IG, 2000, PHYS REV A, V61
FARREN RE, 1991, CHEM PHYS LETT, V177, P307
FRANCIS JT, 1994, CAN J PHYS, V72, P879
FRANCIS JT, 1994, J CHEM PHYS, V101, P10429
FRANCIS JT, 1995, PHYS REV A, V52, P4665
FRANCIS JT, 1995, THESIS MCMASTER U
HENKE BL, 1993, ATOM DATA NUCL DATA, V54, P181
HITCHCOCK AP, 1977, J ELECTRON SPECTROSC, V10, P317
HITCHCOCK AP, 1994, J ELECTRON SPECTROSC, V67, P1
HITCHCOCK AP, 1998, J ELECTRON SPECTROSC, V88, P77
HITCHCOCK AP, 2000, J ELECTRON SPECTROSC, V112, P9
INOKUTI M, 1971, REV MOD PHYS, V43, P297
ITCHKAWITZ BS, 1995, REV SCI INSTRUM 2, V66, P1531
IWATA S, 1978, JPN J APPL PHYS, V17, P105
KEMPGENS B, 1997, J CHEM PHYS, V107, P4219
KEMPGENS B, 1997, PHYS REV LETT, V79, P35
KEMPGENS B, 1999, SURF SCI, V425, L376
KILCOYNE ALD, 1993, J CHEM PHYS, V98, P6735
LASSETTRE EN, 1974, METHODS EXPT PHYSI B, V3, P868
MCLAREN R, 1987, PHYS REV A, V36, P1683
ROCHA AB, 2002, J PHYS CHEM A, V106, P181
TAM WC, 1973, J ELECT SPECTROSC RE, V2, P111
TAM WC, 1973, J ELECT SPECTROSC RE, V3, P479
TAM WC, 1974, J ELECT SPECTROSC RE, V3, P269
TAM WC, 1974, J ELECT SPECTROSC RE, V4, P139
TAM WC, 1974, J ELECT SPECTROSC RE, V4, P149
TAM WC, 1974, J ELECT SPECTROSC RE, V4, P77
TAM WC, 1974, J ELECTRON SPECTROSC, V3, P281
TRAJMAR S, 1970, ADV CHEM PHYS, V18, P15
TRONC M, 1979, J PHYS B ATOM MOL PH, V12, P137
TURCI CC, 1995, PHYS REV A, V52, P4678
TYLISZCZAK T, 2001, J ELECTRON SPECTROSC, V114, P93
WIGHT GR, 1976, J PHYS B ATOM MOL PH, V9, P675
NR 43
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0368-2048
J9 J ELECTRON SPECTROSC RELAT PH
JI J. Electron Spectrosc. Relat. Phenom.
PD MAY
PY 2002
VL 123
IS 2-3
BP 303
EP 314
PG 12
SC Spectroscopy
GA 552WM
UT ISI:000175643100017
ER
PT J
AU Ruini, A
Caldas, MJ
Bussi, G
Molinari, E
TI Solid state effects on exciton states and optical properties of PPV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID QUANTUM-WIRE STRUCTURES; AB-INITIO CALCULATION; CONJUGATED POLYMERS;
POLY(PHENYLENE VINYLENE); EXCITATIONS; ABSORPTION;
POLY(P-PHENYLENEVINYLENE); SEMICONDUCTORS; SPECTRA; ENERGY
AB We perform ab initio calculations of optical properties for a typical
semiconductor conjugated polymer, poly-para-phenylenevinylene, in both
isolated chain and crystalline packing. In order to obtain results for
excitonic energies and real-space wave functions we explicitly include
electron-hole interaction within the density-matrix formalism. We find
that the details of crystalline arrangement crucially affect the
optical properties, leading to a richer exciton structure and opening
nonradiative decay channels. This has implications for the optical
activity and optoelectronic applications of polymer films.
C1 Univ Modena & Reggio Emilia, INFM S, I-41100 Modena, Italy.
Univ Modena & Reggio Emilia, Dipartimento Fis, I-41100 Modena, Italy.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Ruini, A, Univ Modena & Reggio Emilia, INFM S, Via Campi 213A, I-41100
Modena, Italy.
CR ALVARADO SF, 1996, PHYS REV LETT, V53, P16462
BARTH S, 1997, PHYS REV LETT, V79, P4445
BELJONNE D, 1999, J CHEM PHYS, V111, P2829
BUSSI G, IN PRESS APPL PHYS L
CAMPBELL IH, 1996, PHYS REV LETT, V76, P1900
CAPAZ RB, IN PRESS
CHANDROSS M, 1997, PHYS REV B, V55, P1486
CHEN D, 1992, POLYMER, V33, P3116
CONWELL EM, 1996, SYNTHETIC MET, V83, P101
CORNIL J, 2001, SYNTHETIC MET, V119, P1
DACOSTA PG, 1993, PHYS REV B, V48, P1993
DAVYDOV AS, 1962, THEORY MOL EXCITONS
ECKHARDT H, 1989, J CHEM PHYS, V91, P1303
FRIEND RH, 1999, NATURE, V397, P121
FROLOV SV, 2000, PHYS REV LETT, V85, P2196
HANKE W, 1979, PHYS REV LETT, V43, P387
HILL IG, 2000, CHEM PHYS LETT, V327, P181
HOHENESTER U, 2001, PHYS REV B, V64
KOHN W, 1965, PHYS REV, V140, A1133
LENG JM, 1994, PHYS REV LETT, V72, P156
MARTIN SJ, 1999, PHYS REV B, V59, P15133
MOSES D, 2000, CHEM PHYS LETT, V316, P356
MOSES D, 2001, SYNTHETIC MET, V125, P93
MUCCINI M, 2000, PHYS REV B, V62, P6296
OGAWA T, 1991, PHYS REV B, V44, P8138
RINALDI R, 2001, PHYS REV B, V63
ROHLFING M, 1999, PHYS REV LETT, V82, P1959
ROSSI F, 1996, PHYS REV B, V53, P16462
ROSSI F, 1996, PHYS REV LETT, V76, P3642
ROSSI L, 2001, SYNTHETIC MET, V334, P303
RUINI A, 2001, SYNTHETIC MET, V119, P257
SAKAMOTO A, 1992, J PHYS CHEM-US, V96, P1490
SHAM LJ, 1966, PHYS REV, V144, P708
TIAN B, 1991, J CHEM PHYS, V95, P3198
VANDERHORST JW, 1999, PHYS REV LETT, V83, P4413
WU MW, 1997, PHYS REV B, V56
YAN M, 1995, PHYS REV LETT, V75, P1992
NR 37
TC 41
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAY 20
PY 2002
VL 88
IS 20
AR 206403
DI ARTN 206403
PG 4
SC Physics, Multidisciplinary
GA 549UY
UT ISI:000175466200034
ER
PT J
AU Boye, S
Campos, A
Douin, S
Fellows, C
Gauyacq, D
Shafizadeh, N
Halvick, P
Boggio-Pasqua, M
TI Visible emission from the vibrationally hot C2H radical following
vacuum-ultraviolet photolysis of acetylene: Experiment and theory
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID LASER-INDUCED FLUORESCENCE; POTENTIAL-ENERGY SURFACES; 193.3 NM;
PHOTODISSOCIATION DYNAMICS; RECURSIVE EVALUATION; STATE DISTRIBUTION;
ANGULAR MOMENTA; RYDBERG STATES; 121.6 NM; PHOTOCHEMISTRY
AB Photolysis of acetylene has been performed by vacuum-ultraviolet
excitation with the synchrotron radiation via the Rydberg states
converging to the first ionization potential (IP) at 11.4 eV. Only the
visible fluorescence of the ethynyl radical was observed in the (A)
over tilde (2)Pi-(X) over tilde (2)Sigma(+) system. Excitation of
several Rydberg states of acetylene over a large energy range between 9
and 11.4 eV allowed us to observe for the first time the evolution of
this continuum with increasing Rydberg excitation. Intensity
calculations based on accurate ab initio potential energy surfaces of
C2H were performed by using a one-dimensional model accounting for the
large-amplitude motion of the H atom around the C-C bond and for the
overall rotation of the radical. These calculations successfully
reproduce the observed visible continuum (maximum at 500 nm and blue
side cutoff at 400 nm) and bring new information on the distribution of
the internal energy deposited in the fragment. For most excited Rydberg
states, predissociation occurs in a rather low time scale, leaving the
C2H fragment in the (A) over tilde state, vibrationally hot, mostly
with significant excitation in the bending mode around the
isomerization barrier. (C) 2002 American Institute of Physics.
C1 Univ Paris 11, CNRS, Photophys Mol Lab, F-91405 Orsay, France.
Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil.
Univ Bordeaux 1, Lab Physicochim Mol, CNRS, UMR 5803, F-33405 Talence, France.
RP Boye, S, Univ Paris 11, CNRS, Photophys Mol Lab, Batiment 210, F-91405
Orsay, France.
CR ARTHURS AM, 1960, P ROY SOC LOND A MAT, V256, P540
BALKO BA, 1991, J CHEM PHYS 1, V94, P7958
BECKER KH, 1971, Z NATURFORSCH A, V26, P1770
BERGEAT A, 1999, J PHYS CHEM A, V103, P6360
BOGGIOPASQUA M, 1998, J PHYS CHEM A, V102, P2009
BOGGIOPASQUA M, 2000, PHYS CHEM CHEM PHYS, V2, P1693
CAMPOS A, 1999, CHEM PHYS LETT, V314, P91
CURL RF, 1985, J CHEM PHYS, V82, P3479
DOUIN S, UNPUB
DRAINE BT, 1978, ASTROPHYS J, V36, P595
FILLION JH, 1996, J CHEM PHYS, V105, P22
FLETCHER TR, 1989, J CHEM PHYS, V90, P871
GLASSGOLD AE, 1996, ANNU REV ASTRON ASTR, V34, P241
HAN JC, 1989, J CHEM PHYS, V90, P4000
HERMAN M, 1981, J MOL SPECTROSC, V85, P449
HERMAN M, 1982, PHYS SCRIPTA, V25, P275
HERZBERG G, 1966, MOL SPECTRA MOL STRU, V3
HSU YC, 1992, CHEM PHYS LETT, V190, P507
HSU YC, 1996, J CHEM PHYS, V105, P9153
HUGGINS PJ, 1982, AP J, V252, P201
HUGGINS PJ, 1984, ASTROPHYS J, V279, P284
JACKSON WM, 1978, CHEM PHYS LETT, V55, P254
LAFONT S, 1982, ASTRON ASTROPHYS, V106, P201
LAI LH, 1996, J PHYS CHEM-US, V100, P6376
LAURELLE F, UNPUB
LIEVIN J, 1992, J MOL SPECTROSC, V156, P123
LOFFLER P, 1996, CHEM PHYS LETT, V252, P304
LOFFLER P, 1998, J CHEM PHYS, V109, P5231
NAHON L, 1998, NUCL INSTRUM METH A, V404, P418
NAKAYAMA T, 1964, J CHEM PHYS, V40, P558
OKABE H, 1975, J CHEM PHYS, V62, P2782
OKABE H, 1981, J CHEM PHYS, V75, P2772
OKABE H, 1983, CAN J CHEM, V61, P850
OKABE H, 1983, J CHEM PHYS, V78, P1312
OKABE H, 1985, CHEM PHYS, V92, P67
SAITO Y, 1984, J CHEM PHYS, V80, P31
SANDER RK, 1988, J CHEM PHYS, V89, P3495
SATYAPAL S, 1991, J PHYS CHEM-US, V95, P8004
SCHULTEN K, 1975, J MATH PHYS, V16, P1961
SCHULTEN K, 1975, J MATH PHYS, V16, P1971
SCHULTEN K, 1976, COMPUT PHYS COMMUN, V11, P269
SEGALL J, 1991, J PHYS CHEM-US, V95, P8078
SHOKOOHI F, 1989, J CHEM PHYS, V90, P871
SOME E, 1995, J MOL SPECTROSC, V173, P44
SUTO M, 1984, J CHEM PHYS, V80, P4824
TRUONGBACH, 1987, ASTRON ASTROPHYS, V176, P285
URDAHL RS, 1988, CHEM PHYS LETT, V152, P485
WANG JH, 1997, J PHYS CHEM A, V101, P6593
WERNER HJ, MOLPRO PACKAGE AB IN
WODTKE AM, 1985, J PHYS CHEM-US, V89, P4744
NR 50
TC 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAY 22
PY 2002
VL 116
IS 20
BP 8843
EP 8855
PG 13
SC Physics, Atomic, Molecular & Chemical
GA 549EK
UT ISI:000175431400020
ER
PT J
AU Tostes, JGR
Dias, JF
Seidl, PR
Carneiro, JWD
Taft, C
TI Steric and electronic contributions to conformational effects on
chemical shifts of acyclic alcohols
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE DFT/GIAO calculations; chemical shifts; hyperconjugation; acyclic
alcohols; electronic effects; steric effects
ID AB-INITIO IGLO; C-13; EXCHANGE; CARBON
AB Our calculations on bi- and polycyclic alcohols reveal that the
Mulliken charge distribution and chemical shift patterns due to
hyperconjugation of lone pairs on oxygen with neighboring groups break
down or are attenuated for certain spatial relationships of the
hydroxyl group. Since in strained ring systems other effects on these
parameters may be present, we applied a similar analysis to acyclic
alcohols. Calculations at the B3LYP/6-31G* level on conformers of
methanol, ethanol, 1- and 2-propanol, 2methyl- l-propanol,
2-methyl-2-propanol, 2-butanol, 2-methyl-2-butanol, 1- 2- and
3-pentanol and 2-methyl-3-pentanol, where hyperconjugation may be
present, reveal steric effects as modifiers of hyperconjugative
patterns affecting carbon-13 chemical shifts in such alcohols. Contrary
to what is observed in bi- and policyclic systems, where electrostatic
effects interfere with effects due to hyperconjugation, these steric
effects may be the main cause for the attenuation of deshielding of
nuclei that are subject to hyperconjugation. Electrostatic effects are
also present but they do not interfere with hyperconjugation by lone
pairs. Conformational effects fall off sharply after the third carbon
in the chain. (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Estadual Norte Fluminense, Ctr Ciencias & Tecnol, Lab Ciencias Quim, BR-28015620 Campos dos Goytacazes, RJ, Brazil.
Inst Mil Engn, Dept Engn Quim, Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Escola Quim, Rio De Janeiro, Brazil.
Univ Fed Fluminense, Dept Quim Geral & Inorgan, Niteroi, RJ, Brazil.
Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil.
RP Tostes, JGR, Univ Estadual Norte Fluminense, Ctr Ciencias & Tecnol, Lab
Ciencias Quim, Av Alberto Lamego 2000, BR-28015620 Campos dos
Goytacazes, RJ, Brazil.
CR BARFIELD M, 1995, J AM CHEM SOC, V117, P2862
BARFIELD M, 1998, MAGN RESON CHEM, V36, S93
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
DEDIOS AC, 1993, SCIENCE, V260, P1491
DITCHFIELD R, 1974, MOL PHYS, V27, P789
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
LEE C, 1988, PHYS REV B, V37, P785
SEIDL PR, UNPUB
SEIDL PR, 1998, ATUALIDADES FISICO Q, P127
SEIDL PR, 1998, MAGN RESON CHEM, V36, P261
SEIDL PR, 1999, J MOL STRUC-THEOCHEM, V488, P151
SEIDL PR, 2001, J MOL STRUC-THEOCHEM, V539, P163
TOSTES JGR, 1994, J MOL STRUCT THEOCHE, V306, P101
TOSTES JR, 1996, THEOCHEM-J MOL STRUC, V388, P85
WHITESELL JK, 1988, J AM CHEM SOC, V110, P991
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 18
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAR 29
PY 2002
VL 580
SI Sp. Iss. SI
BP 75
EP 83
PG 9
SC Chemistry, Physical
GA 546DG
UT ISI:000175256200010
ER
PT J
AU Bauerfeldt, GF
de Albuquerque, LMM
Arbilla, G
da Silva, EC
TI Unimolecular reactions on formaldehyde S0PES
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE H2CO; unimolecular reactions; direct dynamics; variational RRKM rate
coefficients
ID TRANSITION-STATE; RATE CONSTANTS; PHOTOFRAGMENTATION DYNAMICS; INFRARED
INTENSITIES; PHOTO-DISSOCIATION; AB-INITIO; ENERGY; DISTRIBUTIONS;
SURFACE; H2CO
AB The competitive unimolecular reactions of formaldehyde., H2CO --> H-2 +
CO; H2CO --> trans-HCOH and H2CO --> H + HCO, were comparatively
studied under the direct dynamics formalism, using Density functional
and ab initio levels of theory. In addition, the geometric
isomerization trans-HCOH --> cis-HCOH was evaluated. Calculated
reaction path properties were used in the determination of
Rice-Ramsperger-Kassel-Marcus microcanonical rate coefficients. The
reaction dynamics was evaluated for each individual process based on
the nuclear displacements in the reaction path and normal coordinate
analysis. Our results found are in very good agreement with
experimental barrier heights and quantum yields trends. (C) 2002
Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, Ctr Tecnol, BR-21949900 Rio De Janeiro, Brazil.
RP Bauerfeldt, GF, Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim,
Ctr Tecnol, Bloco A Cidade Univ, BR-21949900 Rio De Janeiro, Brazil.
CR BAKER J, 1986, J COMPUT CHEM, V7, P385
BAMFORD DJ, 1985, J CHEM PHYS, V82, P3032
BAUERFELDT GF, 1999, THESIS U FEDERAL RIO
BAUERFELDT GF, 2000, J PHYS CHEM A, V104, P10895
BAUERFELDT GF, 2001, J MOL STRUCT THEOCHE, V593, P223
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENSON SW, 1976, THERMOCHEMICAL KINET
BEYER T, 1973, COMMUN ASS COMPUT MA, V16, P379
BUTENHOFF TJ, 1990, J CHEM PHYS, V92, P377
CHANG YT, 1992, J CHEM PHYS, V96, P4341
DEBARRE D, 1985, J CHEM PHYS, V83, P4476
DUNCAN JL, 1973, CHEM PHYS LETT, V23, P597
DUNCAN JL, 1974, MOL PHYS, V28, P1177
DUNNING TH, 1976, MODERN THEORETICAL C
DUPUIS M, 1983, J CHEM PHYS, V79, P6167
FINLAYSONPITTS BJ, 1986, ATMOSPHERIC CHEM FUN
FRISCH MJ, 1981, J PHYS CHEM-US, V85, P1467
FRISCH MJ, 1984, J CHEM PHYS, V81, P1882
FROST W, 1991, J CHEM SOC FARADAY T, V87, P2307
FROST W, 1991, J PHYS CHEM-US, V95, P3612
FUKUI K, 1982, PURE APPL CHEM, V54, P1825
GODDARD JD, 1979, J CHEM PHYS, V70, P5117
GODDARD JD, 1981, J CHEM PHYS, V75, P3459
GREEN WH, 1990, CHEM PHYS LETT, V169, P127
GREENHILL PG, 1986, J PHYS CHEM-US, V90, P3104
HERZBERG G, 1991, MOL SPECTRA MOL STRU, V3
HOHENBERG P, 1964, PHYS REV B, V136, P864
HOUSTON PL, 1976, J CHEM PHYS, V65, P757
JENSEY FJ, 1998, INTRO COMPUTATIONAL
JURSIC BS, 1997, THEOCHEM-J MOL STRUC, V418, P11
LEVINE IN, 1991, QUANTUM CHEM
LUKHAUS D, 1996, J CHEM PHYS, V104, P3472
MARTINS LMM, 2000, THESIS U FEDERAL RIO
MARTINS LMMD, 1998, J PHYS CHEM A, V102, P10805
MILLER WH, 1979, J AM CHEM SOC, V101, P6810
MOORE CB, 1983, ANNU REV PHYS CHEM, V34, P525
POLIK WF, 1990, J CHEM PHYS, V92, P3453
REISNER DE, 1984, J CHEM PHYS, V80, P5968
SCUSERIA GE, 1989, J CHEM PHYS, V90, P3629
SEINFELD JH, 1997, ATMOSPHERIC CHEM PHY
SILVA AM, 1999, THESIS U FEDERAL RIO
SILVA AM, 2000, J PHYS CHEM A, V104, P9535
STANTON JF, 1991, J CHEM PHYS, V94, P404
TAGAKI K, 1963, J PHYS SOC JPN, V18, P1174
TANAKA Y, 1977, J MOL SPECTROSC, V64, P429
TERENTIS AC, 1996, CHEM PHYS LETT, V258, P626
TROE J, 1977, J CHEM PHYS, V66, P4745
TROE J, 1984, J PHYS CHEM-US, V88, P4375
WAYNE RP, 1991, CHEM ATMOSPHERES
WOON DE, 1993, J CHEM PHYS, V98, P1358
YAMADA K, 1971, J MOL SPECTROSC, V38, P70
YEUNG ES, 1973, J CHEM PHYS, V58, P3988
YU JSK, 1997, CHEM PHYS LETT, V271, P259
ZHU L, GEN RRKM PROGRAM
NR 54
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAR 29
PY 2002
VL 580
SI Sp. Iss. SI
BP 147
EP 160
PG 14
SC Chemistry, Physical
GA 546DG
UT ISI:000175256200018
ER
PT J
AU Roberto-Neto, O
Machado, FBC
TI An ab initio study of the Cl(P-2)+C2H6 -> C2H5+HCl abstraction reaction
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE abstraction reaction; ethane; chlorine; ab initio; rate constants
ID DIRECT DYNAMICS CALCULATIONS; TRANSITION-STATE THEORY; HYDROGEN
ABSTRACTION; PERTURBATION-THEORY; CHLORINE ATOMS; REACTION-RATES; C2H5
RADICALS; ETHANE; KINETICS; PROPANE
AB Electronic energies, geometries, and harmonic vibration frequencies for
the reactants, products, and transition state for the Cl(P-3) + C2H6
--> C2H5 + HCl abstraction reaction were evaluated at the HF and MP2
levels using several correlation consistent polarized-valence basis
sets. Single-point calculations at PMP2, MP4, QCISD(T), and CCSD(T)
levels were also carried out. The values of the forward activation
energies obtained at the MP4/cc-pVTZ, QCISD(T)/cc-pVTZ, and
CCSD(T)/cc-pVTZ levels using the MP2/cc-pVTZ structures are equal to
-0.1, -0.4, and -0.3 kcal/mol, respectively. The experimental value is
equal to 0.3 +/- 0.2 kcal/mol. We found that the MP2/aug-cc-pVTZ
adiabatic vibration energy for the reaction (-2.4 kcal/mol) agrees well
with the experimental value -(2.2-2.6) kcal/mol. Rate constants
calculated with the zeroth-order interpolated variational transition
state (IVTST-0) method are in good agreement with experiment. In
general, the theoretical rate constants differ from experiment by, at
most, a factor of 2.6. (C) 2002 Elsevier Science B.V. All rights
reserved.
C1 Ctr Tecn Aeroesp, Inst Estudos Avancados, BR-12228840 Sao Jose Dos Campos, SP, Brazil.
Ctr Aerosp Technol, Inst Tecnol Aeronaut, Dept Quim, BR-12228900 Sao Jose Dos Campos, SP, Brazil.
RP Roberto-Neto, O, Ctr Tecn Aeroesp, Inst Estudos Avancados, BR-12228840
Sao Jose Dos Campos, SP, Brazil.
CR ATKINSON R, 1992, J PHYS CHEM REF DATA, V21, P1125
ATKINSON R, 1992, J PHYS CHEM REF DATA, V21, P1416
BOTTONI A, 1995, THEOCHEM-J MOL STRUC, V337, P161
CATELLANO AL, 1981, J AM CHEM SOC, V103, P4262
CHETTUR G, 1987, J PHYS CHEM-US, V91, P3483
CHUANG YY, 1999, POLYRATE VERSION 8 1
CORCHADO JC, 1998, J PHYS CHEM A, V102, P4899
CORCHADO JC, 2000, J CHEM PHYS, V112, P9375
DOBBIS O, 1994, J PHYS CHEM-US, V98, P12284
DUNCAN JL, 1979, J MOL SPECTROSC, V74, P361
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FOSTER SC, 1989, J PHYS CHEM-US, V93, P5986
FRISCH MJ, 1980, CHEM PHYS LETT, V75, P66
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GONZALEZLAFONT A, 1991, J CHEM PHYS, V95, P8875
HERZBERG G, 1945, MOL SPECTRA MOL STRU, V2
HERZBERG G, 1979, MOL SPECTRA MOL STRU, V4
JUNGKAMP TPW, 1997, J CHEM PHYS, V107, P1513
JURSIC BS, 1998, J MOL STRUC-THEOCHEM, V430, P17
KOBAYASHI Y, 2000, CHEM PHYS LETT, V319, P695
LAIDLER KJ, 1987, CHEM KINETICS
LIDE DR, 1994, CRC HDB CHEM PHYSICS
MARSHALL P, 1999, J PHYS CHEM A, V103, P4560
MOORE CE, 1971, NATL STAND REF DATA, V2
PACANSKY J, 1982, J AM CHEM SOC, V104, P415
PARMAR SS, 1989, J AM CHEM SOC, V111, P57
PILGRIM JS, 1997, J PHYS CHEM A, V101, P1873
POPLE JA, 1976, INT J QUANTUM CHEM S, V10, P1
POPLE JA, 1987, J CHEM PHYS, V87, P5968
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P157
ROBERTONETO O, 1998, J PHYS CHEM A, V102, P4568
ROBERTONETO O, 1999, J CHEM PHYS, V111, P10046
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
RUDOLPH J, 1996, ATMOS ENVIRON, V30, P1887
SCHLEGEL HB, 1986, J CHEM PHYS, V84, P4530
SEARS TJ, 1996, J CHEM PHYS, V104, P781
SVERDLEY LM, 1974, VIBRATION SPECTRA PO
TRUHLAR DG, 1971, CHEM PHYS LETT, V9, P269
TYNDALL GS, 1997, INT J CHEM KINET, V29, P43
WIGNER E, 1932, Z PHYS CHEM B-CHEM E, V19, P203
NR 40
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAR 29
PY 2002
VL 580
SI Sp. Iss. SI
BP 161
EP 170
PG 10
SC Chemistry, Physical
GA 546DG
UT ISI:000175256200019
ER
PT J
AU Goncalves, PFB
Stassen, H
TI New approach to free energy of solvation applying continuum models to
molecular dynamics simulation
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE solvation free energy; molecular dynamics; continuum model; aqueous
solutions
ID AB-INITIO; AQUEOUS-SOLUTION; SOLVENT; WATER; OPTIMIZATION; PARAMETERS;
HYDRATION; PROFILES; DOCKING; RADII
AB A new approach to the calculation of the free energy of solvation from
trajectories obtained by molecular dynamics simulation is presented.
The free energy of solvation is computed as the sum of three
contributions originated at the cavitation of the solute by the
solvent, the solute-solvent nonpolax (repulsion and dispersion)
interactions, and the electrostatic solvation of the solute. The
electrostatic term is calculated based on ideas developed for the
broadly used continuum models, the cavitational contribution from the
excluded volume by the Claverie-Pierotti model, and the Van der Waals
term directly from the molecular dynamics simulation. The proposed
model is tested for diluted aqueous solutions of simple molecules
containing a variety of chemically important functions: methanol,
methylamine. water, methanethiol, and dichloromethane. These solutions
were treated by molecular dynamics simulations using SPC/E water and
the OPLS force field for the organic molecules. Obtained free energies
of solvation a-re in very good agreement with experimental data.
C1 Univ Fed Rio Grande Sul, Inst Quim, Grp Quim Teor, BR-91540000 Porto Alegre, RS, Brazil.
RP Stassen, H, Univ Fed Rio Grande Sul, Inst Quim, Grp Quim Teor,
BR-91540000 Porto Alegre, RS, Brazil.
CR ADAMS DJ, 1974, MOL PHYS, V28, P1241
ALLEN MP, 1987, COMPUTER SIMULATION
APOSTOLAKIS J, 1998, J COMPUT CHEM, V19, P21
BENNAIM A, 1987, SOLUTION THERMODYNAM
BENNETT CH, 1976, J COMPUT PHYS, V22, P245
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
BONDI A, 1964, J PHYS CHEM-US, V68, P441
BOTTCHER CFJ, 1973, THEORY ELECT POLARIS
CABANI S, 1981, J SOLUTION CHEM, V10, P563
CAFLISCH A, 1997, J COMPUT CHEM, V18, P723
COLOMINAS C, 1999, J COMPUT CHEM, V20, P665
COLOMINAS C, 1999, J PHYS CHEM A, V103, P6200
CRAMER CJ, 1991, J AM CHEM SOC, V113, P8305
CRAMER CJ, 1999, CHEM REV, V99, P2161
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3901
FLORIS FM, 1991, J COMPUT CHEM, V12, P784
FRISCH MJ, 1998, GAUSSIAN98
GILSON MK, 1995, J COMPUT CHEM, V16, P1081
GONCALVES PFB, 1999, CHEM PHYS LETT, V304, P438
GRAY CG, 1984, THEORY MOL FLUIDS, V1
GUARNIERI F, 1996, J AM CHEM SOC, V118, P5580
JORGENSEN WL, 1988, J AM CHEM SOC, V110, P1657
JORGENSEN WL, 1990, J AM CHEM SOC, V112, P4768
KAMINSKI G, 1994, J PHYS CHEM-US, V98, P13077
KOLLMAN P, 1993, CHEM REV, V93, P2395
LIPTON MA, 1996, TETRAHEDRON LETT, V37, P287
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910
MARCHI M, 2001, J CHEM PHYS, V114, P4377
MAXWELL DS, 1995, J COMPUT CHEM, V16, P984
MEZEI M, 1993, MOL SIMULAT, V10, P225
NOSE S, 1984, MOL PHYS, V52, P255
OROZCO M, 1995, J COMPUT CHEM, V16, P563
PASCUALAHUIR JL, 1990, J COMPUT CHEM, V11, P1047
PERLMAN A, 1994, J CHEM PHYS, V98, P1487
PERLMAN A, 1994, J COMPUT CHEM, V15, P105
PIEROTTI RA, 1976, CHEM REV, V76, P717
QIU D, 1997, J PHYS CHEM A, V101, P3005
REDDY MR, 1998, J COMPUT CHEM, V19, P769
SENDEROWITZ H, 1995, J AM CHEM SOC, V117, P8211
SENDEROWITZ H, 1996, J AM CHEM SOC, V118, P2078
SILLA E, 1990, J MOL GRAPHICS, V8, P168
SILLA E, 1991, J COMPUT CHEM, V12, P1077
SMART JL, 1997, J COMPUT CHEM, V18, P1751
STEWART JJP, MOPAC93 00 MANUAL RE
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STILL WC, 1990, J AM CHEM SOC, V112, P6127
STRAATSMA TP, 1986, J CHEM PHYS, V85, P6720
TOMASI J, 1994, CHEM REV, V94, P2027
WIDOM B, 1963, J CHEM PHYS, V39, P2804
ZWANZIG RW, 1954, J CHEM PHYS, V22, P1420
NR 51
TC 6
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD MAY
PY 2002
VL 23
IS 7
BP 706
EP 714
PG 9
SC Chemistry, Multidisciplinary
GA 546VH
UT ISI:000175295300003
ER
PT J
AU Pliego, JR
Riveros, JM
TI Parametrization of the PCM model for calculating solvation free energy
of anions in dimethyl sulfoxide solutions
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; AB-INITIO; AQUEOUS SOLVATION;
TRANSITION-STATES; ATOMIC RADII; SOLVENT; IONS; MOLECULES; WATER;
OPTIMIZATION
AB We report the first parametrization of a continuum model for the
solvation of anions in DMSO solution. The present parameters used in
conjunction with the PCM method predict the solvation free energy of 21
anions in DMSO solution with an average error of -1.2 kcal mol(-1), and
a S.D. for the average error of only 2.2 kcal mol(-1). This low, value
of the S.D. shows that the present parametrization is capable of
predicting accurate differences of the solvation free energies in DMSO
solution and is reliable for modeling liquid phase chemical reactions.
(C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, SP, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, SP, Brazil.
CR CANCES E, 1997, J CHEM PHYS, V107, P3032
CHAMBERS CC, 1996, J PHYS CHEM-US, V100, P16385
CHENG A, 2000, J MOL GRAPH MODEL, V18, P273
COSSI M, 1996, CHEM PHYS LETT, V255, P327
CRAMER CJ, 1992, SCIENCE, V256, P213
CRAMER CJ, 1999, CHEM REV, V99, P2161
CUCCOVIA IM, 2000, J CHEM SOC PERK T 2, P1896
CURUTCHET C, 2001, J COMPUT CHEM, V22, P1180
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
GONCALVES PFB, 1999, CHEM PHYS LETT, V304, P438
GONZALEZ C, 1998, J PHYS CHEM A, V102, P2732
HUMMER G, 1998, J PHYS CHEM A, V102, P7885
LI JB, 1998, CHEM PHYS LETT, V288, P293
LI JB, 1999, THEOR CHEM ACC, V103, P9
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
MASSOVA I, 1999, J PHYS CHEM B, V103, P8628
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
MOHAN V, 1992, J PHYS CHEM-US, V96, P6428
OROZCO M, 1994, CHEM PHYS, V182, P237
PLIEGO JR, IN PRESS PHYS CHEM C
PLIEGO JR, 2000, CHEM PHYS LETT, V332, P597
PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
QIU D, 1997, J PHYS CHEM A, V101, P3005
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SITKOFF D, 1996, J PHYS CHEM-US, V100, P2744
STEFANOVICH EV, 1995, CHEM PHYS LETT, V244, P65
STILL WC, 1990, J AM CHEM SOC, V112, P6127
TANTILLO DJ, 1999, J ORG CHEM, V64, P3066
TOMASI J, 1994, CHEM REV, V94, P2027
WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
WIBERG KB, 1995, J PHYS CHEM-US, V99, P9072
NR 34
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 8
PY 2002
VL 355
IS 5-6
BP 543
EP 546
PG 4
SC Physics, Atomic, Molecular & Chemical
GA 547AT
UT ISI:000175310400023
ER
PT J
AU Tormena, CF
Rittner, R
Abraham, RJ
TI An NMR, IR and theoretical investigation of the methyl effect on
conformational isomerism in 3-fluoro-3-methyl-2-butanone and
1-fluoro-3,3-dimethyl-2-butanone
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE conformational analysis; fluoroketones; NMR; solvation; theoretical
calculations
ID VIBRATIONAL ASSIGNMENT; ABINITIO CALCULATIONS; INTERNAL-ROTATION;
SOLVATION; FLUOROACETONE; BARRIERS
AB The solvent dependence of the H-1 and C-13 NMR spectra of
3-fluoro-3-methyl-2-butanone (FMB) and 1-fluoro-3,3-dimethyl-2-butanone
(FDMB) was examined and the (4)J(HF), (1)J(CF) and (2)J(CF) couplings
are reported. Density functional theory (DFT) at the B3LYP/6-311 ++
G(2df,2p) level with ZPE (zero point energy) corrections was used to
obtain the conformer geometries. In both FMB and FDMB, the DFT method
gave only two minima for cis (F-C-C=O, 0degrees) and trans (F-C-C=O,
180degrees) rotamers. Assuming the cis and trans forms, the observed
couplings in FM B when analysed by solvation theory gave the energy
difference E-cis-E-trans of 3.80 kcal mol(-1) (1 kcal = 4.184 kJ) in
the vapour phase (cf. the DFT value of 3.21 kcal mol(-1)), decreasing
to 2.6 kcal mol(-1) in CCl4 and to 0.27 kcal mol(-1) in DMSO. In FDMB
the observed couplings when analysed similarly by solvation theory gave
E-cis - E-trans = 1.80 kcal mol(-1) in the vapour phase, decreasing to
0.47 kcal mol(-1) in CCl4 and to - 1.25 kcal mol(-1) in DMSO. The
introduction of a methyl group geminal to the fluorine atom shifts the
conformational equilibrium towards the trans rotamer, in contrast to no
significant effect when the methyl group is introduced at the
alpha-carbon further from the fluorine atom. Copyright (C) 2002 John
Wiley Sons, Ltd.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Rittner, R, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
BR-13083970 Campinas, SP, Brazil.
CR *CIBA, 1972, CIBA S CARB FLUOR CO
ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ABRAHAM RJ, 2001, J CHEM SOC PERK T 2, P815
BERGMANN ED, 1961, J CHEM SOC, P3452
BODOT H, 1967, B SOC CHIM FR, P870
BOGOLYUBSKII AV, 1987, J ORG CHEM USSR, V23, P2027
COX RA, 1972, CAN J CHEM, V50, P3242
DURIG JR, 1989, J CHEM PHYS, V90, P6840
DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
FORESMAN JB, 1996, EXPLORING CHEM ELECT
FRISCH MJ, 1998, GAUSSIAN 98
FRY AJ, 1979, TETRAHEDRON LETT, V36, P3357
OLIVATO PR, 1996, REV HETEROATOM CHEM, V15, P115
SAEGEBARTH E, 1970, J CHEM PHYS, V52, P3555
TAYLOR NF, 1988, ACS S SERIES, V374
TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
VANEIJCK BP, 1972, J MOL STRUCT, V11, P67
NR 20
TC 7
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD APR
PY 2002
VL 15
IS 4
BP 211
EP 217
PG 7
SC Chemistry, Organic; Chemistry, Physical
GA 544AB
UT ISI:000175135100004
ER
PT J
AU Antonelli, A
Justo, JF
Fazzio, A
TI Interaction of As impurities with 30 degrees partial dislocations in
Si: An ab initio investigation
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID EXTENDED DEFECTS; SILICON; SEGREGATION; PSEUDOPOTENTIALS
AB We investigated through ab initio total energy calculations the
interaction of arsenic impurities with the core of a 30degrees partial
dislocation in silicon. It was found that when an arsenic atom sits in
a crystalline position near the dislocation core, there is charge
transfer from the arsenic towards the dislocation core. As a result,
the arsenic becomes positively charged and the core negatively charged.
The results indicate that the structural changes around the impurity
are very small in both environments, namely, the crystal and the
dislocation core. In this scenario, the interaction between arsenic and
the core is essentially electrostatic, which eventually leads to
arsenic segregation. The segregation energy was found to be as large as
0.5 eV/atom. Additionally, it was found that arsenic pairing inside the
core is not energetically favorable. (C) 2002 American Institute of
Physics.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Univ Sao Paulo, Escola Politecn, PSI, BR-05424970 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Antonelli, A, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
BR-13083970 Campinas, SP, Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
ALEXANDER H, 1989, I PHYS C SER, V104, P281
BACHELET GB, 1982, PHYS REV B, V26, P4199
BAZANT MZ, 1997, PHYS REV B, V56, P8542
BERGHOLZ W, 2000, PHYS STATUS SOLIDI B, V222, P5
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BULATOV VV, 2001, PHILOS MAG A, V81, P1257
EBERT P, 2001, APPL PHYS LETT, V78, P480
HIRTH JP, 1982, THEORY DISLOCATIONS
JUSTO JF, 1998, PHYS REV B, V58, P2539
JUSTO JF, 1999, PHYSICA B, V274, P473
JUSTO JF, 2000, PHYS REV LETT, V84, P2172
JUSTO JF, 2001, SOLID STATE COMMUN, V118, P651
KAPLAN T, 2000, PHYS REV B, V61, P1674
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
MAITI A, 1996, PHYS REV LETT, V77, P1306
MAITI A, 1997, APPL PHYS LETT, V70, P336
PATEL JR, 1966, PHYS REV, V143, P601
PATEL JR, 1976, PHYS REV B, V13, P3548
PIZZINI S, 1999, PHYS STATUS SOLIDI A, V171, P123
SUZUKI T, 1991, DISLOCATION DYNAMICS
NR 21
TC 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAY 1
PY 2002
VL 91
IS 9
BP 5892
EP 5895
PG 4
SC Physics, Applied
GA 542WR
UT ISI:000175069000053
ER
PT J
AU Pliego, JR
Riveros, JM
TI A theoretical analysis of the free-energy profile of the different
pathways in the alkaline hydrolysis of methyl formate in aqueous
solution
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE ab initio calculations; computer chemistry; ester hydrolysis;
free-energy profile; nucleophilic addition
ID NUCLEOPHILIC DISPLACEMENT-REACTIONS; CARBOXYLIC-ACID ESTERS; GAS-PHASE
REACTIONS; REACTION FIELD CALCULATIONS; DISCRETE-CONTINUUM MODELS;
ANION CLUSTERS X-(H2O)N; X = OH; AB-INITIO; MOLECULAR-ENERGIES;
GAUSSIAN-1 THEORY
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, Brazil.
CR ACHATZ U, 1998, J AM CHEM SOC, V120, P1876
ALEMAN C, 1998, CHEM PHYS, V232, P151
AMOVILLI C, 2001, ORGANOMETALLICS, V20, P1310
ARNOLD ST, 1997, J PHYS CHEM A, V101, P2859
BAKOWIES D, 1999, J AM CHEM SOC, V121, P5712
BANDYOPADHYAY P, 2000, J CHEM PHYS, V113, P1104
BASAIF S, 1989, J AM CHEM SOC, V111, P2647
BENDER ML, 1956, J AM CHEM SOC, V78, P317
BENDER ML, 1960, CHEM REV, V60, P53
BOHME DK, 1981, J AM CHEM SOC, V103, P978
BOHME DK, 1984, J AM CHEM SOC, V106, P3447
BRUICE TC, 1968, J AM CHEM SOC, V90, P7136
CAREY FA, 1990, ADV ORGANIC CHEM A, P465
CHABINYC ML, 1998, SCIENCE, V279, P1882
CLAVERIE P, 1978, J PHYS CHEM-US, V82, P405
CRAMER CJ, 1999, CHEM REV, V99, P2161
CURTISS LA, 1990, J CHEM PHYS, V93, P2537
CURTISS LA, 1991, J CHEM PHYS, V94, P7221
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
DEPUY CH, 1985, J AM CHEM SOC, V107, P1093
DEPUY CH, 1990, J AM CHEM SOC, V112, P8650
ENSING B, 2001, J PHYS CHEM A, V105, P3300
FERNANDEZ MA, 1999, J ORG CHEM, V64, P6000
FERNANDO J, 1976, J AM CHEM SOC, V98, P2049
FLORIAN J, 1998, J PHYS CHEM B, V102, P719
FLORIS F, 1995, CHEM PHYS, V195, P207
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FREITAS LCG, 1992, J CHEM SOC FARADAY T, V88, P189
FRINK BT, 1999, J CHEM SOC PERK NOV, P2397
FRISCH MJ, 1994, GAUSSIAN 94 REVISION
GRIMM AR, 1995, MOL PHYS, V86, P369
GRONERT S, 2001, CHEM REV, V101, P329
GUTHRIE JP, 1973, J AM CHEM SOC, V95, P6999
GUTHRIE JP, 1991, J AM CHEM SOC, V113, P3941
HAEFFNER F, 1999, J MOL STRUC-THEOCHEM, V459, P85
HENGGE AC, 1994, J AM CHEM SOC, V116, P11256
HIERL PM, 1986, J AM CHEM SOC, V108, P3142
HUMPHREYS HM, 1956, J AM CHEM SOC, V78, P521
JORGENSEN WL, 1987, ACS SYM SER, V353, P200
LOPEZ X, 1999, J AM CHEM SOC, V121, P5548
LOWRY TH, 1981, MECH THEORY ORGANIC, P650
MARCOS ES, 1985, J PHYS CHEM-US, V89, P4695
MARCOS ES, 1991, J PHYS CHEM-US, V95, P8928
MARLIER JF, 1993, J AM CHEM SOC, V115, P5935
NOBES RH, 1982, CHEM PHYS LETT, V89, P497
OHAIR RAJ, 1994, J AM CHEM SOC, V116, P3609
PLIEGO JR, 2000, CHEM PHYS LETT, V332, P597
PLIEGO JR, 2001, CHEM-EUR J, V7, P169
PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
PLIEGO JR, 2002, J PHYS CHEM A, V106, P371
POPLE JA, 1989, J CHEM PHYS, V90, P5622
POWERS JC, 1965, TETRAHEDRON LETT, P1713
PRANATA J, 1994, J PHYS CHEM-US, V98, P1180
RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
STEFANIDIS D, 1993, J AM CHEM SOC, V115, P6045
TAKASHIMA K, 1978, J AM CHEM SOC, V100, P6128
TANTILLO DJ, 1999, J ORG CHEM, V64, P3066
TOMASI J, 1994, CHEM REV, V94, P2027
TOPOL IA, 1999, J CHEM PHYS, V111, P10998
TUNON I, 1993, J PHYS CHEM-US, V97, P5547
TUNON I, 1995, J PHYS CHEM-US, V99, P3798
VIGGIANO AA, 1996, J PHYS CHEM-US, V100, P14397
WILLIAMS A, 1989, ACCOUNTS CHEM RES, V22, P387
WINCEL H, 1996, J PHYS CHEM-US, V100, P7488
WINCEL H, 1997, J PHYS CHEM A, V101, P8248
YANG X, 1991, J AM CHEM SOC, V113, P6766
YANG X, 1991, J PHYS CHEM-US, V95, P6182
ZHAN CG, 2000, J AM CHEM SOC, V122, P1522
ZHAN CG, 2000, J AM CHEM SOC, V122, P2621
ZHAN CG, 2000, J PHYS CHEM A, V104, P7672
ZHAN CG, 2001, J PHYS CHEM A, V105, P1296
NR 71
TC 13
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD APR 15
PY 2002
VL 8
IS 8
BP 1945
EP 1953
PG 9
SC Chemistry, Multidisciplinary
GA 543CQ
UT ISI:000175084000020
ER
PT J
AU de Andrade, J
Boes, ES
Stassen, H
TI A force field for liquid state simulations on room temperature molten
salts: 1-ethyl-3-methylimidazolium tetrachloroaluminate
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Letter
ID IONIC LIQUIDS; SOLVENTS
AB A classical force field for the room temperature molten salt
1-ethyl-3-methylimidazolium tetrachloroaluminate has been developed and
successfully tested against experimental data (neutron diffraction,
diffusion constants) by molecular dynamics computer simulation
corresponding to a temperature of 298 K. The force field parameters for
the cation have been derived from the AMBER description for the
protonated amino acid histidine, whereas the AlCl4- parameters have
been achieved by parametrization of intramolecular terms with van der
Waals parameters taken from the Literature. All atomic partial charges
have been obtained from ab initio calculations using the RESP
methodology.
C1 Univ Fed Rio Grande Sul, Grp Quim Teor, Inst Quim, BR-91540000 Porto Alegre, RS, Brazil.
RP Stassen, H, Univ Fed Rio Grande Sul, Grp Quim Teor, Inst Quim,
BR-91540000 Porto Alegre, RS, Brazil.
CR AKDENIZ Z, 1999, Z NATURFORSCH A, V54, P180
ALLEN MP, 1987, COMPUTER SIMULATION
CARPER WR, 1996, J PHYS CHEM-US, V100, P4724
CASE DA, 1999, AMBER 6
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179
DUDEK MJ, 1998, J COMPUT CHEM, V19, P548
DUPONT J, 2000, J BRAZIL CHEM SOC, V11, P337
DYMEK CJ, 1989, INORG CHEM, V28, P1472
FANNIN AA, 1984, J PHYS CHEM-US, V88, P2614
FOX T, 1998, J PHYS CHEM B, V102, P8070
HANKE CH, 2001, MOL PHYS, V99, P807
LARIVE CK, 1995, J PHYS CHEM-US, V99, P12400
LYUBARTSEV AP, 2000, COMPUT PHYS COMMUN, V128, P565
MAYO SL, 1990, J PHYS CHEM-US, V94, P8897
NOSE S, 1984, MOL PHYS, V52, P525
PAPPU RV, 1998, J PHYS CHEM B, V102, P9725
SABOUNGI ML, COMMUNICATION
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
TAKAHASHI S, 1995, INORG CHEM, V34, P2990
TAKAHASHI S, 1999, Z PHYS CHEM 2, V209, P209
TOSI MP, 1993, ANNU REV PHYS CHEM, V44, P173
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
WASSERSCHEID P, 2000, ANGEW CHEM INT EDIT, V39, P3772
WELTON T, 1999, CHEM REV, V99, P2071
NR 24
TC 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD APR 11
PY 2002
VL 106
IS 14
BP 3546
EP 3548
PG 3
SC Chemistry, Physical
GA 542AW
UT ISI:000175022100007
ER
PT J
AU Alves, CN
da Silva, ABF
Marti, S
Moliner, V
Oliva, M
Andres, J
Domingo, LR
TI An AMI theoretical study on the effect of Zn2+ Lewis acid catalysis on
the mechanism of the cycloaddition between
3-phenyl-1-(2-pyridyl)-2-propen-1-one and cyclopentadiene
SO TETRAHEDRON
LA English
DT Article
DE AM1 theoretical study; Diels-Alder reaction; Zn2+ Lewis acid catalyst
ID DIELS-ALDER REACTION; AQUEOUS-MEDIA; TRANSITION STRUCTURES; AB-INITIO;
ACCELERATION; WATER; SELECTIVITY; ALGORITHM; STATES; STEP
AB The mechanism of the Diels-Alder reaction between
3-phenyl-1-(2-pyridyl)-2-propen-1-one and cyclopentadiene has been
investigated with the AM1 semiempirical method. Stationary points for
two reactive channels, endo-cis and exo-cis, have been characterized.
The role of the Lewis acid catalyst has been modeled taking into
account the formation of a complex between Zn2+ and the carbonyl oxygen
atom and the pyridyl nitrogen atom of the
3-phenyl-1-(2-pyiidyl)-2-propen-1-one system with and without the
presence of two molecules of water around the cation. The mechanism of
the uncatalyzed reaction corresponds to a concerted process, but in the
presence of Lewis acid catalyst the mechanism changes and the reaction
takes place through a stepwise mechanism. A first step involves the
nucleophilic attack of the cyclopentadiene in the double bond of the
dienophile which produces an intermediate. A second step involves the
closure of the intermediate yielding the corresponding final
cycloadduct. The inclusion of the Zn2+ catalyst drastically decreases
the energy barrier associated with the carbon-carbon bond formation of
the first step in comparison to the concerted process. (C) 2002
Elsevier Science Ltd. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Naturais, Dept Quim, BR-66075110 Belem, Para, Brazil.
Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
Univ Valencia, Dept Quim Organ, Valencia, Spain.
RP da Silva, ABF, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis
Mol, CP 780, BR-13560970 Sao Carlos, SP, Brazil.
EM alberico@iqsc.sc.usp.br
CR *SEM, 1997, AMPAC 6 0 US MAN
ALVES CN, 2001, TETRAHEDRON, V57, P6877
ANDRES J, 1994, J CHEM SOC FARADAY T, V90, P1703
BAKER J, 1986, J COMPUT CHEM, V7, P385
BOSNICH B, 1998, ALDRICHIM ACTA, V31, P76
CARRUTHERS W, 1990, CYCLOADDITION REACTI
CATIVIELA C, 1996, CHEM SOC REV, V25, P209
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
FLEMING I, 1996, FRONTIER ORBITALS OR
FRINGUELLI F, 1990, ORG PREP PROCED INT, V22, P131
FRINGUELLI F, 1993, ACTA CHEM SCAND, V47, P255
FRINGUELLI F, 2001, EUR J ORG CHEM FEB, P439
GARCIA JI, 1998, J AM CHEM SOC, V120, P2415
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
GONZALEZ C, 1991, J CHEM PHYS, V95, P5853
JORGENSEN WL, 1993, J AM CHEM SOC, V115, P2936
KAGAN HB, 1992, CHEM REV, V92, P1007
KUMAR A, 2001, CHEM REV, V101, P1
LASCHAT S, 1996, ANGEW CHEM INT EDIT, V35, P289
LI CJ, 1993, CHEM REV, V93, P2023
MCIVER JW, 1974, ACCOUNTS CHEM RES, V7, P72
OPPOLZER W, 1984, ANGEW CHEM INT EDIT, V33, P497
OTTO S, 1995, TETRAHEDRON LETT, V36, P2645
OTTO S, 1996, J AM CHEM SOC, V118, P7702
OTTO S, 1998, J AM CHEM SOC, V120, P9517
PINDUR U, 1993, CHEM REV, V93, P741
RESSIG HU, 1991, ORGANIC SYNTHESIS HI, P71
ROBERSON M, 2001, TETRAHEDRON, V57, P907
SCHLEGEL HB, 1982, J CHEM PHYS, V77, P3676
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
STEWART NC, 1990, SEMIEMPIRICAL MOL OR
STIPANOVIC RD, 1992, ENV SCI RES, V44, P319
TANAKA J, 2001, TETRAHEDRON, V57, P899
TAPIA O, 1984, CHEM PHYS LETT, V109, P471
TAPIA O, 1994, J CHEM SOC FARADAY T, V90, P2365
TOGNI A, 1994, ANGEW CHEM INT EDIT, V33, P497
YATES P, 1960, J AM CHEM SOC, V82, P4436
ZERNER MC, 1991, SEMIEMPPIRICAL MOL O
NR 38
TC 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0040-4020
J9 TETRAHEDRON
JI Tetrahedron
PD MAR 25
PY 2002
VL 58
IS 13
BP 2695
EP 2700
PG 6
SC Chemistry, Organic
GA 538MV
UT ISI:000174820500024
ER
PT J
AU Fontoura, LAM
Rigotti, IJD
Correia, CRD
TI Experimental and theoretical studies on the rotational barrier of
1-acyl- and 1-alkoxycarbonyl-2-pyrrolines
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE dynamic NMR; computational methods; rotational barrier; enamides and
enecarbamates
ID INTERNAL-ROTATION; AB-INITIO; BOND; AMIDES; N,N-DIMETHYLFORMAMIDE;
ISOMERIZATION; RESONANCE; FORMAMIDE; EFFICIENT; ACIDS
AB The conformational equilibrium as a result of the N-carbonyl bond
rotation of several N-acyl- and N-alkoxycarbonyl-2-pyrrolines have been
studied. The equilibrium constants and the rotational barriers were
determined by theoretical methods (AM1, PM3, HF/3-21G( * ) and
HF/6-31G*) and, experimentally, by dynamic NMR (coalescence
temperature). The measured rotational barriers for enecarbamates were
found to be similar to 16 kcal mol(-1) in C6D6 or C6D5NO2, whereas
slightly higher values were found for enamides in C6D5NO2,. Contrary to
enamides, the rotational barriers for enecarbamates were not affected
by changes in the polarity of the solvent employed. (C) 2002 Elsevier
Science B.V. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, Dept Quim, BR-13083970 Campinas, SP, Brazil.
CIENTEC R, Fundacao Ciencia & Tecnol, Dept Quim, BR-90010460 Porto Alegre, Brazil.
RP Correia, CRD, Univ Estadual Campinas, Inst Quim, Dept Quim, Caixa
Postal 6157, BR-13083970 Campinas, SP, Brazil.
CR *WAV, 1998, PC SPART PLUS 1 5
ABRAHAM RJ, 1988, INTRO NMR SPECTROSCO
BENNET AJ, 1991, J AM CHEM SOC, V113, P7563
BINSCH G, 1980, ANGEW CHEM INT EDIT, V19, P411
BONACORSO HG, 1992, QUIM NOVA, V15, P208
CARPES MJS, 1997, TETRAHEDRON LETT, V38, P1869
COSSY J, 1997, SYNTHETIC COMMUN, V27, P2769
COSTENARO ER, 2001, TETRAHEDRON LETT, V42, P1599
COX C, 1998, J ORG CHEM, V63, P2426
DIETER RK, 1996, J ORG CHEM, V61, P4180
DUFFY EM, 1992, J AM CHEM SOC, V114, P7535
ELIEL E, 1994, STEREOCHEMISTRY ORGA
FISCHER G, 2000, CHEM SOC REV, V29, P119
GUTOWSKY HS, 1956, J CHEM PHYS, V25, P1228
JEENER J, 1979, J CHEM PHYS, V71, P4546
KRAUS GA, 1981, J ORG CHEM, V46, P4791
LAMBERT JB, 1981, ANGEW CHEM INT EDIT, V20, P487
LAUVERGNAT D, 1997, J AM CHEM SOC, V119, P9478
LIDE DR, 1993, HDB CHEM PHYSICS, P148
LIDE DR, 1993, HDB CHEM PHYSICS, P9
OLIVEIRA DF, 1999, J ORG CHEM, V64, P6646
OLIVEIRA DF, 1999, TETRAHEDRON LETT, V40, P2083
OZAWA T, 1997, MAGN RESON CHEM, V35, P323
PHILLIPS WD, 1955, J CHEM PHYS, V23, P1363
POHLIT AM, 1997, HETEROCYCLES, V45, P2321
SHANANATIDI H, 1970, J PHYS CHEM-US, V74, P961
SOUZA WF, 1996, J PHYS ORG CHEM, V9, P179
SUGISAKI CH, 1998, TETRAHEDRON LETT, V39, P3413
VASSILEV NG, 1999, J MOL STRUCT, V484, P39
WANG QP, 1991, J AM CHEM SOC, V113, P5757
WIBERG KB, 1992, J AM CHEM SOC, V114, P831
WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
WOODBREY JC, 1962, J AM CHEM SOC, V84, P12
NR 33
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD MAY 30
PY 2002
VL 609
IS 1-3
BP 73
EP 81
PG 9
SC Chemistry, Physical
GA 538ZV
UT ISI:000174845700010
ER
PT J
AU Terrazos, LA
Petrilli, HM
Marszalek, M
Saitovitch, H
Silva, PRJ
Blaha, P
Schwarz, K
TI Electric field gradients at Ta in Zr and Hf inter-metallic compounds
SO SOLID STATE COMMUNICATIONS
LA English
DT Article
DE metals; electronic band structure; NQR; electric field gradients
ID PERTURBED-ANGULAR-CORRELATION; TA-181
AB Here we calculate the electric field gradient (EFG) at the nucleus of
the substitutional Ta impurity site in Zr2T and Hf2T (T = Cu, Ag, Au,
and Pd) C11(b), inter-metallic compounds. We use the ab initio FP-LAPW
method as embodied in the Wien97 code in a super-cell approach and
include lattice relaxations around the impurity. Our results are
compared with EFG values inferred from measurements of the quadrupole
coupling constants at the Ta-111 probe in these compounds performed
with the time differential perturbed angular correlation (TDPAC)
technique. We also performed EFG calculations for the pure
inter-metallic compounds. Through the comparison of theoretical and
experimental EFGs in these cases, we elucidate the role played by the
Ta probe in the TDPAC measurements of Hf and Zr compounds. Our results
show that, although the EFGs at the Hf site are very similar to the
EFGs at the Ta impurity, there is no direct correlation between the Zr
and Ta EFGs. (C) 2002 Elsevier Science Ltd. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
Vienna Tech Univ, Inst Mat Chem, A-1060 Vienna, Austria.
RP Petrilli, HM, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR AKAI H, 1990, PROG THEOR PHYS SUPP, P11
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
BLAHA P, 1999, WIEN97 CODE
BUTZ T, 1983, PHYS LETT A, V97, P217
DAMONTE LC, 1989, PHYS REV B, V39, P12492
DEMELLO LA, 1993, J PHYS-CONDENS MAT, V5, P8935
FEIOCK FD, 1969, PHYS REV, V187, P39
MARSZALEK M, 1994, II28 INP
MENDOZAZELIS LA, 1986, PHYS REV B, V34, P2982
PERDEW JP, 1992, PHYS REV B, V15, P13214
PETRILLI HM, 1991, PHYS REV B, V44, P10493
PETRILLI HM, 1998, PHYS REV B, V57, P11190
VILLARS P, 1991, PEARSONS HDB CRYSTAL
WODNIECKA B, 1995, J ALLOY COMPD, V219, P132
WODNIECKI P, 1996, Z NATURFORSCH A, V51, S437
NR 15
TC 7
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-1098
J9 SOLID STATE COMMUN
JI Solid State Commun.
PY 2002
VL 121
IS 9-10
BP 525
EP 529
PG 5
SC Physics, Condensed Matter
GA 537HQ
UT ISI:000174753200016
ER
PT J
AU Capelle, K
Vignale, G
TI Nonuniqueness and derivative discontinuities in density-functional
theories for current-carrying and superconducting systems
SO PHYSICAL REVIEW B
LA English
DT Article
ID STRONG MAGNETIC-FIELDS
AB Current-carrying and superconducting systems can be treated within
density-functional theory if suitable additional density variables (the
current density and the superconducting order parameter, respectively!
are included in the density-functional formalism. Here we show that the
corresponding conjugate potentials (vector and pair potentials,
respectively) are not uniquely determined by the densities. The
Hohenberg-Kohn theorem of these generalized density-functional theories
is thus weaker than the original one. We give explicit examples and
explore some consequences.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
RP Capelle, K, Univ Sao Paulo, Inst Quim Sao Carlos, Caixa Postal 780,
BR-13560970 Sao Carlos, SP, Brazil.
CR ARGAMAN N, 2000, AM J PHYS, V68, P69
CAPELLE K, 2001, PHYS REV LETT, V86, P5546
ESCHRIG H, 2001, SOLID STATE COMMUN, V118, P123
HOHENBERG P, 1964, PHYS REV, V136, B864
KOHN W, 1965, PHYS REV, V140, A1133
KOHN W, 1989, J PHYS-PARIS, V50, P2601
KOHN W, 1999, REV MOD PHYS, V71, P1253
KURTH S, 1999, PHYS REV LETT, V83, P2628
LEE AM, 1999, PHYS REV A, V59, P209
OLIVEIRA LN, 1988, PHYS REV LETT, V60, P2430
PERDEW JP, 1982, PHYS REV LETT, V49, P1691
PERDEW JP, 1983, PHYS REV LETT, V51, P1884
TEMMERMAN WM, 1996, PHYS REV LETT, V76, P307
TINKHAMM, 1996, INTRO SUPERCONDUCTIV
VIGNALE G, 1987, PHYS REV LETT, V59, P2360
VIGNALE G, 1988, PHYS REV B, V37, P10685
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
NR 17
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 15
PY 2002
VL 65
IS 11
AR 113106
DI ARTN 113106
PG 4
SC Physics, Condensed Matter
GA 533UH
UT ISI:000174548400006
ER
PT J
AU Tormena, CF
Amadeu, NS
Ritter, R
Abraham, RJ
TI Conformational analysis in N-methylfluoroamides. A theoretical, NMR and
IR investigation
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID SOLVATION; ISOMERISM
AB Theoretical calculations plus the solvent dependence of the H-1, C-13
NMR and IR spectra were used to determine the conformational
equilibrium in N-methyl-2-fluoroacetamide (NMFA) and
N-methyl-2-fluoropropionamide (NMFP). Ab initio calculations were used
to identify the stable rotamers and obtain their geometries and the
application of solvation theory on the (1)J(CF) coupling constant gave
the conformer populations in the solvents studied. In NMFA ab initio
calculations at the CBS-Q level yielded only two stable rotamers, the
cis and trans, with DeltaE(cis-trans) = 19.7 kJ mol(-1). The presence
of two conformers was confirmed by the FTIR spectra. Assuming these
forms, the observed couplings when analysed by solvation theory gave
DeltaE = 21.3 kJ mol(-1) in the vapour phase, decreasing to 8.9 kJ
mol(-1) in CDCl3 and to 0.8 kJ mol(-1) in DMSO. For NMFP the B3LYP
calculations at the 6-311++g(2df,2p) level gave only the trans rotamer
as stable, while the gauche form was a plateau in the potential energy
surface. However the FTIR spectra clearly showed the presence of two
conformers. A minimum for the gauche rotamer was only found when the
SCRF (self consistent reaction field) routine was included in the
theoretical calculations. The equilibrium in NMFP was therefore
analysed by solvation theory in terms of the trans and gauche rotamers
to give DeltaE(gauche-trans) = 15.9 kJ mol(-1) in the vapour phase,
decreasing to 10.8 kJ mol(-1) in CCl4 and to 0.5 kJ mol(-1) in DMSO.
C1 Univ Estadual Campinas, Inst Quim, Phys Organ Chem Lab, BR-13083970 Campinas, SP, Brazil.
Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Abraham, RJ, Univ Estadual Campinas, Inst Quim, Phys Organ Chem Lab, CP
6154, BR-13083970 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ABRAHAM RJ, 1999, PROG NUCL MAG RES SP, V35, P85
ABRAHAM RJ, 2001, J CHEM SOC PERK T 2, P815
ABRAMSON KH, 1966, CAN J CHEM, V44, P1685
BANKS JW, 1999, J CHEM SOC PERK NOV, P2409
BANKS JW, 2000, J FLUORINE CHEM, V102, P235
FORESMAN JB, 1996, EXPLORING CHEM ELECT, P155
FRISCH MJ, 1998, GAUSSIAN98 REVISION
OHAGAN D, 1997, CHEM COMMUN 0407, P645
PHAN HV, 1990, J MOL STRUCT THEOCHE, V209, P333
TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
TORMENA CF, 2002, J PHYS ORG CHEM, V15, P211
VOET D, 1995, BIOCHEMISTRY, CH9
NR 16
TC 10
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1472-779X
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2002
IS 4
BP 773
EP 778
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 533UQ
UT ISI:000174549100012
ER
PT J
AU Esteves, PM
Ramirez-Solis, A
Mota, CJA
TI The nature of superacid electrophilic species in HF/SbF5: A density
functional theory study
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID HYDROGEN-DEUTERIUM EXCHANGE; PROTOLYSIS DEUTEROLYSIS; SINGLE BONDS;
SYSTEM; ALKANES
AB A density functional theory study at the B3LYP/6-31++G** + RECP(Sb)
level of the HF/SbF5 superacid system was carried out. The geometries
of possible electrophilic species, such as H2F+.Sb2F11- and
H3F2+.Sb2F11-, were calculated and correspond with available
experimental results. Calculations of different equilibrium reactions
involving HF and SbF5 allowed the relative concentration of the most
energetically favorable species present in 1:1 HF/SbF5 solutions to be
estimated. These species are H+.Sb2F11-, H2F+.Sb2F11-, H3F2+.Sb2F11-,
and H4F3+-Sb2F11-, which correspond to 36.9, 16.8, 36.9, and 9.4%,
respectively. Calculations of the acid strength of the electrophilic
species were also performed and indicated that, for the same anion, the
acid strength increases with the solvation degree. The entropic term
also plays a significant role in proton-transfer reactions in superacid
systems.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Dept Fis, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR BERGNER A, 1993, MOL PHYS, V80, P1431
BONNET B, 1975, HEBD SEANCES ACAD SC, V281, P1011
BONNET B, 1980, INORG CHEM, V19, P785
CULMANN JC, 1990, J AM CHEM SOC, V112, P4057
CULMANN JC, 1999, NEW J CHEM, V23, P863
ESTEVES PM, 2000, J BRAZIL CHEM SOC, V11, P345
ESTEVES PM, 2001, J PHYS CHEM B, V105, P4331
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GILLESPIE RJ, 1966, J CHEM SOC A, P1170
HOOGEVEEN H, 1968, RECL TRAV CHIM PAY B, V87, P1295
HYMAN HH, 1961, J PHYS CHEM-US, V65, P123
JOST R, 1988, REV CHEM INTERMED, V9, P171
KIM D, 2000, J PHYS CHEM B, V104, P10074
MOOTZ D, 1988, ANGEW CHEM INT EDIT, V27, P391
MOOTZ D, 1988, ANGEW CHEM, V100, P424
MOOTZ D, 1991, Z NATURFORSCH B, V46, P1659
OLAH GA, 1971, J AM CHEM SOC, V93, P1251
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1985, SUPERACIDS
TOUITI D, 1986, J CHEM SOC P2, P1793
NR 20
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD MAR 20
PY 2002
VL 124
IS 11
BP 2672
EP 2677
PG 6
SC Chemistry, Multidisciplinary
GA 531UM
UT ISI:000174435700058
ER
PT J
AU Erben, MF
Della Vedova, CO
Romano, RM
Boese, R
Oberhammer, H
Willner, H
Sala, O
TI Anomeric and mesomeric effects in methoxycarbonylsulfenyl chloride,
CH3OC(O)SCl: An experimental and theoretical study
SO INORGANIC CHEMISTRY
LA English
DT Article
ID GAS-PHASE STRUCTURE; METHYL THIOLFLUOROFORMATE; CONFORMATIONAL
PROPERTIES; MONOTHIOFORMIC ACID; SPECTRUM
AB The molecular structure and conformational properties of
methoxycarbonylsulfenyl chloride, CH3OC(O)SCl, were determinated in the
gas and solid phases by gas electron diffraction, low-temperature X-ray
diffraction, and vibrational spectroscopy. Furthermore, quantum
chemical calculations were performed. Experimental and theoretical
methods result in structures with a planar C-O-C(O)-S-Cl skeleton. The
electron diffraction intensities are reproduced best with a mixture of
72(8)% syn and 28(8)% anti conformers (S-Cl bond
synperiplanar/antiperiplanar with respect to C=O bond) and the O-CH3
bond synperiplanar with respect to the C=O bond. The syn form is the
preferred form and becomes the exclusive form in the crystalline solid
at low temperature. This experimental result is reproduced very well by
Hartree-Fock approximation and by density functional theory at
different levels of theory but not by the MP2/6-31 1G* method, which
overestimates the value of AGO between the syn and anti conformers. The
results are discussed in terms of anomeric effects and a natural bond
orbital (NBO) calculation, Photolysis of matrix-isolated CH3OC(O)SCl
with broad-band UV-visible irradiation produces an interconversion of
the conformers, and the concomitant decomposition leads to formation of
OCS and CO molecules.
C1 Natl Univ La Plata, Fac Ciencias Exactas, Dept Quim, CEQUINOR,CONICET, RA-1900 La Plata, Argentina.
Natl Univ La Plata, Lab Serv Ind & Sistema Cientif, RA-1900 La Plata, Argentina.
Univ Essen Gesamthsch, Inst Anorgan Chem, D-45117 Essen, Germany.
Univ Tubingen, Inst Phys & Theoret Chem, D-7400 Tubingen, Germany.
Univ Duisburg Gesamthsch, D-47048 Duisburg, Germany.
Univ Sao Paulo, Inst Quim, Sao Paulo, Brazil.
RP Della Vedova, CO, CC 962, RA-1900 La Plata, Argentina.
CR *SIEM, 1991, SHELTX PLUS VERS SGI
BOESE R, 1994, ORGANIC CRYSTAL CHEM, P20
BRODALLA D, 1985, J APPL CRYSTALLOGR, V18, P316
CAMINATI W, 1981, J MOL SPECTROSC, V90, P15
CAMINATI W, 1981, J MOL SPECTROSC, V90, P303
CAMINATI W, 1981, J MOL SPECTROSC, V90, P315
CROWDER GA, 1973, APPL SPECTROSC, V27, P440
DELLAVEDOVA CO, 1989, J RAMAN SPECTROSC, V20, P483
DELLAVEDOVA CO, 1991, J RAMAN SPECTROSC, V22, P291
DELLAVEDOVA CO, 1993, INORG CHEM, V32, P948
FRISCH MJ, 1998, GAUSSIAN 98
GOBBATO KI, 1996, INORG CHEM, V35, P6152
HAMILTON WC, 1965, ACTA CRYSTALLOGR, V18, P502
HEDBERG L, 1993, J MOL SPECTROSC, V160, P117
HOCKING WH, 1977, Z NATURFORSCH A, V32, P1108
KIRBY AJ, 1983, ANOMERIC EFFECT RELA
LARSON JR, 1978, J AM CHEM SOC, V100, P5713
MACK HG, 1991, J PHYS CHEM-US, V95, P4238
MACK HG, 1992, J MOL STRUCT, V265, P347
MACK HG, 1992, J PHYS CHEM-US, V96, P9215
NOE EA, 1977, J AM CHEM SOC, V99, P2803
OBERHAMMER H, 1976, MOL STRUCTURES DIFFR, V4, P24
OBERHAMMER H, 1981, J MOL STRUCT, V70, P273
ROMANO RM, UNPUB
ROMANO RM, 2001, J AM CHEM SOC, V123, P12623
ROMANO RM, 2001, J AM CHEM SOC, V123, P5794
WILLNER H, 1984, Z NATURFORSCH B, V39, P314
NR 27
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD MAR 11
PY 2002
VL 41
IS 5
BP 1064
EP 1071
PG 8
SC Chemistry, Inorganic & Nuclear
GA 528TM
UT ISI:000174259300009
ER
PT J
AU Okulik, NB
Sosa, LG
Esteves, PM
Mota, CJA
Jubert, AH
Peruchena, NM
TI Ab initio topological analysis of the electronic density in n-butonium
cations and their van der Waals complexes
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID POTENTIAL-ENERGY SURFACE; ISOBUTONIUM CATIONS; CH5+
AB In this work, the topology of the ab initio electronic density charge,
using the theory of atoms in molecules (AIM). developed by Bader, is
studied for the n-C4H11 species, the protonated n-butane. The
electronic delocalization that operates through the sigma bonds in
saturated molecules and specifically in protonated alkanes is studied
by means of analysis of the charge density and the bond critical
points. This analysis is used in order to establish a relationship
among the parameters that determine the stability order found for the
different species and relate them with the carbonium ions structure.
Comparing these results with the i-C4H11 allow us to study the nature
of the 3c-2e bonds in alkanes in greater detail, permitting the
description on the a basicity and reactivity scales in terms of
structural parameters of the carbonium ions.
C1 UNNE, Fac Agroind, RA-3700 Peia R Saenz Pena, Chaco, Argentina.
UNNE, Fac Ciencias Exactas Nat & Agrim, Dept Quim, Area Quim Fis, RA-3400 Corrientes, Argentina.
Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
UNLP, Fac Ciencias Exactas, Ctr Quim Inorgan, CEQUINOR,CONICET, RA-1900 La Plata, Argentina.
RP Okulik, NB, UNNE, Fac Agroind, Cte Fernandez 755, RA-3700 Peia R Saenz
Pena, Chaco, Argentina.
CR BADER RFW, 1990, ATOMS MOL QUANTUM TH
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
ESTEVES PM, 2000, J PHYS CHEM A, V104, P6233
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HIRAOKA K, 1993, CHEM PHYS LETT, V207, P178
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P371
KLIEGERKONIG W, 1982, J COMPUT CHEM, V3, P317
KOCK W, 1989, J AM CHEM SOC, V11, P3479
MARX D, 1995, NATURE, V375, P216
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
OKULIK N, 1999, J PHYS CHEM A, V103, P8491
OKULIK N, 2000, J PHYS CHEM A, V104, P7586
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1969, J AM CHEM SOC, V91, P3261
OLAH GA, 1972, J AM CHEM SOC, V94, P807
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
PALLIS J, 1970, PURE MATH, V14, P223
POPELIER PLA, 1999, ATOMS MOL INTRO
RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SIEBER S, 1993, J AM CHEM SOC, V115, P259
NR 26
TC 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD FEB 28
PY 2002
VL 106
IS 8
BP 1584
EP 1595
PG 12
SC Chemistry, Physical
GA 527ME
UT ISI:000174189200014
ER
PT J
AU Legoas, SB
Galvao, DS
Rodrigues, V
Ugarte, D
TI Origin of anomalously long interatomic distances in suspended gold
chains
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID TRANSMISSION ELECTRON-MICROSCOPY; QUANTIZED CONDUCTANCE; POINT-CONTACT;
MECHANISMS; MOLECULES; NANOWIRES; SIGNATURE; CLUSTERS; SURFACES; ATOMS
AB The discovery of long bonds in gold atom chains has represented a
challenge for physical interpretation. In fact, interatomic distances
frequently attain 3.0-3.6 Angstrom values, and distances as large as
5.0 Angstrom may be occasionally observed. Here we studied gold chains
by transmission electron microscopy and performed theoretical
calculations using cluster ab initio density functional formalism. We
show that the insertion of two carbon atoms is required to account for
the longest bonds, while distances above 3 Angstrom may be due to a
mixture of clean and one C atom contaminated bonds.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Lab Nacl Luz Sincrotron, BR-13084971 Campinas, SP, Brazil.
RP Legoas, SB, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
BR-13083970 Campinas, SP, Brazil.
CR *WAV INC, TIT
AGRAIT N, 1993, PHYS REV B, V47
DASILVA EZ, 2001, PHYS REV LETT, V87
DELLEY B, 1990, J CHEM PHYS, V92, P508
DELLEY B, 2000, J CHEM PHYS, V113, P7756
HABERLEN OD, 1994, INT J QUANTUM CHEM Q, V28, P595
HABERLEN OD, 1997, J CHEM PHYS, V106, P5189
HAKKINEN H, 1999, J PHYS CHEM B, V103, P8814
KIZUKA T, 1997, PHYS REV B, V55, R7398
KIZUKA T, 1998, PHYS REV LETT, V81, P4448
KIZUKA T, 2001, JPN J APPL PHYS 2, V40, L71
KOIZUMI H, 2001, ULTRAMICROSCOPY, V88, P17
KONDO Y, 1999, B AM PHYS SOC, V44, P312
KRANS JM, 1995, NATURE, V375, P767
LANDMAN U, 1990, SCIENCE, V248, P454
LANDMAN U, 1996, PHYS REV LETT, V77, P1362
MULLER CJ, 1992, PHYSICA C, V191, P485
OHNISHI H, 1998, NATURE, V395, P780
OKAMOTO M, 1999, PHYS REV B, V60, P7808
OLESEN L, 1994, PHYS REV LETT, V72, P2251
PACCHIONI G, 1994, CHEM PHYS, V184, P125
PASCUAL JI, 1993, PHYS REV LETT, V71, P1852
PYYKKO P, 1991, ANGEW CHEM INT EDIT, V30, P604
REIMER L, 1997, SPRINGER SERIES OPTI
RODRIGUES V, CONDMAT0201156
RODRIGUES V, IN PRESS PHYS REV B
RODRIGUES V, IN PRESS
RODRIGUES V, 2000, PHYS REV LETT, V85, P4124
RODRIGUES V, 2001, EUR PHYS J D, V16, P395
RODRIGUES V, 2001, PHYS REV B, V63
RUBIOBOLLINGER G, 2001, PHYS REV LETT, V87
SANCHEZPORTAL D, 1999, PHYS REV LETT, V83, P3884
SORENSEN MR, 1998, PHYS REV B, V57, P3283
TAKAI Y, 2001, PHYS REV LETT, V87
VANRUITENBEEK JM, 2000, CLUSTER SERIES
VOSKO SH, 1980, CAN J PHYS, V58, P1200
WANG Y, 1991, PHYS REV B, V43, P8911
YANSON AI, 1998, NATURE, V395, P783
YU BD, 1997, PHYS REV B, V56
NR 39
TC 30
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 18
PY 2002
VL 88
IS 7
AR 076105
DI ARTN 076105
PG 4
SC Physics, Multidisciplinary
GA 524PB
UT ISI:000174021100051
ER
PT J
AU Biswas, PK
TI Effect of H- ion formation on positronium-hydrogen elastic scattering
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
ID CLOSE-COUPLING APPROXIMATION; STATIC-EXCHANGE MODEL; ATOM SCATTERING;
ELECTRON-EXCHANGE; CHANNEL FRAMEWORK; HELIUM; MOLECULES; ANNIHILATION;
COLLISIONS; HYDRIDE
AB Positronium-hydrogen scattering has been reinvestigated considering the
charge-transfer rearrangement channel Ps + H--> e(+) + H- in the
coupled-channel formalism. The virtual effects of this rearrangement
channel on scattering length, PsH binding energy, and low-energy (0-10
eV) elastic cross sections are evaluated and H- formation cross
sections are reported for energies up to 100 eV. Results indicate that
the inclusion of such a rearrangement channel could be of significant
importance in obtaining a converged description of PsH scattering in
any ab initio coupled-channel model.
C1 Inst Tecnol Aeronaut, CTA, Dept Fis, BR-12228900 Sao Jose Dos Campos, SP, Brazil.
RP Biswas, PK, Inst Tecnol Aeronaut, CTA, Dept Fis, BR-12228900 Sao Jose
Dos Campos, SP, Brazil.
CR ADHIKARI SK, 1999, PHYS REV A, V59, P2058
ADHIKARI SK, 1999, PHYS REV A, V59, P4829
ADHIKARI SK, 2000, J PHYS B-AT MOL OPT, V33, L761
ADHIKARI SK, 2001, J PHYS B-AT MOL OPT, V34, L187
BARKER MI, 1968, J PHYS B ATOM MOL PH, V1, P1109
BARKER MI, 1969, J PHYS B ATOM MOL PH, V2, P730
BASU A, 2001, PHYS REV A, V63
BISWAS PK, IN PRESS NUCL INST B
BISWAS PK, 1998, J PHYS B-AT MOL OPT, V31, P3147
BISWAS PK, 1998, J PHYS B-AT MOL OPT, V31, P5404
BISWAS PK, 1998, J PHYS B-AT MOL OPT, V31, L315
BISWAS PK, 1998, J PHYS B-AT MOL OPT, V31, L737
BISWAS PK, 1999, PHYS REV A, V59, P363
BISWAS PK, 2000, CHEM PHYS LETT, V129, P317
BISWAS PK, 2000, J PHYS B-AT MOL OPT, V33, P1575
BISWAS PK, 2000, NUCL INSTRUM METH B, V171, P135
BISWAS PK, 2000, PHYS REV A, V61
BISWAS PK, 2000, RADIAT PHYS CHEM, V58, P443
BLACKWOOD JE, 1999, PHYS REV A, V60, P4454
CAMPBELL CP, 1998, PHYS REV LETT, V80, P5097
CANTER KF, 1975, PHYS REV A, V12, P375
CHANDRASEKHAR S, 1944, ASTROPHYS J, V100, P176
DRACHMAN RJ, 1970, J PHYS B ATOM MOL PH, V3, P1657
DRACHMAN RJ, 1975, PHYS REV A, V12, P885
DRACHMAN RJ, 1976, PHYS REV A, V14, P894
DRACHMAN RJ, 1979, PHYS REV A, V19, P1900
FRASER PA, 1961, P PHYS SOC LOND, V78, P329
FROLOV AM, 1997, PHYS REV A, V55, P2662
GARNER AJ, 1996, J PHYS B-AT MOL OPT, V29, P5961
GARNER AJ, 1998, NUCL INSTRUM METH B, V143, P155
GARNER AJ, 2000, J PHYS B ATOM MOL PH, V31, P329
GHOSH AS, COMMUNICATION
GHOSH AS, 1982, PHYS REP, V87, P313
HARA S, 1975, J PHYS B ATOM MOL PH, V8, L472
HILL RN, 1977, PHYS REV LETT, V38, P643
HO YK, 1978, PHYS REV A, V17, P1675
HO YK, 1986, PHYS REV A, V34, P609
HO YK, 1992, HYPERFINE INTERACT, V73, P109
KERNOGHAN AA, 1995, J PHYS B-AT MOL OPT, V28, P1079
LARICCHIA G, 1996, HYPERFINE INTERACT, V100, P71
MANDAL P, 1975, J PHYS B ATOM MOL PH, V8, P2377
MASSEY HSW, 1954, P PHYS SOC A, V67, P695
MCALINDEN MT, 1996, CAN J PHYS, V74, P434
NAGASHIMA Y, 1998, J PHYS B-AT MOL OPT, V31, P329
PAGE BAP, 1976, J PHYS B ATOM MOL PH, V9, P1111
RAY H, 1996, J PHYS B-AT MOL OPT, V29, P5505
RAY H, 1997, J PHYS B-AT MOL OPT, V30, P3745
RAY H, 1999, PHYS LETT A, V252, P316
RAY H, 2000, J PHYS B-AT MOL OPT, V33, P4285
SARKA NK, 1999, J PHYS B-AT MOL OPT, V32, P1657
SARKAR NK, 1997, J PHYS B-AT MOL OPT, V30, P4591
SCHRADER DM, 1992, PHYS REV LETT, V69, P57
SINHA PK, 1997, J PHYS B-AT MOL OPT, V30, P4643
SINHA PK, 1998, PHYS REV A, V58, P242
SINHA PK, 2000, J PHYS B-AT MOL OPT, V33, P2579
SKALSEY M, 1998, PHYS REV LETT, V80, P3727
ZAFAR N, 1996, PHYS REV LETT, V76, P1595
NR 57
TC 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS-B-AT MOL OPT PHYS
JI J. Phys. B-At. Mol. Opt. Phys.
PD DEC 14
PY 2001
VL 34
IS 23
BP 4831
EP 4844
PG 14
SC Physics, Atomic, Molecular & Chemical; Optics
GA 522HQ
UT ISI:000173890700026
ER
PT J
AU Seidl, PR
Carneiro, JWD
Tostes, JGR
Dias, JF
Pinto, PSS
Costa, VEU
Taft, CA
TI Conformational effects on NMR chemical shifts of half-cage alcohols
calculated by GIAO-DFT
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE NMR; chemical shifts; hyperconjugation; DFF-GIAO; half-cage alcohols;
conformational effects
ID SHIELDING TENSORS; BETA-SUBSTITUENT; ABINITIO IGLO; AB-INITIO; C-C;
C-13; HYPERCONJUGATION; METHYL; PENTACYCLODODECANE; DEPENDENCIES
AB Half-cage compounds have played an important role in the investigation
of the way steric compression affects physical and chemical properties
of organic molecules. Recent theoretical studies of half-cage alcohols
have also shown that rotation around the carbon-oxygen bond of the
hydroxyl group leads to low-energy conformers in which hyperconjugation
affects bond lengths, bond angles, and charge distribution on carbon
and hydrogen atoms in its vicinity while charge distribution is also
affected by electrostatic effects. Chemical shifts are also sensitive
to such variations, but we found that in smaller model systems steric
effects may strongly attenuate those due to hyperconjugation so we
optimized geometries for low energy rotamers of 'outside' and 'inside'
half-cage alcohols, where these effects can be separated, and
calculated their respective hydrogen and carbon-13 chemical shifts by
gauge-independent atomic orbital (GIAO) methods at the 133LYP/6-31G(d)
level. Results are compared to those obtained for the corresponding
norbornyl alcohols as well as for the half-cage hydrocarbon. Carbon-13
chemical shifts respond more strongly to effects owing to
hyperconjugation while hydrogen chemical shifts are more sensitive to
electrostatic effects due to the proximity of the hydroxyl group. (C)
2002 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Escola Quim, BR-21949900 Rio De Janeiro, RJ, Brazil.
Univ Fed Fluminense, Dept Quim Geral & Inorgan, BR-24020150 Niteroi, RJ, Brazil.
Univ Estadual Norte Fluminense, Ctr Ciencias & Tecnol, Lab Ciencias Quim, BR-28015620 Sao Jose Dos Campos, RJ, Brazil.
Inst Militar Engn, Dept Engn Quim, BR-22290270 Rio De Janeiro, RJ, Brazil.
Univ Fed Rio Grande Sul, Inst Quim, BR-91509900 Porto Alegre, RS, Brazil.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil.
RP Seidl, PR, Univ Fed Rio de Janeiro, Escola Quim, Cidade Univ,
BR-21949900 Rio De Janeiro, RJ, Brazil.
CR ABRAHAM RJ, 1997, J CHEM SOC P2, P1751
ABRAHAM RJ, 1999, PROG NUCL MAG RES SP, V35, P85
ADCOCK W, 1999, MAGN RESON CHEM, V37, P167
ANET FAL, 1965, J AM CHEM SOC, V87, P5249
ANET FAL, 1965, J AM CHEM SOC, V87, P5250
ANET FAL, 1979, J AM CHEM SOC, V101, P5449
AXT M, 1996, MAGN RESON CHEM, V34, P929
BARFIELD M, 1990, J AM CHEM SOC, V112, P4747
BARFIELD M, 1993, J AM CHEM SOC, V115, P6916
BARFIELD M, 1993, NUCLEAR MAGNETIC SHI, P523
BARFIELD M, 1997, J AM CHEM SOC, V119, P8699
BARFIELD M, 1998, MAGN RESON CHEM, V36, P93
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BIRD CW, 1961, J AM CHEM SOC, V84, P4809
BRUCK P, 1960, CHEM IND-LONDON, P405
CARNEIRO JWD, 1985, ANAIS ASS BRAS QUIM, V36, P32
CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
COSTA VEU, 1998, TETRAHEDRON-ASYMMETR, V9, P2579
COSTA VEU, 2000, J MOL STRUCT, V519, P37
DEDIOS AC, 1993, J AM CHEM SOC, V115, P9768
DEDIOS AC, 1993, SCIENCE, V260, P1491
DEDIOS AC, 1994, J AM CHEM SOC, V116, P11485
DEDIOS AC, 1994, J AM CHEM SOC, V116, P453
DEDIOS AC, 1994, J AM CHEM SOC, V116, P7784
DELLA EW, 2000, MAGN RESON CHEM, V38, P395
DITCHFIELD R, 1974, MOL PHYS, V27, P789
ERMER O, 1985, J AM CHEM SOC, V107, P2330
FORSYTH DA, 1986, J AM CHEM SOC, V108, P2157
FRISCH MJ, 1995, GAUSSIAN 94W
HOUK KN, 1993, J AM CHEM SOC, V115, P4170
HOWE RK, 1972, J ORG CHEM, V94, P2171
HRICOVINI M, 1997, J PHYS CHEM A, V101, P9756
JIAO D, 1993, MAGN RESON CHEM, V31, P75
KIVELSON D, 1961, J AM CHEM SOC, V83, P2938
KUPKA T, 2000, MAGN RESON CHEM, V38, P149
LAMBERT JB, 1992, J AM CHEM SOC, V114, P10246
LEE C, 1988, PHYS REV B, V37, P785
MARCHAND AP, 1982, STEREOCHEMICAL APPL
PAULING L, 1960, NATURE CHEM BOND, P309
PERALTA JE, 1999, MAGN RESON CHEM, V37, P31
RAUK A, 1996, J AM CHEM SOC, V118, P3761
SEIDL PR, 1990, J MOL STRUCT THEOCHE, V204, P183
SEIDL PR, 1998, ATUALIDADES FISICO Q, P127
SEIDL PR, 1998, MAGN RESON CHEM, V36, P261
SEIDL PR, 1999, J MOL STRUC-THEOCHEM, V488, P151
SEIDL PR, 2001, J MOL STRUC-THEOCHEM, V539, P163
SMITH WB, 1999, MAGN RESON CHEM, V37, P110
SOLOWAY SB, 1960, J AM CHEM SOC, V82, P5195
TOLBERT LM, 1990, J AM CHEM SOC, V112, P9519
TOSTES JGR, IN PRESS
TOSTES JR, 1996, THEOCHEM-J MOL STRUC, V388, P85
WEBB GA, 1996, ENCY MAGN RESON, V7, P4307
WINSTEIN S, 1965, J AM CHEM SOC, V87, P5247
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 55
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAR 1
PY 2002
VL 579
BP 101
EP 107
PG 7
SC Chemistry, Physical
GA 523GT
UT ISI:000173946200012
ER
PT J
AU Klautau, AB
Frota-Pessoa, S
TI Magnetism of Co clusters embedded in Cu(001) surfaces: an ab initio
study
SO SURFACE SCIENCE
LA English
DT Article
DE cobalt; copper; surface defects; clusters; magnetic surfaces;
metal-metal magnetic heterostructures
ID FE IMPURITIES; REAL-SPACE; ELECTRONIC-STRUCTURE; TRANSITION; CU(100);
GROWTH; NANOSTRUCTURES; EXCHANGE; MOMENTS; METALS
AB We report calculations of electronic structure and magnetic properties
of Co clusters (up to 50 atoms) embedded in Cu(0 0 1) surfaces,
performed using the first-principles linear muffin tin orbital-atomic
sphere approximation method, implemented directly in real space. Co
agglomerates of different sizes and shapes are considered in order to
investigate the influence of the local environment around the Co sites
to the magnetism in this class of systems. We find that the magnitude
of the Co moments is mainly governed by two factors: the position of
the site relative to the Cu(0 0 1) surface layer and the number of Cu
neighbors. The results show moment enhancement for sites located above
the surface and/ or placed substitutionally in the surface layer, due
to their reduced coordination numbers. For sites with the same
coordination number, the moment tends to decrease as the number of Cu
neighbors increases. As a consequence, in Co agglomerates, the magnetic
moment decreases considerably as one goes from more central sites to
those close to the grain boundary at the Co-Cu interface. (C) 2001
Published by Elsevier Science B.V.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
RP Klautau, AB, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, SP, Brazil.
CR ALDEN M, 1992, PHYS REV B, V46, P6303
ANDERSEN OK, 1975, PHYS REV B, V12, P3060
ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571
ANDERSEN OK, 1985, HIGHLIGHTS CONDENSED, P2571
BEER N, 1984, ELECT STRUCTURE COMP
BINASCH G, 1989, PHYS REV B, V39, P4828
BRUNO P, 1991, PHYS REV LETT, V67, P1602
BRUNO P, 1995, PHYS REV B, V52, P411
CLEMENS W, 1992, SOLID STATE COMMUN, V81, P739
DEBOER FR, 1985, COHESION METALS, V1
DRITTLER B, 1991, SOLID STATE COMMUN, V79, P31
FASSBENDER J, 1997, SURF SCI, V383, L742
FERNANDO GW, 1988, PHYS REV B, V38, P3016
FORTAPESSOA S, 2001, HYPERFINE INTERACT, V133, P207
FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
FROTAPESSOA S, 1993, PHYS REV LETT, V71, P4206
HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215
HERGERT W, 1999, J MAGN MAGN MATER, V198, P233
HJORTSTAM O, 1996, PHYS REV B, V53, P9204
IZQUIERDO J, 2001, PHYS REV B, V63
KIEF MT, 1993, PHYS REV B, V47, P10785
KIM SK, 2000, SURF SCI, V453, P47
KLAUTAU AB, 1998, J MAGN MAGN MATER, V186, P223
KLAUTAU AB, 1999, PHYS REV B, V60, P3421
KOHL U, 1998, SURF SCI, V407, P104
KORZHAVYI PA, 1999, PHYS REV B, V59, P11693
LANG P, 1994, SOLID STATE COMMUN, V92, P755
LI C, 1990, J MAGN MAGN MATER, V83, P51
NOGUEIRA RN, 2001, PHYS REV B, V63, P2405
NOUVERTNE F, 1999, PHYS REV B, V60, P14382
PAPANIKOLAOU N, 1992, PHYS REV B, V46, P10858
PEDERSEN MO, 1997, SURF SCI, V387, P86
PEDUTO PR, 1991, PHYS REV B, V44, P13283
PEDUTO PR, 1997, BRAZ J PHYS, V27, P574
PENTCHEVA R, 2000, PHYS REV B, V61, P2211
PETRILLI HM, 1993, PHYS REV B, V48, P7148
SKRIVER HL, 1991, PHYS REV B, V43, P9538
STEPANYUK VS, 1997, J MAGN MAGN MATER, V165, P271
STEPANYUK VS, 1997, SURF SCI, V377, P495
STEPANYUK VS, 1999, PHYS REV B, V59, P1681
SZUNYOGH L, 1998, PHYS REV B, V57, P8838
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
WILDBERGER K, 1995, PHYS REV LETT, V75, P509
WU RQ, 1992, J MAGN MAGN MATER, V116, P202
ZIMMERMANN CG, 1999, PHYS REV LETT, V83, P1163
NR 45
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD JAN 20
PY 2002
VL 497
IS 1-3
BP 385
EP 397
PG 13
SC Chemistry, Physical
GA 519QP
UT ISI:000173737200039
ER
PT J
AU Barbosa, KO
Machado, WVM
Assali, LVC
TI First-principles studies of Ti impurities in SiC
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE transition metals; silicon carbide; ab initio methods
AB In this work we perform a theoretical investigation on the atomic
structure, atomic geometry, and formation energy of isolated
substitutional and interstitial Ti impurities in cubic silicon carbide
(3C-SiC). using the spill-polarized full-potential linearized augmented
plane wave method. For each configuration, the atoms around the
impurity site are allowed to relax without any constraints, following
the damped Newton dynamics scheme. The overall structural stability is
analyzed in the light of the electronic structure and the bonding
features. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, BR-05315970 Sao Paulo, Brazil.
RP Assali, LVC, Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, CP 66318,
BR-05315970 Sao Paulo, Brazil.
CR BAUMHAUER H, 1912, Z KRISTALLOGR, V50, P33
BEELER F, 1990, PHYS REV B, V41, P1603
BLAHA P, 1999, WIEN97 FULL POTENTIA
HOHENBERG P, 1964, PHYS REV B, V136, P864
JEPPS NW, 1983, J CRYST GROWTH CHARA, V7, P259
KOHN W, 1965, PHYS REV, V140, A1133
LEBEDEV AA, 1999, SEMICONDUCTORS+, V33, P107
MADELUNG O, 1982, NUMERICAL DATA FUNCT, V17
MULLER STG, 1995, SILICON CARBIDE RELA
PASLOVSKY L, 1993, J LUMIN, V55, P167
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
SINGH DJ, 1994, PLANEWAVES PSEUDOPOT
SON NT, 1994, APPL PHYS LETT, V65, P2687
VERMA AP, 1966, POLYMORPHISM POLYTYP
NR 14
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD DEC
PY 2001
VL 308
BP 726
EP 729
PG 4
SC Physics, Condensed Matter
GA 518GV
UT ISI:000173660100182
ER
PT J
AU Ahuja, R
da Silva, AF
Persson, C
Osorio-Guillen, JM
Pepe, I
Jarrendahl, K
Lindquist, OPA
Edwards, NV
Wahab, Q
Johansson, B
TI Optical properties of 4H-SiC
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID SIC POLYTYPES; N-TYPE; POWER APPLICATIONS; BRILLOUIN-ZONE; SPECIAL
POINTS; BAND; SYSTEMS; DEVICES
AB The optical band gap energy and the dielectric functions of n-type
4H-SiC have been investigated experimentally by transmission
spectroscopy and spectroscopic ellipsometry and theoretically by an ab
initio full-potential linear muffin-tin-orbital method. We present the
real and imaginary parts of the dielectric functions, resolved into the
transverse and longitudinal photon moment a, and we show that the
anisotropy is small in 4H-SiC. The measurements and the calculations
fall closely together in a wide range of energies. (C) 2002 American
Institute of Physics.
C1 Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, SE-75121 Uppsala, Sweden.
Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil.
Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden.
Motorola Inc, Semicond Prod Sector, Mesa, AZ 85202 USA.
Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden.
RP Ahuja, R, Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, POB
530, SE-75121 Uppsala, Sweden.
CR ADOLPH B, 1997, PHYS REV B, V55, P1422
AHUJA R, 1997, PHYS REV B, V55, P4999
ANDERSEN OK, 1975, PHYS REV B, V12, P3060
ARAUJO CM, 2000, PHYS REV B, V62, P12882
CHADI DJ, 1973, PHYS REV B, V8, P5747
COYKE WJ, 1969, MAT RES B, V4, P141
EDMONDS AR, 1974, ANGULAR MOMENTUM QUA
EDWARDS NV, IN PRESS SURF SCI LE
FROYEN S, 1989, PHYS REV B, V39, P3168
GASHE T, 1993, THESIS UPPSALA U
HARRIS GL, 1995, PROPERTIES SILICON C
HEDIN L, 1971, J PHYS C SOLID STATE, V4, P2064
JANSSON R, 2000, PHYS STATUS SOLIDI B, V218, R1
JANZEN E, 1997, MAT SCI ENG B-SOLID, V46, P203
LIMPIJUMNONG S, 1999, PHYS REV B, V59, P12890
LINDQUIST OPA, 2000, MATER SCI FORUM, V338, P575
LINDQUIST OPA, 2001, APPL PHYS LETT, V78, P2751
MORKOC H, 1994, J APPL PHYS, V76, P1363
OPPENEER PM, 1992, PHYS REV B, V45, P10924
PALMOUR JW, 1993, PHYSICA B, V185, P461
PERSSON C, 1998, J APPL PHYS, V83, P266
PERSSON C, 1998, P 7 INT C SIL CARB 3, V264
PERSSON C, 1999, J APPL PHYS, V86, P4419
PERSSON C, 1999, PHYS REV B, V60, P16479
PRICE DL, 1989, PHYS REV B, V39, P4945
SKRIVER HL, 1984, LMTO METHOD
TREW RJ, 1991, P IEEE, V79, P598
WAHAB Q, 2000, APPL PHYS LETT, V76, P2725
WILLS JM, UNPUB
WILLS JM, 1987, PHYS REV B, V36, P3809
ZANGOOIE S, 2000, J APPL PHYS, V87, P8497
ZHUKOVA II, 1968, FIZ TVERD TELA, V10, P1097
ZOLLNER S, 1999, J APPL PHYS, V85, P8353
NR 33
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2002
VL 91
IS 4
BP 2099
EP 2103
PG 5
SC Physics, Applied
GA 516LB
UT ISI:000173553800052
ER
PT J
AU Tabata, A
Teles, LK
Scolfaro, LMR
Leite, JR
Kharchenko, A
Frey, T
As, DJ
Schikora, D
Lischka, K
Furthmuller, J
Bechstedt, F
TI Phase separation suppression in InGaN epitaxial layers due to biaxial
strain
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID RESONANT RAMAN-SCATTERING; INXGA1-XN
AB Phase separation suppression due to external biaxial strain is observed
in InxGa1-xN alloy layers by Raman scattering spectroscopy. The effect
is taking place in thin epitaxial layers pseudomorphically grown by
molecular-beam epitaxy on unstrained GaN(001) buffers. Ab initio
calculations carried out for the alloy free energy predict and Raman
measurements confirm that biaxial strain suppress the formation of
phase-separated In-rich quantum dots in the InxGa1-xN layers. Since
quantum dots are effective radiative recombination centers in InGaN, we
conclude that strain quenches an important channel of light emission in
optoelectronic devices based on pseudobinary group-III nitride
semiconductors. (C) 2002 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Gesamthsch Paderborn, D-33095 Paderborn, Germany.
Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743 Jena, Germany.
Univ Estadual Paulista, BR-17033360 Bauva, SP, Brazil.
RP Leite, JR, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR CHICHIBU S, 1996, APPL PHYS LETT, V69, P4188
CHICHIBU S, 1997, APPL PHYS LETT, V70, P2822
KARPOV SY, 1998, MRS INTERNET J N S R, V3
LEMOS V, 2000, PHYS REV LETT, V84, P3666
ODONNELL KP, 1999, PHYS REV LETT, V82, P237
SILVEIRA E, 1999, APPL PHYS LETT, V75, P3602
SINGH R, 1997, APPL PHYS LETT, V70, P1089
TABATA A, 1996, J APPL PHYS 1, V79, P4137
TELES LK, 2000, PHYS REV B, V62, P2475
WANG T, 2001, APPL PHYS LETT, V78, P2617
ZUNGER A, 1994, HDB CRYSTAL GROWTH, V3, P998
NR 11
TC 24
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 4
PY 2002
VL 80
IS 5
BP 769
EP 771
PG 3
SC Physics, Applied
GA 517NW
UT ISI:000173617700022
ER
PT J
AU Correa, RJ
Mota, CJA
TI Theoretical study of protonation of butene isomers on acidic zeolite:
the relative stability among primary, secondary and tertiary alkoxy
intermediates
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID HARTREE-FOCK CALCULATIONS; SOLID ACIDS; SKELETAL ISOMERIZATION;
AB-INITIO; ELECTROSTATIC POTENTIALS; HYDROCARBON CONVERSION; SN2-SN1
SPECTRUM; DEUTERATED ZSM-5; MOLECULAR-MODELS; LINEAR BUTENES
AB A density functional theory (DFT) study of the protonation of
but-1-ene, (E)-but-2-ene and isobutene over a cluster representing the
zeolite acid site (HT3) was carried out. At the B3LYP=6-31+G** level of
calculation all the reactions were exothermic, with respect to the
isolated reactants, in forming an alkoxy species. Formation of a
pi-complex involving the double bond and the acidic proton was the
first step and shows a small dependence with the olefin structure. The
proton transfer involves a transition state with carbenium ion like
character, which is reflected in the calculated DeltaH(double dagger),
being higher for the but-1-ene (to afford the 1-butoxy intermediate)
and lower for the isobutene (to afford the tert-butoxy intermediate).
However, the stability of the alkoxy formed shows a different trend.
The tert-butoxy was computed to be only 1.5 kcal mol(-1) lower in
energy than the pi-complex between isobutene and HT3 at the
B3LYP/6-31+G** level of calculation, but the reaction becomes
endothermic by 2.5 kcal mol(-1) when computed at B3LYP/6-311++G**. The
calculated order of stability among the alkoxy species was 2-butoxy >
1-butoxy > tert-butoxy. These results show that electronic effects
dominate DeltaH(double dagger), which is associated with the kinetics
of the protonation process, while steric effects play a major role in
the stability of the alkoxy, which in turn is related to the
thermodynamics of protonation.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, BR-21949900 Rio De Janeiro, Brazil.
RP Mota, CJA, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Cidade
Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR ARONSON MT, 1989, J AM CHEM SOC, V111, P840
BENTLEY TW, 1976, J AM CHEM SOC, V98, P7658
BENTLEY TW, 1981, J AM CHEM SOC, V103, P5466
BORONAT M, 1998, J PHYS CHEM A, V102, P982
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BUTLER AC, 1993, CATAL TODAY, V18, P443
CHANG CD, 1983, HYDROCARBONS METHANO
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
CORMA A, 1993, CATAL REV, V35, P483
CORMA A, 1995, CHEM REV, V95, P559
ESTEVES PM, 1997, MOL ENG, V7, P429
ESTEVES PM, 1999, THESIS FEDERAL U RIO
FRASH MV, 1997, J PHYS CHEM B, V101, P5346
FRASH MV, 1998, J PHYS CHEM B, V102, P2232
FRASH MV, 1999, TOP CATAL, V9, P191
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HAW JF, 1989, J AM CHEM SOC, V111, P2052
HAW JF, 1996, ACCOUNTS CHEM RES, V29, P259
ISHIKAWA H, 1999, J PHYS CHEM B, V103, P5681
KAZANSKY VB, 1991, ACCOUNTS CHEM RES, V24, P379
KAZANSKY VB, 1996, APPL CATAL A-GEN, V146, P225
KONDO JN, 1998, CATAL LETT, V53, P215
KONDO JN, 1998, J PHYS CHEM B, V102, P2259
KONDO JN, 1999, J PHYS CHEM B, V103, P8538
LAZO ND, 1991, J PHYS CHEM-US, V95, P9420
MOTA CJA, 1996, APPL CATAL A-GEN, V146, P181
NIVARTHY GS, 2000, MICROPOR MESOPOR MAT, V35, P75
OLAH GA, 1998, ONIUM IONS, CH3
PINE LA, 1984, J CATAL, V85, P466
RAO P, 1996, OIL GAS J, V94, P56
RIGBY AM, 1997, J CATAL, V170, P1
RIGBY AM, 1997, J MOL CATAL A-CHEM, V126, P61
SAUER J, 1989, CHEM REV, V89, P199
SAUER J, 1994, ADV MOL EL, V2, P111
SCHERZER J, 1989, CATAL REV SCI ENG, V31, P215
SEDRAN UA, 1994, CATAL REV, V36, P405
SINCLAIR PE, 1998, J CHEM SOC FARADAY T, V94, P3401
SOMMER J, 1994, J AM CHEM SOC, V116, P5491
SOMMER J, 1995, J AM CHEM SOC, V117, P1135
STEPANOV AG, 1992, CATAL LETT, V13, P407
VENUTO PB, 1979, FLUID CATALYTIC CRAC
VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13713
NR 42
TC 13
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2002
VL 4
IS 2
BP 375
EP 380
PG 6
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 514MX
UT ISI:000173444900030
ER
PT J
AU Pliego, JR
Riveros, JM
TI Theoretical study of the gas-phase reaction of fluoride and chloride
ions with methyl formate
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID NUCLEOPHILIC DISPLACEMENT-REACTIONS; CYCLOTRON RESONANCE SPECTROSCOPY;
INFRARED MULTIPLE-PHOTON; RELATIVE STABILITY; FLOWING AFTERGLOW;
HYDROGEN-BONDS; NEGATIVE-IONS; ANIONS; COMPLEXES; PHOTODETACHMENT
AB The potential energy surface of the gas-phase reaction between halide
ions (F- and Cl-) and methyl formate has been investigated by ab initio
calculations. For F-, two pathways have been observed at thermal
energies and identified in the calculations: (1) a-elimination of CO to
yield a fluoride-methanol adduct, the so-called Riveros reaction that
has found wide application in gas-phase ion chemistry, and (2) S(N)2
displacement of HCOO-. The first reaction is shown to proceed by the
initial formation of a loose complex followed by formal abstraction of
a formyl hydrogen to yield a three-body complex that dissociates into
the final products. The S(N)2 reaction initially involves formation of
a loose complex with the fluoride attached to the methyl group of the
ester. The first pathway is calculated to go through a lower energy
local transition state than the corresponding S(N)2 reaction but the
transition states are located below the energy of the reagents. Both
ion-neutral complexes can interconvert via formation of a stable
tetrahedral intermediate. The product distribution was estimated via a
simple RRKM calculation that predicts 92% of alpha-elimination and 8%
Of S(N)2 reaction. This prediction is in excellent agreement with
measurements carried out by FT-ICR. This product distribution is
predicted to remain essentially unchanged for the reaction with DCOOCH3
in agreement with experimental observations. A similar analysis of the
corresponding Cl- + HCOOCH3 reaction reveals that a-elimination has a
substantial activation energy (well above the reagents) accounting for
the failure to observe this reaction even though it is exothermic.
These calculations also reveal that for the Cl- system, the tetrahedral
intermediate is not a stable intermediate in agreement with previous
experimental data on related systems.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, Brazil.
CR ASUBIOJO OI, 1979, J AM CHEM SOC, V101, P3715
BAER S, 1989, J AM CHEM SOC, V111, P4097
BAER S, 1992, J AM CHEM SOC, V114, P5733
BERNASCONI CF, 1990, J AM CHEM SOC, V112, P9044
BLAIR LK, 1973, J AM CHEM SOC, V95, P1057
BLAKE JF, 1987, J AM CHEM SOC, V109, P3856
BOGDANOV B, 1999, INT J MASS SPECTROM, V185, P707
BOTSCHWINA P, 1997, BER BUNSEN PHYS CHEM, V101, P387
CALDWELL G, 1984, J AM CHEM SOC, V106, P4660
CHABINYC ML, 1998, J AM CHEM SOC, V120, P10863
CHABINYC ML, 1998, SCIENCE, V279, P1882
CHABINYC ML, 2000, J AM CHEM SOC, V122, P8739
DEPUY CH, 1985, J AM CHEM SOC, V107, P1093
DEPUY CH, 2000, INT J MASS SPECTROM, V200, P79
DODD JA, 1991, J AM CHEM SOC, V113, P5942
FERNANDO J, 1976, J AM CHEM SOC, V98, P2049
FRINK BT, 1999, J CHEM SOC PERK NOV, P2397
FRISCH MJ, 1994, GAUSSIAN 94 VERSION
GRONERT S, 2001, CHEM REV, V101, P329
HASE WL, 1994, SCIENCE, V266, P998
ISOLANI PC, 1975, CHEM PHYS LETT, V33, P361
JOHLMAN CL, 1985, J AM CHEM SOC, V107, P327
JOSE SM, 1977, NOUV J CHIM, V1, P113
LARSON JW, 1983, J AM CHEM SOC, V105, P2944
LIM KF, 1991, J CHEM PHYS, V94, P7164
MALLARD WG, 2000, 69 NIST
MCIVER RT, 1989, ANAL CHEM, V61, P491
MIHALICK JE, 1996, J AM CHEM SOC, V118, P12424
MOINI M, 1989, INT J MASS SPECTROM, V87, P29
MORAES PRP, 2000, J AM CHEM SOC, V122, P10133
NIXDORF A, 2000, INT J MASS SPECTROM, V195, P533
PEIRIS DM, 1996, INT J MASS SPECTROM, V159, P169
PLIEGO JR, 2001, CHEM-EUR J, V7, P169
REMPEL DL, 1986, INT J MASS SPECTROM, V70, P163
RIVEROS JM, 1973, J AM CHEM SOC, V95, P4066
RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
SILVA MLP, 1995, INT J MASS SPECTROM, V30, P733
TAKASHIMA K, 1978, J AM CHEM SOC, V100, P6128
TAKASHIMA K, 1998, MASS SPECTROM REV, V17, P409
UECHI GT, 1992, J AM SOC MASS SPECTR, V3, P734
VANDERWEL H, 1986, INT J MASS SPECTROM, V72, P145
VANDERWEL H, 1988, RECL TRAV CHIM PAY B, V107, P479
WILBUR JL, 1994, J AM CHEM SOC, V116, P5839
WILBUR JL, 1994, JAM CHEM SOC, V116, P12125
WLADKOWSKI BD, 1994, J CHEM PHYS, V100, P2058
YANG YJ, 1997, J PHYS CHEM A, V101, P2371
ZHAN CG, 2000, J AM CHEM SOC, V122, P1522
ZHU L, 1993, GEN RRKM PROGRAM
NR 48
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JAN 17
PY 2002
VL 106
IS 2
BP 371
EP 378
PG 8
SC Chemistry, Physical
GA 513AN
UT ISI:000173355900021
ER
PT J
AU Chaudhuri, P
Canuto, S
TI An ab initio study of the peptide bond formation between alanine and
glycine: electron correlation effects on the structure and binding
energy
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE peptide bond; ab initio; electron correlation effects;
density-functional theory; structure and properties
ID DENSITY-FUNCTIONAL APPROXIMATION; AQUEOUS-SOLUTION; CONFORMERS;
DIPEPTIDES; GEOMETRIES; ABINITIO; H2O-HCN; MODELS; MP2; GAS
AB Ab initio methods are used to analyze the structure, energetics and
binding energy of the four possible dipeptides that can be formed from
alanine and glycine in gas phase. The structures of the peptides are
optimized using Hartree-Fock, second-order Moller-Plesset perturbation
theory and density functional methods (DFT). The effect of electron
correlation is analyzed with special emphasis on the calculated binding
energies. Single-point energy calculations are performed with CCSD(T)
on MP2 geometries to get some additional information on the correlation
effects. Electron correlation effects and zero-point vibrational energy
corrections increase the binding energy. At the highest level, CCSD(T),
we find that the binding energies for alanylalanine, alanylglycine,
glycylalanine and glycylglycine are 4.86, 5.09, 5.61 and 5.89 kcal/mol,
respectively. These numerical results suggest that glycine donates the
OH group easier than alanine. A comparison between the Moller-Plesset
and DFT in different basis sets is made and gives indication of the
usefulness of these methods for bio-molecules and peptide formation.
Two functionals, B3LYP and B3P86 with different basis sets differing by
the systematic inclusion of diffuse and polarization functions, are
used in the DFT method. The results obtained using both functionals
with a basis that includes both diffuse and polarization functions are
in reasonable agreement with the Moller-Plesset results. However,
without including zero-point corrections, some DFT results lead to
non-bonding of the peptide molecule. (C) 2002 Elsevier Science B.V. All
rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1997
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENEDETTI E, 1977, PEPTIDES
BOHM HJ, 1991, J AM CHEM SOC, V113, P7129
CHANDRA AK, 1998, CHEM PHYS, V232, P299
COREY RB, 1953, P ROY SOC LONDON B, V141, P10
CORNELL WD, 1997, THEOCHEM-J MOL STRUC, V392, P101
CSASZAR AG, 1992, J AM CHEM SOC, V114, P9568
CSASZAR AG, 1996, J PHYS CHEM-US, V100, P3541
CSASZAR AG, 1999, PROG BIOPHYS MOL BIO, V71, P243
DEPROFT F, 1996, CHEM PHYS LETT, V250, P393
FRISCH MJ, 1998, GAUSSIAN 98 REV A 7
GODFREY PD, 1993, J AM CHEM SOC, V115, P9687
GODFREY PD, 1995, J AM CHEM SOC, V117, P2019
GOULD IR, 1994, J AM CHEM SOC, V116, P9250
GRONERT S, 1995, J AM CHEM SOC, V117, P2071
GUTOWSKY HS, 1992, J CHEM PHYS, V96, P5808
HEADGORDON T, 1991, J AM CHEM SOC, V113, P5989
JAKLI I, 2000, J COMPUT CHEM, V21, P626
JANSEN JH, 1991, J AM CHEM SOC, V113, P7917
LEE C, 1988, PHYS REV B, V37, P785
MARSH RE, 1967, ADV PROTEIN CHEM, V22, P249
NOVOA JJ, 1995, J PHYS CHEM-US, V99, P15837
PERCZEL A, 1991, J AM CHEM SOC, V113, P6256
PERDEW JP, 1986, PHYS REV B, V33, P8822
PETTITT BM, 1985, CHEM PHYS LETT, V121, P194
POPLE JA, 1987, J CHEM PHYS, V87, P5968
RAMACHANDRAN GN, 1968, ADVANCES PROTEIN CHE, V23, P284
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
ROTERMAN IK, 1989, J BIOMOL STRUCT DYN, V7, P421
SCARSDALE JN, 1983, J AM CHEM SOC, V105, P3438
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
SHIOTANI M, 2000, J AM CHEM SOC, V122, P207
VISHVESHWARA S, 1977, J AM CHEM SOC, V99, P422
WONG MW, 1996, CHEM PHYS LETT, V256, P391
NR 35
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JAN 31
PY 2002
VL 577
IS 2-3
BP 267
EP 279
PG 13
SC Chemistry, Physical
GA 514FQ
UT ISI:000173428400018
ER
PT J
AU Avery, MA
Alvim-Gaston, M
Rodrigues, CR
Barreiro, EJ
Cohen, FE
Sabnis, YA
Woolfrey, JR
TI Structure-activity relationships of the antimalarial agent artemisinin.
6. The development of predictive in vitro potency models using CoMFA
and HQSAR methodologies
SO JOURNAL OF MEDICINAL CHEMISTRY
LA English
DT Article
ID MOLECULAR-FIELD ANALYSIS; SOLUBLE DIHYDROARTEMISININ DERIVATIVES;
QINGHAOSU ARTEMISININ; TRICYCLIC ANALOGS; IN-VITRO; PEROXIDIC
ANTIMALARIALS; HEPATIC-METABOLISM; AB-INITIO; DRUG; MECHANISM
AB Artemisinin (1) is a unique sesquiterpene peroxide occurring as a
constituent of Artemisia annua L. Because of the effectiveness of
Artemisinin in the treatment of drug-resistant Plasmodium falciparum
and its rapid clearance of cerebral malaria, development of clinically
useful semisynthetic drugs for severe and complicated malaria
(artemether, artesunate) was prompt. However, recent reports of fatal
neurotoxicity in animals with dihydroartemisinin derivatives such as
artemether have spawned a renewed effort to develop nontoxic analogues
of artemisinin. In our effort to develop more potent, less neurotoxic
agents for the oral treatment of drug-resistant malaria, we utilized
comparative molecular field analysis (CoMFA) and hologram QSAR (HQSAR),
beginning with a series of 211 artemisinin analogues with known in
vitro antimalarial activity. CoMFA models were based on two
conformational hypotheses: (a) that the X-ray structure of artemisinin
represents the bioactive shape of the molecule or (b) that the
hemin-docked conformation is the bioactive form of the drug. In
addition, we examined the effect of inclusion or exclusion of racemates
in the partial least squares (pls) analysis. Databases derived from the
original 211 were split into chiral (n = 157), achiral (n = 34), and
mixed databases (n = 191) after leaving out a test set of 20 compounds.
HQSAR and CoMFA models were compared in terms of their potential to
generate robust QSAR models. The r(2) and q(2) (cross-validated r(2))
were used to assess the statistical quality of our models. Another
statistical parameter, the ratio of the standard error to the activity
range (s/AR), was also generated. CoMFA and HQSAR models were developed
having statistically excellent properties, which also possessed good
predictive ability for test set compounds. The best model was obtained
when racemates were excluded from QSAR analysis. Thus, CoMFA of the n =
157 database gave excellent predictions with outstanding statistical
properties. HQSAR did an outstanding job in statistical analysis and
also handled predictions well.
C1 Univ Mississippi, Sch Pharm, Thad Cochran Natl Ctr Nat Prod Res, Dept Med Chem, University, MS 38677 USA.
Univ Mississippi, Dept Chem, University, MS 38677 USA.
UFRJ, Dept Farmacos, Fac Farm, LASSBio, BR-21944910 Rio De Janeiro, Brazil.
Univ Calif San Francisco, Dept Cellular Mol Pharmacol, San Francisco, CA 94143 USA.
RP Avery, MA, Univ Mississippi, Sch Pharm, Thad Cochran Natl Ctr Nat Prod
Res, Dept Med Chem, University, MS 38677 USA.
CR ACTON N, 1993, J MED CHEM, V36, P2552
ALVIMGASTON M, 1999, 217 ACS NAT M AN CA
AVERY MA, 1990, J CHEM SOC CHEM COMM, P1487
AVERY MA, 1990, TETRAHEDRON LETT, V31, P1799
AVERY MA, 1993, J MED CHEM, V36, P4264
AVERY MA, 1994, TETRAHEDRON, V50, P957
AVERY MA, 1995, J MED CHEM, V38, P5038
AVERY MA, 1996, J MED CHEM, V39, P1885
AVERY MA, 1996, J MED CHEM, V39, P4149
AVERY MA, 1999, ADV MED CH, V4, P125
AVERY MA, 2000, BIOL ACT NAT PROD, P121
BHATTACHARYA AK, 1999, HETEROCYCLES, V51, P1681
BLOODWORTH AJ, 1995, TETRAHEDRON LETT, V36, P7551
BOUKOUVALAS J, 2000, COMMUNICATION
BROSSI A, 1988, J MED CHEM, V31, P645
BUTLER AR, 1998, FREE RADICAL RES, V28, P471
CRAMER RD, 1988, J AM CHEM SOC, V110, P5959
CRAMER RD, 1988, QUANT STRUCT-ACT REL, V7, P18
CUMMING JN, 1997, ADV PHARMACOL, V37, P253
DAI LX, 1999, CHEMTRACTS, V12, P687
DONG YX, 1999, J MED CHEM, V42, P1477
DOWEYKO AM, 1997, 213 ACS NAT M SAN FR
GRACE JM, 1999, XENOBIOTICA, V29, P703
GU J, 1999, J MOL STRUC-THEOCHEM, V491, P57
HARALDSON CA, 1997, BIOORG MED CHEM LETT, V7, P2357
HAWLEY SR, 1998, ANTIMICROB AGENTS CH, V42, P682
HAYNES RK, 1996, TETRAHEDRON LETT, V37, P257
HAYNES RK, 1997, ACCOUNTS CHEM RES, V30, P73
HERITAGE TW, 1999, MOL HOLOGRAM QSAR RA, P212
HU YL, 1992, BIOORG CHEM, V20, P148
JEFFORD CW, 1993, HELV CHIM ACTA, V76, P2775
JEFFORD CW, 1993, PERSPECTIVES MED CHE, P459
JEFFORD CW, 1997, ADV DRUG RES, V29, P271
JIANG HL, 1994, ACTA PHARM SINIC, V15, P481
JUNG M, 1990, J MED CHEM, V33, P1516
KAMCHONWONGGPAISAN S, 1996, GEN PHARMACOL, V27, P587
KLAYMAN DL, 1985, SCIENCE, V228, P1049
KUBINYI H, 1993, 3D QSAR DRUG DESIGN
LESKOVAC V, 1991, COMP BIOCHEM PHYS C, V99, P383
LIN AJ, 1987, J MED CHEM, V30, P2147
LIN AJ, 1990, J MED CHEM, V33, P2610
LIN AJ, 1997, J MED CHEM, V40, P1396
LISGARTEN JN, 1998, J CHEM CRYSTALLOGR, V28, P539
LIU C, 1999, HUAXUE JINZHAN, V11, P41
LUNDSTEDT T, 1997, COMPUTER ASSISTED LE
MEKONNEN B, 1997, TETRAHEDRON LETT, V38, P731
MESHNICK SR, 1993, ANTIMICROB AGENTS CH, V37, P1108
MESHNICK SR, 1994, T ROY SOC TROP MED H, V88, P31
MESHNICK SR, 1996, PARASITOL TODAY, V12, P79
MILHOUS WK, 1985, ANTIMICROB AGENTS CH, V27, P525
NGUYENCONG V, 1996, EUR J MED CHEM, V31, P797
ODOWD H, 1999, TETRAHEDRON, V55, P3625
ONEILL PM, 1999, TETRAHEDRON LETT, V40, P9133
PAITAYATAT S, 1997, J MED CHEM, V40, P633
PANDEY AV, 1999, J BIOL CHEM, V274, P19383
POSNER GH, 1992, J MED CHEM, V35, P2459
POSNER GH, 1995, HETEROATOM CHEM, V6, P105
POSNER GH, 1995, J AM CHEM SOC, V117, P5885
POSNER GH, 1996, J AM CHEM SOC, V118, P3537
POSNER GH, 1996, TETRAHEDRON LETT, V37, P815
POSNER GH, 1998, TETRAHEDRON LETT, V39, P2273
PU YM, 1995, J MED CHEM, V38, P4120
ROBERT A, 1998, CHEM SOC REV, V27, P273
SHUKLA KL, 1995, J MOL GRAPH MODEL, V13, P215
SMITH SL, 1998, NEUROTOXICOLOGY, V19, P557
SVENSSON USH, 1999, BRIT J CLIN PHARMACO, V48, P528
TANG Y, 1996, INDIAN J CHEM B, V35, P325
TONMUNPHEAN S, 1998, J COMPUT AID MOL DES, V12, P397
TONMUNPHEAN S, 1998, THEOCHEM-J MOL STRUC, V454, P87
TREGOVA A, 1996, BRIT J PHARMACOL, V119, P336
VATTANAVIBOON P, 1998, MOL PHARMACOL, V53, P492
VROMAN JA, 1999, CURR PHARM DESIGN, V5, P101
VYAS N, IN PRESS ANTIMICROB
WOOLFREY JR, 1998, J COMPUT AID MOL DES, V12, P165
WOOLFREY JR, 1999, 217 ACS NAT M AN CA
WU J, 1991, PROG NAT SCI, V1, P72
WU WM, 1998, J AM CHEM SOC, V120, P13002
WU WM, 1998, J AM CHEM SOC, V120, P3316
WU YL, 1999, PURE APPL CHEM, V71, P1139
NR 79
TC 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-2623
J9 J MED CHEM
JI J. Med. Chem.
PD JAN 17
PY 2002
VL 45
IS 2
BP 292
EP 303
PG 12
SC Chemistry, Medicinal
GA 513YJ
UT ISI:000173408400007
ER
PT J
AU Borin, AC
TI The A(1)Pi-X-1 Sigma(+) transition in NiC
SO CHEMICAL PHYSICS
LA English
DT Article
DE nickel carbide; A(1)II excited electronic state and radiative
lifetimes; A(1)II-X-1 Sigma(-) transition dipole moment; spectroscopic
properties; multireference configuration interaction
ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS;
ELECTRONIC-TRANSITIONS; RADIATIVE LIFETIMES; DIATOMIC-MOLECULES; METAL
HYDRIDES; SCF METHOD; AB-INITIO; STATES; MOMENTS
AB The multireference configuration interaction (MRCI) method, based on
complete-active-space self-consistent-field wave functions, has been
employed to study the X(1)Sigma (+) and A(1)Pi states of NiC. Potential
energy curves, dipole moments, and transition dipole moment functions
(TDM) have been computed over a wide range of internuclear separations,
Based on these results, the Franck-Condon factors and radiative
lifetimes for several vibrational levels of the A(1)Pi state were
computed. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Borin, AC, Univ Sao Paulo, Inst Quim, Av Prof Lineu Prestes 748,
BR-05508900 Sao Paulo, Brazil.
CR ADAM AG, 1997, J MOL SPECTROSC, V181, P24
ALLEN MD, 1996, ASTROPHYS J 2, V472, L57
ANDERSSON K, 1992, CHEM PHYS LETT, V191, P507
BALFOUR WJ, 1995, J CHEM PHYS, V103, P4046
BARNES M, 1995, J CHEM PHYS, V103, P8360
BAUSCHLICHER CW, 1988, THEOR CHIM ACTA, V74, P479
BAUSCHLICHER CW, 1989, J CHEM PHYS, V91, P2399
BAUSCHLICHER CW, 1995, MODERN ELECT STRUCTU
BORIN AC, 1995, CHEM PHYS, V190, P43
BORIN AC, 1996, CHEM PHYS LETT, V262, P80
BORIN AC, 2000, CHEM PHYS LETT, V322, P149
BRUGH DJ, 1997, J CHEM PHYS, V107, P9772
CHONG DP, 1986, J CHEM PHYS, V84, P5606
CHONG DP, 1986, J CHEM PHYS, V85, P2850
COTTON FA, 1988, ADV INORGANIC CHEM C
COWAN RD, 1976, J OPT SOC AM, V66, P1010
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
HARRISON JF, 2000, CHEM REV, V100, P679
KITAURA K, 1982, J MOL STRUCT, V88, P119
KNOWLES PJ, 1985, CHEM PHYS LETT, V115, P259
KNOWLES PJ, 1988, CHEM PHYS LETT, V145, P514
LARSSON M, 1983, ASTRON ASTROPHYS, V128, P291
MACLAGAN RGAR, 1997, J CHEM PHYS, V106, P1491
MARIAN CM, 1989, J CHEM PHYS, V91, P3589
MARTIN RL, 1983, J PHYS CHEM-US, V87, P750
MARTINHO JA, 1990, CHEM REV, V90, P629
MEUNIER B, 1992, CHEM REV, V92, P1411
PARTRIDGE H, 1995, QUANTUM MECH ELECT S
ROOS BO, 1996, ADV CHEM PHYS, V93, P219
SAUVAL AJ, 1978, ASTRON ASTROPHYS, V62, P295
SHIM I, 1989, Z PHYS D ATOM MOL CL, V12, P373
SHIM I, 1999, CHEM PHYS LETT, V303, P87
SIEGBAHN PEM, 1987, ADV CHEM PHYS, P333
WACHTERS AJH, 1969, RJ584 IBM
WACHTERS AJH, 1970, J CHEM PHYS, V52, P1033
WALCH SP, 1983, J CHEM PHYS, V78, P4597
WALCH SP, 1985, J CHEM PHYS, V83, P5351
WERNER HJ, MOLPRO IS PACKAGE AB
WERNER HJ, 1982, J CHEM PHYS, V76, P3144
WERNER HJ, 1985, J CHEM PHYS, V82, P5053
WERNER HJ, 1987, ADV CHEM PHYS, P1
WERNER HJ, 1988, J CHEM PHYS, V89, P5803
WHEELER JC, 1989, ANNU REV ASTRON ASTR, V27, P279
WHITING EE, 1980, J MOL SPECTROSC, V80, P249
WING RF, 1977, ASTROPHYS J, V216, P659
WOON DE, 1993, J CHEM PHYS, V98, P1358
ZEMKE WT, 1981, QCPE, V4, P79
NR 47
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD DEC 15
PY 2001
VL 274
IS 2-3
BP 99
EP 108
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 507FE
UT ISI:000173015700003
ER
PT J
AU Rivelino, R
Canuto, S
TI Theoretical study of mixed hydrogen-bonded complexes: H2O center dot
center dot center dot HCN center dot center dot center dot H2O and H2O
center dot center dot center dot HCN center dot center dot center dot
HCN center dot center dot center dot H2O
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID AB-INITIO CALCULATIONS; INTERMOLECULAR INTERACTIONS; QUANTUM-CHEMISTRY;
CYANIDE POLYMERS; MATRIX-ISOLATION; CLUSTERS; WATER; SPECTRA;
COOPERATIVITY; SPECTROSCOPY
AB Mixed hydrogen-bonded clusters H2O . . . HCN, HCN . . .H2O, H2O . . .
HCN . . .H2O, and H2O . . . HCN . . . HCN . . .H2O are studied by using
ab initio calculations. The optimized structures and harmonic
vibrational frequencies are obtained at the DFT/B3LYP and MBPT/MP2
levels with the 6-311++G(d,p) basis set. To investigate electron
correlation effects on the binding energies, single-point calculations
are also performed using the CCSD(T) method with the optimized MP2
geometric,,. The complexation energies are obtained for these systems
including correction for basis set superposition error. In addition,
the cooperative effects in the properties of the complexes are
investigated quantitatively. We found a cooperativity contribution of
around 10% relative to the total interaction energy of the complex H2O
. . . HCN . . .H2O. In the case of H2O . . . HCN . . . HCN . . .H2O,
the binding energy of the HCN . . . HCN is ca. 8 kJ/mol stronger in the
mixed tetramer than in the corresponding isolated dimer. The effects of
higher-order electron correlation are found to be mild, with MP2 giving
a well-balanced result. Cooperative effects are predicted either by MP2
or by B3LYP in hydrogen bond distances and dipole moments of the
clusters. In contrast, the B3LYP functional fails to account fur the
out-of-plane bend angle in H2O . . . HCN, which is well-described by
the MP2 method.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, POB 66318, BR-05315970 Sao Paulo,
Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENTWOOD RM, 1980, J MOL SPECTROSC, V84, P391
BOYS SF, 1970, MOL PHYS, V19, P553
CABALEIROLAGO EM, 1999, J PHYS CHEM A, V103, P6468
CABALEIROLAGO EM, 2000, J MOL STRUC-THEOCHEM, V498, P21
CHALASINSKI G, 1994, CHEM REV, V94, P1723
CRUZAN JD, 1996, SCIENCE, V271, P59
DELBENE JE, 1995, J PHYS CHEM-US, V99, P10705
FILLERYTRAVIS AJ, 1984, P ROY SOC LOND A MAT, V396, P405
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GOTTLIEB CA, 2000, J CHEM PHYS, V113, P1910
GUTOWSKY HS, 1992, J CHEM PHYS, V96, P5808
HARRIS DC, 1989, SYMMETRY SPECTROSCOP
HEIKKILA A, 1999, J PHYS CHEM A, V103, P2945
HEIKKILA AT, 2000, J PHYS CHEM A, V104, P6637
JEFFREY GA, 1977, J AM CHEM SOC, V99, P609
JEFFREY GA, 1991, HYDROGEN BONDING BIO
LEE C, 1988, PHYS REV B, V37, P785
LIEBMAN SA, 1994, ADV SPACE RES, V15, P71
MASELLA M, 1998, J CHEM SOC FARADAY T, V94, P2745
MATTHEWS CN, 1992, ORIGINS LIFE, V21, P421
MEOTNER M, 1989, J PHYS CHEM-US, V93, P3663
RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
SAMUELS AC, 1998, THEOCHEM-J MOL STRUC, V427, P199
SCHEINER S, 1997, HYDROGEN BONDING THE
SMITH DMA, 1998, CHEM PHYS LETT, V288, P609
STEINER T, 1990, J AM CHEM SOC, V112, P6184
SUM AK, 2000, J PHYS CHEM A, V104, P1121
TSHEHLA TM, 1994, B POL ACAD SCI-CHEM, V42, P397
TURI L, 1993, J PHYS CHEM-US, V97, P7899
VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
VIGOUROUX C, 2000, J MOL SPECTROSC, V202, P1
XANTHEAS SS, 1994, J CHEM PHYS, V100, P7523
NR 35
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 20
PY 2001
VL 105
IS 50
BP 11260
EP 11265
PG 6
SC Chemistry, Physical
GA 505ZN
UT ISI:000172945600014
ER
PT J
AU Silva, THA
Oliveira, AB
Dos Santos, HF
De Almeida, WB
TI Conformational analysis of epiquinine and epiquinidine
SO STRUCTURAL CHEMISTRY
LA English
DT Article
DE conformational analysis; antimalarial; epiquinine; epiquinidine
ID POLARIZABLE CONTINUUM MODEL; CINCHONA ALKALOIDS; PLASMODIUM-FALCIPARUM;
ANTIMALARIAL ACTIVITY; COMBINED NMR
AB The conformational potential energy surfaces for the epiquinine and
epiquinidine molecules were analyzed in gas phase and water solution
using semiempirical and ab initio levels of theory. The results
obtained showed that the main conformation of the nonactive threo
epimers is distinct from those observed for the active parent compounds
quinine and quinidine. This result might be used, on a qualitative way,
to understand the loss of activity of the threo epimers and allow
selecting important conformations to be considered in molecular
modeling quantitative studies addressing the drug-receptor interactions.
C1 UFMG, ICEx, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Minas Gerais, Fac Farm, Dept Prod Farmaceut, Belo Horizonte, MG, Brazil.
Univ Fed Juiz de Fora, ICE, Dept Quim, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
RP De Almeida, WB, UFMG, ICEx, Dept Quim, LQCMM, BR-31270901 Belo
Horizonte, MG, Brazil.
CR ALLINGER NL, 1997, PCMODEL 1993 SERENA
BARONE V, 1997, J CHEM PHYS, V107, P3210
COSSI M, 1996, CHEM PHYS LETT, V255, P327
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DIJKSTRA GDH, 1989, J AM CHEM SOC, V111, P8069
DIJKSTRA GDH, 1989, RECL TRAV CHIM PAY B, V108, P195
DIJKSTRA GDH, 1990, J ORG CHEM, V55, P6121
FERREIRA EI, 1993, REV FORM BIOQUIM, V29, P1
FRISCH MJ, 1998, GAUSSIAN 98
HOLTJE HD, 1996, MOL MODELING BASIC P
KARLE JM, 1992, ACTA CRYSTALLOGR C, V48, P1975
KARLE JM, 1992, ANTIMICROB AGENTS CH, V36, P1538
KARLE JM, 1993, EXP PARASITOL, V76, P345
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
OLEKSYN BJ, 1992, J PHARM SCI, V81, P122
PRAKASH O, 1988, INDIAN J CHEM B, V27, P950
PRELOG V, 1954, HELV CHIM ACTA, V37, P1634
SILVA THA, 1997, BIOORGAN MED CHEM, V5, P353
SILVA THA, 1997, STRUCT CHEM, V8, P95
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JP, 1990, MOPAC VERSION 6 0
NR 22
TC 4
PU KLUWER ACADEMIC/PLENUM PUBL
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1040-0400
J9 STRUCT CHEM
JI Struct. Chem.
PD DEC
PY 2001
VL 12
IS 6
BP 431
EP 437
PG 7
SC Chemistry, Multidisciplinary
GA 500QK
UT ISI:000172638100002
ER
PT J
AU de Koning, M
Antonelli, A
Yip, S
TI Single-simulation determination of phase boundaries: A dynamic
Clausius-Clapeyron integration method
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID FREE-ENERGY CALCULATIONS; SOLID-FLUID COEXISTENCE; MOLECULAR-DYNAMICS;
MELTING CURVE; NONEQUILIBRIUM MEASUREMENTS; STRUCTURAL-PROPERTIES;
MODEL SYSTEMS; PURE THEORY; ARGON; EQUILIBRIUM
AB We present a dynamic implementation of the Clausius-Clapeyron
integration (CCI) method for mapping out phase-coexistence boundaries
through a single atomistic simulation run. In contrast to previous
implementations, where the reversible path of coexistence conditions is
generated from a series of independent equilibrium simulations, dynamic
Clausius-Clapeyron integration (d-CCI) explores an entire coexistence
boundary in a single nonequilibrium simulation. The method gives
accurately the melting curve for a system of particles interacting
through the Lennard-Jones potential. Furthermore, we apply d-CCI to
compute the melting curve of an ab initio pair potential for argon and
verify earlier studies on the effects of many-body interactions and
quantum effects in the melting of argon. The d-CCI method shows to be
effective in both applications, giving converged coexistence curves
spanning a wide range of thermodynamic states from relatively short
nonequilibrium simulations. (C) 2001 American Institute of Physics.
C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
MIT, Dept Nucl Engn, Cambridge, MA 02139 USA.
RP de Koning, M, Lawrence Livermore Natl Lab, L-371, Livermore, CA 94550
USA.
CR AGRAWAL R, 1995, MOL PHYS, V85, P23
AGRAWAL R, 1995, MOL PHYS, V85, P43
AGRAWAL R, 1995, PHYS REV LETT, V74, P122
ALLEN MP, 1989, COMPUTER SIMULATION
AMON LM, 2000, J CHEM PHYS, V113, P3573
BOEHLER R, 1996, PHYS REV B, V53, P556
CROOKS GE, 1998, J STAT PHYS, V90, P1481
DEKONING M, 1999, PHYS REV LETT, V83, P3973
DEKONING M, 2000, COMPUT SCI ENG, V2, P88
ERMAKOVA E, 1995, J CHEM PHYS, V102, P4942
FRENKEL D, 1984, J CHEM PHYS, V81, P3188
FRENKEL D, 1996, UNDERSTANDING MOL SI
HARDY WH, 1971, J CHEM PHYS, V54, P1005
HENDRIX DA, 2001, J CHEM PHYS, V114, P5974
HITCHCOCK MR, 1999, J CHEM PHYS, V110, P11433
HUNTER JE, 1993, J CHEM PHYS, V99, P6856
JARZYNSKI C, 1997, PHYS REV E A, V56, P5018
JARZYNSKI C, 1997, PHYS REV LETT, V78, P2690
KOFKE DA, 1993, J CHEM PHYS, V98, P4149
KOFKE DA, 1993, MOL PHYS, V78, P1331
KOFKE DA, 1999, MONTE CARLO METHODS, V105
LUTSKO JF, 1989, PHYS REV B, V40, P2841
MARTYNA GJ, 1992, J CHEM PHYS, V97, P2635
MARTYNA GJ, 1994, J CHEM PHYS, V101, P4177
MEIJER EJ, 1997, J CHEM PHYS, V106, P4678
MILLER MA, 2000, J CHEM PHYS, V113, P7035
PHILLPOT SR, 1989, PHYS REV B, V40, P2831
POLSON JM, 1999, J CHEM PHYS, V111, P1501
REINHARDT WP, 1992, J CHEM PHYS, V97, P1599
SOLCA J, 1997, CHEM PHYS, V224, P253
SOLCA J, 1998, J CHEM PHYS, V108, P4107
STRACHAN A, 1999, PHYS REV B, V60, P15084
STURGEON JB, 2000, PHYS REV B, V62, P14720
WOON DE, 1993, CHEM PHYS LETT, V204, P29
YOUNG DA, 1984, J CHEM PHYS, V81, P2789
NR 35
TC 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD DEC 22
PY 2001
VL 115
IS 24
BP 11025
EP 11035
PG 11
SC Physics, Atomic, Molecular & Chemical
GA 501KE
UT ISI:000172683200003
ER
PT J
AU Nasar, RS
Cerqueira, M
Longo, E
Varela, JA
Beltran, A
TI Experimental and theoretical study of the ferroelectric and
piezoelectric behavior of strontium-doped PZT
SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
LA English
DT Article
DE calculations-aiPI; ferroelectrics; piezoelectrics; PZT
ID SOLID-SOLUTIONS; X-RAY; CERAMICS
AB Theoretical data using ab initio perturbed ion calculation were
compared with ferroelectric and piezoelectric experimental data of
strontium doped PZT. Various concentrations of SrO in PZT at constant
temperature and sintering time were carried out. Experimental results,
such as the remanent polarization, P-R of 6.9-8.9 muC/Cm-2, the
coercive field, E-C of 6.6-7.8 kVcm, and the planar coupling factor, Kp
of 0.45-0.53, were compared with the energy of Zr4+ and Ti4+ ion
dislocation and the lattice interaction energy which show that
strontium increment in PZT alter the energies and increase the values
of piezoelectric and ferroelectric variables. Calculations of lattice
energy of the rhombohedral phase show that a phase non-stability is
coincident with increasing experimental values of the P-R, E-C and Kp.
(C) 2001 Elsevier Science Ltd. All rights reserved.
C1 UFRN, Dept Quim, BR-59072970 Natal, RN, Brazil.
UFSCar, Dept Quim, Lab Interdisciplinar Eletroqulmica & Ceram, BR-13565905 Sao Carlos, SP, Brazil.
UNESP, Inst Quim, BR-14800900 Araraquara, SP, Brazil.
Univ Jaume, Dept Ciencies Expt, Castello, Spain.
RP Nasar, RS, UFRN, Dept Quim, Caixa Postal 1662, BR-59072970 Natal, RN,
Brazil.
CR ARIGUR P, 1974, SOLID STATE COMMUN, V15, P1077
ATKINS PW, 1994, PHYSICAL CHEM, P446
BENGUIGUI L, 1976, SOLID STATE COMMUN, V19, P979
BERNARD J, 1971, PIEZOELECTRIC CERAMI
CADY WG, 1971, PIEZOELECTRICITY
CERQUEIRA M, 1997, J MATER SCI, V32, P2381
CHANDLER D, 1987, INTRO STAT MECH
GALASSO FS, 1969, STRUCTURE PROPERTIES
HAERTLING GH, 1986, CERAMIC MAT ELECT
HAERTLING GH, 1986, CERAMIC MAT ELECT, P168
HOWARD CJ, 1991, J MATER SCI, V26, P127
ISOPOV VA, 1975, SOLID STATE COMMUN, V17, P1331
ISOPOV VA, 1976, SOV PHYS-SOLID STATE, V18, P529
JAFFE B, 1971, PIEZOELECTRIC CERAMI
KAKEGAWA K, 1977, SOLID STATE COMMUN, V24, P769
KANAI H, 1994, J AM CERAM SOC, V77
KIRBY K, 1993, ENCY APPL PHYSICS, V6, P45
KULCSAR F, 1959, J AM CERAM SOC, V42, P49
LAL R, 1988, BRIT CERAM TRANS J, V87, P99
LINES EM, 1977, PRINCIPLES APPL FERR
MABUD SA, 1980, J APPL CRYSTALLOGR, V13, P211
NASAR RS, 1999, J MATER SCI, V34, P3659
SAHA SK, 1992, AM CERAM SOC BULL, V71, P1424
SAWAGUCHI E, 1953, J PHYS SOC JPN, V8, P615
YAMAMOTO T, 1992, AM CERAM SOC BULL, V71, P978
ZHANG QM, 1994, J APPL PHYS, V1, P75
NR 26
TC 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0955-2219
J9 J EUR CERAM SOC
JI J. European Ceram. Soc.
PD FEB
PY 2002
VL 22
IS 2
BP 209
EP 218
PG 10
SC Materials Science, Ceramics
GA 498RE
UT ISI:000172523600009
ER
PT J
AU Critchley, ADJ
King, GC
Kreynin, P
Lopes, MCA
McNab, IR
Yencha, AJ
TI TPEsCO spectra of HCl2+ and DCl2+: experiment and theory
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID PHOTOELECTRONS COINCIDENCE SPECTROSCOPY; INITIO CI CALCULATIONS;
DOUBLY-CHARGED IONS; AB-INITIO; INFRARED-SPECTRUM; MOLECULES; DYNAMICS;
N-2(2+); PREDISSOCIATION; CHLORIDE
AB Vibrationally resolved threshold photoelectrons in coincidence (TPEsCO)
spectra of the X(3)Sigma (-) and a(1)Delta states of HCl2+ and DCl2+
are compared with ab initio simulations. The four resonances observed
in the TPEsCO spectra of both the X(3)Sigma (-) and a(1)Delta states of
HCl2+ are assigned as three quasi-bound vibrational levels and one
continuum resonance with an energy greater than the potential barrier
maximum. The four clearly identified resonances observed in Cl2+ the
TPEsCO spectra of both the X(3)Sigma (-) and a(1)Delta states of DCl2+
are assigned as quasi-bound vibrational levels. (C) 2001 Elsevier
Science B.V. All rights reserved.
C1 Univ Newcastle Upon Tyne, Dept Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England.
Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England.
Univ Fed Juiz de Fora, ICE, Dept Fis, BR-36036330 Juiz De Fora, MG, Brazil.
SUNY Albany, Dept Chem, Albany, NY 12222 USA.
RP McNab, IR, Univ Newcastle Upon Tyne, Dept Phys, Newcastle Upon Tyne NE1
7RU, Tyne & Wear, England.
CR ABUSEN R, 1998, J CHEM PHYS, V108, P1761
BENNETT FR, 1995, CHEM PHYS, V190, P53
BENNETT FR, 1996, CHEM PHYS LETT, V250, P40
BENNETT FR, 1996, CHEM PHYS LETT, V251, P405
BENNETT FR, 1999, MOL PHYS, V97, P35
CHANDRA N, 1999, EUR PHYS J D, V6, P457
COX SG, 2001, UNPUB PCCP
CRITCHLEY ADJ, 2001, THESIS U NEWCASTLE U
EDVARDSSON D, 1996, CHEM PHYS LETT, V256, P341
ELLINGSEN K, 2000, PHYS REV A, V6203, P2505
FURUHASHI O, 2001, CHEM PHYS LETT, V337, P97
HOCHLAF M, 1988, CHEM PHYS, V234, P249
HRUSAK J, 2001, CHEM PHYS LETT, V338, P189
LARSSON M, 1993, COMMENTS AT MOL PHYS, V29, P39
LEROY RJ, 1989, COMPUT PHYS COMMUN, V52, P383
LEROY RJ, 1993, CP329R U WAT CHEM PH
LEROY RJ, 1996, CP555R U WAT CHEM PH
LUNDQVIST M, 1996, J PHYS B-AT MOL OPT, V29, P499
MARTIN PA, 1994, J CHEM PHYS, V100, P4766
MCCONKEY AG, 1994, J PHYS B ATOM MOL PH, V27, P271
MULLIN AS, 1992, J CHEM PHYS, V96, P3636
PRICE SD, 1997, J CHEM SOC FARADAY T, V93, P2451
SUNDSTROM G, 1994, CHEM PHYS LETT, V218, P17
SVENSSON S, 1989, PHYS REV A, V40, P4369
WERNER HJ, MOLPRO
YENCHA AJ, 1999, CHEM PHYS LETT, V315, P37
NR 26
TC 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD NOV 23
PY 2001
VL 349
IS 1-2
BP 79
EP 83
PG 5
SC Physics, Atomic, Molecular & Chemical
GA 500AL
UT ISI:000172603600013
ER
PT J
AU Bezerra, EF
Souza, AG
Freire, VN
Mendes, J
Lemos, V
TI Strong interface localization of phonons in nonabrupt InN/GaN
superlattices
SO PHYSICAL REVIEW B
LA English
DT Article
ID RESONANT RAMAN-SCATTERING; QUANTUM-WELL STRUCTURES; EPITAXIAL LAYERS;
OPTICAL PHONONS; AB-INITIO; GAN; SPECTROSCOPY; INN; MICROSTRUCTURES;
DYNAMICS
AB The Raman spectra of zinc-blende InN/GaN superlattices were calculated
assuming the existence of an inter-face region with thickness delta
varying from one to three monolayers. The acoustic branches are weakly
affected by interfacing, but the optical branches can present frequency
shifts up to 60 cm(-1). A downward shift is observed for the higher
frequency and an upward shift for the lower frequency modes. As a
consequence, the Raman peaks collapse together in the middle frequency
range giving rise to a most prominent structure in the spectrum, for
delta = 3. These effects are tracked to the localization of atomic
displacements at the direct and inverse interface regions. The
localization effects are strong in the InN/GaN superlattices because of
the wide gap observed in the phonon density of states for both
constituent materials.
C1 Univ Fed Ceara, Ctr Ciencias, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil.
RP Lemos, V, Univ Fed Ceara, Ctr Ciencias, Dept Fis, Caixa Postal
6030,Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil.
EM volia@fisica.ufc.br
CR BECHSTEDT F, 2000, PHYS REV B, V62, P8003
BEHR D, 1997, APPL PHYS LETT, V70, P363
BEZERRA EF, 2000, PHYS REV B, V61, P13060
BOGUSLAWSKI P, 2000, PHYS REV B, V61, P10820
BUNGARO C, 2000, PHYS REV B, V61, P6720
GIEHLER M, 1995, APPL PHYS LETT, V67, P733
JUSSERAND B, 1989, TOP APPL PHYS, V66, P49
KACZMARCZYK G, 2000, APPL PHYS LETT, V76, P2122
KARCH K, 1998, PHYS REV B, V57, P7043
KISIELOWSKI C, 1997, JPN J APPL PHYS 1, V36, P6932
LEMOS V, 1996, J BRAZIL CHEM SOC, V7, P471
LEMOS V, 1998, RADIAT EFF DEFECT S, V146, P187
LEOSSON K, 2000, PHYS REV B, V61, P10322
NAKAMURA S, 1997, BLUE LASER DIODE GAN
NAKAMURA S, 1999, SEMICOND SCI TECH, V14, R27
SAMSON B, 1992, PHYS REV B, V46, P2375
SIEGLE H, 1995, SOLID STATE COMMUN, V96, P943
SILVA MAA, 1996, J RAMAN SPECTROSC, V27, P257
SILVA MAA, 1996, PHYS REV B, V53, P15871
TABATA A, 1999, APPL PHYS LETT, V74, P362
TABATA A, 1999, APPL PHYS LETT, V75, P1095
TABATA A, 1999, SEMICOND SCI TECH, V14, P318
TSEN KT, 1991, J APPL PHYS, V70, P418
TSEN KT, 1996, J RAMAN SPECTROSC, V27, P277
NR 24
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 15
PY 2001
VL 6420
IS 20
AR 201306
DI ARTN 201306
PG 4
SC Physics, Condensed Matter
GA 497PL
UT ISI:000172464600014
ER
PT J
AU Venezuela, P
Dalpian, GM
da Silva, AJR
Fazzio, A
TI Ab initio determination of the atomistic structure of SixGe1-x alloy
SO PHYSICAL REVIEW B
LA English
DT Article
ID RANDOM SEMICONDUCTOR ALLOYS; LENGTH MISMATCH; BOND LENGTHS;
CRYSTALLINE; SIGE; PSEUDOPOTENTIALS; SUPERLATTICES; SIMULATION;
RELAXATION; PARAMETERS
AB We have performed systematical ab initio studies of the structural
properties of SixGe1-x alloy. To simulate the disordered alloy we use
supercells where the Si and Ge atoms are randomly placed with the
constraint that the pair correlation functions agree with their values
for a perfect random alloy within a given tolerance. We obtain that the
Si-Si, Si-Ge, and Ge-Ge bond lengths dependence with composition varies
only slightly for the different kinds of bonds, with topological
rigidity parameters between 0.6 and 0.7.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Venezuela, P, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR 1999, SEMICOND SEMIMET, V56
AUBRY JC, 1999, PHYS REV B, V59, P12872
BACHELET GB, 1982, PHYS REV B, V26, P4199
BERNARD JE, 1991, PHYS REV B, V44, P1663
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
CAI Y, 1992, PHYS REV B, V46, P15872
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DEGIRONCOLI S, 1991, PHYS REV LETT, V66, P2116
DISMUKES JP, 1964, J PHYS CHEM-US, V68, P3021
HOHENBERG P, 1964, PHYS REV, V136, B864
KELIRES PC, 1989, PHYS REV LETT, V63, P1164
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
LEGOUES FK, 1991, PHYS REV LETT, V66, P2903
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
MOONEY PM, 2000, ANNU REV MATER SCI, V30, P335
MOUSSEAU N, 1992, PHYS REV B, V46, P15887
MURNAGHAN FD, 1944, P NATL ACAD SCI USA, V30, P244
PAUL D, 2000, PHYS WORLD, V13, P27
PAULING L, 1967, NATURE CHEM BOND
PERDEW JP, 1981, PHYS REV B, V23, P5048
RIDGWAY MC, 1999, PHYS REV B, V60, P10831
RIEGER MM, 1993, PHYS REV B, V48, P14276
STRINGFELLOW GB, 1973, J PHYS CHEM SOLIDS, V34, P1749
THEODOROU G, 1994, PHYS REV B, V50, P18355
VEGARD L, 1921, Z PHYS, V5, P17
WEI SH, 1990, PHYS REV B, V42, P9622
WEIDMANN MR, 1992, PHYS REV B, V45, P8388
NR 28
TC 16
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 15
PY 2001
VL 64
IS 19
BP art. no.
EP 193202
AR 193202
PG 4
SC Physics, Condensed Matter
GA 494WB
UT ISI:000172307900005
ER
PT J
AU dos Santos, AS
Masili, M
De Groote, JJ
TI Binding energies of excitons trapped by ionized donors in semiconductors
SO PHYSICAL REVIEW B
LA English
DT Article
ID HYPERSPHERICAL ADIABATIC APPROACH; 3-ELECTRON ATOMIC SYSTEMS; HELIUM
ATOM; POTENTIAL CURVES; BOUND EXCITONS; STATES; FORMALISM; IMPURITY;
HYDROGEN
AB Using the hyperspherical adiabatic approach in a coupled-channel
calculation, we present precise binding energies of excitons trapped by
impurity donors in semiconductors within the effective-mass
approximation. Energies for such three-body systems are presented as a
function of the relative electron-hole mass sigma in the range 1 less
than or equal to1/sigma less than or equal to6, where the
Born-Oppenheimer approach is not efficiently applicable. The
hyperspherical approach leads to precise energies using the intuitive
picture of potential curves and nonadiabatic couplings in an ab initio
procedure. We also present an estimation for a critical value of sigma
(sigma (crit)) for which no bound state can be found. Comparisons are
given with results of prior work by other authors.
C1 Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
Assoc Escolas Reunidas, BR-13563470 Sao Carlos, SP, Brazil.
Univ Estadual Paulista, Inst Quim Araraquara, BR-14801970 Araraquara, SP, Brazil.
RP dos Santos, AS, Univ Sao Paulo, Inst Fis Sao Carlos, Caixa Postal 369,
BR-13560970 Sao Carlos, SP, Brazil.
CR ABRAMOWITIZ M, 1965, HDB MATH FUNCTIONS
BAO CG, 1994, FEW-BODY SYST, V16, P47
BARTLETT JH, 1937, PHYS REV, V51, P661
CANCIO AC, 1993, PHYS REV B, V47, P13246
CLARK CW, 1980, PHYS REV A, V21, P1786
COELHO HT, 1991, PHYS REV A, V43, P6379
COELHO HT, 1992, PHYS REV A, V46, P5443
DAS TK, 1994, PHYS REV A, V50, P3521
DEGROOTE JJ, 1992, PHYS REV B, V46, P2101
DEGROOTE JJ, 1998, J PHYS B-AT MOL OPT, V31, P4755
DEGROOTE JJ, 1998, PHYS REV B, V58, P10383
DEGROOTE JJ, 2000, PHYS REV A, V62
ELKOMOSS SG, 1975, PHYS REV B, V11, P2222
FANO U, 1976, PHYS TODAY, V29, P32
FOCK VA, 1954, IZV AN SSSR FIZ, V18, P161
FROST AA, 1964, J CHEM PHYS, V41, P482
GELTLER TH, 1968, PHYS REV, V172, P110
GREENE CH, 1981, PHYS REV A, V23, P661
GREENE CH, 1984, PHYS REV A, V30, P2161
GREENE CH, 1986, PHYS REV A, V22, P149
HAYNES JR, 1960, PHYS REV LETT, V4, P361
HOPFIELD JJ, 1964, P 7 INT C PHYS SEM P, P725
HORNOS JE, 1986, PHYS REV A, V33, P2212
JIANG TF, 1990, SOLID STATE COMMUN, V74, P899
LAMPERT MA, 1958, PHYS REV LETT, V1, P450
LIN CD, 1988, PHYS REV A, V37, P2749
LIN CD, 1995, PHYS REP, V257, P1
MACEK J, 1968, J PHYS B ATOM MOL PH, V1, P831
MASILI M, 1995, PHYS REV A, V52, P3362
MASILI M, 2000, J PHYS B-AT MOL OPT, V33, P2641
MORISHITA T, 1997, PHYS REV A, V56, P3559
MORISHITA T, 1998, J PHYS B-AT MOL OPT, V31, L209
MORISHITA T, 1998, PHYS REV A, V57, P4268
MORISHITA T, 1999, PHYS REV A, V59, P1835
PARK YS, 1966, PHYS REV, V143, P512
SHARMA RR, 1967, PHYS REV, V153, P823
SKETTRUP T, 1971, PHYS REV B-SOLID ST, V4, P512
SMIRNOV YF, 1977, SOV J PART NUCL, V8, P344
STARACE AF, 1979, PHYS REV A, V19, P1629
STEBE B, 1988, P 4 INT C SUP MICR M
SUFFCZYNSKI M, 1967, PHYS LETT A, V24, P453
SUFFCZYNSKI M, 1989, PHYS REV B, V40, P6250
TANG JZ, 1992, PHYS REV A, V46, P2437
THOMAS DG, 1960, PHYS REV LETT, V5, P505
THOMAS DG, 1962, PHYS REV, V128, P2135
WANG YD, 1993, PHYS REV A, V48, P2058
YANG XZ, 1995, PHYS REV A, V52, P2029
YANG XZ, 1996, PHYS REV LETT, V76, P3096
ZHEN Z, 1986, PHYS REV A, V34, P838
NR 49
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 15
PY 2001
VL 64
IS 19
BP art. no.
EP 195210
AR 195210
PG 9
SC Physics, Condensed Matter
GA 494WB
UT ISI:000172307900078
ER
PT J
AU Capelle, K
Vignale, G
Gyorffy, BL
TI Spin currents and spin dynamics in time-dependent density-functional
theory
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MAGNETISM; SYSTEMS
AB We derive and analyze the equation of motion for the spin degrees of
freedom within time-dependent spin-density-functional theory (TD-SDFT).
The results are (i) a prescription for obtaining many-body corrections
to the single-particle spin currents from the Kohn-Sham equation of
TD-SDFT, (ii) the existence of an exchange-correlation (xc) torque
within TD-SDFr, (iii) a prescription for calculating, from TD-SDFT, the
torque exerted by spin currents on the spin magnetization, (iv) a novel
exact constraint on approximate. xc functionals, and (v) the discovery
of serious deficiencies of popular approximations to TD-SDFT when
applied to spin dynamics.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil.
Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
RP Capelle, K, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol,
Caixa Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR ANTROPOV VP, 1995, PHYS REV LETT, V75, P729
ANTROPOV VP, 1999, J MAGN MAGN MATER, V200, P148
AWSCHALOM DD, 1999, J MAGN MAGN MATER, V200, P130
BECKE AD, 1997, J CHEM PHYS, V107, P8554
BURKE K, 1998, LECT NOTES PHYSICS, V500
CAPELLE K, 1997, PHYS REV LETT, V78, P1872
DOBSON JF, 1994, PHYS REV LETT, V73, P2244
DREIZLER RM, 1990, DENSITY FUNCTIONAL T
EDWARDS DM, 1984, J MAGN MAGN MATER, V45, P151
EGUES JC, 1998, PHYS REV LETT, V80, P4578
FIEDERLING R, 1999, NATURE, V402, P787
GEBAUER R, 2000, PHYS REV B, V61, P6459
GROSS EKU, 1996, TOPICS CURRENT CHEM, V181
HALILOV SV, 1998, PHYS REV B, V58, P293
HESSLER P, 1999, PHYS REV LETT, V82, P378
JOUBERT DP, 1998, LECT NOTES PHYSICS, V500
KATINE JA, 2000, PHYS REV LETT, V84, P3149
LIFSHITZ EM, 1980, COURSE THEORETICAL P, V9
NIU Q, 1998, PHYS REV LETT, V80, P2205
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PRINZ GA, 1998, SCIENCE, V282, P1660
RUNGE E, 1984, PHYS REV LETT, V52, P997
SANDRATSKII LM, 1998, ADV PHYS, V47, P91
SLONCZEWSKI JC, 1996, J MAGN MAGN MATER, V159, L1
STAUNTON JB, 1992, PHYS REV LETT, V69, P371
STICHT J, 1989, J PHYS-CONDENS MAT, V1, P8155
STOCKS GM, 1998, PHILOS MAG B, V78, P665
VIGNALE G, 1995, PHYS REV LETT, V74, P3233
NR 28
TC 12
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 12
PY 2001
VL 8720
IS 20
AR 206403
DI ARTN 206403
PG 4
SC Physics, Multidisciplinary
GA 492TD
UT ISI:000172182900035
ER
PT J
AU Gozzo, FC
Eberlin, MN
TI Primary and secondary kinetic isotope effects in proton (H+/D+) and
chloronium ion (35Cl(+)/37Cl(+)) affinities
SO JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
ID COLLISION-INDUCED DISSOCIATION; QUADRUPOLE MASS SPECTROMETERS;
GAS-PHASE ACIDITIES; ELECTRON-AFFINITIES; CLUSTER IONS; THERMOCHEMICAL
DETERMINATIONS; BOUND HETERODIMERS; ATTACHMENT SITES; BOND-ENERGIES;
AB-INITIO
AB The Cooks' kinetic method and tandem-in-space pentaquadrupole QqQqQ
mass spectrometry were used to measure primary and secondary kinetic
isotope effects (KIEs) in H+ and Cl+ (X+) affinity for a series of A/A'
isotopomeric pairs. Gaseous, isotopomeric, and loosely bound dimers
[A...chi (+)...A] were formed in combinations in which chi = H+, D+,
Cl-35(+) or Cl-37(+) and A/A' = acetonitrile/acetonitrile-d(3),
acetonitrile/acetonitrile-N-15, acetonitrile-d(3)/acetonitrile-N-15,
acetone/acetone-d(6), acetone/acetone-O-18, acetone-d(6)/acetone-O-18,
pyridine/pyridine-d(5), pyridine/pyridine-N-15,
pyridine-d(5)/pyridine-N-15, or 3-(Cl-35)chloropyridine/3-(Cl-37)
chloropyridine. Under nearly the same experimental conditions, the
dimers were mass-selected and then dissociated by low-energy collisions
with argon, yielding AX(+) and A'X+ as the fragment ions. KIEs were
measured from the changes in ion affinities of the neutrals (AXI) as
estimated by the AX(+)/A'X+ abundance ratios. Using [A...H+(D+)... ']
and [A...Cl-35(+)(Cl-37(+))...A'] dimers and by comparing their extent
of dissociation tinder nearly identical collision-induced dissociation
conditions, the kinetic method was also applied, for the first time, to
measure primary KIEs of the central ion as well as their influence on
secondary KIEs. Becke3LYP/6311++G(2df,2p) calculations were found to
provide Delta(Delta ZPE)s for the competitive dissociation reactions
that accurately predict the nature (normal or inverse) of the measured
KIEs. Copyright (C) 2001 John Wiley & Sons, Ltd.
C1 Univ Estadual Campinas, Inst Chem, UNICAMP, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, Univ Estadual Campinas, Inst Chem, UNICAMP, CP 6154,
BR-13083970 Campinas, SP, Brazil.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BOAND G, 1983, J AM CHEM SOC, V105, P2203
BURINSKY DJ, 1984, J AM CHEM SOC, V106, P2770
CERDA BA, 1996, J AM CHEM SOC, V118, P11884
CERDA BA, 1998, J AM CHEM SOC, V120, P2437
CHEN G, 1996, J AM SOC MASS SPECTR, V7, P619
CHENG XH, 1993, J AM CHEM SOC, V115, P4844
COOKS RG, 1998, ACCOUNTS CHEM RES, V31, P379
COOKS RG, 1999, J MASS SPECTROM, V34, P85
DANG TT, 1993, INT J MASS SPECTROM, V123, P171
DERRICK PJ, 1983, MASS SPECTROM REV, V2, P285
DRAHOS L, 1999, J MASS SPECTROM, V34, P79
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GRESE RP, 1990, J AM SOC MASS SPECTR, V1, P172
GUO JH, 1999, ANGEW CHEM INT EDIT, V38, P1755
HANLEY L, 1988, J PHYS CHEM-US, V92, P5803
JARROLD MF, 1987, J CHEM PHYS, V86, P3876
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
MA SG, 1997, INT J MASS SPECTROM, V163, P89
MA SG, 1998, J MASS SPECTROM, V33, P943
MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
MCLUCKEY SA, 1983, INT J MASS SPECTROM, V52, P165
NORRMAN K, 1999, INT J MASS SPECTROM, V182, P381
NOURSE BD, 1991, INT J MASS SPECTROM, V106, P249
OHAIR RAJ, 1994, ORG MASS SPECTROM, V29, P151
SCHABES M, 1992, J CRUSTACEAN BIOL, V12, P1
SCHROETER K, 1998, EUR J ORG CHEM APR, P565
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SHEN WY, 1997, RAPID COMMUN MASS SP, V11, P71
STOCKIGT D, 1995, INT J MASS SPECTROM, V150, P1
TAO WA, 1999, ANAL CHEM, V71, P4427
TAO WA, 2001, ANAL CHEM, V73, P1692
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
VEKEY K, 1997, ANAL CHEM, V69, P1700
WANG F, 1998, INT J MASS SPECTROM, V180, P195
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
WONG PSH, 1997, J ORGANOMET CHEM, V539, P131
WRIGHT LG, 1982, INT J MASS SPECTROM, V42, P115
YANG SS, 1995, J MASS SPECTROM, V30, P807
YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
ZAKETT D, 1978, J PHYS CHEM-US, V82, P2359
NR 44
TC 11
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 1076-5174
J9 J MASS SPECTROMETRY
JI J. Mass Spectrom.
PD OCT
PY 2001
VL 36
IS 10
BP 1140
EP 1148
PG 9
SC Chemistry, Organic; Biophysics; Spectroscopy
GA 488MV
UT ISI:000171941000008
ER
PT J
AU Hillebrand, S
Segala, M
Buckup, T
Correia, RRB
Horowitz, F
Stefani, V
TI First hyperpolarizability in proton-transfer benzoxazoles:
computer-aided design, synthesis and study of a new model compound
SO CHEMICAL PHYSICS
LA English
DT Article
DE nonlinear optics; QSPR; hyper-Rayleigh scattering; Stokes shift;
excited state intramolecular proton transfer; fluorescence
ID NONLINEAR-OPTICAL-PROPERTIES; MOLECULES; CHROMOPHORES; DYES;
DERIVATIVES; COPOLYMERS; DEPENDENCE; POLYMERS; ESIPT
AB With regard to second-order nonlinear optics (NLO) applications, a new
class of 2-(2'-hydroxyphenyl)benzoxazoles (HBO) was designed for a
combination of high first hyperpolarizability, fl, with good
photothermal stability, in association with a fast excited state
intramolecular proton transfer (ESIPT) mechanism. Semi-empirical
optimization of molecular structures and ab initio calculations of
dipole moments were performed. Clear evidence was found that conditions
such as conjugation efficiency and electron donor/acceptor strength
cannot be evaluated separately, due to structural changes in molecular
spatial distribution. Experimentally, a new fluorescent molecule of the
HBO family, 2(2'-hydroxy-4'-aminophenyl)-6-nitrobenzoxazole (BO6), was
synthesized, purified and characterized, including solvent environments
of distinct polarities. Hyper-Rayleigh scattering, UV-Vis absorption
and emission spectroscopy, differential scanning calorimetry and
thermogravimetric analysis of BO6 show a significant beta (213.4 +/-
25.7 x 10(-30) esu in acetone, at 1064 nm) and thermal stability up to
270 degreesC. Such results, in this first study of ESIPT dyes for
second-order NLO to our best knowledge, indicate that the HBO family
well deserves further attention towards promising application
materials. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio Grande Sul, Inst Quim, Dept Quim Organ, Lab Novos Mat Organ, BR-91501970 Porto Alegre, RS, Brazil.
Univ Fed Rio Grande Sul, Ctr Biotecnol Estado Rio Sul, BR-91501970 Porto Alegre, RS, Brazil.
Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
RP Stefani, V, Univ Fed Rio Grande Sul, Inst Quim, Dept Quim Organ, Lab
Novos Mat Organ, Av Bento Goncalves 9500,Caixa Postal 15003,
BR-91501970 Porto Alegre, RS, Brazil.
CR BHAWALKAR JD, 1996, REP PROG PHYS, V59, P1041
CAMPO LF, 2000, MACROMOL RAPID COMM, V21, P832
CENTORE R, 1999, J POLYM SCI POL CHEM, V37, P603
CLAYS K, 1991, PHYS REV LETT, V66, P2980
COSTA TMH, IN PRESS J MAT CHEM
COSTA TMH, 1997, J NON-CRYST SOLIDS, V221, P157
DELAIRE JA, 2000, CHEM REV, V100, P1817
DOMINGUES NS, 1997, J CHEM SOC PERK SEP, P1861
GARNER R, 1966, J CHEM SOC, P1980
HOROWITZ F, 2001, J NONCRYST SOLIDS, V284, P79
HUYSKENS FL, 1998, J CHEM PHYS, V108, P8161
KANIS DR, 1994, CHEM REV, V94, P195
KARNA SP, 1991, J COMPUT CHEM, V12, P487
KONIG K, 2000, SINGLE MOL, V1, P41
KURTZ HA, 1990, J COMPUT CHEM, V11, P82
MARDER SR, 1997, NATURE, V388, P845
MORDZINSKI A, 1982, CHEM PHYS LETT, V90, P122
MOURA GLC, 1996, CHEM PHYS LETT, V257, P639
PARK KH, 1998, POLYMER, V39, P7061
PRASAD PN, 1991, INTRO NONLINEAR OPTI
PREMVARDHAN L, 1998, CHEM PHYS LETT, V296, P521
SEGALA M, 1999, J CHEM SOC PERK JUN, P1123
SEKINO H, 1986, J CHEM PHYS, V85, P976
SHANG XM, 1998, J OPT SOC AM B, V15, P854
SHEAR JB, 1999, ANAL CHEM, V71, A598
STEFANI V, 1992, DYES PIGMENTS, V20, P97
STEWART JJP, 1994, MOPAC93 MANUAL REV N
TSUNEKAWA T, 1992, J PHYS CHEM-US, V96, P10268
VOGEL A, 1978, VOGELS PRACTICAL ORG
WURTHNER F, 1993, CHEM PHYS, V173, P305
NR 30
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD NOV 1
PY 2001
VL 273
IS 1
BP 1
EP 10
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 486PW
UT ISI:000171827000001
ER
PT J
AU Furtado, EA
Milas, I
Lins, JOMDA
Nascimento, MAC
TI The dehydrogenation reaction of light alkanes catalyzed by zeolites
SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH
LA English
DT Article
ID MOLECULAR-DYNAMICS; ELECTROPHILIC REACTIONS; ISOBUTANE CRACKING;
HYDROXYL-GROUPS; ACIDIC ZEOLITE; AB-INITIO; SILICALITE; METHANE;
SIMULATION; ACTIVATION
AB The several steps of the dehydrogenation reactions of ethane, propane
and isobutane were studied by theoretical methods. Molecular dynamics
simulation techniques have been used to study diffusion of the alkanes
through the zeolite HZMS-5 framework. Adsorption energies were computed
by the methods of molecular mechanics, molecular dynamics and
Monte-Carlo. Molecular dynamics was also used to determine the
preferred adsorption sites of the alkanes in silicalite and HZMS-5. The
mechanism of the chemical reactions at the zeolite's acid site was
investigated at the DFT(B3LYP) level of calculation using 6-31G** and
6-311G** basis sets, and 3 and 5 T cluster models to represent the
zeolite. GIAO/B3LYP calculations were performed on the 3 and 5 T
alkyalkoxides and the results were compared with experimental C-13 NMR
data.
C1 Univ Fed Rio de Janeiro, Dept Quim Fis, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Dept Quim Fis, Inst Quim,
Cidade Univ,CT Bloco A,Sala 412, BR-21949900 Rio De Janeiro, Brazil.
CR *SCHROD INC, 1998, JAGUAR 3 5
ALEEN MP, 1987, COMPUTER SIMULATION
ARONSON MT, 1989, J AM CHEM SOC, V111, P840
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BLASZKOWSKI SR, 1996, J PHYS CHEM-US, V100, P3463
CARO J, 1985, J CHEM SOC FARAD T 1, V81, P2541
CORMA A, 1994, J CATAL, V145, P171
CUSUMANO JA, 1992, IUPAC CHEM 21 CENTUR
CZJZEK M, 1992, J PHYS CHEM-US, V96, P1535
DUBSKY J, 1979, J MOL CATAL, V6, P321
DUMONT D, 1995, ZEOLITES, V15, P650
ESTEVES PM, 1999, THESIS U FEDERAL DO
EVLETH EM, 1996, J PHYS CHEM-US, V100, P11368
FRISCH MJ, 1995, GAUSSIAN94 REVISION
HAW JF, 1989, J AM CHEM SOC, V111, P2052
HUFFON JR, 1995, MICROPOROUS MATER, V5, P39
JEANVOINE Y, 1998, J PHYS CHEM B, V102, P5573
JIRAK Z, 1980, J PHYS CHEM SOLIDS, V41, P1089
JOBIC H, 1992, ZEOLITES, V12, P146
JUNE RL, 1990, J PHYS CHEM-US, V94, P1508
JUNE RL, 1990, J PHYS CHEM-US, V94, P8232
JUNE RL, 1992, J PHYS CHEM-US, V96, P1051
KAZANSKY VB, 1996, APPL CATAL A-GEN, V146, P225
KERR GT, 1989, SCI AM, V261, P100
KRAMER GJ, 1993, J AM CHEM SOC, V115, P2887
LINS JOMDL, 1996, THEOCHEM-J MOL STRUC, V371, P237
MAYO SL, 1990, J PHYS CHEM-US, V94, P8897
METROPOLIS N, 1953, J CHEM PHYS, V21, P1081
MORTIER WJ, 1976, J CATAL, V45, P367
NARBESHUBER TF, 1997, J CATAL, V172, P127
NICHOLAS JB, 1993, J PHYS CHEM-US, V97, P4149
NOVAK AK, 1991, J PHYS CHEM-US, V95, P848
OLAH GA, 1971, J AM CHEM SOC, V93, P1251
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLSON DH, 1969, J CATAL, V13, P221
OLSON DH, 1981, J PHYS CHEM-US, V85, P2238
OMALLEY PJ, 1988, J PHYS CHEM-US, V92, P3005
RIBEIRO FR, 1984, ZEOLITES SCI TECHNOL
RICHARDS RE, 1987, LANGMUIR, V3, P335
SCHRODER KP, 1992, CHEM PHYS LETT, V188, P320
SMIT B, 1994, SCIENCE, V264, P1118
STACH H, 1986, ZEOLITES, V6, P74
STEFANADIS C, 1991, J MOL CATAL, V67, P363
SWOPE WC, 1994, J PHYS CHEM-US, V98, P12938
TITILOYE JO, 1991, J PHYS CHEM-US, V95, P4038
VANBEEST BWH, 1990, PHYS REV LETT, V64, P1955
VANBEKKUM H, 1991, STUDIES SURFACE SCI, V58, P12
VAUGHN DEW, 1988, CHEM ENG PROG, V84, P25
VETRIVEL R, 1989, J CHEM SOC FARAD T 2, V85, P497
VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13719
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
ZARDKOOHI M, 1987, J AM CHEM SOC, V109, P5278
ZYGMUNT SA, 2000, J PHYS CHEM B, V104, P1944
NR 54
TC 7
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA PO BOX 10 11 61, D-69451 BERLIN, GERMANY
SN 0031-8965
J9 PHYS STATUS SOLIDI A-APPL RES
JI Phys. Status Solidi A-Appl. Res.
PD SEP 16
PY 2001
VL 187
IS 1
BP 275
EP 288
PG 14
SC Physics, Condensed Matter
GA 480JJ
UT ISI:000171458000033
ER
PT J
AU Castellano, EE
Piro, OE
Caram, JA
Mirifico, MV
Aimone, SL
Vasini, EJ
Marquez-Lucero, A
Glossman-Mitnik, D
TI Crystallographic study and molecular orbital calculations of
thiadiazole derivatives. Part 3: 3,4-diphenyl-1,2,5-thiadiazoline
1,1-dioxide, 3,4-diphenyl-1,2,5-thiadiazolidine 1,1-dioxide and
4-ethoxy-5-methyl-3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE 1,2,5-thiadiazole 1,1-dioxide derivatives; ab initio MO calculations;
single-crystal X-ray diffraction; DFT; sensitivity analysis
ID DENSITY-FUNCTIONAL THEORY; SOFT ACIDS; CHEMICAL-REACTIVITY;
CRYSTAL-STRUCTURE; GAS-PHASE; HARDNESS; BASES; ELECTROREDUCTION;
ELECTROCHEMISTRY; DESCRIPTORS
AB Single-crystal X-ray diffraction studies are reported for
3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide (I),
3,4-diphenyl-1,2,5-thiadiazolidine 1,1-dioxide(II) and
4-ethoxy-5-methyl-3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide (III).
Ab initio MO calculations on the electronic structure, conformation and
reactivity of these compounds are also reported and compared with the
X-ray results. A charge sensitivity analysis is performed on the
results applying concepts derived from density functional theory,
obtaining several sensitivity coefficients such as the molecular
energy, net atomic charges, global and local hardness, global and local
softness and Fukui functions. With these results and the analysis of
the dipole moment and the total electron density and electrostatic
potential maps, several conclusions have been inferred about the
preferred sites of chemical reaction of the studied compounds. (C) 2001
Elsevier Science B.V. All rights reserved.
C1 LAQUICOM, CIMAV, Chihuahua 31109, Chih, Mexico.
Univ Sao Paulo, Dept Fis, Inst Fis & Quim Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, RA-1900 La Plata, Argentina.
Consejo Nacl Invest Cient & Tecn, PROFIMO, RA-1900 La Plata, Argentina.
Natl Univ La Plata, INIFTA, CONICET, RA-1900 La Plata, Argentina.
RP Glossman-Mitnik, D, LAQUICOM, CIMAV, Miguel de Cervantes 120,Complejo
Ind Chihuahua, Chihuahua 31109, Chih, Mexico.
CR AIMONE SL, 2000, J PHYS ORG CHEM, V13, P277
AIMONE SL, 2000, TETRAHEDRON LETT, V41, P3531
AMATO JS, 1982, J AM CHEM SOC, V104, P1375
BACHRACH SM, 1994, REV COMPUTATIONAL CH, V5
BAETEN A, 1994, J MOL STRUCT THEOCHE, V306, P203
BAETEN A, 1995, CHEM PHYS LETT, V235, P17
BAKER RJ, 1980, J ORG CHEM, V45, P482
BUSING WR, 1957, ACTA CRYSTALLOGR, V10, P180
CALDERON CE, 1979, ACTA CRYSTALLOGR B, V35, P2795
CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P2296
CARAM JA, 1994, ELECTROCHIM ACTA, V39, P939
CASTELLANO EE, 1998, J PHYS ORG CHEM, V11, P91
CASTELLANO EE, 2001, J MOL STRUCT, V562, P157
CROMER DT, 1974, INT TABLES CRYSTALLO, V4, P71
CROMER DT, 1974, INT TABLES XRAY CRYS, V4, P149
DEPROFT F, 1994, J PHYS CHEM-US, V98, P5227
ESTEBANCALDERON C, 1982, ACTA CRYSTALLOGR B, V38, P1340
FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
FOCESFOCES C, 1975, ACTA CRYSTALLOGR B, V31, P2310
FOCESFOCES C, 1977, ACTA CRYSTALLOGR B, V33, P910
FRENZ AB, 1983, ENRAFNONIUS STRUCTUR
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
FUKUI K, 1973, THEORY ORIENTATION S
GAZQUEZ JL, 1994, J PHYS CHEM-US, V98, P4591
GAZQUEZ JL, 1998, THEORET COMPUT CHEM, V5, P135
GLOSSMAN MD, 1995, THEOCHEM-J MOL STRUC, V330, P385
GLOSSMAN MD, 1996, ATUALIDADES FISICOQU
GLOSSMAN MD, 1997, THEOCHEM-J MOL STRUC, V390, P67
JOHNSON CK, 1965, ORNL3794 ORTEP
LANGENAEKER W, 1992, J MOL STRUCT THEOCHE, V259, P317
LANGENAEKER W, 1995, J PHYS CHEM-US, V99, P6424
LIPKOWITZ KB, 1990, REV COMPUTATIONAL CH, V1
MIRIFICO MV, 1991, ELECTROCHIM ACTA, V36, P167
MIRIFICO MV, 1991, INT J CHEM KINET, V23, P197
MIRIFICO MV, 1993, J PHYS ORG CHEM, V6, P341
MIRIFICO MV, 1995, AN QUIM, V91, P557
MITNIK DG, 2001, INT J QUANTUM CHEM, V81, P105
MITNIK DG, 2001, J MOL STRUC-THEOCHEM, V535, P39
MITNIK DG, 2001, J MOL STRUC-THEOCHEM, V536, P41
MITNIK DG, 2001, J MOL STRUC-THEOCHEM, V538, P201
MULLEN K, 1998, ELECT MAT OLIGOMER A
MULLIKEN RS, 1934, J CHEM PHYS, V2, P782
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
MULLIKEN RS, 1955, J CHEM PHYS, V23, P2338
NALWA HS, 1997, HDB ORGANIC CONDUCTI
PARR RG, 1989, DENSITY FUNCTIONAL T
PARR RG, 1995, ANNU REV PHYS CHEM, V46, P701
PEARSON RG, 1963, J AM CHEM SOC, V85, P3533
PEARSON RG, 1966, SCIENCE, V151, P172
PEARSON RG, 1987, J CHEM EDUC, V64, P561
POLITZER P, 1981, CHEM APPL ATOMIC MOL
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
ROY RK, 1998, J PHYS CHEM A, V102, P3746
ROY RK, 1998, J PHYS CHEM A, V102, P7035
SALZNER U, 1997, J COMPUT CHEM, V18, P1943
SHELDRICK GM, 1976, SHELX PROGRAM CRYSTA
SHELDRICK GM, 1990, ACTA CRYSTALLOGR A, V46, P467
SHELDRICK GM, 1993, SHELXL 93 PROGRAM CR
SVARTMAN EL, 1999, CAN J CHEM, V77, P511
WEINSTOCK LM, 1984, COMPREHENSIVE HETERO, V6
YANG W, 1986, J AM CHEM SOC, V108, P5708
ZHOU Z, 1988, TETRAHEDRON LETT, V29, P4843
NR 63
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD OCT 3
PY 2001
VL 597
IS 1-3
BP 163
EP 175
PG 13
SC Chemistry, Physical
GA 478GG
UT ISI:000171335000018
ER
PT J
AU Ellena, J
Goeta, AE
Howard, JAK
Punte, G
TI Role of the hydrogen bonds in nitroanilines aggregation: Charge density
study of 2-methyl-5-nitroaniline
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID X-RAY-DIFFRACTION; INTERMOLECULAR INTERACTIONS; ELECTRON-DENSITY;
TOPOLOGICAL ANALYSIS; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURE;
DIHYDROGEN BOND; 100 K; HYPERPOLARIZABILITIES; UREA
AB The electron charge distribution of 2-Methyl-5-nitroaniline has been
studied from high-resolution singlecrystal X-ray data at 100 K, and ab
initio calculations which include X-ray structure factors computed from
a superposition of ab initio molecular electron densities. Using the
Hansen and Coppens' rigid pseudoatom multipolar model refinements were
performed on both the experimental and the theoretical X-ray data sets
from which, molecular atomic charges and dipolar moments were obtained.
To understand the nature and the magnitude of the intermolecular
interactions. the Atoms in Molecules theory was used to investigate the
topology of the electron density of the in-crystal, both experimental
interacting as well as theoretical noninteracting, and in-vacuum
molecules. A meticulous analysis of the topological properties of the
experimental charge density and of its Laplacian indicates, contrary to
expectations, a two center character of the N-(HO)-O-. . . synthons
that induce the known polar chain formation in nitroanilines and the
presence of a C-methyl-H-O interaction further strengthening the
chains. It also shows the attractive nature of the rather strong
C-(HO)-O-. . . interactions that help the head-to-tail arrangement of
the chains. They build two intermolecular six membered hydrogen bonded
rings, embracing a N-(HO)-O-. . . interaction, that originate
centrosymmetric dimers which impair the macroscopic second harmonic
generation of the title compound. The authenticity of a previously
proposed closed shell C-aryl-H(. . .)pi interaction between adjacent
chains has been confirmed. The latter has not been observed in
m-nitroaniline, 2-methyl-4-aniline or other related compounds with
chains built from similar N-(HO)-O-. . . synthons and assembled
head-to-head. Crystallization causes a molecular electric dipolar
moment higher than that of the free molecule, the latter being
coincident with the experimental value in solution, and with the one
calculated from the refinement of the theoretical X-ray data. It also
induces changes in the charge density distribution and its topology,
and an enhancement of the intramolecular conjugation that can be
related to a molecular aggregation mechanism ruled by the N-(HO)-O-. .
. synthon. These findings strongly point to the existence of
cooperative effects.
C1 Univ Durham, Dept Chem, Durham DH1 3LE, England.
Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, IFLP & LANADI, RA-1900 La Plata, Argentina.
Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
RP Goeta, AE, Univ Durham, Dept Chem, South Rd, Durham DH1 3LE, England.
CR *SIEM AN XRAY INST, 1996, SAINT DAT RED SOFTW
*SIEM AN XRAY INST, 1996, SMART DAT COLL SOFTW
AAKEROY CB, 1997, ACTA CRYSTALLOGR B 4, V53, P569
ABRAMOV YA, 2000, ACTA CRYSTALLOGR A 6, V56, P585
ABRAMOV YA, 2000, J MOL STRUC-THEOCHEM, V529, P27
ALLEN FH, 1999, NEW J CHEM, P25
BADER RFW, 1990, ATOMS MOL QUANTUM TH
BADER RFW, 1998, J PHYS CHEM A, V102, P7314
BARON M, 1997, COMMUNICATION
BERNSTEIN J, 1994, STRUCTURE CORRELATIO, V2, P432
BIRKEDAL H, 1999, ACTA CRYSTALLOGR A, V55, P117
BLESSING RH, 1987, CRYSTALLOGR REV, V1, P3
BLUDSKY O, 1996, J CHEM PHYS, V105, P11042
BOSSHHARD C, 1995, ADV NONLINEAR OPTICS, V1
BURGI H, 1994, STRUCTURAL CORRELATI
CHEN LR, 1995, ACTA CRYSTALLOGR B 6, V51, P1081
CLEMENTI E, 1974, ATOM DATA NUCL DATA, V14, P177
COPPENS P, 1982, ELECT DISTRIBUTIONS
COPPENS P, 1997, XRAY CHARGE DENSITIE, P271
COSIER J, 1986, J APPL CRYSTALLOGR, V19, P105
CREMER D, 1975, J AM CHEM SOC, V97, P1354
DANIEL C, 1990, CHEM PHYS LETT, V171, P209
DESIRAJU GR, 1997, CHEM COMMUN 0821, P1475
ELLENA J, 1996, J CHEM CRYSTALLOGR, V26, P319
ELLENA J, 1998, THESIS EXACTAS U NAC
ELLENA J, 1999, ACTA CRYSTALLOGR B 2, V55, P209
ESPINOSA E, 1999, ACTA CRYSTALLOGR B 4, V55, P563
ETTER MC, 1990, ACCOUNTS CHEM RES, V23, P120
FEIL D, 1991, APPL CHARGE DENSITY
FERRETTI V, 1993, J PHYS CHEM-US, V97, P13568
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GATTI C, 1994, J CHEM PHYS, V101, P10686
GOETA AE, 2000, CHEM MATER, V12, P3342
GOPAL R, 1980, CAN J CHEM, V58, P658
HAMADA T, 1996, J PHYS CHEM-US, V100, P8777
HANSEN NK, 1978, ACTA CRYSTALLOGR A, V34, P909
HEHRE WJ, 1969, J CHEM PHYS, V51, P2657
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HIRSHFELD FL, 1976, ACTA CRYSTALLOGR A, V32, P239
HOWARD ST, 1992, J CHEM PHYS, V97, P5616
HUYSKENS F, 1998, J PHYS CHEM-US, V108, P8
ISAACS ED, 2000, J PHYS CHEM SOLIDS, V61, P403
JEFFREY G, 1997, INTRO HYDROGEN BONDI
KIRSCHBAUM K, 1997, J APPL CRYSTALLOGR 4, V30, P514
KLOOSTER WT, 1999, J AM CHEM SOC, V121, P6337
KOCH U, 1995, J PHYS CHEM-US, V99, P9747
KORITSANSZKY T, 1997, COMPUTER PROGRAM PAC
LAIDIG KE, 1994, COMMUNICATION
LEVINE BF, 1979, J APPL PHYS, V50, P2523
LIPSCOMB GF, 1981, J CHEM PHYS, V75, P1509
MARK TCW, 1965, ACTA CRYSTALLOGR, V18, P68
MASUNOV A, 1999, J PHYS CHEM A, V103, P178
MASUNOV A, 2000, J PHYS CHEM B, V104, P806
MOTHERWELL WDS, 2000, ACTA CRYSTALLOGR B 5, V56, P857
NOVOA JJ, 2000, CHEM PHYS LETT, V318, P345
PANUNTO TW, 1987, J AM CHEM SOC, V109, P7786
PLATTS JA, 1996, J CHEM PHYS, V105, P4668
POPELIER PLA, 1998, J PHYS CHEM A, V102, P1873
ROZAS I, 1997, J PHYS CHEM A, V101, P9457
ROZAS I, 1998, J PHYS CHEM A, V102, P9925
SARMA JARP, 1995, CHEM MATER, V7, P1843
SAUNDERS VR, 1998, CRYSTAL98 USERS MANU
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
SHARMA CVK, 1994, J CHEM SOC P2, P2345
SHELDRICK GM, 1995, XPREP SHELXTL 5 04 V
SHELDRICK GM, 1997, SADABS EMPIRICAL ABS
SIM F, 1993, J PHYS CHEM-US, V97, P1158
SPACKMAN MA, 1999, ACTA CRYSTALLOGR A 1, V55, P30
STEWART Y, 1991, NATO ASI SERIES B, V259
SU ZW, 1992, ACTA CRYSTALLOGR A, V48, P188
TANG TH, 1996, CAN J CHEM, V74, P1162
TRUEBLOOD KN, 1961, ACTA CRYSTALLOGR, V14, P1009
TURI L, 1996, J PHYS CHEM-US, V100, P9638
VOLKOV A, 2000, ACTA CRYSTALLOGR A 3, V56, P252
VOLKOV A, 2000, ACTA CRYSTALLOGR A 4, V56, P332
VRIES RY, 2000, ACTA CRYSTALLOGR B, V56, P118
YUFIT DS, 2000, J CHEM SOC PERK T 2, P249
ZAVODNIK V, 1999, ACTA CRYSTALLOGR B 1, V55, P45
ZHANG Y, 1999, CHEM COMMUN, P2425
NR 79
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 27
PY 2001
VL 105
IS 38
BP 8696
EP 8708
PG 13
SC Chemistry, Physical
GA 476EW
UT ISI:000171214100014
ER
PT J
AU Ueno, LT
Ornellas, FR
TI Theoretical investigation of the initial steps of the adsorption of N
atoms on Si(100)-2x1
SO SURFACE SCIENCE
LA English
DT Letter
DE density functional calculations; surface chemical reaction; silicon;
nitrogen atom; silicon nitride
ID SILICON-NITRIDE FORMATION; AB-INITIO; CERAMIC MATERIALS; MICROWAVE
PLASMA; NH3; SURFACE; POWDER; FILMS; SPECTROSCOPY; DIFFRACTION
AB Structural, energetics, and mechanistics aspects of initial steps of
the reaction of a N atom with Si(1 0 0)-2 x 1 modeled by the Si9H12 + N
system are reported. Hybrid density functional B3LYP calculations
predict a barrierless first step leading to an adsorbate where N is
bound to one of the dimer Si. Two possible activated routes for
internal rearrangements were found, with that leading to the
incorporation of Si below the first layer predicted to be kinetically
dominant (98%) under the experimental conditions. This structure and
frequency calculations are consistent with the experimental finding of
a planar NSi3 moeity and with the experimental SiN asymmetric
stretching frequency of the NSi3 groups. (C) 2001 Elsevier Science B.V.
All rights reserved.
C1 Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05513970 Sao Paulo, SP, Brazil.
RP Ornellas, FR, Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, CP
26077, BR-05513970 Sao Paulo, SP, Brazil.
CR ALDINGER F, 1987, ANGEW CHEM INT EDIT, V26, P371
BAUMVOL IJR, 1995, PHYS STATUS SOLIDI B, V192, P253
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BIROT M, 1995, CHEM REV, V95, P1443
BJORKQVIST M, 1997, SURF SCI, V394, L155
BOZSO F, 1986, PHYS REV LETT, V57, P1185
ERBETTA D, 2000, J CHEM PHYS, V113, P10744
FATTAL E, 1997, J PHYS CHEM B, V101, P8658
FRANCL MM, 1982, J CHEM PHYS, V77, P3654
FRISCH MJ, 1998, GAUSSIAN 98
HAMERS RJ, 1988, J VAC SCI TECHNOL A, V6, P508
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HECKINGBOTTOM R, 1973, SURF SCI, V36, P594
HERMAN IP, 1989, CHEM REV, V89, P1323
HUBBARD CR, 1975, J APPL CRYSTALLOGR, V8, P45
KONECNY R, 1997, J PHYS CHEM B, V101, P10983
LANGE H, 1991, ANGEW CHEM INT EDIT, V30, P1579
LEE C, 1988, PHYS REV B, V37, P785
LEE WC, 1997, J MATER RES, V12, P805
LIU YC, 1997, APPL SURF SCI, V121, P233
MONTEIRO OR, 1996, J MATER SCI, V31, P6029
ORNELLAS FR, 1996, J PHYS CHEM-US, V100, P10919
ORNELLAS FR, 1996, J PHYS CHEM-US, V100, P16155
ORNELLAS FR, 1997, B CHEM SOC JPN, V70, P2057
ORNELLAS FR, 1997, J CHEM PHYS, V106, P151
PAN JS, 1996, VACUUM, V47, P1495
PARK KH, 1992, J CHEM PHYS, V97, P2742
PENG CY, 1996, J COMPUT CHEM, V17, P49
RUHONG Z, 1991, SURF SCI, V249, P129
SEGAL D, 1997, J MATER CHEM, V7, P1297
STEFANOV BB, 1997, SURF SCI, V389, L1159
TANAKA S, 1987, SURF SCI, V191, L756
UENO LT, IN PRESS
UENO LT, 2001, J BRAZIL CHEM SOC, V12, P99
WATANABE T, 1998, J ELECTROCHEM SOC, V145, P4252
NR 35
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD SEP 10
PY 2001
VL 490
IS 3
BP L637
EP L643
PG 7
SC Chemistry, Physical
GA 473XW
UT ISI:000171075300003
ER
PT J
AU Rocha, WR
De Almeida, KJ
Coutinho, K
Canuto, S
TI The electronic spectrum of N-methylacetamide in aqueous solution: a
sequential Monte Carlo/quantum mechanical study
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CIRCULAR-DICHROISM CALCULATIONS; AMIDE-I MODE; FAR-ULTRAVIOLET;
HYDROGEN-BOND; AB-INITIO; WATER; TRANSITION; LIQUID; SPECTROSCOPY;
CHROMOPHORE
AB Sequential Monte Carlo/quantum mechanical (S-MC/QM) calculations are
performed to study the solvent effects on the electronic transitions of
N-methylacetamide (NMA) in aqueous solution. Full quantum mechanical
INDO/CIS calculations are performed in the super-molecular clusters
generated by Monte Carlo (MC) simulation. The largest calculation
involves the ensemble average of 75 quantum mechanical results obtained
with the NMA solute surrounded by 150 water solvent molecules. After
extrapolation to the bulk limit we find that the n --> pi* transition
suffers a blue shift of 1755 cm(-1) upon solvation and the pi --> pi*
transition undergoes a red shift of 1180 cm(-1), in good agreement with
the experimental findings. (C) 2001 Published by Elsevier Science B.V.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Fed Juiz Fora, ICE, Dept Quim, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Minas Gerais, Dept Quim, ICEx, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Mogi Cruzes, CCET, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 20516, BR-05315970 Sao Paulo,
Brazil.
CR AKIYAMA M, 1999, SPECTROCHIM ACTA A, V56, P137
ALLEN MP, 1987, COMPUTER SIMULATION
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BESLEY NA, 1998, J PHYS CHEM A, V102, P10791
BESLEY NA, 2000, J MOL STRUC-THEOCHEM, V506, P161
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CLARK LB, 1995, J AM CHEM SOC, V117, P7974
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 1997, MONTE CARLO PROGRAM
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
FILLAUX F, 1976, CHEM PHYS LETT, V39, P547
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
FURER VL, 1997, J MOL STRUCT, V435, P151
GUO H, 1994, J PHYS CHEM-US, V98, P7104
HAN WG, 1996, J PHYS CHEM-US, V100, P3942
HIRST JD, 1997, J PHYS CHEM A, V101, P4821
HIRST JD, 1998, J CHEM PHYS, V109, P782
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JORGENSEN WL, 1988, J AM CHEM SOC, V110, P4212
KAYA K, 1967, THEOR CHIM ACTA, V7, P124
KITANO M, 1973, B CHEM SOC JPN, V46, P384
LUDWIG R, 1997, J PHYS CHEM A, V101, P8861
NIELSEN EB, 1967, J PHYS CHEM-US, V71, P2297
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
ROSENHECK K, 1961, P NATL ACAD SCI USA, V47, P1775
SCHWEITZERSTENNER R, 1998, J PHYS CHEM A, V102, P118
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P12190
SIELER G, 1997, J AM CHEM SOC, V119, P1720
TORII H, 1998, J PHYS CHEM B, V102, P309
VANHOLDE KE, 1998, PRINCIPLES PHYSICAL
WOODY RW, 1995, METHOD ENZYMOL, V246, P34
WOODY RW, 1999, J CHEM PHYS, V111, P2844
WOODY RW, 1999, J PHYS CHEM B, V103, P8984
ZERNER MC, ZINDO SEMIEMPIRICAL
NR 35
TC 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 7
PY 2001
VL 345
IS 1-2
BP 171
EP 178
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 473UK
UT ISI:000171066300027
ER
PT J
AU Carneiro, JWD
Taft, CA
Silva, CHTDE
Tostes, JGR
Seidl, PR
Pinto, PSD
Costa, VEU
Alifantes, J
TI Ab initio and density functional study of the
5-pentacyclo[6.2.1.1(3,6).0(2,7).0(4,10)]dodecyl cation. A symmetrical
mu-hydride bridged carbocation
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID HALF-CAGE PENTACYCLODODECANE; 2-NORBORNYL CATION; FREQUENCIES;
DERIVATIVES; EXCHANGE
AB MP2/6-31g(d,p) and B3LYP/6-31g(d,p) calculations for the
pentacyclo[6.2.1.1(3,6).0(2,7).0(4,10)]dodecyl cation reveal two minima
on the potential energy surface. The most stable minimum is the
g-hydride bridged cation 2. The second minimum is the two-electron
three-center bonded structure 3. At MP2/6-31g(d,p) 2 is only 0.2
kcal/mol more stable than 3, but at B3LYP/6-31g(d,p) this energy
difference increases to 3.3 kcal/mol. The energy difference between 2
and 3 is only 3.8 kcal/mol. Solvent effect does not affect these
numbers significantly. This low energy barrier may account for the
product distribution observed on solvolysis of pentacyclic derivatives.
(C) 2001 Elsevier Science B.V. All rights reserved.
C1 CBPF, Dept Mat Condensada, BR-22290180 Rio De Janeiro, Brazil.
Univ Fed Fluminense, Inst Quim, Dept Quim Geral & Inorgan, BR-24020150 Niteroi, RJ, Brazil.
Univ Estadual Norte Fluminense, Lab Ciecias Quim, Ctr Ciencias & Tecnol, BR-28015620 Sao Jose Dos Campos, RJ, Brazil.
Univ Fed Rio de Janeiro, Escola Quim, Dept Proc Organ, BR-21949900 Rio De Janeiro, Brazil.
Inst Militar Engn, Dept Engn Quim, BR-22290270 Rio De Janeiro, Brazil.
Univ Fed Rio Grande Sul, Inst Quim, Dept Quim Organ, BR-91509900 Porto Alegre, RS, Brazil.
RP Taft, CA, CBPF, Dept Mat Condensada, Rua Dr Xavier Sigaud 150,
BR-22290180 Rio De Janeiro, Brazil.
CR BATTISTE MA, 1977, J CHEM SOC CHEM COMM, P941
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BIRD CW, 1980, TETRAHEDRON, V36, P525
BRUCK P, 1960, CHEM IND-LONDON, P405
BUZEK P, 1991, J CHEM SOC CHEM COMM, P671
CHOW TJ, 1998, J PHYS ORG CHEM, V11, P871
COSTA VEU, 1998, TETRAHEDRON-ASYMMETR, V9, P2579
COSTA VEU, 2000, J MOL STRUCT, V519, P37
DEVRIES L, 1960, J AM CHEM SOC, V82, P5363
ERMER O, 1985, J AM CHEM SOC, V107, P2330
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRANCL MM, 1982, J CHEM PHYS, V77, P3654
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HARIHARAN PC, 1972, CHEM PHYS LETT, V16, P217
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HOWE RK, 1972, J ORG CHEM, V37, P1473
LEE C, 1988, PHYS REV B, V37, P785
MOLLER C, 1934, PHYS REV, V46, P618
PERERA SA, 1996, J AM CHEM SOC, V118, P7849
SCHLEYER PV, 1989, J AM CHEM SOC, V111, P5475
SCHLEYER PV, 1993, ANGEW CHEM INT EDIT, V32, P1606
SCHREINER PR, 1995, J AM CHEM SOC, V117, P2663
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SEIDL PR, 1990, J MOL STRUCT THEOCHE, V204, P183
SIEBER S, 1993, J AM CHEM SOC, V115, P259
SOLOWAY SB, 1960, J AM CHEM SOC, V82, P5377
SORENSEN TS, 1997, STABLE CARBOCATION C, CH4
TAFT CA, 1996, CHEM PHYS LETT, V248, P158
NR 29
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 7
PY 2001
VL 345
IS 1-2
BP 189
EP 194
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 473UK
UT ISI:000171066300030
ER
PT J
AU Fonseca, TL
Castro, MA
Cunha, C
Amaral, OAV
TI Ab initio polarizabilities calculations of singly charged polyacetylene
oligomers
SO SYNTHETIC METALS
LA English
DT Article
DE polarizability; polyacetylene oligomers; charged soliton
ID VARIATIONAL PERTURBATIONAL TREATMENT; STATIC FIRST HYPERPOLARIZABILITY;
NONLINEAR-OPTICAL PROPERTIES; CONJUGATED CHAINS;
LINEAR-POLARIZABILITIES; ELECTRON CORRELATION; LOCAL VIEW; POLYENES;
SOLITONS; ABINITIO
AB We present results for the static longitudinal linear polarizability
and second-order hyperpolarizability of small polyacetylene chains
bearing positively and negatively charged solitons, obtained through
the second-order Moller-Plesset perturbation theory (MP2) method.
Hartree-Fock (HF) calculations for these properties was performed only
for negatively charged chains. The standard 6-31G basis set was used in
all calculations. Our ab initio calculations showed that, regarding
singly charged structures, only the second hyperpolarizability is
affected by the ionization state. For both, positive and negative
structures, it is shown that the electron correlation effect enhances
the linear polarizability, and even more markedly the second
hyperpolarizabilities. (C) 2001 Elsevier Science B.V. All rights
reserved.
C1 Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
RP Fonseca, TL, Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
CR BOUDREAUX DS, 1983, PHYS REV B, V28, P6927
CHAMPAGNE B, 1997, J CHEM PHYS, V107, P5433
DEMELO CP, 1987, CHEM PHYS LETT, V140, P537
DEMELO CP, 1988, J CHEM PHYS, V88, P2558
DEMELO CP, 1988, J CHEM PHYS, V88, P2567
DEMELO CP, 1996, CHEM PHYS LETT, V28, P261
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GESKIN VM, 1998, J CHEM PHYS, V109, P6163
GESKIN VM, 1999, SYNTHETIC MET, V101, P488
HURST GJB, 1988, J CHEM PHYS, V89, P385
JACQUEMIN D, 1998, CHEM PHYS LETT, V284, P24
JACQUEMIN D, 1998, THEOCHEM-J MOL STRUC, V425, P69
MADER SR, 1994, SCIENCE, V265, P632
MCLEAN AD, 1967, J CHEM PHYS, V47, P1927
MEYERS F, 1994, J AM CHEM SOC, V116, P10703
PRASAD P, 1991, INTRO NONLINEAR OPTI
ROBINS KA, 1995, SYNTHETIC MET, V71, P1671
SILVA DA, 1999, SYNTHETIC MET, V102, P1584
TOTO JL, 1995, CHEM PHYS LETT, V245, P660
TOTO JL, 1995, J CHEM PHYS, V102, P8048
TOTO TT, 1995, CHEM PHYS LETT, V244, P59
VILLAR HO, 1988, J CHEM PHYS, V88, P2859
VILLAR HO, 1988, PHYS REV B, V37, P2520
VILLESUZANNE A, 1992, J CHEM PHYS, V96, P495
NR 24
TC 5
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD AUG 22
PY 2001
VL 123
IS 1
BP 11
EP 15
PG 5
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
Polymer Science
GA 472EH
UT ISI:000170970200002
ER
PT J
AU Junqueira, GMA
Rocha, WR
De Almeida, WB
Dos Santos, HF
TI Theoretical analysis of the oxocarbons: structure and spectroscopic
properties of croconate ion and its coordination compound with lithium
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID DIFFERENTIAL-OVERLAP TECHNIQUE; INTERMEDIATE NEGLECT; MONTE-CARLO;
TRANSITION; COMPLEXES; DIANIONS; FORMALDEHYDE; WATER
AB Ab initio methods were used in conjunction with Monte Carlo simulation
to analyze the structure and spectroscopic properties of the croconate
ion in the gas phase and in aqueous solution. The infrared and Raman
spectra were calculated and band assignments were made showing a good
agreement with experiment. The electronic spectrum of the croconate ion
was calculated in the gas phase and in aqueous solution, using a
sequential Monte Carlo/quantum mechanical approach, taking into account
the solvent and counter ion effects. The electronic spectrum for the
free croconate ion in aqueous solution showed two transitions at 479
and 468 nm when the first solvation shell is considered. These
transitions were not sensitive to additional solvent molecules beyond
the first solvation shell. The experimental electronic spectrum was
only reproduced when the combined effects of the solvent and counter
ion were taken into account. The calculated spectrum for the
cis-[Li-2(C5O5)(H2O)(21)] complex showed two transitions at 383 and 365
nm, in agreement with the experimental observations of 372 and 351 nm.
These results strongly suggest that in order to reproduce the
experimental electronic spectrum of the oxocarbons in solution, we must
take into account the combined effects of the solvent and the counter
ions. A new proposal for the interaction of Li+ with the croconate
anion in solution, based on the theoretical electronic spectra, is also
discussed.
C1 Univ Fed Juiz de Fora, ICR, Dept Quim, NEQC, BR-36036330 Juiz de Fora, MG, Brazil.
Univ Fed Minas Gerais, ICEx, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, ICR, Dept Quim, NEQC, Campus
Martelos, BR-36036330 Juiz de Fora, MG, Brazil.
CR 1992, HDB CHEM PHYSICS
AIHARA J, 1981, J AM CHEM SOC, V103, P1633
ALLEN MP, 1987, COMPUTER SIMULATION
BECKE AD, 1986, PHYS REV B, V33, P8822
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
COUTINHO K, DICE MONTE CARLO PRO
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
DORY M, 1994, J CHEM SOC FARADAY T, V90, P2319
DOSSANTOS HF, UNPUB
DUMESTRE F, 1998, J CHEM SOC DALT 1221, P4131
EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
EGGERDING D, 1975, J AM CHEM SOC, V97, P207
FABRE PL, 2000, ELECTROCHIM ACTA, V45, P2697
FARNELL L, 1981, J MOL STRUCT, V76, P1
FRISCH MJ, 1998, GAUSSIAN 98
GLICK MD, 1964, INORG CHEM, V3, P1712
GLICK MD, 1966, INORG CHEM, V5, P289
GONCALVES NS, 1996, ACTA CRYSTALLOGR C 3, V52, P622
HA TK, 1986, J MOL STRUCT, V137, P183
HEAD JD, 1986, CHEM PHYS LETT, V131, P359
ITO M, 1963, J AM CHEM SOC, V85, P2580
JORGENSEN WL, 1995, BOSS VERSION 3 5 BIO
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
PUEBLA C, 1986, J MOL STRUCT THEOCHE, V137, P171
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
SANTOS PS, 1991, J MOL STRUCT, V243, P223
SCHLEYER PV, 2000, J ORG CHEM, V65, P426
SEITZ G, 1992, CHEM REV, V92, P1227
TAKAHASHI M, 1978, CHEM PHYS, V35, P293
TORII H, 1995, J MOL STRUCT THEOCHE, V334, P15
WEST R, 1960, J AM CHEM SOC, V82, P6204
WEST R, 1963, J AM CHEM SOC, V85, P2577
WEST R, 1963, J AM CHEM SOC, V85, P2586
WEST R, 1981, J AM CHEM SOC, V103, P5073
ZERNER MC, ZINDO SEMIEMPIRICAL
ZERNER MC, 1980, J AM CHEM SOC, V102, P589
ZHAO B, 1992, CAN J CHEM, V70, P135
NR 42
TC 8
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2001
VL 3
IS 17
BP 3499
EP 3505
PG 7
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 471BW
UT ISI:000170907800004
ER
PT J
AU Almeida, AL
Martins, JBL
Longo, E
Furtado, NC
Taft, CA
Sambrano, JR
Lester, WA
TI Theoretical study of MgO(001) surfaces: Pure, doped with Fe, Ca, and
Al, and with and without adsorbed water
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE MgO; ab initio; water adsorption; Fe; Ca; Al; theoretical study
ID TEMPERATURE-PROGRAMMED DESORPTION; LARGE CLUSTER-MODELS;
MAGNESIUM-OXIDE; MGO SURFACES; AB-INITIO; MGO(100) SURFACE; ZNO
SURFACES; DISSOCIATIVE ADSORPTION; HYDROGEN MOLECULE; PROPYLENE-OXIDE
AB Ab initio calculations of large cluster models have been performed in
order to study water adsorption at the five-fold coordinated adsorption
site on pure Mg(001) and MgO(001) surfaces doped with Fe, Ca, and Al.
The geometric parameters of the adsorbed water molecule have been
optimized preparatory to analysis of binding energies, charge transfer,
preferential sites of interaction, and bonding distances. We have used
Mulliken population analysis methods in order to analyze charge
distributions and the direction of charge transfer. We have also
investigated energy gaps, HOMO energies, and SCF orbital energies as
well as the acid-base properties of our cluster model. Numerical
results are compared, where possible, with experiment and interpreted
in the framework of various analytical models. (C) 2001 John Wiley &
Sons, Inc.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290180 Rio De Janeiro, Brazil.
Univ Estado Bahia, Dept Ciencias Exatas & Terra, BR-41195001 Salvador, BA, Brazil.
Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-3565905 Sao Carlos, SP, Brazil.
Univ Estadual Paulista, Dept Matemat, BR-17033360 Sao Paulo, Brazil.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
Estatist, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil.
CR AHDJOUDI J, 1999, CATAL TODAY, V50, P54
ALMEIDA AL, 1998, J CHEM PHYS, V109, P367
ALMEIDA AL, 1998, THEOCHEM-J MOL STRUC, V426, P199
ALMEIDA AL, 1999, INT J QUANTUM CHEM, V71, P153
ANCHELL JL, 1996, J PHYS CHEM-US, V100, P1831
CHACONTAYLOR MR, 1996, J PHYS CHEM-US, V100, P7610
COLBOURN EA, 1982, SURF SCI, V117, P571
COLBOURN EA, 1983, SURF SCI, V126, P550
COLUCCIA S, 1979, J CHEM SOC FARAD T 1, V75, P1769
COLUCCIA S, 1987, SPECTROCHIM ACTA A, V43, P1573
DELEEUW NH, 1995, J PHYS CHEM-US, V99, P17219
DERCOLE A, 1999, J CHEM PHYS, V111, P9743
DUNSKI H, 1994, J CATAL, V146, P166
DURIEZ C, 1990, SURF SCI, V230, P123
FRISCH MJ, 1995, GAUSSIAN 94
GATES BC, 1992, CATALYTIC CHEM
GERSON AR, 1999, PHYS CHEM CHEM PHYS, V1, P4889
GONIAKOWSKI J, 1995, SURF SCI, V323, P129
GONIAKOWSKI J, 1995, SURF SCI, V330, P337
GONIAKOWSKI J, 1995, SURF SCI, V340, P191
HENRICH E, 1984, SURFACE SCI METAL OX
ILLAS F, 1999, CHEM PHYS LETT, V306, P202
ITO T, 1991, J PHYS CHEM-US, V95, P4476
JONES CF, 1984, J CHEM SOC FARAD T 1, V80, P2609
KOBAYASHI H, 1990, J PHYS CHEM-US, V94, P7206
KOBAYASHI H, 1994, J PHYS CHEM-US, V98, P5487
KURODA Y, 1988, J CHEM SOC F1, V84, P2421
LANGEL W, 1994, PHYS REV LETT, V73, P504
LINTULUOTO M, 1999, SURF SCI, V429, P133
LONGO E, 1985, ADV CERAM, V10, P592
LONGO E, 1985, LANGMUIR, V1, P456
LONGO E, 1987, HIGH TECH CERAMICS, P399
MARTINS JBL, 1976, J MOL STRUCT THEOCHE, V363, P249
MARTINS JBL, 1993, INT J QUANTUM CHEM, V27, P643
MARTINS JBL, 1994, THEOCHEM-J MOL STRUC, V109, P19
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P347
MARTINS JBL, 1995, THEOCHEM-J MOL STRUC, V335, P167
MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V397, P147
MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V398, P457
MARTINS JBL, 1998, INT J QUANTUM CHEM, V70, P367
MCCARTHY MI, 1996, J PHYS CHEM-US, V100, P16989
MITAMURA T, 1998, NIPPON KAGAKU KA MAR, P174
PAVAO AC, 1994, PHYS REV B, V50, P1868
PAVAO AC, 1995, SURF SCI, V323, P340
PICAUD S, 1993, CHEM PHYS LETT, V209, P340
RODRIGUEZ JA, 1999, J CHEM PHYS, V111, P8077
ROSSI PF, 1991, LANGMUIR, V7, P2677
SCAMEHORN CA, 1993, J CHEM PHYS, V99, P2786
SCAMEHORN CA, 1994, J CHEM PHYS, V101, P1547
SHINOHARA Y, 1998, NIPPON KAGAKU KA OCT, P643
VULLIERMET N, 1998, COLLECT CZECH CHEM C, V63, P1447
WADT WR, 1985, J CHEM PHYS, V82, P284
NR 54
TC 4
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD SEP 20
PY 2001
VL 84
IS 6
BP 705
EP 713
PG 9
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 470RF
UT ISI:000170884400012
ER
PT J
AU Toma, HE
Rocha, RC
TI Linkage isomerization reactions
SO CROATICA CHEMICA ACTA
LA English
DT Review
DE linkage isomerism; reaction mechanism; kinetics
ID OXIME-IMINE LIGANDS; NORMAL-COORDINATE ANALYSIS; AROMATIC NITROGEN
HETEROCYCLES; DIMETHYL-SULFOXIDE COMPLEXES; INTERSTRAND CROSS-LINKING;
DENSITY-FUNCTIONAL THEORY; BASE-CATALYZED NITRITO; RAY
CRYSTAL-STRUCTURE; III AMMINE COMPLEXES; OXYGEN-ATOM TRANSFER
AB Linkage isomerization reactions have been reviewed from the aspect of
the kinetics and mechanisms involved, focusing on selected cases of
direct formation, as well as on electrochemical, photochemical, thermal
and pH-induced generation of linkage isomers.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Toma, HE, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, Brazil.
CR ABRUNA HD, 1981, INORG CHEM, V20, P1481
ADAMO C, 1994, CHEM PHYS LETT, V223, P54
AKHTER FM, 1994, CHEM LETT, P171
AKHTER FM, 1996, B CHEM SOC JPN, V69, P643
AKHTER FMD, 1994, CHEM LETT, P2393
ALBERT A, 1948, J CHEM SOC, P2240
ALESSIO E, 1993, INORG CHEM, V32, P5756
ALESSIO E, 1995, INORG CHEM, V34, P4716
ALLGEIER AM, 1998, ANGEW CHEM INT EDIT, V37, P894
ALY MM, 1985, POLYHEDRON, V4, P1301
ALY MM, 1993, J MOL STRUCT, V293, P75
ALY MM, 1994, POLYHEDRON, V13, P1907
ALY MM, 1994, SPECTROCHIM ACTA A, V50, P835
ALY MM, 1995, MONATSH CHEM, V126, P173
ALY MM, 1996, REV INORG CHEM, V16, P315
ALY MM, 1998, J COORD CHEM, V43, P89
ALY MM, 1998, TRANSIT METAL CHEM, V23, P361
ALY MM, 1999, J COORD CHEM, V47, P505
ANDREASEN LV, 1999, INORG CHIM ACTA, V295, P153
ANGEL RL, 1990, INORG CHEM, V29, P20
ANGUS PM, 1991, INORG CHEM, V30, P4806
ANGUS PM, 1993, INORG CHEM, V32, P450
ANGUS PM, 1993, INORG CHEM, V32, P5285
ANGUS PM, 1994, INORG CHEM, V33, P1569
ANGUS PM, 1994, INORG CHEM, V33, P477
ANGUS PM, 1996, INORG CHEM, V35, P7196
ANGUS PM, 1998, INORG CHIM ACTA, V268, P85
APPLETON TG, 1992, INORG CHEM, V31, P4410
ARPALAHTI J, 2000, EUR J INORG CHEM MAY, P1007
AUGE P, 1997, TRANSIT METAL CHEM, V22, P91
BAGHLAF AO, 1987, POLYHEDRON, V6, P205
BAI ZP, 1988, B CHEM SOC JPN, V61, P1959
BAI ZP, 1995, POLYHEDRON, V14, P2071
BAILEY RA, 1971, COORDINATION CHEM RE, V6, P407
BALAHURA RJ, 1974, CAN J CHEM, V52, P1762
BALAHURA RJ, 1976, COORDIN CHEM REV, V20, P109
BALT S, 1983, J CHEM SOC DA, P1739
BARTRAM ME, 1988, J VAC SCI TECHNOL A, V6, P782
BASOLO F, 1960, J AM CHEM SOC, V82, P1001
BASOLO F, 1962, INORG CHEM, V1, P1
BASOLO F, 1963, J AM CHEM SOC, V85, P1700
BASOLO F, 1966, J AM CHEM SOC, V88, P1576
BASOLO F, 1967, MECH INORGANIC REACT, P293
BATISTA AA, 1980, AN ACAD BRAS CIENC, V52, P703
BAUMANN F, 1997, CHEM COMMUN 0107, P35
BENNETT MA, 1998, J ORGANOMET CHEM, V571, P139
BERAN G, 1970, J CHEM SOC CHEM COMM, P1354
BERGLUND J, 1994, INORG CHEM, V33, P3346
BIGNOZZI CA, 1994, J CHEM SOC DA, P2391
BLACKMAN A, 1993, ADV HETEROCYCL CHEM, V58, P123
BLESA MA, 1976, J CHEM SOC DA, P1196
BLESA MA, 1977, J CHEM SOC DA, P845
BOLDYREVA E, 1994, BER BUNSEN PHYS CHEM, V98, P738
BOLDYREVA E, 1997, ACTA CRYSTALLOGR B 3, V53, P394
BOLDYREVA EV, 1985, THERMOCHIM ACTA, V92, P109
BOLDYREVA EV, 1993, J STRUCT CHEM, V34, P602
BOLDYREVA EV, 1998, ACTA CRYSTALLOGR 10, V54, P1378
BOLDYREVA EV, 1998, ACTA CRYSTALLOGR B 6, V54, P798
BOLDYREVA EV, 1998, J STRUCT CHEM+, V39, P343
BOLDYREVA EV, 1998, J STRUCT CHEM+, V39, P762
BOND AM, 1997, ORGANOMETALLICS, V16, P2787
BORGHI EB, 1981, J INORG NUCL CHEM, V43, P1849
BOUDVILLAIN M, 1997, BIOCHEMISTRY-US, V36, P2925
BOZOGLIAN F, 1998, POLYHEDRON, V17, P3551
BRADIC Z, 1974, J CHEM SOC DA, P344
BRADIC Z, 1975, J CHEM SOC DA, P353
BRAUNSTEIN P, 1999, J ORGANOMET CHEM, V580, P66
BROCK CP, 1984, ACTA CRYSTALLOGR B, V40, P595
BROWN DA, 1982, J ORGANOMET CHEM, V234, C52
BROWN LD, 1971, INORG CHEM, V10, P2117
BUCHANAN BE, 1990, INORG CHEM, V29, P3263
BUCKINGHAM DA, 1993, AUST J CHEM, V46, P503
BUCKINGHAM DA, 1994, COORDIN CHEM REV, V135, P587
BUCKLEY RC, 1972, INORG CHEM, V11, P1723
BURMEISTER JL, 1964, INORG CHEM, V3, P1587
BURMEISTER JL, 1966, COORDIN CHEM REV, V1, P205
BURMEISTER JL, 1968, COORDIN CHEM REV, V3, P225
BURMEISTER JL, 1971, INORG CHEM, V10, P2032
BUSCHMANN WE, 1999, CHEM-EUR J, V5, P3019
CALABRO DC, 1981, INORG CHIM ACTA, V53, L47
CALLIGARIS M, 1995, J CHEM SOC DA, P1653
CARBALLO R, 1996, J ORGANOMET CHEM, V525, P49
CARDUCCI MD, 1997, J AM CHEM SOC, V119, P2669
CHEN Y, 1997, INORG CHEM, V36, P818
CHEVALIER AA, 1991, J CHEM SOC DA, P1959
CHIN CS, 2000, ORGANOMETALLICS, V19, P638
CHOU MH, 1992, INORG CHEM, V31, P5347
CHOU MY, 1994, J BIOL CHEM, V269, P18821
CINI R, 1996, INORG CHIM ACTA, V251, P111
COLLMAN JP, 1965, INORG CHEM, V4, P1273
COLOMBIER C, 1996, NUCLEIC ACIDS RES, V24, P4519
COPPENS P, 1998, J CHEM SOC DALT 0321, P865
COSMANO RJ, 1975, THERMOCHIM ACTA, V13, P127
COYER MJ, 1994, INORG CHEM, V33, P716
CUN L, 1990, INORG CHEM, V29, P2937
CURTIS NJ, 1983, AUST J CHEM, V36, P1495
CURTIS NJ, 1983, J AM CHEM SOC, V105, P5347
CUSUMANO M, 1978, INORG CHIM ACTA, V30, P29
DACUNHA CJ, 1999, INORG CHEM, V38, P5399
DALBIES R, 1994, P NATL ACAD SCI USA, V91, P8147
DALBIES R, 1995, NUCLEIC ACIDS RES, V23, P949
DANON J, 1967, J MOL STRUCT, V1, P127
DARENSBOURG DJ, 1996, INORG CHEM, V35, P4764
DAROCHA ZN, 1997, ADV CHEM SER, V253, P297
DAS D, 1998, J CHEM SOC DALT 1207, P3987
DEACON GB, 1968, J AM CHEM SOC, V90, P493
DELMEDICO A, 1994, INORG CHEM, V33, P1583
DELMEDICO A, 1995, INORG CHEM, V34, P1507
DELMEDICO A, 1998, INORG CHIM ACTA, V281, P126
DEMADIS KD, 1998, INORG CHEM, V37, P3610
DEMADIS KD, 1998, INORG CHEM, V37, P838
DIXON NE, 1983, INORG CHEM, V22, P4038
DULEPOV VE, 1994, REACT KINET CATAL L, V53, P289
EICHELE K, 1994, INORG CHEM, V33, P2766
ELLIS WR, 1982, INORG CHEM, V21, P834
ELTABL AS, 1998, POL J CHEM, V72, P519
EPPS LA, 1972, J CHEM SOC CHEM COMM, P109
ERTEM G, 1997, J AM CHEM SOC, V119, P7197
FAIRLIE DP, 1985, INORG CHEM, V24, P3199
FAIRLIE DP, 1988, INORG CHIM ACTA, V150, P81
FAIRLIE DP, 1989, INORG CHEM, V28, P1983
FAIRLIE DP, 1990, INORG CHEM, V29, P3145
FAIRLIE DP, 1991, INORG CHEM, V30, P1564
FAIRLIE DP, 1994, INORG CHEM, V33, P6425
FAIRLIE DP, 1997, INORG CHEM, V36, P1020
FAIRLIE DP, 1997, INORG CHEM, V36, P1029
FAIRLIE DP, 1997, INORG CHEM, V36, P2242
FAIRLIE DP, 1999, INORG CHIM ACTA, V290, P133
FERRARO JR, 1978, INORG CHIM ACTA, V26, L15
FERRER S, 1992, J CHEM SOC DALT 1021, P3029
FOMITCHEV DV, 1996, INORG CHEM, V35, P7021
FOMITCHEV DV, 1999, CHEM COMMUN, P2013
FOMITCHEV DV, 1999, COMMENT INORG CHEM A, V21, P131
FRASER RTM, 1967, ADV CHEM SER, V62, P295
FROHLING CDW, 1997, J CHEM SOC DALT 1121, P4411
FULTZ WC, 1980, INORG CHIM ACTA LETT, V45, L271
FURLANI C, 1980, INORG CHIM ACTA LETT, V44, L313
GASWICK D, 1978, J INORG NUCL CHEM, V40, P437
GIBNEY SC, 1999, INORG CHEM, V38, P2898
GIRAUDPANIS MJ, 2000, PHARMACOL THERAPEUT, V85, P175
GOODGAME DM, 1968, SPECTROCHIM ACTA A, V24, P1254
GORDON CM, 1991, J PHYS CHEM-US, V95, P2889
GRENTHE I, 1979, INORG CHEM, V18, P1109
GRENTHE I, 1979, INORG CHEM, V18, P1869
GUO ZJ, 1999, ANGEW CHEM INT EDIT, V38, P1513
GUTTERMAN DF, 1969, J AM CHEM SOC, V91, P3105
GUTTMAN A, 1996, ELECTROPHORESIS, V17, P412
HAIM A, 1966, J AM CHEM SOC, V88, P434
HALL JH, 1990, INORG CHEM, V29, P3806
HARMAN WD, 1988, J AM CHEM SOC, V110, P2439
HARMAN WD, 1988, J AM CHEM SOC, V110, P5403
HARMAN WD, 1989, INORG CHEM, V28, P2411
HASSEL RL, 1974, INORG CHIM ACTA, V8, P155
HEYNS AM, 1989, SPECTROCHIM ACTA A, V45, P905
HITCHMAN MA, 1982, COORDIN CHEM REV, V42, P55
HOHMAN WH, 1974, J CHEM EDUC, V51, P553
HORROCKS WD, 1982, INORG CHEM, V21, P3270
HOUSE JE, 1993, INORG CHEM, V32, P1053
HUBBARD JL, 1993, INORG CHEM, V32, P3333
HUBBARD JL, 1993, INORG CHEM, V32, P4670
HUBINGER S, 1991, INORG CHEM, V30, P3707
HUBINGER S, 1993, INORG CHEM, V32, P2394
HUNT CT, 1982, INORG CHEM, V21, P1242
IENGO E, 1999, J CHEM SOC DALTON, P3361
ILAN Y, 1983, INORG CHEM, V22, P1655
ILAN Y, 1986, INORG CHEM, V25, P2350
IYENGAR RR, 1975, J INORG NUCL CHEM, V37, P75
JACKSON WG, 1980, INORG CHEM, V19, P904
JACKSON WG, 1980, REARRANGEMENTS GROUN, V2, P273
JACKSON WG, 1981, J CHEM EDUC, V58, P734
JACKSON WG, 1982, AUST J CHEM, V35, P1561
JACKSON WG, 1982, J CHEM SOC CHEM COMM, P70
JACKSON WG, 1991, J CHEM EDUC, V68, P903
JACKSON WG, 1993, INORG CHEM, V32, P445
JACKSON WG, 1994, INORG CHEM, V33, P1921
JACOBSON SE, 1973, INORG CHEM, V12, P717
JANIK MBL, 1999, J BIOL INORG CHEM, V4, P645
JOHNSON A, 1993, INORG CHIM ACTA, V210, P151
JOHNSON DA, 1975, INORG NUCL CHEM LETT, V11, P23
JOHNSON DA, 1979, INORG CHEM, V18, P3273
JOHNSON KA, 1973, INORG CHEM, V12, P124
JORGENSEN SM, 1893, Z ANORG ALLG CHEM, V5, P169
JURETIC R, 1979, J CHEM SOC DA, P2029
JURISSON S, 1998, INORG CHEM, V37, P1922
KAKISHITA T, 1994, KOBUNSHI RONBUNSHU, V51, P59
KAKOTI M, 1993, POLYHEDRON, V12, P783
KAMINSKAIA NV, 1997, INORG CHEM, V36, P5917
KAMINSKAIA NV, 1998, INORG CHEM, V37, P4302
KARGOL JA, 1980, INORG CHEM, V19, P1515
KASPARKOVA J, 1999, BIOCHEMISTRY-US, V38, P10997
KATZ NE, 1993, INORG CHEM, V32, P5391
KAUFFMAN GB, 1973, COORDINATION CHEM RE, V11, P161
KERN JM, 2000, INORG CHEM, V39, P1555
KHAN AR, 1995, INORG CHIM ACTA, V234, P109
KIRK AD, 1995, INORG CHEM, V34, P1536
KOB NE, 1994, TRANSIT METAL CHEM, V19, P31
KOHLE O, 1996, INORG CHEM, V35, P4779
KOJIMA M, 1994, B CHEM SOC JPN, V67, P869
KOJIMA M, 1996, B CHEM SOC JPN, V69, P2889
KOJIMA M, 1997, J CHROMATOGR A, V789, P273
KOLIS SP, 1996, ORGANOMETALLICS, V15, P245
KOLLE U, 1991, ANGEW CHEM INT EDIT, V30, P956
KRUMM M, 1993, INORG CHEM, V32, P700
KUBOTA M, 1992, ACTA CRYSTALLOGR B, V48, P627
KULASINGAM GC, 1968, J CHEM SOC A, P254
KUNZE U, 1985, CHEM BER, V118, P227
LACEY MJ, 1974, J CHEM SOC DA, P1215
LACEY MJ, 1978, AUST J CHEM, V31, P1449
LANGE I, 1997, Z ANORG ALLG CHEM, V623, P1665
LAUER JL, 1972, INORG CHEM, V11, P907
LAY PA, 1991, ADV INORG CHEM RAD, V37, P219
LEE YA, 1999, INORG CHEM, V38, P531
LEIGH GL, 1990, NOMENCLATURE INORGAN, P98
LEISING RA, 1996, INORG CHIM ACTA, V245, P167
LELJ F, 1995, THEOR CHIM ACTA, V91, P199
LIM BS, 1998, INORG CHEM, V37, P4898
LINDNER E, 1972, CHEM BER, V105, P1032
LINDNER E, 1973, CHEM BER, V106, P404
LINDNER E, 1975, CHEM BER, V108, P291
LIVOREIL A, 1997, J AM CHEM SOC, V119, P12114
MACARTNEY DH, 1981, INORG CHEM, V20, P748
MACARTNEY DH, 1981, J CHEM SOC DA, P1780
MACATANGAY AV, 1999, INORG CHEM, V38, P5091
MALIN JM, 1977, J CHEM EDUC, V54, P385
MARES M, 1978, INORG CHIM ACTA, V27, P153
MARES M, 1982, INORG CHIM A-ARTICLE, V60, P123
MASCIOCCHI N, 1994, INORG CHEM, V33, P2579
MASLAK P, 1991, J AM CHEM SOC, V113, P1062
MASSAFERRO A, 1992, AN QUIM-INT, V88, P230
MATSUBARA T, 1979, INORG CHEM, V18, P1956
MILNE C, 1996, CAN J CHEM, V74, P1889
MIYOSHI K, 1983, INORG CHEM, V22, P1839
MROZINSKI J, 1992, POLYHEDRON, V11, P2867
MURATA M, 1998, COORDIN CHEM REV, V174, P109
MURATI I, 1978, J CHEM SOC DA, P500
MURMANN RK, 1956, J AM CHEM SOC, V78, P4886
MYERS WH, 1992, J AM CHEM SOC, V114, P5684
NAKAMOTO K, 1958, J AM CHEM SOC, V80, P4817
NICHOLSON RS, 1964, ANAL CHEM, V36, P706
NORBURY AH, 1975, J INORG NUCL CHEM, V37, P2133
NORITAKE M, 1992, BER BUNSEN PHYS CHEM, V96, P857
NOVIKOV PB, 1998, J STRUCT CHEM+, V39, P333
NUNES FS, 1994, INORG CHEM, V33, P3111
NUNES FS, 1999, J COORD CHEM, V47, P251
OGINO H, 1984, CHEM LETT, P561
OKEYA S, 1978, INORG CHIM ACTA, V30, L319
ONYSZCHUK M, 1983, J ORGANOMET CHEM, V249, C9
OOYAMA D, 1995, INORG CHEM, V34, P6024
OOYAMA D, 1996, CHEM LETT, P759
OOYAMA D, 1997, B CHEM SOC JPN, V70, P2141
PALMER BJ, 1993, J PHOTOCH PHOTOBIO A, V72, P243
PALMER DA, 1978, INORG CHIM ACTA, V30, P83
PARAC TN, 1996, J AM CHEM SOC, V118, P5946
PARAC TN, 1998, INORG CHEM, V37, P2141
PARAC TN, 1999, J AM CHEM SOC, V121, P3127
PAUL P, 1992, CAN J CHEM, V70, P2461
PAVLOVIC D, 1973, J CHEM SOC DA, P602
PAVLOVIC D, 1976, J CHEM SOC DA, P2406
PAVLOVIC D, 1982, ACTA PHARM JUGOSL, V32, P153
PHILLIPS WM, 1990, J CHEM EDUC, V67, P267
PIAO LH, 1996, POLYHEDRON, V15, P3107
PIAO LH, 1997, POLYHEDRON, V16, P3033
PIKE RD, 1993, ORGANOMETALLICS, V12, P1416
PODBEREZSKAYA NV, 1991, J STRUCT CHEM, V32, P693
PREETZ W, 1995, Z ANORG ALLG CHEM, V621, P725
PURCELL WL, 1983, INORG CHEM, V22, P1205
RAEHM L, 1999, CHEM-EUR J, V5, P3310
REDDY KB, 1991, INORG CHEM, V30, P596
REGUERA E, 1998, POLYHEDRON, V17, P2353
REIN FN, 2001, J COORD CHEM, V53, P99
REN T, 1993, J AM CHEM SOC, V115, P11341
RICCIERI P, 1997, INORG CHIM ACTA, V255, P229
RIEVAJ M, 1992, B SOC CHIM BELG, V101, P671
RIEVAJ M, 1993, COLLECT CZECH CHEM C, V58, P1371
RIEVAJ M, 1993, COLLECT CZECH CHEM C, V58, P328
RIEVAJ M, 1993, COLLECT CZECH CHEM C, V58, P530
RIEVAJ M, 1994, INORG CHIM ACTA, V216, P113
RIEVAJ M, 1995, INORG CHIM ACTA, V228, P153
RINDERMANN W, 1982, INORG CHIM ACTA, V61, P173
ROCHA RC, 1998, TRANSIT METAL CHEM, V23, P13
ROHDE JU, 1997, Z ANORG ALLG CHEM, V623, P1774
ROHDE JU, 1998, Z ANORG ALLG CHEM, V624, P1319
RUILE S, 1997, INORG CHIM ACTA, V261, P129
RUILE S, 1998, NEW J CHEM, V22, P25
RUTHERFORD PE, 1980, SPECTROSC LETT, V13, P427
SADO M, 1996, POLYHEDRON, V15, P103
SAMATH SA, 1992, POLYHEDRON, V11, P33
SAMATH SA, 1994, INDIAN J CHEM A, V33, P779
SANO M, 1991, J AM CHEM SOC, V113, P2327
SANO M, 1994, INORG CHEM, V33, P705
SANO M, 1996, B CHEM SOC JPN, V69, P977
SATO Y, 2000, ANAL CHEM, V72, P1207
SAUVAGE JP, 1998, ACCOUNTS CHEM RES, V31, P611
SAWAI H, 1996, J BIOMOL STRUCT DYN, V13, P1043
SCHMIDT RR, 1980, CHEM BER, V113, P2891
SEKI H, 1997, J PHYS CHEM A, V101, P8174
SEMRAU M, 1996, Z ANORG ALLG CHEM, V622, P1953
SILVA DO, 1994, CAN J CHEM, V72, P1705
SLOAN TE, 1968, INORG CHEM, V7, P1268
SMITH MK, 2000, EUR J INORG CHEM JUN, P1365
SNOW MR, 1972, ACTA CRYSTALLOGR B, V28, P1908
SOVAGO I, 1995, J CHEM SOC DA, P489
STARK GA, 1997, ORGANOMETALLICS, V16, P2909
STOCHEL G, 1992, INORG CHEM, V31, P5480
SUH MP, 1996, J AM CHEM SOC, V118, P777
SULLIVAN TR, 1977, J CHEM SOC DA, P1460
SZECSY AP, 1982, J AM CHEM SOC, V104, P3063
TAKI T, 1997, FEBS LETT, V418, P219
TAUBE H, 1991, PURE APPL CHEM, V63, P651
THIELE G, 1980, Z ANORG ALLG CHEM, V464, P255
THOMPSON DW, 1999, J CHEM SOC DALTON, P3729
TIMONOVA IN, 1987, J STRUCT CHEM, V28, P518
TOMA HE, 1973, INORG CHEM, V12, P1039
TOMA HE, 1973, INORG CHEM, V12, P2080
TOMA HE, 1973, INORG CHEM, V12, P2084
TOMA HE, 1974, INORG CHEM, V13, P1772
TOMA HE, 1978, J CHEM SOC DA, P1610
TOMA HE, 1982, AN ACAD BRAS CIENC, V54, P315
TOMA HE, 1982, J AM CHEM SOC, V104, P7509
TOMA HE, 1982, POLYHEDRON, V1, P429
TOMA HE, 1983, CAN J CHEM, V61, P2520
TOMA HE, 1985, J CHEM SOC DA, P2469
TOMA HE, 1989, AN ACAD BRAS CIENC, V61, P131
TOMA HE, 1989, POLYHEDRON, V8, P941
TOMA HE, 1991, J COORD CHEM, V24, P1
TOMA HE, 1993, ELECTROCHIM ACTA, V38, P975
TOMA HE, 2000, AN ACAD BRAS CIENC, V72, P1
TOMITA A, 1994, INORG CHEM, V33, P5825
TREADWAY JA, 1999, INORG CHEM, V38, P2267
VAUDO AF, 1971, J AM CHEM SOC, V93, P6698
VIROVETS AV, 1994, J STRUCT CHEM, V35, P236
VOGT JU, 1995, Z ANORG ALLG CHEM, V621, P1033
WALKER R, 1980, J CHEM EDUC, V57, P789
WANG R, 1992, J AM CHEM SOC, V114, P1964
WATSON AA, 1995, INORG CHEM, V34, P3087
WEI HH, 1984, INORG CHEM, V23, P624
WERNER A, 1907, BER DTSCH CHEM GES 1, V40, P765
WIENKEN M, 1993, J CHEM SOC DA, P3349
WOON TC, 1992, INORG CHEM, V31, P4069
WOON TC, 1993, INORG CHEM, V32, P2190
YAMAGUCHI A, 1958, J AM CHEM SOC, V80, P527
YAMANARI K, 1993, J CHEM SOC DALTON, P403
YAMANARI K, 1996, J CHEM SOC DALT 0207, P305
YAMAZAKI S, 1986, POLYHEDRON, V5, P1183
YEH A, 1982, INORG CHEM, V21, P2542
ZHU NY, 1994, ANGEW CHEM INT EDIT, V33, P2090
ZHU NY, 1997, CHEM BER-RECL, V130, P1241
ZMIKIC A, 1975, CROAT CHEM ACTA, V47, P117
NR 348
TC 7
PU CROATIAN CHEMICAL SOC
PI ZAGREB
PA MARULICEV TRG 19/II, 41001 ZAGREB, CROATIA
SN 0011-1643
J9 CROAT CHEM ACTA
JI Croat. Chem. Acta
PD AUG
PY 2001
VL 74
IS 3
SI Sp. Iss. SI
BP 499
EP 528
PG 30
SC Chemistry, Multidisciplinary
GA 469JN
UT ISI:000170810900004
ER
PT J
AU Baierle, RJ
Fagan, SB
Mota, R
da Silva, AJR
Fazzio, A
TI Electronic and structural properties of silicon-doped carbon nanotubes
SO PHYSICAL REVIEW B
LA English
DT Article
ID AB-INITIO CALCULATIONS; LARGE SYSTEMS; BORON; CLUSTERS; MICROTUBULES;
CONDUCTANCE; FULLERENES; NITROGEN; DEFECTS
AB Predictions of the electronic and structural properties of silicon
substitutional doping in carbon nanotubes are presented using
first-principles calculations based on the density-functional theory. A
large outward displacement of the Si atom and its nearest-neighbor
carbon atoms is observed. For the two tubes studied [metallic (6,6) and
semiconducting ( 10,0)] the formation energies of the substitutional
defects are obtained around 3.1 eV/atom. In the doped metallic nanotube
case a resonant state appears about 0.7 eV above the Fermi level,
whereas for the semiconductor tube, the silicon introduces an empty
level at approximately 0.6 eV above the top of the valence band.
C1 Ctr Univ Franciscano, Dept Ciencias Exatas, BR-97010032 Santa Maria, RS, Brazil.
Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Baierle, RJ, Ctr Univ Franciscano, Dept Ciencias Exatas, BR-97010032
Santa Maria, RS, Brazil.
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BILLAS IML, 1999, J CHEM PHYS, V111, P6787
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHARLIER JC, 1996, PHYS REV B, V53, P11108
CHICO L, 1996, PHYS REV LETT, V76, P971
CHOI HJ, 2000, PHYS REV LETT, V84, P2917
FAGAN SB, 2000, PHYS REV B, V61, P9994
FU CC, 2001, PHYS REV B, V63
FYE JL, 1997, J PHYS CHEM A, V101, P1836
GOLBERG D, 2000, CARBON, V38, P2017
HAMADA N, 1992, PHYS REV LETT, V68, P1579
IIJIMA S, 1991, NATURE, V354, P56
KIMURA T, 1996, CHEM PHYS LETT, V256, P269
MIYAMOTO Y, 1996, PHYS REV LETT, V76, P2121
ORDEJON P, 1996, PHYS REV B, V53
PELLARIN M, 1999, J CHEM PHYS, V110, P6927
PERDEW JP, 1981, PHYS REV B, V23, P5048
RAY C, 1998, PHYS REV LETT, V80, P5365
SAITO R, 1992, APPL PHYS LETT, V60, P2204
SAITO R, 1996, PHYS REV B, V53, P2044
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANKEY OF, 1989, PHYS REV B, V40, P3979
STEPHAN O, 1994, SCIENCE, V266, P1683
SUENAGA K, 1997, SCIENCE, V278, P653
TANS SJ, 1997, NATURE, V386, P474
TERRONES M, 1996, CHEM PHYS LETT, V257, P576
TROULLIER N, 1991, PHYS REV B, V43, P1993
XIE RH, 1999, CHEM PHYS LETT, V310, P379
NR 28
TC 24
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 15
PY 2001
VL 6408
IS 8
BP art. no.
EP 085413
AR 085413
PG 4
SC Physics, Condensed Matter
GA 466AW
UT ISI:000170623000096
ER
PT J
AU Dorfman, S
Liubich, V
Fuks, D
Mundim, KC
TI Simulations of decohesion and slip of the Sigma(3) < 111 > grain
boundary in tungsten with non-empirically derived interatomic
potentials: the influence of boron interstitials
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID EMBEDDED-ATOM-METHOD; ELECTRONIC-STRUCTURE; INTERGRANULAR COHESION;
MOLECULAR-DYNAMICS; TRANSITION-METALS; VACANCY-FORMATION; PAIR
POTENTIALS; ALLOYS; IMPURITIES; IRON
AB Monte Carlo atomistic simulations of the properties Of Sigma (3) < 111
> grain boundaries in W are carried out. We demonstrate the influence
of boron additive on the resistance of the grain boundary with respect
to different shifts. The interatomic potentials used in these
simulations are obtained from ab initio total-energy calculations.
These calculations are performed in the framework of density functional
theory in the coherent potential approximation. A recursion procedure
for extracting A-B-type interatomic potentials is suggested.
C1 Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel.
Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
RP Dorfman, S, Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa,
Israel.
CR ACKLAND GJ, 1990, PHYS REV B, V41, P10324
ANDERSON PM, 1987, P 34 SAG ARM MAT RES, P619
AREAS EPG, 1995, J PHYS CHEM-US, V99, P14882
BADALYAN DA, 1970, SOV PHYS-SOLID STATE, V12, P346
BAKER I, 1998, INTERMETALLICS, V6, P177
BAZANT MZ, 1996, MAT THEORY SIMULATIO, P48
BAZANT MZ, 1996, PHYS REV LETT, V77, P4370
BROVMAN EG, 1974, SOV PHYS USP, V17, P125
CARLSSON AE, 1983, PHYS REV B, V27, P2101
CARLSSON AE, 1985, PHYS REV B, V32, P4866
CARLSSON AE, 1991, PHYS REV B, V44, P6590
CHEN NX, 1994, PHYS LETT A, V195, P135
CHISHOLM MF, 1998, PHYS REV LETT, V81, P132
CONNOLLY JWD, 1983, PHYS REV B, V27, P5169
DAVIDOV G, 1995, PHYS REV B, V51, P13059
DAW MS, 1984, PHYS REV B, V29, P6443
DEFONTAINE D, 1994, SOLID STATE PHYS, V47, P33
DEKONING M, 1998, PHYS REV B, V58, P12555
DORFMAN S, 1998, INT J QUANTUM CHEM, V70, P1067
DORFMAN S, 2000, J PHYS-CONDENS MAT, V12, P4175
ELLIS DE, 1999, PHILOS MAG B, V79, P1615
FAULKNER JS, 1982, PROG MATER SCI, V27, P1
FINNIS MW, 1984, PHILOS MAG A, V50, P45
FOILES SM, 1986, PHYS REV B, V33, P7983
FOREMAN AJE, 1992, PHILOS MAG A, V66, P655
FUKS D, 1994, PHYS REV B, V50, P16340
FUKS DL, 1977, PHYS MET METALLOGR, V43, P139
GE XJ, 1999, J APPL PHYS, V85, P3488
GIFKINS RC, 1994, MATER CHARACT, V32, P59
GRUJICIC M, 1997, INT J REFRACT MET H, V15, P341
GUTTMANN M, 1979, INTERFACIAL SEGREGAT, P261
JUSTO JF, 1998, PHYS REV B, V58, P2539
KAUFMAN L, 1970, COMPUTER CALCULATION
KHACHATURYAN AG, 1983, THEORY STRUCTURAL TR
KRASKO GL, 1990, SOLID STATE COMMUN, V76, P247
KRASKO GL, 1991, SOLID STATE COMMUN, V79, P113
KRASKO GL, 1993, SCRIPTA METALL MATER, V28, P1543
KRASKO GL, 1994, INT J REFRACT MET H, V12, P251
KRASKO GL, 1997, MAT SCI ENG A-STRUCT, V234, P1071
KRIVOGLAZ MA, 1964, THEORY ORDER DISORDE
KURTZ RJ, 1999, PHILOS MAG A, V79, P665
LIUBICH V, 1999, MATER T JIM, V40, P132
MAHAN GD, 1981, MANY PARTICLE PHYSIC
MAIER K, 1979, PHILOS MAG A, V40, P701
MESCALL JF, 1987, P 34 SAG ARM MAT RES, P287
MOLL N, 1995, PHYS REV B, V52, P2550
MOLTENI C, 1996, PHYS REV LETT, V76, P1284
MORET MA, 1998, J COMPUT CHEM, V19, P647
MUKERJEE AK, 1993, MAT SCI TECHNOL, V6, P407
MUNDIM KC, 1996, INT J QUANTUM CHEM, V58, P373
MUNDY JN, 1978, PHYS REV B, V18, P6566
PAVAROVA KB, 1987, IZV ACAD NAUK SSSR M, V1, P134
PAVAROVA KB, 1990, IZV ACAD NAUK SSSR M, V1, P76
RICE JR, 1989, MAT SCI ENG A-STRUCT, V107, P23
RUBAN AV, 1995, PHYS REV B, V51, P12958
SCHMIDT C, 1995, PHYS REV LETT, V75, P2160
SHAOJUN L, 1998, PHYS REV B, V58, P9705
TOLSTOBROV YO, 1987, FIZIKA KHIMIYA OBRAB, V21, P121
WEI X, 1994, SURF SCI, V301, P371
WU R, 1993, PHYS REV B, V47, P6885
WU RQ, 1992, J MATER RES, V7, P2403
WU RQ, 1994, PHYS REV B, V50, P75
WU RQ, 1994, SCIENCE, V265, P376
ZHANG WQ, 1997, J APPL PHYS, V82, P578
NR 64
TC 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD AUG 6
PY 2001
VL 13
IS 31
BP 6719
EP 6740
PG 22
SC Physics, Condensed Matter
GA 466UD
UT ISI:000170663800015
ER
PT J
AU Okulik, NB
Diez, RP
Jubert, AH
Esteves, PM
Mota, CJA
TI A topological study of the transition states of the hydrogen exchange
and dehydrogenation reactions of methane on a zeolite cluster
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID AB-INITIO; MECHANISM; ALKANES; PROTON; CD4
AB The transition states of the hydrogen exchange and dehydrogenation
reactions of methane on a zeolite acid site are studied within the
framework of the density functional theory and the atoms-in-molecules
theory. The transition state for the hydrogen exchange reaction is
found to be characterized by a slightly ionic interaction between a
distorted CH5+ structure and the negatively charged zeolite. No free
carbocation is found. The dehydrogenation reaction presents a
transition state in which three different fragments can be well
identified, namely, an almost planar CH3+ structure, a H-2
pseudomolecule, and the negatively charged zeolite. The interaction
between the fragments can be described as a closed-shell one, typical
of rather ionic systems.
C1 Natl Univ La Plata, Fac Ciencias Exactas, Ctr Quim Inorgan, CEQUINOR,Dept Quim, RA-1900 La Plata, Argentina.
UNNE, Fac Agroind, Dept Quim, RA-3700 Pena, Chaco, Argentina.
Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Diez, RP, Natl Univ La Plata, Fac Ciencias Exactas, Ctr Quim Inorgan,
CEQUINOR,Dept Quim, CC 962, RA-1900 La Plata, Argentina.
CR BADER RFW, 1990, ATOMS MOL QUANTUM TH
BADER RFW, 1998, J PHYS CHEM A, V102, P7314
BAKER J, 1987, J COMPUT CHEM, V8, P563
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BLASZKOWKI SR, 1994, J PHYS CHEM-US, V98, P11332
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BLASZKOWSKI SR, 1997, TOP CATAL, V4, P145
BLIEGERKONIG FW, 1982, J COMPUT CHEM, V3, P317
BORONAT M, 1998, J PHYS CHEM A, V102, P9863
COLLARD K, 1977, INT J QUANTUM CHEM, V12, P623
CORMA A, 1995, CHEM REV, V95, P559
CREMER D, 1983, J AM CHEM SOC, V105, P5069
ESTEVES PM, 1999, J PHYS CHEM B, V103, P10417
EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
FRISCH MJ, 1995, GAUSSIAN 94
HOHENBERG P, 1965, PHYS REV A, V140, P1133
KAZANSKY VB, 1994, CATAL LETT, V28, P211
KRAMER GJ, 1993, NATURE, V363, P529
KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
LEE C, 1988, PHYS REV B, V37, P785
LINS JOMDL, 1996, THEOCHEM-J MOL STRUC, V371, P237
PARR RG, 1989, DENSITY FUNCTIONAL T
POPELIER PLA, 1999, ATOMS MOL INTRO
RIGBY AM, 1997, J CATAL, V170, P1
VANSANTEN RA, 1995, CHEM REV, V95, P637
VANSANTEN RA, 1997, CATAL TODAY, V38, P377
WANG LS, 1993, CATAL LETT, V21, P35
NR 27
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUL 26
PY 2001
VL 105
IS 29
BP 7079
EP 7084
PG 6
SC Chemistry, Physical
GA 457TH
UT ISI:000170152600015
ER
PT J
AU Pliego, JR
Riveros, JM
TI The cluster-continuum model for the calculation of the solvation free
energy of ionic species
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID STATISTICAL PERTURBATION-THEORY; PERIODIC BOUNDARY-CONDITIONS;
SELF-CONSISTENT-FIELD; AB-INITIO; MOLECULAR-DYNAMICS; HYDROXIDE ION;
AQUEOUS SOLVATION; LIQUID WATER; THERMODYNAMIC INTEGRATION; POTENTIAL
FUNCTIONS
AB A hybrid approach using a combination of explicit solvent molecules and
the isodensity polarizable continuum model (IPCM) method is proposed
for the calculation of the solvation thermodynamic properties of ions.
This model, denominated cluster-continuum, has been applied to the
calculation of the solvation free energy of 14 univalent ions, mainly
organic species, and compared with the results obtained with the IPCM,
polarizable continuum solvation model (PCM), and SM5.42R continuum
methods. The average error in our calculated solvation free energies
with respect to experimental data is 8.7 kcal mol(-1). However, the
great merit of our model resides in the homogeneous treatment for
different ions, resulting in a standard deviation of only 2.9 kcal
mol(-1) for the average error. Our results suggest that the
cluster-continuum model must be superior to the IPCM, PCM, and SM5.42R
methods for studying chemical reactions in the liquid phase, because
these continuum methods present a standard deviation of similar to8
kcal mol(-1) for the average error for the species studied in this
work. The model can also be used to calculate the solvation entropy of
ions. Predicted solvation entropies for five ionic species are in good
agreement with available experimental data.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Pliego, JR, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05508900
Sao Paulo, Brazil.
CR ALEMAN C, 1999, CHEM PHYS LETT, V302, P461
ALLEN MP, 1989, COMPUTER SIMULATION
AQVIST J, 1990, J PHYS CHEM-US, V94, P8021
AQVIST J, 1994, J PHYS CHEM-US, V98, P8253
AQVIST J, 1996, J PHYS CHEM-US, V100, P9512
ASHBAUGH HS, 1997, J CHEM PHYS, V106, P8135
BANDYOPADHYAY P, 2000, J CHEM PHYS, V113, P1104
BENNAIM A, 1978, J PHYS CHEM-US, V82, P792
CARLSON HA, 1993, J COMPUT CHEM, V14, P1240
CHABAN GM, 1999, J CHEM PHYS, V111, P1823
CHAMBERS CC, 1996, J PHYS CHEM-US, V100, P16385
CHIPOT C, 1994, J PHYS CHEM-US, V98, P11362
CLAVERIE P, 1978, J PHYS CHEM-US, V82, P405
CONSTANCIEL R, 1984, THEOR CHIM ACTA, V65, P1
COSSI M, 1996, CHEM PHYS LETT, V255, P327
CRAMER CJ, 1992, SCIENCE, V256, P213
CRAMER CJ, 1999, CHEM REV, V99, P2161
DARDEN T, 1998, J CHEM PHYS, V109, P10921
FLORIAN J, 1997, J PHYS CHEM B, V101, P5583
FLORIS F, 1995, CHEM PHYS, V195, P207
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FREITAS LCG, 1992, J CHEM SOC FARADAY T, V88, P189
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
GRIMM AR, 1995, MOL PHYS, V86, P369
HUMMER G, 1996, J PHYS CHEM-US, V100, P1206
HUMMER G, 1997, J PHYS CHEM B, V101, P3017
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JORGENSEN WL, 1987, J PHYS CHEM-US, V91, P6083
JORGENSEN WL, 1989, CHEM PHYS, V129, P193
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1993, J COMPUT CHEM, V14, P195
KOLLMAN P, 1993, CHEM REV, V93, P2395
LANGLET J, 1988, J PHYS CHEM-US, V92, P1617
LI J, 1999, GAMESOL VERSION 2 2
LI JB, 1998, CHEM PHYS LETT, V288, P293
MARCOS ES, 1991, J PHYS CHEM-US, V95, P8928
MARCUS Y, 1986, J CHEM SOC FARAD T 1, V82, P233
MARRONE TJ, 1994, J PHYS CHEM-US, V98, P8256
MEZEI M, 1987, J CHEM PHYS, V86, P7084
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
PLIEGO JR, 2000, CHEM PHYS LETT, V332, P597
PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
PLIEGO JR, 2000, J PHYS CHEM B, V104, P5155
RICK SW, 1994, J AM CHEM SOC, V116, P3949
SAKANE S, 1998, J PHYS CHEM B, V102, P5673
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SINGH UC, 1987, J AM CHEM SOC, V109, P1607
STEFANOVICH EV, 1995, CHEM PHYS LETT, V244, P65
STRAATSMA TP, 1986, J CHEM PHYS, V85, P6720
STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
TISSANDIER MD, 1998, J PHYS CHEM A, V102, P7787
TOMASI J, 1994, CHEM REV, V94, P2027
TOPOL IA, 1999, J CHEM PHYS, V111, P10998
TUNON I, 1993, J PHYS CHEM-US, V97, P5547
TUNON I, 1995, J PHYS CHEM-US, V99, P3798
WONG MW, 1991, J AM CHEM SOC, V113, P4776
WOOD RH, 1995, J CHEM PHYS, V103, P6177
NR 59
TC 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 2
PY 2001
VL 105
IS 30
BP 7241
EP 7247
PG 7
SC Chemistry, Physical
GA 457TJ
UT ISI:000170152700015
ER
PT J
AU Persson, C
da Silva, AF
Ahuja, R
Johansson, B
TI Effective electronic masses in wurtzite and zinc-blende GaN and AlN
SO JOURNAL OF CRYSTAL GROWTH
LA English
DT Article
DE computer simulation; crystal structure; nitrides; semiconducting III-V
materials
ID GENERALIZED GRADIENT APPROXIMATION; LOCAL-DENSITY APPROXIMATION;
OPTICAL BAND-GAP; GALLIUM NITRIDE; EPITAXIAL-GROWTH; HEXAGONAL GAN; 001
SILICON; THIN-FILMS; ENERGY; AIN
AB The effective electron and hole masses are fundamental quantities of
semiconductors, used in numerous analyses of experiments and
theoretical investigations. We present calculations of the band
structure near the band edges in intrinsic GaN and AIN, both for the
wurtzite and the zinc-blende polytypes. We have utilized a
full-potential linearized augmented plane wave method within the
density functional theory and with two different exchange-correlation
potentials. The lattice parameters have been determined by a
minimization of the total energy, whereupon the crystal-field
splitting, the spin-orbit splitting, and the effective electron and
hole masses have been calculated. The calculated effective masses are
in good agreement with available experimental values. We show the
importance of performing a fully relativistic calculation. For
instance, the hole mass in cubic AIN is a very large and negative
quantity if the spin-orbit coupling is excluded, whereas the fully
relativistic calculation gives a relatively small and positive value.
(C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Uppsala, Dept Phys, SE-75121 Uppsala, Sweden.
Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil.
RP Persson, C, Univ Uppsala, Dept Phys, Box 530, SE-75121 Uppsala, Sweden.
CR BACHELET GB, 1985, PHYS REV B, V31, P879
BECHSTEDT F, 1988, PHYS REV B, V38, P7710
BLAHA P, 1999, WIEN97 FULL POTENTIA
CUNNINGHAM RD, 1972, J LUMIN, V5, P21
DRECHSLER M, 1995, JPN J APPL PHYS, V34, P1178
HARRISON WA, 1980, ELECT STRUCTURE PROP
KHAN MA, 1993, APPL PHYS LETT, V62, P1786
KIM K, 1997, PHYS REV B, V56, P7363
KOHN W, 1965, PHYS REV, V140, A1133
KOHN W, 1986, PHYS REV B, V33, P4331
KOSICKI BB, 1970, PHYS REV LETT, V24, P1421
LAX B, 1955, PHYS REV, V100, P1650
LEI T, 1991, APPL PHYS LETT, V59, P944
LEI T, 1992, J APPL PHYS, V71, P4933
MONEMAR B, 1974, PHYS REV B, V10, P676
NAKAMURA S, 1995, JPN J APPL PHYS, V34, L1332
PAISLEY MJ, 1989, J VAC SCI TECHNOL A, V7, P701
PERDEW JP, 1992, PHYS REV B, V45, P13244
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PERRY PB, 1978, APPL PHYS LETT, V33, P319
PERSSON C, 1997, J APPL PHYS, V82, P5496
PERSSON C, 1999, J APPL PHYS, V86, P5036
PERSSON C, 1999, THESIS LINKOPING
PERSSON C, 2001, J CRYST GROWTH, V231, P407
PERSSON C, 2001, PHYS REV B, V6403
PETROV I, 1992, APPL PHYS LETT, V60, P2491
RAMIREZFLORES G, 1994, PHYS REV B, V50, P8433
SCHULZ H, 1977, SOLID STATE COMMUN, V23, P815
SHAN W, 1995, APPL PHYS LETT, V66, P985
SINGH DJ, 1994, PLANEWAVES PSEUDOPOT
STAMPFL C, 1999, PHYS REV B, V59, P5521
STEUBE M, 1997, APPL PHYS LETT, V71, P948
STRIFE S, 1992, J VAC SCI TECHNOL B, V10, P1237
SUZUKI M, 1995, PHYS REV B, V52, P8132
VOLM D, 1996, PHYS REV B, V53, P16543
WITOWSKI AM, 1999, APPL PHYS LETT, V75, P4154
YEO YC, 1998, J APPL PHYS, V83, P1429
YIM WM, 1973, J APPL PHYS, V44, P292
NR 38
TC 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-0248
J9 J CRYST GROWTH
JI J. Cryst. Growth
PD OCT
PY 2001
VL 231
IS 3
BP 397
EP 406
PG 10
SC Crystallography
GA 459GB
UT ISI:000170241700012
ER
PT J
AU Perottoni, CA
da Jornada, JAH
TI The carbon analogues of type-I silicon clathrates
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; DIAMOND-LIKE MATERIALS; VALENCE BASIS-SETS;
HIGH-PRESSURE; STRUCTURAL-PROPERTIES; AB-INITIO; THERMAL-CONDUCTIVITY;
ELASTIC PROPERTIES; HARTREE-FOCK; SI
AB In this paper we present a survey on the structure and equation of
state for some silicon clathrates and their carbon analogues, as
obtained by means of ab initio calculations within the Hartree-Fock
approximation. We restrict our consideration to type-I clathrates,
namely M-x(Si, C)(46), With M = Na, Ba. The insertion of guest species
into the carbon clathrate cages promotes a significant increase in the
host volume, thus reducing the bulk modulus for these compounds. In
spite of that, the estimated hardness for C-46, Of about 61 GPa,
constitutes an exceptionally large value for a structure with such an
open framework. The issue of electronic charge transference from the
guest species to the host framework and the stability of carbon and
silicon clathrates relative to the diamond phase are also discussed.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
INMETRO, BR-25250020 Duque De Caxias, RJ, Brazil.
RP Perottoni, CA, Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto
Alegre, RS, Brazil.
CR ADAMS GB, 1992, SCIENCE, V256, P1792
ADAMS GB, 1994, PHYS REV B, V49, P8048
ANDERSON OL, 1963, J PHYS CHEM SOLIDS, V24, P909
BENEDEK G, 1995, CHEM PHYS LETT, V244, P339
BENEDEK G, 1995, NUOVO CIMENTO D, V17, P97
BERNASCONI M, 2000, PHYS REV B, V61, P12869
BETTINGER HF, 1998, CHEM COMMUN, V7, P769
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BLAKE NP, 1999, J CHEM PHYS, V111, P3133
BRUNET F, 2000, PHYS REV B, V61, P16550
BRYAN JD, 1999, PHYS REV B, V60, P3064
BUNDY FP, 1961, J CHEM PHYS, V35, P383
CATTI M, 1999, PHYS CHEM MINER, V26, P389
CLERC DG, 1998, J MATER SCI LETT, V17, P1461
CLERC DG, 1999, J PHYS CHEM SOLIDS, V60, P103
CROS C, 1965, CR HEBD ACAD SCI, V260, P4764
CROS C, 1990, INORGANIC REACTIONS, V17, P209
DONG JJ, 1999, J PHYS-CONDENS MAT, V11, P6129
DONG JJ, 2000, J APPL PHYS, V87, P7726
DOVERSI R, 1996, CRYSTAL95 USERS MANU
GILAT G, 1966, PHYS REV, V144, P390
GILLET P, 1999, PHYS REV B, V60, P14660
GORDON MS, 1982, J AM CHEM SOC, V104, P2797
HAGAN M, 1962, CLATHRATE INCLUSION
HASHIN Z, 1962, J MECH PHYS SOLIDS, V10, P335
HASHIN Z, 1962, J MECH PHYS SOLIDS, V10, P343
HU JZ, 1984, SOLID STATE COMMUN, V51, P263
IVERSEN BB, 2000, J SOLID STATE CHEM, V149, P455
KAHN D, 1997, PHYS REV B, V56, P13898
KASPER JS, 1965, SCIENCE, V150, P1713
KAWAJI H, 1995, PHYS REV LETT, V74, P1427
MENON M, 1997, PHYS REV B, V56, P12290
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
MORIGUCHI K, 2000, PHYS REV B, V61, P9859
MULLER A, 1995, ANGEW CHEM INT EDIT, V34, P2328
MURNAGHAN FD, 1944, P NATL ACAD SCI USA, V50, P697
NESPER R, 1993, ANGEW CHEM INT EDIT, V32, P701
NOLAS GS, 1998, APPL PHYS LETT, V73, P178
NOLAS GS, 2000, PHYS REV B, V61, P3845
OKADA Y, 1984, J APPL PHYS, V56, P314
OKEEFFE M, 1998, PHIL MAG LETT, V78, P21
ORLANDO R, 1990, J PHYS-CONDENS MAT, V2, P7769
PANDEY R, 1996, J PHYS-CONDENS MAT, V8, P3993
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
POWELL HM, 1948, J CHEM SOC, V61
PRENCIPE M, 1995, PHYS REV B, V51, P3391
RAMACHANDRAN GK, 1999, PHYS REV B, V60, P12294
SAITO S, 1995, PHYS REV B, V51, P2628
SAITO S, 1997, P 1 S AT SCAL SURF I, P47
SANMIGUEL A, 1999, PHYS REV LETT, V83, P5290
SEKKAL W, 1999, MAT SCI ENG B-SOLID, V64, P123
TOWLER M, UNPUB
TSE JS, 2000, PHYS REV LETT, V85, P114
YAMANAKA S, 1995, EUR J SOL STATE INOR, V32, P799
YAMANAKA S, 1995, FULLERENE SCI TECHN, V3, P21
NR 55
TC 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD JUL 2
PY 2001
VL 13
IS 26
BP 5981
EP 5998
PG 18
SC Physics, Condensed Matter
GA 455EW
UT ISI:000170015400018
ER
PT J
AU da Silva, AJR
Dalpian, GM
Janotti, A
Fazzio, A
TI Two-atom structures of Ge on Si(100): Dimers versus adatom pairs
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SI AD-DIMERS; SCANNING-TUNNELING-MICROSCOPY; HOMOEPITAXIAL GROWTH;
SI(001); DYNAMICS; SURFACE; ENERGETICS; DIFFUSION; SILICON; GE(001)
AB We present an ab initio study of the properties of structures composed
of two and four Ge atoms adsorbed on the troughs of the Si(100)
surface, and we conclude that these structures are all composed of
dimers, with a chemical bonding between the adatoms. We compare our
calculated local density of states with scanning tunneling microscope
(STM) images, and we show that these Ge dimers adsorbed on the troughs
between the substrate dimer rows can be identified with the adatom
pairs observed experimentally. We also show that the local buckling of
the substrate dimers can give rise to similar structures with very
different STM images.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Janotti, A, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BEDROSSIAN PJ, 1995, PHYS REV LETT, V74, P3648
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BOROVSKY B, 1997, PHYS REV LETT, V78, P4229
BROCKS G, 1996, PHYS REV LETT, V76, P2362
DALPIAN GM, IN PRESS SURF SCI
DALPIAN GM, 1999, PHYSICA B, V273, P589
DALPIAN GM, 2001, PHYS REV B, V63
GALEA TM, 2000, PHYS REV B, V62, P7206
KHARE SV, 1999, PHYS REV B, V60, P4458
LEIFELD O, 1999, PHYS REV LETT, V82, P972
LU ZY, 2000, PHYS REV LETT 1, V85, P5603
QIN XR, 1997, SCIENCE, V278, P1444
SWARTZENTRUBER BS, 1996, PHYS REV LETT, V76, P459
TERSOFF J, 1985, PHYS REV B, V31, P805
VANWINGERDEN J, 1997, PHYS REV B, V55, P4723
WOLKOW RA, 1995, PHYS REV LETT, V74, P4448
WULFHEKEL W, 1997, PHYS REV LETT, V79, P2494
YAMASAKI T, 1996, PHYS REV LETT, V76, P2949
ZANDVLIET HJW, 2000, PHYS REV LETT, V84, P1523
ZHANG ZY, 1995, PHYS REV LETT, V74, P3644
ZHANG ZY, 1997, ANNU REV MATER SCI, V27, P525
ZHANG ZY, 1997, SCIENCE, V276, P377
NR 22
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUL 16
PY 2001
VL 8703
IS 3
AR 036104
DI ARTN 036104
PG 4
SC Physics, Multidisciplinary
GA 454UF
UT ISI:000169989600034
ER
PT J
AU Resende, SM
Ornellas, FR
TI Radiative and predissociative lifetimes of the A (2)Sigma(+) state
(v(')=0,1) of SH and SD: A highly correlated theoretical investigation
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID CONFIGURATION-INTERACTION CALCULATIONS; GAUSSIAN-BASIS SETS; MOLECULAR
CALCULATIONS; A2-SIGMA+ STATE; ELECTRONIC-STRUCTURE; ROW ATOMS;
PHOTODISSOCIATION; SPECTROSCOPY; SPECTRUM; NM
AB Doublet and quartet states of the HS radical correlating with
H(S-2)+S(P-3,D-1,S-1) were investigated by ab initio calculations, at
the CASSCF-MRCI/aug-cc-pV5Z level of theory. Molecular parameters and
spectroscopic constants obtained for both the ground (X (2)Pi) and the
first excited (A (2)Sigma (+)) states represent the best overall
theoretical description of this system to date. Transition moments,
transition probabilities, and radiative and predissociative lifetimes
were also determined for the X (2)Pi -A (2)Sigma (+) system. The values
calculated for the radiative lifetimes of the A state show that
previous results were too large. Theoretical predissociative lifetimes,
although quite sensitive to the region of crossing of the potential
energy curves, reproduce the experimental trends. (C) 2001 American
Institute of Physics.
C1 Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05513970 Sao Paulo, Brazil.
RP Resende, SM, Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, Caixa
Postal 26077, BR-05513970 Sao Paulo, Brazil.
CR ASHWORTH SH, 1992, J MOL SPECTROSC, V153, P41
BAUSCHLICHER CW, 1987, J CHEM PHYS, V87, P4665
BECKER KH, 1972, J PHOTOCHEM, V1, P177
BECKER KH, 1974, BER BUNSEN PHYS CHEM, V78, P1157
BERNATH PF, 1983, J MOL SPECTROSC, V98, P20
BORIN AC, 1993, J CHEM PHYS, V98, P8761
BROWN JM, 1972, MOL PHYS, V23, P635
BRUNA PJ, 1987, MOL PHYS, V61, P1359
CONTINETTI RE, 1991, CHEM PHYS LETT, V182, P400
DAVIDSON ER, 1974, WORLD QUANTUM CHEM
DAVIES PB, 1978, MOL PHYS, V36, P1005
DUNNING TH, 1971, J CHEM PHYS, V55, P716
FEDOROV DG, 2000, J CHEM PHYS, V112, P5611
FINLAYSONPITTS BJ, 2000, CHEM UPPER LOWER ATM
FRIEDL RR, 1983, J CHEM PHYS, V79, P4227
FURLANI TR, 1985, J CHEM PHYS, V82, P5577
HERZBERG G, 1950, MOL SPECTRA MOL STRU, V1, P315
HIRST DM, 1982, MOL PHYS, V46, P427
JOHNS JWC, 1961, CAN J PHYS, V39, P210
KAWASAKI M, 1989, J CHEM PHYS, V91, P6758
KING HF, 1988, J COMPUT CHEM, V9, P771
KLISCH E, 1996, ASTROPHYS J 1, V473, P1118
KNOWLES PJ, 1985, CHEM PHYS LETT, V115, P259
KNOWLES PJ, 1988, CHEM PHYS LETT, V145, P514
LANGHOFF SR, 1974, INT J QUANTUM CHEM, V8, P61
LANGHOFF SR, 1982, J CHEM PHYS, V77, P1379
LEROY RJ, 1989, COMPUT PHYS COMMUN, V52, P383
LOGE GW, 1988, J CHEM PHYS, V89, P7167
MACHADO FBC, 1991, J CHEM PHYS, V94, P7237
MANAA MR, 1995, INT J QUANTUM CHEM Q, V29, P577
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
MEERTS WL, 1974, ASTROPHYS J, V187, L45
MOORE CE, 1971, ATOMIC ENERGY LEVELS, V1, P35
MORINO I, 1995, J MOL SPECTROSC, V170, P171
MORLEY GP, 1993, J CHEM SOC FARADAY T, V89, P3865
ORNELLAS FR, 1985, J CHEM PHYS, V82, P379
PATHAK CM, 1969, J MOL SPECTROSC, V32, P157
RAM RS, 1995, J MOL SPECTROSC, V172, P34
RAMSAY DA, 1952, J CHEM PHYS, V20, P1920
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHNIEDER L, 1990, J CHEM PHYS, V92, P7027
SENEKOWITSCH J, 1985, J CHEM PHYS, V83, P4661
TANIMOTO M, 1973, MOL PHYS, V25, P1193
TIEE JJ, 1983, J CHEM PHYS, V79, P130
TYNDALL GS, 1991, INT J CHEM KINET, V23, P483
UBACHS W, 1983, CHEM PHYS LETT, V101, P1
UEHARA H, 1970, J MOL SPECTROSC, V36, P158
WERNER HJ, 1985, J CHEM PHYS, V82, P5053
WERNER HJ, 1988, J CHEM PHYS, V89, P5803
WHEELER MD, 1997, J CHEM PHYS, V107, P7591
WINKEL RJ, 1984, CAN J PHYS, V62, P1420
WOON DE, 1993, J CHEM PHYS, V98, P1358
YAMAMURA I, 2000, ASTROPHYS J, V528, L33
ZEMKE WT, 1981, QCPE, V4, P79
NR 54
TC 6
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD AUG 1
PY 2001
VL 115
IS 5
BP 2178
EP 2187
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 453QQ
UT ISI:000169927700025
ER
PT J
AU Miron, C
Simon, M
Morin, P
Nanbu, S
Kosugi, N
Sorensen, SL
de Brito, AN
Piancastelli, MN
Bjorneholm, O
Feifel, R
Bassler, M
Svensson, S
TI Nuclear motion driven by the Renner-Teller effect as observed in the
resonant Auger decay to the (X)over-tilde(2)Pi electronic ground state
of N2O+
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID EXCITED-STATES; MOLECULES; DISSOCIATION; SCATTERING; SPECTRUM; CO2;
SPECTROSCOPY; EDGE
AB High-resolution Auger spectroscopy applied under resonant Auger Raman
conditions is shown to be a powerful tool for characterizing complex
potential energy surfaces in core-excited systems. Using the example of
N-t 1s(-1)pi*-->(X) over tilde (2)Pi resonant Auger transition in
nitrous oxide we emphasize the interplay between the nuclear motion and
the electronic decay. We show how the choice of excitation energy
allows selection of core-excited species of different geometries. The
nuclear dynamics of these species are mapped by measuring the resonant
Auger decay spectra. In addition to the changes in vibrational
structure observed for the resonant Auger decay spectra, a strong
influence of nuclear motion on the electronic decay is revealed,
inducing the so-called "dynamical Auger emission." The experimental
results are supported by ab initio quantum chemical calculations
restricted to a linear geometry of the core-excited state. (C) 2001
American Institute of Physics.
C1 Univ Paris Sud, LURE, F-91898 Orsay, France.
CENS, CEA, DRECAM, SPAM LFP, F-91191 Gif Sur Yvette, France.
Inst Mol Sci, Okazaki, Aichi 4448585, Japan.
Univ Lund, Dept Synchrotron Radiat Res, S-22100 Lund, Sweden.
Lab Nacl Luz Sincrotron, BR-13083970 Campinas, SP, Brazil.
Univ Roma Tor Vergata, Dept Chem Sci & Technol, I-00133 Rome, Italy.
Univ Uppsala, Dept Phys, S-75121 Uppsala, Sweden.
RP Miron, C, Univ Paris Sud, LURE, Bat 209D,BP 34, F-91898 Orsay, France.
CR ADACHI J, 1997, J CHEM PHYS, V107, P4919
ADACHI JI, 1995, J CHEM PHYS, V102, P7369
BASSLER M, IN PRESS NUCL INST B
BRAMLEY MJ, 1993, J CHEM PHYS, V99, P8519
COLBERT DT, 1992, J CHEM PHYS, V96, P1982
DEMMEL JW, 1997, APPL NUMERICAL LINEA
GELMUKHANOV F, 1996, PHYS REV A, V54, P379
GOLDFIELD EM, 1998, COMPUT PHYS COMMUN, V98, P1
GRITLI H, 1993, CHEM PHYS, V178, P223
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
KIVIMAKI A, 1993, PHYS REV LETT, V71, P4307
KOSUGI N, 1980, CHEM PHYS LETT, V74, P490
KOSUGI N, 1987, THEOR CHIM ACTA, V72, P149
KUKK E, 2000, PHYS REV A, V62
LEBRUN T, 1993, J CHEM PHYS, V98, P2534
LEHOUCQ RB, 1997, ARPACK
LILL JV, 1982, CHEM PHYS LETT, V89, P483
MA Y, 1991, PHYS REV A, V44, P1848
MIRON C, UNPUB
MIRON C, 1998, J ELECTRON SPECTROSC, V93, P95
MORIN P, 2000, PHYS REV A
PIANCASTELLI MN, 2000, J ELECTRON SPECTROSC, V107, P1
PIANCASTELLI MN, 2000, J PHYS B-AT MOL OPT, V33, P1819
SIMON M, 1997, PHYS REV LETT, V79, P3857
SORENSEN DC, 1992, SIAM J MATRIX ANAL A, V13, P357
TANAKA S, 1998, PHYS REV A, V57, P3437
TENNYSON J, 1982, J CHEM PHYS, V77, P4061
UEDA K, 1999, PHYS REV LETT, V83, P3800
UEDA K, 2000, PHYS REV LETT, V85, P3129
WIGHT GR, 1974, J ELECTRON SPECTROSC, V3, P191
YANG CY, 1997, J CHEM PHYS, V107, P7773
NR 31
TC 9
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUL 8
PY 2001
VL 115
IS 2
BP 864
EP 869
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 448ZW
UT ISI:000169660700035
ER
PT J
AU Justo, JF
Antonelli, A
Fazzio, A
TI Dislocation core properties in semiconductors
SO SOLID STATE COMMUNICATIONS
LA English
DT Article
DE semiconductor; dislocations and disclinations; electronic band
structure; electronic states (localized)
ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS; SILICON; MOBILITY;
PSEUDOPOTENTIALS; VELOCITIES; CRYSTALS; GAAS; INAS
AB Using ab initio calculations, we computed the core reconstruction
energies of {111} 30 degrees partial dislocations in zinc-blende
semiconductors. Our results show a direct correlation between core
reconstruction energies and the experimental activation energies for
the velocity of 60 degrees dislocations. The electronic structure of
unreconstructed dislocation cores comprises a half-filled band, which
splits up in bonding and antibonding levels upon reconstruction. The
levels in the electronic gap come from the core of beta dislocations,
while the levels related to or dislocations lie on the valence band.
(C) 2001 Elsevier Science Ltd. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Justo, JF, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
ALEXANDER H, 1989, I PHYS C SER, V104, P281
BAZANT MZ, 1997, PHYS REV B, V56, P8542
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BULATOV VV, 1997, PHYS REV LETT, V79, P5042
CAI W, 2000, PHYS REV LETT, V84, P3346
CAR R, 1985, PHYS REV LETT, V55, P2471
CHOI SK, 1977, JPN J APPL PHYS, V16, P737
CHOI SK, 1978, JPN J APPL PHYS, V17, P329
DUESBERY MS, 1991, CRIT REV SOLID STATE, V17, P1
HIRTH JP, 1982, THEORY DISLOCAIONS
IMAI M, 1983, PHILOS MAG A, V47, P599
JUSTO JF, 1998, PHYS REV B, V58, P2539
JUSTO JF, 1999, J APPL PHYS, V86, P4249
JUSTO JF, 2000, PHYS REV LETT, V84, P2172
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
OMRI M, 1990, PHILOS MAG A, V62, P203
SUZUKI T, 1991, DISLOCATION DYNAMICS
TROULLIER N, 1991, PHYS REV B, V43, P1993
YONENAGA I, 1989, J APPL PHYS, V65, P85
YONENAGA I, 1993, J APPL PHYS, V73, P1681
YONENAGA I, 1996, APPL PHYS LETT, V69, P1264
YONENAGA I, 1998, J APPL PHYS, V84, P4209
NR 24
TC 12
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-1098
J9 SOLID STATE COMMUN
JI Solid State Commun.
PY 2001
VL 118
IS 12
BP 651
EP 655
PG 5
SC Physics, Condensed Matter
GA 445NL
UT ISI:000169463900011
ER
PT J
AU Lopes, KC
Pereira, FS
Ramos, MN
de Araujo, RCMU
TI An ab-initio study of the C3H6-HX, C2H4-HX and C2H2-HX hydrogen-bonded
complexes with X=F or CI
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE ab-initio study; hydrogen bond; infrared spectrum; vibrational
properties
ID QUADRUPOLE COUPLING-CONSTANTS; ROTATIONAL SPECTRUM;
MOLECULAR-STRUCTURE; INFRARED-SPECTROSCOPY; FLUORIDE DIMER; HF COMPLEX;
ACETYLENE; CYCLOPROPANE; GEOMETRY; ABINITIO
AB MP2/6-31G** ab-initio molecular orbital calculations have been
performed to obtain geometries, H-bond energies and vibrational
properties of the C3H6-HX, C2H4-HX and C2H2-HX H-bonded complexes with
X=F or Cl. The more pronounced effects on the structural parameters of
the isolated molecules due to complexation are verified to the CC and
HX bond lengths, which are directly involved in the H-bond formation.
They are increased after complexation. The calculated H-bond lengths
for the hydrogen complexes for X=F are shorter than those for x-Cl by
about 0.55 Angstrom whereas the corresponding experimental value is
0.58 Angstrom. The H-bond energies are essentially determined by the
nature of the proton donor molecule. For X-F, the AE mean value is 20
kJ/mol, whereas it is approximately 14.5 kJ/mol for X=Cl. The H-bond
energies including zero-point corrections show a good correlation with
the H-bond lengths. The more pronounced effect on the normal modes of
the isolated molecules after complexation occurs to the H-X stretching
mode. The HX stretching frequency is shifted downward, whereas its IR
intensity is much enhanced upon H-bond formation. The new vibrational
modes arising from complexation show several interesting features. (C)
2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901 Recife, PE, Brazil.
Univ Fed Paraiba, Dept Quim, BR-58036300 Joao Pessoa, Paraiba, Brazil.
RP Ramos, MN, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901
Recife, PE, Brazil.
CR ALDRICH PD, 1981, J CHEM PHYS, V75, P2126
ARAUJO RCMU, 1995, SPECTROCHIM ACTA A, V51, P821
ARAUJO RCMU, 1996, THEOCHEM-J MOL STRUC, V366, P233
ARAUJO RCMU, 1998, J BRAZIL CHEM SOC, V9, P499
BRYANT GW, 1988, J CHEM SOC F2, V84, P1443
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
BUXTON LW, 1981, J CHEM PHYS, V75, P2681
CHANDRA AK, 1995, CHEM PHYS LETT, V247, P95
CRAW JS, 1991, J CHEM SOC FARADAY T, V87, P1293
DASILVA JBP, 1997, SPECTROCHIM ACTA A, V53, P733
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
GUSSONI M, 1987, CHEM PHYS LETT, V142, P515
JUCKS KW, 1987, J CHEM PHYS, V86, P4341
KUKOLICH SG, 1983, J CHEM PHYS, V78, P4832
LEGON AC, 1981, J CHEM PHYS, V75, P625
LEGON AC, 1982, J AM CHEM SOC, V104, P1486
LEGON AC, 1986, CHEM REV, V86, P635
MCDONALD SA, 1980, J AM CHEM SOC, V102, P2892
MOOTZ D, 1992, J AM CHEM SOC, V114, P5887
READ WG, 1982, J CHEM PHYS, V76, P2238
SHEA JA, 1982, J CHEM PHYS, V76, P4857
SOPER PD, 1982, J CHEM PHYS, V76, P292
TANG TH, 1990, J MOL STRUCT THEOCHE, V207, P319
NR 23
TC 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUN
PY 2001
VL 57
IS 7
BP 1339
EP 1346
PG 8
SC Spectroscopy
GA 441EK
UT ISI:000169217900001
ER
PT J
AU Capelle, K
Vignale, G
TI Nonuniqueness of the potentials of spin-density-functional theory
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DERIVATIVE DISCONTINUITIES; ELECTRON-DENSITIES; ORBITAL ENERGIES; SHAM
AB It is shown that, contrary to widely held beliefs, the potentials of
spin-density-functional theory (SDFT) are not unique functionals of the
spin densities. Explicit tramples of distinct sets of potentials with
the same ground-stale densities are constructed. These findings imply
that the zero-temperature exchange-correlation energy is not always a
differentiable functional of the spin density. As a consequence,
various types of applications of SDFT must be critically reexamined.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
RP Capelle, K, Univ Sao Paulo, Inst Quim Sao Carlos, Caixa Postal 780,
BR-13560970 Sao Carlos, SP, Brazil.
CR ARYASETIAWAN F, 1988, PHYS REV B, V38, P2974
ESCHRIG H, 2001, SOLID STATE COMMUN, V118, P123
GORLING A, 1992, PHYS REV A, V46, P3753
GORLING A, 1994, PHYS REV A, V50, P196
GRABO T, 1998, STRONG COULOMB CORRE
HOHENBERG P, 1964, PHYS REV B, V136, P864
HOLAS A, 1991, PHYS REV A, V44, P5521
KOHN W, 1965, PHYS REV, V140, A1133
KURTH S, 1999, PHYS REV LETT, V83, P2628
LEE AM, 1999, PHYS REV A, V59, P209
LEVY M, 1990, ADV QUANTUM CHEM, V21, P69
OLIVER GL, 1979, PHYS REV A, V20, P397
PARR RG, 1989, DENSITY FUNCTIONAL T
PERDEW JP, 1982, PHYS REV LETT, V49, P1691
PERDEW JP, 1983, PHYS REV LETT, V51, P1884
RAJAGOPAL AK, 1980, ADV CHEM PHYS, V41, P59
VANLEEUWEN R, 1994, PHYS REV A, V49, P2421
VIGNALE G, UNPUB
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
WANG Y, 1993, PHYS REV A, V47, R1591
ZHAO QS, 1994, PHYS REV A, V50, P2138
NR 21
TC 23
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 11
PY 2001
VL 86
IS 24
BP 5546
EP 5549
PG 4
SC Physics, Multidisciplinary
GA 441PV
UT ISI:000169239500035
ER
PT J
AU Lopes, KC
Pereira, FS
de Araujo, RCMU
Ramos, MN
TI An ab initio study of the structural and vibrational properties of the
C3H6-HCN, C2H4-HCN and C2H2-HCN hydrogen-bonded complexes
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE hydrogen bond; infrared spectrum; ab initio study
ID QUADRUPOLE COUPLING-CONSTANTS; ROTATIONAL SPECTRUM;
MOLECULAR-STRUCTURE; INFRARED-SPECTRA; CYCLOPROPANE-HCN; FLUORIDE
DIMER; HF COMPLEX; ACETYLENE; GEOMETRY; SPECTROSCOPY
AB MP2/6-311+ +G(**) ab initio molecular orbital calculations have been
performed to obtain the molecular properties of the C3H6-HCN, C2H4-HCN
and C2H2-HCN H-bonded complexes. The more pronounced effects on the
structural parameters of the isolated molecules due to complexation are
verified by the CC and H-CN bond lengths which are directly involved in
the H-bond formation. They are increased after complexation. The
calculated H-bond lengths are in excellent agreement with the
experimental ones. The H-bond energies after inclusion of the
zero-point contributions are -8.7, -7.6 and -9.0 kJ mol(-1) for the
C2H2-HCN, C2H2-HCN and C3H6-HCN complexes, respectively. These values
are in very good agreement with the approximate experimental binding
energies obtained from the well depth using a Lennard-Jones 6-12
potential. The more pronounced effect on the normal modes of the
isolated molecules after complexation occurs in the H-X stretching
mode. The H-X stretching frequency is shifted downward whereas its IR
intensity is much enhanced upon H-bond formation. (C) 2001 Elsevier
Science B,V. All rights reserved.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901 Recife, PE, Brazil.
Univ Fed Paraiba, Dept Quim, BR-58036300 Joao Pessoa, Paraiba, Brazil.
RP Ramos, MN, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901
Recife, PE, Brazil.
CR ALDRICH PD, 1981, J CHEM PHYS, V75, P2126
ANDREWS L, 1982, J CHEM PHYS, V76, P5767
ARAUJO RCMU, 1995, SPECTROCHIM ACTA A, V51, P821
ARAUJO RCMU, 1996, THEOCHEM-J MOL STRUC, V366, P233
ARAUJO RCMU, 1998, J BRAZIL CHEM SOC, V9, P499
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
BUXTON LW, 1981, J CHEM PHYS, V75, P2681
CAMPBELL EJ, 1981, J CHEM PHYS, V74, P813
CHANDRA AK, 1995, CHEM PHYS LETT, V247, P95
CRAW JS, 1991, J CHEM SOC FARADAY T, V87, P1293
DAYTON DC, 1988, CHEM PHYS LETT, V153, P285
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
GUSSONI M, 1987, CHEM PHYS LETT, V142, P515
KUKOLICH SG, 1983, J CHEM PHYS, V78, P4832
LEGON AC, 1981, J CHEM PHYS, V75, P625
LEGON AC, 1982, J AM CHEM SOC, V104, P1486
LOPES KC, 2000, IN PRESS SPECTROCH A
MCDONALD SA, 1980, J AM CHEM SOC, V102, P2892
MOOTZ D, 1992, J AM CHEM SOC, V114, P5887
READ WG, 1982, J CHEM PHYS, V76, P2238
SHEA JA, 1982, J CHEM PHYS, V76, P4857
SOPER PD, 1982, J CHEM PHYS, V76, P292
NR 22
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD MAY 30
PY 2001
VL 565
SI Sp. Iss. SI
BP 417
EP 420
PG 4
SC Chemistry, Physical
GA 441NC
UT ISI:000169235600070
ER
PT J
AU Dalpian, GM
Fazzio, A
da Silva, AJR
TI Adsorption of monomers on semiconductors and the importance of surface
degrees of freedom
SO PHYSICAL REVIEW B
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; SI(100) SURFACE; AB-INITIO;
HOMOEPITAXIAL GROWTH; FILM GROWTH; SI ADATOM; DIFFUSION; SI(001); GE;
BINDING
AB We study, through first-principles calculations based on the density
functional theory, the adsorption of the Ge monomer on the Si(100)
surface. We use this particular system to draw attention to the general
fact that in semiconductors, one cannot talk about the adsorption sites
and adsorption energies for a monomer without including in the
description the local substrate configuration. As a consequence, for a
given position of the monomer on the surface, there can be many local
minima that differ basically in the substrate local configuration.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Dalpian, GM, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BROCKS G, 1991, PHYS REV LETT, V66, P1729
BROCKS G, 1992, SURF SCI, V269, P860
DALPIAN GM, 1999, PHYSICA B, V273, P589
KAXIRAS E, 1996, COMP MATER SCI, V6, P158
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KUBBY JA, 1996, SURF SCI REP, V26, P61
LIU SD, 2000, PHYS REV B, V61, P4421
MILMAN V, 1994, PHYS REV B, V50, P2663
MILMAN V, 1996, THIN SOLID FILMS, V272, P375
MO YW, 1991, PHYS REV LETT, V66, P1998
MO YW, 1991, SURF SCI, V248, P313
MO YW, 1992, SURF SCI, V268, P275
QIN XR, 1997, SCIENCE, V278, P1444
QIN XR, 1998, PHYS REV LETT, V81, P2288
RAMSTAD A, 1995, PHYS REV B, V51, P14504
SAVAGE DE, 1999, SEMICONDUCT SEMIMET, V56, P49
SMITH AP, 1995, J CHEM PHYS, V102, P1044
SWARTZENTRUBER BS, 1997, PHYS REV B, V55, P1322
TERAKURA K, 1997, SURF SCI, V386, P207
VANWINGERDEN J, 1997, PHYS REV B, V55, P4723
WOLKOW RA, 1995, PHYS REV LETT, V74, P4448
YAMASAKI T, 1996, PHYS REV LETT, V76, P2949
ZANDVLIET HJW, 2000, PHYS REV LETT, V84, P1523
ZHANG QM, 1995, PHYS REV LETT, V75, P101
ZHANG ZY, 1997, ANNU REV MATER SCI, V27, P525
ZHANG ZY, 1997, SCIENCE, V276, P377
NR 28
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2001
VL 6320
IS 20
AR 205303
DI ARTN 205303
PG 4
SC Physics, Condensed Matter
GA 436LK
UT ISI:000168937200050
ER
PT J
AU Freitas, MP
Rittner, R
Tormena, CF
Abraham, RJ
TI Conformational analysis of 2-bromocyclohexanone. A combined NMR, IR,
solvation and theoretical approach
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE 2-bromocyclohexanone; conformational analysis; NMR; IR; solvation;
density functional theory
ID COUPLING-CONSTANTS; ORGANIC-MOLECULES; ISOMERISM
AB An improved method of conformational analysis using H-1 and C-13 NMR,
IR, theoretical calculations and solvation theory is reported for
2-bromocyclohexanone, used here as a model compound. The solvent
dependence of the (3)J(HH), (1)J(CH) and (1)J(CD) NMR coupling
constants and the associated changes in the IR first overtone carbonyl
band intensities together with theoretical calculations allow the
direct determination of the conformational equilibria without recourse
to model compounds. Calculations with the Gaussian 98 program at the
HF/6-31 g(d,p) and B3LYP/6-31 + g(d,p) levels together with solvation
theory gave the conformer free energy difference (E-eq - E-ax) in
different solvents. The observed couplings, when analyzed by solvation
theory and utilizing DFT geometries, gave a value of E-eq - E-ax of
1.15 kcal mol(-1) in the vapor phase, decreasing to 0.6 kcal mol(-1) in
CCl4 and to -0.5 kcal mol(-1) in DMSO solution (1 kcal = 4.184 kJ). The
axial percentage changes from 74% (in CCl4) to 30% (in DMSO), and these
are in good agreement with infrared data (nu (C=O), first overtone),
despite the uncertainties of the latter method. The results illustrate
the advantages of the joint application of these techniques, which
represents an improved approach to the study of the conformational
equilibria of substituted cyclohexanones. Copyright (C) 2001 John Wiley
& Sons, Ltd.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Rittner, R, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
BR-13083970 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1974, INT ROTATION MOL, CH13
ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ALLINGER J, 1958, TETRAHEDRON, V2, P64
ALLINGER NL, 1960, J AM CHEM SOC, V82, P5876
ALLINGER NL, 1966, J AM CHEM SOC, V88, P4495
ANDERSON JE, 1997, J CHEM SOC PERK DEC, P2633
BASSO EA, 1993, J ORG CHEM, V58, P7865
BEDOUKIAN PZ, 1945, J AM CHEM SOC, V67, P1430
CHEN CY, 1965, J CHEM SOC, P3700
EISENSTEIN O, 1974, TETRAHEDRON, V30, P1717
ELIEL EL, 1968, J AM CHEM SOC, V90, P682
EPIOTIS ND, 1973, J AM CHEM SOC, V95, P3087
FORESMAN JB, 1956, EXPLORING CHEM ELECT, V78, P3369
FORESMAN JB, 1993, EXPLORING CHEM ELECT
FRASER RR, 1995, CAN J CHEM, V73, P88
FRISCH MJ, 1998, GAUSSIAN 98
GARBISCH EW, 1964, J AM CHEM SOC, V86, P1780
KUMLER WD, 1956, J AM CHEM SOC, V78, P3369
MORGON NH, 1995, QUIM NOVA, V18, P44
OLIVATO PR, 1998, J CHEM SOC PERK JAN, P109
PAN YH, 1967, CAN J CHEM, V45, P2943
RAUK A, 1994, ORBITAL INTERACTION
RITTNER R, 1988, MAGN RESON CHEM, V26, P51
WEAST RC, 1985, HDB CHEM PHYSICS
WOLFE S, 1967, J CHEM SOC CHEM COMM, P872
WOLFE S, 1990, CAN J CHEM, V68, P1051
NR 30
TC 10
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD JUN
PY 2001
VL 14
IS 6
BP 317
EP 322
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 437RZ
UT ISI:000169008500001
ER
PT J
AU Casanovas, J
Namba, AM
Leon, S
Aquino, LB
da Silva, GVJ
Aleman, C
TI Calculated and experimental NMR chemical shifts of
p-menthane-3,9-diols. A combination of molecular dynamics and quantum
mechanics to determine the structure and the solvent effects
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID SPIN COUPLING-CONSTANTS; AB-INITIO METHODS; PERTURBATION-THEORY;
SHIELDING TENSORS; BASIS-SETS; SIMULATIONS
AB NMR chemical shifts have been experimentally measured and theoretically
estimated for all the carbon atoms of (LR,3S,4S,8S)-p-menthane-3,9-diol
in chloroform solution. Theoretical estimations were performed using a
combination of molecular dynamics simulations and quantum mechanical
calculations. Molecular dynamics simulations were used to obtain the
most populated conformations of the (1R,3S:4S,8S)-p-menthane-3,9-diol
as well as the distribution of the solvent molecules around it. Quantum
mechanical calculations of NMR chemical shifts were performed on the
most relevant conformations employing the GIAO-DFT formalism. A special
emphasis was put in evaluating the effects of the surrounding solvent
molecules. For this purpose, supermolecule calculations were performed
on complexes constituted by the solute and n chloroform molecules,
where n ranges from 3 to 16. An excellent agreement with experimental
data has been obtained following this computational strategy.
C1 Univ Lleida, Escola Univ Politecn, Dept Quim, Lleida 25001, Spain.
Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Quim, BR-14040901 Ribeirao Preto, Brazil.
Univ Bologna, Dipartimento Chim G Ciamician, I-40126 Bologna, Italy.
Univ Politecn Catalunya, ETS Enginyers Ind Barcelona, Dept Engn Quim, E-08028 Barcelona, Spain.
RP Casanovas, J, Univ Lleida, Escola Univ Politecn, Dept Quim, C Jaume II
69, Lleida 25001, Spain.
CR ALEMAN C, 1999, CHEM PHYS LETT, V302, P461
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
CARMICHAEL I, 1993, J PHYS CHEM-US, V97, P1789
CASANOVAS J, 1999, MAT SCI ENG B-SOLID, V68, P16
CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
CHESNUT DB, 1996, REV COMPUTATIONAL CH, V8, P245
DEV S, 1985, TERPENOIDS HDB
DITCHFIELD R, 1972, J CHEM PHYS, V56, P5688
DITCHFIELD R, 1974, MOL PHYS, V27, P789
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HANSEN AE, 1985, J CHEM PHYS, V82, P5035
HEHRE WJ, 1969, J CHEM PHYS, V51, P2657
HELGAKER T, 1999, CHEM REV, V99, P293
HNYK D, 1992, INORG CHEM, V31, P2464
JAMESON CJ, 1996, ANNU REV PHYS CHEM, V47, P135
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
KRISHNAN R, 1978, INT J QUANTUM CHEM, V14, P91
KUTZELNIGG W, 1980, ISRAEL J CHEM, V19, P193
KUTZELNIGG W, 1990, NMR BASIC PRINCIPLES, V23, P165
LAWS DD, 1995, J AM CHEM SOC, V117, P9542
LEE C, 1988, PHYS REV B, V37, P785
MALKIN VG, 1996, CHEM-EUR J, V2, P452
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
NAMBA AM, 2000, IN PRESS J COMPUT AI
NAMBA AM, 2000, TETRAHEDRON, V56, P6089
PEARLMAN DA, 1995, AMBER 4 1
PECUL M, 1998, CHEM PHYS, V234, P111
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327
SCHRECKENBACH G, 1998, THEOR CHEM ACC, V99, P71
STANTON JF, 1996, CHEM PHYS LETT, V262, P183
SULZBACH HM, 1994, J AM CHEM SOC, V116, P3967
TOMASI J, 1994, CHEM REV, V94, P2027
WEINER SJ, 1986, J COMPUT CHEM, V7, P230
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 36
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD JUN 1
PY 2001
VL 66
IS 11
BP 3775
EP 3782
PG 8
SC Chemistry, Organic
GA 435ZD
UT ISI:000168911300017
ER
PT J
AU Ryde, U
Olsson, MHM
Roos, BO
Borin, AC
TI A theoretical study of the copper-cysteine bond in blue copper proteins
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
DE density functional theory; entatic state theory; protein strain;
solvation effects; reorganisation energy
ID 2ND-ORDER PERTURBATION-THEORY; SIMPLE COMPUTATIONAL MODEL; MOLECULAR
WAVE-FUNCTIONS; ANO BASIS-SETS; ELECTRONIC-STRUCTURE; SPECTROSCOPIC
PROPERTIES; CONTINUUM APPROXIMATION; REDUCTION POTENTIALS; NITRITE
REDUCTASE; SPECTRAL FEATURES
AB The accuracy of theoretical calculations on models of the blue copper
proteins is investigated using density functional theory (DFT) Becke's
three-parameter hybrid method with the Lee-Yang-Parr correlation
functional (B3LYP) and medium-sized basis sets. Increasing the basis
set to triple-zeta quality with f-type functions on all heavy atoms and
enlarging the model [up to Cu(imidazole-CH3)(2)(SC2H5) (CH3SC2H5)(0/+)]
has only a limited influence on geometries and relative energies.
Comparative calculations with more accurate wave-function-based methods
(second-order Moller-Plesset perturbation theory, complete-active-space
second-order perturbation theory, coupled-cluster method, including
single and double replacement amplitudes and in addition triple
replacement perturbatively) and a variety of basis sets on smaller
models indicate that the DFT/B3LYP approach gives reliable results with
only a small basis set dependence, whereas the former methods strongly
depend on the size of the basis sets. The effect of performing the
geometry optimizations in a continuum solvent is quite small, except
for the flexible Cu-S-Met bond. The results of this study confirm the
earlier results that neither the oxidized nor the reduced copper site
in the blue proteins is strained to any significant degree tin energy
terms) by the protein surrounding.
C1 Univ Lund, Dept Theoret Chem, S-22100 Lund, Sweden.
Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, SP, Brazil.
RP Ryde, U, Univ Lund, Dept Theoret Chem, POB 124, S-22100 Lund, Sweden.
CR ADMAN ET, 1991, ADV PROTEIN CHEM, V42, P145
ADMAN ET, 1995, J BIOL CHEM, V270, P27458
ANDERSSON K, 1990, J PHYS CHEM-US, V94, P5483
ANDERSSON K, 1992, J CHEM PHYS, V96, P1218
ANDERSSON K, 1997, MOLCAS VERSION 4 0
BARONE V, 1997, J CHEM PHYS, V107, P3210
BARONE V, 1998, J PHYS CHEM A, V102, P1995
BAUSCHLICHER CW, 1995, CHEM PHYS LETT, V246, P40
BECKE AD, 1988, PHYS REV A, V38, P3098
DEKERPEL JOA, 1998, J PHYS CHEM B, V102, P4638
EICHKORN K, 1995, CHEM PHYS LETT, V240, P283
FLORIS F, 1989, J COMPUT CHEM, V10, P616
FLORIS FM, 1991, J COMPUT CHEM, V12, P784
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GEWIRTH AA, 1987, INORG CHEM, V26, P1133
GEWIRTH AA, 1988, J AM CHEM SOC, V110, P3811
GRAY HB, 1983, COMMENTS INORG CHEM, V2, P203
GRAY HB, 2000, J BIOL INORG CHEM, V5, P551
GUCKERT JA, 1995, J AM CHEM SOC, V117, P2817
GUSS JM, 1992, ACTA CRYSTALLOGR B, V48, P190
HEHRE WJ, 1986, AB INITIO MOL ORBITA, P133
HERTWIG RH, 1997, CHEM PHYS LETT, V268, P345
HOLM RH, 1996, CHEM REV, V96, P2239
HONIG B, 1995, SCIENCE, V268, P1144
LACROIX LB, 1996, J AM CHEM SOC, V118, P7755
LACROIX LB, 1998, J AM CHEM SOC, V120, P9621
LARSSON S, 1995, J PHYS CHEM-US, V99, P4860
MALMSTROM BG, 1965, OXIDASES RELATED RED, V1, P207
MALMSTROM BG, 1994, EUR J BIOCHEM, V223, P711
MALMSTROM BG, 1998, CURR OPIN CHEM BIOL, V2, P286
MARCUS RA, 1985, BIOCHIM BIOPHYS ACTA, V811, P265
MESSERSCHMIDT A, 1998, STRUCT BOND, V90, P37
NAR H, 1991, J MOL BIOL, V218, P427
OLSSON MHM, 1998, J BIOL INORG CHEM, V3, P109
OLSSON MHM, 1998, PROTEIN SCI, V7, P2659
OLSSON MHM, 1999, J BIOL INORG CHEM, V4, P654
PENFIELD KW, 1985, J AM CHEM SOC, V107, P4519
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERIOTTI RA, 1976, CHEM REV, P717
PIERLOOT K, 1995, THEOR CHIM ACTA, V90, P87
PIERLOOT K, 1997, J AM CHEM SOC, V119, P218
PIERLOOT K, 1998, J AM CHEM SOC, V120, P13156
RODGERS KK, 1991, J AM CHEM SOC, V113, P9419
ROOS BO, 1987, AB INITIO METHODS QU, V2, P399
ROOS BO, 1996, ADV CHEM PHYS, V93, P219
RYDE U, 1996, J MOL BIOL, V261, P586
RYDE U, 1999, BIOPHYS J, V77, P2777
RYDE U, 2000, IN PRESS INT J QUANT
RYDE U, 2000, J BIOL INORG CHEM, V5, P565
RYDE U, 2001, THEORETICAL BIOCH PR, P1
SCHAFER A, 1994, J CHEM PHYS, V100, P5829
SHARP KA, 1990, ANNU REV BIOPHYS BIO, V19, P301
SHEPARD WEB, 1990, J AM CHEM SOC, V112, P7817
SLATER JC, 1974, QUANTUM THEORY MOL S, V4
SOLOMON EI, 1996, INORG CHIM ACTA, V243, P67
SYKES AG, 1991, ADV INORG CHEM RAD, V36, P377
TOMASI J, 1994, CHEM REV, V94, P2027
TREUTLER O, 1995, J CHEM PHYS, V102, P346
VALLEE BL, 1968, P NATL ACAD SCI USA, V59, P498
VOSKO SH, 1980, CAN J PHYS, V58, P1200
WARSHEL A, 1991, COMPUTER MODELLING C
WIDMARK PO, 1990, THEOR CHIM ACTA, V77, P291
WILLIAMS RJP, 1995, EUR J BIOCHEM, V234, P363
NR 63
TC 22
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD MAY
PY 2001
VL 105
IS 6
BP 452
EP 462
PG 11
SC Chemistry, Physical
GA 433ZA
UT ISI:000168789600008
ER
PT J
AU Ruini, A
Rossi, F
Hohenester, U
Molinari, E
Capaz, RB
Caldas, MJ
TI Ab-initio study of Coulomb-correlated optical properties in conjugated
polymers
SO SYNTHETIC METALS
LA English
DT Article
DE density functional calculations; optical absorption;
poly(phenylenevinylene)
ID QUANTUM-WIRE STRUCTURES; EXCITATIONS; POLYTHIOPHENE
AB The spatial extension and binding energy of excitons in semiconducting
conjugated polymers are still the subject of a great debate. We address
this problem through first-principles calculations (within DFT-LDA,
plane-waves and ab-initio pseudopotentials), which allow to include
electron-hole correlation effects in a fully three-dimensional approach
through the density-matrix formalism. We show results for the
correlated optical spectrum and the exciton wavefunctions of
single-chain poly(para)phenylene-vinylene (PPV), that support the
picture of a strongly bound anisotropic exciton localized over similar
to 4-5 monomers.
C1 Univ Modena & Reggio Emilia, Dipartimento Fis, Modena, Italy.
Politecn Torino, Dipartimento Fis, Turin, Italy.
Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil.
Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
CR ALVARADO SF, 1998, PHYS REV LETT, V81, P1082
AXT VM, 1998, REV MOD PHYS, V70, P145
CONWELL EM, 1997, PHYS REV LETT, V78, P4301
FRIEND RH, 1999, NATURE, V397, P121
KOHLER A, 1998, NATURE, V392, P903
MARTIN SJ, 1999, PHYS REV B, V59, P15133
OSTERBACKA R, 1999, PHYS REV B, V60, P11253
ROHLFING M, 1999, PHYS REV LETT, V82, P1959
ROSSI F, 1996, PHYS REV B, V53, P16462
ROSSI F, 1996, PHYS REV LETT, V76, P3642
VANDERHORST JW, 1999, PHYS REV LETT, V83, P4413
VANDERHORST JW, 2000, PHYS REV B, V61, P15817
YAN M, 1995, PHYS REV LETT, V75, P1992
NR 13
TC 4
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD MAR 15
PY 2001
VL 119
IS 1-3
SI Sp. Iss. SI
BP 257
EP 258
PG 2
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
Polymer Science
GA 433EC
UT ISI:000168741500112
ER
PT J
AU Del Nero, J
de Melo, CP
TI Semiempirical and ab initio investigation of defects in PPV oligomers
SO SYNTHETIC METALS
LA English
DT Article
DE poly(phenylenevinylene); semiempirical methods; ab initio; absorption
spectra
AB We report a theoretical study of the excited states and other
electronic properties of para-phenylenevinylene oligomers and related
compounds which present conformational defects. Our results reveal the
existence of different electronic delocalization patterns for the
lowest singlet and triplet structures of these molecules. A similar
behavior is also observed for the corresponding bond lengths.
C1 Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil.
RP de Melo, CP, Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE,
Brazil.
CR *QCEP, 1993, MOPAC PROGR VERS 7 0, P455
BELJONNE D, 1999, J CHEM PHYS, V111, P2829
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
HEAD JD, 1985, CHEM PHYS LETT, V122, P264
HEAD JD, 1986, CHEM PHYS LETT, V131, P59
KOLLER A, 1998, NATURE, V392, P903
SARICIFLCI NS, 1997, PRIMARY PHOTOEXCITAT
NR 9
TC 8
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD MAR 15
PY 2001
VL 121
IS 1-3
SI Sp. Iss. SI
BP 1741
EP 1742
PG 2
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
Polymer Science
GA 434TD
UT ISI:000168831200303
ER
PT J
AU Esteves, PM
Ramirez-Solis, A
Mota, CJA
TI DFT calculations on the protonation of alkanes on HF/SbF5 superacids
using cluster models
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID THEORETICAL AB-INITIO; ELECTROPHILIC REACTIONS; MOLECULAR-STRUCTURES;
DEUTERIUM EXCHANGE; CH5+; DIFFRACTION; CATIONS; SYSTEM; STORY
AB Calculations at B3LYP/6-31++G** + RECP (Sb) level have been performed
for the protonation of C-H and C-C bonds of methane, ethane, propane,
and isobutane by models of the liquid superacid media HF/SbF5. The
antimony atoms were dealt with by relativistic effective core
potentials. The species H2F+. Sb2F11- was considered as the model
electrophile. The transition states for the protonation of the C-H
bonds (H/H exchange) are similar to an H-carbonium ion interacting with
the anion moiety. The enthalpies of activation for WH exchange of
alkanes were calculated in the range of 19 to 21 kcal/mol. For the
protonation of the C-C bond, the enthalpy of activation strongly
depends on the structure of the hydrocarbon being attacked, and was
always higher than the enthalpy of activation for H/H exchange. This
suggests the existence of steric demand for the C-C protonation.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BERGNER A, 1993, MOL PHYS, V80, P1431
BOO DW, 1993, CHEM PHYS LETT, V211, P358
BOO DW, 1995, J CHEM PHYS, V103, P520
BRUNVOLL J, 1980, ACTA CHEM SCAND A, V34, P733
CARNEIRO JWM, 1994, J AM CHEM SOC, V11, P3483
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
ESTEVES PM, 1999, J PHYS CHEM B, V103, P10417
ESTEVES PM, 2000, J BRAZIL CHEM SOC, V11, P345
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HELMINGER P, 1971, PHYS REV A, V3, P122
HIRAOKA K, 1991, CHEM PHYS LETT, V184, P271
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P371
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P703
KIM D, 2000, J PHYS CHEM B, V104, P10074
KONAKA S, 1970, B CHEM SOC JPN, V43, P1693
LATAJKA Z, 1994, J CHEM PHYS, V101, P9793
MINKWITZ R, 1998, INORG CHEM, V37, P4662
MOOTZ D, 1988, ANGEW CHEM INT EDIT, V27, P391
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
MULLER H, 1997, J CHEM PHYS, V106, P1863
OHLBERG SM, 1959, J AM CHEM SOC, V81, P811
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1972, J AM CHEM SOC, V94, P807
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
PENG CY, 1996, J COMPUT CHEM, V17, P49
SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SCHREINER PR, 2000, ANGEW CHEM INT EDIT, V39, P3239
SOMMER J, 1994, J AM CHEM SOC, V116, P5491
SONDAG H, 1982, J MOL SPECTROSC, V91, P91
WAN B, 1996, INT J MASS SPECTROM, V159, P209
WHITE ET, 1999, SCIENCE, V284, P135
NR 38
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5647
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD MAY 17
PY 2001
VL 105
IS 19
BP 4331
EP 4336
PG 6
SC Chemistry, Physical
GA 434FE
UT ISI:000168803800042
ER
PT J
AU Miotto, R
Srivastava, GP
Miwa, RH
Ferraz, AC
TI A comparative study of dissociative adsorption of NH3, PH3, and AsH3 on
Si(001)-(2x1)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; GENERALIZED-GRADIENT APPROXIMATION;
DENSITY-FUNCTIONAL THEORY; MOLECULAR-BEAM EPITAXY; AB-INITIO; SI(100)
SURFACE; PHOTOELECTRON DIFFRACTION; FIRST-PRINCIPLES; PHOTOEMISSION;
PHOSPHINE
AB Using a first-principles pseudopotential method we have studied the
adsorption and dissociation of NH3, PH3, and AsH3 on the Si(001)-(2x1)
surface. Apart from the existence of a barrier for the adsorption of
the precursor state for arsine, we observe that the global behavior for
the chemisorption of the XH3 molecules considered in this work is as
follows: the gas phase XH3 adsorbs molecularly to the electrophilic
surface Si atom and then dissociates into XH2 and H, bonded to the
electrophilic and nucleophilic surface silicon dimer atoms,
respectively. The energy barrier, corresponding to a thermal
activation, is much smaller than the usual growth temperature,
indicating that all three molecules will be observed in their
dissociated states at room temperature. All adsorbed systems are
characterized by elongated Si-Si dimers that are (almost) symmetric in
the dissociative case but asymmetric in the molecular case. According
to our first-principles calculations, all XH3 and XH2 systems retain
the pyramidal geometry observed for the gas molecules. Our calculated
vibrational spectra further support the dissociative model for the XH3
molecules considered here. (C) 2001 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Miotto, R, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR BATER C, 2000, SURF INTERFACE ANAL, V29, P208
BISCHOFF JL, 1991, SURF SCI, V248, L240
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BOZSO F, 1986, PHYS REV LETT, V57, P1185
BOZSO F, 1988, PHYS REV B, V38, P3937
CAKMAK M, 1999, PHYS REV B, V60, P5497
CAKMAK M, 2000, PHYS REV B, V61, P10216
CAO PL, 1994, J PHYS-CONDENS MAT, V6, P6103
CHO JH, 2000, PHYS REV B, V62, P1607
COLAIANNI ML, 1994, J VAC SCI TECHNOL A, V12, P2995
COPEL M, 1989, PHYS REV LETT, V63, P632
DRESSER MJ, 1989, SURF SCI, V218, P75
FATTAL E, 1997, J PHYS CHEM B, V101, P8658
FIUJISAWA M, 1989, PHYS REV B, V39, P12918
FRANCO N, 1997, J PHYS-CONDENS MAT, V9, P8419
FRANCO N, 1997, PHYS REV LETT, V79, P673
HAMERS RJ, 1987, PHYS REV LETT, V59, P2071
HAMERS RJ, 1996, APPL SURF SCI, V107, P25
HARTMANN JM, 2000, SEMICOND SCI TECH, V15, P362
HIROSE R, 1999, SURF SCI, V430, L540
HLIL EK, 1987, PHYS REV B, V35, P5913
IZUMI A, 1997, APPL PHYS LETT, V71, P1371
JENKINS SJ, 1994, J PHYS-CONDENS MAT, V6, P8781
JOHNSON AL, 1988, LANGMUIR, V4, P277
KIPP L, 1994, PHYS REV B, V50, P5448
KIPP L, 1995, PHYS REV B, V52, P5843
KITTEL C, 1996, INTRO SOLID STATE PH
LARSSON CUS, 1991, SURF SCI, V241, P353
LEE SH, 1998, PHYS REV B, V58, P4903
LIDE DR, 1995, HDB CHEM PHYSICS
LIN DS, 1999, SURF SCI, V424, P7
LIN DS, 2000, PHYS REV B, V61, P2799
LOH ZH, 2000, J CHEM PHYS, V112, P2444
MAITY N, 1995, APPL PHYS LETT, V66, P1909
MIOTTO R, 1998, PHYS REV B, V58, P7944
MIOTTO R, 1999, PHYS REV B, V59, P3008
MORIARTY NW, 1992, SURF SCI, V265, P168
NACTHIGAL P, 1996, J CHEM PHYS, V104, P148
PENEV E, 1999, J CHEM PHYS, V110, P3986
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PILLING MJ, 1995, REACTION KINETICS
QIU M, 1997, J PHYS-CONDENS MAT, V9, P6543
SHAN J, 1996, J PHYS CHEM-US, V100, P4961
SRIVASTAVA GP, 1990, PHYSICS PHONONS
SRIVASTAVA GP, 1997, REP PROG PHYS, V60, P561
TAKAOKA T, 1998, SURF SCI, V412, P30
TROMP RM, 1992, PHYS REV LETT, V68, P954
TROULLIER N, 1991, PHYS REV B, V43, P1993
TSUKIDATE Y, 1999, APPL SURF SCI, V151, P148
WANG YJ, 1994, J PHYS CHEM-US, V98, P5966
WANG YJ, 1994, PHYS REV B, V50, P4534
WIDJAJA Y, 2000, J PHYS CHEM B, V104, P2527
WOODRUFF DP, 1994, REP PROG PHYS, V57, P1029
XIE MH, 1998, SURF SCI, V397, P164
YOO DS, 1995, J APPL PHYS, V78, P4988
YU ML, 1984, J VAC SCI TECHNOL A, V2, P446
YU ML, 1986, J APPL PHYS, V59, P4032
ZHOU RH, 1991, SURF SCI, V249, P129
NR 58
TC 17
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 1
PY 2001
VL 114
IS 21
BP 9549
EP 9556
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 434BF
UT ISI:000168794700041
ER
PT J
AU Serra, RM
Ramos, PB
de Almeida, NG
Jose, WD
Moussa, HY
TI Engineering arbitrary motional ionic states through realistic
intensity-fluctuating laser pulses
SO PHYSICAL REVIEW A
LA English
DT Article
ID TRAPPED ION; PROJECTION SYNTHESIS; QUANTUM STATES; RADIATION-FIELD;
DECOHERENCE; GENERATION; CAVITY; ATOM; SUPERPOSITIONS; MANIPULATION
AB We present a reliable scheme for engineering arbitrary motional ionic
states through an adaptation of the projection synthesis technique for
trapped-ion phenomena. Starting from a prepared coherent motional
state, the Wigner function of the desired state is thus sculpted from a
Gaussian distribution. The engineering process has also been developed
to take into account the errors arising from intensity fluctuations in
the exciting-laser pulses required for manipulating the electronic and
vibrational states of the trapped ion. To this end, a recently
developed phenomenological-operator approach that allows for the
influence of noise will be applied. This approach furnishes a
straightforward technique to estimate the fidelity of the prepared
state in the presence of errors, precluding the usual extensive ab
initio calculations. The results obtained here by the phenomenological
approach, to account for the effects of noise in our engineering
scheme, can be directly applied to any other process involving
trapped-ion phenomena.
C1 Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
Univ Estadual Santa Cruz, Dept Ciencias Exatas & Tecnol, BR-45650000 Bahia, Brazil.
RP Serra, RM, Univ Fed Sao Carlos, Dept Fis, POB 676, BR-13565905 Sao
Carlos, SP, Brazil.
CR BARNETT SM, 1996, PHYS REV LETT, V76, P4148
BASEIA B, 1997, PHYS LETT A, V231, P331
BROBNY G, 1998, PHYS REV A, V58, P2481
BRUNE M, 1992, PHYS REV A, V45, P5193
BRUNE M, 1996, PHYS REV LETT, V77, P4887
CHUANG IL, 1998, NATURE, V393, P143
DAKNA M, 1999, PHYS REV A, V59, P1658
DALIBARD J, 1992, PHYS REV LETT, V68, P580
DEALMEIDA NG, 2000, J OPT B-QUANTUM S O, V2, P792
DEALMEIDA NG, 2000, PHYS REV A, V62
DEMATOS RL, 1996, PHYS REV LETT, V76, P608
DIFIDIO C, 2000, PHYS REV A, V62
DUM R, 1992, PHYS REV A, V45, P4879
FEYNMAN RP, 1957, J APPL PHYS, V28, P49
FEYNMAN RP, 1996, FEYNMAN LECT COMPUTA
FREYBERGER M, 1995, PHYS REV A, V51, P3347
GARRAWAY BM, 1994, PHYS REV A, V49, P535
ITANO WM, 1997, QUANTPH9702038
JAMES DF, 1998, PHYS REV LETT, V81, P3417
JOSE WD, 2000, J OPT B-QUANTUM S O, V2, P306
KNEER B, 1996, PHYS REV A, V55, P2096
LAW CK, 1996, PHYS REV LETT, V76, P1055
LEIBFRIED D, 1996, PHYS REV LETT, V77, P4281
LEIBFRIED D, 1997, J MOD OPTIC, V44, P2485
MEEKHOF DM, 1996, PHYS REV LETT, V76, P1796
MEEKHOF DM, 1997, BRAZ J PHYS, V27, P178
MONROE C, 1995, PHYS REV LETT, V75, P4714
MONROE C, 1996, SCIENCE, V272, P1131
MOUSSA MHY, 1998, PHYS LETT A, V245, P335
MOYACESSA H, 1999, PHYS REV A, V59, P2920
MURAO M, 1998, PHYS REV A, V58, P663
MYATT CJ, 2000, NATURE, V403, P269
NIELSEN MA, 2000, QUANTUM COMPUTATION
PARKINS AS, 1993, PHYS REV LETT, V71, P3095
POYATOS JF, 1996, PHYS REV LETT, V77, P4728
PRESKILL J, UNPUB
ROOS C, 1999, PHYS REV LETT, V83, P4713
SCHNEIDER S, 1998, PHYS REV A, V57, P3748
SCHNEIDER S, 1999, PHYS REV A, V59, P3766
SERRA RM, 2000, PHYS REV A, V62
SOLANO E, 1999, PHYS REV A, V59, P2539
STEINBACH J, 1996, PHYS REV A, V54, P5113
VARCOE BTH, 2000, NATURE, V403, P743
VOGEL K, 1993, PHYS REV LETT, V71, P1816
WINELAND DJ, 1992, PHYS REV A, V46, R6797
WINELAND DJ, 1994, PHYS REV A, V50, P67
WINELAND DJ, 1998, J RES NATL INST STAN, V103, P259
ZENG HP, 1999, PHYS REV A, V59, P2174
NR 48
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD MAY
PY 2001
VL 63
IS 5
AR 053813
DI ARTN 053813
PG 15
SC Physics, Atomic, Molecular & Chemical; Optics
GA 430RJ
UT ISI:000168589100115
ER
PT J
AU Carneiro, JWD
de Oliveira, CDB
Passos, FB
Aranda, DAG
de Souza, PRN
Antunes, OAC
TI Host-guest interactions and their role in enantioselective
hydrogenation of alpha-keto esters - An analysis of model systems
SO JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL
LA English
DT Article
DE heterogeneous; enantioselective; catalysis; mechanisms; calculations
ID CINCHONA-MODIFIED PLATINUM; ETHYL PYRUVATE; HETEROGENEOUS CATALYSIS;
PI-STACKING; KETOESTERS; ADSORPTION; COMPLEXES; SOLVENTS; PT(111);
DESIGN
AB The interaction between cinchonidine and methyl pyruvate has been
proposed as the key step leading to enantiodifferentiation in the
enantioselective hydrogenation of alpha -ketoesters, In the present
work, we employ ab initio MP2/6-31G(d) and MP2/6-31G(d,p) methods to
carry out an analysis of the most relevant kind of interactions
operating in representative model systems. These interactions are
discussed in terms of orbital superposition and dipolar interaction.
When approaching H2CO to NH3 at distances lower than 3.4 Angstrom,
orbital superposition is the predominant interaction, while at
distances above 3.4 Angstrom, both orbital superposition and dipolar
interactions may contribute to stabilization, with a small prevalence
of dipolar interactions. The stabilization energy at large distances
(above 4.5 Angstrom) is very small (about 0.5 kcal mol(-1)), probably
not enough to be responsible for the enantiodifferentiation process.
Semiempirical calculations on the parent systems were also unable to
reveal any special interaction which could be attributed to the
enantiodifferentiation process. (C) 2001 Elsevier Science B.V. All
rights reserved.
C1 Univ Fed Fluminense, Inst Quim, Dept Quim Geral & Inorgan, BR-24021150 Niteroi, RJ, Brazil.
Univ Fed Fluminense, Escola Engn, Dept Engn Quim, BR-24210230 Niteroi, RJ, Brazil.
Fed Univ Rio De Janeiro, Ctr Technol, Escola Quim, Lab Termodinam & Cinet Aplicada, BR-21945970 Rio De Janeiro, Brazil.
Fed Univ Rio De Janeiro, Ctr Tecnol, Inst Quim, BR-21945970 Rio De Janeiro, Brazil.
RP Carneiro, JWD, Univ Fed Fluminense, Inst Quim, Dept Quim Geral &
Inorgan, Outeiro Sao Joao Batista S-N, BR-24021150 Niteroi, RJ, Brazil.
CR BAIKER A, 1997, J MOL CATAL A-CHEM, V115, P473
BERRY RS, 1980, PHYSICAL CHEM, CH10
BLASER HU, 1991, J MOL CATAL, V68, P215
BLASER HU, 1997, CATAL TODAY, V37, P441
BORSZEKY K, 1997, TETRAHEDRON-ASYMMETR, V8, P3745
BURGI T, 1998, J AM CHEM SOC, V120, P12920
BURGI T, 2000, CATAL LETT, V66, P109
BURGI T, 2000, J CATAL, V194, P445
BURGI T, 2000, J PHYS CHEM B, V104, P5953
CIEPLAK AS, 1994, STRUCTURE CORRELATIO, V1
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
EVANS T, 1999, SURF SCI, V436, L691
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HEHRE WJ, 1986, AB INITIO MOL ORBITA
JORGENSEN WL, 1990, J AM CHEM SOC, V112, P4768
KIM EK, 1993, J AM CHEM SOC, V115, P3091
KOZMUTZA C, 1991, J MOL STRUCT THEOCHE, V233, P139
KURITA Y, 1994, J COMPUT CHEM, V15, P1013
MADDALUNO JF, 1994, J ORG CHEM, V59, P793
MARGITFALVI JL, 1999, J MOL CATAL A-CHEM, V139, P81
MARGITFALVI JL, 2000, APPL CATAL A-GEN, V191, P177
SCHURCH M, 1998, J CATAL, V173, P187
SCHWALM O, 1994, INT J QUANTUM CHEM, V52, P191
SCHWENKE DW, 1985, J CHEM PHYS, V82, P2418
SLIPSZENKO JA, 1998, J CATAL, V179, P267
STEWART JJP, 1994, MOPAC 93 MANUAL VERS
NR 26
TC 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1381-1169
J9 J MOL CATAL A-CHEM
JI J. Mol. Catal. A-Chem.
PD MAY 14
PY 2001
VL 170
IS 1-2
BP 235
EP 243
PG 9
SC Chemistry, Physical
GA 431BY
UT ISI:000168613100026
ER
PT J
AU Beltran, A
Andres, J
Calatayud, M
Martins, JBL
TI Theoretical study of ZnO (10(1)over-bar-0) and Cu/ZnO (10(1)over-bar-0)
surfaces
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID AB-INITIO; ELECTRONIC-STRUCTURE; TOTAL ENERGIES; HARTREE-FOCK;
ADSORPTION; CLUSTER; H-2; CO; ZNO(10(1)OVER-BAR0); DISSOCIATION
AB Periodic HF/6-31G and a hybrid density functional, B3LYP/6-31G.
calculations have been carried out in order to determine the geometric
and electronic structure of bulk ZnO. The lattice parameters, bulk
modulus, charge distribution and band structure are reported. Surface
energy and charge distribution of the ZnO (10(1) over bar 0) surface
are obtained, while top site adsorption of Cu atoms on Zn or O atoms on
the ZnO (10(1) over bar 0) surface are considered. Optimized distances,
charge transfers. vibrational frequencies and binding energies
associated with both types of adsorption processes are calculated. The
theoretical results are compared with previous theoretical studies and
available experimental data. (C) 2001 Elsevier Science B.V. All rights
reserved.
C1 Univ Jaume 1, Dept Ciencies Expt, E-12071 Castello, Spain.
Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
RP Beltran, A, Univ Jaume 1, Dept Ciencies Expt, Campus Riu Sec, E-12071
Castello, Spain.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BIRCH F, 1978, J GEOPHYS RES, V83, P1257
BORODKO Y, 1999, APPL CATAL A-GEN, V186, P355
BOYS SF, 1970, MOL PHYS, V19, P553
CALATAYUD M, UNPUB SURF SCI
CALATAYUD M, 1999, SURF SCI, V430, P213
CASARIN M, 1998, INORG CHEM, V37, P5490
CASARIN M, 1999, APPL SURF SCI, V142, P192
DUKE CB, 1989, J VAC SCI TECHNOL 2, V7, P2030
FUJITANI T, 2000, APPL CATAL A-GEN, V191, P111
GILLAN MJ, 1997, J CHEM SOC FARADAY T, V106, P135
GREENWOOD NM, 1994, CHEM ELEMENTS
HEAD JD, 1997, INT J QUANTUM CHEM, V65, P827
HILL NA, 2000, PHYS REV B, V62, P8802
HYDE BG, 1989, INORGANIC CRYSTAL ST
JACOBSEN J, 1995, PHYS REV B, V52, P14954
JAFFE JE, 1993, PHYS REV B, V48, P7903
JAFFE JE, 1994, PHYS REV B, V49, P11153
JEDRECY N, 2000, SURF SCI, V460, P136
LEE C, 1988, PHYS REV B, V37, P785
LU X, 1998, CHEM PHYS LETT, V291, P445
LU X, 1999, J PHYS CHEM B, V103, P1089
MARKOVITS A, 1996, SURF SCI, V365, P649
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V397, P147
MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V398, P457
PERSSON P, 2000, CHEM PHYS LETT, V321, P302
PISANI C, 1988, HARTREE FOCK AB INIT, V48
PISANI C, 1996, QUANTUM MECHANICAL A, V67
POWELL MJD, 1970, NUMERICAL METHODS NO
RASOLOV VA, 1998, J CHEM PHYS, V109, P1223
SAUNDERS VR, 1999, CRYSTAL98 USERS MANU
SCHROER P, 1994, PHYS REV B, V49, P17092
WANDER A, 2000, SURF SCI, V457, L342
ZAPOL P, 1999, SURF SCI, V422, P1
NR 35
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 27
PY 2001
VL 338
IS 4-6
BP 224
EP 230
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 430TN
UT ISI:000168591800002
ER
PT J
AU Ramos, LE
Teles, LK
Scolfaro, LMR
Castineira, JLP
Rosa, AL
Leite, JR
TI Structural, electronic, and effective-mass properties of silicon and
zinc-blende group-III nitride semiconductor compounds
SO PHYSICAL REVIEW B
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; GENERALIZED GRADIENT APPROXIMATION;
VALENCE-BAND SPLITTINGS; DOPING QUANTUM-WELLS; GALLIUM NITRIDE;
ZINCBLENDE GAN; V NITRIDES; CUBIC GAN; HIGH-PRESSURE; OPTICAL GAIN
AB The electronic band structures of silicon and the zinc-blende-type
III-N semiconductor compounds BN, AlN, GaN, and InN are calculated by
using the self-consistent full potential linear augmented plane wave
method within the local-density functional approximation. Lattice
constant, bulk modulus, and cohesive energy are obtained from full
relativistic total-energy calculations for Si and for the nitrides.
Band structures and total density of states (DOS) are presented. The
role played by relativistic effects on the bulk band structures and DOS
is discussed. In order to provide important band structure-derived
properties, such as effective masses and Luttinger parameters, the ab
initio band structure results are linked with effective-mass theory.
Electron, heavy-, light-, and split-off-hole effective masses, as well
as spin-orbit splitting energies an extracted from the band-structure
calculations. By using the Luttinger-Kohn 6x6 effective-mass
Hamiltonian we derive the corresponding Luttinger parameters for the
materials. A comparison with other available theoretical results and
experimental data is made.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Ramos, LE, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR AHN D, 1996, J APPL PHYS, V79, P7731
ALVES JLA, 1997, MAT SCI ENG B-SOLID, V50, P57
BALSLEV I, 1965, PHYS LETTERS NETHERL, V19, P6
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
BLAHA P, 1999, WIEN97 FULL POTENTIA
CHENG TS, 1995, APPL PHYS LETT, V66, P1509
CHRISTENSEN NE, 1994, PHYS REV B, V50, P4397
DESCLAUX JP, 1969, COMPUT PHYS COMMUN, V1, P216
DESCLAUX JP, 1975, COMPUT PHYS COMMUN, V9, P31
DEXTER RN, 1954, PHYS REV, V96, P223
DEXTER RN, 1956, PHYS REV, V104, P637
DUGDALE DJ, 2000, PHYS REV B, V61, P12933
EDGAR JH, 1994, PROPERITES GROUP 3 N
ENDERLEIN R, 1997, FUNDAMENTALS SEMICON
ENDERLEIN R, 1998, PHYS STATUS SOLIDI B, V206, P623
FAN WJ, 1996, J APPL PHYS, V79, P188
FANCIULLI M, 1993, PHYS REV B, V48, P15144
FIORENTINI V, 1993, PHYS REV B, V47, P13353
GUPTA VK, 1999, J VAC SCI TECHNOL B, V17, P1246
HARBEKE G, 1982, LANDOLDTBORNSTEIN, V17
HARIMA H, 1999, APPL PHYS LETT, V74, P191
HARRISON WA, 1989, ELECT STRUCTURE PROP
KIM K, 1996, PHYS REV B, V53, P16310
KIM K, 1997, PHYS REV B, V56, P7363
KOELLING DD, 1977, J PHYS C SOLID STATE, V10, P3107
LAWAETZ P, 1971, PHYS REV B-SOLID ST, V4, P3460
LEI T, 1992, J APPL PHYS, V71, P4933
LEMOS V, 2000, PHYS REV LETT, V84, P3666
LIMA AP, 1999, J CRYST GROWTH, V201, P396
LUTTINGER JM, 1955, PHYS REV, V97, P869
MURNAGHAN FD, 1944, P NATL ACAD SCI USA, V30, P244
NAKAMURA S, 1997, BLUE LASER DIODE
NAKAMURA S, 1999, SEMICOND SCI TECH, V14, R27
NOVAK P, UNPUB DISTRIBUTED WI
OKUBO S, 1998, J CRYST GROWTH, V190, P452
ORTON JW, 1998, REP PROG PHYS, V61, P1
PAISLEY MJ, 1989, J VAC SCI TECHNOL A, V7, P701
PALUMMO M, 1994, EUROPHYS LETT, V26, P607
PANKOVE JI, 1998, SEMICOND SEMIMET, V50
PAULUS B, 1997, J PHYS-CONDENS MAT, V9, P2745
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PERSSON C, 1996, PHYS REV B, V54, P10257
PERSSON C, 1998, J PHYS-CONDENS MAT, V10, P10549
PETROV I, 1992, APPL PHYS LETT, V60, P2491
PICKETT WE, 1988, PHYS REV B, V38, P1316
PUGH SK, 1998, P 2J INT C PHYS SEM
PUGH SK, 1999, SEMICOND SCI TECH, V14, P23
RAMIREZFLORES G, 1994, PHYS REV B, V50, P8433
RODRIGUES SCP, 2000, APPL PHYS LETT, V76, P1015
ROSA AL, 1998, PHYS REV B, V58, P15675
SCHIKORA D, 1996, PHYS REV B, V54, P8381
SCHWARZ K, 1996, LECT NOTES CHEM, V67, P139
SINGH DJ, 1994, PLANE WAVES PSEUDOPO
SIPAHI GM, 1996, PHYS REV B, V53, P9930
SITAR Z, 1992, J MATER SCI LETT, V11, P261
STADELE M, 1997, PHYS REV LETT, V79, P2089
STADELE M, 1999, PHYS REV B, V59, P10031
STAMPFL C, 1999, PHYS REV B, V59, P5521
STRITE S, 1993, J CRYST GROWTH, V127, P204
SUZUKI M, 1995, PHYS REV B, V52, P8132
SUZUKI M, 1996, APPL PHYS LETT, V69, P3378
TABATA A, 1996, J APPL PHYS 1, V79, P4137
TABATA A, 1999, APPL PHYS LETT, V74, P362
TABATA A, 1999, APPL PHYS LETT, V75, P1095
TADJER A, 1999, J PHYS CHEM SOLIDS, V60, P419
UENO M, 1992, PHYS REV B, V45, P10123
UENO M, 1994, PHYS REV B, V49, P14
VANSCHILFGAARDE M, 1997, J CRYST GROWTH, V178, P8
VOGEL D, 1997, PHYS REV B, V55, P12836
WEI SH, 1996, APPL PHYS LETT, V69, P2719
WENTZCOVITCH RM, 1986, PHYS REV B, V34, P1071
WRIGHT AF, 1994, PHYS REV B, V50, P2159
WRIGHT AF, 1995, PHYS REV B, V51, P7866
XU YN, 1991, PHYS REV B, V44, P7787
YEO YC, 1998, J APPL PHYS, V83, P1429
NR 75
TC 23
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD APR 15
PY 2001
VL 63
IS 16
AR 165210
DI ARTN 165210
PG 10
SC Physics, Condensed Matter
GA 426HH
UT ISI:000168343400047
ER
PT J
AU Abraham, RJ
Tormena, CF
Rittner, R
TI Conformational analysis. Part 35. NMR, solvation and theoretical
investigation of rotational isomerism in methyl fluoroacetate and
methyl difluoroacetate
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID COUPLING-CONSTANTS
AB The solvent and temperature dependence of the C-13 NMR spectra of
methyl fluoroacetate (MFA) and methyl difluoroacetate (MDFA) are
reported and the (1)J(CF) coupling analysed in terms of the conformer
couplings and energies. Density Functional Theory (DFT) calculations
were used to obtain the conformer geometries and solvation theory gave
the solvent dependence of the conformer energies. In MFA the DFT method
at the B3LYP/6-311+G(d,p) level gave only two energy minima for the cis
(F-C-C=O 0 degrees) and trans (F-C-C=O 180 degrees) conformers of ca.
equal energy. The gauche conformer was not a minimum in the energy
surface. The FTIR spectra of MFA support this result as two resolved
carbonyl bands are observed whose relative intensity changes markedly
with solvent polarity. Assuming only these forms, the observed coupling
when analysed by solvation theory leads to the energy difference
(E-cis-epsilonE(trans)) between the cis and trans conformers of 0.90
kcal mol(-1) in the vapour phase, decreasing to 0.41 kcal mol(-1) in
CCl4 and -0.71 kcal mol(-1) in DMSO. In MDFA the DFT calculations gave
two minima for the cis (H-C-C=O 0 degrees) and gauche (H-C-C=O 141.9
degrees) conformers with an energy difference (E-cis-E-gauche) of 0.2
kcal mol(-1). The FTIR spectra of MDFA support this result as in the
non-polar solvent (CCl4) two resolved bands are observed but in
solvents of medium and high polarity the carbonyl absorption appears as
a single band. Assuming only the two forms, the observed coupling when
analysed by solvation theory leads to the energy difference
(E-cis-E-gauche) between the cis and gauche conformers of 0.0 kcal
mol(-1) in the vapour phase, increasing to 0.46 kcal mol(-1) in CCl4
and 1.12 kcal mol(-1) in DMSO.
C1 Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
Univ Estadual Campinas, Inst Quim, BR-13038970 Campinas, SP, Brazil.
RP Rittner, R, Univ Liverpool, Dept Chem, POB 147, Liverpool L69 3BX,
Merseyside, England.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ABRAHAM RJ, 2000, J CHEM SOC PERK T 2, P2382
BANKS JW, 1999, J CHEM SOC PERK NOV, P2409
BOTCHER CJF, 1952, THEORY ELECT POLARIS
BROWN TL, 1962, SPECTROCHIM ACTA, V18, P1615
CHIURDOGLU G, 1971, CONFORMATION ANAL, P219
ELIEL EL, 1994, STEREOCHEMISTRY ORGA
FORESMAN JB, 1993, EXPLORING CHEM ELECT
HARRINGTON PE, 1999, J ORG CHEM, V64, P4025
HEHRE WH, 1986, AB INITIO MOL ORBITA
MEYER M, 1992, CHEM BR, V9, P785
OLIVATO PR, 1992, CAN J APPL SPECTROSC, V33, P37
PHAN HV, 1990, J MOL STRUCT THEOCHE, V209, P333
PITTMAN CU, 1980, MACROMOLECULES, V13, P1031
THIBAUDEAU C, 1998, J ORG CHEM, V63, P4967
TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
VANDERVEKEN BJ, 1993, J MOL STRUCT, V293, P55
VOGEL AI, 1962, PRACTICAL ORGANIC CH
NR 23
TC 12
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1472-779X
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2001
IS 5
BP 815
EP 820
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 428NZ
UT ISI:000168468900025
ER
PT J
AU Esteves, PM
Alberto, GGP
Ramirez-Solis, A
Mota, CJA
TI Ab initio study of the adamantonium cations: the protonated adamantane
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID HYDROGEN-DEUTERIUM EXCHANGE; POTENTIAL-ENERGY SURFACE; PROTOLYSIS
DEUTEROLYSIS; ELECTROPHILIC REACTIONS; SINGLE BONDS; SUPERACIDS;
MECHANISM; ALKANES
AB The molecular structure and energetics of the adamantonium ions were
computed at the MP2(full)/6-31G** level. Three structures were found to
represent the adamantonium cations, respectively: the 1-H-adamantonium
(1). 2-H-adamantonium (2), and C-adamantonium ions (3). This study
revealed that, upon protonation, adamantane can also produce two van
der Waals complexes: one formed by the weak interaction of the
1-adamantyl cation and H-2 (4) and the other formed by the interaction
of the 2-adamantyl cation and H-2 (5). The stability order is predicted
to be 5 > 3 > 4 > 1 > 2, Given the size and complexity of this
molecule, the quantum zero point energy (ZPE) and finite temperature
(298 K) corrections were estimated from previously calculated values
for the isobutonium (for protonation of tertiary C-H and C-C bonds) and
the proponium cations (for protonation of the secondary C-H bond). The
calculated proton affinity of adamantane was estimated as 175.7
kcal/mol.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, BR-21949900 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Cidade
Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
ESTEVES PM, 2000, J BRAZIL CHEM SOC, V11, P345
ESTEVES PM, 2000, J PHYS CHEM A, V104, P6233
FRISCH MJ, 1995, GAUSSIAN 94
HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
LIDE DR, 1994, CRC HDB CHEM PHYSICS
MARCH J, 1992, ADV ORG CHEM, P172
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
OLAH GA, 1970, J AM CHEM SOC, V92, P1259
OLAH GA, 1971, J AM CHEM SOC, V93, P1251
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1985, SUPERACIDS
PRAKASH GKS, 1997, STABLE CARBOCATION C
SCHLEYER PV, 1989, J CHEM SOC CHEM COMM, P1098
SCHLEYER PV, 1997, STABLE CARBOCATION C, P47
SCHLEYER PVR, 1980, J AM CHEM SOC, V102, P683
NR 19
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAY 3
PY 2001
VL 105
IS 17
BP 4308
EP 4311
PG 4
SC Chemistry, Physical
GA 428BT
UT ISI:000168441800019
ER
PT J
AU Sensato, FR
Filho, OT
Longo, E
Sambrano, JR
Andres, J
TI Theoretical analysis of the energy levels induced by oxygen vacancies
and the doping process (Co, Cu and Zn) on SnO2 (110) surface models
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE tin oxide; clusters; surface electronic phenomena; surface defects;
B3LYP hybrid functional
ID REDUCED SNO2(110) SURFACE; ZINC-OXIDE CERAMICS; DENSITY-FUNCTIONAL
THEORY; ELECTRONIC-STRUCTURE; DIOXIDE CHEMISORPTION; CRYSTAL PHASES;
TIN DIOXIDE; TIO2; ADSORPTION; VARISTORS
AB Density functional calculation at B3LYP level was employed to study the
surface oxygen vacancies and the doping process of Co, Cu and Zn on
SnO2 (110) surface models. Large clusters, based on (SnO2)(15) models,
were selected to simulate the oxidized (Sn15O30), half-reduced
(Sn15O29) and the reduced (Sn15O28) surfaces. The doping process was
considered on the reduced surfaces: Sn13Co2O28, Sn13Cu2O28 and
Sn13Zn2O28. The results are analyzed and discussed based on a
calculation of the energy levels along the bulk band gap region,
determined by a projection of the monoelectron level structure on to
the atomic basis set and by the density of states. This procedure
enables one to distinguish the states coming from the bulk, the oxygen
vacancies and the doping process, On passing from an oxidized to a
reduced surface, missing bridge oxygen atoms generate electronic levels
along the band gap region, associated with 5s/5p of four-/five-fold Sn
and 2p of in-plane O centers located on the exposed surface, which is
in agreement with previous theoretical and experimental investigations.
The formation energy of one and two oxygen vacancies is 3.0 and 3.9 eV,
respectively. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Estadual Paulista, Dept Matemat, BR-17030360 Bauru, SP, Brazil.
Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
RP Sensato, FR, Univ Fed Sao Carlos, Dept Quim, CP 676, BR-13565905 Sao
Carlos, SP, Brazil.
CR ANTUNES SRM, 1995, THEOCHEM-J MOL STRUC, V357, P153
BAUR WH, 1956, ACTA CRYSTALLOGR, V9, P515
BECKE AD, 1993, J CHEM PHYS, V98, P1372
BUENO PR, 1996, J MATER SCI LETT, V15, P2048
CALATAYUD M, 1999, SURF SCI, V430, P213
CAMARGO AC, 1996, J ANDRES CHEM PHYS, V212, P2541
CATLOW CRA, 1990, NATURE, V347, P243
CATLOW CRA, 1993, J SOLID STATE CHEM, V106, P13
CATLOW CRA, 1994, J MATER CHEM, V4, P781
CHIANG L, 1997, PHYSICAL CERAMIC, P110
COHEN ML, 1997, INT J QUANTUM CHEM, V61, P603
COX DF, 1988, PHYS REV B, V38, P2072
DEFRESART E, 1981, SOLID STATE COMMUN, V37, P13
DEFRESART E, 1982, APPL SURF SCI, V11, P259
DOBROVOLSKII YA, 1992, SOV ELECTROCHEM, V28, P1277
DOBROVOLSKII YA, 1993, RUSS J ELECTROCHEM+, V29, P1313
DOBROVOLSKII YA, 1995, INORG CHEM, V40, P1553
EGDELL RG, 1995, J MATER CHEM, V5, P499
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GERCHER VA, 1994, SURF SCI, V312, P106
GERCHER VA, 1995, SURF SCI, V322, P177
GOBBY PL, 1976, 13 C PHYS SEM
GODIN TJ, 1993, PHYS REV B, V47, P6518
GONIAKOWSKI J, 1996, PHYS REV B, V53, P957
GONIAKOWSKI J, 1996, SURF SCI, V350, P145
HERMANSSON K, 1994, UUICB19500
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
INADA M, 1971, JPN J APPL PHYS, V10, P736
INADA M, 1978, JPN J APPL PHYS, V17, P1
INADA M, 1979, JPN J APPL PHYS, V18, P1439
IVANOV I, 1981, PHYS REV B, V24, P7275
JARZEBSKI ZM, 1976, J ELECTROCHEM SOC, V123, C199
LEE C, 1988, PHYS REV B, V37, P785
LU X, 1998, CHEM PHYS LETT, V291, P445
MANASSIDIS I, 1995, SURF SCI, V339, P258
MARTINS JBL, 1995, THEOCHEM-J MOL STRUC, V335, P167
MASUYAMA T, 1968, JPN J APPL PHYS, V7, P1294
MATSUOKA M, 1971, JPN J APPL PHYS, V10, P736
MUNNIX S, 1983, PHYS REV B, V27, P7624
MUNNIX S, 1986, PHYS REV B, V33, P4136
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
PENNEWISS J, 1990, MATER LETT, V9, P219
PIANARO SA, 1994, APPL PATENT
PIANARO SA, 1995, J MATER SCI LETT, V14, P692
PIANARO SA, 1998, J MATER SCI-MATER EL, V9, P159
RANTALA T, 1998, SENSOR ACTUAT B-CHEM, V47, P59
RANTALA TS, 1994, PHYS SCR T, V54, P152
RANTALA TS, 1994, SENSOR ACTUAT B-CHEM, V18, P716
RANTALA TS, 1996, CSC NEWS, V8, P23
RANTALA TT, 1999, SURF SCI, V420, P103
RINALDI D, 1992, J COMPUT CHEM, V13, P675
RIVAIL JL, 1976, CHEM PHYS, V18, P233
RIVAIL JL, 1985, J MOL STRUCT THEOCHE, V120, P387
ROBERTSON J, 1979, J PHYS C SOLID STATE, V12, P4767
SAMBRANO JR, 1997, INT J QUANTUM CHEM, V65, P625
SAUER J, 1989, CHEM REV, V89, P199
SENSATO FR, 1997, THEOCHEM-J MOL STRUC, V394, P259
SHERWOOD PMA, 1990, PHYS REV B, V41, P10151
SKAFIDAS PD, 1994, SENSOR ACTUAT B-CHEM, V18, P124
TAPIA O, 1975, MOL PHYS, V29, P1653
TATEWAKI H, 1980, J COMPUT CHEM, V1, P205
WONG MW, 1991, J AM CHEM SOC, V113, P4776
YAMAGUCHI Y, 1998, INT J QUANTUM CHEM, V69, P669
YAMAGUCHI Y, 2000, CHEM PHYS LETT, V316, P477
YAMAOKA N, 1983, AM CERAM SOC BULL, V62, P698
YAN MF, 1982, APPL PHYS LETT, V40, P536
YANG SL, 1995, J MATER RES, V10, P345
ZYUBINA TS, 1995, RUSS J ELECTROCHEM+, V31, P1280
NR 68
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAY 31
PY 2001
VL 541
BP 69
EP 79
PG 11
SC Chemistry, Physical
GA 427CJ
UT ISI:000168387000008
ER
PT J
AU Basso, EA
Oliveira, PR
Caetano, J
Schuquel, ITA
TI Semiempirical and ab initio calculations versus dynamic NMR on
conformational analysis of cyclohexyl-N,N-dimethylcarbamate
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE conformational analysis; theoretical calculations; cyclohexane
derivative; dynamic NMR
AB Axial-equatorial conformational proportions for cyclohexyl-N,N-dimethyl
carbamate have been measured, for the first time, by the Eliel method,
H-1 and C-13 dynamic nuclear magnetic resonance (DNMR). The results
were compared against those determined by theoretical calculations. By
the Eliel method at least five experimentally independent measureables
were used in CCl4, CDCl3 and CD3CN. The H-1 and C-13 low temperature
experiments were performed in CF2Br2/CD2Cl2. Semiempirical methods
MNDO, AM1 and PM3 and ab initio molecular orbital calculations at the
HF/STO-3G and HF/6-31G(d,p) levels have been performed on the axial and
equatorial conformers populations. All applied methods correctly
predict the equatorial conformer preference over the axial one. The
resulting equatorial preferences determined by NMR data and theoretical
calculations are in good agreement.
C1 Univ Estadual Maringa, Dept Quim, BR-87020900 Maringa, Parana, Brazil.
RP Basso, EA, Univ Estadual Maringa, Dept Quim, Av Colombo 5790,
BR-87020900 Maringa, Parana, Brazil.
CR BASSO EA, 1993, J ORG CHEM, V58, P7865
BOBRANSKII BR, 1941, J APPL CHEM-USSR, V14, P524
CAREY FA, 1996, ORGANIC CHEM, P102
COX C, 1998, J ORG CHEM, V63, P2426
DODRELL DM, 1982, J MAGN RESON, V48, P323
ELIEL EL, 1959, CHEM IND-LONDON, P568
ELIEL EL, 1965, CONFORMATIONAL ANAL
ELIEL EL, 1968, J AM CHEM SOC, V90, P682
ELIEL EL, 1994, STEREOCHEMISTRY ORGA
FRISCH MJ, 1995, GAUSSIAN 94 DEV VERS
HARRIS RK, 1986, NUCL MAGNETIC RESONA, P108
HIRSCH JA, 1967, TOP STEREOCHEM, V1, P199
JENSEN FR, 1968, J AM CHEM SOC, V90, P3251
JENSEN FR, 1971, ADVANCES ALICYCLIC C, V3, P139
JORDAN EA, 1986, TETRAHEDRON, V42, P93
KARPLUS M, 1959, J CHEM PHYS, P30
KARPLUS M, 1963, J AM CHEM SOC, V85, P2870
LEMIEUX RU, 1958, J AM CHEM SOC, V80, P6098
WAYLAND BB, 1966, J AM CHEM SOC, V88, P2455
WIBERG KB, 1999, J ORG CHEM, V64, P2085
NR 20
TC 6
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PY 2001
VL 12
IS 2
BP 215
EP 222
PG 8
SC Chemistry, Multidisciplinary
GA 424ZF
UT ISI:000168263300015
ER
PT J
AU Rodrigues, SCP
Sipahi, GM
Scolfaro, LMR
Leite, JR
TI Exchange-correlation effects on the hole miniband structure and
confinement potential in zinc-blende AlxGa1-xN/GaN superlattices
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; DOPING QUANTUM-WELLS; ALGAN/GAN
SUPERLATTICES; BAND-STRUCTURE; HETEROSTRUCTURES; SEMICONDUCTORS;
TRANSPORT
AB We present valence band-structure calculations for undoped and p-doped
cubic AlxGa1-xN/GaN superlattices (SLs), in which the coupling between
the heavy hole, light-hole, and spin-orbit-split-hole bands and strain
effects due to lattice mismatch are taken into account, The
calculations are performed within a self-consistent approach to the k.p
theory by means of a full six-band Luttinger- Kohn Hamiltonian.
Exchange-correlation effects within the two-dimensional hole gas are
included in the calculations in the local density approximation.
Results for hole minibands and potential profiles are shown as
functions of the SL period. It is shown that exchange and correlation
play an important role in the correct description of the systems.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Rodrigues, SCP, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR AS DJ, 2000, APPL PHYS LETT, V76, P13
EDGAR JH, 1994, PROPERTIES GROUP 3 N
ENDERLEIN R, 1997, PHYS REV LETT, V79, P3712
ENDERLEIN R, 1998, PHYS REV LETT, V80, P3160
FAN WJ, 1996, J APPL PHYS, V80, P3471
FREY T, 2001, IN PRESS J APPL PHYS
GOEPFERT ID, 2000, J APPL PHYS, V88, P2030
HSU L, 1999, APPL PHYS LETT, V74, P2405
KOZODOY P, 1999, APPL PHYS LETT, V74, P3681
KUMAKURA K, 1999, JPN J APPL PHYS 2, V38, L1012
KUMAKURA K, 2000, JPN J APPL PHYS 1, V39, P2428
MARQUES M, 2001, IN PRESS P 25 INT C
ORTON JW, 1998, REP PROG PHYS, V61, P1
PANKOVE JI, 1998, SEMICONDUCTORS SEMIM, V50
PARKER CA, 1999, APPL PHYS LETT, V75, P2776
RAMOS LE, 2001, IN PRESS PHYS REV B, V63
RODRIGUES SCP, 2000, APPL PHYS LETT, V76, P1015
RODRIGUES SCP, 2000, IPAP CONFERENCE SER, V1, P74
ROSA AL, 1998, PHYS REV B, V58, P15675
SAXLER A, 1999, APPL PHYS LETT, V74, P2023
SIPAHI GM, 1996, PHYS REV B, V53, P9930
VANDEWALLE CG, 1997, APPL PHYS LETT, V70, P2577
WRIGHT AF, 1997, J APPL PHYS, V82, P2833
WU J, 1999, J CRYST GROWTH, V197, P73
NR 24
TC 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD APR 9
PY 2001
VL 13
IS 14
BP 3381
EP 3387
PG 7
SC Physics, Condensed Matter
GA 425BV
UT ISI:000168269200012
ER
PT J
AU Dardenne, LE
Werneck, AS
Neto, MO
Bisch, PM
TI Reassociation of fragments using multicentered multipolar expansions:
Peptide junction treatments to investigate electrostatic properties of
proteins
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE multicentered multipolar expansions; reassociation of fragments;
electrostatic properties of proteins; peptide junction; ab initio
calculations
ID MOLECULAR CHARGE-DISTRIBUTION; ACID SIDE-CHAINS; ATOMIC CHARGES; POINT
CHARGES; SOLVENT; MODELS; PAPAIN; INHIBITORS; SURFACES; ENERGIES
AB We report an analysis of three schemes for fragment reassociation using
multicentered multipolar expansions derived from ab initio quantum wave
functions at the Hartree-Fock/6-31G* LCAO level, two of them involving
single-bond partitioning in the peptide bond region, and the third one
using a partially overlapping procedure based on a methodology proposed
by Vigne-Maeder(21) (OME-overlap of multipolar expansions-reassociation
method). The effects of different peptide junction treatments in the
derivation of molecular electrostatic potentials and molecular electric
fields of three peptide sequences are discussed. The results show that
the OME reassociation method gives a better and a more homogeneous
description of both the potential and the electric field than the other
two treatments. We conclude that the OME method is the most indicated
for studies involving electrostatic properties of proteins. Our results
also indicate that the use of multicentered multipolar expansions
coupled to the OME treatment is the best choice in protein studies
including solvent effects using, for example, a continuum boundary
method to solve the linearized Poisson-Boltzmann equation. (C) 2001
John Wiley & Sons, Inc.
C1 UCB, Dept Fis, BR-72030170 Taguatinga, DF, Brazil.
Univ Fed Rio de Janeiro, Inst Biofis Carlos Chagas Filho, BR-21949900 Rio De Janeiro, Brazil.
Univ Brasilia, Inst Quim, BR-70910900 Brasilia, DF, Brazil.
RP Werneck, AS, UCB, Dept Fis, EPCT Q-57,Lote 01,Aguas Claras, BR-72030170
Taguatinga, DF, Brazil.
CR ANGYAN JG, 1994, INT J QUANTUM CHEM, V52, P17
BELLIDO MN, 1989, J COMPUT CHEM, V10, P479
CHIPOT C, 1993, J PHYS CHEM-US, V97, P9788
CHIPOT C, 1993, J PHYS CHEM-US, V97, P9797
COLONNA F, 1992, J COMPUT CHEM, V13, P1234
CONNOLLY ML, 1983, SCIENCE, V221, P709
DAY PN, 1996, J CHEM PHYS, V105, P1968
FERENCZY GG, 1991, J COMPUT CHEM, V12, P913
FREITAG MA, 2000, J CHEM PHYS, V112, P7300
GOLDBLUM A, 1979, INT J QUANTUM CHEM, V15, P121
GRESH N, 1984, THEOR CHIM ACTA, V66, P1
GRESH N, 1997, BIOPOLYMERS, V41, P145
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HODGKIN EE, 1987, INT J QUANTUM CHEM, V14, P105
JEZIORSKI B, 1994, CHEM REV, V94, P1887
JUFFER AH, 1991, J COMPUT PHYS, V97, P144
LANGLET J, 1988, J PHYS CHEM-US, V92, P1617
LAVERY R, 1983, INT J QUANTUM CHEM, V24, P353
LEWIS SD, 1981, BIOCHEMISTRY-US, V20, P48
MERZ KM, 1992, J COMPUT CHEM, V13, P749
MURRAY JS, 1998, INT J QUANTUM CHEM, V70, P1137
NAKAMURA H, 1996, Q REV BIOPHYS, V29, P1
NARAYSZABO G, 1997, COMPUTATIONAL APPROA
PORT GNJ, 1973, FEBS LETT, V31, P70
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHRODER E, 1993, FEBS LETT, V315, P38
SHARP KA, 1990, ANNU REV BIOPHYS BIO, V19, P301
SINGH UC, 1984, J COMPUT CHEM, V5, P129
STONE AJ, 1981, CHEM PHYS LETT, V83, P233
STONE AJ, 1985, MOL PHYS, V56, P1047
VIGNEMAEDER F, 1987, CHEM PHYS LETT, V133, P337
VIGNEMAEDER F, 1988, J CHEM PHYS, V88, P4934
WARSHEL A, 1981, ACCOUNTS CHEM RES, V14, P284
WERNECK AS, 1998, THEOCHEM-J MOL STRUC, V427, P15
YOUNG L, 1997, J COMPUT CHEM, V18, P522
NR 35
TC 4
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD MAY
PY 2001
VL 22
IS 7
BP 689
EP 701
PG 13
SC Chemistry, Multidisciplinary
GA 424WW
UT ISI:000168257800002
ER
PT J
AU de Souza, GGB
Rocco, MLM
Boechat-Roberty, HM
Lucas, CA
Borges, I
Hollauer, E
TI Valence electronic excitation of the SiF4 molecule: generalized
oscillator strength for the 5t(2)-> 6a(1) transition and ab initio
calculation
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
ID SAC-CI THEORIES; CROSS-SECTIONS; EXCITED-STATES; PHOTOABSORPTION
SPECTRA; SPECTROSCOPY; PHOTOELECTRON; IONIZATION; SCATTERING; ARGON;
SICL4
AB The electronic excitation of the silicon tetrafluoride (SiF4) molecule
has been studied using the angle-resolved electron energy-loss
technique, at 1.0 keV incident electron energy, in the 0-50 eV energy
range with an angular range of 1.5 degrees -20.0 degrees. The absolute
generalized oscillator strength (GOS) for the 5t(2) --> 6a(1)
electronic transition, located at 13.0 eV, has been determined. A
minimum has been observed in the GOS for this transition at K-2 = 1.4
au. We have also determined the absolute elastic and inelastic
differential cross sections at I keV. In order to help in the
interpretation of the experimental results, ab initio calculations have
been performed for the vertical valence transitions and ionization
energies for the SiF4 molecule. Configuration-interaction calculations,
including single and double excitations (CI-SD) and the
symmetry-adapted-cluster expansion (SAC) were used. The CI-SD approach
was also employed to obtain the optical oscillator strength for the
5t(2) --> 6a(1) transition.
C1 Fed Univ Rio De Janeiro, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Fed Univ Rio De Janeiro, Observ Valongo, BR-20080090 Rio De Janeiro, Brazil.
Univ Fed Fluminense, Inst Quim, BR-24020150 Niteroi, RJ, Brazil.
RP de Souza, GGB, Fed Univ Rio De Janeiro, Inst Quim, Cidade Univ,
BR-21949900 Rio De Janeiro, Brazil.
CR BARTELL LS, 1984, J CHEM PHYS, V81, P3792
BIELSCHOWSKY CE, 1988, PHYS REV A, V38, P3405
BOECHATROBERTY HM, 1991, PHYS REV A, V44, P1694
BOECHATROBERTY HM, 1992, J PHYS B ATOM MOL PH, V25, P4641
BOECHATROBERTY HM, 1995, REV BRASIL FIS APLIC, V10, P92
BOECHATROBERTY HM, 1997, J PHYS B-AT MOL OPT, V30, P3369
BOZEK JD, 1990, CHEM PHYS, V145, P131
BOZEK JD, 1990, PHYS REV LETT, V65, P2757
CHEN ZF, 1999, PHYS REV A, V60, P5115
DEALTI G, 1978, CHEM PHYS, V35, P283
DEMIRANDA MP, 1994, PHYS REV A, V49, P2399
DESOUZA GGB, 1989, J CHEM PHYS, V90, P7071
FANTONI R, 1986, CHEM PHYS LETT, V128, P67
GUO X, 1992, CHEM PHYS, V161, P453
HOLLAUER E, 1999, J ELECTRON SPECTROSC, V104, P31
ISHIKAWA H, 1991, J CHEM PHYS, V94, P6740
KAMETA K, 1993, J CHEM PHYS, V99, P2487
KARWASZ GP, 1998, CHEM PHYS LETT, V284, P128
KING RA, 1996, J CHEM PHYS, V105, P6880
KUROKI K, 1994, J ELECTRON SPECTROSC, V70, P151
LASSETTRE EN, 1974, METHODS EXPT PHYSI B, V3, P868
MICHELS HH, 1993, CHEM PHYS LETT, V207, P389
MONIRUZZAMAN S, 1999, THIN SOLID FILMS, V337, P27
MSEZANE AZ, 1994, PHYS REV A, V49, P2405
NAKATSUJI H, 1979, CHEM PHYS LETT, V67, P334
NAKATSUJI H, 1981, J CHEM PHYS, V75, P2952
NAKATSUJI H, 1987, THEOR CHIM ACTA, V71, P201
NAKATSUJI H, 1990, J CHEM PHYS, V93, P1865
NAKATSUJI H, 1991, INT J QUANTUM CHEM, V39, P93
NAKATSUJI H, 1991, J CHEM PHYS, V95, P4296
OLNEY TN, 1997, CHEM PHYS, V223, P59
PADMA R, 1992, PHYS REV A, V46, P2513
ROBINSON EA, 1997, INORG CHEM, V36, P3022
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SUTO M, 1987, J CHEM PHYS, V86, P1152
TAKAMI M, 1990, J CHEM PHYS, V94, P2204
TOSSELL JA, 1984, J CHEM PHYS, V80, P813
YATES BW, 1985, J CHEM PHYS, V83, P4906
NR 38
TC 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS-B-AT MOL OPT PHYS
JI J. Phys. B-At. Mol. Opt. Phys.
PD MAR 28
PY 2001
VL 34
IS 6
BP 1005
EP 1017
PG 13
SC Physics, Atomic, Molecular & Chemical; Optics
GA 422VP
UT ISI:000168140200010
ER
PT J
AU Castellano, EE
Piro, OE
Caram, JA
Mirifico, MV
Aimone, SL
Vasini, EJ
Lucero, AM
Mitnik, DG
TI Crystallographic study and molecular orbital calculations of
thiadiazole derivatives. 1. Phenanthro[9,10-c]-1,2,5-thiadiazole
1,1-dioxide and acenaphtho[1,2-c]-1,2,5-thiadiazole 1,1-dioxide
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE 1,2,5-thiadiazole 1,1-dioxide derivatives; ab initio MO calculations;
single-crystal X-ray diffraction; density functional theory;
sensitivity analysis
ID DENSITY-FUNCTIONAL THEORY; 3,4-DIPHENYL-1,2,5-THIADIAZOLE 1,1-DIOXIDE;
CHEMICAL-REACTIVITY; SOFT ACIDS; CRYSTAL-STRUCTURE; GAS-PHASE;
HARDNESS; BASES; ELECTROREDUCTION; DESCRIPTORS
AB Single-crystal X-ray diffraction studies are reported for
phenanthro[9,10-c]-1,2,5-thiadiazole 1,1-dioxide (I) and
acenaphtho[1,2-c]-1,2,5-thiadiazole 1,1-dioxide (II), Ab initio
molecular orbital (MO) calculations on the electronic structure,
conformation and reactivity of I and II an also reported and compared
with the X-ray results. A charge sensitivity analysis of the studied
molecules has been performed by resorting to density functional theory
(DFT), obtaining several sensitivity coefficients such as the molecular
energy, net atomic charges, global and local hardness, global and local
softness and Fukui functions. With these results and the analysis of
the dipole moments and the total electron density maps, several
conclusions have been inferred about the preferred sites of chemical
reaction of the studied compounds. (C) 2001 Elsevier Science B.V. All
rights reserved.
C1 CIMAV, Chihuahua, Mexico.
Univ Sao Paulo, Dept Fis, Inst Fis & Quim Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, RA-1900 La Plata, Argentina.
CONICET, PROFIMO, RA-1900 La Plata, Argentina.
Univ Nacl La Plata, INIFTA, CONICET, RA-1900 La Plata, Argentina.
RP Mitnik, DG, CIMAV, Miguel de Cervantes 120, Chihuahua, Mexico.
CR AIMONE SL, 2000, J PHYS ORG CHEM, V13, P272
AIMONE SL, 2000, TETRAHEDRON LETT, V41, P3531
AMATO JS, 1982, J AM CHEM SOC, V104, P1375
BACHRACH SM, 1994, REV COMPUTATIONAL CH, V5
BAETEN A, 1994, J MOL STRUCT THEOCHE, V306, P203
BAETEN A, 1995, CHEM PHYS LETT, V235, P17
BAKER RJ, 1980, J ORG CHEM, V45, P482
CALDERON CE, 1979, ACTA CRYSTALLOGR B, V35, P2795
CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P1340
CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P2296
CARAM JA, 1994, ELECTROCHIM ACTA, V39, P939
CASTELLANO EE, 1998, J PHYS ORG CHEM, V11, P91
CROMER DT, 1974, INT TABLES CRYSTALLO, V4, P71
CROMER DT, 1974, INT TABLES XRAY CRYS, V4, P149
DEPROFT F, 1994, J PHYS CHEM-US, V98, P5227
FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
FOCESFOCES C, 1975, ACTA CRYSTALLOGR B, V31, P2310
FOCESFOCES C, 1977, ACTA CRYSTALLOGR B, V33, P910
FRENZ AB, 1983, ENRAF NONIUS STRUCTU
FRISCH MJ, 1998, GAUSSIAN 98
FUKUI K, 1973, THEORY ORIENTATION S
GAZQUEZ JL, 1994, J PHYS CHEM-US, V98, P4591
GAZQUEZ JL, 1998, THEORET COMPUT CHEM, V5, P135
GLOSSMAN MD, 1995, THEOCHEM-J MOL STRUC, V330, P385
GLOSSMAN MD, 1996, ATUALIDADES FISICOQU
GLOSSMAN MD, 1997, THEOCHEM-J MOL STRUC, V390, P67
JOHNSON CK, 1965, ORNL3794 ORTEP
LANGENAEKER W, 1992, J MOL STRUCT THEOCHE, V259, P317
LANGENAEKER W, 1995, J PHYS CHEM-US, V99, P6424
LIPKOWITZ KB, 1990, REV COMPUTATIONAL CH, V1
MIRIFICO MV, 1991, ELECTROCHIM ACTA, V36, P167
MIRIFICO MV, 1991, INT J CHEM KINET, V23, P197
MIRIFICO MV, 1993, J PHYS ORG CHEM, V6, P341
MIRIFICO MV, 1995, AN QUIM, V91, P557
MULLEN K, 1998, ELECT MAT OLIGOMER A
MULLIKEN RS, 1934, J CHEM PHYS, V2, P782
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
MULLIKEN RS, 1955, J CHEM PHYS, V23, P2338
NALWA HS, 1997, HDB ORGANIC CONDUCTI
PARR RG, 1984, J AM CHEM SOC, V106, P4049
PARR RG, 1989, DENSITY FUNCTIONAL T
PARR RG, 1995, ANNU REV PHYS CHEM, V46, P701
PEARSON RG, 1963, J AM CHEM SOC, V85, P3533
PEARSON RG, 1966, SCIENCE, V151, P172
PEARSON RG, 1987, J CHEM EDUC, V64, P561
POLITZER P, 1981, CHEM APPL ATOMIC MOL
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
ROY RK, 1998, J PHYS CHEM A, V102, P3746
ROY RK, 1998, J PHYS CHEM A, V102, P7035
SALZNER U, 1997, J COMPUT CHEM, V18, P1943
SHELDRICK GM, 1974, SHELX PROGRAM CRYSTA
WEINSTOCK LM, 1984, COMPREHENSIVE HETERO, V6
YANG W, 1986, J AM CHEM SOC, V108, P5708
ZHOU Z, 1988, TETRAHEDRON LETT, V29, P4843
NR 55
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD MAY 2
PY 2001
VL 562
IS 1-3
BP 157
EP 166
PG 10
SC Chemistry, Physical
GA 421UA
UT ISI:000168080900017
ER
PT J
AU Milas, I
Nascimento, MAC
TI A density-functional study of the dehydrogenation reaction of isobutane
over zeolites
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID AB-INITIO; ELECTROPHILIC REACTIONS; ACIDIC ZEOLITE; CLUSTER-MODELS;
LIGHT ALKANES; EXCHANGE; CRACKING; ACTIVATION; CARBOCATIONS; TEMPERATURE
AB The dehydrogenation reaction of isobutane over zeolites was
investigated at the B3LYP/6-31G** and 6-311G** levels of calculation,
and with T3 and T5 clusters representing the zeolite. The transition
state (TS) exhibits a carbenium ion-like character, and the activation
energy, at the best level of theory, is 53.4 kcal/mol. Contrary to what
has been previously proposed, IRC calculations show that the mechanism
does not involve the formation of alkoxide, but rather the carbocation
collapses directly into isobutene while the eliminated proton, restores
the zeolite's acid site. Increasing the size of the cluster and of the
basis set does not change the mechanism. (C) 2001 Elsevier Science B.V.
All rights reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim,
Cidade Univ,CT Bloco A,Sala 412, BR-21949900 Rio De Janeiro, Brazil.
CR *SCHROD INC, 1998, JAGUAR 3 5
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BLASZKOWSKI SR, 1996, J PHYS CHEM-US, V100, P3463
CORMA A, 1994, J CATAL, V145, P171
ESTEVES PM, 1999, J PHYS CHEM B, V103, P10417
ESTEVES PM, 2000, THESIS U FEDERAL RIO
EVELETH EM, 1996, J PHYS CHEM-US, V100, P11368
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FURTADO EA, 2000, THESIS U FEDERAL RIO
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
HAW JF, 1989, J AM CHEM SOC, V111, P2052
JEANVOINE Y, 1998, J PHYS CHEM B, V102, P5573
KAZANSKY VB, 1989, J CATAL, V119, P108
KAZANSKY VB, 1996, APPL CATAL A-GEN, V146, P225
LINS JOMDL, 1996, THEOCHEM-J MOL STRUC, V371, P237
NARBESHUBER TF, 1995, J CATAL, V157, P388
NARBESHUBER TF, 1997, J CATAL, V172, P127
NICHOLAS JB, 1996, J AM CHEM SOC, V118, P4202
OLAH GA, 1971, J AM CHEM SOC, V93, P1251
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
RESASCO DE, 1994, CATALYSIS, V11, P379
SINCLAIR PE, 1998, J CHEM SOC FARADAY T, V94, P3401
STEFANADIS C, 1991, J MOL CATAL, V67, P363
VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13719
ZARDKOOHI M, 1987, J AM CHEM SOC, V109, P5278
ZYGMUND SA, 2000, PHYS CHEM B, V104, P1944
NR 27
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 13
PY 2001
VL 338
IS 1
BP 67
EP 73
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 423QC
UT ISI:000168187400011
ER
PT J
AU De Almeida, MV
Figueiredo, RM
Dos Santos, HF
Da Silva, AD
De Almeida, WB
TI Synthesis and theoretical study of azido and amino inositol derivatives
from L-quebrachitol
SO TETRAHEDRON LETTERS
LA English
DT Article
ID D-3-AZIDO-3-DEOXY-MYO-INOSITOL; ROUTES
AB Some azido and amino inositol derivatives were synthesised from
L-quebrachitol. The reaction between the mesylated compound and sodium
azide was studied experimentally. Ab initio quantum mechanical
calculations were carried out for this process to better understand the
reaction mechanism. (C) 2001 Elsevier Science Ltd. All rights reserved.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Juiz de Fora, ICE, Dept Quim, Juiz De Fora, MG, Brazil.
RP De Almeida, WB, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim
Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR ACENA JL, 1996, TETRAHEDRON LETT, V37, P105
ARJONA O, 1995, TETRAHEDRON LETT, V8, P6659
BRUNN G, 1994, CANCER CHEMOTH PHARM, V35, P71
CHIDA N, 1990, CHEM LETT, P423
COSSI M, 1996, CHEM PHYS LETT, V255, P327
DASILVA ET, 1998, TETRAHEDRON LETT, V39, P6659
DEALMEIDA WB, 1998, J PHARM SCI, V87, P1101
HAMADA M, 1974, J ANTIBIOT, V27, P81
KOZIKOWSKI AP, 1990, J AM CHEM SOC, V112, P4528
KOZIKOWSKI AP, 1992, J CHEM SOC CHEM COMM, P362
MANN RL, 1953, ANTIBIOT CHEMOTHER, V3, P1279
OGAWA S, 1991, CARBOHYD RES, V210, P105
OLESKER A, 1975, J ANTIBIOT, V28, P491
PETTIT GR, 1984, J CHEM SOC CHEM COMM, P1693
PITTENGER RC, 1953, ANTIBIOT CHEMOTHER, V3, P6659
NR 15
TC 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0040-4039
J9 TETRAHEDRON LETT
JI Tetrahedron Lett.
PD APR 9
PY 2001
VL 42
IS 15
BP 2767
EP 2769
PG 3
SC Chemistry, Organic
GA 421EF
UT ISI:000168048600004
ER
PT J
AU Verissimo-Alves, M
Capaz, RB
Koiller, B
Artacho, E
Chacham, H
TI Polarons in carbon nanotubes
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FIRST-PRINCIPLES; LARGE SYSTEMS; EXCITATIONS; SOLITONS; C-60
AB We use ab initio total-energy calculations to predict the existence of
polarons in semiconducting carbon nanotubes (CNTs). We find that the
CNTs' band edge energies vary linearly and the elastic energy increases
quadratically with both radial and with axial distortions, leading to
the spontaneous formation of polarons. Using a continuum model
parametrized by the nb initio calculations, we estimate electron and
hole polaron lengths, energies, and effective masses and analyze their
complex dependence on CNT geometry. Implications of polaron effects on
recently observed electro- and optomechanical behavior of CNTs are
discussed.
C1 Fed Univ Rio De Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
Univ Autonoma Madrid, Inst Nicolas Cabrera, Madrid 28049, Spain.
Univ Autonoma Madrid, Dipartiment Fis Mat Condensada, Madrid 28049, Spain.
Univ Fed Minas Gerais, Dept Fis, ICEx, BR-30123970 Belo Horizonte, MG, Brazil.
RP Verissimo-Alves, M, Fed Univ Rio De Janeiro, Inst Fis, BR-21945970 Rio
De Janeiro, Brazil.
CR APPEL J, 1968, SOLID STATE PHYS, V21, P193
BAUGHMAN RH, 1999, SCIENCE, V284, P1340
BLASE X, 1994, PHYS REV LETT, V72, P1878
CHAMON C, 2000, PHYS REV B, V62, P2806
HARIGAYA K, 1992, PHYS REV B, V45, P13676
HARIGAYA K, 1993, SYNTHETIC MET, V56, P3202
HEEGER AJ, 1988, REV MOD PHYS, V60, P781
HEYD R, 1997, PHYS REV B, V55, P6820
HOLSTEIN T, 1959, ANN PHYS-NEW YORK, V8, P325
LAMMERT P, 2000, PHYS REV LETT, V841, P2453
MAZZONI MSC, 2000, APPL PHYS LETT, V76, P1561
MAZZONI MSC, 2000, PHYS REV B, V61, P7312
MINTMIRE JW, 1992, PHYS REV LETT, V68, P631
ORDEJON P, 1996, PHYS REV B, V53
PARK CJ, 1999, PHYS REV B, V60, P10656
PEIERLS RE, 1955, QUANTUM THEORY SOLID
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
SAITO R, 1992, PHYS REV B, V46, P1804
SAITO R, 1998, PHYSIAL PROPERTIES C
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANCHEZPORTAL D, 1999, PHYS REV B, V59, P12678
TROULLIER N, 1991, PHYS REV B, V43, P2006
WANG N, 2000, NATURE, V408, P51
YANG L, 1999, PHYS REV B, V60, P13874
ZHANG Y, 1999, PHYS REV LETT, V82, P3472
NR 25
TC 29
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD APR 9
PY 2001
VL 86
IS 15
BP 3372
EP 3375
PG 4
SC Physics, Multidisciplinary
GA 421CZ
UT ISI:000168045700039
ER
PT J
AU Barbatti, M
Jalbert, G
Nascimento, MAC
TI The structure and the thermochemical properties of the H-3(+)(H-2)(n)
clusters (n=8-12)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID PROTONATED HYDROGEN CLUSTERS; CONDENSED-PHASE; MONTE-CARLO; IONS;
ABINITIO; ENERGIES; STABILITIES; ENERGETICS; N=1-9
AB Ab initio calculations were performed for the H-3(+)(H-2)(n) clusters
(n=8-12), including complete optimization of several isomers of the
n=10 cluster. Binding energies, enthalpies, and ionization potentials
are calculated. Well defined patterns of chromism are predicted for the
H-2 collective vibrations and for the H-3(+) breathing vibrations. The
calculations for the n > 10 clusters allow us to understand their shell
structure in terms of concentric spheres of H-2 molecules. The first
and second shells have occupation numbers equal to 3 and 6,
respectively, while for the third shell, this number is within the
range 12-15. (C) 2001 American Institute of Physics.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, BR-21945970 Rio De Janeiro, Brazil.
RP Barbatti, M, Univ Fed Rio de Janeiro, Inst Fis, CP 68528, BR-21945970
Rio De Janeiro, Brazil.
CR BARBATTI M, UNPUB J CHEM PHYS
BARBATTI M, 2000, J CHEM PHYS, V113, P4230
BARBATTI M, 2001, J CHEM PHYS, V114, P2213
BOYS SF, 1970, MOL PHYS, V19, P553
CHAN MC, 2000, J PHYS CHEM A, V104, P3775
CLAMPIT R, 1969, NATURE, V223, P815
DAVY R, 1999, MOL PHYS, V97, P1263
FARIZON B, 1999, PHYS REV B, V60, P3821
FARIZON M, 1991, CHEM PHYS LETT, V177, P451
HERZBERG G, 1950, MOL SPECTRA MOL STRU, V1
HIRAOKA K, 1987, J CHEM PHYS, V87, P4048
HOKWANG, 1994, REV MOD PHYS, V66, P671
HUBER H, 1980, CHEM PHYS LETT 2, V70, P353
IGNACIO EW, 1998, CHEM PHYS LETT, V287, P563
KACZOROWSKA M, 2000, J CHEM PHYS, V113, P3615
KEMPER PR, 1998, J PHYS CHEM A, V102, P8590
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LOUC S, 1998, PHYS REV A, V58, P3802
MCCALL BJ, 1998, SCIENCE, V279, P1910
MULLER H, 2000, PHYS CHEM CHEM PHYS, V2, P2061
NAGASHIMA U, 1992, J PHYS CHEM-US, V96, P4294
NELLIS WJ, 2000, SCI AM MAY, P60
OKUMURA M, 1988, J CHEM PHYS, V88, P79
PANG T, 1994, CHEM PHYS LETT, V228, P555
PAUL W, 1995, INT J MASS SPECTROM, V149, P373
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SILVERA IF, 1980, REV MOD PHYS, V52, P393
STICH I, 1997, J CHEM PHYS, V107, P9482
STICH I, 1997, PHYS REV LETT, V78, P3669
VANLUMIG A, 1978, INT J MASS SPECTROM, V27, P197
WEIR ST, 1996, PHYS REV LETT, V76, P1860
WRIGHT LR, 1982, J CHEM PHYS, V77, P1938
YAMAGUCHI Y, 1983, J CHEM PHYS, V78, P4074
NR 33
TC 9
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD APR 22
PY 2001
VL 114
IS 16
BP 7066
EP 7072
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 420ZQ
UT ISI:000168036900013
ER
PT J
AU Rocha, AB
Bielschowsky, CE
TI Intensity of the n -> pi* symmetry-forbidden electronic transition in
acetone by direct vibronic coupling mechanism
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID METHYL INTERNAL-ROTATION; SUPERSONIC NOZZLE BEAM;
CONFIGURATION-INTERACTION; AB-INITIO; SPECTRA
AB Absolute absorption intensities were calculated for the symmetry dipole
forbidden n --> pi* transition in acetone. An analysis of the
distribution per normal modes is performed and the results are compared
with a recent calculation. Vibronic coupling mechanism is taken into
account in a way that is different from the traditional Herzberg-Teller
perturbation approach. In the present method the electronic transition
moment is directly expanded in power series of the vibration normal
coordinates. This approach was recently used for the equivalent n -->
pi* transition in formaldehyde presenting an excellent agreement with
the experimental results. (C) 2001 Elsevier Science B.V. All rights
reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fis Qim, BR-21949900 Rio De Janeiro, Brazil.
RP Bielschowsky, CE, Univ Fed Rio de Janeiro, Inst Quim, Dept Fis Qim,
Cidade Univ,CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR BABA M, 1983, CHEM PHYS LETT, V103, P93
BABA M, 1985, J CHEM PHYS, V82, P3938
BAUSCHLICHER CW, 1980, J CHEM PHYS, V72, P880
HERZBERG G, 1933, Z PHYS CHEM B-CHEM E, V21, P410
HERZBERG G, 1991, ELECTRO SPECTRA ELEC
JOHNSON WC, 1975, J CHEM PHYS, V63, P2144
LEY H, 1931, Z PHYS CHEM B-CHEM E, V12, P132
LIAO DW, 1999, J CHEM PHYS, V111, P205
MEBEL AM, 1997, CHEM PHYS LETT, V274, P281
MUCMURRY HL, 1941, J CHEM PHYS, V9, P231
MURRELL JN, 1956, P PHYS SOC LOND A, V69, P245
NOYES WA, 1934, J CHEM PHYS, V2, P717
PAUZAT F, 1980, MOL PHYS, V39, P375
POPLE JA, 1957, J CHEM PHYS, V27, P1270
ROCHA AB, 2000, CHEM PHYS, V253, P51
ROCHA AB, 2001, J MOL STRUC-THEOCHEM, V539, P145
ROCHE M, 1974, J CHEM PHYS, V60, P1193
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
STRICKLER SJ, 1982, J PHYS CHEM-US, V86, P448
WORDEN EF, 1966, SPECTROCHIM ACTA, V22, P21
ZIEGLER L, 1974, J CHEM PHYS, V60, P3558
NR 22
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 6
PY 2001
VL 337
IS 4-6
BP 331
EP 334
PG 4
SC Physics, Atomic, Molecular & Chemical
GA 420BP
UT ISI:000167984300016
ER
PT J
AU Gomez, JA
Guenzburger, D
TI Influence of conduction electrons on the magnetism of cobalt grains in
a copper matrix studied by density-functional theory
SO PHYSICAL REVIEW B
LA English
DT Article
ID CO GRANULAR ALLOYS; GIANT MAGNETORESISTANCE; PARTICLE-SIZE;
GROUND-STATE; CU; IMPURITIES; SYSTEMS; CLUSTERS; SPIN; MOLECULES
AB Electronic structure calculations in the local spin-density
approximation were performed for clusters of 79 atoms embedded in a Cu
matrix. The discrete variational method was employed. Cobalt grains of
up to 55 atoms surrounded by Cu were considered; the lattice parameter
of Cu was used for the calculations. Local magnetic moments and
hyperfine fields were obtained for all the clusters. The results show
that the local magnetic moments at the Co atom sites have oscillatory
behavior with a tendency to increase in the direction of the grain
boundaries. The magnitude of the contact contribution to the hyperfine
field at the Co atom sites also has oscillatory behavior but with a
tendency to decrease from the center to the surface of the grains. This
is due to a tendency of alignment of the 4s moment with the 3d moment.
Dipolar contributions to the hyperfine field were also calculated for
the cobalt atoms at the boundary of the grains. The highest magnitude
of this contribution was 4.2 T, Found for the grain with 13 Co atoms.
Charge oscillations on Co are observed from the center to the surface.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
RP Guenzburger, D, Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150,
BR-22290180 Rio De Janeiro, Brazil.
EM diana@cat.cbpf.br
CR ABRAGAM A, 1961, PRINCIPLES NUCL MAGN
ALLIA P, 1994, J APPL PHYS 2, V76, P6817
ALLIA P, 1999, J MAGN MAGN MATER, V196, P56
ALLIA P, 1999, J MAGN MAGN MATER, V203, P76
BERKOWITZ AE, 1992, PHYS REV LETT, V68, P3745
BRASPENNING PJ, 1984, PHYS REV B, V29, P703
CEPERLEY D, 1978, PHYS REV B, V18, P3126
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHUANYUN X, 1997, PHYS REV B, V55, P3677
CONROY H, 1967, J CHEM PHYS, V47, P5307
CRANGLE J, 1955, PHILOS MAG, V46, P499
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DRITTLER B, 1989, PHYS REV B, V39, P6334
DUNN JH, 1995, J PHYS C SOLID STATE, V7, P1111
EASTHAM DA, 1997, J PHYS-CONDENS MAT, V9, L497
ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
ELLIS DE, 1970, PHYS REV B, V2, P2887
ELLIS DE, 1999, ADV QUANTUM CHEM, V34, P51
FUJIMA N, 1999, J PHYS SOC JPN, V68, P586
HASELGROVE CB, 1961, MATH COMPUT, V15, P323
KUZMINSKI M, 1999, IEEE T MAGN 1, V35, P2853
KUZMINSKI M, 1999, J MAGN MAGN MATER, V205, P7
LI ZQ, 1993, PHYS REV B, V47, P13611
MALINOWSKA M, 1999, J MAGN MAGN MATER, V198, P599
MIURA K, 1994, PHYS REV B, V50, P10335
MORUZZI VL, 1986, J MAGN MAGN MATER, V54, P955
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
NOGUEIRA RN, IN PRESS PHYS REV B
NOGUEIRA RN, 1996, PHYS REV B, V53, P15071
NOGUEIRA RN, 1999, HYPERFINE INTERACT, V120, P131
PARR RG, 1989, DENSITY FUNCTIONAL T
PODLOUCKY R, 1980, PHYS REV B, V22, P5777
POHORILYI AN, 1999, J MAGN MAGN MATER, V196, P43
PORTIS AM, 1960, J APPL PHYS, V31, S205
SAMANT MG, 1994, PHYS REV LETT, V72, P1112
SATO H, 1996, J MAGN MAGN MATER, V152, P109
SINNECKER EHCP, 2000, J MAGN MAGN MATER, V218, L132
SRIVASTAVA P, 1998, PHYS REV B, V58, P5701
STOHR J, 1997, J PHYS IV 1, V7, P47
STOHR J, 1999, J MAGN MAGN MATER, V200, P470
TISHER M, 1995, PHYS REV LETT, V75, P1602
TSUNODA M, 1998, J APPL PHYS 2, V83, P7004
UEDA Y, 1996, JPN J APPL PHYS 1, V35, P3414
UIMIN MA, 1998, PHYS STATUS SOLIDI A, V165, P337
VOSKO SH, 1980, CAN J PHYS, V58, P1200
XIAO JQ, 1992, PHYS REV LETT, V68, P3749
XING L, 1993, PHYS REV B, V48, P4156
XING L, 1993, PHYS REV B, V48, P6728
NR 49
TC 11
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD APR 1
PY 2001
VL 6313
IS 13
AR 134404
DI ARTN 134404
PG 10
SC Physics, Condensed Matter
GA 418MB
UT ISI:000167895000054
ER
PT J
AU Fagan, SB
Mota, R
Baierle, RJ
Paiva, G
da Silva, AJR
Fazzio, A
TI Stability investigation and thermal behavior of a hypothetical silicon
nanotube
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE nanotubes; electronic structure; silicon; ab initio; Monte Carlo
ID CARBON NANOTUBES; TUBULES; BORON
AB dEven though silicon nanotubes have never been observed, this paper
attempts to establish the theoretical similarities and differences
between Si and C structures. Through the use of two alternative
theoretical approaches, the first principles calculations and empirical
potential, the electronic and structural properties of this
hypothetical material are examined. The first principles calculations
are based on the density-functional theory and it is shown that
depending on their chiralities and diameters, the silicon nanotubes may
present metallic (armchair) or semiconductor (zigzag and mixed)
behaviors, similar to carbon structures. It is shown that the gap
decreases in inverse proportion to the diameter, thus approaching zero
for planar graphite, as was expected. In the second alternative
approach, the Monte Carlo simulations are used with the Tersoff's
empirical potential to present a systematic study on the thermal
behavior of these new structures, It is shown that similarities like
band structures and density of states are observed between the C and Si
nanotubes. Nevertheless, there are relevant discrepancies in the
thermal stabilities and energy differences between the cohesive
energies per atom for the two tubes, compared with the corresponding
bulks, implying the very improbable structure of the silicon nanotubes.
(C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Ctr Univ Franciscano, Dept Ciencias Exatas, BR-97919032 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Mota, R, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BLASE X, 1994, PHYS REV LETT, V72, P1878
BLOCKSTEDT M, 1997, COMPUT PHYS COMMUN, V107, P187
CAR R, 1985, PHYS REV LETT, V55, P2471
CHOPRA NG, 1995, SCIENCE, V269, P966
DAI HJ, 1998, APPL PHYS LETT, V73, P1508
ESTEFARJANI K, 1999, APPL PHYS LETT, V74, P79
FAGAN SB, 2000, PHYS REV B, V61, P9994
HAMADA N, 1992, PHYS REV LETT, V68, P1579
HAMMERSLEY JM, 1979, MONTE CARLO METHODS
HOHENBERG P, 1964, PHYS REV B, V136, P864
IIJIMA S, 1991, NATURE, V354, P54
KLEYNMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
MINTMIRE JW, 1992, PHYS REV LETT, V68, P631
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
ODUM TW, 1998, NATURE, V391, P62
PERDEW JP, 1981, PHYS REV B, V23, P5048
ROBERTSON DH, 1992, PHYS REV B, V45, P12592
ROTHLISBERGER U, 1994, PHYS REV LETT, V72, P665
STEPHAN O, 1994, SCIENCE, V266, P1683
TANS SJ, 1997, NATURE, V386, P474
TERSOFF J, 1986, PHYS REV LETT, V56, P632
TERSOFF J, 1988, PHYS REV B, V37, P6991
WENGSIEH Z, 1995, PHYS REV B, V51, P11229
WILDOER JWG, 1998, NATURE, V391, P59
YAKOBSON BI, 1997, AM SCI, V85, P324
NR 27
TC 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 101
EP 106
PG 6
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500013
ER
PT J
AU Oliveira, KMT
Trsic, M
TI Comparative theoretical study of the electronic structures and
electronic spectra of Fe2+-, Fe+3-porphyrin and free base porphyrin
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE porphyrin; Iron II; Iron III; ZINDO; electronic spectra; electronic
structure
ID DENSITY-FUNCTIONAL CALCULATIONS; DIFFERENTIAL-OVERLAP TECHNIQUE;
TRANSITION-METAL COMPLEXES; VAPOR ABSORPTION SPECTRA; SPIN FERROUS
PORPHYRIN; AB-INITIO CALCULATIONS; INTERMEDIATE NEGLECT; IRON(II)
PORPHINE; GROUND-STATE; PERTURBATION-THEORY
AB The Intermediate Neglect of Differential Overlap quantum chemical
procedure, with configuration interaction, as implemented in the ZINDO
program, was employed for a theoretical calculation of Fe2+-porphyrin,
Fe3+-porphyrin and free base porphyrin. The ground states for the first
two species were found to be, at the HF level, a triplet and a
quadruplet, respectively. The geometries, electronic charge
distribution and energy levels, as well as theoretical UV/Vis spectra,
for the three species are shown. The calculated wavelengths were good
agreement with the experimental values of the electronic spectra of
Fe2+-porphyrin, Fe3+-porphyrin and free base porphyrin. (C) 2001
Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560250 Sao Carlos, SP, Brazil.
RP Trsic, M, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol,
POB 780, BR-13560250 Sao Carlos, SP, Brazil.
CR ALMLOF J, 1974, INT J QUANT, V8, P915
ANDERSON WP, 1986, INORG CHEM, V25, P2728
ANDERSON WP, 1991, INT J QUANTUM CHEM, V39, P31
AZUMI R, 1995, LANGMUIR, V11, P4056
BACON AD, 1976, THESIS U GUELPH
BACON AD, 1979, THEOR CHIM ACTA, V53, P21
BAKER JD, 1990, CHEM PHYS LETT, V175, P192
BARALDI I, 1995, THEOCHEM-J MOL STRUC, V333, P121
BATINICHABERLE I, 1999, INORG CHEM, V38, P4011
BATTLE AM, 1993, J PHOTOCH PHOTOBIO B, V20, P5
BENHUR E, 1995, PHOTOCHEM PHOTOBIOL, V62, P383
BOCA R, 1992, COORDIN CHEM REV, V118, P246
BONNETT R, 1995, CHEM SOC REV, V24, P19
BORISSEVITCH IE, 2000, IN PRESS J PORPH PHT
BOSSA M, 1990, J MOL STRUC-THEOCHEM, V210, P267
BYRN MP, 1991, J AM CHEM SOC, V113, P6549
CHEM BML, 1972, J AM CHEM SOC, V94, P4144
CHOE YK, 1998, CHEM PHYS LETT, V295, P380
CHOE YK, 1999, J CHEM PHYS, V111, P3837
COLLMAN JP, 1975, J AM CHEM SOC, V97, P2676
COLLMAN JP, 1990, ORGANIC SUPERCONDUCT, P359
DARWENT JR, 1982, COORDIN CHEM REV, V44, P833
DELLEY B, 1991, PHYSICA B, V172, P185
DHANASEKARAN T, 1999, J PHYS CHEM A, V103, P7742
EATON W, 1981, METHODS ENZYMOLOGY, V76
EDWARDS L, 1970, J MOL SPECTROSC, V35, P90
EDWARDS L, 1971, J MOL SPECTROSC, V38, P16
EDWARDS WD, 1983, INT J QUANTUM CHEM, V23, P1407
EDWARDS WD, 1986, J AM CHEM SOC, V108, P2196
FORESMAN JB, 1992, J PHYS CHEM-US, V96, P135
GANTCHEV TG, 1993, INT J QUANTUM CHEM, V46, P191
GHOSH A, 1994, J PHYS CHEM-US, V98, P11004
GOFF H, 1977, J AM CHEM SOC, V99, P3641
GOFF H, 1980, J AM CHEM SOC, V102, P31
GOUTERMAN M, 1963, J MOL SPECTROSC, V11, P108
GOUTERMAN M, 1977, PORPHYRINS, V3, CH1
GRATZEL M, 1983, ENERGY RESOURCES THR, CH3
GRINSTAFF MW, 1995, INORG CHEM, V34, P4896
GUILLEMOT M, 1995, J CHEM SOC CHEM COMM, P2093
HANN RA, 1990, LANGMUIRBLODGETT FIL
HIRAO K, 1992, CHEM PHYS LETT, V190, P374
HIRAO K, 1992, CHEM PHYS LETT, V196, P397
HIRAO K, 1992, INT J QUANTUM CHEM S, V26, P517
HIRAO K, 1993, CHEM PHYS LETT, V201, P59
KITAGAWA T, 1979, CHEM PHYS LETT, V63, P443
KUHN H, 1949, J CHEM PHYS, V17, P1198
LI L, 1999, SPECTROSC SPECT ANAL, V19, P297
LONGUETHIGGINS HC, 1950, J CHEM PHYS, V18, P1174
MAGGIORA GM, 1973, J AM CHEM SOC, V95, P6555
MASTHAY MB, 1986, J CHEM PHYS, V84, P3901
MATSUZAWA N, 1995, J PHYS CHEM-US, V99, P7698
MERCHAN M, 1994, CHEM PHYS LETT, V226, P27
MOMICCHIOLI F, 1983, CHEM PHYS, V82, P229
MURREL NJ, 1972, SEMI EMPIRICAL SELF
NAGASHIMA U, 1986, J CHEM PHYS, V85, P4524
OBARA S, 1982, J CHEM PHYS, V77, P3155
ORTI E, 1988, J CHEM PHYS, V89, P1009
ORTI E, 1990, J CHEM PHYS, V92, P1228
PETKE JD, 1978, J MOL SPECTROSC, V71, P64
PLATT JR, 1954, J CHEM PHYS, V22, P1448
POPLE JA, 1965, J CHEM PHYS, V43, P5136
POPLE JA, 1965, J CHEM PHYS, V43, S129
POPLE JA, 1966, J CHEM PHYS, V44, P3289
POPLE JA, 1967, J CHEM PHYS, V47, P2026
POPLE JA, 1970, APPROXIMATE MOL ORBI
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROHMER MM, 1985, CHEM PHYS LETT, V116, P44
ROUSSEAU R, 1994, J MOL STRUCT, V317, P287
ROWLINGS DC, 1985, INT J QUANTUM CHEM, V28, P773
SERRANOANDRES L, 1998, CHEM PHYS LETT, V295, P195
SIMPSON WT, 1949, J CHEM PHYS, V17, P1218
SOARES LD, 1996, SPECTROCHIM ACTA A, V52, P1245
SONTUM SF, 1983, J CHEM PHYS, V79, P2881
SUTTER JR, 1974, INORG CHEM, V13, P2764
TRSIC M, 1999, J MOL STRUCT THEOCHE, V464, P289
VALENTI V, 1988, INORG CHIM ACTA, V148, P191
VANGISBERGEN SJA, 1999, J CHEM PHYS, V111, P2499
WALKER A, 1993, BIOL MAGN RESON, V12, P132
WALUK J, 1991, J AM CHEM SOC, V113, P5511
WASIELEWSKI MR, 1992, CHEM REV, V92, P435
WEISS C, 1965, J MOL SPECTROSC, V16, P415
WHITE A, 1998, PRINCIPLES BIOCH
WHITTEN DG, 1993, SPECTRUM-J STATE GOV, V6, P1
ZERNER M, 1966, THEOR CHIM ACTA, V4, P44
ZERNER MC, 1966, THESIS HARVARD U
ZERNER MC, 1980, INT J QUANTUM CHEM, V18, KI4
ZERNER MC, 1980, J AM CHEM SOC, V102, P589
ZWAANS R, 1995, THEOCHEM-J MOL STRUC, V339, P153
NR 88
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 107
EP 117
PG 11
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500014
ER
PT J
AU Seidl, PR
Tostes, JGR
Carneiro, JWD
Taft, CA
Dias, JF
TI Stereo-electronic effects on carbon-13 and hydrogen chemical shifts of
bicyclic alcohols
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE DFT/GIAO calculations; chemical shifts; hyperconjugation;
exo-2-norborneol; endo-2-norborneol; electronic effects
ID NMR; EXCHANGE
AB Since the 1990s ab initio calculations have become affordable and
accurate enough to be useful in the problem of correct assignment in
high field, multipulse NMR spectroscopy as well as in the understanding
the relationships between chemical shifts and molecular structure.
Density functional theory (DFT) methods enable accurate calculations to
be made on systems that cannot easily be treated by standard methods
beyond Hartree-Fock, such as large organic molecules. In order to probe
the effects of rotation about the C-O bond using the DFT/GIAO method,
we calculated chemical shifts for the three minima obtained by a
complete rotation of the C-O bond of exo- and endo-2-norborneol. Our
results show that conformational effects leading to chemical shift
differences of almost 4 ppm for carbon-13 and 1 ppm for hydrogen may be
observed. These are interpreted in terms of steric and electronic
effects. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 UFRJ, Escola Quim, Dept Proc Organ, BR-21949900 Rio De Janeiro, Brazil.
ENF, Lab Ciencias Quim, BR-28015620 Campos, RJ, Brazil.
IME, Dept Engn Quim, BR-22290180 Rio De Janeiro, Brazil.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
UFF, Dept Quim Geral & Inorgan, BR-24020150 Niteroi, RJ, Brazil.
RP Seidl, PR, UFRJ, Escola Quim, Dept Proc Organ, BR-21949900 Rio De
Janeiro, Brazil.
CR ABRAHAM RJ, 1989, MAGN RESON CHEM, V27, P1074
BARFIELD M, 1995, J AM CHEM SOC, V117, P2862
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
DITCHFIELD R, 1974, MOL PHYS, V27, P789
FRISCH MJ, 1995, GAUSSIAN 94W
HOUK KN, 1993, J AM CHEM SOC, V115, P4170
KUPKA T, 1999, MAGN RESON CHEM, V37, P421
LEE C, 1988, PHYS REV B, V37, P785
SEIDL PR, UNPUB
SEIDL PR, 1998, MAGN RESON CHEM, V36, P261
SEIDL PR, 1999, J MOL STRUC-THEOCHEM, V488, P151
TOSTES JGR, 1994, J MOL STRUCT THEOCHE, V306, P101
WHITESELL JK, 1987, STEREOCHEMICAL ANAL
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 15
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 163
EP 169
PG 7
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500021
ER
PT J
AU Mundim, KC
Malbouisson, LAC
Dorfman, S
Fuks, D
Van Humbeeck, J
Liubich, V
TI Diffusion properties of tungsten from atomistic simulations with ab
initio potentials
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE diffusion; tungsten; vacancy; interatomic potentials; non-empirical
calculations
ID VACANCY SOLID-SOLUTION; BCC TRANSITION-METALS; SELF-DIFFUSION;
ARRHENIUS PLOT; FORCES
AB The results of atomistic simulations of migration and formation
energies of mono- and di-vacancies in bulk tungsten are presented in
our paper. The interatomic potential for tungsten was extracted with
the recursive procedure from ah initio calculations of the cohesive
energy. A stochastic molecular dynamics using a generalized simulated
annealing procedure was employed in the simulations. Calculated values
of mono- and di-vacancies energy parameters are in a good agreement
with experimental data and with the results of other calculations. (C)
2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
Technion Israel Inst Technol, Fac Phys, IL-32000 Haifa, Israel.
Katholieke Univ Leuven, Dept Mat Engn, Louvain, Belgium.
Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel.
RP Mundim, KC, Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
CR ANDERSEN OK, 1975, PHYS REV B, V12, P3060
BAZANT MZ, 1996, MRS P 48 MAT RES SOC
BAZANT MZ, 1996, PHYS REV LETT, V77, P4370
BERNER A, 1999, APPL SURF SCI, V144, P677
BOKSHTEIN BS, 1974, THERMODYNAMICS KINET
CARLSSON AE, 1980, PHILOS MAG A, V41, P241
CARLSSON AE, 1991, PHYS REV B, V44, P6590
DAVIDOV G, 1995, PHYS REV B, V51, P13059
DORFMAN S, 1993, Z PHYS B CON MAT, V91, P225
EFTAXIAS K, 1985, PHYS REV B, V32, P5462
FUKS D, 1994, PHYS REV B, V50, P16340
FUKS D, 1994, Z PHYS B CON MAT, V95, P189
FUKS D, 1996, INT J QUANTUM CHEM, V57, P881
GILDER HM, 1975, PHYS REV B, V11, P4916
KIRKALDY JS, 1987, DIFFUSION CONDENSED
KITTEL C, 1976, INTRO SOLID STATE PH
KOEHLER U, 1987, PHYS STATUS SOLIDI B, V144, P243
KOEHLER U, 1988, PHILOS MAG A, V58, P769
MAIER K, 1979, PHILOS MAG A, V40, P701
MARINOPOULOS AG, 1995, PHILOS MAG A, V72, P1311
MEHRER H, 1969, PHYS STATUS SOLIDI, V35, P313
MEHRER H, 1970, PHYS STATUS SOLIDI, V39, P647
MEHRER H, 1978, J NUCL MATER, V69, P38
MEHRER H, 1990, DIFFUSION SOLID META, V26
MOLL N, 1995, PHYS REV B, V52, P2550
MUNDY JN, 1978, PHYS REV B, V18, P6566
NEUMANN G, 1985, P C SPONS AT TRANSP, V1
NEUMANN G, 1990, PHILOS MAG A, V61, P563
PETERSON NL, 1978, COMMENTS SOLID STATE, V8, P107
PETERSON NL, 1978, PROPERTIES ATOMIC DE, P3
SANCHEZ JM, 1975, PHYS REV LETT, V35, P227
SEEGER A, 1970, VACANCIES INTERSTIT, P1
SIMMONS G, 1971, SINGLE CRYSTAL ELAST
SKIVER HL, 1984, LMTO METHOD
VAROTSOS P, 1985, PHYS REV B, V31, P8263
VAROTSOS PA, 1986, THERMODYNAMICS POINT
WASZ ML, 1992, J PHYS CHEM SOLIDS, V53, P629
XU W, 1994, SURF SCI, V301, P371
XU W, 1994, SURF SCI, V319, P45
NR 39
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 191
EP 197
PG 7
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500024
ER
PT J
AU Bauerfeldt, GF
Arbilla, G
da Silva, EC
TI Theoretical study and rate constants for the unimolecular isomerization
of YONO (Y = F, Cl and Br)
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE halogen nitrites; trans-cis isomerization;
Rice-Ramsperger-Kassel-Marcus rate constants
ID AB-INITIO CHARACTERIZATION; NITROSYL HYPOFLUORITE; ATMOSPHERIC
CHEMISTRY; VIBRATIONAL-SPECTRA; MATRIX REACTIONS; NO2 MOLECULES;
ISOMERS; ROTATION; ATOMS
AB This work introduces the theoretical study of cis-trans isomerization
reactions of the halogenated nitrites FONO, CIONO and BrONO. The direct
dynamics methodology has been employed. Geometries have been optimized
and a saddle point located for each process. Critical energies have
been determined as 10.93, 10.17 and 9.92 kcal/mol for the trans-cis
isomerization reactions of FONO, CIONO and BrONO. respectively.
Thermodynamics of the equilibrium trans-YONO = cis-YONO has been
investigated and high-pressure unimolecular rate constants calculated
for a range of temperature of 223-323 K. A trend has been observed in
geometric parameters and thermodynamic data when comparing FONO, CIONO
and BrONO conformers. (C) 2001 Elsevier Science B.V. All rights
reserved.
C1 Univ Fed Rio de Janeiro, Ctr Tecnol, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Arbilla, G, Univ Fed Rio de Janeiro, Ctr Tecnol, Inst Quim, Dept Quim
Fis, Bloco A,Cidade Univ, BR-21949900 Rio De Janeiro, Brazil.
CR BAUERFELDT GF, UNPUB
BAUERFELDT GF, 1999, THESIS U FEDERAL RIO
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BEYER T, 1973, COMMUN ASS COMPUT MA, V16, P379
CARDENASJIRON GI, 1994, CHEM PHYS LETT, V222, P8
CARDENASJIRON GI, 1995, J PHYS CHEM-US, V99, P12730
DIBBLE TS, 1995, J PHYS CHEM-US, V99, P1919
DIXON DA, 1992, J PHYS CHEM-US, V96, P1018
FINLAYSONPITTS BJ, 1986, ATMOSPHERIC CHEM FIN
FORST W, 1973, THEORY UNIMOLECULAR
FRANCISCO JS, 1994, J PHYS CHEM-US, V98, P5644
FRANCISCO JS, 1994, J PHYS CHEM-US, V98, P5650
FRANCISCO JS, 1995, J PHYS CHEM-US, V99, P13422
FUKUI K, 1982, PURE APPL CHEM, V54, P1825
GILBERT RG, 1990, THEORY UNIMOLECULAR
GUAN YH, 1989, CHEM PHYS, V139, P147
GUHA S, 1997, J PHYS CHEM A, V101, P5347
GUHA S, 1998, J PHYS CHEM A, V102, P2072
HISATSUNE IC, 1968, J PHYS CHEM-US, V72, P269
HISATSUNE IC, 1968, J PHYS CHEM-US, V72, P269
HOHENBERG P, 1964, PHYS REV B, V136, P864
JANOWSKI B, 1977, BER BUNSEN PHYS CHEM, V81, P1262
KAWASHIMA Y, 1979, CHEM PHYS LETT, V63, P119
LEE TJ, 1994, CHEM PHYS LETT, V228, P583
LEE TJ, 1994, J PHYS CHEM-US, V98, P111
LEE TJ, 1996, J PHYS CHEM-US, V100, P51
MCGRAW GE, 1966, J CHEM PHYS, V45, P1392
MCLEAN AD, 1980, J CHEM PHYS, V72, P639
MILLER CE, 1997, J CHEM PHYS, V107, P2300
ROBINSON PJ, 1972, UNIMOLECULAR REACTIO
SMARDZEWSKI RR, 1974, J CHEM PHYS, V60, P2980
STEINFELD JI, 1998, CHEM KINETICS DYNAMI
TEVAULT DE, 1977, J CHEM PHYS, V67, P3777
TEVAULT DE, 1979, J PHYS CHEM-US, V83, P2217
TRUHLAR DG, 1995, GEN TRANSITION STATE, V4
WAYNE RP, 1991, CHEM ATMOSPHERE
NR 36
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 223
EP 232
PG 10
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500027
ER
PT J
AU Longo, RL
Nunes, RL
Bieber, LW
TI On the origin of the regioselective hydrolysis of a naphthoquinone
diacetate: A molecular orbital study
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE regioselectivity; MO calculations; solvent effects
ID BASIS-SETS; 1ST-ROW ELEMENTS; ABINITIO
AB The regioselectivity found in the mild basic hydrolysis of the
2,5-dimethyl-1,4-naphthohydroquinone diacetate (Nunes, R. L.; Bieber,
L. W.; Longo, R. L. J. Nat. Prod. 1999, 62, 1600) has been studied with
ab initio and semiempirical molecular orbital methods. In the gas phase
(isolated systems), these methods were not able to provide results that
could explain the observed selectivity. However, when the solvent
effects were included in the AM1 method using the discrete solvation
model it was possible to establish that this selectivity is due to the
relative stability of the tetrahedral intermediates and their
transitions states. The origin of this relative stability and thus of
the observed selectivity is due to the repulsive interactions between
the 2-methyl substituent in the naphthalene ring and the methyl group
in the 4-acetate substituent, as well as their hindrance towards the
hydration of the ionic group in the tetrahedral intermediates.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
RP Longo, RL, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540
Recife, PE, Brazil.
CR BAKER BR, 1942, J AM CHEM SOC, V64, P1100
BENDER ML, 1960, CHEM REV, V60, P53
BENDER ML, 1967, J AM CHEM SOC, V89, P1211
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BLAKE JF, 1987, J AM CHEM SOC, V109, P3856
CAREY FA, 1987, ORGANIC CHEM, P798
CLARK T, 1983, J COMPUT CHEM, V4, P294
CLARK T, 1985, HDB COMPUTATIONAL CH
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
FREITAS LCG, 1992, J CHEM SOC FARADAY T, V88, P189
GRANT HN, 1963, HELV CHIM ACTA, V46, P415
HEHRE WJ, 1986, AB INITIO MOL ORBITA
INGOLD C, 1969, STRUCTURE MECH ORGAN
MADURA JD, 1986, J AM CHEM SOC, V108, P2517
MARCH J, 1992, ADV ORGANIC CHEM
NUNES RL, 1999, J NAT PRODUCTS, V62, P1600
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEWART JJP, 1989, J COMPUT CHEM, V10, P210
STEWART JJP, 1993, MOPAC 9300 MANUAL
WILBUR JL, 1994, J AM CHEM SOC, V116, P5839
NR 22
TC 4
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PY 2001
VL 12
IS 1
BP 52
EP 56
PG 5
SC Chemistry, Multidisciplinary
GA 401HV
UT ISI:000166922900006
ER
PT J
AU Orellana, W
Ferraz, AC
TI Ab initio study of substitutional nitrogen in GaAs
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ALLOYS; PSEUDOPOTENTIALS; IMPURITIES; ENERGETICS; DEFECT; GROWTH
AB We investigate the atomic geometry, formation energies, and electronic
structure of nitrogen occupying both arsenic and gallium sites in GaAs
(N-As and N-Ga) using first-principles total-energy calculations. We
find that both neutral defects induce impurity-like empty levels in the
band gap acting as acceptors. While N-As shows a s-like a(1) level in
the middle of the band gap, N-Ga shows a p-like t(2) level close to the
bottom of the conduction band. The gap level of N-As gives theoretical
support for the experimentally observed band-edge redshift on the GaAsN
alloy for a N concentration similar to3%. Strong inward relaxations
preserving the T-d symmetry characterize the N-As equilibrium geometry
in all the charge states investigated. In contrast, N-Ga exhibits a
structural metastability in neutral charge state and Jahn-Teller
off-center distortions in negative charge states forming a negative-U
center. Formation energies of competing N-As and N-Ga defects are also
discussed. (C) 2001 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Orellana, W, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BELLAICHE L, 1996, PHYS REV B, V54, P17568
CALDAS MJ, 1990, PHYS REV LETT, V65, P2046
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DABROWSKI J, 1989, PHYS REV B, V40, P10391
HOHENBERG P, 1964, PHYS REV B, V136, P864
KOHN W, 1965, PHYS REV, V140, A1133
KOHN W, 1985, PHYS REV, P2471
LIU X, 1990, APPL PHYS LETT, V56, P1451
LOUIE SG, 1982, PHYS REV B, V26, P1738
MAKIMOTO T, 1995, APPL PHYS LETT, V67, P688
MATTILA T, 1998, PHYS REV B, V58, P1367
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
ORELLANA W, 1999, APPL PHYS LETT, V74, P2984
ORELLANA W, 2000, PHYS REV B, V61, P5326
PERDEW JP, 1981, PHYS REV B, V23, P5048
SHIMA T, 1999, APPL PHYS LETT, V74, P2675
TROULLIER N, 1991, PHYS REV B, V43, P1993
WEI SH, 1996, PHYS REV LETT, V76, P664
WEYERS M, 1992, JPN J APPL PHYS, V31, P853
WEYERS M, 1993, APPL PHYS LETT, V62, P1396
WOLFORD DJ, 1984, P 17 INT C PHYS SEM, P627
ZHANG SB, 1991, PHYS REV LETT, V67, P2339
NR 22
TC 8
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 26
PY 2001
VL 78
IS 9
BP 1231
EP 1233
PG 3
SC Physics, Applied
GA 405GK
UT ISI:000167151000021
ER
PT J
AU Miwa, RH
Srivastava, GP
TI Atomic geometry, electronic structure and image state for the
Si(111)-In(4 x 1) nanowire
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; many body and quasi-particle theories;
surface electronic phenomena (work function; surface potential, surface
states etc.); indium; self-assembly; single crystal surfaces
ID INVERSE-PHOTOEMISSION; POTENTIAL STATES; SURFACE-BARRIER;
METAL-SURFACES; MODEL; RECONSTRUCTION; SPECTROSCOPY; DIFFRACTION;
DISPERSION; CHAINS
AB We have performed a detailed theoretical study of the atomic geometry,
electronic structure, and dispersion of the most tightly bound (n = 1)
image state for the Si(111)-In(4 x 1) nanowire system. The calculations
were performed using ab initio pseudopotentials, based on the local
density approximation and a first-order energy correction for its
asymptotic classical-image behaviour. The calculated atomic geometry,
within the structural model proposed by Bunk et ai. [Phys. Rev. B 59
(1999) 12228], agrees well with their X-ray diffraction studies, and
the electronic band structure calculations confirm the
quasi-one-dimensional semimetallic behaviour, in agreement with
previous photoemission studies. The anisotropic dispersion of the image
state measured in a recent inverse photoemission study by Hill and
McLean [Phys. Rev. Lett. 82 (1999) 2155] is verified, and an
explanation based on the calculated surface corrugation potential is
presented. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Exeter, Sch Phys, Dept Phys, Exeter EX4 4QL, Devon, England.
Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Srivastava, GP, Univ Exeter, Sch Phys, Dept Phys, Stocker Rd, Exeter
EX4 4QL, Devon, England.
CR ABUKAWA T, 1995, SURF SCI, V325, P33
BUNK O, 1999, PHYS REV B, V59, P12228
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
EGUILUZ AG, 1992, PHYS REV LETT, V68, P1359
GARCIA N, 1985, PHYS REV LETT, V54, P591
GONZE X, 1991, PHYS REV B, V44, P8503
HEDIN L, 1969, SOLID STATE PHYS, V23, P1
HILL IG, 1997, PHYS REV B, V56, P15725
HILL IG, 1999, PHYS REV LETT, V82, P2155
HIMPSEL FJ, 1992, APPL SURF SCI, V56, P160
JENNINGS PJ, 1988, PHYS REV B, V37, P6113
JONES RO, 1984, PHYS REV B, V29, P6474
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KRAFT J, 1997, PHYS REV B, V55, P5384
LANDER JJ, 1965, J APPL PHYS, V36, P1706
LANG ND, 1973, PHYS REV B, V7, P3541
MCLEAN AB, 1989, PHYS REV B, V40, P8425
NAKAMURA N, 1991, SURF SCI, V256, P129
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
OSGOOD RM, 1998, SOLID STATE PHYS, V51, P1
PANDEY KC, 1981, PHYS REV LETT, V47, P1913
PERDEW JP, 1981, PHYS REV B, V23, P5048
SARANIN AA, 1997, PHYS REV B, V56, P1017
SILKIN VM, 1999, PHYS REV B, V60, P7820
SMITH NV, 1985, PHYS REV B, V32, P3549
SMITH NV, 1991, SURF SCI, V247, P133
STEVENS JL, 1993, PHYS REV B, V47, P1453
STRAUB D, 1986, PHYS REV B, V33, P2256
WEINERT M, 1985, PHYS REV LETT, V55, P2055
YANG S, 1991, PHYS REV B, V43, P2025
YEOM HW, 1999, PHYS REV LETT, V82, P4898
NR 31
TC 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD FEB 10
PY 2001
VL 473
IS 1-2
BP 123
EP 132
PG 10
SC Chemistry, Physical
GA 404EA
UT ISI:000167083400013
ER
PT J
AU Leitao, AA
Neto, JAC
Pinhal, NM
Bielschowsky, CE
Vugman, NV
TI Pulsed EPR and ab initio calculation on [Ni(CN)(4)](3-) in NaCl and KCl
host lattices
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID ELECTRON-SPIN-RESONANCE; F-CENTERS; CRYSTALS; IMPURITY; CLUSTER; DEFECTS
AB Paramagnetic 3d(9) [Ni(CN)(4)](3-) complexes, with the unpaired
electron in a d(x2-y2) orbital, have been generated from diamagnetic
Ni(II) 3d(8) cyanide complexes in KCl or NaCl host lattices. The
magnetic and quadrupolar hyperfine interactions with the four N-14,
hidden in the CW-EPR (continuous wave electron paramagnetic ressonance)
line width, are revealed by pulsed EPR and ENDOR (electron nuclear
double resonance) angular variation studies. Ab initio embedded UMP2
cluster calculations, which take into account short- and long-range
crystal interactions, confirm the unpaired electron orbital assignment
and are in agreement with the measured hyperfine values. The trend of
N-14 A(iso) values (7.7 MHz for NaCl and 6.8 MHz for KCI) is given by
the Ni-CN distance, modified in each host lattice. Small asymmetry
factors (about 0.04) for the N-14 quadrupolar tensor are obtained both
in experiment and in theory. The experimental lines and the
calculations indicate spin density at the cations of both lattices.
Experimental and theoretical data indicate that lattice chlorine ions
near the Ni atom, in axial positions, are not chemically coordinated to
Ni. Spin density on these ions arises only from spin polarization of
their valence orbitals and of the valence orbitals of the complex.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21910240 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, BR-21910240 Rio De Janeiro, Brazil.
RP Vugman, NV, Univ Fed Rio de Janeiro, Inst Fis, BR-21910240 Rio De
Janeiro, Brazil.
CR AACHI JI, 1993, B CHEM SOC JPN, V66, P3314
ALABDALLA A, 1998, J CHEM PHYS, V108, P2005
BERRONDO M, 1995, INT J QUANTUM CHEM Q, V29, P253
CHEN W, 1994, J CHEM PHYS, V101, P5957
CHIPMAN DM, 1991, J PHYS CHEM-US, V95, P4702
EVJEN HM, 1932, PHYS REV, V39, P675
FRISCH JM, 1995, GAUSSIAN 94 REVISION
GAULD JW, 1997, J PHYS CHEM A, V101, P1352
HARRISON WA, 1989, ELECT STRUCTURE PROP, CH8
HAY PJ, 1985, J CHEM PHYS, V82, P299
JAIN SC, 1973, CHEM PHYS LETT, V21, P150
KNIGHT LB, 1996, J CHEM PHYS, V105, P5672
LEITAO AA, 2000, CHEM PHYS LETT, V321, P269
MACKEY JH, 1969, TEH FU ESR METAL COM, P33
MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
MIYOSHI E, 1998, THEOCHEM-J MOL STRUC, V451, P81
MOLLER C, 1934, PHYS REV, V46, P618
PENNER GH, 1996, CHEM PHYS LETT, V261, P665
PINHAL NM, 1985, J PHYS C SOLID STATE, V18, P6273
PUCHINA AV, 1998, SOLID STATE COMMUN, V106, P285
SCHWEIGER A, 1982, STRUCT BONDING BERLI, V51, P1
SOUSA C, 1993, J COMPUT CHEM, V14, P680
VAIL JM, 1998, PHYS REV B, V57, P764
VUGMAN NV, 1990, PHYS REV B, V42, P9837
WINTER NW, 1987, J CHEM PHYS, V86, P3549
WINTER NW, 1987, J CHEM PHYS, V87, P2945
ZANETTE SI, 1976, J CHEM PHYS, V64, P3381
NR 27
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JAN 25
PY 2001
VL 105
IS 3
BP 614
EP 619
PG 6
SC Chemistry, Physical
GA 402RE
UT ISI:000167001300014
ER
PT J
AU Laali, KK
Okazaki, T
Kumar, S
Galembeck, SE
TI Substituent effects and charge delocalization mode in chrysenium,
benzo[c]phenanthrenium, and benzo[g]chrysenium cations: A stable ion
and electrophilic substitution study
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID POLYCYCLIC AROMATIC-HYDROCARBONS; DIOL EPOXIDE METABOLITES; AM1
CALCULATIONS; CARCINOGEN BENZO<G>CHRYSENE; ANTI-DIOL; REGION;
4H-CYCLOPENTA<DEF>CHRYSENE; DERIVATIVES
AB The first series of persistent carbocations derived from mono- and
disubstituted chrysenes Ch (5-methyl- 3, 2-methoxy- 19,
2-methoxy-11-methyl- 20, 2-methoxy-5-methyl- 21, and
9-methyl-4H-cyclopenta[def] chrysene 22), monosubstituted benzo[c]
phenanthrenes BcPh (3-methoxy- 23, 3-hydroxy- 24), and monosubstituted
benzo[g]chrysenes BgCh (12-methoxy- 25; 12-hydroxy- 26) were generated
in FSO3H/SO2CIF or FSO3H-SbF5 (4:1)/SO2CIF and studied by
low-temperature NMR at 500 MHz. The methoxy and methyl substituents
direct the protonation to their respective ortho positions. Whereas
parent Ch 1 is protonated at C-6/C-12, 3 is protonated at C-6 (3aH(+))
and at C-12 (3bH(+)) with the latter being the thermodynamic cation.
The 2-methoxy-Ch 19 is protonated at C-1 to give two conformationally
distinct carboxonium ions (19aH(+)/19bH(+)). In the disubstituted Ch
derivatives 20 and 21, the 2-methoxy overrides the 5-methyl and the
predominant carbocations formed are via attack ortho to methoxy. For
the methano derivative 22 (Me at C-9), a 3:1 mixture of 22aH(+)/22bH(+)
is formed. For parent BcPh 13, nitration and benzoylation are directed
to C-5. With 3-methoxy-BcPh 23, the site of attack moves to C-4 thus
producing two conformationally distinct carboxonium ions
(23aH(+)/23bH(+)), whereas conventional nitration gave a 2:1 mixture of
23aNO(2) and 23bNO(2). In 3-hydroxy-BcPh 24, the carboxonium ion 24H(+)
is exclusively formed. For parent BgCh 16, protonation, nitration, and
benzoylation are all directed to C-10 (16H(+), 16NO(2), 16COPh), but
presence of OMe or OH substituent at C-12 changes the site of attack to
C-11. Charge delocalization mode is probed based on magnitude of Delta
delta Cs-13 and conformational aspects via NOED experiments. Complete
NMR data are also reported for several benzoylation/nitration products.
Using ab initio/GIAO (and NICS), the NMR chemical shifts (and
aromaticity) in model carbocations A-D were evaluated. This work
represents the first direct study of the carbocations derived from the
methyl-, methoxy-/hydroxy-derivatives of three important classes of
bay-region and fjord-region PAHs whose diol-epoxides extensively bind
to DNA. It also extends the available data on electrophilic chemistry
of BcPh and BgCh.
C1 Kent State Univ, Dept Chem, Kent, OH 44242 USA.
SUNY Coll Buffalo, Great Lakes Ctr Environm Res & Educ, Buffalo, NY 14222 USA.
USP, FFCLRP, Dept Quim, LAMMOL, Sao Paulo, Brazil.
RP Laali, KK, Kent State Univ, Dept Chem, Kent, OH 44242 USA.
CR AGRAWAL SK, 1987, J AM CHEM SOC, V109, P2497
BAX A, 1985, J ORG CHEM, V50, P3029
BHATT T, 1990, POLYCYCL AROMAT COMP, V1, P55
BHATT TS, 1982, CARCINOGENESIS, V3, P667
BUSHMAN DR, 1989, J ORG CHEM, V54, P3533
CATTERALL FS, 2000, MUTAT RES-GEN TOX EN, V465, P85
CHANG HF, 1999, J ORG CHEM, V64, P9051
COOMBS MM, 1987, CYCLOPENTA A PHENANT, CH6
DAI W, 1995, J ORG CHEM, V60, P4905
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HARVEY RG, 1985, ACS S SERIES, V283, CH3
HARVEY RG, 1991, POLYCYCLIC AROMATIC, CH3
HARVEY RG, 1997, POLYCYCLIC AROMATIC, CH2
HECHT SS, 1985, ACS S SERIES, V283, CH5
HERNDON WC, 1988, ADV CHEM SERIES, V217
HOFFMAN RE, 1993, J MAGN RESON SER A, V102, P1
KISELYOV AS, 1995, J ORG CHEM, V60, P6123
KISELYOV AS, 1995, J ORG CHEM, V60, P6129
KISELYOV AS, 1995, TETRAHEDRON LETT, V36, P4005
KUMAR S, 1988, J CHEM SOC P1, P3157
KUMAR S, 1997, J ORG CHEM, V62, P8535
LAALI KK, 1994, J CHEM SOC P2, P1303
LAALI KK, 1997, J CHEM SOC PERK NOV, P2207
LAALI KK, 1997, J ORG CHEM, V62, P4023
LAALI KK, 1997, J ORG CHEM, V62, P5804
LAALI KK, 1997, J ORG CHEM, V62, P7752
LAALI KK, 1998, J ORG CHEM, V63, P7280
LAALI KK, 2000, J CHEM SOC PERK T 2, P211
LAALI KK, 2000, J ORG CHEM, V65, P7399
LAKSHMAN MK, 1994, SYNTHETIC COMMUN, V24, P2973
MIRSADEGHI S, 1989, J ORG CHEM, V54, P3091
NEWMAN MS, 1949, J ORG CHEM, V14, P375
REDDY VP, 1992, J FLUORINE CHEM, V56, P195
SAROBE M, 1997, J CHEM SOC PERK APR, P703
SCHLEYER PV, 1996, J AM CHEM SOC, V118, P6317
SZELIGA J, 1999, CHEM RES TOXICOL, V12, P347
UTERMOEHLEN CM, 1987, J ORG CHEM, V52, P5574
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 38
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD FEB 9
PY 2001
VL 66
IS 3
BP 780
EP 788
PG 9
SC Chemistry, Organic
GA 401TF
UT ISI:000166943800020
ER
PT J
AU Barba, D
Jandl, S
Nekvasil, V
Marysko, M
Divis, M
Martin, AA
Lin, CT
Cardona, M
Wolf, T
TI Infrared transmission study of crystal-field excitations in
Sm1+xBa2-xCu3O6+y
SO PHYSICAL REVIEW B
LA English
DT Article
ID SINGLE-CRYSTALS; INTERMETALLIC COMPOUNDS; NDBA2CU3O7-DELTA;
SUPERCONDUCTORS; TRANSITIONS; YBA2CU3O7-X; GRADIENT; SYSTEMS; ND2CUO4;
SM
AB Absorption bands, corresponding to the crystal-field (CF) excitations
of the Sm3+ ions in SmBa2Cu3O6, have been observed by infrared
transmission spectroscopy and assigned to transitions from the lowest
energy levels of the H-6(5/2) multiplet to the excited multiplets
H-6(7/2), H-6(9/2), H-6(11/2), H-6(13/2), F-6(7/2), and F-6(9/2) Of
Sm3+ ions on the regular D-4h-symmetry sites and the C-4v-symmetry Pa
sites. A set of the CF parameters that fits the levels in the regular
sites and reproduces the magnetic susceptibility anisotropy has been
derived. The CF interaction parameters in the Sm/Ba sites have been
modeled by combining the superposition model and an ab initio method
based on the density-functional calculations.
C1 Univ Sherbrooke, Dept Phys, Ctr Rech Proprietes Elect Mat Avances, Sherbrooke, PQ J1K 2R1, Canada.
Acad Sci Czech Republ, Inst Phys, Prague 16253 6, Czech Republic.
Charles Univ, Dept Electron Syst, Prague 12116 2, Czech Republic.
Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany.
Inst Festkorperphys, D-76021 Karlsruhe, Germany.
IP&D Univap Sao Jose dos Campos, Inst Pesquisa & Desenvolvimento, BR-12244000 Sao Jose Dos Campos, Brazil.
RP Barba, D, Univ Sherbrooke, Dept Phys, Ctr Rech Proprietes Elect Mat
Avances, Sherbrooke, PQ J1K 2R1, Canada.
CR BARBA D, UNPUB
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
COEHOORN R, 1991, J APPL PHYS 2B, V69, P5590
DIVIS M, 1998, PHYSICA C, V301, P23
FARNETH WE, 1989, PHYS REV B, V39, P6594
GUILLAUME M, 1994, J PHYS-CONDENS MAT, V6, P7963
GUILLAUME M, 1995, PHYS REV LETT, V74, P3423
HARLEY R, 1987, SPECTROSCOPY SOLIDS
HEYEN ET, 1991, PHYS REV LETT, V67, P144
JANDL S, 1996, PHYS REV B, V53, P8632
JANDL S, 1998, J LUMIN, V78, P197
JANDL S, 1999, PHYSICA C, V314, P189
LIKODIMOS V, 1996, PHYS REV B, V54, P12342
LIN CT, 1996, PHYSICA C, V272, P285
MARTIN AA, 1998, PHYS REV B, V58, P14211
MARTIN AA, 1999, PHYS REV B, V59, P6528
MESOT J, 1997, J SUPERCOND, V10, P623
MORRISON CA, 1982, HDB PHYSICS CHEM RAR
NAROZHNYI VN, 1999, PHYSICA C, V312, P233
NEKVASIL V, 1995, J ALLOY COMPD, V225, P578
NEWMAN DJ, 1989, REP PROG PHYS, V52, P699
NOVAK P, 1996, PHYS STATUS SOLIDI B, V198, P729
NUGROHO AA, IN PRESS J MAGN MAGN
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PICKETT WE, 1989, REV MOD PHYS, V61, P433
RICHTER M, 1998, J PHYS D APPL PHYS, V31, P1017
RUF T, 1992, PHYS REV B, V46, P11792
SCHWARZ K, 1990, PHYS REV B, V42, P2051
STRACH T, 1996, PHYS REV B, V54, P4276
WALLACE WE, 1977, STRUCT BOND, V33, P1
WELLS JPR, 1999, PHYS REV B, V60, P3849
WOLF T, 1989, J CRYST GROWTH, V96, P1010
WYBOURNE BG, 1965, SPECTROSCOPIC PROPER
YANG KN, 1989, PHYS REV B, V40, P10963
NR 34
TC 11
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD FEB 1
PY 2001
VL 6305
IS 5
AR 054528
DI ARTN 054528
PG 10
SC Physics, Condensed Matter
GA 399PB
UT ISI:000166820600123
ER
PT J
AU Moraes, LAB
Eberlin, MN
TI Ketalization of gaseous acylium ions
SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
LA English
DT Article
ID DISTONIC RADICAL CATIONS; GAS-PHASE REACTIONS; MOLECULE REACTIONS;
MASS-SPECTROMETRY; DIMETHYLCHLORINIUM ION; CHARGED ELECTROPHILES;
METHOXYMETHYL CATION; CYCLIC ACETALS; SUBSTITUTION; ALCOHOLS
AB A novel reaction of gaseous acylium ions: ketalization with diols and
analogs, has been systematically studied via pentaquadrupole MS2 and
MS3 experiments and ab initio calculations. A variety of alpha,beta
-diols and their amino, thiol, ether, and thioether analogs have been
tested for reactivity, mechanism evaluation, site selectivity, and for
the effects of alpha- and beta -interfunctional separation. As for
condensed-phase ketalization of neutral carbonyl compounds followed by
hydrolysis, gaseous acylium ions are chemically deactivated in the form
of cyclic ionic ketals by ketalization, and are efficiently released
via on-line collision-induced dissociation. Ketalization of acylium
ions is shown to identify and structurally characterize alpha,beta
-diols and their analogs, and to distinguish regioisomers.
Diastereomers can also be distinguished, as illustrated for cis and
trans 1,2-diaminocyclohexane. The MS2 and MS3 data together with
O-18-labeling and ab initio calculations establish for acylium ion
ketalization a mechanism of anchimeric assistance with participation of
the neighboring acyl group. (C) 2001 American Society for Mass
Spectrometry.
C1 Univ Estadual Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Moraes, LAB, Univ Estadual Campinas, Inst Chem, CP 6154, BR-13083970
Campinas, SP, Brazil.
CR ALTALIB M, 1990, ORG PREP PROCED INT, V22, P1
ATTINA M, 1983, J AM CHEM SOC, V105, P1122
BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR
BURGERS PC, 1982, CAN J CHEM, V60, P2246
CAREY FA, 1990, ADV ORGANIC CHEM
CARVALHO M, 1998, CHEM-EUR J, V4, P1161
CARVALHO MC, 1997, J MASS SPECTROM, V32, P1137
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
CREASER CS, 1994, J CHEM SOC CHEM COMM, V1677
CREASER CS, 1998, EUR MASS SPECTROM, V4, P103
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
EICHMANN ES, 1993, J AM SOC MASS SPECTR, V4, P97
EICHMANN ES, 1993, ORG MASS SPECTROM, V28, P665
FREITAS MA, 1997, J ORG CHEM, V62, P6112
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GRANDINETTI F, 1996, CHEM-EUR J, V2, P495
HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
HECK AJR, 1993, ORG MASS SPECTROM, V28, P245
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KIM JK, 1973, J AM CHEM SOC, V95, P2184
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
MAQUESTIAU A, 1984, SPECTROSCOPY, V3, P173
MCLAFFERTY FW, 1993, INTERPRETATION MASS
MORAES LAB, UNPUB J MASS SPECTRU
MORAES LAB, 1977, J CHEM SOC P2, P2105
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J ORG CHEM, V62, P5096
MORAES LAB, 1998, J AM CHEM SOC, V120, P11136
MORAES LAB, 2000, J AM SOC MASS SPECTR, V11, P697
OHAIR RAJ, 1995, J ORG CHEM, V60, P1990
OHAIR RAJ, 1998, J AM SOC MASS SPECTR, V9, P1275
OHAIR RAJ, 1999, INT J MASS SPECTROM, V22, P1275
OHAIR RAJ, 2000, ORG LETT, V2, P2567
OLAH GA, 1964, FRIEDEL CRAFTS RELAT, V3
OLAH GA, 1976, CARBONIUM IONS
OLAH GA, 1985, SUPERACIDS
PAU JK, 1978, J AM CHEM SOC, V100, P3838
RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SHARIFI M, 1999, J MASS SPECTROM, V190, P253
SHOWLER AJ, 1967, CHEM REV, V67, P427
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
SPARRAPAN R, 2000, J MASS SPECTROM, V35, P189
STIRK KM, 1992, CHEM REV, V92, P1649
SULZLE D, 1992, CHEM BER-RECL, V125, P279
THOMPSON RS, 1999, P 47 ASMS C MASS SPE
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
VAIS V, 1999, J MASS SPECTROM, V34, P755
WANG F, 1999, J ORG CHEM, V64, P3213
WUTS PGM, 1991, COMPREHENSIVE ORGANI, V9
WYSOCKI VH, 1985, J ORG CHEM, V50, P1287
YAMDAGNI R, 1973, J AM CHEM SOC, V95, P3504
YANG SS, 1995, J MASS SPECTROM, V30, P807
YATES BF, 1986, TETRAHEDRON, V42, P6225
NR 60
TC 11
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 USA
SN 1044-0305
J9 J AMER SOC MASS SPECTROM
JI J. Am. Soc. Mass Spectrom.
PD FEB
PY 2001
VL 12
IS 2
BP 150
EP 162
PG 13
SC Chemistry, Analytical; Chemistry, Physical; Spectroscopy
GA 399NF
UT ISI:000166818700003
ER
PT J
AU Schmidt, TM
Justo, JF
Fazzio, A
TI Stacking fault effects in pure and n-type doped GaAs
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; DX CENTERS; AB-INITIO; SEMICONDUCTORS;
PSEUDOPOTENTIALS; DEFECTS
AB Using ab initio total-energy calculations, we investigate the effects
of stacking faults on the properties of dopants in pure and n-type
doped GaAs. We find that the Si impurity segregates towards a GaAs
stacking fault. A Si atom at a Ga site in the stacking fault, in either
a neutral or a negative charge state, is energetically favorable as
compared to a Si atom at a Ga site in a crystalline environment by as
much as 0.2 eV. We also find that a Si impurity in the stacking fault
cannot occupy metastable positions, as occurs in the formation of DX
centers. Thus, stacking faults can prevent the formation of DX-like
centers in GaAs. (C) 2001 American Institute of Physics.
C1 Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Schmidt, TM, Univ Fed Uberlandia, Dept Ciencias Fis, CP 593,
BR-38400902 Uberlandia, MG, Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
ANTONELLI A, 1999, PHYS REV B, V60, P4711
BACHELET GB, 1982, PHYS REV B, V26, P4199
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
CHADI DJ, 1988, PHYS REV LETT, V61, P873
HIRTH JP, 1982, THEORY DISLOCATIONS
JONES R, 1993, PHYS STATUS SOLIDI A, V137, P389
JUSTO JF, 1999, PHYSICA B, V273, P473
JUSTO JF, 2000, PHYS REV LETT, V84, P2172
KACKELL P, 1998, PHYS REV B, V58, P1326
KAPLAN T, 2000, PHYS REV B, V61, P1674
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
MAITI A, 1996, PHYS REV LETT, V77, P1306
MAITI A, 1997, APPL PHYS LETT, V70, P336
MALLOY KJ, 1993, SEMICONDUCT SEMIMET, V38, P235
MIWA RH, 1999, APPL PHYS LETT, V74, P1999
SCHMIDT TM, 1996, PHYS REV B, V53, P1315
STAMPFL C, 1998, PHYS REV B, V57, P15052
NR 18
TC 6
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 12
PY 2001
VL 78
IS 7
BP 907
EP 909
PG 3
SC Physics, Applied
GA 398TN
UT ISI:000166772600019
ER
PT J
AU Alves, CN
Romero, OAS
da Silva, ABF
TI A theoretical study of the intramolecular hetero Dials-Alder
cycloaddition reactions of azoalkenes
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Hartree-Fock; density functional theory; Diels-Alder cycloaddition;
transition structures; azoalkenes
ID TRANSITION STRUCTURES; REACTIVITY; CATALYSIS
AB Ab initio Hartree-Fock and density functional theory calculations were
performed to study transition geometries in intramolecular Diels-Alder
cycloaddition reactions of azoalkene compounds. The Hartree-Fock (HF)
calculations were formed at the RHF/3-21G level and the density
functional theory (DFT) calculations were performed with the B3LYP
functional and 6-31G* basis set. The order of the reactivity of
azoalkenes with different substituents in intramolecular hetero
Diels-Alder reactions was predicted from the frontier orbital energies,
and calculations of the reaction barriers were performed. The HF and
DFT calculations generated transition geometries with a very small
degree of asynchronicity, The DFT results are in full agreement with
experimental evidence and show the capability of this level of DFT
calculation to predict the reactivity of intramolecular hetero
Diels-Alder cycloaddition correctly. (C) 2001 Elsevier Science B.V. All
rights reserved.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil.
Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, BR-66075110 Belem, Para, Brazil.
RP da Silva, ABF, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis
Mol, CP 780, BR-13560970 Sao Carlos, SP, Brazil.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BOGER DL, 1987, HETERO DIELSALDER ME
BROWN FK, 1985, TETRAHEDRON LETT, V26, P2297
DOMINGO LR, 1997, J ORG CHEM, V62, P1662
FUKUI K, 1982, ANGEW CHEM INT EDIT, V21, P801
GILCHRIST TL, 1987, J CHEM SOC PERK T 1, P2511
GONZALEZ J, 1992, J ORG CHEM, V57, P3031
HEHRE WJ, 1986, UNPUB AB INITIO MOL
HOUK KN, 1992, ANGEW CHEM INT EDIT, V31, P682
HOUK KN, 1995, ACCOUNTS CHEM RES, V28, P81
JURSIC BS, 1994, J MOL STRUCT THEOCHE, V315, P85
JURSIC BS, 1995, J CHEM SOC PERK T, V2, P1223
JURSIC BS, 1995, J MOL STRUCT THEOCHE, V331, P215
LEE C, 1988, PHYS REV B, V37, P785
MCCARRICK MA, 1992, J AM CHEM SOC, V114, P1499
MCCARRICK MA, 1993, J ORG CHEM, V58, P3330
POPLE JA, 1998, GAUSSIAN 98
ROUSH WR, 1981, J AM CHEM SOC, V103, P5200
NR 18
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JAN 15
PY 2001
VL 535
BP 165
EP 169
PG 5
SC Chemistry, Physical
GA 396JR
UT ISI:000166633100018
ER
PT J
AU Barbatti, M
Jalbert, G
Nascimento, MAC
TI The effects of the presence of an alkaline atomic cation in a molecular
hydrogen environment
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID BINDING-ENERGIES; CLUSTERS; GEOMETRIES; LI
AB Ab initio calculations were performed for X+(H-2)(n) clusters [X=Li, Na
(n=1-7) and K (n=1-3)]. For n=1-6, the equilibrium geometries
correspond to spherically symmetrical distributions of H-2 units around
the X+. The binding energies and the geometric parameters indicate that
the seventh H-2 unit opens a new shell of ligands for the cluster with
X=Li but not for X=Na. (C) 2001 American Institute of Physics.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, BR-21945970 Rio De Janeiro, Brazil.
RP Barbatti, M, Univ Fed Rio de Janeiro, Inst Fis, CP 68528, BR-21945970
Rio De Janeiro, Brazil.
CR BARBATTI M, 2000, J CHEM PHYS, V113, P4230
BAUSCHLICHER CW, 1992, J PHYS CHEM-US, V96, P2475
BLAUDEAU JP, 1997, J CHEM PHYS, V107, P5016
BOYS SF, 1970, MOL PHYS, V19, P553
BUSHNELL JE, 1994, J PHYS CHEM-US, V98, P2044
CURTISS LA, 1988, J PHYS CHEM-US, V92, P894
DAVY R, 1999, MOL PHYS, V97, P1263
FALCETTA MF, 1993, J PHYS CHEM-US, V97, P1011
FARIZON B, 1999, PHYS REV B, V60, P3821
GOBET F, UNPUB
GORA RW, 1999, J PHYS CHEM A, V103, P9138
HERZBERG G, 1950, MOL SPECTRA MOL STRU, V1
IGNACIO EW, 1998, CHEM PHYS LETT, V287, P563
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
PANG T, 1994, CHEM PHYS LETT, V228, P555
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
STICH I, 1997, PHYS REV LETT, V78, P3669
SWITALSKI JD, 1974, J CHEM PHYS, V60, P2252
WU CH, 1979, J CHEM PHYS, V71, P783
NR 21
TC 8
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 1
PY 2001
VL 114
IS 5
BP 2213
EP 2218
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 397CQ
UT ISI:000166676100034
ER
PT J
AU Olivato, PR
Ruiz, R
Zukerman-Schpector, J
Dal Colle, M
Distefano, G
TI Comparative spectroscopic and theoretical studies on the conformation
of some alpha-diethoxyphosphoryl carbonyl compounds and their
alpha-ethylsulfonyl analogues
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID ELECTRONIC INTERACTION; INTRAMOLECULAR INTERACTIONS;
PHOTOELECTRON-SPECTROSCOPY; IR SPECTROSCOPY; AB-INITIO; DERIVATIVES;
SULFONES; ACETOPHENONES; SPECTRA; ORBITALS
AB Comparative nu (CO) IR analysis of beta -carbonylphosphonates
[XC(O)CH2P(O)(OR)(2): X = Me 1, Ph 2, OEt 3, NEt2 4 and SEt 5; R = Et]
(series I) and beta -carbonylsulfones [XC(O)CH2SO2R: X = Me 6, Ph 7,
OEt 8, NEt2 9 and SEt 10; R = Et] (series II) along with ab initio
6-31G** calculations on 1a and 6a (R = Me) suggest the existence of
only a single gauche conformer for series I. The negative carbonyl
frequency shifts for both series follow approximately the
electron-affinities of the pi*(CO) orbital of the parent compounds
MeC(O)X 11-15. The less positive asymmetric sulfonyl frequency shifts
(Delta nu (SO2)) for II in relation to the phosphoryl frequency shifts
(Delta nu (PO)) for I and the larger negative carbonyl frequency shifts
for II with respect to the corresponding values for I are in line with
the upfield C-13 NMR chemical shifts of the carbonyl carbon for II
compared to I. These trends agree with the shorter O-(SO2)...C-(CO)
contact in comparison with the O-(PO)...C-(CO) one and are discussed in
terms of O-1p--> pi*(CO) charge transfer and electrostatic
interactions, which are stronger for series II than for I, indicating
that the sulfonyl oxygen atom is a better electron donor than the
phosphoryl oxygen atom. Intrinsic geometrical parameters of O=S CH2 and
O=P-CH2 moieties seem to be responsible for this behaviour as indicated
by X-ray study and ab initio calculations of dialkyl
(methylsulfonyl)methylphosphonate MeSO2CH2P(O)(OR)(2) (R = Et 18, Me
18a).
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13560 Sao Carlos, SP, Brazil.
Univ Ferrara, Dipartmento Chim, I-44100 Ferrara, Italy.
RP Olivato, PR, Univ Sao Paulo, Inst Quim, CP 26077, BR-05513970 Sao
Paulo, Brazil.
CR 1998, 18 INT S ORG CHEM SU
ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
BALSIGER RW, 1959, J ORG CHEM, V24, P434
BOROWITZ IJ, 1967, J ORG CHEM, V32, P1723
CHARDIN A, 1996, J CHEM SOC PERK JUN, P1047
CHATTOPADHYAY S, 1981, J ELECTRON SPECTR RE, V24, P27
DALCOLLE M, 1995, J PHYS CHEM-US, V99, P15011
DISTEFANO G, UNPUB
DISTEFANO G, 1991, J CHEM SOC P2, P1195
DISTEFANO G, 1996, J CHEM SOC PERK AUG, P1661
FARRUGIA LJ, 2000, WINGX WINDOWS PROGRA
FRISCH MJ, 1998, GAUSSIAN 98
GIORDAN JC, 1985, J AM CHEM SOC, V107, P5600
HANSH C, 1995, EXPLORING QSAR HYDRO
JONES D, 1994, J CHEM SOC P2, P1651
LIU HJ, 1991, CAN J CHEM, V69, P934
MARTIN HD, 1986, J ELECTRON SPECTROSC, V41, P385
MULLER C, 1973, TETRAHEDRON, V29, P3973
NARDELLI M, 1995, J APPL CRYSTALLOGR, V28, P659
OLIVATO PR, UNPUB
OLIVATO PR, 1985, PHOSPHORUS SULFUR, V24, P225
OLIVATO PR, 1987, PHOSPHORUS SULFUR, V33, P135
OLIVATO PR, 1989, PHOSPHORUS SULFUR, V44, P9
OLIVATO PR, 1990, PHOSPHORUS SULFUR, V47, P391
OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
OLIVATO PR, 1992, MAGN RESON CHEM, V30, P81
OLIVATO PR, 1996, REV HETEROATOM CHEM, V15, P115
OLIVATO PR, 1997, PHOSPHORUS SULFUR, V130, P155
OLIVATO PR, 1998, 18 INT S ORG CHEM SU, P214
OLIVATO PR, 1998, J CHEM SOC PERK JAN, P109
OLIVATO PR, 1999, PHOSPHORUS SULFUR, V153, P353
OLIVATO PR, 2000, ACTA CRYSTALLOGR B 1, V56, P112
OLIVATO PR, 2000, PHOSPHORUS SULFUR, V156, P255
OLIVEIRA JE, 1980, THESIS U SAO PAULO B
POSNER GH, 1972, J ORG CHEM, V37, P3547
PUDOVIK AN, 1956, ZH OBSHCH KHIM, V26, P1431
SCHMIDT H, 1975, TETRAHEDRON, V31, P1287
SHELDRICK GM, 1997, SHELXL97 PROGRAM REF
SOLOUKI B, 1975, CHEM BER, V108, P897
SPEZIALE AJ, 1958, J ORG CHEM, V23, P1883
TOSSELL JA, 1985, INORG CHEM, V24, P1100
ZSONAI L, 1995, ZORTEP MOL GRAPHICS
NR 42
TC 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1472-779X
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD JAN
PY 2001
IS 1
BP 97
EP 102
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 395VF
UT ISI:000166601400015
ER
PT J
AU Pliego, JR
Riveros, JM
TI The gas-phase reaction between hydroxide ion and methyl formate: A
theoretical analysis of the energy surface and product distribution
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE ab initio calculations; gas-phase reactions; hydrolysis
ID S(N)2 NUCLEOPHILIC-SUBSTITUTION; BASE-CATALYZED-HYDROLYSIS;
DISPLACEMENT-REACTIONS; ESTER HYDROLYSIS; AB-INITIO; MECHANISM;
KINETICS; RESONANCE; ABINITIO; CLUSTERS
AB The potential energy surface for the prototype solvent-free ester
hydrolysis reaction: OH-+HCOOCH3-> products has been characterized by
high level ab initio calculations of MP4/6311 + G(2df,2p)//MP2/6-31 +
G(d) quality. These calculations reveal that the approach of an OH- ion
leads to the formation of two distinct ion-molecule complexes: 1) the
MS1 species with the hydroxide ion hydrogen bonded to the methyl group
of the ester, and 2) the MS4 moiety resulting from proton abstraction
of the formyl hydrogen by the hydroxide ion and formation of a
three-body complex of water, methoxide ion and carbon monoxide. The
first complex reacts to generate formate anion and methanol products
through the well known B(AC)2 and S(N)2 mechanisms. RRKM calculations
predict that these pathways will occur with a relative contribution of
85% and 15% at 298.15 K, in excellent agreement with experimentally
measured Values of 87 % and 13 %, respectively. The second complex
reacts by loss of carbon monoxide to yield the water-methoxide complex
through a single minimum potential surface and is the preferred pathway
in the gas-phase. This water-methoxide adduct can further dissociate if
the reactants have excess energy. These results provide clear evidence
that the preferred pathways for ester hydrolysis in solution are
dictated by solvation of the hydroxide ion.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Pliego, JR, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, Brazil.
CR *GAUSS INC, 1995, GAUSS 94 REV D 2
ASUBIOJO OI, 1979, J AM CHEM SOC, V101, P3715
BAER T, 1996, UNIMOLECULAR REACTIO
BAKOWIES D, 1999, J AM CHEM SOC, V121, P5712
BARTMESS JE, 1981, J AM CHEM SOC, V103, P1338
BENDER ML, 1960, CHEM REV, V60, P53
BICKELHAUPT FM, 1996, CHEM-EUR J, V2, P196
BLAIR LK, 1973, J AM CHEM SOC, V95, P1057
COMISAROW M, 1977, CAN J CHEM, V55, P171
CORDES EH, 1974, CHEM REV, V74, P581
DEJAEGERE A, 1994, J CHEM SOC FARADAY T, V90, P1763
DEPUY CH, 1983, J AM CHEM SOC, V105, P2480
DEPUY CH, 1985, J AM CHEM SOC, V107, P1093
EWIG CS, 1986, J AM CHEM SOC, V108, P4774
FERNANDO J, 1976, J AM CHEM SOC, V98, P2049
FINK BT, 1999, J CHEM SOC P2, P2397
GRAUL ST, 1994, J AM CHEM SOC, V116, P3875
HAEFFNER F, 1999, J MOL STRUC-THEOCHEM, V459, P85
HASE WL, 1994, SCIENCE, V266, P998
HUMPHREYS HM, 1956, J AM CHEM SOC, V78, P521
ISOLANI PC, 1975, CHEM PHYS LETT, V33, P362
JENCKS WP, 1964, PROGR PHYS ORG CHEM, V2, P63
JENCKS WP, 1980, ACCOUNTS CHEM RES, V13, P161
JOHLMAN CL, 1985, J AM CHEM SOC, V107, P327
JORGENSEN WL, 1987, ACS SYM SER, V353, P200
MADURA JD, 1986, J AM CHEM SOC, V108, P2517
MEOTNER M, 1986, J AM CHEM SOC, V108, P6189
OLMSTEAD WN, 1977, J AM CHEM SOC, V99, P4219
PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
PLIEGO JR, 1999, PCCP PHYS CHEM CH PH, V1, P1031
PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
PRANATA J, 1994, J PHYS CHEM-US, V98, P1180
TAKASHIMA K, 1978, J AM CHEM SOC, V100, P6128
TAKASHIMA K, 1983, J CHEM SOC CHEM COMM, P1255
VANDERWEL H, 1988, RECL TRAV CHIM PAY B, V107, P479
WANG HB, 1994, J AM CHEM SOC, V116, P9644
WANG HB, 1997, J AM CHEM SOC, V119, P3093
WIBERG KB, 1987, J AM CHEM SOC, V109, P5935
XANTHEAS SS, 1995, J AM CHEM SOC, V117, P10373
ZHAN CG, 2000, J AM CHEM SOC, V122, P1522
ZHAN CG, 2000, J AM CHEM SOC, V122, P2621
ZHU L, 1993, GEN RRKM PROGRAM
NR 43
TC 11
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA PO BOX 10 11 61, D-69451 BERLIN, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD JAN 5
PY 2001
VL 7
IS 1
BP 169
EP 175
PG 7
SC Chemistry, Multidisciplinary
GA 392PH
UT ISI:000166419500017
ER
PT J
AU de Almeida, NG
Ramos, PB
Serra, RM
Moussa, MY
TI Phenomenological-operator approach to introduce damping effects on
radiation field states
SO JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS
LA English
DT Article
DE radiation field states; damping effects; cavity field
ID ARBITRARY QUANTUM STATES; PODOLSKY-ROSEN CHANNELS; EXPERIMENTAL
REALIZATION; PROJECTION SYNTHESIS; TELEPORTATION; ENTANGLEMENT;
GENERATION; ATOM; SUPERPOSITIONS; PHOTONS
AB In this paper we propose an approach to deal with radiation field
states which incorporates damping effects at zero temperature. By using
some well known results on dissipation of a cavity-field state,
obtained by standard ab initio methods, it was possible to infer,
through a phenomenological way, the explicit form for the evolution of
the state vector for the whole system: the cavity field plus reservoir.
This proposal turns out to be extremely convenient for accounting for
the influence of the reservoir over the cavity field. To illustrate the
universal applicability of our approach we consider the attenuation
effects on cavity-field states engineering. The main concern of the
present phenomenological approach consists in furnishing a
straightforward technique to estimate the fidelity resulting from
processes in cavity QED phenomena. A proposal to maximize the fidelity
of the process is presented.
C1 Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
RP de Almeida, NG, Univ Fed Sao Carlos, Dept Fis, CP 676, BR-13565905 Sao
Carlos, SP, Brazil.
CR BELL JS, 1964, PHYSICS, V1, P195
BENNETT CH, 1993, PHYS REV LETT, V70, P1895
BOSCHI D, 1998, PHYS REV LETT, V80, P1121
BOSE S, 1997, PHYS REV A, V56, P4175
BOUWMEESTER D, 1997, NATURE, V390, P575
BRANNING D, 1999, PHYS REV LETT, V83, P955
BRUNE M, 1992, PHYS REV A, V45, P5193
BRUNE M, 1996, PHYS REV LETT, V77, P4887
CHUANG IL, 1998, NATURE, V393, P143
CIRAC JI, 1997, PHYS REV LETT, V78, P3221
DAKNA M, 1999, PHYS REV A, V59, P1658
DALIBARD J, 1992, PHYS REV LETT, V68, P580
DUM R, 1992, PHYS REV A, V45, P4879
EINSTEIN A, 1935, PHYS REV, V47, P777
FURUSAWA A, 1998, SCIENCE, V282, P706
GHERI KM, 1998, PHYS REV A, V58, P2627
JANSZKY J, 1995, PHYS REV A, V51, P4191
KRAUSE J, 1987, PHYS REV A, V36, P4547
LO HK, 1997, PHYS REV LETT, V78, P3410
MANDEL L, 1995, OPTICAL COHERENCE QU
MAYES D, 1996, QUANTPH9603015
MOUSSA MHY, 1996, PHYS REV A, V54, P4661
MOUSSA MHY, 1997, PHYS REV A, V55, P3287
MOUSSA MHY, 1998, PHYS LETT A, V238, P223
NUSSENZVEIG P, COMMUNICATION
PARKINS AS, 1993, PHYS REV LETT, V71, P3095
PEGG DT, 1998, PHYS REV LETT, V81, P1604
PELLIZZARI T, 1997, PHYS REV LETT, V79, P5242
SCULLY MO, 1997, QUANTUM OPTICS
SHOR PW, 1994, P 35 ANN S FDN COMP, P124
VIDIELLABARRANCO A, 1998, PHYS REV A, V58, P3349
VILLASBOAS CJ, 1999, PHYS REV A, V60, P2759
VOGEL K, 1993, PHYS REV LETT, V71, P1816
WEINDINGER M, 1999, PHYS REV LETT, V82, P3795
ZHENG SB, 1998, OPT COMMUN, V154, P290
NR 35
TC 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1464-4266
J9 J OPT B-QUANTUM SEMICL OPT
JI J. Opt. B-Quantum Semicl. Opt.
PD DEC
PY 2000
VL 2
IS 6
BP 792
EP 798
PG 7
SC Physics, Applied; Optics
GA 389LL
UT ISI:000166239300015
ER
PT J
AU Pliego, JR
Riveros, JM
TI New values for the absolute solvation free energy of univalent ions in
aqueous solution
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID GIBBS FREE-ENERGY; AB-INITIO; PROTON AFFINITIES; CONTINUUM MODEL;
GAS-PHASE; THERMODYNAMICS; PHOTOIONIZATION; MOLECULES; HYDRATION;
SOLVENTS
AB The absolute solvation free energy of 30 univalent ions, mainly organic
species, has been calculated from experimental and theoretical data on
proton affinities, aqueous acidity constants, solvation free energy of
neutral species, and the new value for the absolute solvation free
energy of the proton determined by Tissandier et al. [J. Phys. Chem. A
102 (1998) 7787]. Our new values reveal considerable differences with
previous compilations, and should be taken into consideration for
comparison with liquid simulation results and in the development of
implicit solvation models. (C) 2000 Elsevier Science B.V. All rights
reserved.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, SP, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, SP, Brazil.
CR ALBERT A, 1984, DETERMINATION IONIZA
AUE DH, 1976, J AM CHEM SOC, V98, P318
BARTMESS JE, 1979, J AM CHEM SOC, V101, P6046
BENNAIM A, 1978, J PHYS CHEM-US, V82, P792
BENNAIM A, 1984, J CHEM PHYS, V81, P2016
BERKOWITZ J, 1994, J PHYS CHEM-US, V98, P2744
COE JV, 1994, CHEM PHYS LETT, V229, P161
COSSI M, 1996, CHEM PHYS LETT, V255, P327
CRAMER CJ, 1992, SCIENCE, V256, P213
CRAMER CJ, 1999, CHEM REV, V99, P2161
FLORIAN J, 1997, J PHYS CHEM B, V101, P5583
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
HILLEBRAND C, 1996, J PHYS CHEM-US, V100, P9698
HINE J, 1975, J ORG CHEM, V40, P292
LANGLET J, 1988, J PHYS CHEM-US, V92, P1617
LITORJA M, 1998, J ELECTRON SPECTROSC, V97, P131
MARCUS Y, 1985, ION SOLVATION
MARCUS Y, 1991, J CHEM SOC FARADAY T, V87, P2995
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
NG CY, 1977, J CHEM PHYS, V67, P4235
PLIEGO JR, 1997, J CHEM SOC FARADAY T, V93, P1881
PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
PLIEGO JR, 2000, J PHYS CHEM B, V104, P5155
STEFANOVICH EV, 1995, CHEM PHYS LETT, V244, P65
SZULEJKO JE, 1993, J AM CHEM SOC, V115, P7839
TAWA GJ, 1998, J CHEM PHYS, V109, P4852
TISSANDIER MD, 1998, J PHYS CHEM A, V102, P7787
WONG MW, 1991, J AM CHEM SOC, V113, P4776
NR 30
TC 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD DEC 29
PY 2000
VL 332
IS 5-6
BP 597
EP 602
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 389JY
UT ISI:000166235900027
ER
PT J
AU Nunes, RW
Vanderbilt, D
TI Models of core reconstruction for the 90 degrees partial dislocation in
semiconductors
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID ELECTRONIC-STRUCTURE; SILICON; KINKS; MOTION
AB We compare the models that have been proposed in the literature for the
atomic structure of the 90 degrees partial dislocation in the homopolar
semiconductors, silicon, diamond, and germanium. In particular, we
examine the traditional single-period and our recently proposed
double-period core structures. Ab initio and tight-binding results on
the core energies are discussed, and the geometries are compared in the
light of the available experimental information about dislocations in
these systems. The double-period geometry is found to be the
ground-state structure for all three materials. We address
boundary-condition issues that have been recently raised concerning
these results. The structures of point excitations (kinks, solitons,
and kink-soliton complexes) in the two geometries are also reviewed.
C1 Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil.
Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
RP Nunes, RW, Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte,
MG, Brazil.
CR ALEXANDER H, 1991, MATERIALS SCI TECHNO, V4, P249
BATSON PE, 1999, PHYS REV LETT, V83, P4409
BENNETTO J, 1997, PHYS REV LETT, V79, P245
BIGGER JRK, 1992, PHYS REV LETT, V69, P2224
BLASE X, 2000, PHYS REV LETT, V84, P5780
BULATOV VV, 1997, PHYS REV LETT, V79, P5042
CHELIKOWSKY JR, 1984, PHYS REV B, V30, P694
DUESBERY MS, 1991, CRIT REV SOLID STATE, V17, P1
HANSEN LB, 1995, PHYS REV LETT, V75, P4444
HEGGIE M, 1983, PHILOS MAG B, V48, P365
HEGGIE M, 1983, PHILOS MAG B, V48, P379
HEGGIE M, 1987, I PHYS C SER, V87, P367
HEGGIE MI, 1993, PHYS STATUS SOLIDI A, V138, P383
HIRSCH PB, 1985, MATER SCI TECH SER, V1, P666
JONES R, 1979, J PHYS-PARIS S6, V40, P33
JONES R, 1980, PHILOS MAG B, V42, P213
JONES R, 1993, PHYS STATUS SOLIDI A, V138, P369
KOLAR HR, 1996, PHYS REV LETT, V77, P4031
LEHTO N, 1998, PHYS REV LETT, V80, P5568
LODGE KW, 1989, PHILOS MAG A, V60, P643
MARKLUND S, 1979, PHYS STATUS SOLIDI B, V92, P83
MARKLUND S, 1983, J PHYS-PARIS, V44, P25
NUNES RW, 1996, PHYS REV LETT, V77, P15417
NUNES RW, 1996, THESIS RUTGERS U NJ
NUNES RW, 1998, PHYS REV B, V57, P10388
NUNES RW, 1998, PHYS REV B, V58, P12563
NUNES RW, 2000, PHYS REV LETT, V85, P3540
OBERG S, 1995, PHYS REV B, V51, P13138
NR 28
TC 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD DEC 11
PY 2000
VL 12
IS 49
BP 10021
EP 10027
PG 7
SC Physics, Condensed Matter
GA 386BC
UT ISI:000166039400002
ER
PT J
AU Justo, JF
Fazzio, A
Antonelli, A
TI Dislocation core reconstruction in zinc-blende semiconductors
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID 90-DEGREES PARTIAL DISLOCATION; DENSITY-FUNCTIONAL THEORY;
MOLECULAR-DYNAMICS; SILICON; MOBILITY; GAAS; PSEUDOPOTENTIALS;
VELOCITIES; CRYSTALS; INAS
AB Using ab initio total-energy calculations, we computed core
reconstruction energies of partial dislocations in zinc-blende
semiconductors. The reconstruction energy of 30 degrees partials was
found to scale almost linearly with the experimental activation energy
of 60 degrees dislocations. The electronic structure of a dislocation
shows that in an unreconstructed core, the gap states comprise a
half-filled one-dimensional band, which splits up into bonding and
antibonding states upon reconstruction. The energy states which lie in
the electronic gap come from the core of beta -partials, while those
related to alpha -partials remain resonant in the valence band.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Justo, JF, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
SP, Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
ALEXANDER H, 1989, I PHYS C SER, V104, P281
BAZANT MZ, 1997, PHYS REV B, V56, P8542
BENNETTO J, 1997, PHYS REV LETT, V79, P245
BIGGER JRK, 1992, PHYS REV LETT, V69, P2224
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BULATOV VV, 1995, PHILOS MAG A, V72, P453
CAR R, 1985, PHYS REV LETT, V55, P2471
CHOI SK, 1977, JPN J APPL PHYS, V16, P737
CHOI SK, 1978, JPN J APPL PHYS, V17, P329
DUESBERY MS, 1991, CRIT REV SOLID STATE, V17, P1
HIRTH JP, 1982, THEORY DISLOCATIONS
IMAI M, 1983, PHILOS MAG A, V47, P599
JUSTO JF, 1998, PHYS REV B, V58, P2539
JUSTO JF, 1999, J APPL PHYS, V86, P4249
JUSTO JF, 2000, PHYS REV LETT, V84, P2172
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
OMRI M, 1990, PHILOS MAG A, V62, P203
SITCH P, 1994, PHYS REV B, V50, P17717
SUZUKI T, 1991, DISLOCATION DYNAMICS
TROULLIER N, 1991, PHYS REV B, V43, P1993
YONENAGA I, 1989, J APPL PHYS, V65, P85
YONENAGA I, 1993, J APPL PHYS, V73, P1681
YONENAGA I, 1996, APPL PHYS LETT, V69, P1264
YONENAGA I, 1998, J APPL PHYS, V84, P4209
NR 26
TC 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD DEC 11
PY 2000
VL 12
IS 49
BP 10039
EP 10044
PG 6
SC Physics, Condensed Matter
GA 386BC
UT ISI:000166039400004
ER
PT J
AU Prudente, FV
Costa, LS
Acioli, PH
TI Correlation function quantum Monte Carlo studies of rovibrational
excited states in molecules
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Review
ID POTENTIAL-ENERGY SURFACES; CONSISTENT-FIELD APPROACH; QUASI-ADIABATIC
CHANNELS; ELECTRONIC GROUND-STATE; AB-INITIO CALCULATIONS;
VIBRATIONAL-STATES; VARIATIONAL CALCULATIONS; WAVE-FUNCTIONS;
TRIATOMIC-MOLECULES; HYDROGEN-PEROXIDE
AB In this paper we review the correlation function quantum Monte Carlo
(CFQMC) method. We describe the functional forms and the optimization
of trial basis functions used to treat the vibrational and rotational
motions. We discuss selected applications to di-, tri- and tetra-atomic
molecules. Our main goal is to discuss the potentiality of the CFQMC
method in the study of rovibrational excited states of polyatomic
molecules. In particular, we focus our discussion on the generation of
the trial basis functions for ground and excited states, and the
guiding function used to perform the multidimensional integral sampling
required by the method.
C1 Univ Coimbra, Dept Quim, P-3049 Coimbra, Portugal.
Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil.
RP Prudente, FV, Univ Coimbra, Dept Quim, P-3049 Coimbra, Portugal.
CR ACIOLI PH, 1999, J CHEM PHYS, V111, P6311
ACIOLI PH, 1999, J MOL STRUC-THEOCHEM, V464, P145
ACIOLI PH, 2000, CHEM PHYS LETT, V321, P121
ALEXANDER SA, 1991, J CHEM PHYS, V95, P6622
ANDERSON JB, 1975, J CHEM PHYS, V63, P1499
ANDERSON JB, 1995, INT REV PHYS CHEM, V14, P85
ANTIKAINEN J, 1995, J CHEM PHYS, V102, P1270
ASSARAF R, 2000, PHYS REV E B, V61, P4566
BACIC Z, 1989, ANNU REV PHYS CHEM, V40, P469
BENTLEY JA, 1992, J CHEM PHYS, V97, P4255
BERNU B, 1990, J CHEM PHYS, V93, P552
BIANCHI R, 1991, CHEM PHYS LETT, V184, P343
BLUME D, 1996, J CHEM PHYS, V105, P8666
BLUME D, 1997, J CHEM PHYS, V107, P9067
BLUME D, 1997, PHYS REV E B, V55, P3664
BLUME D, 1998, MATH COMPUT SIMULAT, V47, P133
BLUME D, 1999, J CHEM PHYS, V110, P5789
BLUME D, 2000, J CHEM PHYS, V112, P2218
BLUME D, 2000, J CHEM PHYS, V112, P8053
BOWMAN JM, 1986, ACCOUNTS CHEM RES, V19, P202
BRAMLEY MJ, 1993, J CHEM PHYS, V99, P8519
BRESSANINI D, 1999, ADV CHEM PHYS, V105, P37
BROUDE S, 1999, CHEM PHYS LETT, V299, P437
BROWN WR, 1995, J CHEM PHYS, V103, P9721
BUCH V, 1992, J CHEM PHYS, V97, P726
CAFFAREL M, 1988, J CHEM PHYS, V88, P1100
CAFFAREL M, 1989, J CHEM PHYS, V90, P990
CARNEY GD, 1976, J MOL SPECTROSC, V61, P371
CARNEY GD, 1986, J CHEM PHYS, V84, P3921
CARTER S, 1998, J CHEM PHYS, V108, P4397
CARTER S, 1998, THEOR CHEM ACC, V100, P191
CARTER S, 1999, J CHEM PHYS, V110, P8417
CEPERLEY DM, MONTE CARLO METHODS
CEPERLEY DM, 1988, J CHEM PHYS, V89, P6316
CEPERLEY DM, 1996, ADV CHEM PHYS, V93, P1
CHOI SE, 1992, J CHEM PHYS, V97, P7031
COKER DF, 1986, MOL PHYS, V58, P1113
COKER DF, 1987, J PHYS CHEM-US, V91, P2513
COSTA LS, 2000, PHYS REV A, V61
DYKSTRA CE, 1979, J CHEM PHYS, V70, P1
DYKSTRA CE, 1997, J COMPUT CHEM, V18, P702
FEMLEY JA, 1991, J MOL SPECTROSC, V150, P597
GOMEZ MA, 1998, J CHEM PHYS, V109, P8783
GREGORY JK, 1995, J CHEM PHYS, V102, P7817
GREGORY JK, 1996, J CHEM PHYS, V105, P6626
GRIMES RM, 1986, J CHEM PHYS, V85, P4749
HALONEN L, 1982, MOL PHYS, V47, P1097
HAMMOND BL, 1994, MONTE CARLO METHODS
HANDY NC, 1981, CHEM PHYS LETT, V79, P118
IOSUE JL, 1999, CHEM PHYS LETT, V301, P275
JAQUET R, 1998, J CHEM PHYS, V108, P2837
JENSEN P, 1989, J MOL SPECTROSC, V133, P438
JONES MD, 1997, PHYS REV E B, V55, P6202
KONNIN SE, 1990, COMPUTATIONAL PHYSIC
KOPUT J, 1999, CHEM PHYS LETT, V301, P1
KUHN B, 1999, J CHEM PHYS, V111, P2565
KUPPERMANN A, 1994, ADV MOL VIBRATIONS B, V2, P117
KWON Y, 1996, PHYS REV B, V53, P7377
KWON YK, 1994, PHYS REV B, V50, P1684
LEHOUCQ RB, 1998, COMPUT PHYS COMMUN, V109, P15
LEWERENZ M, 1994, MOL PHYS, V81, P1075
LIU K, 1996, NATURE, V381, P501
MACDONALD JKL, 1933, PHYS REV, V43, P830
MAESSEN B, 1984, J PHYS CHEM-US, V88, P6420
MARTIN JML, 1998, J PHYS CHEM A, V102, P1394
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
MURRELL JN, 1984, MOL POTENTIAL ENERGY
MUSSA HY, 1998, J CHEM PHYS, V109, P10885
NETO JJS, 1994, THEOR CHIM ACTA, V89, P415
NETO JJS, 1998, BRAZ J PHYS, V28, P1
NIGHTINGALE MP, 1996, PHYS REV B, V54, P1001
NIGHTINGALE MP, 1998, PHYS REV LETT, V80, P1007
NIGHTINGALE MP, 1998, PHYSICA A, V251, P211
NIGHTINGALE MP, 1999, ADV CHEM PHYS, V105, P65
PAPOUSEK D, 2000, MOL VIBRATIONAL ROTA
PARTRIDGE H, 1997, J CHEM PHYS, V106, P4618
POLYANSKY OL, 1997, SCIENCE, V277, P346
POLYANSKY OL, 2000, MOL PHYS, V98, P261
PRESS WH, 1986, NUMERICAL RECIPES
PRUDENTE FV, 1998, CHEM PHYS LETT, V287, P585
PRUDENTE FV, 1998, J CHEM PHYS, V109, P8801
PRUDENTE FV, 1999, CHEM PHYS LETT, V302, P249
PRUDENTE FV, 1999, CHEM PHYS LETT, V302, P43
QUACK M, 1991, CHEM PHYS LETT, V183, P187
QUACK M, 1991, J CHEM PHYS, V95, P28
RAMAKRISHNA MV, 1990, J CHEM PHYS, V93, P6738
RAMALHO JPP, 1991, CHEM PHYS LETT, V184, P53
RATNER MA, 1986, J PHYS CHEM-US, V90, P20
REINER DE, 1984, J CHEM PHYS, V80, P5968
REYNOLDS PJ, 1982, J CHEM PHYS, V77, P5593
SANDLER P, 1996, J CHEM PHYS, V105, P10387
SANDLER P, 1997, J CHEM PHYS, V107, P5022
SCHMIDT KE, MONTE CARLO METHODS
SCHMIDT KE, 1992, MONTE CARLO METHODS, V3
SCHWENKE DW, 1996, J PHYS CHEM-US, V100, P2867
SEVERSON MW, 1999, J CHEM PHYS, V111, P10866
SILVA WB, UNPUB
SILVA WB, 2000, THESIS U BRASILIA
SUHM MA, 1991, PHYS REP, V204, P293
SUN H, 1990, J CHEM PHYS, V92, P603
TENNYSON J, 1995, COMPUT PHYS COMMUN, V86, P175
TENNYSON J, 2000, THEORETICAL HIGH RES
THIRUMALAI D, 1983, J CHEM PHYS, V79, P5063
TOPPER RQ, 1999, ADV CHEM PHYS, V105, P117
UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719
UMRIGAR CJ, 1993, J CHEM PHYS, V99, P2865
WATSON JKG, 1968, MOL PHYS, V15, P479
WITHNALL R, 1985, J PHYS CHEM-US, V89, P3261
ZARE RN, ANGULAR MOMENTUM
NR 109
TC 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS-B-AT MOL OPT PHYS
JI J. Phys. B-At. Mol. Opt. Phys.
PD NOV 28
PY 2000
VL 33
IS 22
BP R285
EP R313
PG 29
SC Physics, Atomic, Molecular & Chemical; Optics
GA 387CE
UT ISI:000166101900003
ER
PT J
AU Amalvy, JI
Asua, JM
Leite, CAP
Galembeck, F
TI Elemental mapping by ESI-TEM, during styrene emulsion polymerization
SO POLYMER
LA English
DT Article
DE latex particles; seeded emulsion polymerization; styrene
ID PARTICLE MORPHOLOGY; LATEX-PARTICLES; CLUSTER DYNAMICS; SYSTEMS
AB The elemental distribution in latex particles during the ab-initio and
seeded emulsion polymerization of styrene was studied by electron
spectroscopy imaging, in an analytical transmission electron
microscope. Surface anchoring effect, chain migration and the extent of
burying of the sulfate groups from the initiator were investigated by
comparing the distributions of the different elements. (C) 2000
Elsevier Science Ltd. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, Dept Chem, BR-13083970 Campinas, SP, Brazil.
Ctr Invest & Desarrollo Tecnol Pinturas, CIDEPINT, Buenos Aires, DF, Argentina.
Univ Pais Vasco, Fac Ciencias Quim, Dept Quim Aplicada, Grp Ingn Quim, E-20080 San Sebastian, Spain.
Univ Pais Vasco, Inst Polymer Mat, POLYMAT, E-20080 San Sebastian, Spain.
RP Galembeck, F, Univ Estadual Campinas, Inst Quim, Dept Chem, Caixa
Postal 6154, BR-13083970 Campinas, SP, Brazil.
CR AHMED SM, 1980, ORG COAT PLAST CHEM, V43, P120
CARDOSO AH, 1998, LANGMUIR, V14, P3187
CHANG HS, 1988, J POLYM SCI POL CHEM, V26, P1207
CHERN CS, 1987, J POLYM SCI POL CHEM, V25, P617
GONZALEZORTIZ LJ, 1995, MACROMOLECULES, V28, P3135
GONZALEZORTIZ LJ, 1996, MACROMOLECULES, V29, P383
GONZALEZORTIZ LJ, 1996, MACROMOLECULES, V29, P4520
GRANCIO MR, 1970, J POLYM SCI POL CHEM, V8, P2617
KAMEL AA, 1981, J DISPER SCI TECHNOL, V2, P315
KEUSCH P, 1973, J POLYM SCI POL CHEM, V11, P143
LAU W, 1987, MACROMOLECULES, V20, P457
LINNE MA, 1988, J MACROMOL SCI PHY B, V27, P181
NEWBURY DE, 1986, PRINCIPLES ANALYTICA
OKUBO M, 1990, MAKROMOL CHEM-M SYMP, V35, P307
PALIT SR, 1962, J POLYM SCI, V58, P1225
SMITHAM JB, 1973, J COLLOID INTERF SCI, V45, P211
STONEMASUI JH, 1980, POLYM COLLOIDS, V2, P331
SU LS, 1995, COLLOID POLYM
VANDENHUL HJ, 1970, BR POLYM J, V2, P121
VANDERHOFF JM, 1977, CHARACTERIZATION MET, P365
NR 20
TC 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0032-3861
J9 POLYMER
JI Polymer
PD MAR
PY 2001
VL 42
IS 6
BP 2479
EP 2489
PG 11
SC Polymer Science
GA 384GJ
UT ISI:000165934200022
ER
PT J
AU Gonzalez, L
Hoki, K
Kroner, D
Leal, AS
Manz, J
Ohtsuki, Y
TI Selective preparation of enantiomers by laser pulses: From optimal
control to specific pump and dump transitions
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID VIBRATIONAL-EXCITATION; MOLECULES; SUPERPOSITIONS; DYNAMICS; STATES;
FIELDS
AB Starting from optimal control, various series of infrared, ultrashort
laser pulses with analytical shapes are designed in order to drive a
preoriented molecule from its ground torsional state, which represents
the coherent superposition of left and right atropisomers, towards a
single enantiomer. Close analysis of the population dynamics, together
with the underlying symmetry selection rules for the laser induced
transitions, yields the mechanism. Namely, the molecule is driven from
its ground vibrational state towards the coherent superposition of the
lowest doublet of states via a doublet of excited torsional states with
opposite symmetries. This pump-and-dump mechanism can be achieved by
simpler series of analytical laser pulses. This decomposition of the
optimal pulse into analytical subpulses allows us to design different
scenarios for the selective preparation of left or right enantiomers.
Exemplary this is demonstrated by quantum simulations of representative
wave packets for the torsional motions of the model system, H2POSH, in
the electronic ground state, based on the ab initio potential energy
surface, and with ab initio dipole couplings. (C) 2000 American
Institute of Physics. [S0021-9606(00)00940-5].
C1 Free Univ Berlin, Inst Chem Phys & Theoret Chem, D-14195 Berlin, Germany.
Tohoku Univ, Grad Sch Sci, Dept Chem, Sendai, Miyagi 9808578, Japan.
UFMG, ICEX, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil.
RP Gonzalez, L, Free Univ Berlin, Inst Chem Phys & Theoret Chem, Takustr
3, D-14195 Berlin, Germany.
CR BRUMER P, 1992, ANNU REV PHYS CHEM, V43, P257
CINA JA, 1994, J CHEM PHYS, V100, P2531
CINA JA, 1995, SCIENCE, V267, P832
DOSLIC N, IN PRESS FEMTOCHEMIS
DOSLIC N, 1998, J PHYS CHEM A, V102, P9645
FUJIMURA Y, IN PRESS ANGEW CHEM
FUJIMURA Y, 1999, CHEM PHYS LETT, V306, P1
FUJIMURA Y, 1999, CHEM PHYS LETT, V310, P578
HANGGI P, 1999, COMMUNICATION MAR
HUND F, 1927, Z PHYS, V43, P805
KALUZA M, 1994, J CHEM PHYS, V100, P4211
KOSLOFF R, 1989, CHEM PHYS, V139, P201
KRAUSE JL, 1995, FEMTOSECOND CHEM, P743
MAIERLE CS, 1998, J CHEM PHYS, V109, P3713
MANZ J, 1998, CHEM PHYS LETT, V290, P415
MARQUARDT R, 1996, Z PHYS D ATOM MOL CL, V36, P229
OHTSUKI Y, 1998, J CHEM PHYS, V109, P9318
PARAMONOV GK, 1983, PHYS LETT A, V97, P340
QUACK M, 1995, FEMTOSECOND CHEM, P781
RING H, 1998, EUR PHYS J D, V4, P73
SHAO J, 1997, PHYS REV A, V56, P4397
SHAO JS, 1997, J CHEM PHYS, V107, P9935
SHAPIRO M, 1991, J CHEM PHYS, V95, P8658
SHAPIRO M, 2000, PHYS REV LETT, V84, P1669
SHI S, 1988, J CHEM PHYS, V88, P6870
SHI SH, 1990, J CHEM PHYS, V92, P2927
SOLA IR, 1998, J PHYS CHEM A, V102, P4301
SUGAWARA M, 1994, J CHEM PHYS, V100, P5646
WATANABE Y, 1997, CHEM PHYS, V217, P317
NR 29
TC 14
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD DEC 22
PY 2000
VL 113
IS 24
BP 11134
EP 11142
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 382TZ
UT ISI:000165841300032
ER
PT J
AU Denault, JW
Wang, F
Cooks, RG
Gozzo, FC
Eberlin, MN
TI Structural characterization of clusters formed from alkyl nitriles and
the methyl cation
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID NUCLEOPHILIC DISPLACEMENT-REACTIONS; ION-MOLECULE REACTIONS; GAS-PHASE;
KINETIC METHOD; THERMOCHEMICAL DETERMINATIONS; MASS-SPECTROMETRY;
PROTON AFFINITIES; SN2 REACTIONS; TRANSITION; ETHYLATION
AB Cluster ions composed of the alkyl nitriles, acetonitrile (CH3CN) and
butyronitrile (C3H7CN), and the methyl cation (CH3+) have been examined
in an effort to study methyl cation affinities and the intrinsic
nucleophilicity of these bases. Structural characterization of the
sas-phase dimeric adduct ions was achieved via multiple stage mass
spectrometry (MSn) experiments and by quantum mechanical calculations.
The kinetic method was used as a diagnostic tool in determining the
structure of the dimeric adduct: the results of tandem mass
spectrometry (MS2) experiments' are found to provide ratios which
exclude loosely bonded dimers based on the thermochemistry of the
constituent monomers, and which are consistent with a mixture of
noninterconverting covalently bonded structures predicted by ab initio
calculations. These clusters are bound such that one nitrile is
N-methylated and the second nitrile is bound covalently to the carbon
of the methylated cyano group. Collision-induced dissociation of this
cluster ion results in the loss of a single neutral nitrile whereas
both N-methylated nitriles should be formed upon dissociation of a
loosely bound dimer with the greater fragment ion abundance
corresponding to the nitrile having the higher CH3+ affinity. Ab initio
calculations show a large barrier between the two isomeric forms of the
dimeric cluster and this precludes intramolecular methyl cation
transfer between the nitriles. The effects of fluorine substitution at
the methyl cation, i.e., CH2F+ and CF3+, on the adducts of the nitriles
greatly affects the stability order of the methylated nitrile monomers
and dimeric adducts, and thus the abundance ratios of the MS/MS
fragments. As the number of fluorine atoms in the cation is increased,
the methylated nitrile becomes less stable relative to the dimeric
cluster ion.
C1 Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
Triangle Pharmaceut, Durham, NC 27707 USA.
State Univ Campinas, Inst Chem, Campinas, SP, Brazil.
RP Cooks, RG, Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
CR ALVEREZ J, IN PRESS J MASS SPEC
ARMENTROUT PB, 1999, J MASS SPECTROM, V34, P74
ATTINA M, 1991, ANGEW CHEM INT EDIT, V30, P1457
BEAUCHAMP JL, 1974, J AM CHEM SOC, V96, P6243
BOHME DK, 1981, J AM CHEM SOC, V103, P978
BRAUMAN JI, 1974, J AM CHEM SOC, V96, P4030
BRAUMAN JI, 1988, J AM CHEM SOC, V110, P5611
BURINSKY DJ, 1984, ORG MASS SPECTROM, V19, P539
BURINSKY DJ, 1988, ORG MASS SPECTROM, V23, P613
CACACE F, 1997, P NATL ACAD SCI USA, V94, P3507
CALDWELL G, 1984, J AM CHEM SOC, V106, P959
CHAMOTROOKE J, 2000, INT J MASS SPECTROM, V195, P385
CHOWDHURY S, 1988, ORG MASS SPECTROM, V23, P79
COOKS RG, 1977, J AM CHEM SOC, V99, P1279
COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
COOKS RG, 1998, ACCOUNTS CHEM RES, V31, P379
COOKS RG, 1999, J MASS SPECTROM, V34, P85
CRAIG SL, 1997, SCIENCE, V276, P1536
DEAKYNE CA, 1990, J PHYS CHEM-US, V94, P232
DELIJSER HJP, 1998, J PHYS CHEM A, V102, P5592
DEPUY CH, 1990, J AM CHEM SOC, V112, P8650
DERRICK PJ, 1983, MASS SPECTROM REV, V2, P285
DRAHOS L, 1999, J MASS SPECTROM, V34, P79
ERVIN KM, 2000, INT J MASS SPECTROM, V195, P271
FORD GP, 1983, J AM CHEM SOC, V105, P349
FRISCH MJ, 1995, GAUSSIAN 94
GLUKHOVTSEV MN, 1994, J PHYS CHEM-US, V98, P13099
GRAUL ST, 1994, J AM CHEM SOC, V116, P3675
HALL DG, 1981, J AM CHEM SOC, V103, P2416
HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
HOLTZ D, 1970, J AM CHEM SOC, V92, P7484
HOLTZ D, 1971, NATURE, V231, P204
HOURIET R, 1987, ORG MASS SPECTROM, V22, P770
KAYE JA, 1992, ISOTOPE EFFECTS GAS
KEATING JT, 1970, CARBONIUM IONS
LEVSEN K, 1978, FUNDAMENTAL ASPECTS
MA SG, 1997, INT J MASS SPECTROM, V163, P89
MARZILLI LA, 1999, J MASS SPECTROM, V34, P276
MCDONALD RN, 1985, J AM CHEM SOC, V107, P4123
MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
MCMAHON TB, 1988, J AM CHEM SOC, V110, P7591
OLAH GA, 1975, HALONIUM IONS
OLMSTEAD WN, 1977, J AM CHEM SOC, V99, P4219
PADDONROW MN, 1980, J AM CHEM SOC, V102, P6561
RAGHAVACHARI K, 1984, J AM CHEM SOC, V106, P3124
RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V1, P101
SHAIK S, 1994, J AM CHEM SOC, V116, P262
SMITH D, 1980, INTERSTELLAR MOL
SMITH SC, 1993, J CHEM PHYS, V98, P1944
SPERANZA M, 1980, J AM CHEM SOC, V102, P3115
WENTHOLD PG, 1996, J AM CHEM SOC, V118, P11865
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
WOOD KV, 1983, J ORG CHEM, V48, P5236
YANG SS, 1995, J MASS SPECTROM, V30, P807
YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
NR 57
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 7
PY 2000
VL 104
IS 48
BP 11290
EP 11296
PG 7
SC Chemistry, Physical
GA 380WB
UT ISI:000165725500007
ER
PT J
AU Borin, AC
Serrano-Andres, L
TI A theoretical study of the absorption spectra of indole and its
analogs: indene, benzimidazole, and 7-azaindole
SO CHEMICAL PHYSICS
LA English
DT Article
DE indole; indene; benzimidazole; 7-azaindole; absorption spectra; CASPT2
ID EXCITED-STATE PROPERTIES; MOLECULAR WAVE-FUNCTIONS; BAND CONTOUR
ANALYSIS; ANO BASIS-SETS; ELECTRONIC-SPECTRA; AB-INITIO;
MICROWAVE-SPECTRUM; PROTEIN-STRUCTURE; SPECTROSCOPY; FLUORESCENCE
AB The complete active space (CAS) SCF method and multiconfigurational
second-order perturbation theory (CASPT2) have been used to study the
electronic spectra of indole, indene, benzimidazole, and 7-azaindole.
Singlet and triplet excited states and transition properties in the
absorption spectra, such as oscillator strengths and transition moment
directions, have been computed and the experimental data interpreted in
order to gain insight into the rich spectroscopy of these compounds,
which are alternative candidates to indole as biochemical probes in the
characterization of protein properties. (C) 2000 Elsevier Science B.V.
All rights reserved.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
Univ Valencia, Dept Quim Fis, E-46100 Valencia, Spain.
RP Borin, AC, Univ Sao Paulo, Inst Quim, Av Prof Lineu Prestes 748,
BR-05508900 Sao Paulo, Brazil.
CR ALBINSSON B, 1992, J PHYS CHEM-US, V96, P6204
ANDERSON BE, 1986, CHEM PHYS LETT, V125, P106
ANDERSSON K, 1997, MOLCAS VERSION 4 0
BERDEN G, 1995, J CHEM PHYS, V103, P9596
BORIN AC, 1999, J MOL STRUC-THEOCHEM, V464, P121
BORIN AC, 1999, J PHYS CHEM A, V103, P1838
BULSKA H, 1984, J LUMIN, V29, P65
CAMINATI W, 1990, J MOL STRUCT, V223, P415
CANE E, 1991, J MOL SPECTROSC, V148, P123
CHANG CT, 1974, PHOTOCHEM PHOTOBIOL, V19, P347
CHEN Y, 1994, J PHYS CHEM-US, V98, P2203
DEMCHENKO AP, 1986, ULTRAVIOLET SPECTROS
EVELETH EM, 1970, THEOR CHIM ACTA, V16, P22
FENDER BJ, 1995, CHEM PHYS LETT, V239, P31
FUKE K, 1984, J PHYS CHEM-US, V88, P5840
FUKE K, 1989, J PHYS CHEM-US, V93, P614
FULSCHER MP, 1997, J AM CHEM SOC, V119, P6168
HAHN DK, 1997, J PHYS CHEM A, V101, P2686
HARTFORD A, 1970, J MOL SPECTROSC, V34, P257
HASSAN KH, 1989, J MOL SPECTROSC, V138, P398
HUANG YH, 1996, J PHYS CHEM-US, V100, P4734
ILICH P, 1995, J MOL STRUCT, V354, P37
JALVISTE E, 1993, CHEM PHYS, V172, P325
LI YS, 1979, J MOL STRUCT, V51, P171
MAKI I, 1981, B CHEM SOC JPN, V54, P8
MALMQVIST PA, 1989, CHEM PHYS LETT, V155, P189
NEGRERIE M, 1990, J AM CHEM SOC, V112, P7419
NI T, 1989, J AM CHEM SOC, V111, P457
PERKAMPUS HH, 1992, UV VIS ATLAS ORGANIC
PIERLOOT K, 1995, THEOR CHIM ACTA, V90, P87
PLATT JR, 1949, J CHEM PHYS, V17, P489
RICE JE, 1994, MULLIKEN VERSION 1 1
ROOS BO, 1995, QUANTUM MECH ELECT S, V357
ROOS BO, 1996, ADV CHEM PHYS, V93, P219
ROOS BO, 1996, J MOL STRUC-THEOCHEM, V388, P257
RUBIO M, 1994, CHEM PHYS, V179, P395
SAVIOTTI ML, 1974, P NATL ACAD SCI USA, V71, P4154
SERRANOANDRES L, 1995, J AM CHEM SOC, V117, P3189
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P12190
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P12200
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P185
SERRANOANDRES L, 1996, J PHYS CHEM-US, V100, P6484
SHUKLA MK, 1998, CHEM PHYS, V230, P187
SLATER LS, 1995, J PHYS CHEM-US, V99, P8572
SMIRNOV AV, 1997, J PHYS CHEM B, V101, P2758
SOBOLEWSKI AL, 1999, CHEM PHYS LETT, V315, P293
STRAMBINI GB, 1995, J AM CHEM SOC, V117, P7646
TAKEUCHI S, 1998, J PHYS CHEM A, V102, P7740
TAKIGAWA T, 1966, B CHEM SOC JPN, V39, P2369
VELINO B, 1992, J MOL SPECTROSC, V152, P434
WIDMARK PO, 1990, THEOR CHIM ACTA, V77, P291
NR 51
TC 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD DEC 15
PY 2000
VL 262
IS 2-3
BP 253
EP 265
PG 13
SC Physics, Atomic, Molecular & Chemical
GA 380UN
UT ISI:000165722000005
ER
PT J
AU Serrano-Andres, L
Borin, AC
TI A theoretical study of the emission spectra of indole and its analogs:
indene, benzimidazole, and 7-azaindole
SO CHEMICAL PHYSICS
LA English
DT Article
DE indole; indene; benzimidazole; 7-azaindole; emission spectra; CASPT2
ID MOLECULAR WAVE-FUNCTIONS; DOUBLE-PROTON-TRANSFER; ANO BASIS-SETS;
EXCITED-STATE; AB-INITIO; ELECTRONIC-SPECTRA; TRIPLET-STATES;
GAS-PHASE; SPECTROSCOPY; PHOTOPHYSICS
AB The complete active space (CAS) SCF method and multiconfigurational
second-order perturbation theory (CASPT2) have been used to study the
electronic spectra of indole, indene, benzimidazole, and 7-azaindole.
The paper is focused on the study of the low-lying valence triplet and
singlet electronic states at the optimized geometries of the excited
states. The geometries have been optimized by using analytic CASSCF
derivatives. CASPT2 point calculations have been performed in order to
obtain band origins and relaxed emission energies. The results are
analyzed in the context of the complex emission processes, both
fluorescence and phosphorescence, displayed by the title compounds,
which can be used as biochemical probes in the characterization of
protein properties and activity. (C) 2000 Elsevier Science B.V. All
rights reserved.
C1 Univ Valencia, Dept Quim Fis, E-46100 Valencia, Spain.
Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Serrano-Andres, L, Univ Valencia, Dept Quim Fis, Av Dr Moliner 50,
E-46100 Valencia, Spain.
CR ANDERSON BE, 1986, CHEM PHYS LETT, V125, P106
ANDERSSON K, 1997, MOLCAS VERSION 4 0
AVOURIS P, 1976, PHOTOCHEM PHOTOBIOL, V24, P211
BEARPARK MJ, 1997, J PHYS CHEM A, V101, P8395
BERDEN G, 1995, J CHEM PHYS, V103, P9596
BICKEL GA, 1989, J CHEM PHYS, V91, P6013
BORIN AC, 1999, J MOL STRUC-THEOCHEM, V464, P121
BROCKLEHURST B, 1974, SPECTROCHIM ACTA A, V30, P1807
BULSKA H, 1980, J AM CHEM SOC, V102, P3259
BULSKA H, 1984, J LUMIN, V29, P65
BYRNE JP, 1971, AUST J CHEM, V24, P1107
CALLIS PR, 1995, CHEM PHYS LETT, V244, P53
CHAPMAN CF, 1992, J PHYS CHEM-US, V96, P8430
CHOU PT, 1992, J PHYS CHEM-US, V96, P5203
DEMCHENKO AP, 1986, ULTRAVIOLET SPECTROS
EFTINK MR, 1991, FLUORESCENCE TECHNIQ
FENDER BJ, 1995, CHEM PHYS LETT, V239, P31
FENDER BJ, 1999, INT J QUANTUM CHEM, V72, P347
FUKE K, 1984, J PHYS CHEM-US, V88, P5840
FUKE K, 1989, J PHYS CHEM-US, V93, P614
FULSCHER MP, 1997, J AM CHEM SOC, V119, P6168
HAHN DK, 1997, J PHYS CHEM A, V101, P2686
HARRIGAN ET, 1973, CHEM PHYS LETT, V22, P29
HASSAN KH, 1989, J MOL SPECTROSC, V138, P398
HECKMAN RC, 1958, J MOL SPECTROSC, V2, P27
HUANG YH, 1996, J PHYS CHEM-US, V100, P4734
ILICH P, 1987, CAN J SPECTROSC, V32, P19
ILICH P, 1995, J MOL STRUCT, V354, P37
INGHAM KC, 1971, J AM CHEM SOC, V93, P5023
JALVISTE E, 1993, CHEM PHYS, V172, P325
KENDLER S, 1995, CHEM PHYS LETT, V242, P139
KIM SK, 1990, J PHYS CHEM-US, V94, P3531
LOUSTAUNEAU P, 1971, J CHIM PHYS PCB, V68, P1675
LYONS AL, 1978, J AM CHEM SOC, V100, P3177
MAKI I, 1981, B CHEM SOC JPN, V54, P8
MALMQVIST PA, 1989, CHEM PHYS LETT, V155, P189
MERCHAN M, 1999, RECENT ADV MULTIREFE, V4, P161
NEGRERIE M, 1990, J AM CHEM SOC, V112, P7419
NEGRERIE M, 1991, J PHYS CHEM-US, V95, P8663
NEGRERIE M, 1993, J PHYS CHEM-US, V97, P5046
NI T, 1989, J AM CHEM SOC, V111, P457
NODA M, 1984, B CHEM SOC JPN, V57, P2376
PERKAMPUS HH, 1992, UV VIS ATLAS ORGANIC
PIERLOOT K, 1995, THEOR CHIM ACTA, V90, P87
RICE JE, 1994, MULLIKEN VERSION 1 1
ROBEY MJ, 1975, PHOTOCHEM PHOTOBIOL, V21, P363
ROOS BO, 1995, QUANTUM MECH ELECT S, V357
ROOS BO, 1996, ADV CHEM PHYS, V93, P219
ROOS BO, 1996, J MOL STRUC-THEOCHEM, V388, P257
RUBIO M, 1999, MOL PHYS, V96, P603
SERRANOANDRES L, 1993, J PHYS CHEM-US, V97, P9360
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P185
SERRANOANDRES L, 1996, J PHYS CHEM-US, V100, P6484
SERRANOANDRES L, 1998, J CHEM PHYS, V108, P7202
SHUKLA MK, 1998, CHEM PHYS, V230, P187
SOBOLEWSKI AL, 1999, CHEM PHYS LETT, V315, P293
SONG PS, 1969, J AM CHEM SOC, V91, P4892
STRICKLAND EH, 1970, BIOCHEMISTRY-US, V9, P4914
SUAREZ ML, 1989, J AM CHEM SOC, V111, P6384
SWIDEREK P, 1994, J CHEM PHYS, V100, P70
TAYLOR CA, 1969, P NATL ACAD SCI USA, V63, P253
VELINO B, 1992, J MOL SPECTROSC, V152, P434
WERNER HJ, 1998, MOLPRO
WIDMARK PO, 1990, THEOR CHIM ACTA, V77, P291
WILKINSON F, 1977, J CHEM SOC FARAD T 2, V73, P222
WU JQ, 1996, J PHYS CHEM-US, V100, P11496
ZILBERG S, 1996, J PHYS CHEM-US, V100, P10869
ZUCLICH J, 1974, J AM CHEM SOC, V96, P710
NR 68
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD DEC 15
PY 2000
VL 262
IS 2-3
BP 267
EP 283
PG 17
SC Physics, Atomic, Molecular & Chemical
GA 380UN
UT ISI:000165722000006
ER
PT J
AU Takahata, Y
Chong, DP
TI Accurate density-functional calculation of core-electron binding
energies of some substituted benzenes
SO BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN
LA English
DT Article
ID ZETA BASIS-SET; RAY PHOTOELECTRON-SPECTROSCOPY; GAS; APPROXIMATION;
DERIVATIVES; PARAMETERS; SPECTRA; BORON
AB The core electron binding energies (CEBE's) of benzene, seven
monosubstituted benzenes (Ph-X) and one disubstituted benzene
(p-NH2-C6H4-NO2) were calculated using density-functional theory (DFT).
The unrestricted generalized transition-state (uGTS) model was
employed. The DeMon DFT program with a combined functional of Becke's
exchange (B88) with Perdew's correlation (P86) was used. The average
absolute deviation of the calculated CEBE's of the title compounds was
0.3 eV when the cc-pVDZ basis set was used. The "CEBE shift" of the
ring carbon in Ph-X was calculated while taking the CEBE on the ring
carbon in Ph-H as a reference. The thus-calculated CEBE shifts agree
with experiment within the value of the average absolute deviation, 0.1
eV. The signs and quantitative numerical values of the CEBE shifts are
very close to the corresponding Hammett sigma constants.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada.
RP Takahata, Y, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
BR-13083970 Campinas, SP, Brazil.
CR BECKE AD, 1988, PHYS REV A, V38, P3098
BROWN RS, 1980, CAN J CHEM, V58, P694
CAVIGLIASSO G, 1999, CAN J CHEM, V77, P24
CHAERTON M, 1987, PROG PHYS ORG CHEM, V16, P287
CHEN PC, 1995, J PHYS CHEM-US, V99, P15023
CHONG DP, 1995, CHEM PHYS LETT, V232, P486
CHONG DP, 1995, J CHEM PHYS, V103, P1842
CHONG DP, 1996, CHEM PHYS LETT, V249, P491
CLEMENTI E, 1963, J CHEM PHYS, V38, P2686
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
HAMMETT LP, 1937, J AM CHEM SOC, V59, P96
JANAK JF, 1978, PHYS REV B, V18, P7165
JOLLY WL, 1984, ATOMIC DATA NUCL DAT, V31, P434
KENDALL RA, 1992, J CHEM PHYS, V96, P6796
LINDBERG B, 1975, UUIP910
LINDBERG B, 1976, CHEM PHYS LETT, V40, P175
LISTER DG, 1974, J MOL STRUCT, V23, P253
MADELUNG O, 1987, LANDOLTBORNSTEIN NUM, V15
OHTA T, 1975, B CHEM SOC JPN, V48, P2017
PERDEW JP, 1986, PHYS REV B, V33, P8822
PULFER M, 1997, CHEM PHYS, V216, P91
SADOVA NI, 1976, RUSS J STRUCT CHEM, V17, P954
SAETHRE LJ, 1991, J PHYS ORG CHEM, V4, P629
SHISHKOV IF, 1984, RUSS J STRUCT CHEM, V25, P260
SIEGBAHN K, 1969, ESCA APPL FREE MOL, P104
SLATER JC, 1972, ADVANCES QUANTUM CHE, V6, P1
SLAUGHTER AR, 1983, CHEM PHYS LETT, V98, P531
SOHAR P, 1983, NUCL MAGNETIC RESONA, V2, P187
SPIESECKE H, 1961, J CHEM PHYS, V35, P731
STAMANT A, 1990, CHEM PHYS LETT, V169, P387
TAFT RW, 1987, PROG PHYS ORG CHEM, V16, P1
WILLIAMS AR, 1975, J CHEM PHYS, V63, P628
NR 32
TC 5
PU CHEMICAL SOC JAPAN
PI TOKYO
PA 1-5 KANDA-SURUGADAI CHIYODA-KU, TOKYO, 101, JAPAN
SN 0009-2673
J9 BULL CHEM SOC JPN
JI Bull. Chem. Soc. Jpn.
PD NOV
PY 2000
VL 73
IS 11
BP 2453
EP 2460
PG 8
SC Chemistry, Multidisciplinary
GA 380KR
UT ISI:000165701500004
ER
PT J
AU da Silva, RS
Gorelsky, SI
Dodsworth, ES
Tfouni, E
Lever, ABP
TI Synthesis, spectral and redox properties of tetraammine dioxolene
ruthenium complexes
SO JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
LA English
DT Review
ID TRANSITION-METAL COMPLEXES; QUINONE-RELATED LIGANDS; COMPACT EFFECTIVE
POTENTIALS; INDUCED VALENCE TAUTOMERISM; EFFECTIVE CORE POTENTIALS;
CHARGE-TRANSFER SPECTRA; EXPONENT BASIS-SETS; ELECTRON-TRANSFER;
DINUCLEAR COMPLEXES; CRYSTAL-STRUCTURES
AB A series of species [Ru-III(NH3)(4)(Cat-R)](n+) have been synthesized
where Cat-R is a catecholate dianion having the substituent R=CO2-,
CO2H, OMe or H. These so-called parent species were characterized by
their electronic spectra, FTIR, mass spectrum, cyclic voltammetry and
EPR. Controlled potential reduction yields
[Ru-II(NH3)(4)(Cat-R)]((n-1)+) while controlled potential oxidation
yields [Ru-II(NH3)(4)(Q-R)]((n+1)+) (Q-R=substituted quinone). Density
Functional Theory (DFT) was primarily used to explore the electronic
structures of these complexes. Application of the INDO semi-empirical
model proved less useful. Time dependent density functional response
theory was used to calculate the electronic spectra of the species with
R=H. The electronic spectra of the closed shell species are well
reproduced by the calculations. The physical properties of these
complexes indicate a charge delocalized system reminiscent of a
delocalized organic molecule. The simple valence descriptions noted
above are convenient to use but do not reflect the actual electronic
structure. The electronic spectra of the parent species are temperature
dependent. The visible region charge transfer band shifts by about 1500
cm(-1) to higher energy in acidic media at liquid nitrogen temperature.
This is interpreted in terms of solvent effects rather than valence
tautomerism. The electrochemical properties of [Ru-III(NH3)(4)(Cat-R)],
in aqueous solution, reveal the first example of a reversible and
stable Ru-quinone species in that medium. The pK(a) values for several
dioxolene species, with R=CO2-, are derived from a Pourbaix diagram.
C1 York Univ, Dept Chem, N York, ON M3J 1P3, Canada.
Univ Sao Paulo, Fac Ciencias Farmaceut Ribeirao Preto, BR-14040901 Ribeirao Preto, SP, Brazil.
Univ Sao Paulo, Dept Quim, Fac Filosofia Ciencias & Letras Ribeirao Pret, BR-14040901 Ribeirao Preto, SP, Brazil.
RP Lever, ABP, York Univ, Dept Chem, 4700 Keele St, N York, ON M3J 1P3,
Canada.
CR ADAMS DM, 1993, ANGEW CHEM INT EDIT, V32, P880
ADAMS DM, 1993, ANGEW CHEM, V105, P954
ADAMS DM, 1993, J AM CHEM SOC, V115, P8221
ADAMS DM, 1995, ANGEW CHEM INT EDIT, V34, P1481
ADAMS DM, 1996, J AM CHEM SOC, V118, P11515
ADAMS DM, 1997, INORG CHEM, V36, P3966
ALLEN AD, 1967, J AM CHEM SOC, V89, P5595
ALLEN AD, 1968, CAN J CHEM, V46, P469
ATTIA AS, 1994, INORG CHIM ACTA, V226, P91
ATTIA AS, 1995, INORG CHEM, V34, P1172
ATTIA AS, 1997, INORG CHEM, V36, P6184
ATTIA AS, 1998, INORG CHEM, V37, P3051
AUBURN PR, 1990, INORG CHEM, V29, P2551
AUBURN PR, 1991, INORG CHEM, V30, P3502
BACHRACH SM, 1994, REV COMPUTATIONAL CH, V5, P177
BAG N, 1990, J CHEM SOC DA, P1557
BARTHRAM AM, 1998, CHEM COMMUN 1221, P2695
BARTHRAM AM, 1998, INORG CHIM ACTA, V267, P1
BEATTIE JK, 1977, J CHEM SOC DA, P1121
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENELLI C, 1989, INORG CHIM ACTA, V163, P99
BERATAN DN, 1989, MOL ELECTRONICS BIOS, P353
BHATTACHARYA S, 1991, INORG CHEM, V30, P1511
BIANCHINI C, 1987, INORG CHEM, V26, P3683
BODINI ME, 1983, INORG CHEM, V22, P126
BOTTOMLEY F, 1972, J CHEM SOC DA, P2148
BOTTOMLEY F, 1974, J CHEM SOC DA, P1600
BRADBURY JR, 1986, INORG CHEM, V25, P4416
BROO A, 1996, INT J QUANTUM CHEM, P1331
BROWN DG, 1976, INORG NUCL CHEM LETT, V12, P399
BROWN DG, 1979, Z NATURFORSCH B, V34, P712
BUCHANAN RM, 1978, J AM CHEM SOC, V100, P7894
BUCHANAN RM, 1983, INORG CHEM, V22, P2552
CANESCHI A, 1998, ANGEW CHEM INT EDIT, V37, P3005
CARUGO O, 1992, J CHEM SOC DA, P837
CASIDA ME, 1995, RECENT ADV DENSITY 1, P155
CASIDA ME, 1996, RECENT DEV APPL MODE, V4
CASIDA ME, 1998, J CHEM PHYS, V108, P4439
CASS ME, 1986, INORG CHEM, V25, P3962
CHAKRAVARTY AR, 1981, INORG CHEM, V20, P3138
CHENG CP, 1988, J ORGANOMET CHEM, V249, P375
CHOU MH, 1994, INORG CHEM, V33, P1674
CHRISTENSEN PA, 1993, TECHNIQUES MECH ELEC, P27
COHEN AJ, 2000, CHEM PHYS LETT, V316, P160
CRUTCHLEY RJ, 1990, INORG CHEM, V29, P2576
CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
DACUNHA CJ, 1996, INORG CHIM ACTA, V242, P293
DACUNHA CJ, 1999, INORG CHEM, V38, P5399
DEI A, 1993, INORG CHEM, V32, P5730
DODSWORTH ES, 1990, CHEM PHYS LETT, V172, P151
DUNNING TH, 1977, METHODS ELECT STRUCT, V2
EBADI M, 1999, INORG CHEM, V38, P467
FLETCHER NC, 1999, J CHEM SOC DALT 0907, P2999
FORD PC, 1970, COORDIN CHEM REV, V5, P75
FRISCH GW, 1998, GAUSSIAN 98
FUENTEALBA P, 1982, CHEM PHYS LETT, V89, P418
FUENTEALBA P, 1983, J PHYS B ATOM MOL PH, V16, P1323
FUENTEALBA P, 1985, J PHYS B ATOM MOL PH, V18, P1287
FUJITA J, 1956, J CHEM SOC, P3295
GLEU K, 1935, Z ANORG ALLG CHEM, V237, P335
GODBOUT N, 1992, CAN J CHEM, V70, P560
GORELSKY SI, 1998, COORDIN CHEM REV, V174, P469
GORELSKY SI, 2000, MOMIX PROGRAM
GRANIFO J, 1996, J CHEM SOC DALT 1207, P4369
GRESS ME, 1981, INORG CHEM, V20, P1522
GRIFFITH WP, 1966, J CHEM SOC A, P899
GRIFFITH WP, 1986, J CHEM SOC DA, P1125
GUPTA HK, 1987, POLYHEDRON, V6, P1009
HAGA M, 1986, INORG CHEM, V25, P447
HAGA M, 1986, J AM CHEM SOC, V108, P7413
HAMBLEY TW, 1986, INORG CHEM, V25, P4553
HANSCH C, 1991, CHEM REV, V91, P165
HARTL F, 1990, INORG CHEM, V29, P1073
HARTL F, 1991, INORG CHEM, V30, P2402
HAY PJ, 1985, J CHEM PHYS, V82, P270
HAY PJ, 1985, J CHEM PHYS, V82, P299
HILL PL, 1997, INORG CHEM, V36, P5655
HUSH NS, 1980, CHEM PHYS LETT, V69, P128
JORGENSON AL, 1998, J ORGANOMET CHEM, V563, P1
KABACHNIK MI, 1984, RUSS CHEM REV, V5, P37
KAIM W, 1987, COORDIN CHEM REV, V76, P187
KESSEL SL, 1980, INORG CHEM, V19, P1170
KEYES TE, 1998, INORG CHEM, V37, P5925
KIRKWOOD JG, 1934, J CHEM PHYS, V2, P351
KONDO M, 1998, J AM CHEM SOC, V120, P455
KROGHJESPERSEN K, 1987, J AM CHEM SOC, V109, P7025
KURIHARA M, 1998, B CHEM SOC JPN, V71, P867
KURIHARA M, 1998, B CHEM SOC JPN, V71, C867
LAHIRI GK, 1987, INORG CHEM, V26, P3359
LAHIRI GK, 1987, INORG CHEM, V26, P4324
LEE C, 1988, PHYS REV B, V37, P785
LEVER ABP, 1984, INORGANIC ELECT SPEC, P205
LEVER ABP, 1988, J AM CHEM SOC, V110, P8076
LEVER ABP, 1993, COORDIN CHEM REV, V125, P317
LYNCH MW, 1981, J AM CHEM SOC, V103, P3961
LYNCH MW, 1982, J AM CHEM SOC, V104, P6982
LYNCH MW, 1984, J AM CHEM SOC, V106, P2041
MAGERS KD, 1980, INORG CHEM, V19, P492
MARCH FC, 1971, CAN J CHEM, V49, P3590
MASUI H, 1991, INORG CHEM, V30, P2402
MASUI H, 1993, INORG CHEM, V32, P258
MASUI H, 2000, INORG CHEM, V39, P141
MATSUBARA T, 1976, INORG CHEM, V15, P1107
MATSUMOTO K, 1996, J AM CHEM SOC, V118, P3597
METCALFE RA, 1996, INORG CHEM, V35, P7741
METCALFE RA, 1997, INORG CHEM, V36, P4762
METCALFE RA, 1999, J CHEM SOC DALTON, P2653
MITRA KN, 1998, CHEM COMMUN 0821, P1685
MITRA KN, 1998, J CHEM SOC DALT 0907, P2901
MURAKAMI Y, 1963, B CHEM SOC JPN, V36, P669
NAKAMOTO K, 1986, INFRARED RAMAN SPECT, P191
NICHOLSON RS, 1964, ANAL CHEM, V36, P706
OHYOSHI A, 1979, B CHEM SOC JPN, V52, P3105
PAVANIN LA, 1985, INORG CHEM, V24, P4444
PEARL GM, 1999, J AM CHEM SOC, V121, P399
PELL SD, 1984, INORG CHEM, V23, P385
PIERPONT CG, 1981, COORDIN CHEM REV, V38, P45
PIERPONT CG, 1988, PURE APPL CHEM, V60, P1331
PIERPONT CG, 1995, INORG CHEM, V34, P4281
RAMADAN RM, 1999, TRANSIT METAL CHEM, V24, P193
RICHARDSON DE, 1979, INORG CHEM, V18, P2216
RIEGER PH, 1994, COORDIN CHEM REV, V135, P203
ROBINSON EA, 1999, INORG CHEM, V38, P4128
ROUX C, 1996, INORG CHEM, V35, P2846
RUIZ D, 1998, CHEM COMMUN, P208
RYBA O, 1965, COLLECT CZECH CHEM C, V30, P2157
RYBA O, 1968, COLLECT CZECH CHEM C, V33, P26
SHIMANOUCHI T, 1964, INORG CHEM, V3, P1805
SHIN YK, 1996, J PHYS CHEM-US, V100, P8157
SHIN YK, 1997, INORG CHEM, V36, P3190
SHUKLA AD, 1999, INORG CHIM ACTA, V285, P89
SILVA RS, 1995, INORG CHIM ACTA, V235, P427
SOFEN SR, 1979, INORG CHEM, V18, P234
STALLINGS MD, 1981, INORG CHEM, V20, P2655
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1992, CAN J CHEM, V70, P612
STOLL H, 1984, J CHEM PHYS, V81, P2732
STORRIER GD, 1998, J CHEM SOC DALT 0421, P1351
STORRIER GD, 1999, INORG CHEM, V38, P559
STRATMANN RE, 1998, J CHEM PHYS, V109, P8218
STUFKENS DJ, 1988, INORG CHEM, V27, P953
STYNES HC, 1971, INORG CHEM, V10, P2304
SZABO A, 1996, MODERN QUANTUM CHEM, P85
SZYMANSKI HA, 1967, INTERPRETED INFRARED, V3, P23
THOMPSON JS, 1985, INORG CHEM, V24, P3167
TREITEL IM, 1969, J AM CHEM SOC, V91, P6512
VETTER KJ, 1967, ELECTROCHEMICAL KINE, P483
VONSZENTPALY L, 1982, CHEM PHYS LETT, V93, P555
WADT WR, 1985, J CHEM PHYS, V82, P284
WILSON HW, 1974, SPECTROCHIM ACTA A, V30, P2141
WISHART JF, 1986, INORG CHEM, V25, P3318
WONG MW, 1991, J AM CHEM SOC, V113, P4776
WONG MW, 1991, J CHEM PHYS, V95, P8991
WONG MW, 1992, J AM CHEM SOC, V114, P1645
WONG MW, 1992, J AM CHEM SOC, V114, P523
ZENG J, 1995, J PHYS CHEM-US, V99, P10459
ZENG J, 1996, J AM CHEM SOC, V118, P2059
ZENG J, 1996, J PHYS CHEM-US, V100, P19292
ZERNER MC, 1998, ZINDO PROGRAM VERSIO
NR 159
TC 12
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1470-479X
J9 J CHEM SOC DALTON TRANS
JI J. Chem. Soc.-Dalton Trans.
PY 2000
IS 22
BP 4078
EP 4088
PG 11
SC Chemistry, Inorganic & Nuclear
GA 374EC
UT ISI:000165330600019
ER
PT J
AU Levin, Y
TI Crystallization of hard spheres under gravity
SO PHYSICA A
LA English
DT Article
ID DENSITY FUNCTIONAL THEORY
AB We present a simple argument to account for crystallization of hard
spheres under the action of a gravitational field. The paper attempts
to bridge the gap between two communities of scientists, one working on
granular materials and the other on inhomogeneous liquid state theory.
(C) 2000 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
RP Levin, Y, Univ Fed Rio Grande Sul, Inst Fis, Caixa Postal 15051,
BR-91501970 Porto Alegre, RS, Brazil.
CR ALDER BJ, 1957, J CHEM PHYS, V27, P1208
BAUS M, 1985, MOL PHYS, V55, P653
BIBEN T, 1993, EUROPHYS LETT, V71, P665
CARNAHAN NF, 1969, J CHEM PHYS, V51, P635
CHANDLER D, UNPUB
CLEMENT E, 1991, EUROPHYS LETT, V16, P133
ENSKOG D, 1922, VETENSKAPSAKED HANDL, V63, P5
HAYAKAWA H, 1997, PHYS REV LETT, V78, P2764
HONG DC, 1999, PHYSICA A, V271, P192
NORDHOLM S, 1980, AUST J CHEM, V33, P2139
PERRIN J, 1910, J PHYSIQUE, V9, P5
QUINN PV, CONDMAT0005196
RAMAKRISHNAN TV, 1979, PHYS REV B, V19, P2775
SELLITTO M, UNPUB
TARAZONA P, 1984, MOL PHYS, V52, P81
TARAZONA P, 1985, PHYS REV A, V31, P2672
WOLF P, 1997, FRICTION ARCHING CON
NR 17
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD NOV 15
PY 2000
VL 287
IS 1-2
BP 100
EP 104
PG 5
SC Physics, Multidisciplinary
GA 372HE
UT ISI:000165227600007
ER
PT J
AU Dos Santos, HF
De Oliveira, LFC
Dantas, SO
Santos, PS
De Almeida, WB
TI Quantum mechanical investigation of the tautomerism in the azo dye
Sudan III
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE tautomerism; Sudan III bis-azo; ab initio (HF and MP2)
ID RAMAN EXCITATION PROFILES; MOLECULAR-ORBITAL METHODS;
DIFFERENTIAL-OVERLAP TECHNIQUE; GAUSSIAN-TYPE BASIS; TRANS-AZOBENZENE;
BASIS-SETS; AB-INITIO; CONFORMATIONAL-ANALYSIS; INTERMEDIATE NEGLECT;
ELECTRON CORRELATION
AB The tautomerism in Sudan ill bis-azo dye has been analyzed using ab
initio Hartee-Fock [HF] and second-order Moller-Plesset perturbatim
theory [MP2] and density functional (B3LYP) methods. Gas-phase and
solution calculations were performed to investigate the solvent effect
on the azo (OH) --> hydrazone (NH) tautomeric equilibrium. The azo (OH)
tautomer was found to be preferred in gas phase at the HF level of
theory. The inclusion of the electronic correlation (MP2) shifted the
equilibrium toward the hydrazone (NH) form. The NH isomer was also
found to be more favorable in the gas phase according to the B3LYP
results. In solution the equilibrium is shifted toward the NH tautomer
as the dielectric constant of the medium increases. The energy barrier
for the intramolecular proton transference was calculated and the value
found suggested a strong hydrogen bond. The B3LYP and MP2 activation
Gibbs free energies were very close and much lower than the HF value.
The ultraviolet/visible electronic spectra for the minima and
transition state (TS) structures were calculated and compared with the
experimental data. The theoretical band positions obtained considering
the TS geometry were found to best agree with the experimental data.
(C) 2000 John Wiley & Sons, Inc.
C1 Univ Fed Juiz de Fora, NEQC, Dept Quim, Inst Ciencias Exatas, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Juiz de Fora, NEEM, Dept Quim, Inst Ciencias Exatas, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Juiz de Fora, Inst Ciencias Exatas, Dept Fis, Juiz De Fora, MG, Brazil.
Univ Sao Paulo, Inst Quim, Lab Expectroscopia Mol, BR-05508 Sao Paulo, Brazil.
Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Quim, Belo Horizonte, MG, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, NEQC, Dept Quim, Inst Ciencias
Exatas, BR-36036330 Juiz De Fora, MG, Brazil.
CR ARMSTRONG DR, 1995, J PHYS CHEM-US, V99, P17825
BARNES AJ, 1985, SPECTROCHIM ACTA A, V41, P629
BASTIANSEN O, 1949, ACTA CHEM SCAND, V3, P408
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BELL S, 1998, J RAMAN SPECTROSC, V29, P447
BERSHTEIN IY, 1972, RUSS CHEM REV, V41, P97
BERTOLASI V, 1991, J AM CHEM SOC, V113, P4917
BERTOLASI V, 1993, J CHEM SOC P2, V2, P2223
BERTOLASI V, 1994, ACTA CRYSTALLOGR B 5, V50, P617
BERTOLASI V, 1994, NEW J CHEM, V18, P251
BERTOLASI V, 1995, ACTA CRYSTALLOGR B 6, V51, P1004
BIANCALANA A, 1992, J RAMAN SPECTROSC, V23, P155
BIANCALANA A, 1993, J RAMAN SPECTROSC, V24, P43
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BIRCH EJ, 1998, J AGR FOOD CHEM, V46, P5332
BISWAS N, 1995, CHEM PHYS LETT, V236, P24
BISWAS N, 1997, J PHYS CHEM A, V101, P5555
BOUWSTRA JA, 1983, ACTA CRYSTALLOGR C, V39, P1121
CATALIOTTI RS, 1985, J RAMAN SPECTROSC, V16, P251
CATALIOTTI RS, 1985, J RAMAN SPECTROSC, V16, P258
CLARK RJH, 1991, ADV MAT SCI SPECTROS
DEALMEIDA WB, 1998, J CHEM SOC DA, V15, P2531
DEALMEIDA WB, 1998, J PHARM SCI, V87, P1101
DEOLIVEIRA LFC, UNPUB
DEOLIVEIRA LFC, 1997, J RAMAN SPECTROSC, V28, P53
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DOBBS KD, 1987, J COMPUT CHEM, V8, P880
DOSSANTOS HF, IN PRESS THEOCHEM
DOSSANTOS HF, UNPUB QUIM NOVA
DOSSANTOS HF, 1998, J PHARM SCI, V87, P190
DOSSANTOS HF, 1998, THEOR CHEM ACC, V99, P301
EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FUJITA S, 1988, CANCER RES, V48, P254
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GRANGER CT, 1969, ACTA CRYSTALLOGR B, V25, P1962
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HARIHARAN PC, 1974, MOL PHYS, V27, P209
HEAD JD, 1986, CHEM PHYS LETT, V131, P359
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOUBEN JL, 1982, J RAMAN SPECTROSC, V13, P15
KIM Y, 1999, J PHYS CHEM A, V103, P6632
KOLLMAN P, 1993, CHEM REV, V93, P2395
KUDER JE, 1972, TETRAHEDRON, V28, P1973
LORRIAUX JL, 1979, J RAMAN SPECTROSC, V8, P81
LUNAK S, 1994, CHEM PHYS, V184, P255
MOLLER C, 1934, PHYS REV, V46, P618
MONAHAN AR, 1972, CHEM PHYS LETT, V17, P510
OLIVIERI AC, 1989, J AM CHEM SOC, V111, P5525
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
PAVA RP, 1987, J CHEM PHYS, V87, P3758
POULAIN N, 1998, J POLYM SCI POL CHEM, V36, P3035
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
SAEBO S, 1989, CHEM PHYS LETT, V154, P83
SOURISSEAU C, 1994, J RAMAN SPECTROSC, V25, P477
SOUZA JD, UNPUB
SUZUKI H, 1967, ELECT ABSORPTION SPE, CH23
TECKLENBURG MMJ, 1997, J RAMAN SPECTROSC, V28, P755
TOMASI J, 1994, CHEM REV, V94, P2027
TRAETTEBERG M, 1977, J MOL STRUCT, V39, P231
VARGA Z, 1998, PATHOL INT, V48, P912
ZERNER MC, 1980, J AM CHEM SOC, V102, P589
NR 63
TC 7
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD NOV-DEC
PY 2000
VL 80
IS 4-5
BP 1076
EP 1086
PG 11
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 370DP
UT ISI:000165108300056
ER
PT J
AU de Moraes, PRP
Linnert, HV
Aschi, M
Riveros, JM
TI Experimental and theoretical characterization of long-lived triplet
state CH3CH2S+ cations
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID ION-MOLECULE REACTIONS; POTENTIAL-ENERGY SURFACES; GAS-PHASE REACTIONS;
G2 AB-INITIO; NEUTRALIZATION-REIONIZATION; METHOXYMETHYL CATION;
FRAGMENTATION PROCESSES; IONIZATION ENERGIES; UNIMOLECULAR DECAY;
PROTON AFFINITIES
AB Gas-phase [C2H5S](+) ions obtained by electron impact ionization from
CH3SC2H5 at 13 eV undergo three distinct low-pressure ion/molecule
reactions with the parent neutral: proton transfer, charge transfer,
and hydride abstraction. The kinetics of these reactions studied by
FT-ICR techniques clearly suggests the [C2H5S](+) species to be a
mixture of isomeric ions. While proton transfer and hydride abstraction
are consistent with CH3CHSH+ and CH3SCH2+ reagent ions, the observed
charge transfer strongly argues for the presence of thioethoxy cation,
CH3CH2S+, predicted to be stable only in the triplet state. Charge
transfer reactions only occur with substrates having an IE below 8.8 eV
and thus yield an upper limit for he recombination energy of the
CH3CH2S+ ions. Studies using CD3SC2H5 show that charge-transfer
reactions are promoted by cations originating from a sulfur-methyl
carbon bond cleavage. Ab initio calculations at several levels of
theory predict that CH3CH2S+ ions are only stable in the triplet state.
Calculations along the fragmentation pathway of the molecular ion
reveal the tendency to generate triplet CH3CH2S+ ions upon cleavage of
the sulfur-methyl carbon bond. Calculations were also carried out to
determine the lifetime of triplet CH3CH2S+ using nonadiabatic RRKM
theory. The exothermic or near thermoneutral spin-forbidden
unimolecular isomerizations and dissociations were first characterized
at different levels of theory, and the minimum energy crossing points
(MECPs) for all the channels were identified at the CCSD(T) level. The
probability for surface hopping was then estimated from the spin-orbit
matrix elements. The calculated unimolecular dissociation rate
constants predict that triplet CH3CH2S+ ions with less than 10 kcal
mol(-1) of internal energy and at any level of rotational excitation
should be long-lived, and strongly support the experimental
observations.
C1 Univ Sao Paulo, Inst Chem, BR-05513970 Sao Paulo, Brazil.
Univ Rome La Sapienza, Dipartimento Chim, I-00185 Rome, Italy.
RP Riveros, JM, Univ Sao Paulo, Inst Chem, Caisa Postal 26077, BR-05513970
Sao Paulo, Brazil.
CR APELOIG Y, 1988, J CHEM SOC P2, P625
ASCHI M, 1998, CHEM COMMUN 0307, P531
ASCHI M, 1999, J CHEM PHYS, V111, P6759
AUDIER HE, 1994, ORG MASS SPECTROM, V29, P176
AUDIER HE, 1997, J MASS SPECTROM, V32, P201
AUE DH, 1980, J AM CHEM SOC, V102, P5151
BAKER J, 1993, CHEM PHYS LETT, V213, P257
BARRIENTOS C, 1999, CHEM PHYS LETT, V306, P168
BORTOLINI O, 1999, TETRAHEDRON LETT, P6073
BRODBELT J, 1991, ANAL CHEM, V63, P1205
BROER WJ, 1979, ORG MASS SPECTROM, V14, P543
BRONSTRUP M, 1998, EUR J INORG CHEM OCT, P1529
BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR, P276
BUTKOVSKAYA NI, 1999, J PHYS CHEM A, V103, P6921
BUTLER JJ, 1983, J AM CHEM SOC, V105, P3451
CACACE F, 1999, SCIENCE, V285, P81
CASERIO MC, 1982, J ORG CHEM, V47, P2940
CHEUNG YS, 1998, J ELECTRON SPECTROSC, V97, P115
CHIU SW, 1997, THEOCHEM-J MOL STRUC, V397, P87
CHIU SW, 1998, THEOCHEM-J MOL STRUC, V452, P97
CHIU SW, 1999, J MOL STRUC-THEOCHEM, V490, P109
CURTISS LA, 1992, J CHEM PHYS, V97, P6766
CURTISS LA, 1995, J CHEM PHYS, V102, P3292
DARGEL TK, 1999, INT J MASS SPECTROM, V187, P925
DEMARE GR, 1983, B SOC CHIM BELG, V92, P553
DUNBAR RC, 1973, J AM CHEM SOC, V95, P7200
FILSAK G, 1999, J MASS SPECTROM, V34, P601
FLAMMANG R, 1994, J AM CHEM SOC, V116, P2005
FLAMMANG R, 1999, CHEM PHYS LETT, V300, P183
FREITAS MA, 1998, INT J MASS SPECTROM, V175, P107
FRISCH MJ, 1995, GAUSSIAN 94
GAUMANN T, 1990, HELV CHIM ACTA, V73, P2218
GAUMANN T, 1991, J AM SOC MASS SPECTR, V2, P372
GRIFFITHS WJ, 1989, ORG MASS SPECTROM, V24, P849
HARVEY JN, 1998, THEOR CHEM ACC, V99, P95
HASE W, 1996, UNIMOLECULAR REACTIO
HUNTER EPL, 1998, J PHYS CHEM REF DATA, V27, P413
INGEMANN S, COMMUNICATION
IRIKURA KK, 1999, J AM CHEM SOC, V121, P7689
KENDALL RA, 1992, J CHEM PHYS, V96, P6796
KEYES BG, 1968, J AM CHEM SOC, V90, P5671
KINTER MT, 1986, J AM CHEM SOC, V108, P1797
KOGA N, 1985, CHEM PHYS LETT, V119, P371
KOGA N, 1994, CHEM PHYS LETT, V223, P269
KOSEKI S, 1995, J PHYS CHEM-US, V99, P12764
KUHNS DW, 1994, J PHYS CHEM-US, V98, P4845
LORQUET JC, 1988, J PHYS CHEM-US, V92, P4778
MA ZX, 1993, CHEM PHYS LETT, V213, P250
MORGON NH, 1996, J PHYS CHEM-US, V100, P18048
MORGON NH, 1997, J AM CHEM SOC, V119, P1708
NAKAMURA H, 1997, ANNU REV PHYS CHEM, V48, P299
NIBBERING NMM, 1993, CHEM SULFUR CONTAINI, P293
NIKITIN EE, 1996, ATOMIC MOL OPTICAL P, P561
NOBES RH, 1984, J AM CHEM SOC, V106, P2774
OKADA S, 1987, J AM CHEM SOC, V109, P295
PAU JK, 1978, J AM CHEM SOC, V100, P3838
POLCE MJ, 1995, J AM SOC MASS SPECTR, V6, P1030
RIVEROS JM, 1991, RAPID COMMUN MASS SP, V5, P387
SADILEK M, 1999, INT J MASS SPECTROM, V185, P639
SADILEK M, 1999, INT J MASS SPECTROM, V187, P639
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1910
SENA M, 1997, J PHYS CHEM A, V101, P4384
SHIU SW, 1999, J MOL STRUCT THEOCHE, V468, P21
SMITH D, 1992, CHEM REV, V92, P1473
STALEY RH, 1974, J AM CHEM SOC, V96, P1260
SUMATHI R, 1999, J PHYS CHEM A, V103, P772
TOMER KB, 1973, J AM CHEM SOC, V95, P5335
VANAMSTERDAM MW, 1993, ORG MASS SPECTROM, V28, P30
VANDEGRAAF B, 1977, J AM CHEM SOC, V99, P6806
VANDEGRAAF B, 1977, J AM CHEM SOC, V99, P6810
VANDEGRAAF B, 1980, ADV MASS SPECTROM A, V8, P678
WILSON PF, 1994, INT J MASS SPECTROM, V132, P149
YARKONY DR, 1995, MODERN ELECT STRUCTU, P642
YARKONY DR, 1996, ATOMIC MOL OPTICAL P, P357
ZAPPEY HW, 1992, INT J MASS SPECTROM, V115, P193
ZAPPEY HW, 1992, J AM SOC MASS SPECTR, V3, P515
NR 76
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 18
PY 2000
VL 122
IS 41
BP 10133
EP 10142
PG 10
SC Chemistry, Multidisciplinary
GA 368FT
UT ISI:000090107600031
ER
PT J
AU De Oliveira, MA
Duarte, HA
Pernaut, JM
De Almeida, WB
TI Energy gaps of alpha,alpha '-substituted oligothiophenes from
semiempirical, ab initio, and density functional methods
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR-ORBITAL THEORY; EXTENDED BASIS-SETS; ORGANOMETALLIC
COMPOUNDS; ELECTRONIC-STRUCTURE; THIOPHENE OLIGOMERS;
VIBRATIONAL-SPECTRA; BIPOLARONIC DEFECT; TRANSITION-METALS;
2,2'-BITHIOPHENE; POLYTHIOPHENE
AB Energy gaps have been estimated for -OMe and -NO2
alpha,alpha'-substituted oligothiophenes up to six monomers using
semiempirical, Hartree-Fock and density functional methods. Scaled
values calculated using noncorrelated methods are in good agreement
with the experimental values, and so were nonscaled estimates predicted
by density functional methods. Error bars are ca. 0.2 eV for all II
oligothiophenes studied. The influence of the quality of the basis set
on the energy estimates is discussed. The discrepancy observed for the
-OMe- and -NO2-substituted sexithiophene result with respect to the
experimental value is discussed and has been attributed to a charge
transfer in the molecule. The Delta SCF approach has been found to be
an alternative way to estimate energy gaps for molecular systems where
Koopmans' theorem may not provide good results. Implications for
predictions of HOMO-LUMO gaps of pi-conjugated systems are discussed
and analyzed in terms of designing new materials with controlled
properties.
C1 Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol, BR-31270 Belo Horizonte, MG, Brazil.
Univ Fed Minas Gerais, ICEx, Lab Novos Mat, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, UFJF, ICE, Dept Quim, Campus Univ, Juiz de Fora, MG,
Brazil.
CR BECKE AD, 1993, J CHEM PHYS, V98, P1372
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BECKER RS, 1995, PURE APPL CHEM, V67, P9
BINNING RC, 1990, J COMPUT CHEM, V11, P1206
BOLIVARMARINEZ LE, 1996, J PHYS CHEM-US, V100, P11029
BREAS J, 1985, J CHEM PHYS, V82, P3811
BREDAS JL, 1984, PHYS REV B, V29, P6761
BREDAS JL, 1985, J CHEM PHYS, V82, P3808
BREDAS JL, 1991, CONJUGATED POLYM NOV
CASIDA ME, 1996, DEMON SOFTWARE DEMON
DEOLIVEIRA MA, 2000, PHYS CHEM CHEM PHYS, V2, P3373
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DIRAC PAM, 1930, P CAMB PHILOS SOC, V26, P376
DOBBS KD, 1986, J COMPUT CHEM, V7, P359
DOBBS KD, 1987, J COMPUT CHEM, V8, P861
DOBBS KD, 1987, J COMPUT CHEM, V8, P880
DUARTE HA, IN PRESS J CHEM PHYS
EHRENDORFER C, 1994, J PHYS CHEM-US, V98, P7492
EHRENDORFER C, 1995, J MOL STRUCT, V349, P417
EHRENDORFER C, 1995, J PHYS CHEM-US, V99, P5341
EHRENDORFER C, 1995, VIB SPECTROSC, V8, P293
FICHOU D, 1990, SYNTHETIC MET, V39, P243
FORNI A, 1997, J PHYS CHEM A, V101, P4437
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GARCIA P, 1993, J PHYS CHEM-US, V97, P513
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GUNNARSSON O, 1976, PHYS REV B, V13, P4274
IRLE S, 1995, J CHEM PHYS, V98, P7492
JANAK JF, 1978, PHYS REV B, V18, P7165
KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
KOFRANEK M, 1992, J MOL STRUCT THEOCHE, V259, P181
LAHTI PM, 1987, MACROMOLECULES, V20, P2023
LEE C, 1988, PHYS REV B, V37, P785
LEVY M, 1999, PHYS REV A, V59, P1687
MULLEN K, 1999, ELECT MAT OLIGOMER A
NALWA HS, 1997, ORGANIC CONDUCTIVE M
ORTI E, 1995, J PHYS CHEM-US, V99, P4955
PERNAUT JM, 1994, J CHIM PHYS PCB, V91, P433
QUATTROCCHI C, 1993, CHEM PHYS LETT, V208, P120
RONCALI J, 1992, CHEM REV, V92, P711
SAMDAL S, 1993, SYNTHETIC MET, V59, P259
SCOTHEIM TA, 1998, HDB CONDUCTING POLYM
SLATER JC, 1951, PHYS REV, V81, P385
SLATER JC, 1974, QUANTUM THEORY MOL S, V4
STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
STEWART JJP, MOPAC 93 MANUAL
VIRUELA PM, 1998, INT J QUANTUM CHEM, V70, P303
VOSKO SH, 1980, CAN J PHYS, V58, P1200
NR 48
TC 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 7
PY 2000
VL 104
IS 35
BP 8256
EP 8262
PG 7
SC Chemistry, Physical
GA 359HC
UT ISI:000089604600013
ER
PT J
AU Tormena, CF
Rittner, R
Abraham, RJ
Basso, EA
Pontes, RM
TI Conformational analysis. Part 33. An NMR, solvation and theoretical
investigation of conformational isomerism in
N,N-dimethylfluoroacetamide and N,N-dimethyl-alpha-fluoropropionamide
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID INTERNAL-ROTATION; VIBRATIONAL ASSIGNMENT; ABINITIO CALCULATIONS;
BARRIERS; STABILITY; CHLORIDE; FLUOROACETONE; SPECTRA; RAMAN
AB The solvent and temperature dependence of the H-1 and C-13 NMR spectra
of N,N-dimethylfluoroacetamide (DMFA) and
N,N-dimethyl-alpha-fluoropropionamide (DMFP) are reported and the
(5)J(CF), (1)J(CF) and (4)J(CF) couplings analysed by solvation theory.
Density function theory (DFT) at the B3LYP/6-311+G(d,p) level with ZPE
(zero point energy) corrections was used to obtain the conformer
geometries. In DMFA, the DFT method gave only two minima for the cis
(F-C-C=O, 0 degrees) and gauche (F-C-C=O, 140.6 degrees) rotamers. The
trans rotamer was not a minimum in the energy surface. Assuming only
the cis and gauche forms, the observed couplings when analysed by
solvation theory gave the energy difference (E-cis - E-g) of 2.5 kcal
mol(-1) in the vapour phase, (cf. the ab initio value of 2.3 kcal
mol(-1)) decreasing to 0.87 kcal mol(-1) in CCl4 and to -1.29 kcal
mol(-1) in DMSO. In DMFP the ab initio calculations gave three minima;
the cis (F-C-C=O, 30.4 degrees), gauche-1 (F-C-C=O, 144.7 degrees) and
gauche-2 (F-C-C=O, -124.1 degrees) rotamers with (E-cis - E-g2) equal
to 2.5 kcal mol(-1) and (E-g1 - E-g2) equal to 0.3 kcal mol(-1). The
observed couplings were analysed by solvation theory assuming one
"average" gauche conformer to give (E-cis - E-g(AV)) equal to 2.1 kcal
mol(-1) in the vapour phase, decreasing to 0.83 kcal mol(-1) in CCl4
and to -1.11 kcal mol(-1) in DMSO.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
Univ Estadual Maringa, Dept Quim, BR-87020900 Maringa, Parana, Brazil.
RP Rittner, R, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
BR-13083970 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
ABRAMSON KH, 1966, CAN J CHEM, V44, P1685
BANKS JW, 1999, J CHEM SOC PERK NOV, P2409
DURIG JR, 1989, J CHEM PHYS, V90, P6840
DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
DURIG JR, 1991, J MOL STRUCT, V242, P179
DURIG JR, 1991, J RAMAN SPECTROSC, V22, P141
EWING DF, 1972, J CHEM SOC P2, P701
FORESMAN JB, 1993, EXPLORING CHEM ELECT
KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P3572
KLAPSTEIN D, 1988, CAN J SPECTROSC, V33, P161
PHAN HV, 1993, SPECTROCHIM ACTA A, V49, P1967
PITTMAN CU, 1980, MACROMOLECULES, V13, P1031
ROSS BD, 1985, J PHYS CHEM-US, V89, P836
SAEGEBARTH E, 1967, J CHEM PHYS, V46, P3088
SAEGEBARTH E, 1970, J CHEM PHYS, V52, P3555
SAUNDERS BC, 1948, J CHEM SOC, P1773
TAKEUCHI Y, 1991, J CHEM SOC PERK JAN, P49
TORMENA CF, 2000, THESIS U ESTADUAL CA
VANEIJCK BP, 1972, J MOL STRUCT, V11, P67
WAYLAND BB, 1966, J AM CHEM SOC, V88, P2455
NR 25
TC 18
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1470-1820
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2000
IS 10
BP 2054
EP 2059
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 358HU
UT ISI:000089553200009
ER
PT J
AU Cuccovia, IM
da Silva, MA
Ferraz, HMC
Pliego, JR
Riveros, JM
Chaimovich, H
TI Revisiting the reactions of nucleophiles with arenediazonium ions:
dediazoniation of arenediazonium salts in aqueous and micellar
solutions containing alkyl sulfates and alkanesulfonates and an ab
initio analysis of the reaction pathway
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID COUNTERION SELECTIVITY; ARYL CATIONS; TETRAFLUOROBORATE;
2-METHYLBENZENEDIAZONIUM; 3-METHYLBENZENEDIAZONIUM; DECOMPOSITION;
MECHANISM; RATES; WATER; MODEL
AB Dediazoniation of 2,4,6-trimethylbenzenediazonium tetrafluoroborate,
1-ArN2BF4 (for the z-Ar compounds described in this paper, z refers to
the length of the carbon chain of the substituent at C4 of the benzene
ring), in aqueous solutions containing sodium methyl sulfate, NaMeSO4,
or sodium methanesulfonate, NaMeSO3, yields 2,4,6-trimethylphenol,
1-ArOH, 2,4,6-trimethylphenyl methyl sulfate, 1-ArOSO3Me and
2,4,6-trimethylphenyl methanesulfonate, 1-ArO3SMe, respectively. The
relative yields of 1-ArO3SMe or 1-ArOSO3Me and 1-ArOH depend on the
NaMeSO4 or NaMeSO3 concentrations.
4-n-Hexadecyl-2,6-dimethylbenzenediazonium tetrafluoroborate,
16-ArN2BF4, was used to determine the local head group concentration in
sodium dodecyl sulfate and sodium dodecanesulfonate micelles by
chemical trapping comparing the relative product yields with those
obtained in water using the short chain analogs.
Ab initio calculations of the spontaneous dediazoniation of
phenyldiazonium ion in the gas phase, as well as in aqueous solution
with, or without, added MeSO3-, yield potential energy surfaces for the
reaction. For this model the calculated and experimental values of the
spontaneous dediazoniation rate constants in aqueous solution, as well
as the product composition, were similar to those obtained with
1-ArN2+. These results suggest that in aqueous solution nucleophiles
can only compete with water if a diazonium ion . nucleophile complex is
formed prior to N-2 loss. Calculations show that the addition of
nucleophiles to the arenediazonium ion occurs without a saddle point in
the potential energy surface, suggesting that the free phenyl cation is
not an obligatory intermediate in aqueous solutions.
C1 Univ Sao Paulo, Inst Quim, Dept Bioquim, BR-05508900 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05508900 Sao Paulo, Brazil.
RP Cuccovia, IM, Univ Sao Paulo, Inst Quim, Dept Bioquim, Av Prof Lineu
Prestes 748, BR-05508900 Sao Paulo, Brazil.
CR AMBROZ HB, 1979, CHEM SOC REV, V8, P353
BERGSTROM RG, 1976, J AM CHEM SOC, V98, P3301
BRAVODIAZ C, 1998, LANGMUIR, V14, P5098
BRAVODIAZ C, 1999, LANGMUIR, V15, P282
BUNCEL E, 1978, BIOORG CHEM, V7, P1
BUNTON CA, 1951, J CHEM SOC, P1872
CANNING PSJ, 1999, J CHEM SOC PERK T 2, P2735
CHALKLEY GR, 1970, J CHEM SOC C, P682
CHAUDHURI A, 1993, J AM CHEM SOC, V115, P8362
CORREIA VR, 1992, J AM CHEM SOC, V114, P2144
CROSSLEY ML, 1940, J AM CHEM SOC, V62, P1400
CUCCOVIA IM, 1997, LANGMUIR, V13, P5032
CUCCOVIA IM, 1997, LANGMUIR, V13, P647
DAS PK, 1999, LANGMUIR, V15, P981
EDWARDS JO, 1962, J AM CHEM SOC, V84, P16
FENDLER JH, 1975, CATALYSIS MICELLAR M
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 1995, GAUSSIAN 94
GARCIAMEIJIDE MC, 1998, INT J CHEM KINET, V30, P31
GLASER R, 1995, J ORG CHEM, V60, P7518
GUTHRIE JP, 1973, CAN J CHEM, V51, P3494
HEGARTY AF, 1978, CHEM DIAZONIUM DIA 2
KICE JL, 1966, J AM CHEM SOC, V88, P5242
KURZ JL, 1962, J PHYS CHEM-US, V66, P2239
LEWIS ES, 1962, J AM CHEM SOC, V84, P3847
LEWIS ES, 1969, J AM CHEM SOC, V91, P419
LOUGHLIN JA, 1990, COLLOID SURFACE, V48, P123
LOWRY TH, 1987, MECH THEORY ORGANIC, P367
NESMEYANOV AN, 1957, TETRAHEDRON, V1, P145
PAZOLLORENTE R, 1999, INT J CHEM KINET, V31, P73
PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
PLIEGO JR, 1999, PCCP PHYS CHEM CH PH, V1, P1031
ROMSTED LS, 1998, J AM CHEM SOC, V120, P10046
SAUNDERS KH, 1985, AROMATIC DIAZO COMPO
SCAIANO JC, 1983, J PHOTOCHEM, V23, P269
SCHALES O, 1941, J BIOL CHEM, V140, P879
SOLDI V, 2000, LANGMUIR, V16, P59
SWAIN CG, 1975, J AM CHEM SOC, V97, P783
SWAIN CG, 1975, J AM CHEM SOC, V97, P796
ZOLLINGER H, 1994, DIAZO CHEM, V1
NR 40
TC 13
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1470-1820
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2000
IS 9
BP 1896
EP 1907
PG 12
SC Chemistry, Organic; Chemistry, Physical
GA 356CM
UT ISI:000089426800021
ER
PT J
AU Martins, JBL
Taft, CA
Lie, SK
Longo, E
TI Lateral interaction of CO and H-2 molecules on ZnO surfaces: an AM1
study
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE ZnO surface; (ZnO)(60) clusters; CO and H-2 adsorption; AM1
semi-empirical model
ID LARGE CLUSTER-MODELS; ROOM-TEMPERATURE; ZINC-OXIDE; AB-INITIO;
POTENTIAL DEPENDENCE; METHANOL SYNTHESIS; BASIS-SET; ADSORPTION;
HYDROGEN; PHOTOELECTRON
AB We have studied the effects of lateral interactions for CO and H-2
adsorbed on large (ZnO)(60) cluster models. The calculations were
performed with the AM1 semi-empirical method. The geometric parameters
of the adsorbed molecules were fully optimized. CO interacts with the
zinc cation located at the site having the lowest coordination at the
edge sites between the (0001) and (10 (1) over bar 0) surfaces, The
binding energy is increased as we increase the number of adsorbed CO
molecules on the ZnO surface. For H-2 molecular interaction, the
calculated energy gaps and ionization potentials are modified relative
to the bare cluster. We have analyzed the optimized geometric
parameters, charge transfer as well as the density of states and
compared our results with available experimental data such as density
of states, vibrational frequencies, adsorption energies and surface
charge. (C) 2000 Elsevier Science B.V. All rights reserved.
C1 Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290180 Rio De Janeiro, Brazil.
Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13560905 Sao Carlos, SP, Brazil.
RP Martins, JBL, Univ Brasilia, Inst Quim, Caixa Postal 04478, BR-70919970
Brasilia, DF, Brazil.
CR ABRAHAMS SC, 1969, ACTA CRYSTALLOGR B, V25, P1233
ALMEIDA AL, 1998, J CHEM PHYS, V109, P3671
ALMEIDA AL, 1998, THEOCHEM-J MOL STRUC, V426, P199
ANDERSON AB, 1986, J AM CHEM SOC, V108, P1385
BOCCUZZI F, 1978, J CATAL, V51, P150
BOCCUZZI F, 1978, J CATAL, V51, P160
BOCCUZZI F, 1996, J PHYS CHEM-US, V100, P3617
BOLIS V, 1989, J CHEM SOC FARAD T 1, V85, P855
CHANG CC, 1973, J PHYS CHEM-US, V77, P2634
DAMICO KL, 1983, J AM CHEM SOC, V105, P6380
DENT AL, 1969, J PHYS CHEM-US, V73, P3772
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
FUBINI B, 1982, J CHEM SOC F1, V78, P153
GAY RR, 1980, J AM CHEM SOC, V102, P6752
GHIOTTI G, 1993, SURF SCI A, V287, P228
GRIFFIN GL, 1982, J CHEM PHYS, V77, P3751
HUSSAIN G, 1987, SPECTROCHIM ACTA A, V43, P1631
HUSSAIN G, 1990, J CHEM SOC FARADAY T, V86, P1615
KLIER K, 1982, ADV CATAL, V31, P243
LAI WJ, 1992, J MOL STRUCT THEOCHE, V257, P217
LAVALLEY JC, 1994, SURF SCI, V315, P112
LIN JY, 1991, J AM CHEM SOC, V113, P8312
MARTINS JBL, 1994, J MOL STRUCT, V303, P19
MARTINS JBL, 1995, THEOCHEM, V330, P301
MARTINS JBL, 1995, THEOCHEM, V330, P347
MARTINS JBL, 1995, THEOCHEM-J MOL STRUC, V335, P167
MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
MARTINS JBL, 1996, THEOCHEM-J MOL STRUC, V363, P249
MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V397, P147
MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V398, P457
MARTINS JBL, 1998, INT J QUANTUM CHEM, V70, P367
MAVRIDIS A, 1989, J AM CHEM SOC, V111, P2482
MINOT C, 1996, SURF SCI, V346, P283
MINOT C, 1998, THEOCHEM-J MOL STRUC, V424, P119
MOLLER PJ, 1995, SURF SCI, V323, P102
PELTIER F, 1996, J CHIM PHYS PCB, V93, P1376
SCARANO D, 1992, SURF SCI, V276, P281
SENSATO FR, 1997, THEOCHEM-J MOL STRUC, V394, P259
SHANNO DF, 1985, J OPTIMIZ THEORY APP, V46, P87
SOLOMON EI, 1993, CHEM REV, V93, P2623
STEWART JP, 1983, QCPE B, V3, P43
ZHANPEISOV NU, 1994, J STRUCT CHEM, V35, P9
NR 42
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD AUG 25
PY 2000
VL 528
BP 161
EP 170
PG 10
SC Chemistry, Physical
GA 355DN
UT ISI:000089370600017
ER
PT J
AU de Almeida, NG
Napolitano, R
Moussa, MHY
TI Phenomenological-operator approach to dissipation in cavity quantum
electrodynamics
SO PHYSICAL REVIEW A
LA English
DT Article
ID PODOLSKY-ROSEN CHANNELS; EXPERIMENTAL REALIZATION; TELEPORTATION;
STATE; DECOHERENCE; METER
AB We present a phenomenological-operator approach to describe energy
dissipation in cavity QED phenomena. This approach, developed for an
absolute-zero and a thermal environment, considerably simplifies the
introduction of the inevitable errors due to the environmental degrees
of freedom when describing processes involving dispersive atom-field
interactions. The main result in the present work consists in
furnishing a straightforward technique to estimate the fidelity
resulting from dispersive atom-field interactions, precluding the
necessity of performing the usually extensive ab initio calculations.
Furthermore, we expect that the present work can help us account for
dissipation in resonant atom-field interactions and even help us
achieve a general phenomenological approach to estimate the effects of
dissipation in whichever system. To illustrate the universal
applicability of the present technique, we calculate the fidelity of a
mesoscopic quantum superposition state engineered in a lossy cavity,
considering also the excited-state spontaneous decay of the required
atom. For the case of a stable atomic excited state, the fidelity
computed here is in agreement with a recently announced exact
calculation.
C1 Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Paulo, Brazil.
RP de Almeida, NG, Univ Fed Sao Carlos, Dept Fis, Via Washington Luis,Km
235, BR-13565905 Sao Paulo, Brazil.
CR ALMEIDA NG, UNPUB
BENNETT CH, 1993, PHYS REV LETT, V70, P1895
BOSCHI D, 1998, PHYS REV LETT, V80, P1121
BOUWMEESTER D, 1997, NATURE, V390, P575
BRIEGEL HJ, QUANTPH9712027
BRIEGEL HJ, 1998, PHYS REV LETT, V81, P5932
BRUNE M, 1992, PHYS REV A, V45, P5193
BRUNE M, 1996, PHYS REV LETT, V76, P1800
BRUNE M, 1996, PHYS REV LETT, V77, P4887
CALDEIRA AO, 1983, ANN PHYS-NEW YORK, V149, P374
CALDEIRA AO, 1983, PHYSICA A, V121, P587
CHUANG IL, 1998, NATURE, V393, P143
CIRAC JI, 1997, PHYS REV LETT, V78, P3221
DEALMEIDA NG, IN PRESS PHYS REV A
DEOLIBEIRA MC, IN PRESS PHYS REV A
FURUSAWA A, 1998, SCIENCE, V282, P706
HOLLAND MJ, 1991, PHYS REV LETT, V67, P1716
MAITRE X, 1997, PHYS REV LETT, V79, P769
MOLLOW BR, 1967, PHYS REV, V160, P1076
MOLLOW BR, 1967, PHYS REV, V160, P1097
MOUSSA MHY, 1996, PHYS REV A, V54, P4661
MOUSSA MHY, 1997, PHYS REV A, V55, P3287
PELLIZZARI T, 1997, PHYS REV LETT, V79, P5242
SCULLY MO, 1997, QUANTUM OPTICS
SHOR PW, 1994, P 35 ANN S FDN COMP, P124
VANENK SJ, 1997, PHYS REV LETT, V79, P5178
VITALI D, 1997, PHYS REV LETT, V79, P2442
VITALI D, 1999, PHYS REV A, V59, P4178
VONNEUMANN J, 1995, MATH FDN QUANTUM MEC
NR 29
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD SEP
PY 2000
VL 62
IS 3
AR 033815
DI ARTN 033815
PG 9
SC Physics, Atomic, Molecular & Chemical; Optics
GA 353CD
UT ISI:000089255400094
ER
PT J
AU Miotto, R
Srivastava, GP
Ferraz, AC
TI Effects of gradient and non-linear core corrections on structural and
electronic properties of GaN bulk and (001) surfaces
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE density functional calculations; pseudopotential; surface relaxation;
surface states
ID MOLECULAR-BEAM EPITAXY; DENSITY-FUNCTIONAL CALCULATIONS; GROUP-III
NITRIDES; GALLIUM NITRIDE; VALENCE-BAND; 3D STATES; AB-INITIO;
BETA-GAN; GAAS; SEMICONDUCTORS
AB We have investigated the effects of density gradient and non-linear
core corrections, within the first-principles pseudopotential method,
on structural and electronic properties of GaN bulk and (0 0 1)
surfaces. We find that the combined use of the generalized gradient
approximation and non-linear core correction for exchange and
correlation (NGGA) produces important changes in structural properties.
The calculated bulk valence band electronic structure shows much better
agreement with experiment when the NGGA scheme is used than when the Ga
3d electrons are considered explicitly as a part of the valence shell.
We have discussed the atomic structure and chemical bonding on the
gallium terminated (1 x 1), (2 x 2), c(2 x 2) and (1 x 4) cubic-GaN(0 0
1) surface reconstructions, and find that the most stable of these,
viz. the (1 x 4) structure, is characterised by a linear Ga tetramer
with an energy gain of 0.29 eV per (1 x 1) cell over the
unreconstructed (1 x 1) structure in agreement with previous results by
Neugebauer and coworkers. (C) 2000 Elsevier Science B.V. All rights
reserved.
C1 Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Miotto, R, Univ Exeter, Sch Phys, Stocker Rd, Exeter EX4 4QL, Devon,
England.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BRANDT O, 1995, PHYS REV B, V52, R2253
BRANDT O, 1996, PHYS REV B, V54, P4432
BYKHOVSKI AD, 1996, APPL PHYS LETT, V69, P2397
DERKELLEN SB, 1996, PHYS REV B, V54, P11187
DING SA, 1996, J VAC SCI TECHNOL 1, V14, P819
EDGAR JH, 1994, EMIS DATAREVIEW SERI
ENGLEL GE, 1990, PHYS REV B, V41, P7876
FEUILLET G, 1997, APPL PHYS LETT, V70, P1025
FIORENTINI V, 1993, PHYS REV B, V47, P13353
GARCIA A, 1993, PHYS REV B, V47, P6751
GROSSNER U, 1998, PHYS REV B, V58, R1722
HUNT RW, 1993, PHYSICA B, V185, P415
JENKINS SJ, 1994, J PHYS-CONDENS MAT, V6, P8781
KARCH K, 1998, PHYS REV B, V57, P7043
LAMBRECHT WRL, 1994, PHYS REV B, V50, P14155
LEE GD, 1995, PHYS REV B, V52, P1459
LIU H, 1993, J APPL PHYS, V74, P6124
LOUIE SG, 1982, PHYS REV B, V26, P1738
LU WC, 1993, J PHYS-CONDENS MAT, V5, P875
MIN BJ, 1992, PHYS REV B, V45, P1159
MIOTTO R, 1998, PHYS REV B, V58, P7944
MIOTTO R, 1999, PHYS REV B, V59, P3008
NAKAMURA S, 1994, APPL PHYS LETT, V64, P1687
NEUGEBAUER J, 1994, PHYS REV B, V50, P8067
NEUGEBAUER J, 1998, PHYS REV LETT, V80, P3092
NORTHRUP JE, 1996, PHYS REV B, V53, P10477
ORTON JW, 1998, REP PROG PHYS, V61, P1
PAISLEY MJ, 1989, J VAC SCI TECHNOL A, V7, P701
PERDEW JP, 1981, PHYS REV B, V23, P5048
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
QTEISH A, 1991, PHYS REV B, V43, P4229
RAMIREZFLORES G, 1994, PHYS REV B, V50, P8433
SHIRLEY EL, 1997, PHYS REV B, V56, P6648
STADELE M, 1999, PHYS REV B, V59, P10031
STAGARESCU CB, 1996, PHYS REV B, V54, P17335
STAMPFL C, 1999, PHYS REV B, V59, P5521
STRASSER T, 1997, PHYS REV B, V56, P13326
TROULLIER N, 1991, PHYS REV B, V43, P1993
VOGEL D, 1997, PHYS REV B, V55, P12836
WANG Y, 1991, PHYS REV B, V43, P8911
WEAST RC, 1978, HDB CHEM PHYSICS
YANG H, 1996, PHYS STATUS SOLIDI B, V194, P109
NR 44
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD OCT
PY 2000
VL 292
IS 1-2
BP 97
EP 108
PG 12
SC Physics, Condensed Matter
GA 353YX
UT ISI:000089304000012
ER
PT J
AU Esteves, PM
Ramirez-Solis, A
Mota, CJA
TI A theoretical study of alkane protonation in HF/SbF5 superacid system
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE superacid; carbonium ions; alkane; DFT
ID AB-INITIO; ELECTROSTATIC POTENTIALS; ELECTROPHILIC REACTIONS; DEUTERIUM
EXCHANGE; CARBONIUM-IONS; CH5+; CARBOCATIONS; CHEMISTRY; DENSITY; ENERGY
AB Ab initio calculations for the protonation of the C-H and C-C bonds of
methane, ethane, propane and isobutane by a superacid moiety was
carried out. For the C-H protonation (H/H exchange) the transition
state resembles an H-carbonium ion coordinated with the superacid. The
activation energy for the H/H exchange was about 16 kcal.mol(-1), at
B3LYP/6-31++G"* + RECP (Sb) level, regardless the type of C-H bond
being protonated. For the C-C protonation the activation energy depends
on the structure of the hydrocarbon and was always higher than the
activation energy for C-H protonation, indicating a higher steric
demand.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Esteves, PM, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim,
Cidade Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BERGNER A, 1993, MOL PHYS, V80, P1431
BERKESSEL A, 1995, ANGEW CHEM INT EDIT, V34, P2247
BISCHOF PK, 1975, J AM CHEM SOC, V97, P2278
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
COLLINS SJ, 1994, CHEM PHYS LETT, V228, P246
COLLINS SJ, 1996, J CHEM SOC FARADAY T, V92, P4347
DYCZMONS V, 1970, CHEM PHYS LETT, V5, P361
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
ESTEVES PM, 1999, J PHYS CHEM B, V103, P10417
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HIRAO K, 1984, CHEM PHYS, V89, P237
HOGEVEEN H, 1967, RECL TRAV CHIM PAY B, V86, P1313
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P371
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P703
KIM SJ, 1993, J PHYS CHEM-US, V97, P12232
KOHLER HJ, 1978, CHEM PHYS LETT, V58, P175
KOLBUSZEWSKI M, 1996, J CHEM PHYS, V105, P3649
MARX D, 1995, NATURE, V375, P216
MOTA CJA, 1992, J AM CHEM SOC, V114, P1121
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
MULLER H, 1997, J CHEM PHYS, V106, P1863
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1972, J AM CHEM SOC, V94, P807
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
POIRIER RA, 1982, J MOL STRUCT THEOCHE, V88, P343
RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SCUSERIA GE, 1993, NATURE, V366, P512
SOMMER J, 1994, J AM CHEM SOC, V116, P5491
NR 37
TC 8
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD JUL-AUG
PY 2000
VL 11
IS 4
BP 345
EP 348
PG 4
SC Chemistry, Multidisciplinary
GA 354NY
UT ISI:000089337600003
ER
PT J
AU Duarte, HA
Dos Santos, HF
Rocha, WR
De Almeida, WB
TI Improved quantum mechanical study of the potential energy surface for
the bithiophene molecule
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID GAUSSIAN-BASIS SETS; AB-INITIO; ORBITAL METHODS; CONDUCTING POLYMERS;
ORGANIC-MOLECULES; EXCHANGE-ENERGY; POLYTHIOPHENE; ATOMS;
2,2'-BITHIOPHENE; APPROXIMATION
AB The potential energy surface (PES) for the 2,2'-bithiophene molecule
was investigated using Hartree-Fock, correlated MP2, MP4(SDQ), CCSD,
and density functional theory levels. Distinct basis sets ranging from
double-zeta to triple-zeta quality, with polarization functions added
on all atoms, were employed as well as the Dunning correlated
consistent polarized valence double-zeta (cc-pVDZ) basis set. Single
point configuration interaction CISD calculations were also performed
using the cc-pVDZ basis set. Harmonic frequency calculations were
performed for the unambiguous characterization of the stationary points
located on the PES and also to calculate thermal Gibbs free energy
corrections. Regarding the structural predictions we found that the
B3LYP/6-311G** and MP2/cc-pVDZ fully optimized geometries exhibit the
best agreement with the gas phase electron diffraction data. The
calculated B3LYP/6-311G**, MP2/cc-pVDZ and experimental torsional angle
for the syn-gauche structure are, respectively, 37.4 degrees (B3LYP),
39.9 degrees (MP2), and 36 degrees +/- 5 degrees (expt.) with the
corresponding values for the anti-gauche form being, respectively,
150.3 degrees (B3LYP), 146.0 degrees (MP2), and 148 degrees +/- 3
degrees (expt.). The relative energy between the two minima and
torsional barriers are sensitive both to the size of the basis set and
the level of the quantum mechanical method used. Therefore, larger
basis sets are needed to assess the ability of the DFT approach for
describing torsional barriers. The MP4(SDQ) and CCSD relative energy
results, reported in this work, can be considered as the most reliable
torsional potential data available for the 2,2'-bithiophene molecule.
Our results indicate that the experimentally estimated relative energy
value for the two equilibrium structures present on the PES for the
bithiophene molecule, and consequently the relative abundance of the
anti-gauche species, is somewhat underestimated. By comparison with
MP4(SDQ) and CCSD results we have shown that single point DFT/6-311G**
calculations using HF/6-31G* geometries is the most computationally
efficient procedure to study bithiophene like systems, with energy
barriers agreeing within 2 kJ/mol. (C) 2000 American Institute of
Physics. [S0021-9606(00)31634-8].
C1 Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Minas Gerais, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Juiz de Fora, Lab Quim Coumputac & Modelagem Mol, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Juiz de Fora, Dept Quim, ICE, BR-36036330 Juiz De Fora, MG, Brazil.
RP Duarte, HA, Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol,
BR-31270901 Belo Horizonte, MG, Brazil.
CR ALMLOF J, 1987, J CHEM PHYS, V86, P4070
ALMLOF J, 1988, J PHYS CHEM-US, V92, P3029
BAUERLE P, 1993, ANGEW CHEM INT EDIT, V32, P76
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P1372
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BRUCKNER S, 1988, MAKROMOL CHEM, V189, P961
CHADWICK JE, 1994, J PHYS CHEM-US, V98, P3631
CLARK T, 1983, J COMPUT CHEM, V4, P294
DEALMEIDA WB, 2000, QUIMICA NOVA
DEOLIVEIRA MA, 2000, PHYS CHEM CHEM PHYS, V2, P3373
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DUNNING TH, 1976, MODERN THEORETICAL C, V3, P1
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
EHRENDORFER C, 1994, J PHYS CHEM-US, V98, P7492
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN 94
GARNIER F, 1989, ANGEW CHEM INT EDIT, V28, P513
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HARIHARAN PC, 1974, MOL PHYS, V27, P209
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOROWITZ G, 1994, SYNTHETIC MET, V62, P245
HOTTA S, 1993, ADV MATER, V5, P896
KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LEE C, 1988, PHYS REV B, V37, P785
LEVINE IN, 1991, QUANTUM CHEM
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
MO Z, 1985, MACROMOLECULES, V18, P1972
MOLLER C, 1934, PHYS REV, V46, P618
ORTI E, 1995, J PHYS CHEM-US, V99, P4955
PARR RG, 1989, DENSITY FUNCTIONAL T
PATIL AO, 1988, CHEM REV, V88, P183
PERDEW JP, 1986, PHYS REV B, V33, P8800
PERDEW JP, 1986, PHYS REV B, V33, P8822
PROYNOV EI, 1995, INT J QUANTUM CHEM S, V29, P61
RADOM L, 1970, J AM CHEM SOC, V92, P4786
RONCALI J, 1992, CHEM REV, V92, P711
SAEBO S, 1989, CHEM PHYS LETT, V154, P83
SAMDAL S, 1993, SYNTHETIC MET, V59, P259
STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
SZABO A, 1996, MODERN QUANTUM CHEM
VIRUELA PM, 1998, INT J QUANTUM CHEM, V70, P303
WESSLING B, 1991, ADV MATER, V3, P507
WOON DE, 1993, J CHEM PHYS, V98, P1358
YAMAMOTO T, 1992, MACROMOLECULES, V25, P1214
NR 47
TC 23
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD SEP 8
PY 2000
VL 113
IS 10
BP 4206
EP 4215
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 349GC
UT ISI:000089034900034
ER
PT J
AU Barbatti, M
Jalbert, G
Nascimento, MAC
TI Isomeric structures and energies of H-n(+) clusters (n=13, 15, and 17)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID HYDROGEN CLUSTERS; VIBRATIONAL FREQUENCIES; ENERGETICS; ABINITIO; IONS;
STABILITIES
AB Ab initio calculations have been performed for the H-n(+) clusters
(n=3-17; odd) at Moller-Plesset second order (MP2)/6-311G(mp),
Moller-Plesset complete fourth order (MP4)/6-311G(mp), and
coupled-cluster single-double-triple [CCSD(T)/6-311G(1p)] levels of
calculations. Such hydrogen clusters are constituted by an H-3(+) core
in which H-2 units are bound. In order to understand the features of
these bindings, enthalpy and entropy variations upon cluster formation,
binding energies, and charge distributions have been computed, and a
molecular orbital analysis, based on localized orbital, was performed.
Our results show that the way the first three H-2 units bind to the
H-3(+) core is fundamentally different from the others, providing an
explanation for the binding energies observed for these molecules. For
the H-13(+), H-15(+), and H-17(+) clusters, the way in which the
external H-2 units are distributed around the H-3(+) plane leads to the
formation of different isomers with very close energies, but with a
rotational barrier large enough to inhibit the interconversions. (C)
2000 American Institute of Physics. [S0021-9606(00)31434-9].
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, BR-21945970 Rio De Janeiro, Brazil.
RP Barbatti, M, Univ Fed Rio de Janeiro, Inst Fis, CP 68528, BR-21945970
Rio De Janeiro, Brazil.
CR BOYS SF, 1970, MOL PHYS, V19, P553
CENCEK W, 1998, J CHEM PHYS, V108, P2831
EDMISTON C, 1963, REV MOD PHYS, V35, P457
FARIZON B, 1999, PHYS REV B, V60, P3821
FARIZON M, 1991, CHEM PHYS LETT, V177, P451
FARIZON M, 1992, J CHEM PHYS, V96, P1325
FRISCH MJ, 1998, GAUSSIAN 98
HERZBERG G, 1950, MOL SPECTRA MOL STRU, V1
HIRAOKA K, 1989, CHEM PHYS LETT, V157, P467
HUBER H, 1980, CHEM PHYS LETT 2, V70, P353
IGNACIO EW, 1998, CHEM PHYS LETT, V287, P563
KOLOS W, 1975, J MOL SPECTROSC, V54, P303
LOUC S, 1998, PHYS REV A, V58, P3802
NAGASHIMA U, 1992, J PHYS CHEM-US, V96, P11
OKUMURA M, 1988, J CHEM PHYS, V88, P79
PANG T, 1994, CHEM PHYS LETT, V228, P555
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
STICH I, 1997, PHYS REV LETT, V78, P3669
VANLUMIG A, 1978, INT J MASS SPECTROM, V27, P197
WRIGHT LR, 1982, J CHEM PHYS, V77, P1938
YAMABE S, 1978, CHEM PHYS LETT, V56, P546
YAMAGUCHI Y, 1983, J CHEM PHYS, V78, P4074
NR 23
TC 21
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD SEP 8
PY 2000
VL 113
IS 10
BP 4230
EP 4237
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 349GC
UT ISI:000089034900036
ER
PT J
AU Ribeiro, MCC
Almeida, LCJ
TI Validating a polarizable model for the glass-forming liquid
Ca0.4K0.6(NO3)(1.4) by ab initio calculations
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID ORBITAL ELECTRONEGATIVITY METHOD; MOLECULAR-DYNAMICS SIMULATIONS;
MODIFIED PARTIAL EQUALIZATION; DENSITY-FUNCTIONAL THEORY; IONIC
SYSTEMS; FLUCTUATING CHARGE; ATOMIC CHARGES; NEUTRON-DIFFRACTION;
QUANTUM-CHEMISTRY; FORCE-FIELDS
AB Ab initio calculations have been performed in order to investigate a
recently proposed polarizable model [M. C. C. Ribeiro, Phys. Rev. B 61,
3297 (2000)] for molecular dynamics (MD) simulation of the molten salt
Ca0.4K0.6(NO3)(1.4). On the basis of the electronegativity equalization
method, polarization effects in the MD simulations have been introduced
by a fluctuating charge (FC) model for the nitrate ion. Partial charges
in the nitrate ion are obtained by ab initio calculations at several
levels of theory, and compared with previously proposed models for MD
simulations of nitrate melts. Charge fluctuation is achieved in the ab
initio calculations by using positive probe charges placed around a
nitrate ion. The parameters of the FC model are corroborated by
comparison of the ab initio partial charges with the ones obtained
directly by the electronegativity equalization method. Simulated
annealing of a cluster including two double-charged cations and two
nitrate ions shows that very different structures are obtained
depending on whether the FC model or its nonpolarizable counterpart is
considered. Ab initio calculations show that the structure of this
cluster is strongly dependent on polarization effects in the nitrate
ions. (C) 2000 American Institute of Physics. [S0021- 9606(00)52235-1].
C1 Univ Sao Paulo, Inst Quim, Lab Espectroscopia Mol, BR-05513970 Sao Paulo, Brazil.
RP Ribeiro, MCC, Univ Sao Paulo, Inst Quim, Lab Espectroscopia Mol, CP
26077, BR-05513970 Sao Paulo, Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
ALMLOF J, 1979, CHEM PHYS LETT, V61, P79
ANGELL CA, 1993, J PHYS CONDENS MATT, V11, A75
BALAWENDER R, 1997, INT J QUANTUM CHEM, V61, P499
BANKS JL, 1999, J CHEM PHYS, V110, P741
BOLDYREV AI, 1993, J CHEM PHYS, V98, P4745
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
CIOSLOWSKI J, 1993, J AM CHEM SOC, V115, P1084
CIOSLOWSKI J, 1993, J CHEM PHYS, V99, P5151
DEOLIVEIRA AE, 1999, J PHYS CHEM A, V103, P4918
FRISCH MJ, 1998, GAUSSIAN 98
GAPINSKI J, 1999, J CHEM PHYS, V110, P2312
GOTZE W, 1999, J PHYS CONDENS MATT, V11, A1
GRIMSDITCH M, 1989, PHYS REV LETT, V62, P2616
HUTCHINSON F, 1999, J CHEM PHYS, V111, P2028
ITSKOWITZ P, 1997, J PHYS CHEM A, V101, P5687
JEMMER P, 1999, J CHEM PHYS, V111, P2038
KARTINI E, 1995, CAN J PHYS, V73, P748
KARTINI E, 1996, PHYS REV B, V54, P6292
KATO T, 1988, J CHEM PHYS, V89, P3211
KATO T, 1988, J CHEM PHYS, V89, P7471
KATO T, 1990, J CHEM PHYS, V92, P5506
KATO T, 1993, J CHEM PHYS, V99, P3966
LEBON MJ, 1997, Z PHYS B CON MAT, V103, P433
LI JB, 1998, J PHYS CHEM A, V102, P1820
LIU YP, 1998, J CHEM PHYS, V108, P4739
MADDEN PA, 1996, CHEM SOC REV, V25, P339
MEZEI F, 1999, J PHYS-CONDENS MAT, V11, A341
MITCHELL PJ, 1993, J PHYS-CONDENS MAT, V5, P1031
MORTIER WJ, 1985, J AM CHEM SOC, V107, P829
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NALEWAJSKI RF, 1985, J PHYS CHEM-US, V89, P2831
NO KT, 1990, J PHYS CHEM-US, V94, P4732
NO KT, 1990, J PHYS CHEM-US, V94, P4740
PARR RG, 1978, J CHEM PHYS, V68, P3801
PERDEW JP, 1982, PHYS REV LETT, V49, P1691
PROBST M, 1995, INT J QUANTUM CHEM, V29, P559
RAPPE AK, 1991, J PHYS CHEM-US, V95, P3358
RIBEIRO MCC, UNPUB
RIBEIRO MCC, 1998, J CHEM PHYS, V109, P9859
RIBEIRO MCC, 1999, J CHEM PHYS, V110, P11445
RIBEIRO MCC, 2000, PHYS REV B, V61, P3297
RICCI M, 1993, J CHEM PHYS, V98, P4892
RICK SW, 1994, J CHEM PHYS, V101, P6141
SANGSTER MJL, 1976, ADV PHYS, V25, P247
SEN S, 1998, PHYS REV B, V58, P8379
SIGNORINI GF, 1990, J CHEM PHYS, V92, P1294
SPRIK M, 1991, J PHYS CHEM-US, V95, P2283
STERN HA, 1999, J PHYS CHEM B, V103, P4730
STONE AJ, 1996, THEORY INTERMOLECULA
STORER JW, 1995, J COMPUT AID MOL DES, V9, P87
SZABO A, 1982, MODERN QUANTUM CHEM
TANG KT, 1984, J CHEM PHYS, V80, P3726
TOUFAR H, 1995, J PHYS CHEM-US, V99, P13876
TOUFAR H, 1996, J PHYS CHEM-US, V100, P15383
VANGENECHTEN KA, 1987, J CHEM PHYS, V86, P5063
VELDERS GJM, 1992, THEOR CHIM ACTA, V84, P195
VELIYULIN E, 1999, J PHYS-CONDENS MAT, V11, P8773
WANG YB, 1996, J NONCRYST SOLIDS, V205, P221
WIBERG KB, 1992, J PHYS CHEM-US, V96, P671
WILSON M, 1993, J PHYS-CONDENS MAT, V5, P2687
WILSON M, 1996, PHYS REV LETT, V77, P4023
WILSON M, 1999, MOL PHYS, V96, P867
WINKLER R, 1997, J CHEM PHYS, V106, P7714
YAMAGUCHI T, 1986, MOL PHYS, V58, P349
YORK DM, 1996, J CHEM PHYS, V104, P159
NR 67
TC 11
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD SEP 15
PY 2000
VL 113
IS 11
BP 4722
EP 4731
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 351DC
UT ISI:000089139900028
ER
PT J
AU Batista, H
Carpenter, GB
Srivastava, RM
TI Synthesis and molecular structure of
N-[3-(p-bromophenyl)-1,2,4-oxadiazol-5-yl]methylphthalimide. III.
SO JOURNAL OF CHEMICAL CRYSTALLOGRAPHY
LA English
DT Article
DE 1,2,4-oxadiazole; crystal structure; phthalimide derivative; AM1
method; STO-3G basis set
AB The synthesis, spectroscopic studies and crystal structure of the title
compound is described. The crystallographic studies showed that the
p-bromophenyl group is very nearly coplanar with the 1,2,4-oxadiazole
ring. The nearly planar phthalimide group makes an angle of about 98
degrees with the bromophenyloxadiazole plane. Semi-empirical (AM1) and
ab initio (STO-3G, 6-31G) molecular orbital calculations have been
carried out for this compound and a comparison of bond angles, bond
lengths and torsion angles has been made with the experimental values,
which are remarkably close to each other. This compound crystallizes in
the monoclinic space group P2(1)/c with a = 13.6299(2), b = 13.9836(2),
c = 8.4817(2) Angstrom, beta = 101.9070(10)degrees, V = 1581.79(5)
Angstrom(3), and Z = 4.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
Brown Univ, Dept Chem, Providence, RI 02912 USA.
RP Srivastava, RM, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540
Recife, PE, Brazil.
CR ANTUNES R, 1996, HETEROCYCL COMMUN, V2, P247
ANTUNES R, 1998, BIOORG MED CHEM LETT, V8, P3071
LOBANOV V, 1996, MOPAC 6 0 32 BIT MIC
MORI K, 1994, ACTA CRYSTALLOGR C, V50, P807
SHELDRICK GM, 1996, SADABS EMPIRICAL ABS
STEWART JJP, 1990, MOPAC MANUAL
NR 6
TC 5
PU KLUWER ACADEMIC/PLENUM PUBL
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1074-1542
J9 J CHEM CRYSTALLOGRAPHY
JI J. Chem. Crystallogr.
PD FEB
PY 2000
VL 30
IS 2
BP 131
EP 134
PG 4
SC Crystallography; Spectroscopy
GA 351PW
UT ISI:000089168200010
ER
PT J
AU Iglesias, RS
Goncalves, PFB
Livotto, PR
TI Semi-empirical study of a set of 2-(2 '-hydroxyphenyl)benzazoles using
the polarizable continuum model
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID INTRAMOLECULAR PROTON-TRANSFER; EXCITED-STATE PROTON; TRIPLET-STATES;
AB-INITIO; 2-(2-HYDROXYPHENYL)BENZOTHIAZOLE; BENZOTHIAZOLE;
SPECTROSCOPY; FEMTOSECOND; ROTAMERISM; SOLVENT
AB A set of molecules (2-(2'-hydroxyphenyl)benzoxazol (HBO),
2-(2'-hydroxyphenyl benzothiazole (HBT) and
2-(2'-hydroxyphenyl)benzimidazole (HBI)) exhibiting excited-state
intramolecular proton transfer was studied using the polarizable
continuum model in low-polar, non-protic solvents (chloroform and
carbon tetrachloride), combined with the AM1 semi-empirical molecular
orbital method in both gaseous and condensed phase. The heats of
formations (Delta H-f) are lowered by the solvent effect, especially in
chloroform. The increase in the solvent polarity causes an enlargement
of the Stokes shift between absorption and emission. (C) 2000 Published
by Elsevier Science B.V.
C1 Univ Fed Rio Grande Sul, Inst Quim, Grp Quim, BR-91509900 Porto Alegre, RS, Brazil.
RP Livotto, PR, Univ Fed Rio Grande Sul, Inst Quim, Grp Quim, Av Bento
Goncalves 9500, BR-91509900 Porto Alegre, RS, Brazil.
CR ALSOUFI W, 1990, CHEM PHYS LETT, V174, P609
BARBARA PF, 1980, J AM CHEM SOC, V102, P5631
BARBARA PF, 1989, J PHYS CHEM-US, V29, P93
BREWER WE, 1990, J PHYS CHEM-US, V94, P1915
CHOU PT, 1992, CHEM PHYS LETT, V195, P586
DAS K, 1992, CHEM PHYS LETT, V198, P443
DAS K, 1994, J PHYS CHEM-US, V98, P9126
DEWAR MJS, 1985, J AM CHEM SOC, P389
ELSAESSER T, 1986, CHEM PHYS LETT, V128, P231
ELSAESSER T, 1987, CHEM PHYS LETT, V140, P293
ENCHEV V, 1994, INDIAN J CHEM B, V33, P336
ENGELAND TA, 1992, CHEM PHYS, V163, P43
FREY W, 1991, J PHYS CHEM-US, V95, P10391
GRELLMANN KH, 1989, CHEM PHYS, V136, P201
IGLESIAS RS, 2000, THESIS UFRGS PORTO A
ITOH M, 1985, J AM CHEM SOC, V107, P1561
LAERMER F, 1988, CHEM PHYS LETT, V148, P119
LAVTCHIEVA L, 1993, J PHYS CHEM-US, V97, P306
MIERTUS S, 1981, CHEM PHYS, V55, P117
MORDZINSKI A, 1982, CHEM PHYS LETT, V90, P122
MORDZINSKI A, 1986, J PHYS CHEM-US, V90, P5503
NEGRE M, 1992, CHEM PHYS LETT, V196, P27
POTTER CAS, 1988, CHEM PHYS LETT, V153, P7
POTTER CAS, 1994, J CHEM SOC FARADAY T, V90, P59
RIOS MA, 1995, J PHYS CHEM-US, V99, P12456
RIOS MA, 1998, J PHYS CHEM A, V102, P1560
STEWART JJP, 1993, MOPAC 93 00 MANUAL R
TOMASI J, 1994, CHEM REV, V94, P2027
WILLIAMS DL, 1970, J PHYS CHEM-US, V74, P4473
WOOLFE GJ, 1983, CHEM PHYS, V77, P213
NR 30
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 1
PY 2000
VL 327
IS 1-2
BP 23
EP 28
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 349QC
UT ISI:000089056300005
ER
PT J
AU Olivato, PR
Guerrero, SA
Rittner, R
TI Conformational and electronic interaction studies of alpha-substituted
carbonyl compounds. XV. alpha-(arylsulfinyl)-p-substituted acetophenones
SO PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS
LA English
DT Article
DE conformational studies; electronic interactions; IR and C-13 NMR
spectroscopies; alpha-(p-phenylsulfinyl)-p-substituted acetophenones
ID ULTRAVIOLET PHOTOELECTRON-SPECTROSCOPY; KETONES
AB The V-CO IR analysis of alpha-(p-phenylsulfinyl)-p-substituted
acetophenones X-phi C(O)CH2S(O) phi-Y 1-8, being X and Y = NO2, H and
OMe substituents, supported by ab initio calculations of the
alpha-methylsulfinyl/acetophenone (model compound) along with the X-ray
geometrical data for 1, 7 and 8, indicates the existence of the cis(2)
and gauche rotamers for compounds 1-4 and 6. Compounds 5, 7 and 8
present another less stable and more polar cis(1) rotamer. The cis(2)
rotamer concentration for 4 (ca. 97% in CCl4) is reduced to ca. 50% for
2, 3, 5-7 and to ca. 20% for 1 and 8. This behavior is discussed in
terms of O-(CO)(delta-)-S-(SO)(delta+) charge transfer and Coulombic
interactions, which stabilize the cis(1) rotamer, and the
pi(CO)/sigma*(C-S), pi*(CO)/n(s) and pi*(CO)/sigma(C-S) orbital
interactions, which stabilize the gauche rotamers. The progressive more
negative carbonyl cis(2) shifts (Delta v(c)), when X varies from NO2 to
H and to OMe for the same Y, along with the unexpected NAE values of
the alpha-methylene carbon chemical shifts for compounds 1-8 give
further support for the existence of a strong intramolecular complex
between C=O and S=O dipoles which stabilizes the cis(2) rotamer. The
progressive more negative carbonyl gauche shifts (Delta v(g)), when X
varies from NO2 to H and to OMe for the same Y, is in line with the
higher contribution of the interaction pi(CO)/sigma*(C-S), which
stabilizes the gauche rotamer of the title compounds.
C1 Univ Sao Paulo, Inst Quim, BR-05599970 Sao Paulo, Brazil.
Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Olivato, PR, Univ Sao Paulo, Inst Quim, Caixa Postal 26-077,
BR-05599970 Sao Paulo, Brazil.
CR 1976, SADTLER STANDARD NMR
1996, 17 INT S ORG CHEM SU
BELLAMY LJ, 1975, ADV INFRARED GROUP F, P141
BELLAMY LJ, 1975, ADV INFRARED GROUP F, P143
BONFADA E, 1989, THESIS U SAO PAULO B
BUENO E, 1996, THESIS U SAO PAULO B
DALCOLLE M, 1995, J PHYS CHEM-US, V99, P1511
DEWAR MJS, 1962, HYPERCONJUGATION
DISTEFANO G, 1987, J CHEM SOC P2, P1459
DISTEFANO G, 1991, J CHEM SOC P2, P1195
DISTEFANO G, 1996, J CHEM SOC PERK AUG, P1661
DUDDECK H, 1980, TETRAHEDRON, V36, P3009
GASET A, 1968, B SOC CHIM FR, P4108
GHERSETTI S, 1963, GAZZ CHIM ITAL, V89, P1001
HANSCH C, 1979, SUBSTITUENTS CONSTAN
KENNEY WJ, 1961, J AM CHEM SOC, V83, P4019
LAMM B, 1970, ACTA CHEM SCAND, V24, P561
LUMBROSO H, 1989, J MOL STRUCT, V212, P113
MCALDUFF EJ, 1980, CAN J CHEM, V58, P622
MONDINO MG, 1996, THESIS U SAO PAULO B
OLIVATO PR, IN PRESS ACTA CRYSTA
OLIVATO PR, 1987, PHOSPHORUS SULFUR, V33, P135
OLIVATO PR, 1988, SPECTROCHIM ACTA A, V44, P677
OLIVATO PR, 1989, PHOSPHORUS SULFUR, V44, P9
OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
OLIVATO PR, 1992, PHOSPHORUS SULFUR, V66, P207
OLIVATO PR, 1997, PHOSPHORUS SULFUR, V130, P155
OLIVATO PR, 1998, J CHEM SOC PERK JAN, P109
RITTNER R, 1985, QUIM NOVA, V8, P170
STOTHERS JB, 1972, CARBON 13 NMR SPECTR, P286
NR 30
TC 4
PU GORDON BREACH SCI PUBL LTD
PI READING
PA C/O STBS LTD, PO BOX 90, READING RG1 8JL, BERKS, ENGLAND
SN 1042-6507
J9 PHOSPHOR SULFUR SILICON
JI Phosphorus Sulfur Silicon Relat. Elem.
PY 2000
VL 156
BP 255
EP 277
PG 23
SC Chemistry, Inorganic & Nuclear
GA 344YL
UT ISI:000088788600020
ER
PT J
AU Okulik, N
Peruchena, N
Esteves, PM
Mota, C
Jubert, AH
TI Ab initio topological analysis of the electronic density in proponium
cations
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR CHARGE-DISTRIBUTIONS; QUANTUM TOPOLOGY; CARBONIUM-IONS; CH5+;
CARBOCATIONS; CHEMISTRY; ENERGIES; TERMS
AB Studies performed on proponium cations at the ab initio level show that
six different stable structures can be characterized: four proponium
cations and two van der Waals complexes. Among the proponium cations,
the most stable structure corresponds to the C-proponium ion. Between
the van der Waals complexes, the most stable one corresponds to the
structure that results from the interaction between the isopropyl ion
and the hydrogen molecule. The topology of the electronic density
charge of the different structures is studied, at ab initio level,
using the theory of atoms in molecules (AIM) developed by Bader.
C1 UNNE, Fac Agroind, RA-3700 Pcia R Saenz Pena, Chaco, Argentina.
UNNE, Fac Ciencias Exactas & Nat & Agrimensura, Dept Quim, RA-3400 Corrientes, Argentina.
Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Natl Univ La Plata, Fac Ciencias Exactas, Dept Quim, RA-1900 La Plata, Argentina.
RP Jubert, AH, UNNE, Fac Agroind, Cte Fernandez 755, RA-3700 Pcia R Saenz
Pena, Chaco, Argentina.
CR BADER RFW, 1979, J AM CHEM SOC, V101, P1389
BADER RFW, 1979, J CHEM PHYS, V70, P6316
BADER RFW, 1980, J CHEM PHYS, V73, P2871
BADER RFW, 1981, ADV QUANTUM CHEM, V14, P6310
BADER RFW, 1983, J AM CHEM SOC, V105, P5061
BADER RFW, 1990, ATOMS MOL
BISCHOF PK, 1975, J AM CHEM SOC, V97, P2278
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
CREMER D, 1983, J AM CHEM SOC, V105, P5069
DYCZMONS V, 1970, CHEM PHYS LETT, V5, P361
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GIANNETTO G, 1986, J CHEM SOC CHEM COMM, P1302
GILLESPIE RJ, 1972, MOL GEOMETRY
HAAG WO, 1984, P 8 INT C CAT, P305
HIRAO K, 1984, CHEM PHYS, V89, P237
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P371
KIM SJ, 1993, J PHYS CHEM-US, V97, P12232
KLIEGERKONIG W, 1982, J COMPUT CHEM, V3, P317
KOLBUSZEWSKI M, 1996, J CHEM PHYS, V105, P3649
MOTA CJA, 1992, J AM CHEM SOC, V114, P1121
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
OKULIK N, 1999, J PHYS CHEM A, V103, P8491
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
OLAH GA, 1973, CARBOCATIONS ELECTRO
OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
POIRIER RA, 1982, J MOL STRUCT THEOCHE, V88, P343
RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SCUSERIA GE, 1993, NATURE, V366, P512
NR 33
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 17
PY 2000
VL 104
IS 32
BP 7586
EP 7592
PG 7
SC Chemistry, Physical
GA 345RK
UT ISI:000088828800022
ER
PT J
AU Bettega, MHF
TI Low-energy electron scattering by boron trihalides
SO PHYSICAL REVIEW A
LA English
DT Article
ID SCHWINGER MULTICHANNEL; PLASMA CHEMISTRIES; CROSS-SECTIONS; AB-INITIO;
BCL3; COLLISIONS; PSEUDOPOTENTIALS; SPECTROSCOPY; EXCITATION; SPECTRA
AB We report the integral elastic cross section for low-energy electron
scattering by the boron trihalides BCl3, BBr3, and BI3. To perform our
calculations, we employed the Schwinger multichannel method with
pseudopotentials. We have focused our attention only in the B-2
irreducible representation, where we found shape resonances for the
three molecules in a previous static-exchange calculation, at energies
below 5 eV. We included polarization effects to improve the description
of the resonances and found that only the resonance for BCl3 remains.
For BBr3 and BI3, the resonances become bound states.
C1 Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil.
RP Bettega, MHF, Univ Fed Parana, Dept Fis, Caixa Postal 19081,
BR-81531990 Curitiba, Parana, Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BAECK KK, 1997, J CHEM PHYS, V106, P4604
BAUSCHLICHER CW, 1980, J CHEM PHYS, V72, P880
BETTEGA MHF, 1993, PHYS REV A, V47, P1111
BETTEGA MHF, 2000, J CHEM PHYS, V112, P8806
BETTEGA MHF, 2000, PHYS REV A, V61
BIEHL H, 1996, MOL PHYS, V87, P1199
CHO H, 1998, MRS INTERNET J N S R, V3
CHO H, 1999, J VAC SCI TECHNOL 2, V17, P2202
DACOSTA SMS, 1998, EUR PHYS J D, V3, P67
GULLEY RJ, 1998, J PHYS B-AT MOL OPT, V31, P2735
HEBNER GA, 1999, J VAC SCI TECHNOL A, V17, P3172
HONG J, 1998, J VAC SCI TECHNOL B, V16, P2690
HONG J, 1998, J VAC SCI TECHNOL B, V16, P3349
HONG J, 1999, J VAC SCI TECHNOL 1, V17, P1326
HOWARD BJ, 1994, J VAC SCI TECHNOL 1, V12, P1259
HUO WM, 1987, PHYS REV A, V36, P1632
HUO WM, 1987, PHYS REV A, V36, P1642
ISAACS WA, 1998, PHYS REV A, V58, P2881
KEIR RI, 1998, CHEM PHYS LETT, V290, P409
LEE CH, 1999, J CHEM PHYS, V111, P5056
LIDE DR, 1998, CRC HDB CHEM PHYSICS
LIMA MAP, 1990, PHYS REV A, V41, P327
NATALENSE APP, 1998, PHYS REV LETT, V81, P3832
PROOST J, 1999, J ELECTROCHEM SOC, V146, P4230
RESCIGNO TN, 1999, PHYS REV A, V60, P2186
ROTHE EW, 1980, INORG CHEM, V19, P829
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SHPINKOVA LG, 1999, MOL PHYS, V96, P323
STOCKDALE JA, 1972, J CHEM PHYS, V56, P3336
SZMYTKOWSKI C, 1984, CHEM PHYS LETT, V107, P481
TAKATSUKA K, 1981, PHYS REV A, V24, P2473
TOSSELL JA, 1986, INT J QUANTUM CHEM, V29, P1117
VARELLA MTD, 1999, J CHEM PHYS, V111, P6396
VARELLA MTD, 1999, J PHYS B ATOM MOL PH, V32, P5523
VARELLA MTD, 1999, PHYS REV A, V60, P3684
WANG JJ, 1999, PLASMA CHEM PLASMA P, V19, P229
WINSTEAD C, 1998, PHYS REV A, V57, P3589
NR 38
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD AUG
PY 2000
VL 6202
IS 2
AR 024701
DI ARTN 024701
PG 3
SC Physics, Atomic, Molecular & Chemical; Optics
GA 343CD
UT ISI:000088683400118
ER
PT J
AU De Oliveira, MA
Dos Santos, HF
De Almeida, WB
TI Structure and torsional potential of p-phenylthiophene: a theoretical
comparative study
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; VALENCE BASIS-SETS; GAUSSIAN-TYPE BASIS;
AB-INITIO; ELECTRONIC-PROPERTIES; CONJUGATED SYSTEMS;
ORGANIC-MOLECULES; 2ND-ROW ELEMENTS; 2,2'-BITHIOPHENE; POLYTHIOPHENE
AB Quantum chemical calculations employing Hartree-Fock, MP2 and density
functional (using distinct functionals) approaches were carried out for
the p-phenylthiophene dimer. The fully optimized stationary points
located on the potential energy surface were characterized as minima or
transition state (TS) structures according to harmonic frequency
analysis. A mixture of syn-gauche and anti-gauche conformers was
predicted with a relative percentage of ca. 60% and 40%, respectively.
A TS structure connecting the syn-gauche and anti-gauche minima was
also determined, with the MP2 energy barrier being ca. 10 kJ mol(-1). A
six-term truncated Fourier series representation of the potential
energy for internal rotation was obtained using a fitting procedure to
the calculated HF/6-31G* and B3LYP/6-31G* partially optimized points.
Additional fittings were performed with the MP2/6-31G*//HF/6-31G*,
MP2/6-31G*//B3LYP/6-31G*, B3LYP/6-31G*//HF/6-31G*,
BLYP/6-31G*//HF/6-31G*, B3P86/6-31G*//HF/6-31G* and
SVWN/6-31G*//HF/6-31G* single energy points. The energy barriers
obtained from the fitted curve were compared to the ones calculated
from the energy differences between fully optimized minima and TS
structures. The fitted Fourier potential is found to be adequate for
the description of the internal rotation in the p-phenylthiophene
dimer. The B3LYP/6-31G*//HF/6-31G* level of calculation seems
sufficient for studying this class of compounds. The inclusion of the
phenyl substituent group in the bithiophene, which makes it more easily
processable, does not alter significantly the energy gap. Therefore,
the p-phenylthiophene would be expected to exhibit similar conductivity
to the parent non-substituted bithiophene compound.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Juiz de Fora, ICE, Dept Quim, BR-36036330 Juiz De Fora, MG, Brazil.
RP De Oliveira, MA, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim
Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR 1998, GAUSSIAN DFT SUPPLEM
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P1372
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BREDAS JL, 1983, J AM CHEM SOC, V105, P6555
BREDAS JL, 1983, J CHEM PHYS, V78, P5656
BREDAS JL, 1985, J CHEM PHYS, V83, P1323
DEOLIVEIRA MA, UNPUB J CHEM PHYS
DICESARE N, 1999, J MOL STRUC-THEOCHEM, V467, P259
DIRAC PAM, 1930, P CAMB PHILOS SOC, V26, P376
DISTEFANO G, 1993, J PHYS CHEM-US, V97, P3504
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DORO PC, 1969, TETRAHEDRON LETT, V10, P4179
DOSSANTOS HF, 1995, ANN 3 BRAZ C POL RIO, P1199
DUARTE HA, 2000, IN PRESS J CHEM PHYS
FORREST SR, 1997, CHEM REV, V97, P1736
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GORDON MS, 1982, J AM CHEM SOC, V104, P2797
GUERRERO DJ, 1994, CHEM MATER, V6, P1437
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HARIHARAN PC, 1974, MOL PHYS, V27, P209
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HERNANDEZ V, 1994, J CHEM PHYS, V101, P1369
HOHENBERG P, 1964, PHYS REV B, V136, P864
JURIMAE T, 1995, INT J QUANTUM CHEM, V54, P369
KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
KOHN W, 1965, PHYS REV, V140, A1133
LEE C, 1988, PHYS REV B, V37, P785
MOLLER C, 1934, PHYS REV, V46, P618
NALWA HS, 1997, HDB ORGANIC CONDUCTI
ORT E, 1995, J PHYS CHEM-US, V99, P4955
PADILLACAMPOS L, 1995, THEOCHEM-J MOL STRUC, V330, P223
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERNAUT JM, 1994, J CHIM PHYS PCB, V91, P433
PIETRO WJ, 1982, J AM CHEM SOC, V104, P5039
QUATTROCCHI C, 1993, CHEM PHYS LETT, V208, P120
RONCALI J, 1992, CHEM REV, V92, P711
SAEBO S, 1989, CHEM PHYS LETT, V154, P83
SAMDAL S, 1993, SYNTHETIC MET, V59, P259
SATO M, 1987, J CHEM SOC CHEM COMM, P1725
SATO M, 1989, MAKROMOL CHEM, V190, P1233
SCOTHEIM TA, 1996, HDB CONDUCTING POLYM
SHIRAKAWA H, 1977, J CHEM SOC CHEM COMM, P578
SLATER JC, 1974, SELF CONSISTING FIEL, V4
STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
STEWART JJP, 1990, J COMPUT AID MOL DES, V5, P1
VIRUELA PM, 1997, J AM CHEM SOC, V119, P1360
VIRUELA PM, 1998, INT J QUANTUM CHEM, V70, P303
VOSKO SH, 1980, CAN J PHYS, V58, P1200
ZOPPI RA, 1993, QUIM NOVA, V16, P560
NR 52
TC 5
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI PCCP Phys. Chem. Chem. Phys.
PY 2000
VL 2
IS 15
BP 3373
EP 3380
PG 8
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 338FP
UT ISI:000088407700003
ER
PT J
AU Esteves, PM
Alberto, GGP
Ramirez-Solis, A
Mota, CJA
TI The n-butonium cation (n-C4H11+): The potential energy surface of
protonated n-butane
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID THEORETICAL AB-INITIO; CARBONIUM-IONS; ELECTRONIC-STRUCTURE;
ELECTROPHILIC REACTIONS; INFRARED-SPECTROSCOPY; MOLECULAR-HYDROGEN;
SINGLE BONDS; CH5+; C2H7+; REARRANGEMENT
AB The structure and energetics of the n-butonium ion, the protonated form
of n-butane, were computed at the
MP4SDTQ(fc)/6-311++G**//MP2(full)/6-31G** level. Eleven stable
structures were found for the n-butonium ion, following the stability
order 2-C-n-butonium > 1-C-n-butonium > 2-H-n-butonium >
1-H-n-butonium. The transition states for intramolecular bond-to-bond
rearrangement and for decomposition of the carbonium ions into the van
der Waals complexes were also calculated. The H-n-butonium and the
1-C-n-butonium ions are higher in energy than the van der Waals
complexes 13, 14, and 15. The van der Waals complexes between the
isopropyl cation plus CH4 and the tert-butyl cation plus H-2 are the
most stable C4H11+ species. It was concluded that the 1-H-n-butonium
ion prefers to undergo intramolecular rearrangement to the
1-C-n-butonium ion, whereas the 2-H-n-butonium ion prefers to decompose
into the van der Waals complex of the sec-butyl cation plus H-2. The
calculated proton affinity of n-butane (156.7 kcal/mol) agrees well
with the experimental value of 153.7 kcal/mol. The C4H11+ (b) species,
formed upon the gas-phase reaction between C2H5+ and ethane, was
confirmed to be the 2-C-n-butonium cation, and the C4H11+ (a) species
was confirmed to be the 2-H-n-butonium cation, as proposed by Hiraoka
and Kebarle (Can. J. Chem. 1980, 58, 2262-2270). The experimental
activation energy of 9.6 kcal/mol was compared with the value of 12.8
kcal/mol, computed for the reaction 11 --> 5 through the transition
state 21.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BOO DW, 1993, CHEM PHYS LETT, V211, P358
BOO DW, 1995, J CHEM PHYS, V103, P520
BOO DW, 1995, SCIENCE, V269, P57
BOO DW, 1996, INT J MASS SPECTROM, V159, P209
BUNKER PR, 1996, J MOL SPECTROSC, V176, P297
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
COLLINS SJ, 1996, J CHEM SOC FARADAY T, V92, P4347
COLLINS SJ, 1998, TOP CATAL, V6, P151
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
FIELD FH, 1965, J AM CHEM SOC, V87, P3289
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FUTRELL JH, 1970, J CHEM PHYS, V52, P3655
HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
HIRAOKA K, 1980, CAN J CHEM, V58, P2262
HIRAOKA K, 1993, CHEM PHYS LETT, V207, P178
HOUT RF, 1982, J COMPUT CHEM, V3, P234
KOCK W, 1989, J AM CHEM SOC, V111, P3479
LIDE DR, 1994, CRC HDB CHEM PHYSICS
MARX D, 1995, NATURE, V375, P216
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
MULLER H, 1997, J CHEM PHYS, V106, P1863
OBATA S, 1993, B CHEM SOC JPN, V66, P3271
OLAH GA, 1971, J AM CHEM SOC, V93, P1259
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
SAUNDERS M, 1968, J AM CHEM SOC, V90, P6882
SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHLOSBERG RH, 1976, J AM CHEM SOC, V98, P7723
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SIEBER S, 1993, J AM CHEM SOC, V115, P259
SISKIN M, 1976, J AM CHEM SOC, V98, P5413
SOMMER J, 1996, RES CHEM INTERMEDIAT, V22, P753
TALROZE VL, 1952, DOKL AKAD NAUK SSSR, V86, P909
YEH LI, 1989, J AM CHEM SOC, V111, P5597
NR 39
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUL 6
PY 2000
VL 104
IS 26
BP 6233
EP 6240
PG 8
SC Chemistry, Physical
GA 332CY
UT ISI:000088057000016
ER
PT J
AU Capelle, K
Oliveira, LN
TI Density-functional theory for spin-density waves and antiferromagnetic
systems
SO PHYSICAL REVIEW B
LA English
DT Article
ID GENERALIZED-GRADIENT-APPROXIMATION; HIGH-TEMPERATURE SUPERCONDUCTORS;
BAND-STRUCTURE CALCULATIONS; STRONG MAGNETIC-FIELDS;
ELECTRONIC-STRUCTURE; GROUND-STATE; GAMMA-FE; EXCHANGE; MOLECULES;
CHROMIUM
AB An extension of density-functional theory, designed to treat
spin-density waves and antiferromagnetic systems, is presented. The
nonlocal nature of the antiferromagnetic correlations and possible
noncollinearity in spin space are incorporated via an additional
fundamental variable, the staggered density, which supplements the spin
densities of conventional density-functional theory. Inclusion of this
variable is justified by both physical and methodological
considerations. We prove the corresponding Hohenberg-Kohn theorem,
derive the pertinent Kohn-Sham equations, and present several
approximate functionals depending explicitly on the staggered density.
As a first test the formalism is applied to two simple model systems, a
one-dimensional electron gas with a short-range interaction, and the
three-dimensional electron gas with Coulomb interactions. These
calculations serve to test the developed formalism, bur also already
allow us to draw a number of conclusions regarding the stability and
nature of possible spin-density wave states in homogeneous electron
systems.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil.
Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis & Informat, BR-13560970 Sao Carlos, SP, Brazil.
RP Capelle, K, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol,
Caixa Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR BONEV SA, 1999, B AM PHYS SOC, V44, P105
BYLANDER DM, 1998, PHYS REV B, V58, P9207
BYLANDER DM, 1999, PHYS REV B, V59, P6278
CALAIS JL, 1982, J PHYS C SOLID STATE, V15, P3093
CAPELLE K, 1999, EUR PHYS J B, V12, P225
CAPELLE K, 2000, EUROPHYS LETT, V49, P376
CEPERLEY D, 1978, PHYS REV B, V18, P3126
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CEPERLEY DM, 1984, MONTE CARLO METHODS
COEY JMD, 1987, CAN J PHYS, V65, P1210
DEGENNES PG, 1966, SUPERCONDUCTIVITY ME
DREIZLER RM, 1990, DENSITY FUNCTIONAL T
FAWCETT E, 1988, REV MOD PHYS, V60, P209
FAWCETT E, 1994, REV MOD PHYS, V66, P25
FEDDERS PA, 1966, PHYS REV, V143, P245
FUKUTOME H, 1981, INT J QUANTUM CHEM, V20, P955
GOERLING A, 1996, PHYS REV B, V53, P7024
GRABO T, 1998, STRONG COULOMB CORRE
GRUNER G, 1994, REV MOD PHYS, V66, P1
GUNNARSSON O, 1976, PHYS REV B, V13, P4274
GYGI F, 1991, PHYS REV B, V43, P7609
GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337
GYORFFY BL, 1998, PHYS REV B, V58, P1025
HELLWEGE KH, 1994, LANDOLTBORNSTEIN NEW, V13
HERRING C, 1966, MAGNETISM, V4
HOHENBERG P, 1964, PHYS REV B, V136, P864
ISHIGURO T, 1990, SPRINGER SERIES SOLI, V88
JONES W, 1973, THEORETICAL SOLID ST, V1
KLEINMAN L, 1999, PHYS REV B, V59, P3314
KOHN W, 1965, PHYS REV, V140, A1133
KOHN W, 1989, J PHYS-PARIS, V50, P2601
KOSKINEN M, 1997, PHYS REV LETT, V79, P1389
KOTANI T, 1995, PHYS REV B, V52, P17153
KOTANI T, 1995, PHYS REV LETT, V74, P2989
KURTH S, 1999, ELECT CORRELATIONS M
KURTH S, 1999, PHYS REV LETT, V83, P2628
LEVY M, 1979, P NATL ACAD SCI USA, V76, P6062
LEVY M, 1982, PHYS REV A, V26, P1200
MCWEENY R, 1989, METHODS MOL QUANTUM
NORDSTROM L, 1996, PHYS REV LETT, V76, P4420
OLIVEIRA LN, 1988, PHYS REV LETT, V60, P2430
ORTIZ G, 1999, B AM PHYS SOC, V44, P105
ORTIZ G, 1999, PHYS REV LETT, V82, P5317
OVERHAUSER AW, 1960, PHYS REV LETT, V4, P462
OVERHAUSER AW, 1962, PHYS REV, V128, P1437
PARR RG, 1989, DENSITY FUNCTIONAL T
PERDEW JP, 1995, PHYS REV A, V51, P4531
PERDEW JP, 1997, INT J QUANTUM CHEM, V61, P197
PERDEW JP, 1998, LECT NOTES PHYSICS, V500
PERDEW JP, 1999, PHYS REV LETT, V82, P2544
PLEHN H, 1994, PHYS REV B, V49, P12140
SANDRATSKII LM, 1998, ADV PHYS, V47, P91
SHAM LJ, 1985, PHYS REV B, V32, P3876
SINGH DJ, 1992, PHYS REV B, V46, P11570
STADELE M, 1997, PHYS REV LETT, V79, P2089
STICHT J, 1989, J PHYS-CONDENS MAT, V1, P8155
SUVASINI MB, 1993, PHYS REV B, V48, P1202
SYKJA B, 1982, J PHYS C SOLID STATE, V15, P3079
TEMMERMAN WM, 1996, PHYS REV LETT, V76, P307
TEMMERMAN WM, 1998, ELECT DENSITY FUNCTI, P327
TSUNODA Y, 1989, J PHYS-CONDENS MAT, V1, P10427
VIGNALE G, 1987, PHYS REV LETT, V59, P2360
VIGNALE G, 1988, PHYS REV B, V37, P10685
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
WEINER B, 1998, INT J QUANTUM CHEM, V69, P451
ZIESCHE P, 1998, COMP MATER SCI, V11, P122
NR 66
TC 9
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 1
PY 2000
VL 61
IS 22
BP 15228
EP 15240
PG 13
SC Physics, Condensed Matter
GA 325AL
UT ISI:000087654100049
ER
PT J
AU Pliego, JR
Riveros, JM
TI On the calculation of the absolute solvation free energy of ionic
species: Application of the extrapolation method to the hydroxide ion
in aqueous solution
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID MONTE-CARLO SIMULATION; PERIODIC BOUNDARY-CONDITIONS; AB-INITIO;
CONTINUUM ELECTROSTATICS; POTENTIAL FUNCTIONS; LIQUID WATER; GAS-PHASE;
HYDRATION; CLUSTERS; MODEL
AB The absolute solvation free energy of the hydroxide ion in aqueous
solution was calculated by Monte Carlo simulation and free energy
perturbation. We have used the TIP3P model for water and the
solute-solvent interaction was modeled as an effective two-body
potential of charge-charge plus Lennard-Jones terms fitted to reproduce
the interaction energy in the OH-(H2O)(3) and OH-(H2O)(4) ionic
clusters. The electrostatic contribution to the solvation free energy
was determined by using solvent boxes having 120, 160, 216, 350, and
512 water molecules, and the limit for N approaching infinity was
obtained by an extrapolation procedure. The final solvation free energy
obtained by considering the Lennard-Jones potential contribution,
correcting for the cutoff surface potential, and including the surface
potential of water cluster amounts to -108.0 kcal mol(-1): in very good
agreement with the experimental value of -105.0 kcal mol(-1). This
result shows that the extrapolation method coupled with the use of an
effective two-body potential is a viable and accurate procedure for
calculating the absolute solvation free energy of ionic species.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, SP, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, SP,
Brazil.
CR ALLEN MP, 1989, COMPUTER SIMULATION
AQVIST J, 1990, J PHYS CHEM-US, V94, P8021
AQVIST J, 1994, J PHYS CHEM-US, V98, P8253
BENNAIM A, 1978, J PHYS CHEM-US, V82, P792
BENNAIM A, 1984, J CHEM PHYS, V81, P2016
CARLSON HA, 1993, J COMPUT CHEM, V14, P1240
CHIPOT C, 1994, J PHYS CHEM-US, V98, P11362
CONWAY BE, 1981, IONIC HYDRATION CHEM
DARDEN T, 1998, J CHEM PHYS, V109, P10921
DELVALLE CP, 1997, CHEM PHYS LETT, V269, P401
GAO J, 1986, J AM CHEM SOC, V108, P4784
GRIMM AR, 1995, MOL PHYS, V86, P369
HUMMER G, 1996, J PHYS CHEM-US, V100, P1206
HUMMER G, 1997, J PHYS CHEM B, V101, P3017
HUNENBERGER PH, 1999, J CHEM PHYS, V110, P1856
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1988, MOL PHYS, V63, P547
JORGENSEN WL, 1989, CHEM PHYS, V129, P193
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1993, J COMPUT CHEM, V14, P195
JORGENSEN WL, 1993, J COMPUT CHEM, V14, P206
JORGENSEN WL, 1995, BOSS VERSION 3 5 YAL
KING G, 1989, J CHEM PHYS, V91, P3647
MARCUS Y, 1985, ION SOLVATION
MARRONE TJ, 1994, J PHYS CHEM-US, V98, P8256
MEOTNER M, 1986, J PHYS CHEM-US, V90, P6616
PAPPALARDO RR, 1996, J PHYS CHEM-US, V100, P11748
PAUL GJC, 1990, J PHYS CHEM-US, V94, P5148
PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
PLIEGO JR, 1999, PCCP PHYS CHEM CH PH, V1, P1031
PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
PRATT LR, 1992, J PHYS CHEM-US, V96, P25
SAKANE S, 1998, J PHYS CHEM B, V102, P5673
SOKHAN VP, 1997, MOL PHYS, V92, P625
STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
TISSANDIER MD, 1998, J PHYS CHEM A, V102, P7787
TUNON I, 1995, J PHYS CHEM-US, V99, P3798
TURKI N, 1998, J CHEM PHYS, V109, P7157
WOOD RH, 1995, J CHEM PHYS, V103, P6177
XANTHEAS SS, 1995, J AM CHEM SOC, V117, P10373
NR 42
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5647
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD JUN 1
PY 2000
VL 104
IS 21
BP 5155
EP 5160
PG 6
SC Chemistry, Physical
GA 320WU
UT ISI:000087424500019
ER
PT J
AU Gorelsky, SI
da Silva, SC
Lever, ABP
Franco, DW
TI Electronic spectra of trans-[Ru(NH3)(4)(L)NO](3+/2+) complexes
SO INORGANICA CHIMICA ACTA
LA English
DT Article
DE electronic spectra; ruthenium complexes; nitrosyl-metal complexes; DFT;
TD-DFT
ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL THEORY; EXTENDED
BASIS-SETS; COMPACT EFFECTIVE POTENTIALS; EFFECTIVE CORE POTENTIALS;
EXPONENT BASIS-SETS; ORGANOMETALLIC COMPOUNDS; TRANSITION-METALS;
EXCITATION-ENERGIES; 1ST-ROW ELEMENTS
AB Density functional theory (DFT) with local, non-local and hybrid
functionals has been used to obtain the geometry of a series of
nitrosyl-metal complexes [Ru(NH3)(4)(L)NO](n+), where L = NH3, H2O,
pyrazine and pyridine (n = 3), Cl- and OH- (n = 2). Based on the
molecular orbital analysis and the time dependent DFT (TD-DFT)
calculations, we discuss the electronic structure and the assignment of
the bands in the electronic spectra of these complexes. (C) 2000
Elsevier Science S.A. All rights reserved.
C1 York Univ, Dept Chem, Toronto, ON M3J 1P3, Canada.
Univ Sao Paulo, Inst Quim, BR-13560970 Sao Carlos, SP, Brazil.
RP Lever, ABP, York Univ, Dept Chem, Toronto, ON M3J 1P3, Canada.
CR *HYP INC, 1997, HYPERCHEM WIND REL 5
BAUERNSCHMITT R, 1996, CHEM PHYS LETT, V256, P454
BAUERNSCHMITT R, 1998, J AM CHEM SOC, V120, P5052
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BEZERRA CWB, 1999, INORG CHEM, V38, P5660
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BLAUDEAU JP, 1997, J CHEM PHYS, V107, P5016
BOTTOMLEY F, 1974, J CHEM SOC DA, V15, P1600
BRAY MR, 1996, INT J QUANTUM CHEM, V61, P85
CASIDA ME, 1995, RECENT ADV DENSITY F, V1
CASIDA ME, 1996, RECENT DEV APPL MODE, V4
CASIDA ME, 1997, MON KS MODULE RELEAS
CASIDA ME, 1998, J CHEM PHYS, V108, P4439
CLARK T, 1983, J COMPUT CHEM, V4, P294
CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
DA S, 1998, INORG CHEM, V37, P2670
DAUL C, 1993, J CHEM PHYS, V98, P4023
DOBBS KD, 1986, J COMPUT CHEM, V7, P359
DOBBS KD, 1987, J COMPUT CHEM, V8, P861
DOBBS KD, 1987, J COMPUT CHEM, V8, P880
DUNNING TH, 1977, METHODS ELECT STRUCT, V2
ESTRIN DA, 1996, INORG CHEM, V35, P3897
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
FUENTEALBA P, 1982, CHEM PHYS LETT, V89, P418
FUENTEALBA P, 1983, J PHYS B ATOM MOL PH, V16, P1323
FUENTEALBA P, 1985, J PHYS B ATOM MOL PH, V18, P1287
GODBOUT N, 1992, CAN J CHEM, V70, P560
GOMES MG, 1998, J CHEM SOC DALT 0221, P601
GORDON MS, 1982, J AM CHEM SOC, V104, P2797
GORELSKY SI, 1998, COORDIN CHEM REV, V174, P469
GORELSKY SI, 1998, RUSS J COORD CHEM, V24, P491
HAMRA OY, 1998, INORG CHEM, V37, P2033
HAY PJ, 1985, J CHEM PHYS, V82, P270
HAY PJ, 1985, J CHEM PHYS, V82, P299
HOLLAUER E, 1997, J BRAZIL CHEM SOC, V8, P495
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
KROGHJESPERSEN K, 1987, J AM CHEM SOC, V109, P7025
LEE C, 1988, PHYS REV B, V37, P785
LEVER ABP, 1990, INORG CHEM, V29, P1271
LEVER ABP, 1999, INORGANIC ELECT STRU, V2, P227
LOPES LGF, 1998, AUST J CHEM, V51, P865
MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
PERDEW JP, 1986, PHYS REV B, V33, P8800
PERDEW JP, 1986, PHYS REV B, V33, P8822
PROYNOV EI, 1994, CHEM PHYS LETT, V230, P419
PROYNOV EI, 1994, PHYS REV A, V50, P3766
PROYNOV EI, 1994, PHYS REV B, V49, P7874
PROYNOV EI, 1995, CHEM PHYS LETT, V234, P462
PROYNOV EI, 1995, INT J QUANTUM CHEM S, V29, P61
PROYNOV EI, 1997, INT J QUANTUM CHEM, V64, P427
PROYNOV EI, 1998, PHYS REV B, P12616
SCHREINER AF, 1972, INORG CHEM, V11, P880
SILVA SC, 1999, SPECTROSC ACTA A, V55, P1515
STAMANT A, 1992, THESIS U MONTREAL
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1992, CAN J CHEM, V70, P612
STOLL H, 1984, J CHEM PHYS, V81, P2732
STRATMANN RE, 1998, J CHEM PHYS, V109, P8218
SZENTPALY L, 1982, CHEM PHYS LETT, V93, P555
VOSKO SH, 1980, CAN J PHYS, V58, P1200
WADT WR, 1985, J CHEM PHYS, V82, P284
WESTCOTT BL, 1999, INORGANIC ELECT STRU, V2, P403
WONG MW, 1991, J AM CHEM SOC, V113, P4776
WONG MW, 1991, J CHEM PHYS, V95, P8991
WONG MW, 1992, J AM CHEM SOC, V114, P1645
WONG MW, 1992, J AM CHEM SOC, V114, P523
ZERNER MC, ZINDO PROGRAM VERSIO
NR 68
TC 41
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0020-1693
J9 INORG CHIM ACTA
JI Inorg. Chim. Acta
PD APR 30
PY 2000
VL 300
BP 698
EP 708
PG 11
SC Chemistry, Inorganic & Nuclear
GA 320WA
UT ISI:000087422800083
ER
PT J
AU de Oliveira, AE
Haiduke, RLA
Bruns, RE
TI The infrared fundamental intensities and polar tensor of CF4
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE infrared intensities; atomic polar tensors; electronegativity; G sum
rule; simple potential model
ID DIPOLE-MOMENT DERIVATIVES; PRINCIPAL COMPONENT ANALYSIS; CORIOLIS
INTERACTIONS; METHANE; CHLOROFLUOROCARBONS; ENERGIES; FLUORIDE;
CHARGES; SIGNS
AB Atomic polar tensors of carbon tetrafluoride are calculated from
experimental fundamental infrared intensities measured by several
research groups. Quantum chemical calculations using a 6-311 + + G(3d,
3p) basis set at the Hartree-Fock, Moller-Plesset 2 and Density
Functional Theory (B3LYP) levels are used to resolve the sign
ambiguities of the dipole moment derivatives. The resulting carbon mean
dipole moment derivative, (p) over bar(C) = 2.051 e, is in excellent
agreement with values estimated by a MP2/6-311 + + G(3d, 3p)
theoretical calculation, 2.040 e, and by an empirical electronegativity
model. 2.016 e. The (p) over bar(C) value determined here is also in
excellent agreement with the one obtained from the CF4 Is carbon
ionization energy using a simple potential model, 2.059 e. Crawford's G
intensity sum rule applied to the fundamental intensities of CH4, CH3F,
CH2F2 and CHF3 results in a prediction of a 1249 km mol(-1) intensity
sum for CF4 in good agreement with the experimental values of 1328 +/-
37.9, 1208.0 +/- 54.4 and 1194.8 +/- 7.4 km mol(-1) reported in the
literature. (C) 2000 Elsevier Science B.V. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP de Oliveira, AE, Univ Estadual Campinas, Inst Quim, CP 6154,
BR-13083970 Campinas, SP, Brazil.
CR BARROW GM, 1952, P ROY SOC LOND A MAT, V213, P27
BIARGE JF, 1961, ANALES REAL SOC ES A, V57, P81
BODE JHG, 1980, J PHYS CHEM-US, V84, P198
BRUNS RE, 1996, J BRAZIL CHEM SOC, V7, P497
CIOSLOWSKI J, 1989, J AM CHEM SOC, V111, P8333
CRAWFORD BL, 1952, J CHEM PHYS, V20, P977
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GOLDEN WG, 1978, J CHEM PHYS, V68, P2081
GUADAGNINI PH, 1997, J AM CHEM SOC, V119, P4224
HANNAH RW, 1959, THESIS PURDUE U
HEICKLEN J, 1961, SPECTROCHIM ACTA, V17, P201
HUHEEY JE, 1965, J PHYS CHEM-US, V69, P3284
KIM K, 1980, J CHEM PHYS, V73, P5591
KIM K, 1987, J QUANT SPECTROSC RA, V37, P107
KING WT, 1972, J CHEM PHYS, V56, P4440
KONDO S, 1980, J CHEM PHYS, V73, P5409
KONDO S, 1981, J CHEM PHYS, V74, P6603
KONDO S, 1982, J CHEM PHYS, V76, P809
LEVIN IW, 1970, J CHEM PHYS, V52, P1608
MCDANIEL AH, 1991, J ATMOS CHEM, V12, P211
MIZUNO M, 1976, SPECTROCHIM ACTA A, V32, P1077
NETO BB, 1988, J CHEM PHYS, V89, P1887
NETO BB, 1989, J PHYS CHEM-US, V83, P1728
OVEREND J, 1963, INFRARED SPECTROSCOP, P345
OVEREND J, 1982, VIBRATIONAL INTENSIT, P14
PERSON WB, 1974, J CHEM PHYS, V61, P1040
PERSON WB, 1975, J PHYS CHEM-US, V79, P2525
ROEHL CM, 1995, GEOPHYS RES LETT, V22, P815
RUSSELL JW, 1966, J CHEM PHYS, V45, P3383
SAEKI S, 1976, SPECTROCHIM ACTA PT, V32, P403
SCHATZ PN, 1953, J CHEM PHYS, V21, P1516
SCHURIN B, 1959, J CHEM PHYS, V30, P1
SIEGBAHN K, 1971, ESCA APPL FREE MOL
SUTO E, 1991, J COMPUT CHEM, V12, P885
SUTO E, 1991, J PHYS CHEM-US, V95, P9716
VARANASI P, 1988, J GEOPHYS RES, V93, P1666
NR 36
TC 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUN
PY 2000
VL 56
IS 7
BP 1329
EP 1335
PG 7
SC Spectroscopy
GA 319YW
UT ISI:000087374900011
ER
PT J
AU Rivelino, R
Canuto, S
TI An ab initio study of the hydrogen-bonded H2O : HCN and HCN : H2O
isomers
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID QUANTUM-CHEMISTRY; CYANIDE; WATER; COMPLEXES; SPECTROSCOPY; MOLECULES;
SPECTRA
AB Ab initio calculations an performed on the hydrogen bond interaction
between HCN and water to analyze the structure, binding energy and
change in vibrational frequencies of the HCN:H2O isomer. After geometry
optimization, single-point calculations are made with many-body
perturbation/coupled-cluster theories with different basis sets. At the
highest level, CCSD(T), we find that the binding energy between HCN and
water is 3.4 kcal/mol, after correcting for the basis-set-super
position error. Changes in intra-molecular vibrational frequencies are
analyzed. (C) 2000 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENTWOOD RM, 1980, J MOL SPECTROSC, V84, P391
BERNSTEIN ER, 1990, ATOMIC MOL CLUSTERS
BOYS SF, 1970, MOL PHYS, V19, P553
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
FILLERYTRAVIS AJ, 1984, P ROY SOC LOND A MAT, V396, P405
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GUTOWSKY HS, 1992, J CHEM PHYS, V96, P5808
HARRIS DC, 1989, SYMMETRY SPECTROSCOP
HEHRE WJ, 1986, AB INITIO MOL ORBITA
IRVINE WM, 1996, NATURE, V383, P418
LEE C, 1988, PHYS REV B, V37, P785
LIEBMAN SA, 1994, ADV SPACE RES, V15, P71
MATHEWS CN, 1992, ORIGIN LIFE EVOL B, V21, P421
MEOTNER M, 1989, J PHYS CHEM-US, V93, P3663
MICHAEL DW, 1984, J CHEM PHYS, V81, P1360
NOTESCO G, 1997, ICARUS, V126, P336
PAULING L, 1928, P NATL ACAD SCI USA, V14, P349
RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
SCHEINER S, 1997, HYDROGEN BONDING THE
SCOLES G, 1990, CHEM PHYSICS ATOMIC
SMITH DA, 1994, ACS S SERIES, V569
SMITH DMA, 1998, CHEM PHYS LETT, V288, P609
STONE AJ, 1996, THEORY INTERMOLECULA
SZCZESNIAK MM, 1984, J CHEM PHYS, V81, P5024
SZCZESNIAK MM, 1986, J MOL STRUCT THEOCHE, V135, P179
TSHEHLA TM, 1994, B POL ACAD SCI-CHEM, V42, P397
TURI L, 1993, J PHYS CHEM-US, V97, P7899
VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
NR 30
TC 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 19
PY 2000
VL 322
IS 3-4
BP 207
EP 212
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 318EX
UT ISI:000087271900009
ER
PT J
AU Bezerra, EF
Freire, VN
Teixeira, AMR
Silva, MAA
Freire, PTC
Mendes, J
Lemos, V
TI Smooth interface effects on the Raman scattering in zinc-blende AlN/GaN
superlattices
SO PHYSICAL REVIEW B
LA English
DT Article
ID III NITRIDE SEMICONDUCTORS; QUANTUM-WELLS; CUBIC GAN; LATTICE-DYNAMICS;
EPITAXIAL LAYERS; OPTICAL PHONONS; AB-INITIO; MODES; SPECTROSCOPY;
SPECTRA
AB Raman spectra of
(AlN)(8-delta)/(AlxGa1-xN)(delta)/(GaN)(8-delta)/(AlxGa1-xN)(delta)
superlattices with interface thickness varying between delta = 0 and
delta = 3 are calculated. The influence of the nonabrupt interface
related broadening is described in the complete range of scattering,
with special attention to the modes giving stronger contribution to the
Raman intensity. It is shown that the dispersion of folded acoustic
phonons does not change appreciably with the interface smoothing. For
delta = 0 the Raman spectra display new peaks due to the enhancement of
some confined optic modes.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, UNICAMP, BR-13083970 Campinas, SP, Brazil.
RP Lemos, V, Univ Fed Ceara, Dept Fis, Ctr Ciencias, Caixa Postal
6030,Campus do Pici, BR-60455760 Fortaleza, Ceara, Brazil.
CR AKASAKI I, 1997, JPN J APPL PHYS 1, V36, P5393
BEHR D, 1997, APPL PHYS LETT, V70, P363
BELITSKY VI, 1994, PHYS REV B, V49, P8263
CINGOLANI R, 1997, PHYS REV B, V56, P1491
DHARMAWARDANA MWC, 1990, PHYS REV B, V41, P5319
GIEHLER M, 1995, APPL PHYS LETT, V67, P733
GRILLE H, 1996, J RAMAN SPECTROSC, V27, P201
HARIMA H, 1999, APPL PHYS LETT, V74, P191
HOLST J, 1998, APPL PHYS LETT, V72, P1439
JUSSERAND B, 1989, TOP APPL PHYS, V66, P49
KARCH K, 1997, PHYS REV B, V56, P7404
KARCH K, 1998, PHYS REV B, V57, P7043
LEMOS V, 1995, SUPERLATTICE MICROST, V17, P51
LEMOS V, 1999, J RAMAN SPECTROSC, V30, P379
LIU XH, 1996, PHYS REV B, V53, P4699
MACMILLAN MF, 1996, J APPL PHYS, V80, P2372
MOHAMMAD SN, 1996, PROG QUANT ELECTRON, V20, P361
NAKAMURA S, 1997, BLUE LASER DIODE
PILLA O, 1994, PHYS REV B, V50, P11845
PLOOG KH, 1997, THIN SOLID FILMS, V306, P231
RAMIREZFLORES G, 1994, PHYS REV B, V50, P8433
SAMSON B, 1992, PHYS REV B, V46, P2375
SIEGLE H, 1995, SOLID STATE COMMUN, V96, P943
SILVA MAA, 1996, PHYS REV B, V53, P15871
SMITH M, 1996, APPL PHYS LETT, V69, P2453
STRIFE S, 1992, J VAC SCI TECHNOL B, V10, P1237
SUN XL, 1999, APPL PHYS LETT, V74, P2827
TABATA A, 1999, APPL PHYS LETT, V74, P362
TABATA A, 1999, APPL PHYS LETT, V75, P1095
TABATA A, 1999, SEMICOND SCI TECH, V14, P1
TSEN KT, 1996, J RAMAN SPECTROSC, V27, P277
WEI GH, 1997, J APPL PHYS, V82, P622
ZI JA, 1996, J PHYS-CONDENS MAT, V8, P6329
NR 33
TC 11
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2000
VL 61
IS 19
BP 13060
EP 13063
PG 4
SC Physics, Condensed Matter
GA 316GK
UT ISI:000087159100092
ER
PT J
AU Bettega, MHF
Winstead, C
McKoy, V
TI Elastic scattering of low-energy electrons by benzene
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID TEMPORARY NEGATIVE-IONS; SELECTION-RULES; VIBRATIONAL-EXCITATION;
MOLECULE COLLISIONS; RESONANCES; IMPACT
AB We present elastic cross sections obtained from ab initio calculations
for low-energy electron scattering by benzene, C6H6. The calculations
employed the Schwinger multichannel method as implemented for parallel
computers within both the static-exchange and
static-exchange-polarization approximations. We compare our results
with other theoretical calculations and with available experimental
data. In general, agreement is good. (C) 2000 American Institute of
Physics. [S0021-9606(00)01120-X].
C1 CALTECH, Arthur Amos Noyes Lab Chem Phys, Pasadena, CA 91125 USA.
Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil.
RP Bettega, MHF, CALTECH, Arthur Amos Noyes Lab Chem Phys, Pasadena, CA
91125 USA.
CR AFLATOONI K, 1998, J PHYS CHEM A, V102, P6205
ALLAN M, 1982, HELV CHIM ACTA, V65, P2009
ALTMANN SL, 1957, P CAMB PHILOS SOC, V53, P343
AZRIA R, 1975, J CHEM PHYS, V62, P573
BATTAGLIA MR, 1981, CHEM PHYS LETT, V78, P421
BAUSCHLICHER CW, 1980, J CHEM PHYS, V72, P880
BENARFA M, 1990, J ELECTRON SPECTRY R, V50, P117
BETTEGA MHF, 1993, PHYS REV A, V47, P1111
CHAO JSY, 1987, J PHYS CHEM-US, V91, P5578
GALLUP GA, 1986, PHYS REV A, V34, P2746
GALLUP GA, 1993, J CHEM PHYS, V99, P827
GERJUOY E, 1955, PHYS REV, V97, P1671
GIANTURCO FA, 1998, J CHEM PHYS, V108, P6144
GULLEY RJ, 1998, J PHYS B-AT MOL OPT, V31, P2735
GULLEY RJ, 1999, COMMUNICATION
GULLEY RJ, 1999, J PHYS B-AT MOL OPT, V32, L405
HERZBERG G, 1966, MOL SPECTRA MOL STRU, V3, P999
JORDAN KD, 1987, CHEM REV, V87, P557
LEE CH, 1999, J CHEM PHYS, V111, P5056
LIMA MAP, 1990, PHYS REV A, V41, P327
MCKOY V, 1998, J VAC SCI TECHNOL A, V16, P324
MORRISON MA, 1977, PHYS REV A, V15, P2186
MOZEJKO P, 1996, CHEM PHYS LETT, V257, P309
NATALENSE APP, 1998, PHYS REV LETT, V81, P3832
NENNER I, 1975, J CHEM PHYS, V62, P1747
RESCIGNO TN, MODERN ELECT STRUC 1, V501, P95
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SUEOKA O, 1988, J PHYS B ATOM MOL PH, V21, L631
TAKATSUKA K, 1981, PHYS REV A, V24, P2473
TAKATSUKA K, 1984, PHYS REV A, V30, P1734
VARELLA MTD, 1999, J CHEM PHYS, V111, P6396
VARELLA MTD, 1999, PHYS REV A, V60, P3684
WIGNER EP, 1948, PHYS REV, V73, P1002
WIJNBERG L, 1966, J CHEM PHYS, V44, P3864
WINSTEAD C, 1996, ADV ATOM MOL OPT PHY, V36, P183
WINSTEAD C, 1998, PHYS REV A, V57, P3589
WONG SF, 1975, PHYS REV LETT, V35, P1429
NR 37
TC 17
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAY 22
PY 2000
VL 112
IS 20
BP 8806
EP 8812
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 310WC
UT ISI:000086851200010
ER
PT J
AU Rocha, WR
De Almeida, WB
TI Carbonyl insertion reaction into the Pt-C bond in heterobimetallic
Pt(SnCl3)(PH3)(2)(CO)(CH3) compound: Theoretical study
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE Pt(SnCl3)(PH3)(2)(CO)(CH3); heterobimetallic; catalytic species;
carbonyl insertion reaction; quantum mechanical
ID OLEFIN HYDROFORMYLATION; ABINITIO MO; ASYMMETRIC HYDROFORMYLATION;
ALKYL MIGRATION; REACTION-PATH; BASIS-SETS; AB-INITIO; COMPLEXES; PD;
MECHANISM
AB Quantum-mechanical calculations were carried out at the MP4(SDQ)//MP2
level of theory to determine the energies and reaction mechanism for
the carbonyl insertion reaction (second step in the olefin
hydroformylation catalytic cycle), using a heterobimetallic
Pt(SnCl3)(PH3)(2)(CO)(CH3) compound as a model catalytic species. The
results show that this reaction proceeds through a three-center
transition state, with an activation energy of 26.4 kcal/mol, followed
by an intramolecular rearrangement to the square-planar
cis-Pt(SnC4)(PH3)(2)(MeCO) metal-acyl product. Analysis of the nature
of the bonds shows that there is a negligible participation of Be tin
d-orbitals in the formation of the Pt-Sn bond. (C) 2000 John Wiley &
Sons, Inc.
C1 UFMG, ICEX, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, UFMG, ICEX, Dept Quim, LQCMM, BR-31270901 Belo
Horizonte, MG, Brazil.
CR ALBINATI A, 1985, J ORGANOMET CHEM, V295, P239
ANDERSON GK, 1984, ACCOUNTS CHEM RES, V17, P67
AUGUSTI R, 1995, P 8 SEM BRAS CAT, V1, P360
BOTTEGHI C, 1992, QUIM NOVA, V15, P21
BOTTEGHI C, 1997, QUIM NOVA, V20, P30
DAROCHA LL, 1998, J MOL CATAL A-CHEM, V132, P213
DIAS AD, 1997, TETRAHEDRON LETT, V38, P41
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
GATES BC, 1992, CATALYTIC CHEM
GOMEZ M, 1991, ORGANOMETALLICS, V10, P4036
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
GUSEVSKAYA E, 1997, J MOL CATAL A-CHEM, V121, P131
HAY PJ, 1985, J CHEM PHYS, V82, P270
HEHRE WJ, 1969, J CHEM PHYS, V51, P2657
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOLLWARTH A, 1993, CHEM PHYS LETT, V208, P237
KOGA N, 1985, J AM CHEM SOC, V107, P7230
KOGA N, 1986, J AM CHEM SOC, V108, P6136
KOGA N, 1991, NEW J CHEM, V15, P749
KOLLAR L, 1987, J ORGANOMET CHEM, V330, P305
MATSUBARA T, 1997, ORGANOMETALLICS, V16, P1065
MOLLER C, 1934, PHYS REV, V46, P618
NOACK K, 1967, J ORGANOMET CHEM, V10, P101
OZAWA F, 1981, CHEM LETT, P289
PARRINELLO G, 1987, J AM CHEM SOC, V109, P7122
PENG CY, 1993, ISRAEL J CHEM, V33, P449
PETTIT LD, 1972, Q REV, V56, P2257
REED AE, 1988, CHEM REV, V88, P899
ROCHA WR, 1997, INT J QUANTUM CHEM, V65, P643
ROCHA WR, 1998, ORGANOMETALLICS, V17, P1961
SAKAKI S, 1983, J AM CHEM SOC, V105, P2280
SCRIVANTI A, 1986, J ORGANOMET CHEM, V314, P369
VERSLUIS L, 1989, J AM CHEM SOC, V111, P2018
YAMAMOTO A, 1986, ORGANOTRANSITION MET
ZIEGLER T, 1986, J AM CHEM SOC, V108, P612
NR 36
TC 4
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD JUN
PY 2000
VL 21
IS 8
BP 668
EP 674
PG 7
SC Chemistry, Multidisciplinary
GA 310MC
UT ISI:000086831100005
ER
PT J
AU Fagan, SB
Baierle, RJ
Mota, R
da Silva, AJR
Fazzio, A
TI Ab initio calculations for a hypothetical material: Silicon nanotubes
SO PHYSICAL REVIEW B
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; CARBON NANOTUBES; ELECTRONIC-STRUCTURE;
MOLECULAR-DYNAMICS; SYSTEMS; TUBULES; BORON
AB Electronic and structural properties of a hypothetical material,
silicon nanotubes, are examined through first-principles calculations
based on density functional theory. Even considering that Si nanotubes
have never been observed, this paper attempts to establish the
theoretical similarities between Si and C, like band structures and
density of states, as well as the main differences, especially
associated with cohesive energies. The band-structure calculations for
silicon nanotubes show that, similar to carbon structures, depending on
their chiralities, they may present metallic (armchair) or
semiconductor (zigzag and mixed) behaviors.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Fagan, SB, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BETHUNE DS, 1993, NATURE, V363, P605
BLASE X, 1994, PHYS REV LETT, V72, P1878
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
CAR R, 1985, PHYS REV LETT, V55, P2471
CHOPRA NG, 1995, SCIENCE, V269, P966
DRESSELHAUS MS, 1992, SOLID STATE COMMUN, V84, P201
HAMADA N, 1992, PHYS REV LETT, V68, P1579
HOHENBERG P, 1964, PHYS REV, V136, B864
IIJIMA S, 1991, NATURE, V354, P54
IIJIMA S, 1993, NATURE, V363, P603
KLEYNMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
MINTMIRE JW, 1992, PHYS REV LETT, V68, P631
MIYAMOTO Y, 1996, PHYS REV LETT, V76, P2120
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
ODOM TW, 1998, NATURE, V391, P62
PERDEW JP, 1981, PHYS REV B, V23, P5048
ROTHLISBERGER U, 1994, PHYS REV LETT, V72, P665
STEPHAN O, 1994, SCIENCE, V266, P1683
WENGSIEH Z, 1995, PHYS REV B, V51, P11229
WILDOER JWG, 1998, NATURE, V391, P59
YAKOBSON BI, 1997, AM SCI, V85, P324
NR 23
TC 43
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD APR 15
PY 2000
VL 61
IS 15
BP 9994
EP 9996
PG 3
SC Physics, Condensed Matter
GA 306PZ
UT ISI:000086606200039
ER
PT J
AU Pinheiro, JC
Jorge, FE
De Castro, EVR
TI An improved generator coordinate Hartree-Fock method applied to the
choice of contracted Gaussian basis sets for first-row diatomic
molecules
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE improved generator coordinate Hartree-Fock method; contracted Gaussian
basis sets; first-row diatomic molecules
ID UNIVERSAL BASIS-SET; CORRELATION-ENERGY; 2ND-ROW ATOMS; MP2 ENERGY;
EXCHANGE; HYDROGEN
AB Accurate Gaussian basis sets (18s for Li and Be and 20s11p for the
atoms from B to Ne) for the first-row atoms, generated with an improved
generator coordinate Hartree-Fock method, were contracted and enriched
with polarization functions. These basis sets were tested for B-2, C-2,
BeO, CN-, LiF, N-2, CO, BF, NO+, O-2, and F-2. At the Hartree-Fock
(HP), second-order Moller-Plesset (MP2), fourth-order Moller-Plesset
(MP4), and density functional theory (DFT) levels, the dipole moments,
bond lengths, and harmonic vibrational frequencies were studied, and at
the MP2, MP4, and DFT levels, the dissociation energies were evaluated
and compared with the corresponding experimental values and with values
obtained using other contracted Gaussian basis sets and numerical HF
calculations. For all diatomic molecules studied, the differences
between our total energies, obtained with the largest contracted basis
set [6s5p3d1f], and those calculated with the numerical HF methods were
always less than 3.2 mhartree. (C) 2000 John Wiley & Sons, Inc.
C1 Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES, Brazil.
Univ Fed Espirito Santo, Dept Quim, BR-29060900 Vitoria, ES, Brazil.
Fed Univ Para, Fac Ciencias Exactas & Nat, Dept Quim, BR-66075110 Belem, Para, Brazil.
Ctr Estudos Panamazonico, BR-66060000 Belem, Para, Brazil.
RP Jorge, FE, Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES,
Brazil.
CR BECKE AD, 1982, J CHEM PHYS, V76, P6037
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BUNGE CF, 1992, PHYS REV A, V46, P3691
CHAKRAVORTY SJ, 1989, MODERN TECHNIQUES CO, CH3
DACOSTA HFM, 1991, CHEM PHYS, V154, P379
DECASTRO EVR, 1998, J CHEM PHYS, V108, P5225
DECASTRO EVR, 1999, J C CHEM PHYS, V243, P1
DINGLE TW, 1989, J COMPUT CHEM, V10, P753
DUNNING TH, 1997, METHODS ELECT STRUCT
FRISCH MJ, 1990, CHEM PHYS LETT, V166, P281
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HEADGORDON M, 1988, CHEM PHYS LETT, V153, P503
HEADGORDON M, 1994, CHEM PHYS LETT, V220, P122
HOUK RF, 1982, J COMPUT CHEM, V3, P234
HUBER KP, 1972, AM I PHYSICS HDB
HUBER KP, 1979, MOL SPECTRA MOL STRU, V4
JORGE FE, 1997, CHEM PHYS, V216, P317
JORGE FE, 1998, CHEM PHYS, V233, P1
JORGE FE, 1998, J COMPUT CHEM, V19, P858
JORGE FE, 1999, CHEM PHYS LETT, V302, P454
KRISHNAN R, 1978, INT J QUANTUM CHEM, V14, P91
LEE C, 1988, PHYS REV B, V37, P785
MOHALLEM JR, 1986, INT J QUANTUM CH S20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MONCRIEFF D, 1995, J PHYS B ATOM MOL PH, V28, P4555
NELSON RD, 1967, NATL STANDARDS REFER, V10
PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
PYYKKO P, 1987, MOL PHYS, V60, P597
RADZIG AA, 1985, REFERENCE DATA ATOMS
RAFFENETTI RC, 1973, J CHEM PHYS, V58, P4452
ROBLES J, 1987, CHEM PHYS LETT, V134, P27
SADLEJ J, 1985, SEMIEMPIRICAL METHOD
SEMINARIO JM, 1991, INT J QUANTUM CHEM S, V25, P249
NR 34
TC 12
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD MAY 15
PY 2000
VL 78
IS 1
BP 15
EP 23
PG 9
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 306TW
UT ISI:000086613600003
ER
PT J
AU Rocha, WR
De Almeida, WB
TI Insertion reaction of propane into Rh-H bond in HRh(CO)(PH3)(2)(C3H6)
compound: A density functional study
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE propene; insertion reaction; hydroformylation; regioselectivity;
density functional
ID RHODIUM-CATALYZED HYDROFORMYLATION; TRANSITION-METAL ATOMS; AB-INITIO;
PROPENE HYDROFORMYLATION; REACTION-PATH; COMPLEXES; LIGANDS;
TRIPHENYLPHOSPHINE; APPROXIMATION; CHEMISTRY
AB Quantum mechanical calculations at the MP4 (SDQ) level using the
BP86-optimized geometries were carried out to investigate the energies
and reaction mechanism for the propene (CH3-(CH)-H-1=CH22) insertion
reaction into the Rh-H bond, using the cis-HRh(CO)(PH3)(2) compound as
a model catalytic species. Since the reaction may occur on the branched
carbon 1 or in the normal carbon 2, which leads to branched and normal
Rh(alkyl) compounds, respectively, we investigated these two
mechanisms. The results show that the insertion in the branched carbon
has an activation energy of 16.2 kcal/mol, and the activation energy
for the reaction to take place at the normal carbon is 14.3 kcal/mol.
These activation energies, together with the calculated relative energy
of the metal-alkyl compounds formed after the insertion considering
these two pathways, were used to access the regioselectivity on this
reaction. We found a ratio of normal- and iso-products, n:iso, of
(96:4), which is in excellent agreement with the experimental
regioselectity of (95:5). (C) 2000 John Wiley & Sons, Inc.
C1 UFMG, ICEX, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, UFMG, ICEX, Dept Quim, LQCMM, BR-31270901 Belo
Horizonte, MG, Brazil.
CR BECKE AD, 1988, PHYS REV A, V38, P3098
BOTTEGHI C, 1992, QUIM NOVA, V15, P21
BOTTEGHI C, 1997, QUIM NOVA, V20, P30
BROWN JM, 1987, J CHEM SOC P2, P1597
CORNILS B, 1994, ANGEW CHEM INT EDIT, V33, P2144
DORO PC, 1980, CHIM IND-MILAN, V62, P572
EVANS D, 1968, J CHEM SOC A, P3133
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
GLADIALI S, 1995, J ORGANOMET CHEM, V491, P91
GLEICH D, 1998, ORGANOMETALLICS, V17, P4828
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
GONZALEZBLANCO O, 1997, ORGANOMETALLICS, V16, P5556
GORDON MS, 1996, COORDIN CHEM REV, V147, P87
GREGORIO G, 1980, CHIMICA IND, V62, P389
HAY PJ, 1985, J CHEM PHYS, V82, P270
HEHRE WJ, 1969, J CHEM PHYS, V51, P2657
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HERRMANN WA, 1993, ANGEW CHEM INT EDIT, V32, P1524
HERRMANN WA, 1997, ANGEW CHEM INT EDIT, V36, P1047
KOGA N, 1991, CHEM REV, V91, P823
MATSUBARA T, 1997, ORGANOMETALLICS, V16, P1065
OSBORN JA, 1966, J CHEM SOC A, P1711
PENG CY, 1993, ISRAEL J CHEM, V33, P449
PERDEW JP, 1986, PHYS REV B, V33, P8822
PIDUN U, 1998, CHEM-EUR J, V4, P522
PIGNOLET LH, 1983, HOMOGENEOUS CATALYSI
PRUETT RL, 1977, ANN NY ACAD SCI, V295, P239
ROCHA WR, 1997, INT J QUANTUM CHEM, V65, P643
SALAHUB DR, 1989, ACS S SERIES, V394
SCHMID R, 1997, ORGANOMETALLICS, V16, P701
SIEGBAHN PEM, 1993, J AM CHEM SOC, V115, P5803
SIEGBAHN PEM, 1996, ADV CHEM PHYS, V93, P333
STEGMANN R, 1998, ORGANOMETALLICS, V17, P2089
THATCHENKO I, 1982, COMPREHENSIVE ORGANO, V8
VEILARD A, 1985, QUANTUM CHEM CHALLEN
YAGUPSKY G, 1970, J CHEM SOC A, P1392
ZIEGLER T, 1991, CHEM REV, V91, P649
NR 38
TC 13
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD MAY 15
PY 2000
VL 78
IS 1
BP 42
EP 51
PG 10
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 306TW
UT ISI:000086613600006
ER
PT J
AU Leitao, AA
Vugman, NV
Bielschowsky, CE
TI On the origin of C-13 and N-14 hyperfine interactions in
[Co(CN)(6)](4-) and [Rh(CN)(6)](4-) complexes in KC1 host lattice
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID EFFECTIVE CORE POTENTIALS; MOLECULAR CALCULATIONS; COUPLING-CONSTANTS;
BASIS-SETS; AB-INITIO; ABINITIO; MODEL
AB Ab-initio ROHF, PUHF and PUHF-MP2 calculations of C-13 and N-14
hyperfine interactions for the [Co(CN)(6)](4-) and [Rh(CN)(6)](4-)
complexes in the KCl host lattice were performed and compared to
experimental results. The host lattice was represented by a set of 80
potentials located at the ion positions, leading to a consistent
picture of the complex electronic structure. A detailed analysis of
each molecular orbital contribution shows that collective effects are
very important and must be considered to achieve a realistic
description of this property. (C) 2000 Elsevier Science B.V. All rights
reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, BR-21949900 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Bielschowsky, CE, Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim,
Cidade Univ,CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR BERRONDO M, 1996, INT J QUANTUM CHEM, V57, P1115
CARMICHAEL I, 1997, J PHYS CHEM A, V101, P4633
CHIPMAN DM, 1992, THEOR CHIM ACTA, V82, P93
EVJEN HM, 1932, PHYS REV, V39, P675
GAULD JW, 1997, J PHYS CHEM A, V101, P1359
GUENZBURGER D, 1996, J APPL PHYS 2B, V79, P6429
HA TK, 1996, J CHEM PHYS, V105, P6385
HAY PJ, 1985, J CHEM PHYS, V82, P270
HAY PJ, 1985, J CHEM PHYS, V82, P299
JEAD JD, 1996, J CHEM PHYS, V104, P3244
PERERA SA, 1994, J CHEM PHYS, V100, P1425
PUCHINA AV, 1998, SOLID STATE COMMUN, V106, P285
RIVASSILVA JF, 1996, J PHYS CHEM SOLIDS, V57, P1705
SAUER J, 1989, CHEM REV, V89, P199
SEIJO L, 1996, INT J QUANTUM CHEM, V60, P617
SHOCK JR, 1975, J MAGN RESON, V18, P157
SOUSA C, 1993, J COMPUT CHEM, V14, P680
TEUNISSEN EH, 1995, INT J QUANTUM CHEM, V54, P73
VUGMAN NV, 1997, J MAGN RESON, V124, P352
WADT WR, 1985, J CHEM PHYS, V82, P284
WINTER NW, 1987, J CHEM PHYS, V87, P2945
NR 21
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 28
PY 2000
VL 321
IS 3-4
BP 269
EP 274
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 308FW
UT ISI:000086700700012
ER
PT J
AU Eustatiu, IG
Tyliszczak, T
Hitchcock, AP
Turci, CC
Rocha, AB
Bielschowsky, CE
TI Experimental and theoretical study of generalized oscillator strengths
for C 1s and O 1s excitations in CO2
SO PHYSICAL REVIEW A
LA English
DT Article
ID ELECTRON-ENERGY-LOSS; INTRAMOLECULAR BOND LENGTHS; ABSORPTION
FINE-STRUCTURE; IMPACT CORE EXCITATION; SHELL SHAPE RESONANCES; FAST
CHARGED-PARTICLES; INELASTIC-COLLISIONS; MOMENTUM-TRANSFER; LEVEL
EXCITATION; LOSS SPECTRA
AB Electron-energy-loss spectra of CO2 in the region of C 1 s and O 1 s
excitations have been recorded over a wide range of momentum transfer
(K), (2 a.u.(-2)<K-2<70a.u.(-2)). The dipole-forbidden transition to
the (C 1 s sigma(g)(-1),sigma(g)(*)) (1)Sigma (+)(g) state in CO2 is
detected for the first time, to our knowledge. A detailed analysis,
with careful consideration of minimization of systematic experimental
errors, has been used to convert the measured relative cross sections
to absolute, momentum-transfer-dependent, generalized oscillator
strength (GOS) profiles for all resolved C 1 s and O 1 s transitions of
CO2. Theoretical results for the GOS, computed within the first Born
approximation, were obtained with ab initio configuration interaction
wave functions for the C 1 s transitions and with ab initio generalized
multistructural wave functions for the O 1 s transitions. These wave
functions include relaxation, correlation, and hole localization
effects. Theory predicts large quadrupole contributions to the GOS for
O 1 s excitations. In addition the computed GOS for O 1 s-->ns sigma
and np sigma Rydberg states clearly show oscillations arising from
interference between localized core excitations. Overall there is good
agreement between the experimental and theoretical results, indicating
that the first Born approximation holds to a surprisingly large
momentum transfer for the core excitations studied.
C1 McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
Univ Fed Rio de Janeiro, Inst Quim, BR-21910 Rio De Janeiro, Brazil.
RP Eustatiu, IG, McMaster Univ, Dept Chem, 1280 Main St W, Hamilton, ON
L8S 4M1, Canada.
CR AEBI P, 1992, PHYS REV B, V45, P13579
BARBIERI RS, 1992, PHYS REV A, V45, P7929
BARTH A, 1985, J PHYS B ATOM MOL PH, V18, P867
BETHE H, 1930, ANN PHYS-BERLIN, V5, P325
BIELSCHOWSKY CE, 1988, PHYS REV A, V38, P3405
BIELSCHOWSKY CE, 1992, PHYS REV A, V45, P7942
BONHAM RA, 1974, J ELECT SPECTROSC RE, V3, P85
BONHAM RA, 1993, J PHYS B ATOM MOL PH, V26, P3363
BOZEK JD, 1995, PHYS REV A, V51, P4563
CAMILLONI R, 1983, EXAFS NEAR EDGE STRU, P174
CAMILLONI R, 1984, LECTURE NOTES CHEM, V35, P172
CAMILLONI R, 1987, J PHYS B ATOM MOL PH, V20, P1839
CHUNG S, 1975, PHYS REV A, V12, P1340
DAASCH WR, 1982, J CHEM PHYS, V76, P6031
DAROCHA AB, 1998, PHYS REV A, V57, P4394
DEMIRANDA MP, 1993, J MOL STRUCT, V282, P71
DEMIRANDA MP, 1994, PHYS REV A, V49, P2399
DEMIRANDA MP, 1995, J PHYS B-AT MOL OPT, V28, L15
DILLON MA, 1975, J CHEM PHYS, V62, P2373
EUSTATIU IG, IN PRESS CHEM PHYS
EUSTATIU IG, 1999, CHEM PHYS LETT, V300, P676
FOCK JH, 1984, CHEM PHYS, V83, P377
FRANCIS JT, 1995, PHYS REV A, V52, P4665
GIANTURCO FA, 1972, J CHEM PHYS, V57, P840
GUNNELIN K, 1998, PHYS REV A, V57, P864
HARRISON I, 1987, J ELECTRON SPECTROSC, V43, P155
HITCHCOCK AP, UNPUB
HITCHCOCK AP, 1987, J CHEM PHYS, V87, P3253
HITCHCOCK AP, 1990, PHYSICA SCRIPTA T, V31, P159
INOKUTI M, 1971, REV MOD PHYS, V43, P297
INOKUTI M, 1978, REV MOD PHYS, V50, P23
JOLLY WL, 1984, ATOM DATA NUCL DATA, V31, P7
KARLE J, 1961, J CHEM PHYS, V35, P963
KIM YK, 1968, PHYS REV, V175, P176
KOSUGI N, 1996, J ELECTRON SPECTROSC, V79, P351
LASSETTRE EN, 1964, J CHEM PHYS, V40, P1242
LASSETTRE EN, 1965, J CHEM PHYS, V43, P4479
LASSETTRE EN, 1970, J CHEM PHYS, V52, P2797
LEE JS, 1975, J CHEM PHYS, V4, P1609
LUCHESE RR, 1982, PHYS REV A, V26, P1406
MA Y, 1991, PHYS REV A, V44, P1848
MASSEY HSW, 1932, P R SOC LOND A-CONTA, V135, P258
MATSUZAWA M, 1969, J CHEM PHYS, V51, P4705
MCLAREN R, 1987, PHYS REV A, V36, P1683
NATOLI CR, 1983, EXAFS NEAR EDGE STRU, P43
PADIAL N, 1981, PHYS REV A, V23, P218
PIANCASTELLI MN, 1987, J CHEM PHYS, V87, P3255
READ FH, 1965, P PHYS SOC LOND, V85, P71
RESCIGNO TN, 1979, J CHEM PHYS, V70, P3390
RESCIGNO TN, 1985, LECT NOTES CHEM, V35, P215
ROBERTY HMB, 1991, PHYS REV A, V44, P1694
ROCHA AB, IN PRESS CHEM PHYS
ROCHA AB, 1999, CHEM PHYS, V243, P9
SCHMIDBAUER M, 1995, PHYS REV A, V52, P2095
SCHNEERSON VL, 1997, SURF SCI, V375, P340
SETTE F, 1984, J CHEM PHYS, V81, P4906
SHAM TK, 1989, PHYS REV A, V40, P652
SHAW DA, 1982, J PHYS B ATOM MOL PH, V15, P1785
SHAW DA, 1983, P 13 ICPEAC BERL, P278
SHEEHY JA, 1989, J CHEM PHYS, V91, P1796
SILVERMAN SM, 1964, J CHEM PHYS, V40, P1265
SIVKOV VN, 1984, OPT SPEKTROSK, V57, P160
SODHI RNS, 1984, J ELECTRON SPECTROSC, V34, P363
SWICK DA, 1960, REV SCI INSTRUM, V31, P525
SWICK DA, 1961, J CHEM PHYS, V35, P2257
TRONC M, 1979, J PHYS-PARIS, V40, L323
TURCI CC, 1995, PHYS REV A, V52, P4678
WATANABE N, 1997, PHYS REV LETT, V78, P4910
WIGHT GR, 1974, J ELECTRON SPECTROSC, V3, P191
YING JF, 1993, PHYS REV A, V47, P5
YING JF, 1994, J CHEM PHYS, V101, P7311
NR 71
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD APR
PY 2000
VL 6104
IS 4
AR 042505
DI ARTN 042505
PG 14
SC Physics, Atomic, Molecular & Chemical; Optics
GA 301ME
UT ISI:000086313300041
ER
PT J
AU Bettega, MHF
TI Elastic scattering of low-energy electrons by boron trihalides
SO PHYSICAL REVIEW A
LA English
DT Article
ID AB-INITIO; PLASMA; EXCITATION; BCL3; PSEUDOPOTENTIALS; SPECTROSCOPY;
GENERATION; IMPACT; BBR3
AB We used the Schwinger multichannel method with pseudopotentials
[Bettega et nl., Phys. Rev. A 47, 1111 (1993)] to study elastic
scattering of low-energy electrons by the boron trihalides BCl3, BBr3,
and BI3, at the static-exchange approximation. We calculated elastic
integral, differential, and momentum transfer cross section from 5 to
50 eV. In particular, our integral cross section fur BCl3 agrees in
shape with results of previous calculations by Isaacs et al. [Phys.
Rev. A 58, 2881 (1998)]. The symmetry decomposition of the integral
cross section in the C-2v group is also presented. We discuss the
existence of shape resonances for energies above 5 eV at the A(1), B-1,
B-2, and A(2) symmetries. We also investigated the low-energy cross
section for the B-2 symmetry for these three molecules. For BCl3 our
B-2 cross section shows good agreement with the results of Isaacs et al.
C1 Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil.
RP Bettega, MHF, Univ Fed Parana, Dept Fis, Caixa Postal 19081,
BR-81531990 Curitiba, Parana, Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BAECK KK, 1997, J CHEM PHYS, V106, P4604
BETTEGA MHF, 1993, PHYS REV A, V47, P1111
BETTEGA MHF, 1996, INT J QUANTUM CHEM, V60, P821
BETTEGA MHF, 1998, J PHYS B-AT MOL OPT, V31, P2091
BETTEGA MHF, 1998, J PHYS B-AT MOL OPT, V31, P4419
BETTEGA MHF, 1998, PHYS REV A, V57, P4987
BIEHL H, 1996, MOL PHYS, V87, P1199
CHO H, 1998, MRS INTERNET J N S R, V3
DACOSTA SMS, 1998, EUR PHYS J D, V3, P67
GULLEY RJ, 1998, J PHYS B-AT MOL OPT, V31, P2735
HONG J, 1998, J VAC SCI TECHNOL B, V16, P2690
HONG J, 1998, J VAC SCI TECHNOL B, V16, P3349
ISAACS WA, 1998, PHYS REV A, V58, P2881
KEIR RI, 1998, CHEM PHYS LETT, V290, P409
LIDE DR, 1998, CRC HDB CHEM PHYSICS
LIMA MAP, 1990, PHYS REV A, V41, P327
MCKOY V, 1998, J VAC SCI TECHNOL A, V16, P324
NATALENSE APP, 1998, PHYS REV LETT, V81, P3832
NATALENSE APP, 1999, PHYS REV A, V59, P879
SHPINKOVA LG, 1999, MOL PHYS, V96, P323
STOCKDALE JA, 1972, J CHEM PHYS, V56, P3336
TAKATSUKA K, 1981, PHYS REV A, V24, P2473
TOSSELL JA, 1986, INT J QUANTUM CHEM, V29, P1117
VARELLA MTD, 1999, J CHEM PHYS, V110, P2452
WANG JJ, 1999, PLASMA CHEM PLASMA P, V19, P229
NR 26
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD APR
PY 2000
VL 6104
IS 4
AR 042703
DI ARTN 042703
PG 6
SC Physics, Atomic, Molecular & Chemical; Optics
GA 301ME
UT ISI:000086313300044
ER
PT J
AU Fuks, D
Mundim, K
Liubich, V
Dorfman, S
TI Nonempirical simulations of Sigma(3)< 111 > tungsten grain boundary
with boron atoms
SO SURFACE REVIEW AND LETTERS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES; ALLOYS; APPROXIMATION;
OPTIMIZATION; IMPURITIES; ALUMINUM; FEAL
AB We perform the atomistic simulations of the properties of the
Sigma(3)[111] grain boundary in W and demonstrate the influence of
boron additive on the resistance of the grain boundary with respect to
different shifts. The interatomic potentials used in these simulations
are obtained from ab initio total energy calculations. These
calculations are carried out in the framework of density functional
theory in the coherent potential approximation. The recursion procedure
to extract A-B type interatomic potentials is suggested.
C1 Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel.
Technion Israel Inst Technol, Fac Phys, IL-32000 Haifa, Israel.
RP Fuks, D, Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
CR ABRIKOSOV IA, 1998, PHYS REV B, V57, P14164
ANDERSEN OK, 1975, PHYS REV B, V12, P3060
ANTONOV VN, 1996, PHYS REV B, V53, P15631
AREAS EPG, 1995, J PHYS CHEM-US, V99, P14882
BAKER I, 1998, INTERMETALLICS, V6, P177
BAZANT MZ, 1996, MRS P, V48
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
CARLSSON AE, 1980, PHILOS MAG A, V41, P241
CHRISTENSEN A, 1997, PHYS REV B, V56, P5822
CHUANG TH, 1991, MAT SCI ENG A-STRUCT, V141, P169
CONNOLLY JWD, 1983, PHYS REV B, V27, P5169
DAVIDOV G, 1995, PHYS REV B, V51, P13059
ELLIS DE, 1995, ELECT DENSITY FUNCTI
ELLIS DE, 1998, INT J QUANTUM CHEM, V70, P1085
ERIKSSON O, 1989, PHYS REV B, V40, P9519
FAULKNER JS, 1982, PROG MATER SCI, V27, P1
FELSER C, 1998, PHYS REV B, V57, P1510
FRANCZKIEWICZ A, 1998, MAT SCI ENG A-STRUCT, V258, P108
FUKS D, 1994, PHYS REV B, V50, P16340
GRUJICIC M, 1997, INT J REFRACT MET H, V15, P341
KAUFMAN L, 1970, COMPUTER CALCULATION
KITTEL C, 1976, INTRO SOLID STATE PH
KRASKO GL, 1993, INT J REFRACTORY HAR, V12, P251
KRASKO GL, 1997, MAT SCI ENG A-STRUCT, V234, P1071
LANDA AI, 1997, MATER RES SOC S P, V440, P467
LIU CT, 1989, SCRIPTA METALL, V23, P875
MAIER K, 1979, PHILOS MAG A, V40, P701
MIRBT S, 1997, PHYS REV B, V55, P67
MORET MA, 1998, J COMPUT CHEM, V19, P647
MUNDIM KC, 1996, INT J QUANTUM CHEM, V58, P373
MUNDY JN, 1978, PHYS REV B, V18, P6566
POVAROVA KB, 1990, RUSSIAN METALLURGY M, V1, P74
RUBAN AV, 1995, PHYS REV B, V51, P12958
RUBAN AV, 1997, PHYS REV B, V55, P8801
SIMMONS G, 1971, SINGLE CRYSTAL ELAST
SOB M, 1997, MAT SCI ENG A-STRUCT, V234, P1075
TOLSTOBROV YO, 1987, FIZIKA KHIMIYA OBRAB, V21, P121
NR 37
TC 5
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 912805, SINGAPORE
SN 0218-625X
J9 SURF REV LETTERS
JI Surf. Rev. Lett.
PD OCT
PY 1999
VL 6
IS 5
BP 705
EP 718
PG 14
SC Materials Science, Multidisciplinary; Physics, Atomic, Molecular &
Chemical; Physics, Condensed Matter
GA 300LQ
UT ISI:000086254800019
ER
PT J
AU Fink, RF
Sorensen, SL
de Brito, AN
Ausmees, A
Svensson, S
TI The resonant Auger electron spectrum of C 1s(-1)pi(*) excited ethene: A
combined theoretical and experimental investigation
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID TIME-DEPENDENT FORMULATION; VIBRATIONAL FINE-STRUCTURE; CORE-LEVEL
PHOTOEMISSION; AB-INITIO CALCULATION; NUCLEAR-DYNAMICS;
SYMMETRY-BREAKING; HOLE LOCALIZATION; TRANSITION RATES; X-RAY; ETHYLENE
AB The resonant Auger electron spectrum for ethene has been calculated
with an ab initio approach using configuration-interaction energies and
wave functions for the intermediate core-excited and final states. The
transition rates were determined by the "one-center approximation." The
role of vibrational relaxation on the line shapes was described by a
moment method which considers the case of symmetric core holes and
their localization due to the vibrational relaxation of the
core-excited state. The core hole localization is investigated in some
detail and is found to be extremely efficient in the C 1s(-1)pi*
excited state of ethene. Another property of the core-excited state is
found to be the polarization of the valence electron density toward the
core hole. We demonstrate this by using three different symmetric
configuration interaction representations and one nonsymmetric
Hartree-Fock representation for this state. A modified improved virtual
orbitals method is described and employed to obtain virtual orbitals
which give a compact description of this effect. The theoretical
spectra obtained in this way are compared with a measured spectrum and
assignment of the structures in the spectrum to electronic
configurations is made. We find strong configuration mixing in the
higher excited final states which is evidence for the breakdown of the
one-particle picture. (C) 2000 American Institute of Physics.
[S0021-9606(00)31213-2].
C1 Univ Lund, Inst Phys, Dept Synchrotron Radiat Res, S-22100 Lund, Sweden.
Ruhr Univ Bochum, Chair Theoret Chem, D-44780 Bochum, Germany.
Univ Brasilia, Dept Phys, BR-70910900 Brasilia, DF, Brazil.
Univ Uppsala, Dept Phys, S-75121 Uppsala, Sweden.
Lab Nacl Luz Sincrotron, BR-13083360 Campinas, SP, Brazil.
Univ Tartu, Inst Phys, EE-51014 Tartu, Estonia.
RP Sorensen, SL, Univ Lund, Inst Phys, Dept Synchrotron Radiat Res, Box
118, S-22100 Lund, Sweden.
CR AGREN H, 1981, J CHEM PHYS, V75, P1267
AGREN H, 1992, ADV QUANTUM CHEM, V23, P1
AHLRICHS R, 1989, CHEM PHYS LETT, V162, P165
AKSELA S, 1992, REV SCI INSTRUM 2B, V63, P1252
AKSELA S, 1994, REV SCI INSTRUM, V65, P831
AKSELA S, 1995, REV SCI INSTRUM, V66, P1
ANDERSEN JN, 1997, CHEM PHYS LETT, V269, P371
BOTTING SK, 1997, PHYS REV A, V56, P3666
BOZEK J, 1998, PHYS REV A, V57, P157
CEDERBAUM LS, 1993, J CHEM PHYS, V98, P9691
CEDERBAUM LS, 1993, J CHEM PHYS, V99, P5871
CEDERBAUM LS, 1995, J CHEM PHYS, V103, P562
DEBRITO AN, 1992, EUROPHYS LETT, V20, P205
DEMIRANDA MP, 1994, J CHEM PHYS, V101, P5500
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FINK R, 1995, J ELECTRON SPECTROSC, V76, P295
FINK R, 1997, J CHEM PHYS, V106, P4038
FINK RF, 1998, PHYS REV A, V58, P1988
GADEA FX, 1991, PHYS REV LETT, V66, P883
GELMUKHANOV FK, 1977, CHEM PHYS LETT, V46, P133
GREEN TA, 1987, PHYS REV B, V36, P6112
GUNNELIN K, 1999, PHYS REV LETT, V83, P1315
HASER M, 1989, J COMPUT CHEM, V10, P104
HEINZMANN R, 1976, THEOR CHIM ACTA, V42, P33
HOLLAND DMP, 1997, CHEM PHYS, V219, P91
JUG K, 1993, MATH CHEM
KELLER C, 1998, PHYS REV LETT, V80, P1774
KEMPGENS B, 1995, CHEM PHYS LETT, V246, P347
KOPPE HM, 1995, J CHIN CHEM SOC-TAIP, V42, P255
KOPPEL H, 1984, ADV CHEM PHYS, V57, P59
KOPPEL H, 1997, J CHEM PHYS, V106, P4415
LARKINS FP, 1994, NUCL INSTRUM METH B, V87, P215
LIEGENER CM, 1985, CHEM PHYS, V92, P97
MA Y, 1989, PHYS REV LETT, V63, P2044
MARTENSSON N, 1995, APPL SYNCHROTRON RAD
MARTIN JML, 1996, CHEM PHYS LETT, V248, P336
MATTHEW JAD, 1975, SURF SCI, V53, P716
MCGUIRE EJ, 1969, PHYS REV, V185, P1
OHRENDORF E, 1989, J CHEM PHYS, V91, P1734
OSBORNE SJ, 1994, SYNCH RAD NEWS, V7, P25
PAHL E, 1996, Z PHYS D ATOM MOL CL, V38, P215
PIANCASTELLI MN, 1997, J PHYS B-AT MOL OPT, V30, P5677
RYE RR, 1978, J CHEM PHYS, V69, P1504
SCHIMMELPFENNIG B, 1995, J ELECTRON SPECTROSC, V74, P173
SCHINKE R, 1993, PHOTODISSOCIATION DY
SIEGBAHN H, 1975, CHEM PHYS LETT, V35, P330
SORENSEN SL, 1998, PHYS REV A, V58, P1879
THOMAS TD, 1998, J CHEM PHYS, V109, P1041
THOMPSON M, 1976, ANAL CHEM, V48, P1336
WASILEWSKI J, 1989, INT J QUANTUM CHEM, V36, P503
WASILEWSKI J, 1991, INT J QUANTUM CHEM, V39, P649
WURTH W, 1995, APPL SYNCHROTRON RAD
WURTH W, 1997, APPL PHYS A-MATER, V65, P597
WURTH W, 1998, J ELECT SPECTROSC RE, V93, P135
ZAHRINGER K, 1992, PHYS REV A, V45, P318
ZAHRINGER K, 1992, PHYS REV A, V46, P5643
NR 56
TC 10
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD APR 15
PY 2000
VL 112
IS 15
BP 6666
EP 6677
PG 12
SC Physics, Atomic, Molecular & Chemical
GA 301EV
UT ISI:000086297000020
ER
PT J
AU Goncalves, CP
Mohallem, JR
TI Ab initio isotope simulated dynamics in the adiabatic approximation
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; EXCESS PROTON; WATER; D2O
AB We present, for the first time, ab initio simulated molecular dynamics
within the adiabatic approximation. The tests are made for H-2(+) and
its isotopomers. We show that the farces on the nuclei can be
calculated with sufficient accuracy to distinguish among the
isotopomers. We also show that there are two regions where these forces
are non-negligible, compared to those of Born-Oppenheimer: at large
nuclear distances and near the equilibrium positions. (C) 2000 Elsevier
Science B.V. All rights reserved.
C1 Univ Fed Minas Gerais, ICEX, Dept Fis, Lab Atomos & Mol Especiais, BR-31270123 Belo Horizonte, MG, Brazil.
RP Mohallem, JR, Univ Fed Minas Gerais, ICEX, Dept Fis, Lab Atomos & Mol
Especiais, POB 702, BR-31270123 Belo Horizonte, MG, Brazil.
CR BORN M, 1927, ANN PHYS-BERLIN, V84, P457
CAR R, 1985, PHYS REV LETT, V55, P2471
CHACHAM H, 1990, MOL PHYS, V70, P391
FOIS ES, 1994, CHEM PHYS LETT, V223, P411
KOLOS W, 1969, ACTA PHYS ACAD SCI H, V27, P241
LOBAUGH J, 1996, J CHEM PHYS, V104, P2056
MOHALLEM JR, 1999, J PHYS B-AT MOL OPT, V32, P3805
PAULING L, 1935, INTRO QUANTUM MECH
PAVESE M, 1997, J CHEM PHYS, V107, P7428
SCHWARTZ BJ, 1996, J CHEM PHYS, V105, P6997
SHIGETA Y, 1998, INT J QUANTUM CHEM, V70, P659
SVISHCHEV IM, 1994, J PHYS CHEM-US, V98, P728
TACHIKAWA M, 1999, MOL PHYS, V96, P1207
VANGUNSTEREN WF, 1990, ANGEW CHEM INT EDIT, V29, P992
NR 14
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAR 31
PY 2000
VL 320
IS 1-2
BP 118
EP 122
PG 5
SC Physics, Atomic, Molecular & Chemical
GA 299RG
UT ISI:000086211200020
ER
PT J
AU Miwa, RH
Ferraz, AC
TI Adsorption process, atomic geometry, electronic structure and stability
of Si(001)/Te surface
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; growth; silicon; surface relaxation
and reconstruction
ID DENSITY-FUNCTIONAL THEORY; SI(100) SURFACE; GROUND-STATE; GROWTH; TE;
TELLURIUM; RESTORATION; INTERFACE; CDTE; GE
AB The adsorption process, atomic geometry, electronic structure and
energetics of a Si(001) surface covered by Te atoms have been studied
using first-principles total-energy calculations. Our findings indicate
that the Te atoms adsorb in the 'bridge' site on the surface Si dimer
bond, in agreement with recent experimental results. We have also
verified that the Si dimers (underneath adsorbed Te atoms) do not
dissociate, The subsequent atomic exchange between the adsorbed Te atom
and the surface Si atom, giving rise to an interdiffusion process of Te
atoms towards Si substrate, is not an exothermic process. We have
considered a number of possible coverages of Te atoms on Si(001)
surface and our results indicate that for a coverage of one monolayer
(1 ML). the Si(001)/Te-(1 x 1) surface represents the energetically
more stable configuration. For a coverage of 2/3 hit, we have verified
the formation of Te-Si-Te mixed trimers, in a (3 x 1) reconstructed
surface. At 1/3 ML coverage, we have obtained the formation of Si
dimers with a single Te atom at the surface, in a (3 x 1)
reconstruction. Finally, for a coverage of 1/2 ML, we have obtained the
formation of Si-Te mixed dimers, in a (2 x 1) reconstructed surface,
but the calculated formation energy indicates that this atomic
configuration is not energetically favourable. (C) 2000 Elsevier
Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Ferraz, AC, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
SP, Brazil.
CR BENNETT MR, 1996, SURF SCI, V360, P187
BENNETT MR, 1997, SURF SCI, V380, P178
BRINGANS RD, 1989, PHYS REV B, V39, P12985
BURGESS SR, 1996, APPL SURF SCI, V104, P152
CAR R, 1985, PHYS REV LETT, V55, P2471
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHADI DJ, 1973, PHYS REV B, V8, P5747
DINARDO S, 1995, SURF SCI, V331, P569
GONZE X, 1991, PHYS REV B, V44, P8503
HIGUCHI S, 1992, J APPL PHYS, V71, P4277
HOHENBERG P, 1964, PHYS REV, V136, B864
KAXIRAS E, 1991, PHYS REV B, V43, P6824
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
KRUGER P, 1993, PHYS REV B, V47, P1898
MIWA RH, UNPUB
MIWA RH, 1998, J PHYS-CONDENS MAT, V10, P5739
MIWA RH, 1998, SURF SCI, V415, P20
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
PAPAGEORGOPOULOS A, 1997, PHYS REV B, V55, P4435
PERDEW JP, 1981, PHYS REV B, V23, P5048
SANTUCCI S, 1996, SURF SCI, V352, P1027
SPORKEN R, 1992, J VAC SCI TECHNOL B, V10, P1405
SPORKEN R, 1998, APPL SURF SCI, V123, P462
STUMPF R, 1994, COMPUT PHYS COMMUN, V79, P447
TAMIYA K, 1998, SURF SCI, V408, P268
WIANE F, 1999, APPL SURF SCI, V260, P475
YOSHIKAWA SA, 1994, SURF SCI, V321, L183
NR 28
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD MAR 20
PY 2000
VL 449
IS 1-3
BP 180
EP 190
PG 11
SC Chemistry, Physical
GA 296ZN
UT ISI:000086056800023
ER
PT J
AU Silva, CO
da Silva, EC
Nascimento, MAC
TI Ab initio calculations of absolute pK(a) values in aqueous solution II.
Aliphatic alcohols, thiols, and halogenated carboxylic acids
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; DENSITY-FUNCTIONAL THEORY; MOLLER-PLESSET;
FREE-ENERGIES; SOLVATION; IMPLEMENTATION; ACIDITIES
AB A thermodynamical cycle is proposed to calculate absolute pK(a) values
for Bronsted acids in aqueous solution. The polarizable continuum model
(PCM) was used to describe the solvent, and absolute pK(a) values were
computed for different classes of organic compounds: aliphatic
alcohols, thiols, and halogenated derivatives of carboxylic aliphatic
acids. The model furnishes pK(a) values in good agreement with the
experimental results for some classes of compounds. For the cases where
appreciable deviations are, observed, we have tried to establish a
correlation among the neglected components of Delta G(solv) resulting
from the model adopted, the level of calculation employed, and the
pK(a) deviations relative to the experimental results.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis,
CT,Bloco A,Sala 412,Cidade Univ Ilha Fundao, BR-21949900 Rio De
Janeiro, Brazil.
CR ADAMO C, 1997, J COMPUT CHEM, V18, P1993
AMOVILLI C, 1998, ADV QUANTUM CHEM, V32, P227
ANDZELM J, 1995, J CHEM PHYS, V103, P9312
BALLINGER P, 1959, J AM CHEM SOC, V81, P1050
BALLINGER P, 1960, J AM CHEM SOC, V82, P795
BARONE V, 1997, J CHEM PHYS, V107, P3210
BARTMESS JE, 1997, J AM CHEM SOC, V99, P4163
BAUSCHLICHER CW, 1995, J CHEM PHYS, V103, P1788
BENNAIM A, 1984, J CHEM PHYS, V81, P2016
BENNAIM A, 1987, SOLVATION THERMODYNA, CH1
BORDWELL FG, 1988, ACCOUNTS CHEM RES, V21, P456
CABANI S, 1981, J SOLUTION CHEM, V10, P563
CAMMI R, 1995, J COMPUT CHEM, V16, P1449
CHEN JL, 1994, J PHYS CHEM-US, V98, P11059
COOKSON RF, 1974, CHEM REV, V74, P5
COSSI M, 1996, CHEM PHYS LETT, V255, P327
CRAMER CJ, 1992, SCIENCE, V256, P213
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
JORGENSEN WL, 1989, J AM CHEM SOC, V111, P4190
LIM C, 1991, J PHYS CHEM-US, V95, P5610
MARCH J, 1992, ADV ORGANIC CHEM REA
MCEWEN WK, 1936, J AM CHEM SOC, V58, P1124
MENNUCCI B, 1997, J PHYS CHEM B, V101, P10506
MURTO J, 1964, ACTA CHEM SCAND, V18, P1043
NETTO JDM, 1996, J PHYS CHEM-US, V100, P15105
REEVE W, 1979, CAN J CHEM, V57, P2747
SCHUURMANN G, 1996, QUANT STRUCT-ACT REL, V15, P121
SCHUURMANN G, 1997, QUANTITATIVE STRUCTU, V7, P225
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SILVA CO, IN PRESS J PHYS CH A
STEWART R, 1985, PROTON APPL ORGANIC, V46
NR 32
TC 48
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAR 23
PY 2000
VL 104
IS 11
BP 2402
EP 2409
PG 8
SC Chemistry, Physical
GA 296LF
UT ISI:000086025300033
ER
PT J
AU Olivato, PR
Guerrero, SA
Zukerman-Schpector, J
TI Preferred conformation in the solid state of some
alpha-(p-phenylsulfinyl)-p-substituted acetophenones
SO ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE
LA English
DT Article
ID SUBSTITUTED CARBONYL-COMPOUNDS; ELECTRONIC INTERACTION
AB Information on the geometrical structures of
alpha-(p-phenylsulfinyl)-p-substituted acetophenones
X-PhC(O)CH2S(O)Ph-Y [X = OMe, Y = H (1); X = NO2, Y = OMe (2); X = OMe,
Y = NO2 (3); IUPAC names: (1) 4-methoxyphenyl phenylsulfinylmethyl
ketone; (2) 4 - nitrophenyl 4-methoxyphenylsulfinyl-methyl ketone; (3)
4-methoxyphenyl 4-nitrophenyl-sulfinylmethyl ketone] have been obtained
from X-ray diffraction analyses. A comparison of these results with
those previously obtained from X-ray diffraction and ab initio
computations of alpha-methylsulfinylacetophenone, PhC(O)CH2S(O)Me,
indicated that (1) and (2) adopt in the crystal a cis(1) conformation
and (3) assumes a quasi-gauche geometry. The stabilization of these
conformations in the crystal is discussed in terms of the dipole moment
coupling Coulombic and intramolecular charge transfer interactions
between the oppositely charged atoms of the C=O and S=O dipoles. The
p-substituted benzene ring is quasi-coplanar with the sulfinyl group
for (1) and (3), but is quasi-perpendicular for (2), Conjugation and
repulsion between the sulfinyl sulfur lone pair and the pi-benzene ring
seem to be responsible for the observed geometries.
C1 Univ Sao Paulo, Inst Quim, BR-05599970 Sao Paulo, Brazil.
UFSCar, DQ, Lab Cristalog Estereodinam & Modelagem Mol, BR-13565905 Sao Carlos, SP, Brazil.
RP Olivato, PR, Univ Sao Paulo, Inst Quim, CP 26077, BR-05599970 Sao
Paulo, Brazil.
CR 1989, CAD 4 SOFTWARE VERSI
BELLAMY LJ, 1978, ADV INFRARED GROUP F
DISTEFANO G, 1996, J CHEM SOC PERK AUG, P1661
FAIR CK, 1990, MOIEN INTERACTIVE IN
KATRITZKY AR, 1989, CHEM REV, P639
LAMM B, 1970, ACTA CHEM SCAND, V24, P561
NARDELLI M, 1995, J APPL CRYSTALLOGR, V28, P659
OLIVATO PR, J CHEM SOC P2, V109, P98
OLIVATO PR, 1992, PHOSPHORUS SULFUR, V66, P207
OLIVATO PR, 1997, PHOSPHORUS SULFUR, V130, P155
SHELDRICK GM, 1990, ACTA CRYSTALLOGR A, V46, P467
SHELDRICK GM, 1997, SHELXL 97 PROGRAM RE
ZSOLNAI L, 1995, ZORTOP
NR 13
TC 7
PU MUNKSGAARD INT PUBL LTD
PI COPENHAGEN
PA 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK
SN 0108-7681
J9 ACTA CRYSTALLOGR B-STRUCT SCI
JI Acta Crystallogr. Sect. B-Struct. Sci.
PD FEB
PY 2000
VL 56
PN Part 1
BP 112
EP 117
PG 6
SC Crystallography
GA 295CV
UT ISI:000085949900012
ER
PT J
AU Moraes, LAB
Eberlin, MN
TI The gas-phase Meerwein reaction
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE epoxides; thioepoxides; acylium ions; thioacylium ions; ion-molecule
reactions; mass spectroscopy
ID ION-MOLECULE REACTIONS; ACYLIUM IONS; MASS-SPECTROMETRY; CYCLIC
ACETALS; CATIONS; TRANSACETALIZATION; SUBSTITUTION; KETALS; 3D
AB A systematic investigation of a novel epoxide and thioepoxide ring
expansion reaction promoted by gaseous acylium and thioacylium ions is
reported. As ab initio calculations predict, and O-18-labeling and MS3
pentaquadrupole experiments demonstrate, the reaction proceeds by
initial O(S)-acylation of the (thio)epoxides followed by rapid
intramolecular nucleophilic attack that results in
three-to-five-membered ring expansion, and forms cyclic
1,3-dioxolanylium, 1,3-oxathiolanylium, or 1,3-dithiolanylium ions.
This gas-phase reaction is analogous to a condensed-phase reaction long
since described by H. Meerwein (Chem. Ber. 1955, 67, 374), and is
termed as "the gas-phase Meerwein reaction"; it occurs often to great
extents or even exclusively, but in some cases, particularly for the
most basic (thio)epoxides and the most acidic (thio)acylium ions,
proton transfer (eventually hydride abstraction) competes efficiently,
or even dominates. When (thio)epoxides react with (thio)acylium ions,
the reaction promotes O(S)-scrambling; when epoxides react with
thioacylium ions and the adducts are dissociated, it promotes S/O
replacement. An analogous four-to-six-membered ring expansion also
occurs predominantly in reactions of trimethylene oxide with acylium
and thioacylium ions.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, UNICAMP, Inst Chem, CP6154, BR-13083970 Campinas, SP,
Brazil.
CR ATTINA M, 1983, J AM CHEM SOC, V105, P1122
BARDILI B, 1985, LIEBIGS ANN CHEM, P275
BERSIN T, 1937, CHEM BER, V70, P2167
BOGERT MT, 1933, J AM CHEM SOC, V55, P3741
CAREY FA, 1983, ADV ORGANIC CHEM
CARVALHO M, 1998, CHEM-EUR J, V4, P1161
CARVALHO MC, 1997, J CHEM SOC PERK NOV, P2347
CARVALHO MC, 1997, J MASS SPECTROM, V32, P1137
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
KUMAKURA M, 1978, J PHYS CHEM-US, V82, P639
MACCONNELL WV, 1965, J ORG CHEM, V28, P822
MEERWEIN H, 1925, LIEBIGS ANN CHEM, V444, P221
MEERWEIN H, 1937, J PRAKTISCHE CHEMIE, V147, P257
MEERWEIN H, 1955, ANGEW CHEM, V67, P374
MEERWEIN H, 1965, METHODEN ORGANISCHEN, V6, P329
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J CHEM SOC PERK OCT, P2105
MORAES LAB, 1997, J ORG CHEM, V62, P5096
MORAES LAB, 1998, J AM CHEM SOC, V120, P11136
OLAH GA, 1976, CARBONIUM IONS, V5
OLAH GA, 1998, ONIUM IONS
OLIN JF, 1930, J AM CHEM SOC, V52, P3322
RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
RICKBORN B, 1991, COMPREHENSIVE ORGANI, V3
SANDER M, 1966, CHEM REV, V66, P297
SCHRODER D, 1990, ANGEW CHEM INT EDIT, V29, P910
SCHRODER D, 1990, ANGEW CHEM, V102, P925
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
STALEY RH, 1977, J AM CHEM SOC, V99, P5964
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
VANDERPLAS HC, 1973, RING TRANSFORMATIONS, V1
WANG F, 1999, ANGEW CHEM INT EDIT, V38, P386
WANG F, 1999, ANGEW CHEM, V111, P399
WILLIAMSON BL, 1998, EUR MASS SPECTROM, V4, P103
WILLIAMSON KL, 1961, J ORG CHEM, V26, P4563
NR 44
TC 12
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA MUHLENSTRASSE 33-34, D-13187 BERLIN, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD MAR 3
PY 2000
VL 6
IS 5
BP 897
EP 905
PG 9
SC Chemistry, Multidisciplinary
GA 292VF
UT ISI:000085815200017
ER
PT J
AU Pliego, JR
Riveros, JM
TI Ab initio study of the hydroxide ion-water clusters: An accurate
determination of the thermodynamic properties for the processes
nH(2)O+OH--> HO-(H2O)(n) (n=1-4)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID GAS-PHASE; VIBRATIONAL SPECTROSCOPY; MOLECULAR-ENERGIES; GAUSSIAN-2
THEORY; OH; SOLVATION; ABINITIO; ADDITIVITY; HYDRATION; COMPLEXES
AB Clusters of hydroxide ion, HO-(H2O)(n=1-4), have been studied by high
level ab initio calculations in order to better understand the first
coordination shell of OH- ions. Geometry optimizations were performed
at Hartree-Fock, density functional theory and second order
Moller-Plesset perturbation theory levels using the 6-31+G(d,p) basis
set. Single point energy calculations were carried out on the optimized
geometries using the more extended 6-311+G(2df,2p) basis set and a
higher level of electron correlation, namely fourth-order
Moller-Plesset perturbation theory. For the n=1-3 clusters, only
structures with the hydroxide ion hydrogen bonded to all waters
molecules were considered. For the n=4 cluster, three minima were
found; the most stable species has all four waters directly bound to
the hydroxide ion, while the other two clusters have only three waters
in the first coordination shell. In addition, the transition state
connecting the cluster containing four waters in the first coordination
shell to the species having three waters in the coordination shell was
characterized. The barrier for this rearrangement is very low (1.82
kcal/mol), and we predict this process to occur on the picosecond time
scale. The thermodynamic properties (enthalpy, entropy and Gibbs free
energy) for the formation of the clusters have been calculated for all
the species (including the fully deuterated clusters). Comparison of
our calculations with experimental data reveals good agreement in the
free energy. Nevertheless, our ab initio results suggest that for the n
> 1 clusters, both -Delta H-0 and -Delta S-0 are larger than those
reported from experiment and new experiments may be necessary to obtain
accurate experimental values. (C) 2000 American Institute of Physics.
[S0021-9606(00)30909-6].
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Pliego, JR, Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
CR ARSHADI M, 1970, J PHYS CHEM-US, V74, P1483
AYOTTE P, 1998, J PHYS CHEM A, V102, P3067
BRYCE RA, 1999, J PHYS CHEM A, V103, P4094
CHOI JH, 1998, J PHYS CHEM A, V102, P503
CURTISS LA, 1991, J CHEM PHYS, V94, P7221
CURTISS LA, 1992, J CHEM PHYS, V96, P9030
DELBENE JE, 1988, J PHYS CHEM-US, V92, P2874
DELVALLE CP, 1997, CHEM PHYS LETT, V269, P401
FELLER D, 1992, J CHEM PHYS, V96, P6104
FRISCH MJ, 1995, GAUSSIAN 94
GAO J, 1986, J AM CHEM SOC, V108, P4784
GRIMM AR, 1995, MOL PHYS, V86, P369
KEBARLE P, 1977, ANNU REV PHYS CHEM, V28, P445
MEOTNER M, 1986, J PHYS CHEM-US, V90, P6616
NEWTON MD, 1971, J AM CHEM SOC, V93, P4271
NOBES RH, 1982, CHEM PHYS LETT, V89, P497
PAUL GJC, 1990, J PHYS CHEM-US, V94, P5184
PAYZANT JD, 1971, CAN J CHEM, V49, P3308
PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
PLIEGO JR, 1999, PCCP PHYS CHEM CH PH, V1, P1031
POPLE JA, 1989, J CHEM PHYS, V90, P5622
ROHLFING CM, 1983, J CHEM PHYS, V78, P2498
ROOS BO, 1976, THEOR CHIM ACTA, V42, P77
SAPSE AM, 1984, INT J QUANTUM CHEM, V26, P223
SZCZESNIAK MM, 1982, J CHEM PHYS, V77, P4586
TAKASHIMA K, 1998, MASS SPECTROM REV, V17, P409
TUCKERMAN M, 1995, J CHEM PHYS, V103, P150
TUNON I, 1995, J PHYS CHEM-US, V99, P3798
TURKI N, 1998, J CHEM PHYS, V109, P7157
XANTHEAS SS, 1995, J AM CHEM SOC, V117, P10373
YANG X, 1990, J PHYS CHEM-US, V94, P8500
NR 32
TC 28
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAR 1
PY 2000
VL 112
IS 9
BP 4045
EP 4052
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 286QA
UT ISI:000085455600017
ER
PT J
AU Gomez, JA
Guenzburger, D
TI Density functional study of electronic, magnetic and hyperfine
properties of [M(CN)(5)NO](2-) (M = Fe, Ru) and reduction products
SO CHEMICAL PHYSICS
LA English
DT Article
ID METAL-NITROSYL COMPLEXES; SODIUM-NITROPRUSSIDE; SPECTROSCOPIC
PROPERTIES; NEUTRON-DIFFRACTION; MOLECULAR-STRUCTURE; SINGLE-CRYSTALS;
SPECTRA; REACTIVITY; DIHYDRATE; ENERGY
AB The discrete variational method (DVM) in density functional theory
(DFT) was employed to investigate the electronic structure of the
complexes: [Fe(CN)(5)NO](2-) (nitroprusside), [Fe(CN)(5)NO](3-),
[Fe(CN)(4)NO](2-), [Ru(CN)(5)NO](2-) and [Ru(CN)(5)NO](3-). Total
energy calculations revealed that in pentacyanonitrosylferrate(I) and
pentacyanonitrosylruthenate(I), which are paramagnetic ions containing
one unpaired electron, the M-N-O bond angle is bent. From
self-consistent spin-polarized calculations, the distribution of the
unpaired electron in the paramagnetic complexes [Fe(CN)(5)NO](3-),
[Fe(CN)(4)NO](2-) and [Ru(CN)(5)NO](3-) was obtained, as well as
spin-density maps. A long-standing controversy regarding the
configuration of [Fe(CN)(5)NO](3-) was elucidated, and it was found
that the unpaired electron in this complex is in an orbital primarily
localized on pi* (NO). Mossbauer quadrupole splittings on Fe and Ru
were derived from calculations of the electric-field gradients.
Magnetic hyperfine coupling constants on N of the NO ligand were also
obtained for the paramagnetic complexes. (C) 2000 Elsevier Science B.V.
All rights reserved.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
RP Guenzburger, D, Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150,
BR-22290180 Rio De Janeiro, Brazil.
CR ABRAGAM A, 1951, P ROY SOC LOND A MAT, V205, P135
ABRAGAM A, 1961, PRINCIPLES NUCL MAGN
BARALDO LM, 1994, INORG CHEM, V33, P5890
BECKE AD, 1988, PHYS REV A, V38, P3098
BELANZONI P, 1995, J PHYS CHEM-US, V99, P13094
BLOOM MBD, 1971, J CHEM SOC A, P3843
BOTTOMLEY F, 1979, ACTA CRYSTALLOGR B, V35, P2193
CARDUCCI MD, 1997, J AM CHEM SOC, V119, P2669
CLARKE MJ, 1993, STRUCT BOND, V81, P147
CLAUSE CA, 1970, J AM CHEM SOC, V92, P7482
DANON J, 1964, J CHEM PHYS, V41, P3651
DANON J, 1967, J CHEM PHYS, V47, P382
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DELLEY B, 1983, PHYS REV B, V27, P2132
DUFEK P, 1995, PHYS REV LETT, V75, P3545
ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
ELLIS DE, 1970, PHYS REV B, V2, P2887
ELLIS DE, 1999, ADV QUANTUM CHEM, V34, P51
ENEMARK JH, 1974, COORDIN CHEM REV, V13, P339
ERIKSSON LA, 1994, J CHEM PHYS, V100, P5066
ESTRIN DA, 1996, INORG CHEM, V35, P3897
FAN LY, 1991, J CHEM PHYS, V94, P6057
GLIDEWELL C, 1987, INORG CHIM ACTA, V132, P145
GREATEX R, 1971, J CHEM SOC A, P1873
GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
GUENZBURGER D, 1977, INORG CHIM ACTA, V21, P119
GUIDA JA, 1988, SOLID STATE COMMUN, V66, P1007
GUTLICH P, 1978, MOSSBAUER SPECTROSCO
JOSS S, 1989, INORG CHEM, V28, P1815
KURAMOCHI H, 1997, J AM CHEM SOC, V119, P11442
MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
MCNEIL DAC, 1965, J CHEM SOC, P410
MINGOS DMP, 1973, INORG CHEM, V12, P1209
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
MUNDT WA, 1969, J CHEM PHYS, V50, P3127
NAVAZA A, 1989, ACTA CRYSTALLOGR C, V45, P839
NAVAZA A, 1996, J SOLID STATE CHEM, V123, P48
NEFEDOV VI, 1977, J ELECTRON SPECTROSC, V10, P121
NOGUEIRA SR, 1992, CHEM PHYS, V164, P229
NOGUEIRA SR, 1995, INT J QUANTUM CHEM, V54, P381
OLABE JA, 1984, INORG CHEM, V23, P4297
OOSTERHUIS WT, 1969, J CHEM PHYS, V50, P4381
PARR RG, 1989, DENSITY FUNCTIONAL T
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1986, PHYS REV B, V34, P7406
RAYNOR JB, 1970, J CHEMSOC A, P339
RAYNOR JB, 1971, J INORG NUCL CHEM, V33, P735
SCHMIDT J, 1974, INORG NUCL CHEM LETT, V10, P55
STROUD AH, 1971, APPROXIMATE CALCULAT
SWANN J, 1997, INORG CHEM, V36, P5348
SYMONS JCR, 1982, J CHEM SOC DA, P2041
SYMONS MCR, 1976, INORG CHEM, V15, P1022
TERRA J, 1995, J PHYS CHEM-US, V99, P4935
TRITTGOC J, 1997, CHEM PHYS LETT, V268, P471
UMRIGAR C, 1980, PHYS REV B, V21, P852
VANVOORST JDW, 1966, J CHEM PHYS, V45, P3914
VOSKO SH, 1980, CAN J PHYS, V58, P1200
VUGMAN NV, COMMUNICATION
WOIKE T, 1984, PHYS REV LETT, V53, P1767
WOIKE T, 1998, PHYS REV B, V58, P8411
ZENG Z, 1997, PHYS REV B, V55, P12522
ZENG Z, 1999, PHYS REV B, V59, P6927
NR 63
TC 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD FEB 15
PY 2000
VL 253
IS 1
BP 73
EP 89
PG 17
SC Physics, Atomic, Molecular & Chemical
GA 286KM
UT ISI:000085445200008
ER
PT J
AU Fazzio, A
Janotti, A
da Silva, AJR
Mota, R
TI Microscopic picture of the single vacancy in germanium
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC-STRUCTURE; POINT-DEFECTS; AB-INITIO; SILICON;
PSEUDOPOTENTIALS; SEMICONDUCTORS; DENSITY; MODEL
AB A complete microscopic picture of the germanium vacancy is presented,
and our results are compared with recent measurements. We analyze,
through first principles calculations, the structural relaxations,
Jahn-Teller distortions, and orbitals for the charge states (+ +, +, 0,
-, - -). The formation energies for the different charge states are
presented, as well as the positions of the (+ +/+), (+/0), (0/-), and
(-/- -) levels, and we obtain that the vacancy in Ge is not an Anderson
negative-U system, as opposed to the silicon vacancy. We propose as an
explanation a much smaller electron-lattice coupling for the E mode in
germanium than in silicon.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Fazzio, A, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ANDERSON PW, 1975, PHYS REV LETT, V34, P953
BACHELET GB, 1982, PHYS REV B, V26, P4199
BARAFF GA, 1979, PHYS REV LETT, V43, P956
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
FRANK W, 1987, MATER SCI FORUM, V15, P369
FUCHS HD, 1995, PHYS REV B, V51, P16817
GARCIA A, 1995, PHYS REV LETT, V74, P1131
HASSLEIN H, 1997, MATER SCI FORUM 1-3, V258, P59
HASSLEIN H, 1998, PHYS REV LETT, V80, P2626
HWANG CJ, 1968, PHYS REV, V171, P958
JANOTTI A, 1999, PHYSICA B, V273, P575
KIM JH, 1997, J NEUROPATH EXP NEUR, V56, P11
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
LANNOO M, 1968, J PHYS CHEM SOLIDS, V29, P1987
LARKINS FP, 1971, J PHYS C SOLID STATE, V4, P143
MATTILA T, 1998, PHYS REV B, V58, P1367
POYKKO S, 1996, PHYS REV B, V53, P3813
PUSKA MJ, 1998, PHYS REV B, V58, P1318
REMEDIAKIS IN, 1999, PHYS REV B, V59, P5536
WATKINS GD, 1976, DEFECTS THEIR STRUCT, P203
WATKINS GD, 1980, PHYS REV LETT, V44, P593
WATKINS GD, 1986, DEEP CTR SEMICONDUCT, P147
ZISTL C, 1997, MATER SCI FORUM 1-3, V258, P53
NR 23
TC 14
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JAN 15
PY 2000
VL 61
IS 4
BP R2401
EP R2404
PG 4
SC Physics, Condensed Matter
GA 284TJ
UT ISI:000085348300004
ER
PT J
AU Laali, KK
Hollenstein, S
Galembeck, SE
Coombs, MM
TI Stable ion study of protonated cyclopenta[a]phenanthrenes.
Structure-reactivity relationships and charge delocalization in the
carbocations
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; AM1 CALCULATIONS;
ORGANIC-MOLECULES; CARCINOGEN; CATIONS; SUBSTITUENT; METABOLITES;
OXIDATION; ARENES
AB Protonation studies are reported for a series of
cyclopenta[a]phenanthrenes C-p[a]P in superacid media. Hydrocarbons 1,
4, 7, are ring protonated in FSO3H-SO2ClF to form monoarenium ions. The
Delta(16,17) compounds 3, 6 are protonated at the D-ring double-bond to
form stable alpha-phenanthrene-substituted carbocations.
The 17-keto derivatives 2, 5, 8, 9, 19, 20 are CO-protonated in
FSO3H-SO2ClF to form carboxonium ions. Carboxonium ions derived from 8
and 20 undergo ring fluorosulfonation in the biologically important
A-ring under thermodynamic control (higher temperatures and prolonged
reaction times). Low temperature protonation of 8 and 9 with FSO3H .
SbF5 (4 : 1)-SO2ClF gives their corresponding carboxonium-arenium
dications (protonation of 2 with FSO3H . SbF5 (1 : 1)-SO2ClF gave a
mixture of mono- and dications), where ring protonation sites are
controlled by the position of the methyl group and occur in the A-ring
for the A-ring methylated derivatives (8, 9).
Whereas the 11-methoxy derivative (16) forms a carboxonium ion in
FSO3H-SO2ClF analogous to the 11-Me derivative (5), the 11-phenol
derivative (15), the ethoxy (17) and propoxy (18) derivatives are more
reactive, forming a mixture of mono- and dication (with 15 and 17) or
give mostly a carboxonium-arenium dication (with 18).
Substituent effects observed under stable ion conditions emphasize
relative carbocation stability and relief of peri-strain. Under
thermodynamic control, carboxonium ions undergo fluorosulfonation in
the biologically important A-ring. Charge delocalizations in the
resulting mono- and dications (deduced primarily based on magnitude of
Delta delta(13)C) are discussed and compared. In an effort to further
enhance the NMR assignments and for comparison, mono-arenium ions
1H(+), 4H(+), 6H(+), 7H(+) and their neutral precursors were calculated
at the B3LYP/6-31G(d,p) level of ab initio theory; their H-1 and C-13
NMR chemical shifts were computed by the GIAO method and their overall
charge delocalization paths were deduced via differences in the NPA
charges (cation minus neutral). The results are compared and discussed.
Stable ion studies of C-P[a]P provide useful insights into the
contrasting regioselectivities observed in chemical and biological
activiation.
C1 Kent State Univ, Dept Chem, Kent, OH 44242 USA.
USP, FFCLRP, Dept Quim, LAMMOL, Ribeirao Preto, SP, Brazil.
Univ Surrey, Dept Chem, Guildford GU2 5XH, Surrey, England.
RP Laali, KK, Kent State Univ, Dept Chem, Kent, OH 44242 USA.
CR BECKE AD, 1996, J CHEM PHYS, V104, P1040
BHATT T, 1990, POLYCYCL AROMAT COMP, V1, P55
BHATT TS, 1982, CARCINOGENESIS, V3, P667
BOYD GW, 1993, CARCINOGENESIS, V14, P1697
BOYD GW, 1995, CARCINOGENESIS, V16, P2351
BOYD GW, 1995, CARCINOGENESIS, V16, P2543
COOMBS MM, 1966, J CHEM SOC C, P963
COOMBS MM, 1987, CYCLOPENTA A PHENANT
COOMBS MM, 1996, COMMUNICATION
COOMBS MM, 1998, J CHEM RES-S NOV, P692
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DITCHFIELD R, 1974, MOL PHYS, V27, P789
DODDS JL, 1980, J MOL PHYS, V41, P1419
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GLEDINING ED, NBO VERSION 3 1
HADFIELD ST, 1984, CARCINOGENESIS, V5, P1395
HADFIELD ST, 1984, CARCINOGENESIS, V5, P1485
HARDEN GJ, 1995, J CHEM SOC P1, P3037
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HARVEY RG, 1993, J ORG CHEM, V58, P361
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
LAALI KK, 1991, J ORG CHEM, V56, P1867
LAALI KK, 1993, J ORG CHEM, V58, P1385
LAALI KK, 1996, CHEM REV, V96, P1873
LAALI KK, 1997, J CHEM SOC PERK NOV, P2207
LAALI KK, 1997, J ORG CHEM, V62, P4023
LAALI KK, 1997, J ORG CHEM, V62, P5804
LAALI KK, 1997, J ORG CHEM, V62, P7752
LAALI KK, 1998, J CHEM SOC PERK APR, P897
LAALI KK, 1998, J ORG CHEM, V63, P7280
REDDY VP, 1992, J FLUORINE CHEM, V56, P195
REED AE, 1983, J CHEM PHYS, V78, P4066
REED AE, 1985, J CHEM PHYS, V83, P735
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
YOUNG RJ, 1993, J ORG CHEM, V58, P356
NR 35
TC 6
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2000
IS 2
BP 211
EP 220
PG 10
SC Chemistry, Organic; Chemistry, Physical
GA 279PN
UT ISI:000085054500008
ER
PT J
AU Sparrapan, R
Mendes, MA
Carvalho, M
Eberlin, MN
TI Formal fusion of a pyrrole ring onto 2-pyridyl and 2-pyrimidyl cations:
One-step gas-phase synthesis of indolizine and its derivatives
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE cycloadditions; heterocycles; ion-molecules reactions; mass spectroscopy
ID DIELS-ALDER CYCLOADDITION; EVEN-ELECTRON RULE; MASS-SPECTROMETRY;
ACYLIUM IONS; IMMONIUM IONS; TRANSACETALIZATION; 3D
AB Two ortho-hetarynium ions, the 2-pyridyl and 2-pyrimidyl cations, react
promptly with 1,3-dienes in the gas phase by annulation, formally by
fusion, onto the ions of a pyrrole ring. This novel reaction proceeds
through an initial polar [4 + 2(+)] cycloaddition across the C=N+ bond,
followed by fast ring opening, a [1,4-H] shift, and finally a
recyclization that results in a contraction of a six- to a
five-membered ring and dissociation by the loss of a methyl radical.
For the 2-pyridyl cation. this reaction yields ionized indolizines
(pyrrolo[1,2-a]pyridines), while for the 2-pyrimidyl cation, it gives
ionized pyrrolo[1,2-a]pyrimidines. The annulation reaction, performed
in the rf-only collision quadrupole of a pentaquadrupole (QqQqQ) mass
spectrometer, occurs readily with both 1,3-butadiene and isoprene, and
is thermodynamically and kinetically favored as predicted by ab initio
calculations. Ortho-hetarynium ions and 1,3-dienes provide, therefore,
the two building blocks for the efficient one-step gas-phase synthesis
of ionized bicyclic pyrrolo[1,2-a]pyridine (indolizine) and
pyrrolo[1,2-a] pyrimidine, as well as their analogues and derivatives.
C1 Univ Estadual Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, Univ Estadual Campinas, Inst Chem, CP 6154, BR-13083970
Campinas, SP, Brazil.
CR BORDEN WT, 1982, DIRADICALS
BOWEN RD, 1981, ORG MASS SPECTROM, V16, P180
BUNNETT JF, 1981, J ORG CHEM, V46, P4567
BUSCH KL, 1988, MASS SPECTROMETRY MA
CARVALHO M, 1998, CHEM-EUR J, V4, P1161
CUMMINGS CS, 1940, PHYS REV, V58, P787
DENHERTOG HJ, 1965, HETEROCYCL CHEM, V4, P121
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FRIEDMAN L, 1953, J AM CHEM SOC, V75, P2832
GOZZO FC, 1999, J ORG CHEM, V64, P2188
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOFFMAN RW, 1967, DEHYDROBENZYNE CYCLO
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KARNI M, 1980, ORG MASS SPECTROM, V15, P53
KAUFFMANN T, 1963, CHEM BER, V96, P2519
KAUFFMANN T, 1965, ANGEW CHEM INT EDIT, V4, P543
KAUFFMANN T, 1965, ANGEW CHEM, V77, P557
KAUFFMANN T, 1971, ANGEW CHEM INT EDIT, V10, P20
KAUFFMANN T, 1971, ANGEW CHEM, V83, P21
LU L, 1995, J MASS SPECTROM, V30, P581
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, 1997, J CHEM SOC PERK OCT, P2105
MORAES LAB, 1997, J ORG CHEM, V62, P5096
MORAES LAB, 1998, J AM CHEM SOC, V120, P11136
OHKURA K, 1989, TETRAHEDRON LETT, V30, P3433
PROSTAKOV NS, 1975, RUSS CHEM REV, V44, P748
SCHOLZ M, 1912, CHEM BER, V45, P734
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
TURECEK F, 1998, EUR J MASS SPECTROM, V4, P1998
UCHIDA T, 1976, SYNTHESIS-STUTTGART, P209
WANG F, 1999, J ORG CHEM, V64, P3213
NR 35
TC 12
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA MUHLENSTRASSE 33-34, D-13187 BERLIN, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD JAN
PY 2000
VL 6
IS 2
BP 321
EP 326
PG 6
SC Chemistry, Multidisciplinary
GA 277JV
UT ISI:000084931200013
ER
PT J
AU Morgon, NH
Xavier, LA
Riveros, JM
TI Gas-phase nucleophilic reactions of Ge(OCH3)(4): experimental and
computational characterization of pentacoordinated Ge anions
SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
DE germanium methoxide; gas-phase nucleophilic reactions; pentacoordinated
Ge anions; fluoride affinity; germyl anions; computational Ge chemistry
ID ION-MOLECULE REACTIONS; TRAP MASS-SPECTROMETRY; CYCLOTRON RESONANCE;
THEORETICAL CHARACTERIZATION; GLASS POWDERS; NEGATIVE-IONS; SILICON;
AFFINITIES; CHEMISTRY; FLUORIDE
AB The gas-phase ion/molecule reactions of F- and CH3O- with Ge(OCH3)(4)
have been investigated by Fourier transform ion cyclotron mass
spectrometry. Both nucleophiles react preferentially by an addition
mechanism to yield XGe(OCH3)(4)(-) (X = F, OCH3) complexes that are
identified as typical pentacoordinated Ge species, Pentacoordinated Ge
adducts formed with excess internal energy can undergo elimination of
formaldehyde to yield HGe(OCH3)(4)(-) or further elimination processes
that result in the formation of germyl anions like Ge(OCH3)(3)(-).
Other minor product ions are also observed which can be attributed to
the intermediacy of a pentacoordinated adduct. Dissociation of the
XGe(OCH3)(4)(-) anions induced by infrared multiphoton excitation leads
to sequential losses of formaldehyde and gives rise to different germyl
anions like Ge(OCH3)(3)(-) HGe(OCH3)(2)(-), and H2GeOCH3-. The
XGe(OCH3)(4)(-) and germyl anions react readily with BF3 through
successive methoxide-fluoride exchange and this reaction provides a
gas-phase synthetic pathway for multiply fluorinated Ge anions. Ab
initio calculations performed on model pentacoordinated species
Fn+1Ge(OH)(4-n)(-) (n = 0-4) reveal that addition of a fluoride ion on
hydroxygermanes occurs preferentially in the apical position of a
trigonal bipyramid. The fluoride affinity of the prototype molecule
Ge(OH)(4) is calculated to be 60.9 kcal mol(-1), and fluoride affinity
increases monotonically with increasing fluorine substitution, The
fluoride affinity of GeF4 is calculated to be 79 kcal mol(-1). Similar
calculations also predict an unusually high hydride affinity (60 kcal
mol(-1)) for Ge(OH)(4) with the hydride occupying an equatorial
position. (C) 2000 Elsevier Science B.V.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
Univ Estadual Campinas, UNICAMP, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Av Lineu Prestes 748,Cidade
Univ, BR-05508900 Sao Paulo, Brazil.
EM jmrnigra@quim.iq.usp.br
CR ANDERSON WE, 1951, PHYS REV, V81, P819
ANGELINI G, 1991, INT J MASS SPECTROM, V109, P1
ARONNE A, 1993, MATER CHEM PHYS, V34, P86
ARONNE A, 1994, PHYS CHEM GLASSES, V35, P160
BENZI P, 1988, J ORGANOMET CHEM, V354, P39
BENZI P, 1989, J ORGANOMET CHEM, V373, P289
BENZI P, 1990, INT J MASS SPECTROM, V100, P646
BERNARDS TNM, 1992, J NON-CRYST SOLIDS, V142, P215
CAMPOSTRINI R, 1989, J NON-CRYST SOLIDS, V108, P143
CASCALES C, 1998, ANGEW CHEM INT EDIT, V37, P129
CIOSLOWSKI J, 1998, J AM CHEM SOC, V120, P2612
CRAMER CJ, 1995, J AM CHEM SOC, V117, P9285
DAMRAUER R, 1988, J AM CHEM SOC, V110, P6601
DAMRAUER R, 1993, J AM CHEM SOC, V115, P5218
DAMRAUER R, 1995, CHEM REV, V95, P1137
DASILVA MLP, 1995, J MASS SPECTROM, V30, P733
DASILVA MLP, 1997, INT J MASS SPECTROM, V165, P83
DEPUY CH, 1987, ACCOUNTS CHEM RES, V20, P127
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GOLDBERG N, 1998, CHEM FUNCT 1-3, V2, P1105
GORDON MS, 1992, ADV GAS PHASE ION CH, P203
HAJDASZ DJ, 1994, J AM CHEM SOC, V116, P10751
HARLAND PW, 1972, INT J MASS SPECTROM, V10, P169
HARLAND PW, 1974, J CHEM PHYS, V61, P1621
HIBINO T, 1989, J CHEM SOC FARAD T 1, V85, P2327
HUHEEY JE, 1993, INORG CHEM, A30
KAMIYA K, 1998, PHYS CHEM GLASSES, V39, P9
KLASS G, 1981, AUST J CHEM, V34, P519
KUDIN KK, 1988, J PHYS CHEM A, V102, P744
LARSON JW, 1985, J AM CHEM SOC, V107, P766
LARSON JW, 1987, INORG CHEM, V26, P4018
LI H, 1998, J AM CHEM SOC, V120, P8567
LI HL, 1998, J AM CHEM SOC, V120, P10569
MALLOUK TE, 1984, INORG CHEM, V23, P3160
MALLOUK TE, 1984, INORG CHEM, V23, P3167
MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
MORGON NH, 1997, CHEM PHYS LETT, V275, P457
MORGON NH, 1997, J AM CHEM SOC, V119, P1708
MORGON NH, 1998, J PHYS CHEM A, V102, P10399
MORGON NH, 1998, J PHYS CHEM A, V102, P2050
MURPHY MK, 1977, INORG CHEM, V16, P2437
MURPHY MK, 1977, J AM CHEM SOC, V99, P4992
NOWEK A, 1998, J PHYS CHEM A, V102, P2189
OKADA Y, 1990, SPECTROCHIM ACTA A, V46, P643
OPERTI L, 1992, J ORGANOMET CHEM, V433, P35
OPERTI L, 1993, ORGANOMETALLICS, V12, P4509
OPERTI L, 1993, ORGANOMETALLICS, V12, P4516
POLA J, 1992, J MATER CHEM, V2, P961
REED AE, 1990, J AM CHEM SOC, V112, P1434
SHELDON JC, 1987, J CHEM SOC PERK T 2, P275
SOBOTT F, 1998, CHEM-EUR J, V4, P2353
STANIC V, 1997, J MATER CHEM, V7, P105
TANABE FKJ, 1996, J PHYS CHEM-US, V100, P2862
TOLTL NP, 1998, J AM CHEM SOC, V120, P1172
VANBOMMEL MJ, 1992, J NON-CRYST SOLIDS, V147, P80
VONWEL H, 1987, J AM CHEM SOC, V109, P5823
WENTHOLD PG, 1995, J PHYS CHEM-US, V99, P2002
XAVIER LA, 1998, INT J MASS SPECTROM, V179, P223
ZAITSEVA GS, 1997, CHEM BER-RECL, V130, P739
NR 59
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1387-3806
J9 INT J MASS SPECTROM
JI Int. J. Mass Spectrom.
PD JAN 21
PY 2000
VL 196
SI Sp. Iss. SI
BP 363
EP 375
PG 13
SC Physics, Atomic, Molecular & Chemical; Spectroscopy
GA 277HR
UT ISI:000084927100032
ER
PT J
AU Coelho, LAF
Marchut, A
de Oliveira, JV
Balbuena, PB
TI Theoretical studies of energetics and diffusion of aromatic compounds
in supercritical carbon dioxide
SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
LA English
DT Article
ID MOLECULAR-DYNAMICS; LENNARD-JONES; AB-INITIO; BENZENE DIMER;
FORCE-FIELD; HARD-SPHERE; CO2 DIMER; COEFFICIENTS; MODEL; PHASE
AB Atomic and molecular interactions of aromatic compounds in carbon
dioxide are studied with ab initio and molecular dynamics techniques.
Ab initio calculations are used to determine the nature of the CO2-CO2,
CO2-benzene, and benzene-benzene interactions. We select an explicit
all-atom force field without partial atomic charges to describe the
intermolecular and intramolecular pair interactions of CO2 with benzene
and toluene. Molecular dynamics simulations are used to calculate
diffusion coefficients for benzene and toluene at infinite dilution in
CO2 along isotherms at 313.15, 323.15, and 333.15 K, in the density
range from 1.35 rho(c) to 2.10 rho(c) (rho(c) = critical CO2 density).
Diffusion coefficients are also calculated with a model based on
perturbation theory of simple liquids. The calculated diffusion
coefficients agree fairly well with the experimental results of Suarez
et al. (Chem. Eng. Sci. 1993, 48, 2419).
C1 Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA.
Univ Fed Rio de Janeiro, Chem Engn Program, Rio De Janeiro, Brazil.
RP Balbuena, PB, Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA.
CR ALLEN MP, COMPUTER SIMULATION
BALBUENA PB, 1999, MOL DYNAMICS CLASSIC, V7, P431
BELBUENA PB, 1999, MOL DYNAMICS CLASSIC, V7
BRENNECKE JF, 1999, CHEM REV, V99, P433
BROOKS BR, 1983, J COMPUT CHEM, V4, P187
BUCKINGHAM AD, 1963, P ROY SOC LOND A MAT, V273, P275
CASEWIT CJ, 1992, J AM CHEM SOC, V114, P10035
CHIALVO AA, 1992, IND ENG CHEM RES, V31, P1391
CHIPOT C, 1996, J AM CHEM SOC, V118, P11217
DARIVA C, 1999, BRAZ J CHEM ENG
DARIVA C, 1999, IN PRESS FLUID PHASE
EGGENBERGER R, 1991, MOL PHYS, V72, P433
EINSTEIN A, 1926, INVESTIGATIONS THEOR
ENGKVIST O, 1999, J CHEM PHYS, V110, P5758
FORESMAN JB, 1996, EXPLORING CHEM ELECT
FRENKEL D, 1996, UNDERSTANDING MOL SI
FRISCH MJ, 1997, GAUSSIAN 94 REVISION
HAILE JM, 1992, MOL DYNAMICS SIMULAT
HARMONY MD, 1979, J PHYS CHEM REF DATA, V8, P619
HARRIS JG, 1995, J PHYS CHEM-US, V99, P12021
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HOBZA P, 1996, J PHYS CHEM-US, V100, P18790
HOOVER WG, 1985, PHYS REV A, V31, P1695
ILLIES AJ, 1987, J PHYS CHEM-US, V91, P3489
ISRAELACHVILII J, 1992, INTERMOLECULAR SURFA
IWAI Y, 1997, FLUID PHASE EQUILIBR, V127, P251
JENSEN F, 1999, INTRO COMPUTATIONAL
JUCKS KW, 1988, J CHEM PHYS, V88, P2125
LIDE DR, 1997, HDB CHEM PHYSICS
LIU HQ, 1998, CHEM ENG SCI, V53, P2403
MCRURY TB, 1976, J PHYS CHEM-US, V64, P1288
MURTHY CS, 1981, MOL PHYS, V44, P135
POWLES JG, 1984, PHYSICA A, V126, P289
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024
REID RC, 1987, PROPERTIES GASES LIQ
SEMINARIO JM, 1996, RECENT DEV APPL MODE, V4
SEMINARIO JM, 1998, J AM CHEM SOC, V120, P3970
SIMONS J, 1997, QUANTUM MECH CHEM
SMITH GD, 1996, J PHYS CHEM-US, V100, P9624
SOUZA LES, 1993, MOL PHYS, V78, P137
SPEEDY RJ, 1987, MOL PHYS, V62, P509
SUAREZ JJ, 1993, CHEM ENG SCI, V48, P2419
TOM JW, 1993, IND ENG CHEM RES, V32, P2118
WALSH MA, 1987, CHEM PHYS LETT, V142, P265
WONG MW, 1996, CHEM PHYS LETT, V256, P391
YIN DX, 1998, J COMPUT CHEM, V19, P334
NR 46
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0888-5885
J9 IND ENG CHEM RES
JI Ind. Eng. Chem. Res.
PD JAN
PY 2000
VL 39
IS 1
BP 227
EP 235
PG 9
SC Engineering, Chemical
GA 272JD
UT ISI:000084646000029
ER
PT J
AU Diehl, A
Tamashiro, MN
Barbosa, MC
Levin, Y
TI Density-functional theory for attraction between like-charged plates
SO PHYSICA A
LA English
DT Article
ID ELECTRICAL DOUBLE-LAYER; ELECTROSTATIC CORRELATION; LIQUIDS; FORCES;
SURFACES; FLUIDS
AB We study the interactions between two negatively charged macroscopic
surfaces confining positive counterions. A density-functional approach
is introduced which, besides the usual mean-field interactions, takes
into account the correlations in the positions of counterions. The
excess free energy is derived in the framework of the Debye-Huckel
theory of the one-component plasma, with the homogeneous density
replaced by a weighted density. The minimization of the total free
energy yields the density profile of the microions. The pressure is
calculated and compared with the simulations and the results derived
from integral equations theories. We find that the interaction between
the two plates becomes attractive when their separation distance is
sufficiently small and the surface charge density is larger than a
threshold value. (C) 1999 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
Univ Fed Ceara, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil.
Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA.
RP Barbosa, MC, Univ Fed Rio Grande Sul, Inst Fis, Caixa Postal 15051,
BR-91501970 Porto Alegre, RS, Brazil.
CR ARENZON JJ, 1999, EUR PHYS J B, V12, P79
BRAMI B, 1979, PHYSICA A, V95, P505
CARBAJALTINOCO MD, 1996, PHYS REV E B, V53, P3745
CHAPMAN DL, 1913, PHILOS MAG, V25, P475
CROCKER JC, 1996, PHYS REV LETT, V77, P1897
CURTIN WA, 1985, PHYS REV A, V32, P2909
DENTON AR, 1989, PHYS REV A, V39, P4701
DERJAGUIN BV, 1941, ACTA PHYSICOCHIM URS, V14, P633
GOUY G, 1910, J PHYS-PARIS, V9, P457
GROOT RD, 1991, J CHEM PHYS, V95, P9191
GULDBRAND L, 1984, J CHEM PHYS, V80, P2221
ISE N, 1986, ANGEW CHEM INT EDIT, V25, P323
ISRAELACHVILI JN, 1986, PHYSICA A, V140, P278
ISRAELACHVILI JN, 1992, INTERMOLECULAR SURFA
KJELLANDER R, 1984, CHEM PHYS LETT, V112, P49
KJELLANDER R, 1986, J PHYS CHEM-US, V90, P1230
LEVIN Y, 1999, PHYSICA A, V265, P432
LOZADACASSOU M, 1990, J CHEM PHYS, V93, P1386
LOZADACASSOU M, 1996, PHYS REV E A, V53, P522
MIERYTERAN L, 1990, J CHEM PHYS, V92, P5087
NARAYANAN T, 1994, PHYS REV LETT, V73, P3002
NORDHOLM S, 1984, CHEM PHYS LETT, V105, P302
PENFOLD R, 1990, J CHEM PHYS, V92, P1915
PINCUS PA, 1998, EUROPHYS LETT, V42, P103
PODGORNIK R, 1989, J CHEM PHYS, V91, P5840
ROBBINS MO, COMMUNICATION
ROUZINA I, 1996, J PHYS CHEM-US, V100, P9977
SAFRAN SA, 1994, STAT THERMODYNAMICS
SHKLOVSKII BI, 1999, PHYS REV LETT, V82, P3268
STEVENS MJ, 1990, EUROPHYS LETT, V12, P81
STEVENS MJ, 1996, J CHEM PHYS, V104, P5209
TAMASHIRO MN, 1999, PHYSICA A, V268, P24
TARAZONA P, 1985, PHYS REV A, V31, P2672
VERWEY EJW, 1948, THEORY STABILITY LYO
NR 34
TC 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD DEC 15
PY 1999
VL 274
IS 3-4
BP 433
EP 445
PG 13
SC Physics, Multidisciplinary
GA 268BG
UT ISI:000084394000005
ER
PT J
AU da Silva, CO
da Silva, EC
Nascimento, MAC
TI Ab initio calculations of absolute pK(a) values in aqueous solution I.
Carboxylic acids
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; DENSITY-FUNCTIONAL THEORY; SOLVATION
MODEL; FREE-ENERGIES; ACIDITIES; SOLVENT; ABINITIO; DERIVATIVES;
POTENTIALS; CHARGES
AB A thermodynamical cycle is proposed to calculate absolute pK(a) values
for a Bronsted acid in aqueous solution. The solvent (water) was
represented by a dielectric using the polarizable continuum model
(PCM), and the absolute pK(a) values of some aliphatic carboxylic acids
were computed. The results indicate that the proposed methodology seems
to be capable of predicting reasonably good absolute pK(a) values,
although in some cases appreciable deviations are observed, which can
be related to neglecting the molecular motion contributions (Delta
G(Mm)) to the solvation energy (Delta G(solv)).
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis,
Bloco A,Sala 412,Cidade Univ, BR-21949900 Rio De Janeiro, Brazil.
CR *GEOM CTR SOFTW DE, MOL CAV FIG 3 WER OB
ADAMO C, 1997, J COMPUT CHEM, V18, P1993
AMOVILLI C, 1997, J PHYS CHEM B, V101, P1051
ANDZELM J, 1995, J CHEM PHYS, V103, P9312
BARONE V, 1997, J CHEM PHYS, V106, P8727
BARONE V, 1997, J CHEM PHYS, V107, P3210
BARONE V, 1998, J COMPUT CHEM, V19, P404
BAUSCHLICHER CW, 1995, J CHEM PHYS, V103, P1788
BENNAIM A, 1984, J CHEM PHYS, V81, P2016
BENNAIM A, 1987, SOLVATION THERMODYNA, CH1
BORDWELL FG, 1988, ACCOUNTS CHEM RES, V21, P456
CABANI S, 1981, J SOLUTION CHEM, V10, P563
CAMMI R, 1994, J CHEM PHYS, V101, P3888
CAMMI R, 1995, J COMPUT CHEM, V16, P1449
CANCES E, 1997, J CHEM PHYS, V107, P3032
CHRISTEN HR, 1988, ORG CHEM GRUNDLAGEN, V1, P419
COOKSON RF, 1974, CHEM REV, V74, P5
COSSI M, 1996, CHEM PHYS LETT, V255, P327
COSSI M, 1996, J COMPUT CHEM, V17, P57
COSSI M, 1998, J COMPUT CHEM, V19, P833
CRAMER CJ, 1992, SCIENCE, V256, P213
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
FRISCH MJ, 1995, GAUSSIAN 9J REVISION
GAO J, 1986, J AM CHEM SOC, V108, P4784
GUILMAN AG, 1990, PHARM BASIS THERAPEU
JORGENSEN WL, 1989, J AM CHEM SOC, V111, P4190
LI GS, 1997, J PHYS CHEM A, V101, P7885
LIM C, 1991, J PHYS CHEM-US, V95, P5610
MARCH J, 1992, ADV ORGANIC CHEM REA, CH8
MENNUCCI B, COMMUNICATION
MIERTUS S, 1981, CHEM PHYS, V55, P117
NETTO JDM, 1996, J PHYS CHEM-US, V100, P15105
NEWTON MD, 1971, J AM CHEM SOC, V93, P4971
PEARSON RG, 1986, J AM CHEM SOC, V108, P6109
REEVE W, 1979, CAN J CHEM, V57, P2747
RICHARDSON WH, 1997, INT J QUANTUM CHEM, V61, P207
SCHUURMANN G, 1996, QUANT STRUCT-ACT REL, V15, P121
SCHUURMANN G, 1997, QUANTITATIVE STRUCTU, V7, P225
SCHUURMANN G, 1998, J PHYS CHEM A, V102, P6706
SIGGEL MRF, 1988, J AM CHEM SOC, V110, P91
TOMASI J, 1994, CHEM REV, V94, P2027
NR 41
TC 40
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 16
PY 1999
VL 103
IS 50
BP 11194
EP 11199
PG 6
SC Chemistry, Physical
GA 268PP
UT ISI:000084425000069
ER
PT J
AU Costa, MF
Fonseca, TL
Amaral, OAV
Castro, MA
TI Calculations of the polarizability and hyperpolarizability of the NaH
molecule including vibrational corrections
SO PHYSICS LETTERS A
LA English
DT Article
DE polarizability; vibrational correction; NaH
ID QUADRATIC CONFIGURATION-INTERACTION; ELECTRON CORRELATION THEORIES;
BODY-PERTURBATION-THEORY; AB-INITIO; TRIPLE EXCITATIONS; NUCLEAR;
MODEL; HF
AB In this work we present results for the dipole moment, polarizability
and first hyperpolarizability of the NaH molecule obtained through the
many-body perturbation-theory, coupled cluster and quadratic
configuration interaction methods, including vibrational corrections.
It is shown that the nuclear relaxation contribution is of fundamental
importance for both polarizability and first hyperpolarizability of
this system. Besides, inclusion of electron correlation effects changes
appreciably the size of this contribution. In addition, our results
show that the curvature contribution does not alter significantly the
values obtained for the polarizability. (C) 1999 Published by Elsevier
Science B.V. All rights reserved.
C1 Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
RP Costa, MF, Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
CR ARCHIBONG EF, 1991, PHYS REV A, V44, P5478
BARTLETT RJ, 1981, ANNU REV PHYS CHEM, V32, P359
BISHOP DM, 1990, REV MOD PHYS, V62, P343
BISHOP DM, 1992, J CHEM PHYS, V97, P5255
BISHOP DM, 1994, ADV QUANTUM CHEM, V25, P1
BISHOP DM, 1994, J CHEM PHYS, V101, P2180
BISHOP DM, 1998, ADV CHEM PHYS, V104, P1
BUCKINGHAM AD, 1967, ADV CHEM PHYS, V12, P107
CASTRO MA, 1996, PHYS REV A, V53, P3664
DAGDIGIAN PJ, 1979, J CHEM PHYS, V71, P2823
DYKSTRA CE, 1988, AB INITIO CALCULATIO
FRISCH MJ, 1995, GAUSSIAN 94
GUERREIRO M, 1997, CHEM PHYS LETT, V274, P315
KIRTMAN B, 1990, CHEM PHYS LETT, V175, P601
LEE TJ, 1990, J PHYS CHEM-US, V94, P5463
LEE YS, 1984, J CHEM PHYS, V81, P5906
LUIS JM, 1997, J CHEM PHYS, V107, P1501
LUIS JM, 1999, J CHEM PHYS, V111, P875
MARTI J, 1993, J CHEM PHYS, V99, P3860
MARTI J, 1993, MOL PHYS, V80, P625
MCLEAN AD, 1967, J CHEM PHYS, V47, P1927
MILLER TM, 1977, ADV ATOM MOL PHYS, V13, P1
PAPADOPOULOS MG, 1996, MOL PHYS, V88, P1063
POPLE JA, 1978, INT J QUANTUM CHEM, V14, P545
POPLE JA, 1987, J CHEM PHYS, V87, P5968
PURVIS GD, 1982, J CHEM PHYS, V76, P1910
PYYKKO P, 1987, MOL PHYS, V60, P597
RAGHAVACHARI K, 1985, J CHEM PHYS, V82, P4607
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479
RUSSELL AJ, 1997, MOL PHYS, V90, P251
SADLEJ AJ, 1988, COLLECT CZECH CHEM C, V53, P1995
SADLEJ AJ, 1991, J MOL STRUCT THEOCHE, V234, P147
URBAN M, 1985, J CHEM PHYS, V83, P4041
NR 33
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9601
J9 PHYS LETT A
JI Phys. Lett. A
PD NOV 29
PY 1999
VL 263
IS 3
BP 186
EP 192
PG 7
SC Physics, Multidisciplinary
GA 265RX
UT ISI:000084258100007
ER
PT J
AU Teles, LK
Scolfaro, LMR
Leite, JR
Ramos, LE
Tabata, A
Castineira, JLP
As, DJ
TI Relaxation effects on the negatively charged Mg impurity in zincblende
GaN
SO PHYSICA STATUS SOLIDI B-BASIC RESEARCH
LA English
DT Article
ID NITRIDE
AB The electronic structure of Mg impurity in zincblende (c-)GaN is
investigated by using the ab initio full potential linear-augmented
plane-wave method and the local density-functional approximation. Fun
geometry optimization calculations, including nearest and next-nearest
neighbor displacements, are performed far the impurity in the neutral
and negatively charged states. A value of 190 +/- 10 meV was obtained
for the Franck-Condon shift to the thermal energy, which is in good
agreement with that observed in recent low temperature
photoluminescence and Hall-effect measurements. We conclude that the
nearest and next-nearest neighbors of the Mg impurity replacing Ga in
c-GaN undergo outward relaxations which play an important role in the
determination of the center acceptor energies.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Estadual Paulista, Fac Ciencias Bauru, BR-17033360 Bauru, SP, Brazil.
Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
Univ Gesamthsch Paderborn, FB Phys 6, D-33098 Paderborn, Germany.
RP Scolfaro, LMR, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR AS DJ, 1998, PHYS STATUS SOLIDI B, V210, P445
AS DJ, 1999, J NITRIDE SEMICON S1, V4
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
CASTINEIRA JLP, 1998, MAT SCI ENG B-SOLID, V51, P53
FIORENTINI V, 1996, P 23 ICPS, V4, P28777
GOTZ W, 1996, APPL PHYS LETT, V68, P667
ORTON JW, 1998, REP PROG PHYS, V61, P1
PANKOVE JI, 1998, SEMICONDUCTORS SEMIM, V50
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
SCHWARZ K, 1996, LECT NOTES CHEM, V67, P139
NR 10
TC 6
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA MUHLENSTRASSE 33-34, D-13187 BERLIN, GERMANY
SN 0370-1972
J9 PHYS STATUS SOLIDI B-BASIC RE
JI Phys. Status Solidi B-Basic Res.
PD NOV
PY 1999
VL 216
IS 1
BP 541
EP 545
PG 5
SC Physics, Condensed Matter
GA 264QX
UT ISI:000084193900104
ER
PT J
AU Takahata, Y
Chong, DP
TI Density-functional calculations of molecular electron affinities
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE molecular electron affinities; density functional theory
ID BASIS-SETS; THERMOCHEMISTRY; APPROXIMATION; EXCHANGE; ENERGY; ATOMS;
SF4; GAS
AB Electron affinities of twelve small molecules were calculated by
density functional theory using two different functionals(B88-P86 and
B3LYP) combined with three different basis sets 6-31++G**:; 6-311++G**;
aug-cc-pVTZ. Outer valence Green's function method is also employed for
calculation of electron affinities of the molecules. The two most
efficient approaches were found to be the combination of (1)B88-P86
with 6-31++G**;: basis set and (2)B3LYP with 6-31++G**:;: The two
approaches were employed to calculate electron affinities of some
medium size molecules.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada.
RP Takahata, Y, Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas,
SP, Brazil.
CR BABCOCK LM, 1981, J CHEM PHYS, V75, P3864
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BOESCH SE, 1996, J PHYS CHEM-US, V100, P10083
CHONG DP, 1995, CAN J CHEM, V73, P79
CHOWDHURY S, 1986, J AM CHEM SOC, V108, P5453
FARRAGHER AL, 1967, T FARADAY SOC, V63, P2369
FRISH MJ, 1995, GAUSSIAN 94
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HELLWEGE KL, 1976, LANDOLTBORNSTEIN NUM, V7
JURSIC BS, 1997, J MOL STRUCT THEOCHE, V394, P19
KENDALL RA, 1992, J CHEM PHYS, V96, P6796
KING RA, 1996, J PHYS CHEM-US, V100, P6061
KLOBUKOWSKI M, 1997, ADV QUANTUM CHEM, V28, P189
LEE C, 1988, PHYS REV B, V37, P785
LIDE DR, 1995, CRC HDB CHEM PHYSICS
MADELUNG O, 1992, LANDOLTBORNSTEIN NUM, V21
ORTIZ JV, 1988, J CHEM PHYS, V89, P6348
PARR RG, 1989, DENSITY FUNCTIONAL T, P95
PERDEW JP, 1986, PHYS REV B, V33, P8822
RIENSTRAKIRACOF., 1998, COMMUNICATION
TSHUMPER GS, 1997, J CHEM PHYS, V107, P2529
VIGGIANO AA, 1991, INT J MASS SPECTROM, V109, P327
ZIEGLER T, 1992, J CHEM PHYS, V96, P7623
ZIEGLER T, 1992, J COMPUT CHEM, V13, P70
NR 25
TC 4
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD SEP-OCT
PY 1999
VL 10
IS 5
BP 354
EP 358
PG 5
SC Chemistry, Multidisciplinary
GA 261MC
UT ISI:000084012100003
ER
PT J
AU Esteves, PM
Nascimento, MAC
Mota, CJA
TI Reactivity of alkanes on zeolites: A theoretical ab initio study of the
H/H exchange
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID H-D EXCHANGE; PENTACOORDINATED CARBONIUM-IONS; HYDROGEN-DEUTERIUM
EXCHANGE; HARTREE-FOCK CALCULATIONS; DIMETHYL ETHER FORMATION; C-C
BONDS; SOLID ACIDS; ELECTROSTATIC POTENTIALS; ELECTROPHILIC REACTIONS;
SURFACE METHOXY
AB Ab initio calculations were performed to study the H/H exchange between
light alkanes (methane, ethane, propane, and isobutane) in protonated
zeolites. The Bronsted acid site of the zeolite was represented by a T3
cluster (T = Si, Al). The results of the calculations, at the
B3LYP/6-31G** and MP2/6-31G**//HF/6-31G** levels, indicated that the
transition state resembles a pentacoordinated carbonium ion. The
enthalpy of activation was similar, regardless of the alkane and the
type of hydrogen being exchanged. The Delta H-double dagger values, at
room temperature, ranged from 32.2 kcal/mol for methane to 36.2
kcal/mol for the exchange of the tertiary hydrogen of isobutane, both
at the B3LYP/6-31G** level. These results are not in complete agreement
with experiments, as it has been shown that for isobutane only the
primary hydrogens exchange at temperatures near ambient. This
disagreement may be attributed to the fact that the cluster model
employed in the calculations neither includes the electrostatic effects
of the zeolite cavity nor takes into account steric repulsion
associated with the framework.
C1 Univ Fed Rio de Janeiro, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Mota, CJA, Univ Fed Rio de Janeiro, Inst Quim, Cidade Univ,CT Bloco A,
BR-21949900 Rio De Janeiro, Brazil.
CR BECK LW, 1995, J AM CHEM SOC, V117, P11594
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BLASZKOWSKI SR, 1996, J AM CHEM SOC, V118, P5152
BLASZKOWSKI SR, 1996, J PHYS CHEM-US, V100, P3463
BLASZKOWSKI SR, 1997, J AM CHEM SOC, V119, P5152
BLASZKOWSKI SR, 1997, J PHYS CHEM B, V101, P2292
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BRUNDLE M, 1998, J AM CHEM SOC, V120, P1556
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
COLLINS SJ, 1995, CHEM PHYS LETT, V246, P555
COLLINS SJ, 1995, J CATAL, V153, P94
CORMA A, 1995, CHEM REV, V95, P559
ESTEVES PM, 1998, TOP CATAL, V6, P163
ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
EVLETH EM, 1996, J PHYS CHEM-US, V100, P11368
FRASH MV, 1997, J PHYS CHEM B, V101, P5346
FRASH MV, 1998, J PHYS CHEM B, V102, P2232
FRISCH MJ, 1995, GAUSSIAN 94
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P703
JOBIC H, 1996, J PHYS CHEM-US, V100, P19545
KAZANSKY VB, 1991, ACCOUNTS CHEM RES, V24, P379
KAZANSKY VB, 1992, J MOL CATAL, V74, P257
KAZANSKY VB, 1994, CATAL LETT, V28, P211
KRAMER GJ, 1993, NATURE, V363, P529
KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
KROTLA J, 1998, J PHYS CHEM B, V102, P2454
LINS JOMDL, 1996, THEOCHEM-J MOL STRUC, V371, P237
MOTA CJA, UNPUB
MOTA CJA, 1991, J CHEM SOC CHEM COMM, P171
MOTA CJA, 1992, J AM CHEM SOC, V114, P1121
MOTA CJA, 1993, STUD SURF SCI CATAL, V75, P463
MOTA CJA, 1994, J CHEM SOC FARADAY T, V90, P2297
MOTA CJA, 1996, APPL CATAL A-GEN, V146, P181
MOTA CJA, 1996, J PHYS CHEM-US, V100, P12418
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
MOTA CJA, 1997, J CATAL, V172, P194
NASCIMENTO MAC, 1999, J MOL STRUC-THEOCHEM, V464, P239
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
ORTIZ W, 1999, ORG LETT, V1, P531
RIGBY AM, 1997, J CATAL, V170, P1
SINCLAIR PE, 1997, J PHYS CHEM B, V101, P295
SOMMER J, 1992, J AM CHEM SOC, V114, P5884
SOMMER J, 1994, J AM CHEM SOC, V116, P5491
SOMMER J, 1995, J AM CHEM SOC, V117, P1135
STEVENSON DP, 1952, J AM CHEM SOC, V74, P3269
VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13713
ZICOVICHWILSON C, COMMUNICATION
ZICOVICHWILSON CM, 1995, J PHYS CHEM-US, V99, P13224
ZYGMUNT SA, 1994, J MOL STRUCT THEOCHE, V314, P113
ZYGMUNT SA, 1996, J PHYS CHEM-US, V100, P6663
NR 53
TC 25
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5647
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 25
PY 1999
VL 103
IS 47
BP 10417
EP 10420
PG 4
SC Chemistry, Physical
GA 261LF
UT ISI:000084010100015
ER
PT J
AU Goeppert, A
Sassi, A
Sommer, J
Esteves, PM
Mota, CJA
Karlsson, A
Ahlberg, P
TI Protonation of small alkanes in liquid superacids: Absence of
intramolecular C-13 and H-2 scrambling in propane and isobutane
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID THEORETICAL AB-INITIO; ACTIVATION; DEUTERIUM; CRACKING; ZEOLITE; CATIONS
C1 Univ Strasbourg 1, Inst Chim, F-67070 Strasbourg, France.
Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Gothenburg, Dept Organ Chem, S-41296 Gothenburg, Sweden.
RP Sommer, J, Univ Strasbourg 1, Inst Chim, 4 Rue Blaise Pascal, F-67070
Strasbourg, France.
CR BROUWER DM, 1968, RECL TRAV CHIM PAY B, V87, P1435
CORMA A, 1985, J CATAL, V93, P30
CORMA A, 1994, J CATAL, V145, P171
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
HAAG WO, 1984, 8TH P INT C CAT BERL, V2, P305
IVANOVA II, 1998, TOP CATAL, V6, P49
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
OLAH G, 1985, SUPERACIDS
OLAH GA, 1972, J AM CHEM SOC, V94, P808
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1995, HYDROCARBON CHEM
PINES H, 1981, CHEM CATALYTIC HYDRO
SAUNDERS M, 1992, CROAT CHEM ACTA, V65, P673
SOMMER J, 1992, J AM CHEM SOC, V114, P5884
SOMMER J, 1993, ACCOUNTS CHEM RES, V26, P370
SOMMER J, 1997, J AM CHEM SOC, V119, P3274
NR 17
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 17
PY 1999
VL 121
IS 45
BP 10628
EP 10629
PG 2
SC Chemistry, Multidisciplinary
GA 258UP
UT ISI:000083857800022
ER
PT J
AU Okulik, N
Peruchena, NM
Esteves, PM
Mota, CJA
Jubert, A
TI Ab initio topological analysis of the electronic density in isobutonium
cations
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR CHARGE-DISTRIBUTIONS; ELECTROPHILIC REACTIONS; QUANTUM
TOPOLOGY; TERMS
AB Studies performed on isobutonium cations at the ab initio level show
that five different stable structures can be characterized. The two
structures most energetically favored correspond to van der Waals
complexes, one of them between CH4 and i-C3H7+ and one of smaller
energy between H-2 and the C4H9+ cation. Among the isobutonium cations,
the most stable structure corresponds to the C-isobutonium cation where
a three-center two-electron bond is formed. The isobutonium cations on
the H are significantly higher in energy. The topology of the
electronic density charge of the isobutonium cations is studied, at ab
initio level, using the theory of atoms in molecules (AIM) developed by
Bader. The electronic delocalization that operates through the sigma
bonds in saturated molecules and specifically in protonated alkanes can
be studied by means of the analysis of the charge density and of the
Laplacian of the electronic charge density at the bond critical points.
C1 Natl Univ La Plata, Fac Ciencias Exactas, Dept Quim, CONICET,Ctr Quim Inorgan,CEQUINOR,UNLP, RA-1900 La Plata, Argentina.
UNNE, Fac Ciencias Exactas & Nat & Agrimensura, Dept Quim, RA-3400 Corrientes, Argentina.
Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Fac Agroind, RA-3700 Pcia R Saenz Pena, Chaco, Argentina.
RP Okulik, N, Natl Univ La Plata, Fac Ciencias Exactas, Dept Quim,
CONICET,Ctr Quim Inorgan,CEQUINOR,UNLP, CC 962, RA-1900 La Plata,
Argentina.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BADER RFW, 1979, J AM CHEM SOC, V101, P1389
BADER RFW, 1979, J CHEM PHYS, V70, P6316
BADER RFW, 1980, J CHEM PHYS, V73, P2871
BADER RFW, 1981, ADV QUANTUM CHEM, V14, P63
BADER RFW, 1981, REP PROG PHYS, V44, P893
BADER RFW, 1983, J AM CHEM SOC, V105, P5061
BADER RFW, 1990, ATOMS MOL QUANTUM TH
CREMER D, 1983, J AM CHEM SOC, V105, P5069
ESTEVES PM, 1998, TOP CATAL, V6, P163
FRISCH MJ, 1995, GAUSSIAN 94
KLIEGERKONIG W, 1982, J COMPUT CHEM, V3, P317
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
NR 16
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 21
PY 1999
VL 103
IS 42
BP 8491
EP 8495
PG 5
SC Chemistry, Physical
GA 251DT
UT ISI:000083429900019
ER
PT J
AU de Oliveira, AE
Bruns, RE
TI CCl4: mean dipole moment derivatives and core electron binding energies
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE atomic polar tensor; density functional theory; CCl4
ID POLAR TENSORS; VIBRATIONAL INTENSITIES; INFRARED INTENSITIES;
SUBSTITUTED METHANES
AB Atomic polar tensors for the carbon tetrachloride molecule are
calculated from experimental fundamental infrared intensities, a normal
coordinate transformation determined from observed fundamental
frequency values and experimentally determined CCl bond lengths. Dipole
moment derivative sign ambiguities were eliminated by comparing the
alternative mathematical solutions obtained from the experimental data
with results of Hartree-Fock, Moller-Plesset 2 and Density Functional
Theory calculations using a 6 -31 + + G(d,p) basis set. Carbon and
chlorine mean dipole moment derivatives of 1.043 +/- 0.022e and - 0.261
+/- 0.006e, respectively, are determined from the preferred atomic
polar tensors. These values are in excellent agreement with those
obtained from the CCl4 Is carbon atom ionization energy using a simple
potential model (1.081e and - 0.270e), from an electronegativity model
proposed earlier (1.008e and - 0.252e) and from an electronegativity
equalization model (1.066e and - 0.266e). (C) 1999 Elsevier Science
B.V. AU rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13081970 Campinas, SP, Brazil.
RP Bruns, RE, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13081970
Campinas, SP, Brazil.
CR BAGUS PS, 1965, PHYS REV A, V139, P619
BASSI ABM, 1975, THESIS U ESTADUAL CA
BRUNS RE, 1996, J BRAZIL CHEM SOC, V7, P497
CIOSLOWSKI J, 1989, J AM CHEM SOC, V111, P8333
DEOLIVEIRA AE, 1998, J PHYS CHEM A, V102, P4615
FRISCH MJ, 1995, GAUSSIAN 94
GUADAGNINI PH, 1997, J AM CHEM SOC, V119, P4224
HUHEEY JE, 1965, J PHYS CHEM-US, V69, P3284
JOLLY WL, 1984, ATOM DATA NUCL DATA, V31, P433
MORCILLO J, 1961, ANN R SOC ESP FIS A, V57, P81
NETO BB, 1988, J CHEM PHYS, V89, P1887
NETO BB, 1990, J PHYS CHEM-US, V94, P1764
PERSON WB, 1974, J CHEM PHYS, V61, P1040
PERSON WB, 1976, J CHEM PHYS A, V64, P3036
SIEGBAHN K, 1971, ESCA APPL FREE MOL
SUTO E, 1991, J PHYS CHEM-US, V95, P9716
TANABE K, 1970, SPECTROCHIM ACTA A, V26, P1469
NR 17
TC 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD SEP 20
PY 1999
VL 55
IS 11
BP 2215
EP 2219
PG 5
SC Spectroscopy
GA 240GD
UT ISI:000082816800007
ER
PT J
AU Ramos, JCS
Hollauer, E
Cardoso, SP
TI The vibration frequencies predicted by the AM1 model.
SO QUIMICA NOVA
LA Portuguese
DT Review
DE AM1; frequencies; CH; NH; OW; CO; CC frequencies
ID DENSITY-FUNCTIONAL THEORY; GROUND-STATES; MOLECULES; SPECTRA; MNDO
AB We analyse vibrational frequencies of 168 compounds with the AMI model
concerning its experimentally observed gaseous frequencies. Stretching
of CH, NH, OH and CO bonds, its related bending frequencies, and the CC
frame movements ape the studied vibrations. The results show problems
with the AMI vibrational splittings, Often symmetric stretching
frequencies, like in CH3, CH2 and NN3, appear switched with the
corresponding antisymmetrical ones. among the studied vibrations many
stretchings are overestimated, while bendings oscillate around
experimental values. Fluorine stretchings, NN, OO, CH, double and
triples CG bonds and cyclic hydrocarbon breathing modes are always
overestimated while torsions, umbrella modes and OH/SH stretching are,
in average, underestimated. Graphical analysis shaw that compounds with
the lowest molecular masses are the ones with the largest difference to
the experimental values. From our results it is not possible to fit
confortably the calculated frequencies by a simple linear relationship
of the type, v(obs)=a*v(AM1). Better aggreement is obtained when
different curves are adjusted for the stretching and bending modes, and
when a complete linear function is used. Among our studies the best
obtained statistical results are for CH, NN and OH. The conclusions
obtained in this work will improve the AMI calculated frequencies
leading to accurate results for these properties.
C1 Univ Fed Fluminense, Inst Quim, Dept Quim Fis, BR-24210150 Niteroi, RJ, Brazil.
UnED, Escola Tecn Fed Quim, Secao Quim, BR-26530060 Nilopolis, RJ, Brazil.
RP Ramos, JCS, Univ Fed Fluminense, Inst Quim, Dept Quim Fis, Morro do
Valonguinho S-N, BR-24210150 Niteroi, RJ, Brazil.
CR BRAND JCD, 1970, MATH COMPUT, V24, P647
BRIGHT EW, 1955, MOL VIBRATIONS
CASTELLAVENTURA M, 1994, SPECTROCHIM ACTA A, V50, P69
COOLIDGE MB, 1991, J COMPUT CHEM, V12, P948
DEFREES DJ, 1985, J CHEM PHYS, V82, P333
DEWAR MJS, 1977, J AM CHEM SOC, V99, P1685
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DUNCAN JL, 1964, SPECTROCHIM ACTA, V20, P523
DUNCAN JL, 1991, SPECTROCHIM ACTA A, V47, P1
FABIAN WMF, 1988, J COMPUT CHEM, V9, P369
FAUSTO R, 1994, J MOL STRUCT, V323, P267
HARMONY MD, 1979, J PHYS CHEM REF DATA, V8, P619
HEALY EF, 1993, J MOL STRUCT THEOCHE, V281, P141
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HERZBERG G, 1950, SPECTRA DIATOMIC MOL
HOLLAUER E, 1993, THESIS CAMPINAS SP
HOUT RF, 1982, J COMPUT CHEM, V3, P234
KLIMO V, 1962, COLLECT CZECH CHEM C, V49, P1731
LEVINE IN, 1975, MOL SPECTROSCOPY
MORSE PM, 1929, PHYS REV, V34, P57
NIELSON JR, 1949, J CHEM PHYS, V17, P659
OHNO K, 1995, J MOL STRUCT, V352, P475
SALA O, 1984, ESPECTROSCOPIA RAMAN
SANTOS HF, 1995, J MOL STRUCT, V335, P129
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SHIMANOUCHI T, 1977, J PHYS CHEM REF DATA, V6, P993
STEWART JJP, 1993, MANUAL MOPAC 93 REVI
STREY G, 1967, J MOL SPECTROSC, V24, P87
SWALEN JD, 1962, J CHEM PHYS, V36, P1914
WALL FT, 1937, J CHEM PHYS, V5, P314
ZHOU XF, 1996, VIB SPECTROSC, V12, P73
NR 32
TC 4
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0100-4042
J9 QUIM NOVA
JI Quim. Nova
PD SEP-OCT
PY 1999
VL 22
IS 5
BP 684
EP 692
PG 9
SC Chemistry, Multidisciplinary
GA 237BB
UT ISI:000082632800012
ER
PT J
AU Pliego, JR
De Almeida, WB
Celebi, S
Zhu, ZD
Platz, MS
TI Singlet-triplet gap, and the electronic and vibrational spectra of
chlorophenylcarbene: A combined theoretical and experimental study
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID LASER FLASH-PHOTOLYSIS; O-H BOND; AB-INITIO; YLIDE FORMATION;
PERTURBATION-THEORY; CARBENE FORMATION; EXCITED-STATES; SPIN STATES;
KINETICS; CCL2
AB Minimum energy structures of singlet and triplet chlorophenylcarbene, a
prototypical carbene, were computed. The singlet-triplet energy
separation was predicted to be 7.84 and 7.70 kcal/mol at the
UCCSD(T)/6-31+G* and QCISD(T)/6-31+G** levels of theory, respectively,
after zero-point correction. This is slightly larger than that
predicted by the CAS(6,6) (4.5 kcal/mol), local spin density
approximation (5.6 kcal/mol), and the BLYP (7.3 kcal/mol) methods with
the 6-31G* basis set reported by Trindle et al. The UV-vis and IR
spectra of chlorophenylcarbene were analyzed with the aid of the
CASPT2/CASSCF(10,10) and the B3LYP/6-31G* levels of theory,
respectively. The UV-vis and IR spectra of chlorophenylcarbene were
assigned on the basis of these calculations. The ab initio calculations
predicted the existence of strong absorption bands in the UV and a weak
band in the visible in good agreement with published spectra. The long
(750 nm) wavelength band corresponds to electron promotion from the
lone pair sigma (HOMO) to the pi* (LUMO). On the basis of the
calculated harmonic frequencies, we cannot assign the 1244 and 1600
cm(-1) IR bands observed in an argon matrix to chlorophenyl carbene.
The most intense IR band (1225 cm(-1)) corresponds to the symmetric C-C
stretch of the carbene and aromatic carbon. The asymmetric and
symmetric C-C-Cl stretches are assigned to the bands observed at 847
and 739 cm(-1), respectively.
C1 Univ Fed Minas Gerais, Dept Quim, Lab Quim Computac & Modelagem Mol, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
Ohio State Univ, Newman & Wolfrom Lab Chem, Columbus, OH 43210 USA.
RP Platz, MS, Univ Fed Minas Gerais, Dept Quim, Lab Quim Computac &
Modelagem Mol, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
CR ADMASU A, 1997, J PHYS CHEM A, V101, P3832
ADMASU A, 1998, J CHEM SOC PERK MAY, P1093
AMOS RD, 1991, CHEM PHYS LETT, V185, P256
ANDERSSON K, 1998, MOLCAS PROGRAM VERSI
BALLY T, 1994, ANGEW CHEM INT EDIT, V33, P1964
BARON WJ, 1973, CARBENES, V1, P1
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENT HA, 1960, J CHEM EDUC, V37, P616
BERNARDI F, 1997, J ORG CHEM, V62, P2018
BONDYBEY VE, 1977, J MOL SPECTROSC, V64, P180
BONNEAU R, 1990, J AM CHEM SOC, V112, P744
CAI ZL, 1993, CHEM PHYS LETT, V210, P481
CHATEAUNEUF JE, 1990, J AM CHEM SOC, V112, P3217
CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
CRAMER CJ, 1994, J AM CHEM SOC, V116, P9787
EISENTHAL KB, 1985, TETRAHEDRON, V41, P1543
FRISCH MJ, 1995, GAUSSIAN 94
GANZER GA, 1986, J AM CHEM SOC, V108, P1517
GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
GOULD IR, 1985, TETRAHEDRON, V41, P1587
GRILLER D, 1982, J AM CHEM SOC, V104, P5549
GRILLER D, 1984, ACCOUNTS CHEM RES, V17, P283
GRILLER D, 1985, TETRAHEDRON, V41, P1525
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HIRAO K, 1992, CHEM PHYS LETT, V190, P374
HOUK KN, 1985, TETRAHEDRON, V41, P1555
JACKSON JE, 1988, J AM CHEM SOC, V110, P5595
JONES MB, 1992, J AM CHEM SOC, V114, P2163
KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
KIRMSE W, 1993, J AM CHEM SOC, V115, P8918
LEE C, 1988, PHYS REV B, V37, P785
LEOPOLD DG, 1985, J CHEM PHYS, V83, P4849
MATZINGER S, 1996, J AM CHEM SOC, V118, P1535
MCMAHON RJ, 1987, J AM CHEM SOC, V109, P2456
MILLIGAN DE, 1967, J CHEM PHYS, V47, P703
MODARELLI DA, 1992, J AM CHEM SOC, V114, P7034
MOSS RA, 1988, TETRAHEDRON LETT, V29, P6417
NAKANO H, 1993, J CHEM PHYS, V99, P7983
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1997, J CHEM PHYS, V106, P3582
PLIEGO JR, 1997, J CHEM SOC FARADAY T, V93, P1881
PLIEGO JR, 1997, J CHEM SOC PERK NOV, P2365
PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
PLIEGO JR, 1998, J BRAZIL CHEM SOC, V9, P181
POPLE JA, 1983, J AM CHEM SOC, V105, P6389
ROBERT M, 1996, J PHYS CHEM-US, V100, P18426
ROBERT M, 1998, J PHYS CHEM A, V102, P1507
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SHIN SK, 1990, J PHYS CHEM-US, V94, P6963
SOUNDARARAJAN N, 1988, J AM CHEM SOC, V110, P7143
TOSCANO JP, 1994, J AM CHEM SOC, V116, P8146
TRINDLE C, 1997, J AM CHEM SOC, V119, P12947
TURRO NJ, 1980, J AM CHEM SOC, V102, P7578
WANG JL, 1995, J AM CHEM SOC, V117, P5477
WONG C, 1993, J CHEM RES S, P32
YAMAMOTO N, 1994, J AM CHEM SOC, V116, P2064
ZUEV PS, 1994, J ORG CHEM, V59, P2267
ZUPANCIC JJ, 1985, TETRAHEDRON, V41, P1471
NR 60
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 16
PY 1999
VL 103
IS 37
BP 7481
EP 7486
PG 6
SC Chemistry, Physical
GA 238JH
UT ISI:000082706800014
ER
PT J
AU Taft, CA
Guimaraes, TC
Pavao, AC
Lester, WA
TI Adsorption and dissociation of diatomic molecules on transition-metal
surfaces
SO INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY
LA English
DT Review
ID ANGLE-RESOLVED PHOTOEMISSION; ELECTRON-ENERGY LOSS; TEMPERATURE
PROGRAMMED DESORPTION; RAY PHOTOELECTRON DIFFRACTION;
DENSITY-FUNCTIONAL THEORY; MORSE-POTENTIAL ANALYSIS; SULFUR MODIFIED
FE(100); SINGLE-CRYSTAL SURFACE; SMALL NICKEL CLUSTERS; QUANTUM
MONTE-CARLO
AB The interaction between transition-metal surfaces and simple diatomic
molecules (CO, NO, H-2, N, and O-2) may lead to the breaking and making
of chemical bonds and trigger important surface-catalysed reactions. We
discuss the most common surface interaction and orientation models and
consider the electronic structure of the transition metal, and the
influence of structure, bonding and coordination of the diatomic
molecule. We emphasize the importance of the tilted precursor in the
dissociation of diatomic molecules on transition-metal surfaces.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
Univ Fed Pernambuco, Dept Quim Fundamental, BR-50960450 Recife, PE, Brazil.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150,Urca,
BR-22290180 Rio De Janeiro, Brazil.
CR AHLRICHS R, 1985, J CHEM PHYS, V82, P890
AIZAWA H, 1998, SURF SCI, V399, L364
ALBRIGHT TA, 1985, ORBITAL INTERACTIONS
ALLISON JN, 1982, SURF SCI, V115, P553
ALMEIDA AL, 1998, J CHEM PHYS, V109, P3671
ALMEIDA AL, 1999, INT J QUANTUM CHEM, V71, P153
ANDERSON AB, 1974, J CHEM PHYS, V60, P4271
ANDERSON AB, 1976, INORG CHEM, V15, P2598
ANDERSON AB, 1984, SURF SCI, V146, P80
ANDERSON AB, 1986, J AM CHEM SOC, V108, P1385
ANDERSON AB, 1987, J PHYS CHEM-US, V91, P4245
ANDERSON AB, 1988, J PHYS CHEM-US, V92, P809
ANDERSON JB, 1995, INT REV PHYS CHEM, V14, P85
ANDERSSON S, 1977, SOLID STATE COMMUN, V21, P75
ANDERSSON S, 1980, J PHYS C SOLID STATE, V13, P3547
ANDREONI W, 1981, PHYS REV B, V23, P4379
ANGEVAARE PAJ, 1988, J CATAL, V110, P11
ARABCZYK W, 1997, SURF SCI, V377, P578
ARUMAINAYAGAM CR, 1996, SURF SCI, V360, P121
ASENSIO MC, 1992, CHEM PHYS LETT, V192, P259
AUGUSTINE RL, 1996, HETEROGENEOUS CATALY
BACKX C, 1981, SURF SCI, V104, P300
BACON AD, 1979, THEOR CHIM ACTA, V53, P21
BAERENDS EJ, 1992, NATO ADV STUDY I S B, V283
BAETZOLD RC, 1982, SOLID STATE COMMUN, V44, P781
BAGUS PS, 1983, PHYS REV B, V28, P5423
BAGUS PS, 1990, PHYS REV B, V42, P10852
BAGUS PS, 1990, SURF SCI, V236, P233
BAGUS PS, 1994, CHEM PHYS LETT, V224, P576
BAHRIM B, 1996, J CHEM PHYS, V104, P10014
BAIRD RJ, 1980, SURF SCI, V97, P356
BALASUBRAMANIAN K, 1987, J CHEM PHYS, V87, P3981
BALKENENDE AR, 1989, APPL SURF SCI, V37, P189
BALKENENDE AR, 1991, APPL SURF SCI, V47, P351
BATRA IP, 1976, SURF SCI, V57, P12
BAUSCHLICHER CW, 1985, COMP AB INITIO QUANT
BAUSCHLICHER CW, 1986, J CHEM PHYS, V85, P354
BAUSCHLICHER CW, 1994, J CHEM PHYS, V101, P3250
BEHM RJ, 1984, J VAC SCI TECHNOL A, V2, P1040
BEHM RJ, 1997, ACTA PHYS POL A, V93, P260
BENNICH P, 1998, PHYS REV B, V57, P9274
BENZIGER J, 1980, SURF SCI, V94, P119
BENZIGER J, 1980, SURF SCI, V94, P199
BERGER HF, 1992, SURF SCI, V275, L627
BERNASEK SL, 1993, ANNU REV PHYS CHEM, V44, P265
BERTINO M, 1996, APPL PHYS A-MATER, V62, P95
BERTINO MF, 1997, SURF SCI, V385, L984
BERTOLINI JC, 1981, SURF SCI, V102, P12
BERTOLINI JC, 1981, SURF SCI, V102, P131
BESENBACHER F, 1993, PROG SURF SCI, V44, P1
BEUTL M, 1997, SURF SCI, V385, P1106
BEUTLER A, 1997, SURF SCI, V371, P381
BIBERIAN JP, 1982, SURF SCI, V118, P443
BIEMOLT W, 1992, CHEM PHYS LETT, V188, P477
BIRD DM, 1993, CHEM PHYS LETT, V212, P518
BLANSE B, 1989, J CATAL, V119, P238
BLASTER HU, 1996, P 4 INT S HET CAT FI
BLOMBERG MRA, 1991, J AM CHEM SOC, V113, P424
BLYHOLDER G, 1964, J PHYS CHEM-US, V68, P2772
BLYHOLDER G, 1975, J CHEM PHYS, V62, P3193
BOETTGER JC, 1993, INT J QUANTUM CHEM S, V27, P147
BOLAND JJ, 1991, PHYS REV LETT, V67, P1539
BONICKE IA, 1998, SURF SCI, V395, P138
BONZEL HP, 1975, SURF SCI, V51, P213
BONZEL HP, 1977, SURF SCI, V62, P45
BONZEL HP, 1987, SURFACE SCI REPT, V8, P43
BORG A, 1994, SURF SCI, V306, P10
BORG HJ, 1994, J CHEM PHYS, V101, P10052
BORUP RL, 1997, SURF SCI, V374, P152
BORUSIK OS, 1997, SURF SCI LETT, V486, L1016
BOTZO F, 1983, CHEM PHYS LETT, V94, P243
BOUDART M, 1969, ADV CATAL, V20, P153
BOWMAN R, 1973, SURF SCI, V35, P8
BOZSO F, 1977, J CATAL, V49, P18
BOZSO F, 1977, J CATAL, V49, P189
BOZSO F, 1984, SURF SCI, V141, P591
BRADLEY JM, 1996, J CHEM PHYS, V104, P4283
BREITSCHAFTER MJ, 1981, SURF SCI, V109, P493
BRODEN G, 1976, SURF SCI, V59, P593
BRUNDLE CR, 1975, FARADAY DISCUSS, V60, P51
BUTLER DA, 1994, CHEM PHYS LETT, V217, P423
CAMPBELL CT, 1984, SURF SCI, V139, P396
CAPUTI LS, 1993, SURF SCI, V282, P62
CAPUTI LS, 1993, SURF SCI, V289, L591
CEPERLEY DM, 1996, ADV CHEM PHYS, V93, P1
CHACONTAYLOR MR, 1996, J PHYS CHEM-US, V100, P7610
CHANG S, 1974, PHYS REV LETT, V52, P648
CHONG DP, 1986, J CHEM PHYS, V84, P5606
COLONELL JI, 1996, J CHEM PHYS, V104, P6822
CONRAD H, 1975, SURF SCI, V50, P296
CONRAD H, 1977, SURF SCI, V65, P235
CONRAD H, 1984, SURF SCI, V145, P1
COOK JC, 1997, SURF SCI, V371, P213
COTTON FA, 1962, J AM CHEM SOC, V84, P4432
COX DM, 1987, NATO ADV STUDY I SER, V158, P741
COX DM, 1990, ACS SYM SER, V437, P172
CULOTTA E, 1992, SCIENCE, V258, P1862
DAVIS MF, 1993, SELECTIVITY CATALYSI
DELBECQ F, 1998, SURF SCI, V396, P156
DEMONGEOT FB, 1997, J CHEM PHYS, V106, P711
DEPAOLA RA, 1987, PHYS REV B, V35, P4236
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DOVESI R, 1983, PHYS REV B, V28, P5781
DOVESI R, 1987, J CHEM PHYS, V86, P6967
DOWBEN PA, 1988, SURF SCI, V193, P336
DOWBEN PA, 1991, SURF SCI, V254, L482
DRAKOVA D, 1990, SURF SCI, V226, P285
DUARTE HA, 1997, J PHYS CHEM B, V101, P7474
DUBOIS LH, 1987, J CHEM PHYS, V87, P1367
DUCROS R, 1980, SURF SCI, V94, P154
DUMESIC JA, 1993, MICROKINETICS HETERO
EASTMAN DE, 1974, JPN J APPL PHYS PT 2, V2, P827
EBERHARDT W, 1985, PHYS REV LETT, V54, P1856
EDAMOTO K, 1988, SURF SCI, V204, L739
ERLEY W, 1981, J VAC SCI TECHNOL, V18, P472
ERTL G, 1982, CRIT REV SOLID STATE, P349
ERTL G, 1982, SURF SCI, V114, P527
ERTL G, 1994, TOP CATAL, V1, P305
ERTL G, 1997, HDB HETEROGENEOUS CA
ESTIU GL, 1994, J PHYS CHEM-US, V98, P9972
FEIBELMAN PJ, 1991, PHYS REV LETT, V67, P461
FERMI E, 1926, Z PHYS, V48, P542
FICHTNERENDRUSCHAT S, 1998, J CHEM PHYS, V108, P774
FINK T, 1991, SURF SCI, V245, P96
FINLAY RJ, 1997, CHEM PHYS LETT, V274, P499
FRAGA F, 1992, COMPUTATIONAL CHEM S
FRANCHY R, 1995, SURF SCI, V322, P95
FREUND HJ, 1987, SURF SCI, V185, P187
FROMENT GC, 1997, P INT S DYN SURF REA
FUKUDA Y, 1980, SURF SCI, V99, P289
FUKUDA Y, 1981, SURF SCI, V104, L234
FUKUDA Y, 1988, SURF SCI, V203, L651
GHIOTTI G, 1993, SURF SCI A, V287, P228
GLAND JL, 1980, SURF SCI, V94, P355
GODOWSKI PJ, 1996, ACTA PHYS POL A, V89, P657
GONZALEZ L, 1982, SURF SCI, V119, P61
GORDON MH, 1993, CHEM PHYS, V175, P37
GORLING A, 1993, SURF SCI, V286, P26
GROSS A, 1998, PHYS REV B, V57, P2493
GRUNZE M, 1979, SURF SCI, V89, P381
GRUNZE M, 1984, P 8 C CAT, V4, P133
GRUNZE M, 1984, PHYS REV LETT, V53, P850
GRUNZE M, 1987, APPL PHYS A-SOLID, V44, P19
GUEST RJ, 1992, SURF SCI, V278, P239
GUIMARAES TC, 1997, PHYS REV B, V56, P7001
GUIMARAES TC, 1999, IN PRESS PHYS REV B
GUO XC, 1994, SURF SCI, V310, P163
HAMMER B, 1992, PHYS REV LETT, V69, P1971
HAMMER B, 1996, PHYS REV LETT, V76, P2141
HAMMER B, 1997, CATAL LETT, V46, P31
HAMMER B, 1997, NATO ADV STUDY I S E, V331
HAMMOND BL, 1994, MONTE CARLO METHODS
HANEMAN D, 1997, SURF SCI, V375, P71
HARDER R, 1994, SURF SCI, V316, P478
HARLE H, 1997, CHEM PHYS LETT, V279, P275
HARRIS J, 1985, PHYS REV LETT, V55, P1583
HARRIS S, 1982, CHEM PHYS, V67, P229
HARRIS S, 1984, J CATAL, V86, P400
HASHIZUME T, 1991, JPN J APPL PHYS, V30, L1529
HASSE G, 1987, SURF SCI, V191, P75
HAYDEN BE, 1991, SURF SCI, V243, P31
HEINZ K, 1979, SURF SCI, V87, P5959
HEINZMANN U, 1996, J PHYS-CONDENS MAT, V8, P3245
HEITZINGER JM, 1992, SURF SCI, V260, P151
HERMANN K, 1987, PHYS REV B, V35, P9467
HESKETT D, 1984, SURF SCI, V139, P558
HINES MA, 1993, J CHEM PHYS, V98, P9134
HO W, 1980, SURF SCI, V95, P171
HOFFMAN RH, 1988, SOLIDS SURFACES
HOFFMANN R, 1962, J CHEM PHYS, V36, P2179
HOFFMANN R, 1962, J CHEM PHYS, V37, P2872
HOFFMANN R, 1963, J CHEM PHYS, V39, P1397
HOFFMANN R, 1977, INORG CHEM, V16, P503
HOFFMANN R, 1987, ANGEW CHEM INT EDIT, V26, P846
HOFFMANN R, 1988, REV MOD PHYS, V60, P101
HOFFMANN R, 1988, SOLIDS SURFACES
HOHENBERG P, 1964, PHYS REV, V136, B864
HOLLOWAY S, 1984, J ELECTROANAL CH INF, V161, P193
HOOPER CW, 1991, CATALYTIC AMMONIA SY, P253
HUBER R, 1970, J MOL BIOL, V52, P349
IBBOTSON DE, 1981, SURF SCI, V110, P313
IBOTTSON DE, 1981, SURF SCI, V110, P294
ILLAS F, 1996, THEOCHEM-J MOL STRUC, V371, P257
ILLAS F, 1997, SURF SCI, V376, P279
ITOH H, 1976, JPN J APPL PHYS, V15, P2311
JACKSON SD, 1998, J CHEM SOC FARADAY T, V94, P955
JAFFE JE, 1993, PHYS REV B, V48, P7903
JAKOB P, 1997, SURF SCI, V370, L185
JENSEN ES, 1983, PHYS REV B, V27, P3338
JOHNSON DW, 1979, J CHEM SOC FARAD T 1, V75, P2143
JOHNSON KH, 1973, ADV QUANTUM CHEM, V7, P143
JOHNSON KH, 1976, INT J QUANT CHEM S, V10, P47
JOYNER RW, 1993, ELEMENTARY REACTION
KALDOR A, 1990, PURE APPL CHEM, V62, P79
KAMATH PV, 1984, J PHYS CHEM-US, V88, P464
KANG DB, 1985, J AM CHEM SOC, V107, P7858
KANSKI J, 1977, SURF SCI, V65, P63
KARIKORPI M, 1987, SURF SCI, V179, L41
KATSUKI S, 1989, SURF SCI, V220, P181
KAWAI M, 1996, SURF SCI, V368, P239
KEVAN SD, 1981, PHYS REV LETT, V46, P1629
KINNERSLEY AD, 1997, SURF SCI, V377, P567
KIRCHNER EJJ, 1992, J CHEM PHYS, V97, P3821
KISHI K, 1975, J CHEM SOC F1, V71, P1715
KISHI K, 1976, P ROY SOC LOND A MAT, V352, P289
KISKINOVA M, 1981, SURF SCI, V108, P64
KLAUSER R, 1986, J ELECTRON SPECTROSC, V38, P187
KO EI, 1981, SURF SCI, V109, P221
KOHN W, 1965, PHYS REV, V140, A1133
KORZENIEWSKI C, 1986, J CHEM PHYS, V85, P4153
KROES GJ, 1997, J CHEM PHYS, V107, P3309
KUNDROTAS PJ, 1997, SURF SCI, V377, P7
KUNIMORI K, 1993, SURF SCI, V283, P58
KUNZ AB, 1973, SOLID STATE COMMUN, V13, P35
KUWAHARA Y, 1988, SURF SCI, V207, P17
LABANOWSKI J, 1991, DENSITY FUNCTIONAL M
LADAS S, 1981, SURF SCI, V102, P151
LAMBERT DK, 1988, J CHEM PHYS, V89, P3847
LANGHOFF SR, 1986, CHEM PHYS LETT, V124, P251
LAUTERBACH J, 1992, SURF SCI, V279, P287
LAWLEY P, 1987, AB INITIO METHODS QU
LEIBSLE FM, 1993, PHYS REV B, V47, P15865
LEIBSLE FM, 1994, SURF SCI, V317, P309
LESTER WA, 1997, RECENT ADV QUANTUM M, V2
LIPKOWITZ KB, 1992, REV COMPUTATIONAL CH
LOFFREDA D, 1998, J CHEM PHYS, V108, P6447
LOFFREDA D, 1998, J CHEM PHYS, V108, P6447
LU SH, 1992, PHYS REV B, V45, P6142
LUDVIKSSON A, 1993, SURF SCI, V284, P328
LUFTMAN HS, 1984, SURF SCI, V139, P369
LUNTZ AC, 1988, J CHEM PHYS, V89, P4381
MADLOWEN P, 1982, J CHEM PHYS, V77, P2673
MANNSTADT W, 1995, PHYS REV B, V51, P14616
MANNSTADT W, 1995, PHYS REV B, V51, P14616
MARUCA R, 1990, SURF SCI, V236, P210
MASEL RI, 1979, SURF SCI, V79, P26
MATOLIN V, 1986, SURF SCI, V166, L115
MATOLIN V, 1998, SURF SCI, V398, P117
MATSUMOTO Y, 1980, J CHEM SOC F1, V76, P1116
MATSUSHIMA T, 1997, SURF SCI, V386, P24
MEHANDRU SP, 1986, SURF SCI, V169, L281
MELE F, 1994, SURF SCI A, V307, P113
MILLER JB, 1987, J CHEM PHYS, V87, P6725
MINOT C, 1998, THEOCHEM-J MOL STRUC, V424, P119
MIYOSHI E, 1991, SURF SCI, V242, P531
MOFFAT JR, 1994, THEORETICAL ASPECTS
MOLER EJ, 1997, CHEM PHYS LETT, V264, P502
MOON DW, 1985, J AM CHEM SOC, V107, P4363
MOON DW, 1985, SURF SCI, V163, P215
MOON DW, 1987, SURF SCI, V180, L123
MOON DW, 1987, SURF SCI, V184, P90
MORIKAWA Y, 1997, SURF SCI, V386, P67
MORIN M, 1992, J CHEM PHYS, V96, P3950
MORTENSEN JJ, 1997, Z PHYS CHEM 1-2, V198, P113
MOULIJN JA, 1993, INTEGRATED APPROACH
MULLER H, 1992, SURF SCI, V269, P207
MULLER JE, 1992, SURF SCI, V272, P45
MUSCAT JP, 1980, SURF SCI, V99, P609
MUSCAT JP, 1981, SURF SCI, V110, P389
MUSCHIOL U, 1998, SURF SCI, V395, P182
NAHM TU, 1997, SURF SCI, V375, P281
NETZER FP, 1981, SURF SCI, V110, P251
NEYMAN KM, 1993, SURF SCI A, V287, P64
NEYMAN KM, 1994, SURF SCI B, V307, P1193
NIEWENHUYS BE, 1983, SURF SCI, V126, P307
NILSSON A, 1997, APPL PHYS A-MATER, V65, P147
NIU J, 1992, PHYS REV LETT, V68, P2277
NORDLANDER P, 1984, SURF SCI, V136, P59
NORSKOV JK, 1980, PHYS REV B, V21, P2136
NORSKOV JK, 1981, PHYS REV LETT, V46, P257
NORSKOV JK, 1982, PHYS REV B, V26, P2875
NORSKOV JK, 1984, SURF SCI, V137, P65
NORSKOV JK, 1991, PROG SURF SCI, V38, P103
NORVELL JC, 1975, SCIENCE, V190, P568
OH SH, 1986, J CATAL, V100, P360
OHNISHI S, 1994, PHYS REV B, V49, P14619
OHNO Y, 1994, J CHEM PHYS, V101, P5319
ONSGAARD J, 1998, SURF SCI, V398, P318
OSOSVSKII VD, 1997, SURF SCI, V377, P32
PACCHIONI G, 1989, PHYS REV B, V40, P6003
PACCHIONI G, 1990, J CHEM PHYS, V93, P1209
PACCHIONI G, 1992, NATO SERIES, V283
PACCHIONI G, 1993, CHEM PHYS, V177, P373
PACCHIONI G, 1993, NATO ADV STUDY I C
PANAS I, 1988, CHEM PHYS LETT, V149, P265
PANAS I, 1989, J CHEM PHYS, V90, P6791
PANGHER N, 1996, CHEM PHYS LETT, V255, P378
PARKS EK, 1995, J CHEM PHYS, V102, P7377
PARKS EK, 1995, Z PHYS D ATOM MOL CL, V33, P59
PARKS EK, 1997, J CHEM PHYS, V107, P1861
PARKS EK, 1997, J CHEM PHYS, V107, P1861
PARKS EK, 1998, J CHEM PHYS, V108, P3731
PARR RG, 1989, DENSITY FUNCTIONAL T
PASSLER M, 1979, PHYS REV LETT, V43, P360
PAUL J, 1986, NATURE, V323, P1701
PAULING L, 1984, J SOLID STATE CHEM, V54, P297
PAVAO AC, 1991, PHYS REV B, V43, P6962
PAVAO AC, 1991, PHYS REV B, V44, P1910
PAVAO AC, 1994, PHYS REV B, V50, P1868
PAVAO AC, 1994, TRENDS CHEM PHYS, V3, P109
PAVAO AC, 1995, SURF SCI, V323, P340
PAVAO AC, 1999, THEOCHEM-J MOL STRUC, V458, P99
PETERSSON LG, 1979, PHYS REV LETT, V42, P1545
PICK S, 1996, SURF SCI, V352, P300
PICK S, 1998, PHYS REV B, V57, P1942
PIET WNM, 1995, THEORETICAL ASPECTS
PRICE GL, 1980, SURF SCI, V91, P571
PRINCE KC, 1986, SURF SCI, V175, P101
RAATZ F, 1985, SURF SCI, V156, P982
RAMSEY MG, 1997, SURF SCI, V385, P207
RAO CNR, 1982, CHEM PHYS LETT, V88
RAO CNR, 1991, SURF SCI REP, V13, P221
RAY AK, 1988, PHYS REV B, V37, P9943
REIFSNYDER SN, 1997, J PHYS CHEM B, V101, P4972
RESCH C, 1993, CHEM PHYS, V177, P421
RETTNER CT, 1986, J CHEM PHYS, V85, P1131
RHODIN TN, 1977, SOLID STATE COMMUN, V23, P275
RHODIN TN, 1979, NATURE SURFACE CHEM
RIDDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHEFORT A, 1993, SURF SCI, V294, P43
RODRIGUEZ JA, 1987, J PHYS CHEM-US, V91, P2161
RODRIGUEZ JA, 1992, SCIENCE, V257, P897
ROMEO M, 1990, SURF SCI, V238, P163
ROOT TW, 1983, SURF SCI, V134, P30
ROOT TW, 1986, J CHEM PHYS, V85, P4679
ROSCH N, 1990, VACUUM, V41, P150
ROSEN A, 1979, SURF SCI, V82, P139
ROY D, 1986, CHEM PHYS LETT, V139, P501
RUBAN A, 1997, J MOL CATAL A-CHEM, V115, P421
RUCKMAN MW, 1994, ACCOUNTS CHEM RES, V27, P250
RUETTE F, 1992, QUANTUM CHEM APPROAC
RUMPF F, 1988, LANGMUIR, V4, P722
RUSSIER V, 1992, J PHYS CHEM-US, V96, P7579
SAILLARD JY, 1984, J AM CHEM SOC, V106, P2006
SAKAKINI BH, 1997, J CHEM SOC FARADAY T, V93, P1637
SANDELL A, 1997, PHYS REV B, V55, P7233
SCHENNACH R, 1996, SURF SCI, V369, P277
SCHICHL A, 1984, SURF SCI, V137, P261
SCHLATHOLTER T, 1996, SURF SCI, V352, P195
SCHROTER L, 1992, SURF SCI, V261, P243
SCHULTZ PA, 1990, J VAC SCI TECHNOL A, V8, P2525
SEETS DC, 1996, CHEM PHYS LETT, V257, P280
SEIP U, 1984, SURF SCI, V139, P29
SELLERS H, 1994, SURF SCI, V310, P281
SELLERS H, 1994, THEORETICAL COMPUTAT
SELLIDJ A, 1994, PHYS REV B, V49, P8367
SELMANI A, 1986, INT J QUANTUM CHEM, V29, P829
SEXTON BA, 1980, CHEM PHYS LETT, V76, P294
SHELEF M, 1994, CATAL REV, V36, P433
SHINN ND, 1985, J CHEM PHYS, V83, P52928
SHINN ND, 1985, J CHEM PHYS, V83, P5928
SHINN ND, 1986, PHYS REV B, V33, P1464
SHINN ND, 1988, PHYS REV B, V38, P12248
SHINN ND, 1990, PHYS REV B, V41, P9771
SHUSTOROVICH E, 1986, SURFACE SCI REPT, V6, P1
SHUSTOROVICH E, 1990, ADV CATAL, V37, P101
SHUSTOROVICH E, 1991, METAL SURFACE REACTI
SHUSTOROVICH E, 1992, SURF SCI, V268, P397
SHUSTOROVICH E, 1993, SURF SCI, V289, P127
SHUSTOROVICH EM, 1991, METAL SURFACE REACTI
SIEGBAHN PEM, 1992, INT J QUANTUM CHEM, V42, P1149
SITZ GO, 1988, J CHEM PHYS, V89, P2573
SKELTON DC, 1997, SURF SCI, V370, P64
SLATER JC, 1951, PHYS REV, V81, P385
SLATER JC, 1972, ADVANCES QUANTUM CHE, V6, P1
SLATER JC, 1974, SELF CONSISTENT FIEL
SMIRNOV KS, 1997, SURF SCI, V384, L975
SMITH GW, 1991, J PHYS CHEM-US, V95, P2327
SNABL M, 1997, SURF SCI, V385, P1016
SO SK, 1989, J CHEM PHYS, V91, P5701
SOMORJAI GA, 1994, INTRO SURFACE CHEM C
SOTTO M, 1997, SURF SCI, V371, P36
SPENCER ND, 1982, J CATAL, V74, P129
SPITZER A, 1982, SURF SCI, V118, P121
STEINRUCK HP, 1985, SURF SCI, V152, P323
STEINRUCK HP, 1989, SURF SCI, V208, P136
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STOHR J, 1982, PHYS REV B, V26, P4111
STOHR J, 1982, PHYS REV B, V26, P4111
SUNG SS, 1985, J AM CHEM SOC, V107, P578
SUNG SS, 1986, J PHYS CHEM-US, V90, P1380
SURNEV L, 1988, SURF SCI, V201, P1
SUTCU LF, 1991, SURF SCI LETT, V249, L343
SZABO A, 1992, MODERN QUANTUM CHEM
SZYMERSKA I, 1976, J CATAL, V41, P197
TAFT CA, 1998, J MOL STRUCT, V426, P199
TAKASU Y, 1973, J CATAL, V29, P479
TANAKA K, 1996, SURF SCI, V357, P721
TANG SL, 1986, J CHEM PHYS, V84, P6488
TATARENKO S, 1985, SURF SCI, V163, P249
THOMAS JLC, 1997, J PHYS CHEM A, V101, P8530
THOMAS JM, 1994, PRINCIPLES PRACTICE
THOMAS JM, 1997, PRINCIPLES PRACTICE
THOMAS LH, 1989, P CAMB PHILOS SOC, V26, P376
THOMAS S, 1974, APPL PHYS LETT, V24, P1
THOMPSON MR, 1994, NEW DEV SELECTIVE OX, V2, P167
TOMANEK D, 1988, PHYS REV B, V31, P2488
TONG SY, 1980, SURF SCI, V94, P73
TSAI MC, 1985, SURF SCI, V155, P387
TSANG YW, 1976, J PHYS C SOLID STATE, V9, P71
TULLY JC, 1993, J VAC SCI TECHNOL 2, V11, P1914
UMBACH E, 1979, SURF SCI, V88, P65
UPTON TH, 1981, CRC CRIT R SOLID ST, V10, P261
UPTON TH, 1988, J CHEM PHYS, V88, P3988
VANDAELEN MA, 1996, J PHYS CHEM-US, V100, P2279
VANSANTEN RA, 1974, J CATAL, V33, P202
VANSANTEN RA, 1991, THEORETICAL HETEROGE
VANSANTEN RA, 1995, CATAL REV, V37, P557
VANSANTEN RA, 1995, CHEM KINETICS CATALY
VARMA CM, 1980, PHYS REV, V22, P3795
VARMA S, 1990, J VAC SCI TECHNOL 2, V8, P2605
VELDE GT, 1993, CHEM PHYS, V177, P399
VONGLAN RE, 1997, SURF SCI, V375, P353
WANG C, 1979, SURF SCI, V84, P329
WANG C, 1997, SURF SCI, V327, P267
WANG H, 1997, SURF SCI, V372, P267
WATANABE K, 1996, SURF SCI, V368, P366
WEI DH, 1997, SURF SCI, V381, P49
WEIMER JJ, 1985, SURF SCI, V155, P133
WESNER DA, 1989, PHYS REV B, V39, P10770
WHELLER MC, 1996, J CHEM PHYS, V105, P1572
WHITE JA, 1996, PHYS REV B, V53, P1667
WHITE MG, 1990, HETEROGENEOUS CATALY
WHITMAN LJ, 1986, J CHEM PHYS, V85, P3688
WHITMAN LJ, 1986, PHYS REV LETT, V56, P1984
WILKE S, 1996, PHYS REV B, V53, P4926
WILLIAMS AK, 1977, SURF SCI, V68, P136
WILLIAMS FL, 1973, J CATAL, V30, P438
WILLIAMS FL, 1974, SURF SCI, V45, P377
WONG YT, 1991, J PHYS CHEM-US, V95, P859
WU Y, 1987, SURF SCI, V179, P26
XU C, 1995, SURF SCI, V327, P38
YANAGITA H, 1997, PHYS REV B, V56, P14952
YANG H, 1997, SURF SCI, V375, P268
YING SC, 1975, PHYS REV B, V11, P1483
YOSHIDA K, 1978, SURF SCI, V75, P46
YOSHIDA S, 1994, ELECT PROCESSES CATA
YOSHIMI K, 1996, SURF SCI, V368, P389
YOSHINOBU J, 1991, J CHEM PHYS, V95, P9393
ZAERA F, 1997, J CHEM PHYS, V106, P41204
ZASADA I, 1997, SURF SCI, V383, P241
ZENG HC, 1987, SURF SCI, V188, P599
ZERNER M, 1989, AM CHEM SOC S SERIES, V394
ZERNER MC, 1980, J AM CHEM SOC, V102, P589
ZHAO YB, 1990, SURF SCI, V239, P189
ZHOU RH, 1992, J PHYS-CONDENS MAT, V4, P2429
ZIEGLER T, 1991, CHEM REV, V91, P651
ZONNEVYLLE MC, 1994, J CATAL, V148, P417
NR 449
TC 8
PU TAYLOR & FRANCIS LTD
PI LONDON
PA ONE GUNPOWDER SQUARE, LONDON EC4A 3DE, ENGLAND
SN 0144-235X
J9 INT REV PHYS CHEM
JI Int. Rev. Phys. Chem.
PD APR-JUN
PY 1999
VL 18
IS 2
BP 163
EP 233
PG 71
SC Chemistry, Physical
GA 232ER
UT ISI:000082357600001
ER
PT J
AU Antonelli, A
Justo, JF
Fazzio, A
TI Point defect interactions with extended defects in semiconductors
SO PHYSICAL REVIEW B
LA English
DT Article
ID STACKING-FAULTS; PARTIAL DISLOCATIONS; MOLECULAR-DYNAMICS; AB-INITIO;
SILICON; DIFFUSION; PSEUDOPOTENTIALS; MOBILITY; STATES; MODEL
AB We performed a theoretical investigation of the interaction of point
defects (vacancy and self-interstitials) with an intrinsic stacking
fault in silicon using ab initio total-energy calculations. Defects at
the fault and in the crystalline environment display a different
behavior, which is evidenced by changes in formation energy and
electronic structure. The formation energies for the vacancy and the
[110]-split interstitial are lower at the intrinsic stacking fault than
those in the crystal, indicating that in nonequilibrium conditions,
intrinsic stacking faults can act, together with other extended
defects, as a sink for point defects, and also that in equilibrium
conditions, there can be a higher concentration of such defects at the
fault than that in bulk silicon. [S0163-1829(99)03631-0].
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Antonelli, A, Univ Estadual Campinas, Inst Fis Gleb Wataghin,
BR-13083970 Campinas, SP, Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
BACHELET GB, 1982, PHYS REV B, V26, P4199
BLOCHL PE, 1993, PHYS REV LETT, V70, P2435
BOURGOIN J, 1983, POINT DEFECTS SEMI 2, V35
BULATOV VV, 1995, PHILOS MAG A, V72, P453
BULATOV VV, 1997, PHYS REV LETT, V79, P5042
CAR R, 1985, PHYS REV LETT, V55, P2471
CHOU MY, 1985, PHYS REV B, V32, P7979
CSANYI G, 1998, PHYS REV LETT, V80, P3984
HIRTH JP, 1982, THEORY DISLOCATIONS
HOHENBERG P, 1964, PHYS REV, V136, B864
HU SM, 1974, J APPL PHYS, V45, P1567
HUANG J, 1989, PHYS REV LETT, V63, P628
KACKELL P, 1998, PHYS REV B, V58, P1326
KAPLAN T, 1998, PHYS REV B, V58, P12865
KIM JN, 1997, PHYS REV B, V55, P16186
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
LEHTO N, 1997, PHYS REV B, V55, P15601
LEHTO N, 1997, PHYS REV B, V56, P12706
MAITI A, 1996, PHYS REV LETT, V77, P1306
MATTHEISS LF, 1981, PHYS REV B, V23, P5384
SENKADER S, 1995, J APPL PHYS, V78, P6469
STAMPFL C, 1998, PHYS REV B, V57, P15052
SUZUKI H, 1962, J PHYS SOC JPN, V17, P322
WEBER J, 1994, SOLID STATE PHENOM, V37, P13
WESSEL K, 1977, PHILOS MAG A, V35, P1523
ZHU J, 1996, PHYS REV B, V54, P4741
NR 28
TC 14
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 15
PY 1999
VL 60
IS 7
BP 4711
EP 4714
PG 4
SC Physics, Condensed Matter
GA 230FQ
UT ISI:000082241500061
ER
PT J
AU Esteves, PM
Alberto, GGP
Ramirez-Solis, A
Mota, CJA
TI The alkane sigma-bond basicity scale revisited
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID THEORETICAL AB-INITIO; ELECTROSTATIC POTENTIALS; VIBRATIONAL
FREQUENCIES; REVERSIBLE PROTONATION; ACTIVATION; SUPERACIDS; ISOBUTANE;
DENSITY; CATIONS
AB The energy of the n-butonium and isobutonium cations was calculated. At
the MP4/6-311++G**//MP2(fu)/6-31G** level, the C-carbonium ions were
more stable than the H-carbonium ions. The results are in agreement
with gas-phase data of n-butane and isobutane protonation but disagree
with results in liquid superacid, where protonation of the tertiary C-H
of isobutane is preferred over C-C protonation. Additional
calculations, including the superacid moiety, revealed that the
activation energy for C-C protonation is higher than the energy for
attack at the tertiary C-H. This suggests that the sigma bond
reactivity in the liquid superacid system is controlled by the
activation energy for proton transfer, rather than by the intrinsic
basisity of the bond. The higher stability of the C-carbonium relative
to the H-carbonium ions was ascribed to a better charge distribution
among the atoms and groups of the three center bond.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-2194990 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
Univ CT Bloco A, BR-2194990 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BERGNER A, 1993, MOL PHYS, V80, P1431
BOO DW, 1993, CHEM PHYS LETT, V211, P358
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
FIELD FH, 1968, ACCOUNTS CHEM RES, V1, P42
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HEHRE WJ, 1986, AB INITIO MOL ORBITA, CH7
HIRAOKA K, 1975, CAN J CHEM, V53, P970
HIRAOKA K, 1975, J CHEM PHYS, V63, P394
HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
HIRAOKA K, 1978, INT J MASS SPEC ION, V27, P139
HOGEVEEN H, 1967, RECL TRAV CHIM PAY B, V86, P1313
HOUT RF, 1982, J COMPUT CHEM, V3, P234
MOTA CJA, UNPUB
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
OLAH GA, 1969, J AM CHEM SOC, V91, P3261
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
OLAH GA, 1973, J AM CHEM SOC, V95, P4939
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1987, HYPERCARBON CHEM
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SOMMER J, 1996, RES CHEM INTERMEDIAT, V22, P753
SOMMER J, 1997, J AM CHEM SOC, V119, P3274
TALROZE VL, 1952, DOKL AKAD NAUK SSSR, V86, P909
THOMPSON RC, 1965, INORG CHEM, V4, P1641
YEH LI, 1989, J AM CHEM SOC, V111, P5597
NR 30
TC 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 18
PY 1999
VL 121
IS 32
BP 7345
EP 7348
PG 4
SC Chemistry, Multidisciplinary
GA 230KH
UT ISI:000082250000010
ER
PT J
AU Duarte, HA
Salahub, DR
Haslett, T
Moskovits, M
TI Fe(N-2)(n) (n=1-5): Structure, bonding, and vibrations from density
functional theory
SO INORGANIC CHEMISTRY
LA English
DT Article
ID GENERALIZED GRADIENT APPROXIMATION; TRANSITION-METAL ATOMS;
EXCHANGE-ENERGY; OPTIMIZATION; MOLECULES; FE(CO)5; BINDING; STATES
AB The Fe(N-2)(n) (n = 1-5) complexes have been studied with the
LCGTO-KS-DF method. The structures containing end-on and side-on N2
ligands have been fully optimized and the dissociation energies
estimated. The ground states are predicted to be end-on complexes with
the exception of n = 2. The vibrational analysis of all predicted
ground states is reported. The effect of N-15 isotopic substitution on
the vibrational frequencies has been estimated. Comparisons are made
with the isoelectronic species Fe(CO)(n). The Fe-N-2 bonding has been
discussed in terms of sigma donation and pi back-donation and the
Mulliken population analysis. The predicted harmonic frequencies show
that the infrared spectra of Fe(N-2)(4) and Fe(N-2)(5) are similar, and
the two complexes could not be distinguished in nitrogen matrix
experiments using infrared spectroscopy.
C1 Univ Montreal, Dept Chim, Montreal, PQ H3C 3J7, Canada.
Univ Toronto, Dept Chem, Toronto, ON M5S 1A1, Canada.
Univ Fed Minas Gerais, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil.
RP Duarte, HA, Natl Res Council Canada, Steacie Inst Mol Sci, 100 Sussex
Dr, Ottawa, ON K1A 0R6, Canada.
CR BAERENDS EJ, 1997, CHEM PHYS LETT, V265, P481
BARNES LA, 1991, J CHEM PHYS, V94, P2031
BARRETT PH, 1977, J CHEM SOC F2, V73, P378
BARTON TJ, 1977, J CHEM SOC CHEM COMM, P841
BAUSCHLICHER CW, 1987, J CHEM PHYS, V87, P2129
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1995, THEOR CHIM ACTA, V91, P147
BLANCHET C, 1997, J CHEM PHYS, V106, P8778
BRATERMAN PS, 1975, METAL CARBONYL SPECT
CASIDA ME, 1996, DEMON SOFTWARE DEMON
CHERTIHIN GV, 1996, J PHYS CHEM-US, V100, P14609
CULOTTA E, 1992, SCIENCE, V258, P1862
DANIEL C, 1984, J PHYS CHEM-US, V88, P4805
DAUL C, 1994, INT J QUANTUM CHEM, V52, P867
DELLEY B, 1994, J CHEM PHYS, V100, P5785
ERTL G, 1983, J VAC SCI TECHNOL A, V1, P1247
FOURNIER R, 1993, J CHEM PHYS, V99, P1801
FRENKING G, 1996, NATO ADV SCI I C-MAT, V474, P185
GODBOUT N, 1992, CAN J CHEM, V70, P560
GODBOUT N, 1996, THESIS U MONTREAL
HASLETT T, UNPUB
HUBER KP, 1979, MOL SPECTRA MOL STRU, V4
JONES RO, 1989, REV MOD PHYS, V61, P689
LEE C, 1988, PHYS REV B, V37, P785
PERDEW JP, 1986, PHYS REV B, V33, P8800
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1986, PHYS REV B, V34, P7406
PERDEW JP, 1991, PHYSICA B, V172, P1
PERDEW JP, 1992, PHYS REV B, V46, P6671
POLIAKOFF M, 1977, J CHEM SOC DA, P2276
RAO CNR, 1991, SURF SCI REP, V13, P223
RUSSO N, 1996, NATO ASI SER C, P474
RUSSO TV, 1994, J CHEM PHYS, V101, P7729
SCHLEGEL HB, 1987, AB INITIO METHODS QU, V1
SIEGBAHN PEM, 1991, J CHEM PHYS, V95, P364
STAMANT A, 1990, CHEM PHYS LETT, V169, P387
YATES JT, 1994, SURF SCI, V299, P731
ZACARIAS A, 1996, INT J QUANTUM CHEM, V60, P1419
ZACARIAS A, 1997, INT J QUANTUM CHEM, V61, P467
ZIEGLER T, 1977, THEOR CHIM ACTA, V43, P261
ZIEGLER T, 1987, J AM CHEM SOC, V109, P4825
NR 41
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD AUG 23
PY 1999
VL 38
IS 17
BP 3895
EP 3903
PG 9
SC Chemistry, Inorganic & Nuclear
GA 230FF
UT ISI:000082240600022
ER
PT J
AU Klautau, AB
Legoas, SB
Muniz, RB
Frota-Pessoa, S
TI Magnetic behavior of thin Cr layers sandwiched by Fe
SO PHYSICAL REVIEW B
LA English
DT Article
ID DENSITY-WAVE CHROMIUM; REAL-SPACE; FE/CR(001) SUPERLATTICES; FE/PD(001)
SUPERLATTICES; AB-INITIO; MULTILAYERS; IMPURITIES; MAGNETORESISTANCE;
POLARIZATION; INTERFACES
AB The magnetic behavior of thin layers of Cr in Fe/Cr/Fe(001) trilayers
and superlattices is studied using the first principles self-consistent
RS-LMTO-ASA (real space - linear muffin-tin orbital - atomic sphere
approximation) method. The effects of lattice compression and interface
mixing are investigated, and it is shown that they can cause large
reductions of the Cr magnetic moments. [S0163-1829(99)12625-0].
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Fed Fluminense, Dept Fis, BR-24210340 Niteroi, RJ, Brazil.
RP Klautau, AB, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR ANDERSEN OK, 1975, PHYS REV B, V12, P3060
ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571
ANDERSEN OK, 1985, HIGHLIGHTS CONDENSED
BAIBICH MN, 1988, PHYS REV LETT, V61, P2472
BEER N, 1984, ELECT STRUCTURE COMP
COEHOORN R, 1995, J MAGN MAGN MATER, V151, P341
DAVIES A, 1996, PHYS REV LETT, V76, P4175
FAWCETT E, 1988, REV MOD PHYS, V60, P209
FERREIRA S, 1990, PHYS REV B, V41, P5627
FERREIRA S, 1995, PHYS REV B, V51, P2045
FISHMAN RS, 1998, PHYS REV B, V57, P10284
FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
FROTAPESSOA S, 1993, PHYS REV LETT, V71, P4206
FULLERTON EE, 1995, PHYS REV B, V51, P6364
FULLERTON EE, 1995, PHYS REV LETT, V75, P330
HAYDOCK R, 1980, SOLID STATE PHYS, V35, P216
HEINRICH B, 1996, J APPL PHYS 2A, V79, P4518
HERMAN F, 1991, J APPL PHYS, V69, P4783
HIRAI K, 1997, J PHYS SOC JPN, V66, P560
HIRAI K, 1998, J PHYS SOC JPN, V67, P1776
KLAUTAU AB, 1998, J MAGN MAGN MATER, V186, P223
KOELLING DD, 1994, PHYS REV B, V50, P273
LEVY PM, 1990, J APPL PHYS 2B, V67, P5914
MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638
MORUZZI VL, 1990, PHYS REV B B, V42, P8361
PARKIN SSP, 1990, PHYS REV LETT, V64, P2304
PEDUTO PR, 1991, PHYS REV B, V44, P13283
PEDUTO PR, 1997, BRAZ J PHYS, V27, P574
PETRILLI HM, 1993, PHYS REV B, V48, P7148
PURCELL ST, 1991, PHYS REV LETT, V67, P903
SCHREYER A, 1995, EUROPHYS LETT, V32, P595
SHIRANE G, 1962, J PHYS SOC JAPAN SB3, V17, P35
SKRIVER HL, 1981, J PHYS F MET PHYS, V11, P97
SKRIVER HL, 1991, PHYS REV B, V43, P9538
SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172
STOEFFLER D, 1991, PHYS REV B, V44, P10389
STOEFFLER D, 1994, J APPL PHYS 2B, V75, P6467
STOEFFLER D, 1994, PHYS REV B, V49, P299
STOEFFLER D, 1995, J MAGN MAGN MATER, V140, P557
STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260
TOMAZ MA, 1997, PHYS REV B, V55, P3716
UNGURIS J, 1991, PHYS REV LETT, V67, P140
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
ZABEL H, 1994, APPL PHYS A, V58, P159
ZABEL H, 1994, PHYSICA B, V198, P156
NR 45
TC 13
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 1
PY 1999
VL 60
IS 5
BP 3421
EP 3427
PG 7
SC Physics, Condensed Matter
GA 225VH
UT ISI:000081986300075
ER
PT J
AU Abraham, RJ
Tormena, CF
Rittner, R
TI Conformational analysis, Part 32. NMR, solvation and theoretical
investigation of conformational isomerism in 3-fluorobutan-2-one and
3,3-difluorobutan-2-one
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID VIBRATIONAL ASSIGNMENT; INTERNAL-ROTATION; ABINITIO CALCULATIONS;
BARRIERS; STABILITY; CHLORIDE; SPECTRA; RAMAN
AB The solvent and temperature dependence of the H-1 and C-13 NMR spectra
of 3-fluorobutan-2-one (FB) and 3,3-difluorobutan-2-one (DFB) are
reported and the (4)J(HF), (1)J(CF) and (2)J(CF) couplings analysed
using ab initio calculations and solvation theory. The solvent
dependence of the IR spectra (carbonyl band) was also measured. In FB,
ab initio theory at the 6-31G**/MP2 level gives only two energy minima
for the cis (F-C-C=O 22 degrees) and trans (F-C-C=O 178 degrees)
rotamers. The gauche rotamer was not a minimum in the energy surface.
Assuming only the cis and trans forms, the observed couplings when
analysed by solvation theory lead to the energy difference (E-cis -
E-trans) between the cis and trans rotamers of 3.7 kcal mol(-1) in the
vapour phase, decreasing to 2.5 kcal mol(-1) in CCl4 and to 0.1 kcal
mol(-1) in DMSO. In all solvents used the trans rotamer is more stable
than the cis. The vapour state energy difference compares very well
with that calculated [3.67 kcal mol(-1) including a zero-point energy
correction (ZPE)]. In DFB ab initio calculations at this level and also
at (6-311G**/MP2 and ZPE) gave only one minimum in the potential energy
surface corresponding to the cis rotamer (C-C-C=O 0 degrees). The H-1
and C-13 NMR data, (4)J(HF), (1)J(CF) and (2)J(CF) couplings do not
change with solvent confirming that there is only one rotamer in
solution for DFB, in agreement with the ab initio calculations.
C1 Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
Univ Estadual Campinas, Inst Quim, BR-13083970 Sao Paulo, Brazil.
RP Abraham, RJ, Univ Liverpool, Dept Chem, POB 147, Liverpool L69 3BX,
Merseyside, England.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
ABRAHAM RJ, 1999, J CHEM SOC PERK JAN, P99
BURMAKOV AI, 1982, J ORG CHEM USSR, P1009
DURIG JR, 1989, J CHEM PHYS, V90, P6840
DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
DURIG JR, 1991, J MOL STRUCT, V242, P179
DURIG JR, 1991, J RAMAN SPECTROSC, V22, P141
EWING DF, 1972, J CHEM SOC P2, P701
FORESMAN JB, 1993, EXPLORING CHEM ELECT
FRISCH MJ, 1995, GAUSSIAN94 REVISION
KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P3572
OLIVATO PR, 1996, REV HETEROATOM CHEM, V15, P115
PHAN HV, 1993, SPECTROCHIM ACTA A, V49, P1967
SAEGEBARTH E, 1967, J CHEM PHYS, V46, P3088
SHAPIRO BL, 1973, J MAGN RESON, V9, P305
VANEIJCK BP, 1972, J MOL STRUCT, V11, P67
WYMAN DP, 1964, J ORG CHEM, V29, P1956
NR 21
TC 15
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD AUG
PY 1999
IS 8
BP 1663
EP 1667
PG 5
SC Chemistry, Organic; Chemistry, Physical
GA 224UR
UT ISI:000081918800016
ER
PT J
AU Nasar, RS
Cerqueira, M
Longo, E
Leite, ER
Varela, AJ
Beltran, A
Andres, J
TI Experimental and theoretical study on the piezoelectric behavior of
barium doped PZT
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID MORPHOTROPIC PHASE-BOUNDARY; PERTURBED-ION; CRYSTALS; SEPARABILITY;
SIMULATION; CERAMICS; MODEL; FILMS
AB An experimental and theoretical study of the ferroelectric and
piezoelectric behavior of PZT doped with barium is presented. Ab initio
perturbed ion calculations was carried out. The properties, such as
remnant polarization, coercive field and the coupling factor of the PZT
at constant sintering temperature was compared with the Zr4+/Ti4+ ions
dislocation energy and the lattice interaction energy. An agreement
between the experimental and theoretical results, with a decrease of
the interaction energy and an inversion of the energy stability from
tetragonal to rhombohedral phase was observed. (C) 1999 Kluwer Academic
Publishers.
C1 Univ Fed Rio Grande Norte, Dept Quim, BR-59072970 Natal, RN, Brazil.
UFSCar, Dept Quim, Lab Interdisciplinar Electroquim & Ceram, BR-13565 Sao Carlos, SP, Brazil.
UNESP, Inst Quim, BR-14800900 Araraquara, SP, Brazil.
Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
RP Nasar, RS, Univ Fed Rio Grande Norte, Dept Quim, Caixa Postal 1662,
BR-59072970 Natal, RN, Brazil.
CR ANDRES J, 1993, INT J QUANTUM CHEM S, V27, P175
ANDRES J, 1994, CHEM PHYS LETT, V221, P249
BELTRAN A, 1993, J PHYS CHEM-US, V97, P2555
BERNARD J, 1971, PIEZOELECTRIC CERAMI
CERQUEIRA M, 1997, J MATER SCI, V32, P2381
CHAKRAVORTY SJ, 1989, PHYS REV A, V39, P2290
CLEMENTI E, 1974, ATOM DATA NUCL DATA, V14, P177
COMES R, 1970, ACTA CRYSTALLOGR A, V26, P244
EYRAUD L, 1981, FERROELECTRICS, V31, P113
FLOREZ M, 1992, CLUSTER MODELS SURFA, P605
HANKEY DL, 1980, THESIS PENNSYLVANIA
HIMERATH BV, 1983, J AM CERAM SOC, V66, P790
HSUEH CC, 1993, INTEGR FERROELECTR, V3, P21
HUZINAGA S, 1971, J CHEM PHYS, V55, P5543
JAFFE B, 1971, PIEZOELECTRIC CERAMI
KAKEGAWA K, 1977, SOLID STATE COMMUN, V24, P769
KAWAGUCHI T, 1984, APPL OPTICS, V23, P2187
KULCSAR F, 1959, J AM CERAM SOC, V42, P49
KUMADA A, 1985, JPN J APPL PHYS S, V24, P739
LAL R, 1988, BRIT CERAM TRANS J, V87, P99
LINES EM, 1977, PRINCIPLES APPL FERR
LUANA V, 1988, J MOL STRUCT THEOCHE, V166, P215
LUANA V, 1989, PHYS REV B, V39, P11093
LUANA V, 1990, PHYS REV B, V41, P3800
LUANA V, 1990, PHYS REV B, V42, P1791
LUANA V, 1992, CLUSTER MODELS SURFA, P619
MATSUO Y, 1965, J AM CERAM SOC, V48, P289
MCLEAN AD, 1981, ATOM DATA NUCL DATA, V26, P197
NOMURA S, 1955, J PHYS SOC JPN, V10, P108
OHMO T, 1973, J JPN SOC POWDER MET, V20, P154
PAIVASANTOS CP, 1990, THESIS IFQSC USP
PETROVSKY VI, 1993, INTEGR FERROELECTR, V3, P59
PRESTON KD, 1992, APPL PHYS LETT, V60, P2831
SAHA SK, 1992, AM CERAM SOC BULL, V71, P1424
SHIRANE G, 1953, J PHYS SOC JPN, V8, P615
STOTZ S, 1987, FERROELECTRICS, V76, P123
TURIK AV, 1980, SOV PHYS-TECH PHYS, V25, P1251
UCHINO K, 1986, AM CERAM SOC BULL, V65, P647
VASILIU F, 1983, PHYS STATUS SOLIDI A, V80, P637
VENKATARAMANI S, 1980, AM CERAM SOC B, V59, P462
WOOD VE, 1992, J APPL PHYS, V71, P4557
YAMAGUCHI O, 1989, J AM CERAM SOC, V72, P1065
YAMAGUCHI T, 1976, CERAM INT, V2, P76
YAMAMOTO T, 1992, AM CERAM SOC BULL, V71, P978
NR 44
TC 5
PU KLUWER ACADEMIC PUBL
PI DORDRECHT
PA SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 0022-2461
J9 J MATER SCI
JI J. Mater. Sci.
PD AUG
PY 1999
VL 34
IS 15
BP 3659
EP 3667
PG 9
SC Materials Science, Multidisciplinary
GA 222UZ
UT ISI:000081804900014
ER
PT J
AU Mota, FD
Justo, JF
Fazzio, A
TI Hydrogen role on the properties of amorphous silicon nitride
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; MOLECULAR-DYNAMICS; SI; BETA-SI3N4; CHEMISTRY;
DISILANE; SYSTEMS; FILMS; MODEL; BOND
AB We have developed an interatomic potential to investigate structural
properties of hydrogenated amorphous silicon nitride. The interatomic
potential used the Tersoff functional form to describe the Si-Si, Si-N,
Si-H, N-H, and H-H interactions. The fitting parameters for all these
interactions were found with a set of ab initio and experimental
results of the silicon nitride crystalline phase, and of molecules
involving hydrogen. We investigated the structural properties of
unhydrogenated and hydrogenated amorphous silicon nitride through Monte
Carlo simulations. The results show that depending on the nitrogen
content, hydrogen has a different chemical preference to bind to either
nitrogen or silicon, which is corroborated by experimental findings.
Besides, hydrogen incorporation reduced considerably the concentration
of undercoordinated atoms in the material, and consequently the
concentration of dangling bonds. (C) 1999 American Institute of
Physics. [S0021-8979(99)00616-7].
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
UFBa, Inst Fis, BR-40210340 Salvador, BA, Brazil.
RP Mota, FD, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR 1985, JANAF THERMOCHEMICAL
*CRC, 1991, HDB CHEM PHYS
ALLEN MP, 1987, COMPUTER SIMULATION
BEAGLEY B, 1972, J STRUCT CHEM, V11, P371
BRENNER DW, 1990, PHYS REV B, V42, P9458
CUNHA C, 1993, PHYS REV B, V48, P17806
DEBRITOMOTA F, 1998, PHYS REV B, V58, P8323
DURIG JR, 1980, J CHEM PHYS, V73, P4784
DYSON AJ, 1996, SURF SCI, V355, P140
FLETCHER R, 1963, COMPUT J, V6, P163
GORDON MS, 1986, J AM CHEM SOC, V108, P1421
GRUN R, 1979, ACTA CRYSTALLOGR B, V35, P800
GURAYA MM, 1990, PHYS REV B, V42, P5677
HABRAKEN FHPM, 1994, MAT SCI ENG R, V12, P123
HARDIE D, 1957, NATURE, V180, P331
KATZ RN, 1980, SCIENCE, V208, P841
LIU AY, 1990, PHYS REV B, V41, P10727
MARTINMORENO L, 1987, PHYS REV B, V35, P9683
MCDONALD IR, 1972, MOL PHYS, V23, P41
MISAWA M, 1979, J NONCRYSTALLINE SOL, V34, P313
MOTA FD, 1998, INT J QUANTUM CHEM, V70, P973
MURTY MVR, 1995, PHYS REV B, V51, P4889
ROBERTSON J, 1991, PHILOS MAG B, V63, P47
ROBERTSON J, 1994, PHILOS MAG B, V69, P307
ROBERTSON J, 1995, J NON-CRYST SOLIDS, V187, P297
SANFABIAN E, 1989, PHYS REV B, V39, P1844
SMITH FW, 1991, J NON-CRYST SOLIDS, V137, P871
TERSOFF J, 1986, PHYS REV LETT, V56, P632
TERSOFF J, 1989, PHYS REV B, V39, P5566
TERSOFF J, 1991, PHYS REV B, V44, P12039
UMESAKI N, 1992, J NON-CRYST SOLIDS, V150, P120
VASHISHTA P, 1990, PHYS REV B, V41, P12197
VASSILOU B, 1957, NATURE, V179, P435
NR 33
TC 12
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 15
PY 1999
VL 86
IS 4
BP 1843
EP 1847
PG 5
SC Physics, Applied
GA 221HD
UT ISI:000081720600010
ER
PT J
AU Hollauer, E
Rocco, MLM
Lopes, MCA
de Souza, GGB
TI An ab initio study of the valence excitation of methyl methacrylate as
observed by EELS
SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
LA English
DT Article
DE methyl methacrylate; ab initio calculations; electron energy loss
spectroscopy; valence-shell
ID SAC-CI THEORIES; EXCITED-STATES; ELECTRON; SPECTROSCOPY; MOLECULE; ACID
AB Ab initio calculations have been carried out in order to assign the
main bands observed in a recent electron energy-loss study of the
methyl methacrylate molecule. We employed the Dunning-Huzinaga
double-zeta basis set for the early steps of geometry optimization but
for the excited states Rydberg p functions were added to the conjugated
heavy atoms. Both isomers, the s-cis and s-trans, had its vertical
spectrum calculated in order to evaluate possible conformation effects
on the VUV spectrum. SAC (Symmetry Adapted Cluster)-CI calculations
pointed to the ethylenic pi orbital (8.99 eV) as the HOMO for s-cis
while the n sigma orbital is predicted around 1 eV more stable. For the
n pi orbital, although it was not possible to obtain a SAC-CI
estimative, Koopmans' ionization potentials place it 1.68 eV more
stable than the pi orbital. The lowest observable transitions have been
assigned by SAC-CI calculations as to ethylenic pi-pi* (7.10 eV) and n
pi-pi* (7.97 eV) for the cis isomer. For the trans isomer similar
values were obtained (7.37 eV and 7.93 eV, respectively). Oscillator
strengths have been calculated showing acceptable agreement with the
experimental results. Previous assignments have been revised. (C) 1999
Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, BR-21949900 Rio De Janeiro, Brazil.
Univ Fed Fluminense, Inst Quim, Dept Fisicoquim, BR-24020150 Niteroi, RJ, Brazil.
Univ Fed Juiz de Fora, Dept Fis ICE, BR-36036330 Juiz de Fora, MG, Brazil.
RP Rocco, MLM, Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, Cidade
Univ,Ilha Fundao, BR-21949900 Rio De Janeiro, Brazil.
CR BAKER BL, 1995, J MOL STRUCT, V356, P95
DUNNING TH, 1977, METHODS ELECT STRUCT
HALLER I, 1979, J ELECTROCHEM SOC, V126, P154
HOLLAUER E, 1991, CHEM PHYS LETT, V181, P401
IWATA S, 1977, THEORET CHEM ACTA BE, V44, P323
NAKATSUJI H, 1979, CHEM PHYS LETT, V67, P334
NAKATSUJI H, 1981, J CHEM PHYS, V75, P2952
NAKATSUJI H, 1987, THEOR CHIM ACTA, V71, P201
NAKATSUJI H, 1990, J CHEM PHYS, V93, P1865
NAKATSUJI H, 1991, INT J QUANTUM CHEM, V39, P93
NAKATSUJI H, 1991, J CHEM PHYS, V95, P4296
RAO CNR, 1975, UV VISIBLE SPECTROSC
RITSKO JJ, 1978, J CHEM PHYS, V69, P3931
ROCCO MLM, 1997, CHEM PHYS, V223, P15
SJOGREN B, 1992, J ELECTRON SPECTROSC, V59, P161
UENO N, 1992, J APPL PHYS, V72, P5423
NR 16
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0368-2048
J9 J ELECTRON SPECTROSC RELAT PH
JI J. Electron Spectrosc. Relat. Phenom.
PD JUL
PY 1999
VL 104
IS 1-3
BP 31
EP 39
PG 9
SC Spectroscopy
GA 213ZP
UT ISI:000081303400002
ER
PT J
AU Bechepeche, AP
Treu, O
Longo, E
Paiva-Santos, CO
Varela, JA
TI Experimental and theoretical aspects of the stabilization of zirconia.
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID NEUTRON POWDER DIFFRACTION; X-RAY-ABSORPTION; ELECTRONIC-STRUCTURE;
DEFECT STRUCTURE; 3 PHASES; ZRO2; SIMULATION; POLYMORPHS; CRYSTALS;
DOPANTS
AB Using the Rietveld method, phases of ceria-doped zirconia, calcined at
temperatures of 600 and 900 degrees C, were quantitatively analysed for
different concentrations of ceria. The results show that the
stabilization of zirconia depends on the dopant concentration and
calcination temperature. Moreover, the theoretical calculation using
the ab initio Hartree-Fock-Roothaan method indicates that the most
stable phases for ceria-stabilized zirconia are cubic or tetragonal, in
accordance with experimental results. (C) 1999 Kluwer Academic
Publishers.
C1 UFSCAR, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
UNESP, Inst Quim, BR-14800900 Araraquara, SP, Brazil.
RP Bechepeche, AP, UFSCAR, Dept Quim, POB 676, BR-13565905 Sao Carlos, SP,
Brazil.
CR AITA CR, 1990, J AM CERAM SOC, V73, P3209
ANDRES J, 1995, J MATER SCI, V30, P4852
CAGLIOTI G, 1958, NUCL INSTRUM, V3, P223
CHING WY, 1987, MATER RES SOC S P, V8, P181
COHEN RE, 1988, PHYSICA B, V1, P150
CORMACK AN, 1990, J AM CERAM SOC, V73, P3220
DUPUIS M, 1980, QG01 U CAL BERK
DWIVEDI A, 1990, PHILOS MAG A, V61, P1
FRENCH RH, 1994, PHYS REV B, V49, P5133
GARVIE RC, 1975, NATURE, V258, P703
GARVIE RC, 1978, J PHYS CHEM-US, V82, P218
HEUER AH, 1981, ADM CERAMICS, V3
HILL RJ, 1987, J APPL CRYSTALLOGR, V20, P467
HILLERT M, 1991, ACTA METALL MATER, V39, P1111
HILLERT M, 1991, J AM CERAM SOC, V74, P2005
HOWARD CJ, 1988, ACTA CRYSTALLOGR B, V44, P116
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
JANSEN HJF, 1988, PHYSICA B, V150, P10
LI P, 1993, PHYS REV B, V48, P10063
LI P, 1994, J AM CERAM SOC, V77, P1281
MORINAGA M, 1983, J PHYS CHEM SOLIDS, V44, P301
ORLANDO R, 1992, PHYS REV B, V45, P592
PROFFEN T, 1993, ACTA CRYSTALLOGR B, V49, P599
ROTH WL, 1975, CRYSTAL STRUCTURE CH, P85
SAKAI Y, 1982, J COMPUT CHEM, V3, P6
SMITH DK, 1965, ACTA CRYSTALLOGR, V18, P963
STEFANOVICH EV, 1994, PHYS REV B, V49, P11560
SUBBARAO EC, 1975, PHYS STATUS SOLIDI A, P21
YOUNG RA, 1995, J APPL CRYSTALLOGR, V28, P366
ZANDIEHNADEM F, 1988, PHYSICA B, V150, P19
NR 30
TC 5
PU KLUWER ACADEMIC PUBL
PI DORDRECHT
PA SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 0022-2461
J9 J MATER SCI
JI J. Mater. Sci.
PD JUN 1
PY 1999
VL 34
IS 11
BP 2751
EP 2756
PG 6
SC Materials Science, Multidisciplinary
GA 211VD
UT ISI:000081181800036
ER
PT S
AU Ellis, DE
Guenzburger, D
TI The discrete variational method in density functional theory and its
applications to large molecules and solid-state systems
SO ADVANCES IN QUANTUM CHEMISTRY, VOL 34
SE ADVANCES IN QUANTUM CHEMISTRY
LA English
DT Review
DE density functional; electronic structure; molecules; solids
ID CHARGE-TRANSPORT-PROPERTIES; TRANSITION-METAL COMPLEXES; EFFECTIVE CORE
POTENTIALS; EMBEDDED-ATOM-METHOD; ELECTRONIC-STRUCTURE;
MOSSBAUER-SPECTROSCOPY; OPTICAL-PROPERTIES; SPIN-DENSITY; GAMMA-FE;
CORRELATION ENERGIES
C1 Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
Northwestern Univ, Ctr Mat Res, Evanston, IL 60208 USA.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
RP Ellis, DE, Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL
60208 USA.
CR *GROMOS, GRON MOL SIM DAT BAS
ALEXANDER S, 1995, SCIENCE, V268, P1163
ANSON FC, 1986, J AM CHEM SOC, V108, P6593
AREAS EPG, 1995, J PHYS CHEM-US, V99, P14882
AWSCHALOM DD, 1992, PHYS REV LETT, V68, P3092
AWSCHALOM DD, 1992, SCIENCE, V258, P414
AWSCHALOM DD, 1995, PHYS TODAY, V48, P43
BAERENDS EJ, 1973, CHEM PHYS, V2, P41
BAIN R, UNPUB
BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BECKE AD, 1988, J CHEM PHYS, V88, P2547
BECKE AD, 1988, PHYS REV A, V38, P3098
BENESH GA, 1996, PHYS REV B, V54, P5940
BERCES A, 1996, TOP CURR CHEM, V182, P41
BETHE HA, 1968, INTERMEDIATE QUANTUM
BORING M, 1979, J CHEM PHYS, V71, P32
BORING M, 1979, J CHEM PHYS, V71, P392
BOUMAN TD, 1972, J CHEM PHYS, V56, P2478
BRAND HV, 1992, J PHYS CHEM-US, V96, P7725
CALLAWAY J, 1964, PURE APPL PHYSICS MO, V16
CALLAWAY J, 1984, SOLID STATE PHYSICS
CAR R, 1989, SIMPLE MOL SYSTEMS V
CARR R, 1985, PHYS REV LETT, V55, P247
CATLOW CRA, 1976, J PHYS C SOLID STATE, V9, P419
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHACHAM H, 1987, PHYS REV B, V35, P1602
CHO BK, 1995, PHYS REV B, V52, P3676
CHO BK, 1995, PHYS REV B, V52, P3684
CIZEK J, 1966, J CHEM PHYS, V45, P4256
CONROY H, 1967, J CHEM PHYS, V47, P5307
COWAN RD, 1976, J OPT SOC AM, V66, P1010
DAW MS, 1984, PHYS REV B, V29, P6443
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DELLEY B, 1983, PHYS REV B, V27, P2132
DESCLAUX JP, 1974, CHEM PHYS LETT, V29, P534
DOVESI R, 1987, J CHEM PHYS, V86, P6967
DUFEK P, 1995, PHYS REV LETT, V75, P3545
DUNNING TH, 1977, METHODS ELECT STRUCT, CH1
ELLIS DE, UNPUB
ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
ELLIS DE, 1970, PHYS REV B, V2, P2887
ELLIS DE, 1974, J CHEM PHYS, V60, P2856
ELLIS DE, 1977, INT J QUANT CHEM S, V11, P201
ELLIS DE, 1977, J PHYS B ATOM MOL PH, V10, P1
ELLIS DE, 1982, ACTINIDES PERSPECTIV, P123
ELLIS DE, 1984, INT J QUANTUM CHEM, V25, P185
ELLIS DE, 1985, HDB PHYSICS CHEM ACT, P1
ELLIS DE, 1992, ACTINIDES PERSPECTIV, P123
ELLIS DE, 1995, DENSITY FUNCTIONAL T
ELLIS DE, 1995, ELECT DENSITY FUNCTI, P263
EZAWA T, 1989, PHYSICA B, V161, P281
FACKLER NLP, 1996, J AM CHEM SOC, V118, P481
FERRARO JR, 1982, COORDIN CHEM REV, V43, P205
FOILES SM, 1986, PHYS REV B, V33, P7983
GASPAR R, 1954, ACTA PHYS ACAD SCI H, V3, P263
GATTESCHI D, 1996, INORG CHEM, V35, P1926
GIBBS GV, 1982, AM MINERAL, V67, P421
GILL PE, 1981, PRACTICAL OPTIMIZATI
GOLDMAN AI, 1994, PHYS REV B, V50, P9668
GRANT IP, 1961, P ROY SOC LOND A MAT, V262, P555
GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
GRIMES RW, 1992, QUANTUM MECH CALCULA
GU H, 1995, ULTRAMICROSCOPY, V59, P215
GUENZBURGER D, 1980, PHYS REV B, V22, P4203
GUENZBURGER D, 1987, PHYS REV B, V36, P6971
GUENZBURGER D, 1991, PHYS REV LETT, V67, P3832
GUENZBURGER D, 1992, PHYS REV B, V45, P285
GUENZBURGER D, 1995, PHYS REV B, V51, P12519
GUENZBURGER D, 1995, PHYS REV B, V52, P13390
GUO GY, 1990, PHYS REV B, V41, P6372
GUO L, UNPUB
GUO LQ, 1996, INORG CHEM, V35, P5304
HASELGROVE CB, 1961, MATH COMPUT, V15, P323
HAY PJ, 1978, J CHEM PHYS, V69, P984
HAY PJ, 1985, J CHEM PHYS, V82, P229
HAY PJ, 1985, J CHEM PHYS, V82, P270
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HESS AC, 1992, J PHYS CHEM-US, V96, P4367
HIRSHFELD FL, 1977, THEOR CHIM ACTA, V44, P129
HOHENBERG P, 1964, PHYS REV, V136, B847
HOLM RH, 1987, CHEM REV, V87, P1401
HUZINAGA S, 1984, J PHYS CHEM-US, V88, P4880
JACKSON JD, 1975, CLASSICAL ELECTRODYN
JOHNSTONHALPERIN E, 1995, PHYS REV B, V51, P12852
KELLY PJ, 1992, PHYS REV B, V45, P6543
KEUNE W, 1989, PHYSICA B, V161, P269
KIRKPATRICK S, 1983, SCIENCE, V220, P671
KIRKPATRICK S, 1984, J STAT PHYS, V34, P975
KITTEL C, 1996, INTRO SOLID STATE PH
KOELLING DD, 1983, RELATIVISTIC EFFECTS, P227
KOHN W, 1965, PHYS REV, V137, P1697
KOHN W, 1965, PHYS REV, V140, A1133
KOWASH PK, 1989, PHYS REV B, V39, P1908
KRYACHKO ES, 1990, DENSITY FUNCTIONAL T
KUBLER J, 1981, PHYS LETT A, V81, P81
LABANOWSKI JK, 1991, DENSITY FUNCTIONAL M
LASAGA AC, 1990, REV MINERAL, V23, P17
LIBERMAN D, 1965, PHYS REV A, V27, P137
LUTSKO JF, 1988, PHYS REV B, V38, P2887
MACLAREN JM, 1991, COMPUT PHYS COMMUN, V66, P383
MARTINSEN J, 1983, J AM CHEM SOC, V105, P677
MATTHEISS LF, 1994, PHYS REV B, V49
MCGIBBON MM, 1994, SCIENCE, V266, P102
MICHAEL RD, 1992, J MAGN MAGN MATER, V111, P29
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NEWCOMB TP, 1990, INORG CHEM, V29, P223
NOGUEIRA SR, 1996, INT J QUANTUM CHEM, V57, P471
OGAWA MY, 1987, J AM CHEM SOC, V109, P1115
OGAWA MY, 1989, PHYS REV B, V39, P10682
PACE LJ, 1983, J AM CHEM SOC, V105, P2612
PAINTER GS, 1970, PHYS REV B, V1, P4747
PAINTER GS, 1971, COMPUTATIONAL METHOD, P271
PAPAEFTHYMIOU GC, 1992, PHYS REV B, V46, P10366
PARR RG, 1989, DENSITY FUNCTIONAL T
PEPPER M, 1991, CHEM REV, V91, P719
PERDEW JP, 1986, PHYS REV B, V33, P8822
PICKETT WE, 1994, PHYS REV LETT, V72, P3702
PYYKKO P, 1979, ACCOUNTS CHEM RES, V12, P276
RANCOURT DG, IN PRESS PHYS CHEM M
RANCOURT DG, 1994, AM MINERAL, V79, P51
RANCOURT DG, 1994, J MAGN MAGN MATER, V138, P31
RANCOURT DG, 1994, PHYS CHEM MINER, V21, P250
RANCOURT DG, 1994, PHYS CHEM MINER, V21, P258
RAVIKUMAR V, UNPUB
RAVIKUMAR V, 1993, ULTRAMICROSCOPY, V52, P557
REDHAMMER GJ, 1993, PHYS CHEM MINER, V20, P382
REDHAMMER GJ, 1995, PHYS CHEM MINER, V22, P282
RINCON L, 1995, ORGANOMETALLICS, V14, P1292
ROBINSON LM, 1995, INORG CHEM, V34, P5588
RODRIGUES RP, UNPUB
RODRIGUES RP, 1997, THESIS NW U
ROSA A, 1992, INORG CHEM, V31, P4717
ROSA A, 1993, INORG CHEM, V32, P5637
ROSA A, 1994, INORG CHEM, V33, P584
ROSE ME, 1983, RELATIVISTIC EFFECTS
ROSEN A, 1975, J CHEM PHYS, V62, P3039
ROSEN A, 1976, J CHEM PHYS, V65, P3629
SANCHEZDELGADO RA, 1994, J MOL CATAL, V86, P287
SANER J, 1989, CHEM REV, V89, P199
SESSOLI R, 1993, NATURE, V365, P141
SEXTON BA, 1985, SURF SCI, V163, P99
SHELDON RA, 1981, METAL CATALYZED OXID
SHERMAN DM, 1987, PHYS CHEM MINER, V14, P355
SHIM I, 1987, PHYSICS CHEM SMALL C, P523
SLATER JC, 1974, SELF CONSISTENT FIEL, V4
STROUD AH, 1971, APPROXIMATE CALCULAT
TAFT KL, 1994, J AM CHEM SOC, V116, P823
TEPPEN BJ, 1994, J PHYS CHEM-US, V98, P12545
TERRA J, 1991, PHYS REV B, V44, P8584
TERRA J, 1995, J PHYS CHEM-US, V99, P4935
TERRA J, 1996, IN PRESS P LAT AM C
TINKHAM M, 1964, GROUP THEORY QUANTUM
TOSSELL JA, 1977, PHYS CHEM MINER, V2, P21
UMRIGAR C, 1980, PHYS REV B, V21, P852
VIJAYAKUMAR M, 1989, PHYS REV A, V40, P6834
VOSKO SH, 1980, CAN J PHYS, V58, P1200
VUGMAN NV, 1972, J CHEM PHYS, V57, P1297
WANG CS, 1985, PHYS REV LETT, V54, P1852
WASSERMANN EF, 1989, PHYS SCR T, V25, P209
WIEGAND BC, 1992, CHEM REV, V92, P491
WILKINSON H, 1965, ALGEBRAIC EIGENVALUE
WINKLER FK, 1971, J MOL BIOL, V59, P169
WYCKOFF RWG, 1968, CRYSTAL STRUCTURES, V4
XU BX, 1984, J PHYS C SOLID STATE, V17, P1339
XU YN, 1991, PHYS REV B, V44, P11048
YANG CY, 1978, J CHEM PHYS, V68, P2626
YONEZAWA F, 1992, MOL DYNAMICS SIMULAT
ZARESTKY J, 1995, PHYS REV B, V51, P678
ZENG Z, IN PRESS PHYS REV B
ZENG Z, 1996, PHYS REV B, V53, P6613
ZENG Z, 1996, PHYS REV B, V54, P13020
ZENG Z, 1996, PHYSICA C, V271, P23
ZENG Z, 1997, PHYS REV B, V55, R40
ZIEGLER T, 1981, J CHEM PHYS, V74, P1271
ZIETLOW TC, 1985, J SOLID STATE CHEM, V57, P112
ZIETLOW TC, 1986, INORG CHEM, V25, P1351
ZIETLOW TC, 1986, INORG CHEM, V25, P2195
NR 177
TC 31
PU ACADEMIC PRESS INC
PI SAN DIEGO
PA 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0065-3276
J9 ADVAN QUANTUM CHEM
PY 1999
VL 34
BP 51
EP 141
PG 91
GA BN22K
UT ISI:000081150800002
ER
PT J
AU Da Silva, SC
Franco, DW
TI Metastable excited state and electronic structure of [Ru(NH3)(5)NO](3+)
and [Ru(NH3)(4)(-)(OH)NO](2+)
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE nitrosyl; ruthenium; DFT; metastable state; electronic structure
ID INFRARED-ABSORPTION SPECTRA; LIGHT; NITROPRUSSIDE; COMPLEXES
AB Light-induced metastable excited states of complexes
[RuO(NH3)(5)NO](3+) and [Ru(NH3)(4)(OH)NO](2+) were investigated by
FTIR spectroscopy. Both systems showed only one metastable excited
state (MSI), with decay temperatures higher than 200 K. MSI formation
occurs upon irradiation in the visible band (450-500 nm). According to
ab initio density functional theory (DFT) molecular orbital analysis
and ZINDO semi empirical C.I. calculation, MSI originates from the
charge transfer transition 2b(2)(dxy) --> 7e(pi*NO). Since irradiation
in regions other than the charge transfer transition causes fast
depopulation of the metastable excited state, this light-induced decay
is tentatively assigned to light absorption by the systems in the
excited state. (C) 1999 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
RP Franco, DW, Univ Fed Sao Paulo, Inst Quim Sao Carlos, Caixa Postal 780,
BR-13560970 Sao Carlos, SP, Brazil.
CR *HYP INC, 1996, HYP 4 5
ARMOR JN, 1968, J AM CHEM SOC, V90, P5928
BECKE AD, 1988, PHYS REV A, V38, P3098
BOTTOMLEY F, 1974, J CHEM SOC DA, V15, P1600
ENEMARK JH, 1974, COORDIN CHEM REV, V13, P339
FOMITCHEV DV, 1996, INORG CHEM, V35, P7021
FOMITCHEV DV, 1996, INORG CHEM, V35, P7021
FRISCH MJ, 1995, GAUSSIAN 94
GADEKE W, 1988, CHEM PHYS, V124, P113
GUIDA JA, 1986, SOLID STATE COMMUN, V57, P175
GUIDA JA, 1995, INORG CHEM, V34, P4113
HAUSER U, 1977, Z PHYS A, V280, P17
LEE C, 1988, PHYS REV B, V37, P785
MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
OOKUBO K, 1996, J MOL STRUCT, V379, P241
PRESSPRICH MR, 1994, J AM CHEM SOC, V116, P5233
SCHREINER AF, 1972, INORG CHEM, V11, P880
SILVA SC, UNPUB
TERRILE C, 1990, SOLID STATE COMMUN, V73, P481
WOIKE T, 1990, SOLID STATE COMMUN, V73, P149
WOLKE T, 1984, PHYS REV LETT, V53, P1767
ZOLLNER H, 1989, CHEM PHYS LETT, V161, P497
NR 22
TC 24
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUL
PY 1999
VL 55
IS 7-8
BP 1515
EP 1525
PG 11
SC Spectroscopy
GA 209AY
UT ISI:000081025900021
ER
PT J
AU Segala, M
Domingues, NS
Livotto, PR
Stefani, V
TI Heterocyclic dyes displaying excited-state intramolecular
proton-transfer reactions (ESIPT): computational study of the
substitution effect on the electronic absorption spectra of 2-(2
'-hydroxyphenyl)-1,3-benzoxazole derivatives
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID AB-INITIO; PHOTOELECTRON-SPECTRA; TRANSIENT ABSORPTION; TRANSFER LASER;
2-(2'-HYDROXYPHENYL)BENZOXAZOLE; SPECTROSCOPY; MODEL; MOLECULES
AB Semi-empirical molecular-orbital methods were used to simulate the
electronic absorption spectra of a series of
2-(2'-hydroxyphenyl)-1,3-benzoxazole derivatives, namely AMI and
MNDO-PM3 for geometry optimization and INDO/S-CI and HAM/3 for
spectroscopic features. Wavelengths of maximum absorption that agree
better with experimental data were found when INDO/S-CI was applied to
PM3-generated inputs. Chemical substitution redshifted the absorption
spectrum of all the model compounds, a feature discussed based on the
calculated energy levels of frontier orbitals and charge redistribution
upon electronic excitation.
C1 Univ Fed Rio Grande Sul, Inst Quim, BR-91501970 Porto Alegre, RS, Brazil.
RP Stefani, V, Univ Fed Rio Grande Sul, Inst Quim, Av Bento Goncalves
9500, BR-91501970 Porto Alegre, RS, Brazil.
CR ACUNA AU, 1986, J PHYS CHEM-US, V90, P2807
ACUNA AU, 1991, CHEM PHYS LETT, V187, P98
ALANSARI IAZ, 1997, J LUMIN, V71, P83
ARTHENENGELAND T, 1992, CHEM PHYS, V163, P43
ASBRINK L, 1977, CHEM PHYS LETT, V52, P63
ATKINS PW, 1983, MOL QUANTUM MECH
BRINN IM, 1991, J PHYS CHEM-US, V95, P6540
CATALAN J, 1997, J PHYS CHEM A, V101, P7914
CORREA DS, 1999, THESIS U FEDERAL RIO
COSTELA A, 1987, OPT COMMUN, V64, P457
DAS K, 1994, J PHYS CHEM-US, V98, P9126
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DOMINGUES NS, 1997, J CHEM SOC PERK SEP, P1861
DOUHAL A, 1994, J PHOTOCH PHOTOBIO A, V78, P127
ENDO K, 1995, J PHYS CHEM SOLIDS, V56, P1131
ERNSTING NP, 1992, J CHEM PHYS, V97, P3914
FERRER ML, 1994, APPL OPTICS, V33, P2266
FRANCIS JT, 1994, J PHYS CHEM-US, V98, P3650
GRABOWSKA A, 1994, J LUMIN, V60, P886
HASS KC, 1996, CHEM PHYS LETT, V263, P414
HOLLER MG, 1997, THESIS U FEDERAL RIO
KLOPFFER W, 1977, ADV PHOTOCHEM, V10, P311
LAVTCHIEVA L, 1993, J PHYS CHEM-US, V97, P306
LINDDHONLM E, 1985, MOL ORBITALS THEIR E, P142
MARZINZIK AL, 1996, J MOL STRUCT, V375, P117
MORDZINSKI A, 1982, CHEM PHYS LETT, V90, P122
NAGAOKA S, 1993, J PHYS CHEM-US, V97, P11385
NOVOA JJ, 1991, J AM CHEM SOC, V113, P9017
OBUKHOV AE, 1996, LASER PHYS, V6, P890
OCONNOR DB, 1985, CHEM PHYS LETT, V121, P417
OTTERSTEDT JEA, 1973, J CHEM PHYS, V58, P5716
PLADALMAU A, 1995, J ORG CHEM, V60, P5468
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
RIOS MA, 1995, J PHYS CHEM-US, V99, P12456
RIOS MA, 1998, J PHYS CHEM A, V102, P1560
SASTRE R, 1995, ADV MATER, V7, P198
SHANG XM, 1998, J OPT SOC AM B, V15, P854
STEFANI V, 1992, DYES PIGMENTS, V20, P97
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1990, J COMPUT AID MOL DES, V4, P1
SYTNIK A, 1994, P NATL ACAD SCI USA, V91, P8627
TAKAHATA Y, 1993, J MOL STRUCT THEOCHE, V283, P289
TAKAHATA Y, 1995, THEOCHEM-J MOL STRUC, V335, P229
THIEL W, 1994, MNDO94
WOOLFE GJ, 1983, CHEM PHYS, V77, P213
NR 45
TC 6
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD JUN
PY 1999
IS 6
BP 1123
EP 1127
PG 5
SC Chemistry, Organic; Chemistry, Physical
GA 208GD
UT ISI:000080981900012
ER
PT J
AU Mundim, KC
Ellis, DE
TI Stochastic classical molecular dynamics coupled to functional density
theory: Applications to large molecular systems
SO BRAZILIAN JOURNAL OF PHYSICS
LA English
DT Article
ID OPTIMIZATION
AB A hybrid approach is described, which combines stochastic classical
molecular dynamics and first principles Density Functional theory to
model the atomic and electronic structure of large molecular and
solid-state systems. The stochastic molecular dynamics using
Generalized Simulated Annealing (GSA) is based on the nonextensive
statistical mechanics and thermodynamics. Examples are given of
applications in linear-chain polymers, structural ceramics, impurities
in metals, and pharmacological molecule-protein interactions.
C1 Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA.
RP Mundim, KC, Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
CR ALDER BJ, 1957, J CHEM PHYS, V27, P1208
ALDER BJ, 1970, PHYS REV A, V1, P18
ALLINGER NL, 1982, ACS MONOGRAPH, V177
AREAS EPG, 1994, BRAZ J MED BIOL RES, V27, P527
AREAS EPG, 1995, J PHYS CHEM-US, V99, P14882
CEPERLEY D, 1986, SCIENCE, V231, P555
CURADO EMF, 1991, J PHYS A, V24, P3187
CURADO EMF, 1991, J PHYS A, V24, L69
DELLANAY F, 1987, J MATER SCI, V22, P1
DORFMAN S, 1996, COMPOS PART A-APPL S, V27, P697
DORFMAN S, 1996, COMPOSITE INTERFACES, V3, P431
ELLIS DE, 1995, ELECT DENSITY FUNCTI, P263
ELLIS DE, 1998, IN PRESS P 9 CIMTEC
ELLIS DE, 1998, MATER RES SOC SYMP P, V527, P69
GANGOPADHYAY U, 1995, J MATER SCI, V30, P94
GUO CK, UNPUB
GUO L, 1998, J PORPHYR PHTHALOCYA, V2, P1
KIRKPATRICK S, 1983, SCIENCE, V220, P671
KIRKPATRICK S, 1984, J STAT PHYS, V34, P975
KLUG A, 1958, ACTA CRYSTALLOGR, V11, P199
MORET MA, 1996, THESIS
MORET MA, 1998, J COMPUT CHEM, V19, P647
MUNDIM KC, 1996, INT J QUANTUM CHEM, V58, P373
MUNDIM KC, 1998, PHYSICA A, V252, P405
PASCUTTI PG, 1999, IN PRESS J COMP CHEM
SZU H, 1987, PHYS LETT A, V122, P157
TSALLIS C, 1988, J STAT PHYS, V52, P479
TSALLIS C, 1996, PHYSICA A, V233, P395
NR 28
TC 6
PU SOCIEDADE BRASILEIRA FISICA
PI SAO PAULO
PA CAIXA POSTAL 66328, 05315-970 SAO PAULO, BRAZIL
SN 0103-9733
J9 BRAZ J PHYS
JI Braz. J. Phys.
PD MAR
PY 1999
VL 29
IS 1
BP 199
EP 214
PG 16
SC Physics, Multidisciplinary
GA 205RY
UT ISI:000080835400018
ER
PT J
AU Rodrigues, JAR
de Oliveira, AP
Moran, PJS
Custodio, R
TI Regioselectivity of the nitration of phenol by acetyl nitrate adsorbed
on silica gel
SO TETRAHEDRON
LA English
DT Article
DE nitration; nitric acid and derivatives; phenols; regioselection
ID NITROGEN-DIOXIDE; SUBSTITUTION; DERIVATIVES; CATALYSTS; AROMATICS;
ESTERS; ACID
AB The reaction of phenol with acetyl nitrate in chloroform gives
nitrophenol with an ortho/para ratio of 1.8. This ratio increase to
13.3 when the reaction was carried out with acetyl nitrate pre-adsorbed
on dry silica gel. Silica may be acting as a template to bring phenol
close to acetyl nitrate by hydrogen bonds forming a ternary complex,
which undergoes a six-center rearrangement to o-nitrophenol. The
formation of this ternary complex is evaluated by ab initio molecular
orbital calculation, (C) 1999 Elsevier Science Ltd. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Rodrigues, JAR, Univ Estadual Campinas, Inst Quim, BR-13083970
Campinas, SP, Brazil.
CR CLARK JH, 1992, SUPPORTED REAGENTS P
CONLON DA, 1996, J ORG CHEM, V61, P6425
DELAMARE PBD, 1959, AROMATIC SUBSTITUTIO, P76
DELAUDE L, 1993, ACCOUNTS CHEM RES, V26, P607
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GIGANTE B, 1995, J ORG CHEM, V60, P3445
GROTTA HM, 1967, J HETEROCYCLIC CHEM, V4, P611
HALVARSON K, 1957, ARK KEMI, V11, P77
KIMURA M, 1990, J ORG CHEM, V55, P4887
KURZ ME, 1973, J ORG CHEM, V38, P2271
MALYSHEVA LV, 1995, CATAL REV, V37, P179
MARCH J, 1992, ADV ORG CHEM, P511
NORMAN ROC, 1965, ELECTROPHILIC SUBSTI, P301
OLAH GA, 1989, ORGANIC NITRO CHEM S, P13
OLAH GA, 1996, CHEM BR AUG, P21
PERVEZ H, 1988, TETRAHEDRON, V44, P4555
RIEGO JM, 1996, TETRAHEDRON LETT, V37, P513
RODRIGUES JAR, IN PRESS SYNTH COMMU
SAARI WS, 1991, J MED CHEM, V34, P2922
SCHOFIELD K, 1980, AROMATIC NITRATION, P236
SMITH K, 1992, SOLID SUPPORTS CATAL
STRAZZOLINI P, 1995, B CHEM SOC JPN, V68, P1155
STRAZZOLINI P, 1998, J ORG CHEM, V63, P952
SUZUKI H, 1995, J CHEM SOC PERK 0221, P339
SUZUKI H, 1996, J CHEM SOC PERK APR, P677
SUZUKI H, 1996, J ORG CHEM, V61, P5944
TAYLOR R, 1990, ELECTROPHILIC AROMAT
VOGEL A, 1978, TXB PRACTICAL ORGANI
NR 28
TC 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0040-4020
J9 TETRAHEDRON
JI Tetrahedron
PD MAY 28
PY 1999
VL 55
IS 22
BP 6733
EP 6738
PG 6
SC Chemistry, Organic
GA 201DK
UT ISI:000080579600002
ER
PT J
AU Alves, HWL
Alves, JLA
Castineira, JLP
Leite, JR
TI Lattice dynamics of boron nitride
SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
TECHNOLOGY
LA English
DT Article
DE boron nitride; LAPW method; lattice dynamics; frozen phonons; shell
model
ID BN; SEMICONDUCTORS; BP
AB Using the density-functional theory within the full potential linear
augmented plane-wave (FP-LAPW) method, we have calculated ab initio the
equation of state and the principal phonon modes in cubic boron nitride
(c-BN), including their pressure dependence and the amplitude of the
eigendisplacements. A good agreement with the experiments is obtained,
whenever a comparison is possible: in fact, most of the results are
predictions. A ten-parameter valence overlap shell model (VOSM) was
constructed and we obtained the phonon dispersion curves, elastic
constants and effective charges. Our results were compared with
calculated theoretical data for c-BN and for other III-V materials and
we found that the lattice dynamics properties for cubic boron nitride
is very close to those of diamond. (C) 1999 Elsevier Science S.A. All
rights reserved.
C1 FUNREI, Dept Ciencias Nat, BR-36300000 Sao Koao Del Rei, MG, Brazil.
Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, LNMS, BR-05389970 Sao Paulo, Brazil.
RP Alves, HWL, FUNREI, Dept Ciencias Nat, Praca D Helvecio 74, BR-36300000
Sao Koao Del Rei, MG, Brazil.
CR ALVES HWL, 1992, J PHYS-CONDENS MAT, V4, P6603
BILZ H, 1979, PHONON DISPERSION RE, P101
BLAHA P, 1995, COMPUTER CODE WIEN95
CASTINEIRA JLP, 1998, MAT SCI ENG B-SOLID, V51, P53
CEPERLEY DM, 1981, PHYS REV B, V23, P5048
COHEN ML, 1998, ELECT STRUCTURE OPTI
EDGAR JH, 1994, PROPERTIES GROUP 3 N
KARCH K, 1997, PHYS REV B, V56, P7404
KIM K, 1996, PHYS REV B, V53, P16310
KUNC K, 1976, SOLID STATE COMMUN, V19, P1027
KUNC K, 1983, AB INITIO CALCULATIO, P65
KUNC K, 1985, ELECT STRUCTURE DYNA, P227
MADELUNG O, 1982, LANDOLTBORNSTEIN N A, V17
MADELUNG O, 1989, LANDOLTBORNSTEIN N A, V22
PAINE RT, 1990, CHEM REV, V90, P73
SANJURJO JA, 1983, PHYS REV B, V28, P4579
WENTZCOVITCH RM, 1986, PHYS REV B, V34, P1071
WENTZCOVITCH RM, 1987, PHYS REV B, V36, P6058
NR 18
TC 5
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5107
J9 MATER SCI ENG B-SOLID STATE M
JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
PD MAY 6
PY 1999
VL 59
IS 1-3
BP 264
EP 267
PG 4
SC Materials Science, Multidisciplinary; Physics, Condensed Matter
GA 203CB
UT ISI:000080689000057
ER
PT J
AU Pliego, JR
De Almeida, WB
TI A new mechanism for the reaction of carbenes with OH groups
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID LASER-FLASH-PHOTOLYSIS; CORRELATED MOLECULAR CALCULATIONS;
GAUSSIAN-BASIS SETS; SPECTROSCOPIC DETECTION; YLIDE FORMATION;
ETHYL-ACETATE; AB-INITIO; H BOND; FLUORENYLIDENE; INSERTION
AB The reaction pathway for the 2H(2)O + CCl2 reaction through a cyclic
five-atom transition structure was studied using ab initio molecular
orbital theory. The MP2 method in conjunction with the DZP basis set
was used for geometry optimizations, and single point energy
calculations were performed at MP2 and MP4 levels with the cc-pVDZ and
cc-pVTZ basis sets. The solvent effect on the activation free energy
was evaluated by Monte Carlo statistical mechanics calculations. The
new mechanism has a high rate constant, and we predict a lifetime of
seven nanoseconds for dichlorocarbene in aqueous solution. We have
proposed that this mechanism occurs for the reaction of dichlorocarbene
with water, and possibly may be involved in many reactions of carbenes
with alcohols. We have also shown that it can explain the following
experimental facts: (a) alteration of the product isotopic effect on
addition of a second alcohol, (b) difference between product and
kinetic isotopic effects, and (c) no linear dependence of the observed
rate constant for carbene decay on alcohol concentration.
C1 Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Minas Gerais, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
RP Pliego, JR, Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol,
BR-31270901 Belo Horizonte, MG, Brazil.
CR ADMASU A, 1997, J PHYS CHEM A, V101, P3832
BELT ST, 1993, J AM CHEM SOC, V115, P2200
BETHELL D, 1971, J CHEM SOC B, P23
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CHATEAUNEUF JE, 1991, J AM CHEM SOC, V113, P6585
CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
CURTISS LA, 1991, J CHEM PHYS, V94, P7221
CURTISS LA, 1992, J CHEM PHYS, V96, P9030
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
DUNNING TH, 1997, METHODS ELECT STRUCT
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
GRILLER D, 1982, J AM CHEM SOC, V104, P5549
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1988, J AM CHEM SOC, V110, P1657
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1995, BOSS VERSION 3 5
KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
KIRMSE W, 1993, J AM CHEM SOC, V115, P8918
MOSS RA, 1988, TETRAHEDRON LETT, V29, P6417
MOSS RA, 1989, ACCOUNTS CHEM RES, V22, P15
NOBES RH, 1982, CHEM PHYS LETT, V89, P497
OLSON DR, 1996, J PHYS ORG CHEM, V9, P759
PLATZ MS, 1996, J PHYS ORG CHEM, V9, P689
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1997, J CHEM PHYS, V106, P3582
PLIEGO JR, 1997, J CHEM SOC FARADAY T, V93, P1881
PLIEGO JR, 1997, J CHEM SOC PERK NOV, P2365
PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
PLIEGO JR, 1998, J BRAZIL CHEM SOC, V9, P181
SOUNDARARAJAN N, 1988, TETRAHEDRON LETT, V29, P3419
VOLATRON F, 1983, J AM CHEM SOC, V105, P2359
WANG JL, 1995, J AM CHEM SOC, V117, P5477
WOON DE, 1993, J CHEM PHYS, V98, P1358
YAMAGUCHI Y, 1993, J AM CHEM SOC, V115, P5790
ZUPANCIC JJ, 1985, TETRAHEDRON, V41, P1471
NR 38
TC 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAY 20
PY 1999
VL 103
IS 20
BP 3904
EP 3909
PG 6
SC Chemistry, Physical
GA 200XK
UT ISI:000080565300015
ER
PT J
AU Ribeiro, MCC
Almeida, LCJ
TI Fluctuating charge model for polyatomic ionic systems: A test case with
diatomic anions
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; SOLID ALKALI CYANIDES; FORCE-FIELDS;
POLARIZABILITY; DENSITY; POTENTIALS; CRYSTALS; WATER
AB The fluctuating charge (FQ) model proposed by Rick et al. [(J. Chem.
Phys. 101, 6141 (1994)] for molecular dynamics (MD) simulation of water
is applied to a test case for polyatomic ionic systems. A system
resembling alkali cyanide crystals, with two partial charges on the
atomic sites of the polarizable anions, is considered. The need for
charge fluctuation considerations in such a simple system is
demonstrated by ab initio calculations of the partial charges in the
cyanide ion with different orientations within a fixed octahedral
environment of sodium ions. It is shown that the charge distributions
in the crystal obtained with the FQ model are sensitive to changes in
the environment in such a way that the anions become more polarizable
as the lattice parameter increases. Conversely, the charge
distributions shrink with increasing repulsive short-range
interactions. Furthermore, a well-known polarization effect, that is,
the reduction in the frequencies of longitudinal optic modes of the
crystal, is also obtained with the FQ model. (C) 1999 American
Institute of Physics. [S0021-9606(99)50423-6].
C1 Univ Sao Paulo, Inst Quim, Lab Espectroscopia Mol, BR-05599970 Sao Paulo, Brazil.
RP Ribeiro, MCC, Univ Sao Paulo, Inst Quim, Lab Espectroscopia Mol, CP
26077, BR-05599970 Sao Paulo, Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
ASTRAND PO, 1998, J PHYS CHEM A, V102, P7686
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BULJAN A, 1997, J PHYS CHEM A, V101, P1393
CHELLI R, 1997, J CHEM PHYS, V107, P8041
FERRARIO M, 1986, J CHEM PHYS, V84, P3975
FRISCH MJ, 1995, GAUSSIAN 94
FUMI FG, 1964, J PHYS CHEM SOLIDS, V25, P31
GREADY JE, 1978, CHEM PHYS, V31, P467
JACUCCI G, 1976, PHYS REV A, V13, P1581
JEMMER P, 1998, J PHYS CHEM A, V102, P8377
KATO T, 1993, J CHEM PHYS, V99, P3966
KLEIN ML, 1983, J CHEM PHYS, V79, P2333
LADD MFC, 1977, J CHEM SOC DA, V3, P220
LESAR R, 1982, J CHEM PHYS, V77, P3682
LIU YP, 1998, J CHEM PHYS, V108, P4739
LYNDENBELL RM, 1983, MOL PHYS, V48, P1093
MADDEN PA, 1991, J CHEM PHYS, V95, P1980
MADDEN PA, 1993, J PHYS CONDENS MATT, V5, P2687
MADDEN PA, 1996, CHEM SOC REV, V25, P339
MATSUI M, 1998, J CHEM PHYS, V108, P3304
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
RAPPE AK, 1991, J PHYS CHEM-US, V95, P3358
RIBEIRO MCC, 1998, J CHEM PHYS, V108, P9027
RICK SW, 1994, J CHEM PHYS, V101, P6141
RICK SW, 1997, J PHYS CHEM B, V101, P10488
SANGSTER MJL, 1976, ADV PHYS, V25, P247
TISSEN JTWM, 1990, MOL PHYS, V71, P413
WIBERG KB, 1992, J PHYS CHEM-US, V96, P671
NR 29
TC 11
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 15
PY 1999
VL 110
IS 23
BP 11445
EP 11448
PG 4
SC Physics, Atomic, Molecular & Chemical
GA 200CH
UT ISI:000080521200039
ER
PT J
AU Wilson, M
Madden, PA
Jemmer, P
Fowler, PW
Batana, A
Bruno, J
Munn, RW
Monard, MC
TI Models of environmental effects on anion polarizability
SO MOLECULAR PHYSICS
LA English
DT Article
ID REFRACTIVE-INDEX; ALKALI-HALIDES; DIPOLE POLARIZABILITY; FLUORIDE-ION;
CRYSTALS; PRESSURE; DERIVATIVES; PARAMETERS; SIMULATION; NABR
AB This paper deals with three different approaches to the representation
of environmental effects on anion polarizability in cubic crystals of
the stoichiometry MX, where M is an alkali metal and X is a halogen. Ab
initio embedded cluster calculations of the variation in anion
polarizability with pressure in a fixed crystal type are presented and
compared with experiment. The results are then used in a scaled nb
initio model used to predict further values for the pressure dependence
of the in-crystal anion polarizability. This scaled model is compared
with a fully empirical 'universal' model due to Batana el nl. based on
polarizability change with ionic radius [1997, Molec. Phys., 92, 1029].
The assumptions of the two models differ substantially and the central
purpose of this paper is to contrast these differences and highlight
their consequences for prediction. Although the empirical model
typically overestimates the experimental pressure derivatives, and the
nb initio calculations Somewhat underestimate them, it is shown that
the assumption of incompressible cations in the scaled ab
initio-derived model has a firmer physical basis than the empirical
picture in which all ions are compressible.
C1 Univ Oxford, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England.
Univ Exeter, Dept Chem, Exeter EX4 4QD, Devon, England.
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Inorgan Analit & Quim Fis, RA-1428 Buenos Aires, DF, Argentina.
UMIST, Dept Chem, Manchester M60 1QD, Lancs, England.
Univ Sao Paulo, Dept Ciencias Comp & Estatist, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, Brazil.
RP Wilson, M, Univ Oxford, Phys & Theoret Chem Lab, S Parks Rd, Oxford OX1
3QZ, England.
CR AMOS RD, 1995, CADPAC CAMBRIDGE ANA
BATANA A, 1997, MOL PHYS, V92, P1029
BENDOW B, 1974, APPL OPTICS, V13, P2382
DIERCKSEN GHF, 1981, CHEM PHYS LETT, V84, P390
DIERCKSEN GHF, 1982, MOL PHYS, V47, P33
FONTANELLA J, 1972, PHYS REV B, V6, P582
FOWLER PW, 1983, MOL PHYS, V49, P913
FOWLER PW, 1984, MOL PHYS, V53, P865
FOWLER PW, 1984, PHYS REV B, V29, P1035
FOWLER PW, 1984, PHYS REV B, V30, P6131
FOWLER PW, 1985, MOL PHYS, V54, P129
FOWLER PW, 1985, P ROY SOC LOND A MAT, V398, P377
FOWLER PW, 1985, PHYS REV B, V31, P5443
FOWLER PW, 1990, J CHEM SOC FARADAY T, V86, P1019
HARDING JH, 1995, PHIL MAG LETT, V71, P113
JEMMER P, 1998, J PHYS CHEM A, V102, P8377
JOHANNSEN PG, 1997, PHYS REV B, V55, P6856
JOHANNSEN PG, 1997, PHYS REV B, V55, P6865
LAZZERETTI P, 1991, 167 CNR
MADDEN PA, 1991, J CHEM PHYS, V94, P918
MAHAN GD, 1980, SOLID STATE IONICS, V1, P29
MAHAN GD, 1990, LOCAL DENSITY THEORY
MULLER U, 1993, INORGANIC STRUCTURE
PYPER NC, 1991, ADV SOLID STATE CHEM, V2, P223
PYPER NC, 1997, J PHYS-CONDENS MAT, V9, P471
SHANKER J, 1979, PHILOS MAG B, V39, P405
SINGH AV, 1978, PHYSICA B, V94, P331
SRINIVASAN R, 1973, PHYS STATUS SOLIDI B, V57, P757
TESSMAN JR, 1983, PHYS REV, V49, P913
VANVECHTEN JA, 1969, PHYS REV, V182, P891
WERNER HJ, 1980, J CHEM PHYS, V73, P2319
NR 31
TC 6
PU TAYLOR & FRANCIS LTD
PI LONDON
PA ONE GUNPOWDER SQUARE, LONDON EC4A 3DE, ENGLAND
SN 0026-8976
J9 MOL PHYS
JI Mol. Phys.
PD MAY 20
PY 1999
VL 96
IS 10
BP 1457
EP 1467
PG 11
SC Physics, Atomic, Molecular & Chemical
GA 198LW
UT ISI:000080426500003
ER
PT J
AU Wang, F
Tao, WA
Gozzo, FC
Eberlin, MN
Cooks, RG
TI Synthesis of B- and P-heterocycles by reaction of cyclic acetals and
ketals with borinium and phosphonium ions
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID RESONANCE MASS-SPECTROMETER; DICOORDINATED BORON CATIONS; GAS-PHASE;
EFFICIENT DEPROTECTION; TRIMETHYL BORATE; ACYLIUM IONS; CHEMISTRY;
AFFINITIES; REAGENT; BONDS
AB Tricoordinated cyclic boron cations result from gas-phase ion/molecule
reactions of dicoordinated borinium ions with neutral acetals and
ketals and thiazolidine. The reaction, which proceeds via initial
cationic binding to a heteroatom followed by a consecutive ring-opening
and ring-reclosing process, resembles the Eberlin transacetalization of
acylium ions (Eberlin, M. N.; Cooks, R. G. Org. Mass Spectrom. 1993,
28, 679). The cyclic structure of the tricoordinated boron cation is
demonstrated by tandem mass spectrometry and further confirmed by
comparison with authentic cyclic tricoordinated boron cations.; The
five-membered cyclic boron cations dissociate by ethylene oxide loss to
thus reform the reactant-dicoordinated borinium ion; the six-membered
boron cations fragment instead by ethylene loss. Consistent with the
proposed mechanism, the ion/molecule reaction efficiency falls in the
order CH3OB+C2H5 > CH3OB+OCH3 much greater than CH3B+CH3; i.e., the
higher the nucleophilicity of the borinium ion, the higher the reaction
efficiency. A potential energy surface is calculated for the reaction
of CH3OB+OCH3 with 2-methyl-1,3-dioxolane, and the reaction is found to
be 43.3 kcal/mol exothermic due to initial formation of a strong B-O
bond. The analogous reactivity displayed by phosphonium ions is also
investigated by both experiment and ab initio calculations. In contrast
to the borinium ions, the phosphonium ions exhibit higher
regioselectivity for sulfur compared to nitrogen and oxygen. Finally,
the present findings indicate that the reaction exothermicity and the
regioselectivity are controlled by both the Lewis acidity of the
reactant cations and the leaving ability of the released neutrals in
the rate-limiting nucleophilic-induced recyclization step.
C1 Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
State Univ Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Cooks, RG, Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
CR CARVALHO M, 1998, CHEM-EUR J, V4, P1161
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
COLORADO A, 1996, J MASS SPECTROM, V31, P403
COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
CORBRIDGE DEC, 1995, PHOSPHORUS OUTLINE I
CRAGG RH, 1972, J CHEM SOC DA, P1373
DENIS JN, 1980, ANGEW CHEM INT EDIT, V19, P1006
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FALLON PJ, 1968, INT J MASS SPECTROM, V1, P133
FORTE L, 1990, CAN J CHEM, V68, P1629
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GOZZO FC, 1996, J CHEM SOC PERK APR, P587
GREENE TW, 1991, PROTECTING GROUPS OR
GROS P, 1995, J CHEM RES S, P196
HALL BJ, 1996, INT J MASS SPECTROM, V155, P123
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HETTICH RL, 1987, INT J MASS SPECTROM, V81, P203
HIGASHI J, 1982, INORG CHEM, V21, P716
HUA SM, 1985, ORG MASS SPECTROM, V20, P719
IMRIE C, 1995, J PHYS ORG CHEM, V8, P41
ISBELL JJ, 1996, RAPID COMMUN MASS SP, V10, P1418
JOHNSTONE C, 1996, CHEM COMMUN 0207, P341
KAPPES MM, 1982, ORGANOMETALLICS, V1, P1303
KAUR G, 1998, J ORG CHEM, V63, P2365
KEMPEN EC, 1997, J MASS SPECTROM, V32, P846
KOBAYASHI S, 1993, TETRAHEDRON LETT, V34, P4047
KOLLE P, 1985, CHEM REV, V85, P399
KUIVALAINEN T, 1996, J AM SOC MASS SPECTR, V7, P189
LAW RW, 1956, J CHEM PHYS, V25, P1086
LEECK DT, 1995, INT J MASS SPECTROM, V141, P229
MA SG, 1997, J MASS SPECTROM, V32, P159
MA SM, 1993, TETRAHEDRON LETT, V34, P8071
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, 1997, J CHEM SOC PERK OCT, P2105
MORAES LAB, 1997, J ORG CHEM, V62, P5096
MURPHY MK, 1976, J AM CHEM SOC, V98, P1433
NAKAYAKKARA VK, 1994, P 42 ASMS C MASS SPE, P737
NGUYEN V, 1997, J AM CHEM SOC, V119, P8342
NISHIGUCHI T, 1995, J CHEM SOC CHEM COMM, P1121
NOTH H, 1982, INORG CHEM, V21, P706
NOTH H, 1983, PURE APPL CHEM, V55, P1453
PAU JK, 1978, J AM CHEM SOC, V100, P3838
PEARSON RG, 1963, J AM CHEM SOC, V85, P3533
PEARSON RG, 1988, J AM CHEM SOC, V110, P7684
RANATUNGA TD, 1992, J AM CHEM SOC, V114, P8600
RANATUNGA TD, 1993, INT J MASS SPECTROM, V128, L1
RANATUNGA TD, 1995, INORG CHEM, V34, P18
RANATUNGA TD, 1995, THESIS PURDUE U
RANATUNGA TD, 1997, J AM CHEM SOC, V119, P5200
SCHMIDT MW, 1985, J AM CHEM SOC, V107, P1922
SCHNEIDER WF, 1991, INORG CHEM, V30, P3919
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SWAMY KCK, 1990, PHOSPHORUS SULFUR, V53, P437
THOEN KK, 1996, J AM SOC MASS SPECTR, V7, P1138
WADA Y, 1964, J PHYS CHEM-US, V68, P1588
WANG F, 1999, ANGEW CHEM INT EDIT, V38, P386
NR 58
TC 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD APR 30
PY 1999
VL 64
IS 9
BP 3213
EP 3223
PG 11
SC Chemistry, Organic
GA 194BA
UT ISI:000080171200043
ER
PT J
AU Jardim, IN
Treu, O
Martines, MAU
Davolos, MR
Jafelicci, M
Pinheiro, JC
TI Ab initio study of high tridymite by the formalism generator coordinate
Hartree-Fock
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE electronic properties of high tridymite; IR Spectrum of high tridymite;
generator coordinate HF method
ID CONTRACTED GAUSSIAN-BASIS; SLATER-TYPE BASES; BASIS-SETS;
DIATOMIC-MOLECULES; ATOMS H; EQUATIONS; VERSION; SYSTEMS; CHOICE
AB The Generator Coordinate Hartree-Fock (GCHF) Method is applied to
generate extended 14s 8p and 17s 11p Gaussian basis sets for the atoms
O and Si, respectively. The role of the weight functions in the
assessment of the numerical integration range of the GCHF is shown. The
Gaussian basis sets are contracted to [6s4p] O atom and [8s5p] Si atom
by the Dunning's segmented contraction scheme. To evaluate the quality
of our contracted [6s4p] and [8s5p] bases in molecular calculations we
accomplish calculations of total and orbital energies in the
Hartree-Fock-Roothaan method for O-2 and SiO molecules. We compare the
results obtained with the our (14s 8p) and (17s 11p) bases sets with
the of 6-311G basis and with values from the literature. The addition
of one d polarization function in the silicon basis and its utilization
with the basis for oxygen leads to the calculation of electronic
properties and IR Spectrum of high tridymite in space group D-3d. (C)
1999 Elsevier Science B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, BR-66075110 Belem, Para, Brazil.
UNESP, Inst Quim, BR-14801970 Araraquara, SP, Brazil.
RP Jardim, IN, Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, CP
11101, BR-66075110 Belem, Para, Brazil.
CR CUSTODIO R, 1992, CAN J CHEM, V70, P580
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DACOSTA HFM, 1987, MOL PHYS, V62, P91
DACOSTA HFM, 1991, CHEM PHYS, V154, P379
DACOSTA HFM, 1992, CHEM PHYS LETT, V192, P195
DASILVA ABF, 1989, MOL PHYS, V68, P433
DASILVA ABF, 1993, CHEM PHYS LETT, V203, P201
DASILVA ABF, 1993, MOL PHYS, V78, P1301
DAVOLOS MR, 1998, 9 WORLD CER C CIMTEC
DINGLE TW, 1989, J COMPUT CHEM, V10, P753
DOLLASE WA, 1967, ACTA CRYSTALLOGR, V23, P617
ETCHEPARE J, 1978, J CHEM PHYS, V68, P1531
FERRACIN LC, 1997, J LUMIN, V72, P185
FISCHER FC, 1972, ATOM DATA, V4, P341
FRISCH MJ, 1995, GAUSSIAN 94
GOODSON DZ, 1982, J PHYS CHEM-US, V86, P659
GRIFFEN DT, 1992, INORGANIC STRUCTURAL
HEHRE J, 1986, AB INITIO MOL THEORY
JORGE FE, 1996, J CHEM PHYS, V104, P6278
MALLI GL, 1993, PHYS REV A, V47, P143
MOHALLEM JR, 1986, INT J QUANTUM CH S20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MOHALLEM JR, 1987, J CHEM PHYS, V86, P5043
MONCORGE R, 1994, OPT MATER, V4, P139
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
PAVANI R, 518 RJ IBM
PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
POPLE JA, 1981, INT J QUANTUM CHEM S, V15, P269
POPLE JA, 1993, ISRAEL J CHEM, V33, P345
PYKKO P, 1987, CHEM PHYS LETT, V134, P575
REINEN D, 1997, J ALLOY COMPD, V246, P193
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
NR 33
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAY 18
PY 1999
VL 464
IS 1-3
BP 15
EP 21
PG 7
SC Chemistry, Physical
GA 192KC
UT ISI:000080076700004
ER
PT J
AU Bolivar-Marinez, LE
Galvao, DS
Caldas, MJ
TI Geometric and spectroscopic study of some molecules related to
eumelanins. 1. Monomers
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID INTERMEDIATE NEGLECT; DIFFERENTIAL OVERLAP; MODEL POLYMERS; MELANINS;
POLYMERIZATION; PARAMETERS; MECHANISM; STATES
AB We have carried out ab initio and semiempirical PM3 (parametric method
3) and ZINDO (Zerner's intermediate neglect of differential overlap)
calculations on neutral and charged 5,6-indolequinone and its reduced
forms semiquinone and hydroquinone. These molecules are believed to
compose the major part of the active material of eumelanin, a
biological pigment present in illuminated and nonilluminated areas in
living organisms. Our results show that these molecules can behave as
electron accepters and that their electronic behavior is consistent
with that of the semiconductor models proposed for melanins. The
relationship between electronic behavior and biological functions is
also addressed.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Estadual Campinas, UNICAMP, Inst Fis, BR-13081970 Campinas, SP, Brazil.
RP Caldas, MJ, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BLOIS MS, 1964, BIOPHYS J, V4, P471
BLOIS MS, 1969, SOLID STATE BIOPHYSI, P243
BUCCI P, 1974, J AM CHEM SOC, V96, P1305
CHEDEKEL MR, 1982, PHOTOCHEM PHOTOBIOL, V35, P881
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DISCHIA M, 1996, GAZZ CHIM ITAL, V126, P783
DOSSANTOS DA, 1991, CHEM PHYS LETT, V184, P579
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GALVAO DS, 1988, J CHEM PHYS, V88, P4088
GALVAO DS, 1989, PHYS REV LETT, V63, P786
GALVAO DS, 1990, J CHEM PHYS, V92, P2630
GALVAO DS, 1990, J CHEM PHYS, V93, P2848
GIACOMONI PU, 1995, J PHOTOCH PHOTOBIO B, V29, P87
JELLINGER K, 1971, ACTA NEUROPATHOL, V17, P553
LONGUETHIGGINS HC, 1960, ARCH BIOCHEM BIOPHYS, V86, P231
MASON HS, 1967, ADV BIOL SKIN, V3, P293
MCGINNESS JE, 1973, J THEOR BIOL, V48, P19
MCGINNESS JE, 1973, SCIENCE, V177, P896
MCGINNESS JE, 1974, SCIENCE NY, V183, P853
NAPOLITANO A, 1996, J MED CHEM, V39, P5192
NICOLAUS RA, 1968, MELANINS
PROCTOR P, 1974, J THEOR BIOL, V183, P853
PROTA G, 1992, MELANINS MELANOGENES
PULLMAN A, 1961, BIOCHIM BIOPHYS ACTA, V54, P384
PULLMAN B, 1963, QUANTUM BIOCH
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
RIDLEY J, 1987, THEOR CHEM ACTA, V72, P347
RIDLEY JE, 1976, THEOR CHIM ACTA, V42, P223
ROSEI MA, 1996, SYNTHETIC MET, V76, P331
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1990, J COMPUT CHEM, V11, P221
STRZELECKA T, 1982, PHYSIOL CHEM PHYS M, V14, P223
SWAN GA, 1963, ANN NY ACAD SCI, V100, P1005
SWAN GA, 1974, FORTSCHR CHEM ORG NA, V31, P522
NR 34
TC 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5647
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD APR 15
PY 1999
VL 103
IS 15
BP 2993
EP 3000
PG 8
SC Chemistry, Physical
GA 189YN
UT ISI:000079934100025
ER
PT J
AU Quintao, AD
Vianna, RO
Mohallem, JR
TI Resonating Valence Bond calculations on small anionic lithium clusters
SO EUROPEAN PHYSICAL JOURNAL D
LA English
DT Article
ID METALS
AB We recast the Resonating Valence Bond theory, first introduced bq Linus
Pauling, in a nonorthogonal ab initio Valence Bond formalism and apply
the method to study some properties of the anionic clusters Li-n(-) (2
less than or equal to n less than or equal to 5). We show how to choose
appropriate structures and orbitals, and also how to use the so-called
metallic orbitals. The problem of interpreting the role of a specific
Valence Bond structure looking up its weight in the general wave
function is elucidated. Information about the excited states of the
systems is obtained. The theory can make good qualitative predictions
on the electronic behaviour of the clusters by using a wave function
that is a linear combination of a small set of structures. Pauling's
theory is shown to be quite appropriate for describing anionic systems.
specially the small ones, where the loosely bounded electron largely
influences the properties of the systems. We verify the preference of
some clusters for linear geometries.
C1 UFMG, Inst Ciencias Exatas, Dept Fis, BR-30161970 Belo Horizonte, MG, Brazil.
RP Quintao, AD, UFMG, Inst Ciencias Exatas, Dept Fis, CP 702, BR-30161970
Belo Horizonte, MG, Brazil.
CR BOUSTANI I, 1988, J CHEM PHYS, V88, P5657
FRISCH MJ, 1993, GAUSSIAN 92 DFT REVI
GUTOWSKI M, 1994, J CHEM PHYS, V101, P6
KNIGHT WD, 1984, PHYS REV LETT, V55, P2563
LEVY B, 1968, INT J QUANTUM CHEM, V2, P307
MCWEENY R, 1990, INT J QUANTUM CHEM S, V24, P733
MCWEENY R, 1990, INT J QUANTUM CHEM S, V24, P733
MCWEENY R, 1992, METHODS MOL QUANTUM
MOHALLEM JR, 1997, Z PHYS D ATOM MOL CL, V42, P135
PAULING L, 1949, P ROY SOC LOND A MAT, V196, P343
PAULING L, 1960, NATURE CHEM BOND
PAULING L, 1984, J SOLID STATE CHEM, V54, P297
PRESS WH, 1992, NUMERICAL RECIPES
PULAY P, 1980, CHEM PHYS LETT, V73, P393
QUINTAO AD, UNPUB EUR PHYS J D
VIANNA RO, 1998, J CHEM PHYS, V109, P23
WU W, 1994, J CHEM PHYS, V101, P4826
NR 17
TC 5
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6060
J9 EUR PHYS J D
JI Eur. Phys. J. D
PD APR
PY 1999
VL 6
IS 1
BP 89
EP 97
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 188UA
UT ISI:000079865800011
ER
PT J
AU Gozzo, FC
Eberlin, MN
TI 2-pyridyl and 2-pyrimidyl cations: Stable o-hetarynium ions in the gas
phase
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID MASS-SPECTROMETRY; ACYLIUM IONS; CHEMISTRY; BENZYNE
AB As indicated by high-level CBS-Q ab initio calculations, extensive
overlap occurs in the 2-pyridyl and 2-pyrimidyl cations between the
fully occupied sp(2) orbital of nitrogen and the adjacent, coplanar,
and empty spl orbital of the C2-carbon. Such effective orbital overlap
results in o-aryne-like structures with substantially shorter N-C+ bond
lengths and N-C+ bond orders of 1.9-2.1. Therefore. the 2-pyridyl and
2-pyrimidyl cations are best represented, and can be regarded as,
o-hetarynium ions, being more stable than their positional,
nonconjugated isomers by as much as 18-28 kcal/mol. The 4-pyrimidyl
cation also displays characteristic o-hetarynium ion structure with
substantial orbital overlap. However, the ion easily isomerizes by
charge-induced ring opening, as indicated by both the calculations and
the ion's lack of o-hetarynium-like reactivity. A high energy barrier
of 62.8 kcal/mol hampers isomerization by H-ring walking of the
3-pyridyl cation to the far more stable 2-pyridyl cation. For the
related 2-furanyl, 2-thiophenyl, and 2-pyrrolyl cations, little or none
of the extra orbital overlap occurs; hence, they display energies
close, and structures similar, to those of their 3-isomers.
Collision-induced dissociation of collisionally quenched precursor ions
performed via triple-stage QqQqQ mass spectrometric (MSS) experiments
confirms the greater stability of the 2-pyridyl and 2-pyrimidyl cations.
C1 State Univ Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, State Univ Campinas, Inst Chem, CP 6154, BR-13083970
Campinas, SP, Brazil.
CR BORDEN WT, 1982, DIRADICALS
BUNNETT JF, 1981, J ORG CHEM, V46, P4567
CARVALHO M, 1998, CHEM-EUR J, V4, P1161
DENHERTOG HJ, 1965, HETEROCYCL CHEM, V4, P121
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FORESMAN JB, 1993, EXPLORING CHEM ELECT
FRIEDMAN L, 1969, J ORG CHEM, V34, P3089
FRISCH MJ, 1995, GAUSSIAN94 REVISION
GALLUP GA, 1976, INT J MASS SPECTROM, V22, P185
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
HEANEY H, 1962, CHEM REV, V62, P81
HEHRE WJ, 1997, GUIDE MOL MECH MOL O
HOFFMAN RW, 1967, DEHYDROBENZYNE CYCLO
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KAUFFMANN T, 1962, CHEM BER, V95, P949
KAUFFMANN T, 1963, CHEM BER, V96, P2519
KAUFFMANN T, 1965, ANGEW CHEM INT EDIT, V4, P543
KAUFFMANN T, 1971, ANGEW CHEM INT EDIT, V10, P20
LAING JW, 1976, J AM CHEM SOC, V98, P660
LEWIS ES, 1962, J AM CHEM SOC, V84, P3847
MCLAFFERTY FW, 1989, WILEY NBS REGISTRY M
MENDES MA, 1998, J AM CHEM SOC, V120, P7869
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J ORG CHEM, V62, P5096
NASH JJ, 1996, J AM CHEM SOC, V118, P11872
OCHTERSKI JW, 1996, J CHEM PHYS, V104, P2598
OHKURA K, 1989, TETRAHEDRON LETT, V30, P3433
ROBERTS JD, 1956, J AM CHEM SOC, V78, P601
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
SPARRAPAN R, UNPUB
SPARRAPAN R, 1998, J PHYS CHEM A, V102, P5189
WITTIG G, 1955, ANGEW CHEM, V67, P348
NR 34
TC 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD APR 2
PY 1999
VL 64
IS 7
BP 2188
EP 2193
PG 6
SC Chemistry, Organic
GA 185UW
UT ISI:000079690100013
ER
PT J
AU Pliego, JR
De Almeida, WB
TI A theoretical ab initio and Monte Carlo simulation study of the
pyridine plus CCl2 reaction kinetics in the gas phase and in carbon
tetrachloride solution using canonical flexible transition state theory
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID LASER FLASH-PHOTOLYSIS; POTENTIAL-ENERGY SURFACES; RATE CONSTANTS;
CHEMICAL-REACTIONS; THERMAL-DECOMPOSITION; YLIDE FORMATION; PATH;
DYNAMICS; ENERGETICS; HYDRATION
AB The potential energy surface for the pyridine + CCl2 reaction was
studied at the ab initio MP4/6-311G(2df,p) //MP2/6-31G((*)) level of
theory. The MP4/6-311G(2df,p) energies were evaluated by the additivity
approximation E[MP4/6-311G(2df,p)] approximate to E[MP4/6-31G((*))] +
E[MP2/6-311G(2df,p)] - E[MP2/6-31G((*))]. The first step proceeds by
the addition of CCl2 to pyridine forming a dipolar ylide structure
without an activation barrier. Then this species rearranges to a more
stable biradical like ylide on a picosecond time scale. The generalized
transition state for dipolar ylide formation occurs at a large center
of mass distance between the species, and to calculate the reaction
rate constant we have used canonical flexible transition state theory.
The configurational integral was solved by Monte Carlo simulation and
statistical perturbation theory, and the potential of mean force in the
gas phase was obtained. This procedure was extended to the liquid phase
by including the solvent coordinates in the configurational integral.
The activation free energy in the gas phase and in carbon tetrachloride
solution was calculated as 1.44 and 2.62 kcal mol(-1), respectively.
The corresponding rate constants are 5.5 x 10(11) and 7.5 x 10(10) l
mol(-1) s(-1). The last value is in reasonable agreement with the
experimental result of 7 x 10(9) l mol(-1) s(-1) determined in
isooctane solution.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim
Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR ADMASU A, 1997, J PHYS CHEM A, V101, P3832
ADMASU A, 1998, J CHEM SOC PERK MAY, P1093
BUCKNER JK, 1989, J AM CHEM SOC, V111, P2507
CHATEAUNEUF JE, 1990, J AM CHEM SOC, V112, P3217
COLLINS MA, 1996, ADV CHEM PHYS, V93, P389
DUAN XF, 1995, J CHEM PHYS, V102, P6121
DUNNING TH, 1988, SCIENCE, V240, P453
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
GARRETT BC, 1979, J PHYS CHEM-US, V83, P1052
GLASSTONE S, 1941, THEORY RATE PROCESSE
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
GROTE RF, 1980, J CHEM PHYS, V73, P2715
GROTE RF, 1981, J CHEM PHYS, V74, P4465
HILL TL, 1987, STAT MECH
JACKSON JE, 1988, J AM CHEM SOC, V110, P5595
JORGENSEN BL, 1995, BOSS VERSION 3 5
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1988, ADV CHEM PHYS 2, V70, P469
JORGENSEN WL, 1989, ACCOUNTS CHEM RES, V22, P184
JORGENSEN WL, 1989, J AM CHEM SOC, V111, P3770
JORGENSEN WL, 1990, J AM CHEM SOC, V112, P4768
JORGENSEN WL, 1994, J CHEM SOC FARADAY T, V90, P1727
KLIPPENSTEIN SJ, 1987, J CHEM PHYS, V87, P3410
KUMARAN SS, 1997, J PHYS CHEM A, V101, P8653
LADANYI BM, 1986, J AM CHEM SOC, V108, P585
MEBEL AM, 1996, J PHYS CHEM-US, V100, P7517
MERZ KM, 1990, J AM CHEM SOC, V112, P7973
MILLER WH, 1980, J CHEM PHYS, V72, P99
NGUYEN MT, 1995, J PHYS CHEM-US, V99, P11883
NORTHRUP SH, 1980, J CHEM PHYS, V73, P2700
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1997, J CHEM PHYS, V106, P3582
PLIEGO JR, 1997, J CHEM SOC PERK NOV, P2365
PLIEGO JR, 1998, CHEM PHYS LETT, V285, P11
PLIEGO JR, 1999, IN PRESS J PHYS CH A
ROBERT M, 1996, J PHYS CHEM-US, V100, P18426
ROBERT M, 1998, J PHYS CHEM A, V102, P1507
ROBERTSON SH, 1995, FARADAY DISCUSS, V102, P65
ROBERTSON SH, 1995, J CHEM PHYS, V103, P2917
SMITH SC, 1991, J CHEM PHYS, V95, P3404
SMITH SC, 1993, J PHYS CHEM-US, V97, P7034
STEINFELD JI, 1989, CHEM KINETICS DYNAMI
TRUHLAR DG, 1980, ACCOUNTS CHEM RES, V13, P440
TRUHLAR DG, 1983, J PHYS CHEM-US, V87, P2664
TRUHLAR DG, 1996, J PHYS CHEM-US, V100, P12771
VILLA J, 1997, THEOR CHEM ACC, V97, P317
VOTH GA, 1996, J PHYS CHEM-US, V100, P13034
WARDLAW DM, 1984, CHEM PHYS LETT, V110, P230
WARDLAW DM, 1985, J CHEM PHYS, V83, P3462
NR 51
TC 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI PCCP Phys. Chem. Chem. Phys.
PD MAR 15
PY 1999
VL 1
IS 6
BP 1031
EP 1036
PG 6
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 182PX
UT ISI:000079508300013
ER
PT J
AU Borin, AC
Serrano-Andres, L
Fulscher, MP
Roos, BO
TI A theoretical study of the electronic spectra of N-9 and N-7 purine
tautomers
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR-ORBITAL THEORY; AB-INITIO MP2; MATRIX-ISOLATION;
EXCITED-STATES; GAS-PHASE; ADENINE; 2-CHLOROADENINE; SPECTROSCOPY;
ABSORPTION
AB The complete active space (CAS) SCF method and multiconfigurational
second-order perturbation theory (CASPT2) have been used to study
electronic spectra of the N(9)H and N(7)H tautomers of purine. The
calculations include vertical excitation energies, oscillator
strengths, dipole moments, and transition moment directions in gas
phase. In accord with experiment in nonpolar solvents, the two lowest
pi --> pi* excited singlet valence states are predicted to be located
at 4.7 and 5.1 eV. The latter is expected to shift to the red in
aqueous solutions. A satisfactory interpretation of the electronic
spectra above 5.5 eV is obtained if the experimental data are assumed
to consist of the superposition of the spectra of the N(9)H and N(7)H
tautomers, Two bands reported at 6.2 and 6.6 eV in nonpolar solvents
match the corresponding B-1(b) and B-1(a) states of the N(9)H purine,
respectively. The absence of the 6.2 eV-band in water can be explained
by the predominance in aqueous solution of the N(7)H form, which has a
weak B-1(b) transition at 6.4 eV overlapped by a strong B-1(a)
transition at 6.6 eV.
C1 Chem Ctr Lund, Dept Theoret Chem, S-22100 Lund, Sweden.
Univ Sao Paulo, Inst Quim, BR-05599970 Sao Paulo, Brazil.
Univ Valencia, Dept Quim Fis, E-46100 Burjassot, Spain.
RP Fulscher, MP, Chem Ctr Lund, Dept Theoret Chem, POB 124, S-22100 Lund,
Sweden.
CR AARON JJ, 1987, J MOL STRUCT, V156, P119
ALBINSSON B, 1993, J AM CHEM SOC, V115, P223
ANDERSSON K, 1994, MOLCAS VERSION 3
BROO A, 1996, CHEM PHYS, V211, P147
BROO A, 1997, J PHYS CHEM A, V101, P3589
CALLIS PR, 1983, ANNU REV PHYS CHEM, V34, P329
CAMINATI W, 1996, CHEM PHYS LETT, V251, P189
CHEN HH, 1969, J CHEM PHYS, V51, P1862
CLARK LB, 1965, J AM CHEM SOC, V87, P11
DEVOE H, 1962, J MOL BIOL, V4, P500
DROBNIK J, 1966, PHOTOCHEM PHOTOBIOL, V5, P13
FULSCHER MP, 1992, J PHYS CHEM-US, V96, P9204
FULSCHER MP, 1995, J AM CHEM SOC, V117, P2089
FULSCHER MP, 1997, J AM CHEM SOC, V119, P6168
GONELLA NC, 1982, J AM CHEM SOC, V104, P3162
HA TK, 1996, J MOL STRUC THEOCHEM, V164, P161
KWIATKOWSKI JS, 1990, J MOL STRUCT THEOCHE, V208, P35
LIN J, 1980, J AM CHEM SOC, V102, P4627
LISTER JH, 1971, CHEM HETEROCYCLIC CO
LORENTZON J, 1995, J AM CHEM SOC, V117, P9265
MAJOUBE M, 1995, J MOL STRUCT, V355, P147
MALMQVIST PA, 1989, CHEM PHYS LETT, V155, P189
MASON SF, 1954, J CHEM SOC, P2071
NOWAK MJ, 1994, J PHYS CHEM-US, V98, P2813
NOWAK MJ, 1994, SPECTROCHIM ACTA A, V50, P1081
PLATT JR, 1949, J CHEM PHYS, V17, P489
RICE JE, 1995, MULLIKENTM VERSION 2
ROOS BO, 1992, CHEM PHYS LETT, V192, P5
ROOS BO, 1995, QUANTUM MECH ELECT S, P357
ROOS BO, 1996, ADV CHEM PHYS, V93, P219
ROOS BO, 1996, J MOL STRUC-THEOCHEM, V388, P257
RUBIO M, 1994, CHEM PHYS, V179, P395
SCHUMACHER M, 1982, J AM CHEM SOC, V104, P4167
SCHUMACHER M, 1983, CHEM BER, V116, P2001
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P185
SERRANOANDRES L, 1996, J PHYS CHEM-US, V100, P6484
VASAK M, 1982, TETRAHEDRON, V38, P1571
VOET D, 1963, BIOPOLYMERS, V1, P193
WALLACE SL, 1980, TETRAHEDRON, V36, P1531
WATSON DG, 1965, ACTA CRYSTALLOGR, V19, P573
WIDMARK PO, 1990, THEOR CHIM ACTA, V77, P291
NR 41
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAR 25
PY 1999
VL 103
IS 12
BP 1838
EP 1845
PG 8
SC Chemistry, Physical
GA 182JV
UT ISI:000079496600021
ER
PT J
AU Dias, LC
Custodio, R
Pessine, FBT
TI Theoretical studies of Nile Red by ab initio and semiempirical methods
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CHARGE-TRANSFER; MO THEORY; FLUORESCENCE; STATES; SOLVENTS; HAM-3; AM1
AB Ab initio and semiempirical calculations were carried out for the Nile
Red (NR) molecule to study the possible occurrence of the twisted
intramolecular charge transfer process. The results showed that NR is
planar in the ground state (using the CEP-31g basis set) with a high
barrier to rotation of the diethylamine group by 90 degrees (0.334 and
0.381 eV with AM1 and CEP-31g, respectively). CIS calculations showed
that the charge transfer decreases after the twisting, in contrast to
the TICT prediction. The solvatochromic effect was justified through
the dipole moments calculated for the first excited state. (C) 1999
Elsevier Science B.V. All rights reserved.
C1 Univ Fed Parana, Dept Quim, BR-81531970 Curitiba, Parana, Brazil.
Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Pessine, FBT, Univ Fed Parana, Dept Quim, BR-81531970 Curitiba, Parana,
Brazil.
CR ASBRINK L, 1977, CHEM PHYS LETT, V52, P63
ASBRINK L, 1977, CHEM PHYS LETT, V52, P72
ASBRINK L, 1980, QCPE, V12, P292
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DEYE JF, 1990, ANAL CHEM, V62, P615
DUTTA AK, 1996, CHEM PHYS LETT, V258, P369
DUTTA AK, 1996, J PHOTOCH PHOTOBIO A, V93, P57
FRISCH MJ, 1995, GAUSSIAN 94
LIPPERT E, 1961, ANGEW CHEM, V73, P695
LIPPERT E, 1962, ADV MOL SPECTROSC, P443
RETTIG W, 1979, CHEM PHYS LETT, V62, P115
RETTIG W, 1994, TOP CURR CHEM, V169, P253
ROTKIEWICZ K, 1973, CHEM PHYS LETT, V19, P315
ROTKIEWICZ K, 1973, CHEM PHYS LETT, V21, P212
SARKAR N, 1994, LANGMUIR, V10, P326
SCHOLES GD, 1997, CHEM PHYS LETT, V266, P521
SERRANOANDRES L, 1995, J AM CHEM SOC, V117, P3189
SIEMIARCZUK A, 1977, CHEM PHYS LETT, V51, P315
SOUJANYA T, 1995, CHEM PHYS LETT, V236, P503
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
NR 20
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAR 26
PY 1999
VL 302
IS 5-6
BP 505
EP 510
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 180CM
UT ISI:000079367600021
ER
PT J
AU Miwa, RH
Schmidt, TM
TI DX centers in GaAs/Si-delta/AlAs heterostructure
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID DOPED GAAS; ELECTRONIC-STRUCTURE; ALXGA1-XAS ALLOYS; NEGATIVE-U; SI
AB Microscopic mechanisms of impurity spreading in GaAs/Si-delta/AlAs
heterostructure have been investigated using an ab initio
pseudopotential total energy calculation. Our results showed that
silicon atoms can move from the delta-doped plane occupying
interstitial positions, favored by the high doped concentration,
forming DX centers. The silicon impurity position, out of the delta
plane in the AlAs layers, presents an energetically stable
configuration, and in the GaAs layers, presents a metastable
configuration. As a consequence a silicon doping limit is reached due
to the presence of localized deep states inside the band gap, when
silicon atoms are in interstitial positions. (C) 1999 American
Institute of Physics. [S0003-6951(99)01214-0].
C1 Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Miwa, RH, Univ Fed Uberlandia, Dept Ciencias Fis, CP 593, BR-38400902
Uberlandia, MG, Brazil.
CR ASHWIN MJ, 1993, J APPL PHYS, V73, P633
BRANDT O, 1991, APPL PHYS LETT, V59, P2730
CHADI DJ, 1973, PHYS REV B, V8, P5747
CHADI DJ, 1988, PHYS REV LETT, V61, P873
GHOSH S, 1992, PHYS REV B, V46, P7533
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
MAGUIRE J, 1987, APPL PHYS LETT, V50, P516
MOONEY PM, 1990, J APPL PHYS, V67, P1
MORGAN TN, 1986, PHYS REV B, V34, P2664
MOSSER V, 1991, PHYS REV LETT, V66, P1737
MURRAY R, 1989, J APPL PHYS, V66, P2588
SCHMIDT TM, 1995, MATER SCI FORUM, V196, P273
SCHMIDT TM, 1995, PHYS REV B, V51, P7898
SCHMIDT TM, 1996, P 23 INT C PHYS SEM, P2745
SCHUBERT EF, 1990, J VAC SCI TECHNOL 2, V8, P2980
SHI JM, 1996, PHYS REV B, V54, P7996
SHI JM, 1997, PHYS REV B, V55, P13093
THEIS TN, 1991, J ELECTRON MATER, V20, P35
WOLK JA, 1991, PHYS REV LETT, V66, P774
YAMAGUCHI E, 1991, J PHYS SOC JPN, V60, P3093
NR 20
TC 6
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD APR 5
PY 1999
VL 74
IS 14
BP 1999
EP 2001
PG 3
SC Physics, Applied
GA 182DM
UT ISI:000079483300023
ER
PT J
AU Zeng, Z
Guenzburger, D
Ellis, DE
TI Electronic structure, spin couplings, and hyperfine properties of
nanoscale molecular magnets
SO PHYSICAL REVIEW B
LA English
DT Article
ID WATER OXIDATION CENTER; FERRITIN CORES; MAGNETIZATION; CLUSTERS;
TRANSITION; COMPLEXES; MODELS; STATE; NANOMAGNET; EXCHANGE
AB First-principles self-consistent spin-polarized electronic structure
calculations were performed for the nanoscale magnetic molecules
Mn12O12(CH3COO)(16)(H2O)(4) and Fe11O6(OH)(6)(O2CPh)(15). The numerical
discrete variational method was employed, within density-functional
theory. Charges and magnetic moments were obtained for the atoms, as
well as density of states diagrams, and charge- and spin-density maps.
For Mn12O12(CH3COO)(16)(H2O)(4), values of the Heisenberg exchange
parameters J were derived from the calculations; Mossbauer hyperfine
parameters were calculated for Fe11O6(OH)(6)(O2CPh)(15) and compared to
reported experimental values. [S0163-1829(99)05709-4].
C1 Acad Sinica, Inst Solid State Phys, Hefei 230031, Peoples R China.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
Northwestern Univ, Ctr Mat Res, Evanston, IL 60208 USA.
RP Zeng, Z, Acad Sinica, Inst Solid State Phys, Hefei 230031, Peoples R
China.
CR AWSCHALOM DD, 1992, SCIENCE, V258, P414
AWSCHALOM DD, 1995, PHYS TODAY, V48, P43
BARRA AL, 1997, PHYS REV B, V56, P8192
BATTOCLETTI M, 1996, PHYS REV B, V53, P9776
BLONDIN G, 1990, CHEM REV, V90, P1359
CANESCHI A, 1991, J AM CHEM SOC, V113, P5873
CANESCHI A, 1997, J CHEM SOC DALT 1107, P3963
CAO PL, 1982, PHYS REV B, V25, P2124
CHEESMAN MR, 1997, CHEM COMMUN 0907, P1677
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DUFEK P, 1995, PHYS REV LETT, V75, P3545
ELLIS DE, IN PRESS ADV QUANT C
ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
FRIEDMAN JR, 1996, PHYS REV LETT, V76, P3830
GATTESCHI D, 1994, SCIENCE, V265, P1054
GOODENOUGH JB, 1955, PHYS REV, V100, P564
GORUN SM, 1987, J AM CHEM SOC, V109, P3337
GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
GUBANOV VA, 1980, PHYS REV LETT, V44, P1633
HENDRICKSON DN, 1992, J AM CHEM SOC, V114, P2455
HENNION M, 1997, PHYS REV B, V56, P8819
LASCIALFARI A, 1998, PHYS REV B, V57, P514
LIONTI F, 1997, J APPL PHYS 2A, V81, P4608
LIS T, 1980, ACTA CRYSTALLOGR B, V36, P2042
MANN S, 1986, J MOL BIOL, V188, P225
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
PAINTER GS, 1970, PHYS REV B, V1, P4747
PAPAEFTHYMIOU GC, 1992, PHYS REV B, V46, P10366
PARR RG, 1989, DENSITY FUNCTIONAL T
PARR RG, 1995, DENSITY FUNCTIONAL T
POWELL AK, 1995, J AM CHEM SOC, V117, P2491
REYNOLDS PA, 1996, INORG CHEM, V35, P545
ROSEN A, 1976, J CHEM PHYS, V65, P3629
SCHMITT EA, 1992, J AM CHEM SOC, V114, P6109
SESSOLI R, 1993, J AM CHEM SOC, V115, P1804
SESSOLI R, 1993, NATURE, V365, P141
SLATER JC, 1974, SELF CONSISTENT FIEL, V4
SMITH JMA, 1985, INORG CHIM A-BIOINOR, V106, P193
STPIERRE TG, 1996, COORDIN CHEM REV, V151, P125
STROUD AH, 1971, APPROXIMATE CALCULAT
TERRA J, 1995, J PHYS CHEM-US, V99, P4935
VOSKO SH, 1980, CAN J PHYS, V58, P1200
ZENG Z, 1997, PHYS REV B, V55, P12522
ZHAO XG, 1997, INORG CHEM, V36, P1198
NR 45
TC 19
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 1
PY 1999
VL 59
IS 10
BP 6927
EP 6937
PG 11
SC Physics, Condensed Matter
GA 177WG
UT ISI:000079233600048
ER
PT J
AU Mathon, J
Umerski, A
Villeret, M
Muniz, RB
TI Quantum oscillations of the spin density in magnetic multilayers
SO PHYSICAL REVIEW B
LA English
DT Article
ID NONMAGNETIC METALLIC LAYER; AB-INITIO CALCULATIONS; WELL STATES; FE/CU
MULTILAYERS; EXCHANGE; CU; POLARIZATION; SPACER; CO/CU/CO(001); COPPER
AB An asymptotic stationary phase formula is derived for the oscillatory
spin density induced in a nonmagnetic spacer sandwiched between two
semi-infinite ferromagnets. It gives an explicit dependence for the
polarization on the spacer layer thickness and on the distance from the
ferromagnet-spacer interface. Both dependences are shown to oscillate
with thr same periods as the exchange coupling between the
ferromagnetic layers. The magnitude of the polarization is governed by
the degree of confinement of carriers in the spacer quantum well and by
the curvature of the spacer Fermi surface. The formula is applied to a
Co/Cu/Co (001) trilayer described by tight-binding bands fitted to an
ab initio band structure. Its validity is tested against a fully
numerical calculation using the same band structure. As in the case of
the oscillatory exchange coupling, the induced polarization is
dominated by the contribution of the Cu Fermi surface neck extrema
leading to a short period oscillation of 2.6 atomic planes. An
interesting non-Ruderman-Kittel-Kasuya-Yosida initial decay of the
induced polarization is discussed. [S0163-1829 (99)06309-2].
C1 City Univ London, Dept Math, London EC1V 0HB, England.
Univ Fed Fluminense, Dept Fis, Niteroi, RJ, Brazil.
RP Mathon, J, City Univ London, Dept Math, London EC1V 0HB, England.
CR BLANC JAC, 1994, INTRO ELECT MAGNETIC, V1
BRUNO P, 1991, PHYS REV LETT, V67, P1602
BRUNO P, 1992, PHYS REV B, V46, P261
COSTA AT, 1997, PHYS REV B, V55, P3724
DRCHAL V, 1996, PHYS REV B, V53, P15036
EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85
EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941
JIN QY, 1994, PHYS REV LETT, V72, P768
KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105
KUDRNOVSKY J, 1996, PHYS REV B, V53, P5125
LANG P, 1993, PHYS REV LETT, V71, P1927
LANG P, 1996, PHYS REV B, V53, P9092
MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873
MATHON J, 1995, PHYS REV LETT, V74, P3696
MATHON J, 1997, PHYS REV B, V56, P11797
MORUZZI VL, 1978, CALCULATED ELECT PRO
NIKLASSON AMN, 1996, PHYS REV B, V53, P8509
NORDSTROM L, 1994, PHYS REV B, V50, P13058
NORDSTROM L, 1996, J APPL PHYS 2A, V79, P4515
ORTEGA JE, 1992, PHYS REV LETT, V69, P844
ORTEGA JE, 1993, PHYS REV B, V47, P1540
PAPACONSTANTOPO.DA, 1986, HDB BAND STRUCTURE E
PARKIN SSP, 1990, PHYS REV LETT, V64, P2304
PIZZINI S, 1995, PHYS REV LETT, V74, P1470
SAMANT MG, 1994, PHYS REV LETT, V72, P1112
SEGOVIA P, 1996, PHYS REV LETT, V77, P3455
UMERSKI A, UNPUB
UMERSKI A, 1997, PHYS REV B, V55, P5266
NR 28
TC 9
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 1
PY 1999
VL 59
IS 9
BP 6344
EP 6350
PG 7
SC Physics, Condensed Matter
GA 178EX
UT ISI:000079254300054
ER
PT J
AU Schiavon, RP
Barbuy, B
TI The temperature scale of metal-rich M giants based on TiO bands:
Population synthesis in the near-infrared
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE infrared : stars; molecular data; stars : atmospheres; stars :
fundamental parameters; stars : late-type
ID OLD STELLAR POPULATIONS; GLOBULAR-CLUSTERS; OSCILLATOR-STRENGTHS; MODEL
ATMOSPHERES; STARS; SPECTRA; SPECTROSCOPY; GALAXIES; SYSTEMS; LIBRARY
AB We have computed a grid of high-resolution synthetic spectra for cool
stars (2500 < T-eff < 6000K) in the wavelength range 6000-10200
Angstrom by employing an updated line list of atomic and molecular
lines together with state-of-the-art model atmospheres. As a
by-product, by fitting TiO band heads in spectra of well-known M
giants, we have derived the electronic oscillator strengths of the TiO
gamma', delta, epsilon, and phi systems. The derived oscillator
strengths for the gamma' epsilon and phi systems differ from the
laboratory and ab initio values found in the literature, but they are
consistent with the model atmospheres and line lists employed,
resulting in a good match to the observed spectra of M giants of known
parameters. The behavior of TiO bands as a function of the stellar
parameters T-eff log g and [Fe/H] is presented,and the use of TiO
spectral indices in stellar population studies is discussed.
C1 Univ Sao Paulo, Inst Astron & Geofis, Dept Astron, BR-01060970 Sao Paulo, Brazil.
RP Schiavon, RP, CNPq, Observ Nacl, Dept Astron, Rua Gen Jose Cristino 77,
BR-20921400 Rio De Janeiro, Brazil.
CR ALLARD F, 1995, ASTROPHYS J 1, V445, P433
ALVAREZ R, 1998, ASTRON ASTROPHYS, V330, P1109
BARAFFE I, 1995, APJ, V446, L35
BARBUY B, 1982, THESIS U PARIS 7
BARBUY B, 1985, ASTRON ASTROPHYS, V151, P189
BARBUY B, 1991, ASTRON ASTROPHYS, V247, P15
BARBUY B, 1994, ASTROPHYS J, V430, P218
BARBUY B, 1997, IAU S FUND STELL PAR, V189, P203
BARBUY B, 1998, UNPUB
BARBUY B, 1999, UNPUJB
BARNBAUM C, 1996, ASTRON ASTROPHYS, V310, P259
BELL RA, 1979, ASTROPHYS J S, V41, P593
BESSELL MS, 1998, ASTRON ASTROPHYS, V333, P231
BICA E, 1986, ASTRON ASTROPHYS, V162, P21
BRETT JM, 1990, ASTRON ASTROPHYS, V231, P440
BRUZUAL G, 1997, ASTRON J, V114, P1531
BRUZUAL G, 1998, UNPUB
BURSTEIN D, 1984, ASTROPHYS J, V287, P586
DAVIS SP, 1986, ASTROPHYS J, V309, P449
DELBOUILLE L, 1973, PHOTOMETRIC ATLAS SO
DESOUZA RE, 1993, ASTRON J, V105, P1737
ERDELYIMENDES M, 1989, ASTRON ASTROPHYS SUP, V80, P229
FLUKS MA, 1994, ASTRON ASTROPHYS SUP, V105, P311
GREVESSE N, 1996, ASTR SOC P, V99, P117
GUARNIERI MD, 1998, ASTRON ASTROPHYS, V331, P70
HAMUY M, 1994, PUBL ASTRON SOC PAC, V106, P566
HEDGECOCK IM, 1995, ASTRON ASTROPHYS, V304, P667
HOFFLEIT D, 1991, PRELIMINARY VERSION
HUBER KP, 1979, CONSTANTS DIATOMIC M
JACOBY GH, 1984, ASTROPHYS J SUPPL S, V56, P257
JORGENSEN UG, 1994, ASTRON ASTROPHYS, V284, P179
KOVACS I, 1969, ROTATIONAL STRUCTURE
KURUCZ RL, 1992, IAU S, V149, P225
LANGHOFF SR, 1997, ASTROPHYS J 1, V481, P1007
LEJEUNE T, 1998, ASTRON ASTROPHYS SUP, V130, P65
LUNDEVALL C, 1998, IN PRESS J MOL SPECT
MILONE A, 1994, ASTRON ASTROPHYS SUP, V108, P449
MILONE A, 1995, ASTRON ASTROPHYS SUP, V113, P547
ORTOLANI S, 1990, ASTRON ASTROPHYS, V236, P362
ORTOLANI S, 1995, NATURE, V377, P701
PHILLIPS JG, 1973, APJS, V26, P313
PLEZ B, 1992, ASTRON ASTROPHYS, V256, P551
RIDGWAY ST, 1980, ASTROPHYS J, V235, P126
RIEKE GH, 1985, ASTROPHYS J, V288, P618
SANTOS JFC, 1995, ASTRON ASTROPHYS, V303, P753
SCHALLER G, 1992, ASTRON ASTROPHYS SUP, V96, P269
SCHIAVON RP, 1997, ASTROPHYS J 1, V484, P499
SIMARD B, 1991, J MOL SPECTROSC, V148, P128
SPITE M, 1967, ANN ASTROPHYS, V30, P211
WORTHEY G, 1994, ASTROPHYS J SUPPL S, V94, P687
NR 50
TC 16
PU UNIV CHICAGO PRESS
PI CHICAGO
PA 5720 SOUTH WOODLAWN AVE, CHICAGO, IL 60637-1603 USA
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JAN 10
PY 1999
VL 510
IS 2
PN Part 1
BP 934
EP 943
PG 10
SC Astronomy & Astrophysics
GA 176NJ
UT ISI:000079157600039
ER
PT J
AU Tabata, A
Lima, AP
Teles, LK
Scolfaro, LMR
Leite, JR
Lemos, V
Schottker, B
Frey, T
Schikora, D
Lischka, K
TI Structural properties and Raman modes of zinc blende InN epitaxial
layers
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ELECTRON-MICROSCOPY; ELASTIC-CONSTANTS; GAN; NITRIDE; FILMS; PHASE;
ALN; SPECTROSCOPY
AB We report on x-ray diffraction and micro-Raman scattering studies on
zinc blende InN epitaxial films. The samples were grown by molecular
beam epitaxy on GaAs(001) substrates using a InAs layer as a buffer.
The transverse-optical (TO) and longitudinal-optical phonon frequencies
at Gamma of c-InN are determined and compared to the corresponding
values for c-GaN. Ab initio self-consistent calculations are carried
out for the c-InN c-GaN lattice parameters and TO phonon frequencies. A
good agreement between theory and experiment is found. (C) 1999
American Institute of Physics. [S0005-6951(99)00503-3].
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Univ Gesamthsch Paderborn, FB Phys 6, D-33098 Paderborn, Germany.
RP Tabata, A, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
CARLES R, 1980, PHYS REV B, V22, P4804
CHANDRASEKHAR D, 1995, J CRYST GROWTH, V152, P135
HARBEKE G, 1982, LANDOLTBNROSNTEIN, V17
INUSHIMA T, 1996, INST PHYS CONF SER, V142, P971
JENKINS LC, 1995, J VAC SCI TECHNOL B, V13, P1585
KIM K, 1996, PHYS REV B, V53, P16310
KWON HJ, 1996, APPL PHYS LETT, V69, P937
LEI T, 1992, J APPL PHYS, V71, P4933
ORTON JW, 1998, REP PROG PHYS, V61, P1
PETROV I, 1992, APPL PHYS LETT, V60, P2491
SCHWARZ K, 1996, LECT NOTES CHEM, V67, P139
SHERWIN ME, 1991, J APPL PHYS, V69, P8423
SIEGLE H, 1995, SOLID STATE COMMUN, V96, P943
STRITE S, 1993, J CRYST GROWTH, V127, P204
TABATA A, 1996, J APPL PHYS 1, V79, P4137
VANCAMP PE, 1990, PHYS REV B, V41, P1598
WEINSTEIN BA, 1998, SOLID STATE COMMUN, V106, P567
WRIGHT AF, 1994, PHYS REV B, V50, P2159
WRIGHT AF, 1995, PHYS REV B, V51, P7866
YAMAMOTO A, 1997, J CRYST GROWTH, V174, P641
NR 21
TC 52
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JAN 18
PY 1999
VL 74
IS 3
BP 362
EP 364
PG 3
SC Physics, Applied
GA 158TW
UT ISI:000078133800012
ER
PT J
AU Martins, LMMD
Arbilla, G
da Silva, EC
TI Unimolecular decomposition of formaldehyde: H2CO -> H-2+CO. Part I: Ab
initio reaction path and variational transition state rate constants
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PHOTOFRAGMENTATION DYNAMICS; PHOTO-DISSOCIATION; ENERGY; DISTRIBUTIONS;
SURFACE; H2CO; PHOTODISSOCIATION; PHOTOCHEMISTRY; FEATURES; PRODUCT
AB Features of the ground-state potential energy surface of formaldehyde
relevant to its dissociation to H-2 and CO were analyzed by means of ab
initio calculations. The multiconfigurational self-consistent field
(MCSCF) calculation gave a critical energy of 83.22 kcal/mol. Accurate
structures are presented for H2CO(X(1)A(1)) and the saddle point. The
reaction path was determined and the coupling between reaction
coordinate and normal modes was analyzed along it, with two different
levels of calculation (Hartree-Fock and MCSCF). Using these data, the
transition state was located and the rate constants were calculated for
the temperature range 200-4500 K using the generalized transition state
theory.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Arbilla, G, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis,
BR-21949900 Rio De Janeiro, Brazil.
CR BAKER J, 1986, J COMPUT CHEM, V7, P385
BALDRIDGE KK, 1989, J PHYS CHEM-US, V93, P5107
BAMFORD DJ, 1985, J CHEM PHYS, V82, P3032
BUTENHOFF TJ, 1990, J CHEM PHYS, V92, P377
CERJAN CJ, 1981, J CHEM PHYS, V75, P2800
CHANG YT, 1992, J CHEM PHYS, V96, P4341
CHUANG YY, 1996, POLYRATE VERSION 7 0
DEBARRE D, 1985, J CHEM PHYS, V83, P4476
DUPUIS M, 1980, NATL RESOUR COMPUT C
DUPUIS M, 1983, J CHEM PHYS, V79, P6167
FRISCH MJ, 1981, J PHYS CHEM-US, V85, P1467
FRISCH MJ, 1984, J CHEM PHYS, V81, P1882
FROST W, 1983, J PHYS CHEM-US, V87, P4489
GARRETT BC, 1980, J PHYS CHEM-US, V84, P1730
GILBERT RG, 1990, THEORY UNIMOLECULAR
GODDARD JD, 1979, J CHEM PHYS, V70, P5117
GODDARD JD, 1981, J CHEM PHYS, V75, P3459
GREEN WH, 1990, CHEM PHYS LETT, V169, P127
HOUSTON PL, 1976, J CHEM PHYS, V65, P757
HUZINAGA S, 1965, J CHEM PHYS, V42, P1293
LIU YP, 1993, J AM CHEM SOC, V115, P2408
LIU YP, 1993, J AM CHEM SOC, V115, P2408
LU DH, 1992, COMPUT PHYS COMMUN, V71, P235
MARTINS LMM, IN PRESS
MILLER WH, 1979, J AM CHEM SOC, V101, P6810
MILLER WH, 1980, J CHEM PHYS, V72, P99
MILLER WH, 1987, CHEM REV, V87, P19
MOORE CB, 1983, ANNU REV PHYS CHEM, V34, P525
PESLHERBE GH, 1996, J CHEM PHYS, V104, P7882
SCUSERIA GE, 1989, J CHEM PHYS, V90, P3629
SKODJE RT, 1981, J PHYS CHEM-US, V85, P3019
STECKER R, 1994, POLYRATE VERSION 6 2
TERENTIS AC, 1996, CHEM PHYS LETT, V258, P626
TROE J, 1984, J PHYS CHEM-US, V88, P4375
TRUHLAR DG, 1970, J CHEM PHYS, V52, P3842
TRUHLAR DG, 1971, J AM CHEM SOC, V93, P1840
TRUHLAR DG, 1985, THEORY CHEM REACTION, V4, P65
YAMADA K, 1971, J MOL SPECTROSC, V38, P70
YOUNG ES, 1973, J CHEM PHYS, V58, P3988
NR 39
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 24
PY 1998
VL 102
IS 52
BP 10805
EP 10812
PG 8
SC Chemistry, Physical
GA 153MT
UT ISI:000077837400030
ER
PT J
AU Miwa, RH
TI Theoretical study of Si-Ge mixed dimers on Si(001) surfaces
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculation; growth process; pseudopotential; Si and
Ge
ID DENSITY-FUNCTIONAL THEORY; ATOMIC-STRUCTURE; GROUND-STATE; GROWTH
AB We have studied the atomic geometry of mixed Si-Ge dimers on Si(001)
surface, using first-principle total energy calculations. Our results
indicate that the formation of mixed Si-Ge dimers, with the Si atoms in
a "down" position and the Ge atoms in an "up" position, is an
energetically more favourable surface topology with respect to the
switching between Si and Ge atoms, where the Si atoms occupy an "up"
position and the Ge atoms occupy a "down" position. The formation of
pure Si-Si and Ge-Ge buckled dimers was also considered, and our
results indicate that this structure is not energetically favourable
against formation of mixed Si-Ge buckled dimers. For a 2 x 4 surface
covered by mixed Si-Ge buckled dimers in an antiphase topology, our
total energy calculations indicate that this configuration is
energetically equivalent to the 2 x 4 surface in a semi-antiphase
topology. (C) 1998 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Miwa, RH, Univ Fed Uberlandia, Dept Ciencias Fis, CR 593, BR-38400902
Uberlandia, MG, Brazil.
EM hiroki@inga.ufu.br
CR CAR R, 1985, PHYS REV LETT, V55, P2471
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHEN X, 1997, PHYS REV B, V55, R7319
CHO JH, 1994, PHYS REV B, V49, P13670
CHO JH, 1994, PHYS REV B, V50, P17139
DABROWSKI J, 1992, APPL SURF SCI, V56, P15
FONTES E, 1993, PHYS REV LETT, V70, P2790
GONZE X, 1991, PHYS REV B, V44, P8503
HOHENBERG P, 1964, PHYS REV B, V864, P136
JENKINS SJ, 1997, SURF SCI, V377, P887
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
LIN DS, 1991, PHYS REV LETT, V67, P2187
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
OYANAGI H, 1995, PHYS REV B, V52, P5824
PATTHEY L, 1995, PHYS REV LETT, V75, P2538
SASAKI M, 1994, APPL SURF SCI, V82, P387
STUMPF R, 1994, COMPUT PHYS COMMUN, V79, P447
YEON HW, 1997, SURF SCI, V381, L533
NR 18
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD NOV 27
PY 1998
VL 418
IS 1
BP 55
EP 63
PG 9
SC Chemistry, Physical
GA 148VM
UT ISI:000077554300014
ER
PT J
AU Morgon, NH
Riveros, JM
TI Calculation of the proton and electron affinity of simple Ge-containing
species using density functional theory
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID ION-MOLECULE REACTIONS; GAS-PHASE ACIDITIES; DISSOCIATION-ENERGY;
ATOMS; BOND; TETRAMETHYLGERMANE; APPROXIMATION; METHYLGERMANE; ANIONS;
GEH5+
AB Basis sets developed using the generator coordinate method and a
pseudopotential have been adapted to density functional theory to
calculate the proton affinity of GeH4, GeH3-, GeF3-, CH3GeH2-, and
Ge(OH)(3)(-) and the electron affinity of .GeH3 and .GeF3. The proton
affinity of GeH4 is calculated to be 673.9 kJ mol(-1) at 298 K, while
values for GeH3- (1505.0 kJ mol(-1)) and CH3GeH2- (1529.0 kJ mol(-1))
are in excellent agreement with experimental values. The electron
affinity of .GeF3 is predicted to be in the range of 3.5-3.7 eV by
calculations using different functionals and ab initio methods. The
present calculations reveal that the B3P86 method can yield proton
affinities comparable to those obtained with other high-quality methods
but consistently overestimates electron affinities of simple Ge
radicals.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
Univ Sao Paulo, Inst Chem, BR-05599970 Sao Paulo, Brazil.
RP Riveros, JM, UNICAMP, Inst Chem, Caixa Postal 6154, BR-13083970
Campinas, SP, Brazil.
EM jmrnigra@quim.iq.usp.br
CR ARCHIBONG EF, 1994, J PHYS CHEM-US, V98, P10084
BECKE AD, 1988, PHYS REV A, V38, P3098
BENZI P, 1989, J ORGANOMET CHEM, V373, P289
BINNING RC, 1990, J CHEM PHYS, V92, P1860
CALLOMON JH, 1976, LANDOLTBORNSTEIN, V7
CURTISS LA, 1995, J CHEM PHYS, V103, P6104
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DECOUZON M, 1993, J AM SOC MASS SPECTR, V4, P54
EICHHOLTZ M, 1997, Z PHYS CHEM 2, V199, P267
FRANKLIN JL, 1974, ADV MASS SPECTROM, V6, P319
FRENKING G, 1997, J AM CHEM SOC, V119, P6648
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GIORDAN M, 1997, CHEM PHYS LETT, V279, P396
HARLAND PW, 1972, INT J MASS SPECTROM, V10, P169
HITCHMAN ML, 1993, CHEM VAPOR DEPOSITIO
HU CH, 1992, CHEM PHYS LETT, V190, P543
HUNTER EP, COMMUNICATION
HUNTER EPL, 1998, J PHYS CHEM REF DATA, V27, P413
KHABASHESKU VN, 1998, J AM CHEM SOC, V120, P5005
KOHDASUDOH S, 1983, J PHYS B ATOM MOL PH, V16, L529
KUDIN KN, 1998, J PHYS CHEM A, V102, P744
MAYER PM, 1997, INT J MASS SPECTROM, V167, P689
MERRILL GN, 1996, J PHYS CHEM-US, V100, P17465
MOC J, 1990, CHEM PHYS LETT, V173, P557
MORGON NH, 1997, CHEM PHYS LETT, V275, P457
MORGON NH, 1998, J PHYS CHEM A, V102, P2050
NEGISHI Y, 1997, CHEM PHYS LETT, V269, P199
OPERTI L, 1993, ORGANOMETALLICS, V12, P4509
ORTIZ JV, 1987, J AM CHEM SOC, V109, P5072
PERDEW JP, 1986, PHYS REV B, V33, P8822
POLA J, 1992, J ORGANOMET CHEM, V437, P271
REDFERN PC, 1997, J PHYS CHEM A, V101, P8701
REED KJ, 1974, J CHEM PHYS, V61, P4830
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SCHREINER PR, 1994, J CHEM PHYS, V101, P2141
SEGOVIA M, 1997, CHEM PHYS LETT, V277, P490
SEMINARIO JM, 1995, THEORETICAL COMPUTAT, V2
SENZER SN, 1980, J PHYS CHEM-US, V84, P3066
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
TANABE FKJ, 1996, J PHYS CHEM-US, V100, P2862
WANG JLF, 1974, J CHEM PHYS, V60, P2158
XAVIER LA, INT J MASS SPECTROM
NR 42
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 10
PY 1998
VL 102
IS 50
BP 10399
EP 10403
PG 5
SC Chemistry, Physical
GA 148QP
UT ISI:000077543700028
ER
PT J
AU Araujo, RCMU
Ramos, MN
TI An ab initio MP2 study of HCN-HX hydrogen bonded complexes
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE ab initio MP2; binding energy; infrared parameters; hydrogen bond
ID INFRARED-SPECTROSCOPY; MOLECULAR-PROPERTIES; ROTATIONAL SPECTRUM;
PERTURBATION-THEORY; GAS-PHASE; ACETYLENE; INTENSITIES; ENERGIES;
ABINITIO; DIMER
AB An ab initio MP2/6-311++G* * study has been performed to obtain
geometries, binding energies and vibrational properties of HCN-HX
H-bonded complexes with X = F, Cl, NC, CN and CCH. These MP2/6-311++G**
results have revealed that: (i) the calculated H-bond lengths are in
very good agreement with the experimental ones; (ii) the H-bond
strength is associated with the intermolecular charge transfer and
follows the order: HCN-HNC approximate to HCN-HF > HCN-HCl approximate
to HCN-HCN > HCN-HCCH; (iii) BSSE correction introduces an average
reduction of 2.4 kJ/mol on the MP2/6-311++G** binding energies, i.e.
11% of the uncorrected binding energy; (iv) the calculated zero-point
energies reduce the stability of these complexes and show a good
agreement with the available experimental values; (v) the H-X
stretching frequency is shifted downward upon H-bond formation. This
displacement is associated with the H-bond length; (vi) The more
pronounced effect on the infrared intensities occurs with the H-X
stretching intensity. It is much enhanced after complexation due to the
charge-flux term; (vii) the calculated intermolecular stretching
frequencies are in very good agreement with the experimental ones; and,
finally, (viii) the results obtained for the HCN-HX complexes follow
the same profile as those found for the acetylene-HX series but, in the
latter case, the effects on the properties of the free molecules due to
complexation are less pronounced than those in KCN-HX.
C1 Univ Fed Paraiba, Dept Quim, BR-58036300 Joao Pessoa, Paraiba, Brazil.
Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901 Recife, PE, Brazil.
RP Araujo, RCMU, Univ Fed Paraiba, Dept Quim, BR-58036300 Joao Pessoa,
Paraiba, Brazil.
CR ARAUJO RCM, UNPUB J CHEM SOC F2
ARAUJO RCMU, 1995, SPECTROCHIM ACTA A, V51, P821
ARAUJO RCMU, 1996, THEOCHEM-J MOL STRUC, V366, P233
BARNES AJ, 1983, J MOL STRUCT, V100, P259
BARTLETT RJ, 1975, J CHEM PHYS, V62, P3258
BISHOP DM, 1982, J PHYS CHEM REF DATA, V11, P119
BOX GEP, 1978, STAT EXPT
BOYS SF, 1970, MOL PHYS, V19, P553
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
BUXTON LW, 1981, CHEM PHYS, V56, P399
CRAW JS, 1991, SPECTROCHIM ACTA A, V47, P69
CURTISS LA, 1973, J MOL SPECTROSC, V48, P413
DELBENE JE, 1992, INT J QUANTUM CHEM Q, V26, P527
DELBENE JE, 1995, J PHYS CHEM-US, V99, P10705
DINUR U, 1990, CHEM PHYS LETT, V166, P211
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
GUSSONI M, 1984, J MOL STRUCT, V113, P323
GUSSONI M, 1989, CHEM PHYS LETT, V160, P200
HOWARD NW, 1986, J CHEM PHYS, V85, P6898
KESTNER NR, 1968, J CHEM PHYS, V48, P252
KING WT, 1976, J PHYS CHEM-US, V80, P2521
KRISHNAN R, 1978, INT J QUANTUM CHEM, V14, P91
LEGON AC, 1980, P ROY SOC LOND A MAT, V370, P213
LEGON AC, 1982, J CHEM PHYS, V76, P2267
LEGON AC, 1986, CHEM REV, V86, P635
LEGON AC, 1988, P ROY SOC LOND A MAT, V417, P21
MARDIA KV, 1979, MULTIVARIATE ANAL
MCDONALD SA, 1980, J AM CHEM SOC, V102, P2892
METTEE HD, COMMUNICATION
METTEE HD, 1973, J PHYS CHEM-US, V77, P1762
MILLEN DJ, 1978, J MOL STRUCT, V45, P1
NESBITT DJ, 1988, CHEM REV, V88, P843
POPLE JA, 1976, INT J QUANTUM CHEM S, V10, P1
SUZUKI I, 1966, J CHEM PHYS, V44, P3561
TOSTES JGR, 1987, J PHYS CHEM-US, V91, P3157
WOFFORD BA, 1986, CHEM PHYS LETT, V124, P579
WOFFORD BA, 1986, J CHEM PHYS, V85, P105
WOFFORD BA, 1987, J CHEM PHYS, V87, P4478
WOFFORD BA, 1987, J CHEM PHYS, V87, P5674
NR 39
TC 10
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD SEP-OCT
PY 1998
VL 9
IS 5
BP 499
EP 505
PG 7
SC Chemistry, Multidisciplinary
GA 148FR
UT ISI:000077494800015
ER
PT J
AU Duarte, HA
Paniago, EB
Carvalho, S
De Almeida, WB
TI Interaction of N-hydroxyacetamide with vanadate: A density functional
study
SO JOURNAL OF INORGANIC BIOCHEMISTRY
LA English
DT Article
DE vanadate; N-hydroxyacetamide; density functional; metal-ligand
interaction
ID HYDROXAMIC ACIDS; AB-INITIO; APPROXIMATION; OPTIMIZATION; ENERGY; BOND;
MO
AB The interaction between N-hydroxyacetamide (HL) and vanadate (VO3-) has
been theoretically studied using density functional theory. All
possible tautomers and conformations of two complexes formed have been
fully optimized and vibrational analysis performed. From reported
experimental results these two complexes have been shown to be in
equilibrium in acidic aqueous solution: VO2LH2O and VO2(HL)L. The
pentacoordinated VO2LH2O species having an intramolecular proton
transferred from the coordinating H2O ligand to the oxo group, is the
most stable. Seemingly, the most stable hexacoordinated VO2(HL)L
species also has an oxo group protonated. Based on the analysis of the
dipole moments of the species, the solvent effects within the continuum
model are unlikely to change the relative stabilities of the different
tautomers and conformers. The experimental infra-red spectrum of the
VO2LH2O species has been measured and compared directly to the
calculated frequencies. The most important peaks have been assigned to
the corresponding normal modes. From the Mulliken population analysis,
it is shown that the net charge on the vanadium atom and the oxygens
surrounding the metal center are similar in the two species. The
different coordination numbers may explain the differences of the
reported V-51 NMR chemical shifts exhibited by these two species. (C)
1998 Elsevier Science Inc. All rights reserved.
C1 Lab Quim Computac & Modelagem Mol, Belo Horizonte, MG, Brazil.
Univ Fed Minas Gerais, ICEx, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Ouro Preto, ICEB, Dept Quim, Ouro Preto, MG, Brazil.
RP Duarte, HA, Lab Quim Computac & Modelagem Mol, Belo Horizonte, MG,
Brazil.
CR BAUER L, 1974, ANGEW CHEM, V13, P376
BECKE AD, 1988, PHYS REV A, V38, P3098
CASIDA ME, 1996, DEMON SOFTWAREDEMONK
COUTTS RT, 1967, CAN J PHARM SCI, V2, P1
COUTTS RT, 1967, CAN J PHARM SCI, V2, P27
CRICH D, 1989, CHEM REV, V89, P1563
DEALMEIDA WB, 1997, 6 C CURR TRENDS COMP
DEALMEIDA WB, 1998, J CHEM SOC DA, V15, P2531
DUARTE HA, 1997, J PHYS CHEM B, V101, P7464
FITZPATRICK NJ, 1989, POLYHEDRON, V8, P2255
FOURNIER R, 1993, J CHEM PHYS, V99, P1801
GODBOUT N, 1992, CAN J CHEM, V70, P560
HADZI D, 1957, SPECTROCHIM ACTA, V10, P38
HUBER KP, 1979, 4 CONSTANTS DIATOMIC
KEHL H, 1982, CHEM BIOL HYDROXAMIC
KURZAK B, 1992, COORDIN CHEM REV, V114, P162
LIPCZYNSKAKOCHA.E, 1991, CHEM REV, V91, P477
MILLER MJ, 1989, CHEM REV, V89, P1563
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1986, PHYS REV B, V34, P7406
PETTERSSON L, 1983, CHEM SCRIPTA, V22, P254
ROCHA WR, 1997, INT J QUANTUM CHEM, V65, P643
ROCHA WR, 1998, ORGANOMETALLICS, V17, P1961
SALAHUB DR, 1987, ADV CHEM PHYS, V69, P447
SCHLEGEL HB, 1987, AB INITIO METHODS QU, V1
SIGEL H, 1996, METAL IONS BIOL SYST, V31
STAMANT A, 1990, CHEM PHYS LETT, V169, P387
TURI L, 1992, J PHYS CHEM-US, V96, P3709
YAMAKI RT, 1997, J CHEM SOC DALT 1221, P4817
YAMIN LJ, 1996, THEOCHEM-J MOL STRUC, V360, P109
ZIEGLER T, 1987, J AM CHEM SOC, V109, P4825
NR 31
TC 9
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 USA
SN 0162-0134
J9 J INORG BIOCHEM
JI J. Inorg. Biochem.
PD OCT
PY 1998
VL 72
IS 1-2
BP 71
EP 77
PG 7
SC Chemistry, Inorganic & Nuclear; Biochemistry & Molecular Biology
GA 147RA
UT ISI:000077578800009
ER
PT J
AU Marquardt, R
Quack, M
TI Global analytical potential hypersurfaces for large amplitude nuclear
motion and reactions in methane. I. Formulation of the potentials and
adjustment of parameters to ab initio data and experimental constraints
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MONTE-CARLO CALCULATIONS; TRANSITION-STATE THEORY; DIPOLE-MOMENT
FUNCTION; ADIABATIC CHANNEL MODEL; VIBRATION ENERGY-LEVELS; THERMAL
RATE-CONSTANT; QUARTIC FORCE-FIELD; CH CHROMOPHORE; H+CH3->CH4
RECOMBINATION; CORRELATED WAVEFUNCTIONS
AB Analytical representations of the global potential energy surface of
XYn molecules are developed and applied to model the potential surface
of methane in the electronic ground state. The generic analytical
representation allows for a compact, robust, and flexible description
of potentials fur XYn systems irrespective of the specific nature of
the atomic interactions. The functions are global in that structures
near several minima of the potential hypersurface as well as saddle
points and dissociation limits are well described. Clusters of atoms
Y-n can be represented as well by this type of function. Care is taken
to implement conditions resulting from the symmetric group S-n and to
construct positive definite bilinear forms of special functional forms
of certain coordinates (such as bond lengths and bond angles), in order
to avoid artifacts in exceptional ranges of the potential hypersurface.
These special functional forms include intrinsic, symmetry allowed
couplings between coordinates such as bending and stretching. We
include linear potential terms in bond angle coordinates, which result
in effectively quadratic potential terms for highly symmetric
structures. True logical multidimensional 01-switching functions
S-sw(r) of bond lengths r are used to interpolate between limiting
ranges in the hypersurface. The particular form S-sw(r) similar to
exp(-(r(sw)/r)(nsw)) allows us to describe the potential as a multipole
expansion representation in the lirlit of large r(ix). In the
application to methane, first the representations are fitted to data
from high level ab initio calculations using multireference
configuration interaction techniques. Additional conditions which help
to improve the description of experimental data are considered during
the fit. Typically, these conditions involve some parameters or
parameter groups and refer to the equilibrium geometry and harmonic
force field. Other constraints apply to the energies of dissociation
channels. We describe the model potentials METPOT 1 to METPOT 4 in the
present work. (C) 1998 American Institute of Physics.
[S0021-9606(98)01045-9].
C1 ETH Zentrum, Chem Phys Lab, CH-8092 Zurich, Switzerland.
RP Marquardt, R, Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto
Alegre, RS, Brazil.
CR *AIP, JCPSA6109010845 AIP
*U WAT, 1981, MAPLE V REL 3 ETH
ABOUMAJD A, 1984, THESIS DIJON
BAKASOV A, 1998, J CHEM PHYS, V109, P7263
BEIL A, 1994, J CHEM SOC CHEM COMM, V99, P49
BEIL A, 1996, BER BUNSEN PHYS CHEM, V100, P1853
BERKOWITZ J, 1994, J PHYS CHEM-US, V98, P2744
BJERRUM N, 1914, VERHANDL DEUT PHYSIK, V16, P737
BOTSCHWINA P, 1982, CHEM PHYS, V68, P41
BOTSCHWINA P, 1988, J CHEM SOC F2, V84, P1263
BRODERSEN S, 1987, J MOL SPECTROSC, V126, P405
BROWN FB, 1985, CHEM PHYS LETT, V113, P441
BUENKER RJ, 1975, THEOR CHIM ACTA, V39, P217
BUNKER PR, 1983, J MOL SPECTROSC, V101, P180
BUNKER PR, 1986, J CHEM PHYS, V85, P3724
CHASE MW, JANAF THERMOCHEMI S1, V14
COBOS CJ, 1985, CHEM PHYS LETT, V113, P419
COMEAU DC, 1989, J CHEM PHYS, V90, P6491
DENNISON DM, 1925, ASTROPHYS J, V62, P84
DUBAL HR, 1989, J CHEM PHYS, V91, P6698
DUCHOVIC R, 1982, CHEM PHYS LETT, V89, P120
DUCHOVIC RJ, 1984, J PHYS CHEM-US, V88, P1339
DUCHOVIC RJ, 1985, J CHEM PHYS, V82, P3599
DUNCAN JL, 1964, SPECTROCHIM ACTA, V20, P523
DUNNING TH, 1970, J CHEM PHYS, V53, P2823
EYRING H, 1931, Z PHYS CHEM B-CHEM E, V12, P279
FURUE H, 1991, CHEM PHYS, V154, P425
GORDON MS, 1979, J CHEM PHYS, V70, P5503
GORDON MS, 1993, J AM CHEM SOC, V115, P7486
GRAY DL, 1979, MOL PHYS, V37, P1901
GREV RS, 1991, J CHEM PHYS, V95, P5128
GREV RS, 1992, J CHEM PHYS, V97, P8389
HALONEN L, 1997, J CHEM PHYS, V106, P831
HASE WL, 1985, J CHEM PHYS, V83, P3448
HASE WL, 1987, J AM CHEM SOC, V109, P2916
HIROTA E, 1982, J MOL SPECTROSC, V96, P175
HIRST DM, 1985, CHEM PHYS LETT, V122, P225
HOLLENSTEIN H, 1994, J CHEM PHYS, V101, P3588
HOLLENSTEIN H, 1995, BER BUNSEN PHYS CHEM, V99, P275
HU XC, 1991, J CHEM PHYS, V95, P8073
HUTSON JM, 1990, ANNU REV PHYS CHEM, V41, P123
ISAACSON AD, 1992, J PHYS CHEM-US, V96, P531
IUNG C, 1989, J CHEM PHYS, V90, P3198
IUNG C, 1992, J CHEM PHYS, V97, P2481
IUNG C, 1995, J CHEM PHYS, V102, P8453
JENSEN P, 1989, J MOL SPECTROSC, V133, P438
JOHNSTON HS, 1966, GAS PHASE REACTION R
KELLY PB, 1988, CHEM PHYS LETT, V151, P253
KLOPPER W, 1998, J CHEM PHYS, V108, P10096
LANGHOFF SR, 1974, INT J QUANTUM CHEM, V8, P61
LEE TJ, 1995, J CHEM PHYS, V102, P254
LEWERENZ M, 1983, THESIS U BONN
LEWERENZ M, 1987, TEHSIS ETH ZURICH
LEWERENZ M, 1988, J CHEM PHYS, V88, P5408
LEWERENZ M, 1988, J CHEM SOC F2, V84, P1580
LIAS SG, 1988, GAS PHASE ION NEU S1, V17
LUCKHAUS D, 1992, CHEM PHYS LETT, V190, P581
MARQUARDT DW, 1963, J SOC IND APPL MATH, V11, P431
MARQUARDT R, UNPUB
MARTIN JML, 1992, J CHEM PHYS, V97, P8361
MARTIN JML, 1993, CHEM PHYS LETT, V205, P535
MILLER JT, 1989, CHEM PHYS LETT, V158, P179
MILLS IM, 1958, MOL PHYS, V1, P107
MORSE PM, 1929, PHYS REV, V34, P57
MURRELL JN, 1984, POTENTIAL ENERGY FUN
NEFEDOV OM, 1992, PURE APPL CHEM, V64, P265
PARTRIDGE H, 1995, J CHEM PHYS, V103, P10589
PEPPER MJM, 1995, J COMPUT CHEM, V16, P207
PEYERIMHOFF S, UNPUB
PEYERIMHOFF S, 1984, CHEM PHYS LETT, V109, P563
POPLE JA, 1975, MOL PHYS, V29, P599
PULAY P, 1978, J CHEM PHYS, V68, P5077
PULAY P, 1979, J AM CHEM SOC, V101, P2550
QUACK M, 1974, BER BUNSEN PHYS CHEM, V78, P240
QUACK M, 1975, BER BUNSEN PHYS CHEM, V79, P170
QUACK M, 1979, J PHYS CHEM-US, V83, P150
QUACK M, 1991, J CHEM PHYS, V95, P28
QUACK M, 1993, J MOL STRUCT, V292, P171
QUACK M, 1993, J MOL STRUCT, V294, P33
QUACK M, 1995, FEMTOSECOND CHEM, P781
QUACK M, 1995, J MOL STRUCT, V347, P245
QUACK M, 1997, CONCEPTUAL TRENDS QU, V3, P417
RAFF LM, 1984, J CHEM PHYS, V80, P6141
RAYNES WT, 1987, MOL PHYS, V60, P509
RIVEROS JM, 1969, J CHEM PHYS, V51, P1269
RUSSELL JJ, 1988, INT J CHEM KINET, V20, P759
SCHATZ GC, 1990, ADV MOL ELECTRONIC S, V1, P85
SCHLEGEL HB, 1986, J CHEM PHYS, V84, P4530
SIGNORELL R, 1996, MOL PHYS, V89, P297
SOSA C, 1988, CHEM PHYS LETT, V153, P139
SPIRKO V, 1982, J MOL SPECTROSC, V95, P381
SPIRKO V, 1989, J MOL SPECTROSC, V133, P331
SUHM MA, 1995, CHEM SOC REV, V24, P45
WILSON EB, 1980, MOL VIBRATIONS THEOR
WOLF RJ, 1986, CHEM PHYS LETT, V132, P493
WU W, 1994, J CHEM PHYS, V101, P4826
YAMADA C, 1981, J CHEM PHYS, V75, P5256
NR 97
TC 20
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD DEC 22
PY 1998
VL 109
IS 24
BP 10628
EP 10643
PG 16
SC Physics, Atomic, Molecular & Chemical
GA 148QB
UT ISI:000077542400011
ER
PT J
AU Almeida, AL
Martins, JBL
Taft, CA
Longo, E
Lester, WA
TI Theoretical study of water coverage on MgO surfaces
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE water coverage; MgO; ab initio; adsorption; surface
ID TEMPERATURE-PROGRAMMED DESORPTION; CORE POTENTIAL DEPENDENCE; LARGE
CLUSTER-MODELS; 0001 ZNO SURFACES; MAGNESIUM-OXIDE; MOLECULAR CLUSTER;
MGO(100) SURFACE; BASIS-SET; ADSORPTION; METHANE
AB Ab initio and semiempirical calculations have been performed on an
(MgO)(16) cluster model in order to study the effects of water coverage
on pure MgO (100) surfaces. The geometries of various adsorbed water
molecules have been optimized and the binding energies, charge
transfer, and preferential sites of interaction analyzed. We have used
Mulliken and natural bond population analysis methods in order to
analyze charge distributions and the direction of charge transfer
processes. We have also investigated the effects of low and high
coverage on energy gaps, density of states, self-consistent field (SCF)
orbital energies, and stretching frequencies. (C) 1999 John Wiley &
Sons, Inc.
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290180 Rio De Janeiro, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Lester, WA, Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci,
Berkeley, CA 94720 USA.
CR ALMEIDA AL, 1996, 23 QTEL QUIM TEOR EX
ALMEIDA AL, 1996, 4 WORLD C THEOR OR C
ALMEIDA AL, 1997, 9 INT C QUANT CHEM J
ANCHELL JL, 1996, J PHYS CHEM-US, V100, P18317
BERUTO D, 1993, J PHYS CHEM-US, V97, P9201
BOUDART M, 1972, J AM CHEM SOC, V94, P6622
CHACONTAYLOR MR, 1996, J PHYS CHEM-US, V100, P7610
COLBOURN EA, 1982, SURF SCI, V117, P571
COLBOURN EA, 1983, SURF SCI, V126, P350
COLBOURN EA, 1992, SURF SCI REP, V15, P281
COLLUCIA S, 1979, J CHEM SOC F1, V75, P1769
COLUCCIA S, 1987, SPECTROCHIM ACTA A, V43, P1573
DELEEUW NH, 1996, J CHEM SOC FARADAY T, V92, P2081
DUNSKI H, 1994, J CATAL, V146, P166
DURIEZ C, 1990, SURF SCI, V230, P123
ECHTERHOFF R, 1988, J MOL STRUCT, V174, P343
FERRY D, 1996, J CHEM PHYS, V105, P1697
FOYT DC, 1977, J CATAL, V47, P260
FRISCH MJ, 1995, GAUSSIAN 94
GREENLAND DJ, 1978, CHEM SOIL CONSTITUEN
HAY PJ, 1985, J CHEM PHYS, V82, P270
ITO T, 1985, J AM CHEM SOC, V107, P5062
ITO T, 1985, NATURE, V314, P721
ITO T, 1991, J PHYS CHEM-US, V95, P4476
JONES CF, 1984, J CHEM SOC FARAD T 1, V80, P2609
JUJIOKA HH, 1985, SURF SCI LETT, V149, L53
KNOZINGER E, 1993, SURF SCI, V290, P388
KOBAYASHI H, 1990, J PHYS CHEM-US, V94, P7206
KURODA Y, 1988, J CHEM SOC F1, V84, P2421
LEMBERTON JL, 1984, J CATAL, V89, P69
LONGO E, 1985, ADV CERAM, V10, P592
LONGO E, 1985, LANGMUIR, V1, P456
LONGO E, 1987, HIGH TECH CERAMICS, P399
MARTINS JBL, 1994, J MOL STRUCT, V303, P19
MARTINS JBL, 1995, THEOCHEM, V330, P301
MARTINS JBL, 1995, THEOCHEM, V330, P347
MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
MARTINS JBL, 1996, THEOCHEM-J MOL STRUC, V363, P249
MCCARTHY MI, 1996, J PHYS CHEM-US, V100, P16990
ONISHI H, 1987, SURF SCI, V191, P479
PAVAO AC, 1994, PHYS REV B, V50, P1868
PAVAO AC, 1995, SURF SCI, V323, P40
SCAMEHORN CA, 1993, J CHEM PHYS, V99, P2786
SCAMEHORN CA, 1994, J CHEM PHYS, V101, P1547
SHIDO T, 1990, J CATAL, V122, P55
SPOSITO G, 1984, SURFACE CHEM SOILS
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STUMM W, 1992, CHEM SOLID WATER INT
NR 48
TC 10
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD JAN 15
PY 1999
VL 71
IS 2
BP 153
EP 165
PG 13
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 147MW
UT ISI:000077572100004
ER
PT J
AU Prudente, FV
Acioli, PH
Neto, JJS
TI The fitting of potential energy surfaces using neural networks:
Application to the study of vibrational levels of H-3(+)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID QUANTUM MONTE-CARLO; DIATOMIC-MOLECULES; MOMENT SURFACES; H-3+
AB A back-propagation neural network is utilized to fit the potential
energy surfaces of the H-3(+) ion, using the ab initio data points of
Dykstra and Swope, and the Meyer, Botschwina, and Burton ab initio data
points. We used the standard back-propagation formulation and have also
proposed a symmetric formulation to account for the symmetry of the
H-3(+) molecule. To test the quality of the fits we computed the
vibrational levels using the correlation function quantum Monte Carlo
method. We have compared our results with the available experimental
results and with results obtained using other potential energy
surfaces. The vibrational levels are in very good agreement with the
experiment and the back-propagation fitting is of the same quality of
the available potential energy surfaces. (C) 1998 American Institute of
Physics. [S0021-9606(98)30644-3].
C1 Univ Brasilia, Inst Fis, BR-70910900 Brasilia, DF, Brazil.
RP Prudente, FV, Univ Brasilia, Inst Fis, CP 04455, BR-70910900 Brasilia,
DF, Brazil.
EM fred@fis.unb.br
CR ACIOLI PH, IN PRESS J MOL STRUC
BISHOP CM, 1982, REV SCI INSTRUM, V63, P4450
BLANK TB, 1994, J CHEMOMETR, V8, P391
BRAGA AP, 1997, J CHEM PHYS, V107, P9954
BRENT RP, 1991, IEEE T NEURAL NETWOR, V2, P346
BROWN DFR, 1996, J CHEM PHYS, V105, P7597
CARNEY GD, 1986, J CHEM PHYS, V84, P3921
CENCEK W, 1998, J CHEM PHYS, V108, P2831
CEPERLEY DM, 1988, J CHEM PHYS, V89, P6316
DARSEY JA, 1991, CHEM PHYS LETT, V177, P189
DYKSTRA CE, 1979, J CHEM PHYS, V70, P1
FRYE D, 1990, J CHEM PHYS, V92, P4948
GARCIA E, 1985, MOL PHYS, V56, P621
GARCIA E, 1985, MOL PHYS, V56, P629
JAQUET R, 1998, J CHEM PHYS, V108, P2837
KEDZIORA GS, 1997, J CHEM PHYS, V106, P8733
LAGARIS IE, 1997, COMPUT PHYS COMMUN, V104, P1
MACKAY DJC, 1992, NEURAL COMPUT, V4, P415
MACKAY DJC, 1995, NETWORK-COMP NEURAL, V6, P469
MAKAROV DE, 1998, J CHEM PHYS, V108, P590
MEYER W, 1986, J CHEM PHYS, V84, P891
MOLLER MF, 1993, NEURAL NETWORKS, V6, P525
OKA T, 1980, PHYS REV LETT, V45, P531
PRUDENTE FV, 1998, CHEM PHYS LETT, V287, P585
REYNOLDS PJ, 1982, J CHEM PHYS, V77, P5593
SILVA GME, 1997, J COMPUT CHEM, V18, P1407
SIMONS G, 1973, J CHEM PHYS, V59, P3229
SONTAG ED, 1989, NEURAL COMPUT, V1, P470
SUMPTER BG, 1994, ANNU REV PHYS CHEM, V45, P439
THOMPSON KC, 1998, J CHEM PHYS, V108, P564
ZUPAN J, 1993, NEURAL NETWORK CHEM
NR 31
TC 14
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 22
PY 1998
VL 109
IS 20
BP 8801
EP 8808
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 139QE
UT ISI:000077039900010
ER
PT J
AU Wang, F
Ma, S
Wong, P
Cooks, RG
Gozzo, FC
Eberlin, MN
TI Gas phase agostic bonding in pyridine SiFn+ (n = 1, 3) cluster ions
investigated by the kinetic method
SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
DE kinetic method; agostic bonding; cluster ions; SiF3+; SiF+; Lewis
acidity
ID MOLECULAR-ORBITAL METHODS; CHARGE-TRANSFER REACTIONS; MS(3)
MASS-SPECTROMETRY; TRANSITION-METAL BONDS; BASIS SETS; AFFINITIES;
THERMOCHEMISTRY; SILICON; DISSOCIATION; CATION
AB Loosely bonded cluster ions, Py1SiF3+Py2 and Py1SiF+Py2, where Py-1 and
Py-2 represent substituted pyridines, are formed by ion/molecule
reactions between mass-selected SiF3+ or SiF+ and a mixture of
pyridines. The clusters are hown to have loosely bound symmetric
structures by MS3 experiments and ab initio calculations. The
SiF3+/pyridine dimer is shown to have a trigonal bipyrimidal structure.
Relative SiF3+ and SiF+ affinities of the constituent pyridines are
measured by the kinetic method, and excellent linear correlations with
the proton affinity of meta- and para-substituted pyridines are
observed. Gas-phase stereoelectronic parameters (S-k) for SiF3+ SiF+
are also experimentally measured and show that the binding of the
ortho-substituted pyridines is governed by two opposing effects, steric
hindrance and agostic bonding. Agostic bonding of the form C-H --- Si+,
is evident in the SiF+ system, just as it is in the corresponding
SiCl+/pyridine dimers. On the other hand, steric hindrance plays a key
role in weakening the strength of the interaction of the central SiF3+
ion and the ortho-substituted pyridines compared with that in
SiF+-bound cluster ions. The relatively larger Lewis acidity of
fluorinated siliconium ions compared with the corresponding chlorinated
species shortens the Si-N bond and makes overall steric effects larger
in the SiFn+ (n = 1, 3) systems than in the SiCln+ (n = 1, 3) systems.
The potential application of the kinetic method in recognizing agostic
bonding in transition metal systems in the gas phase is also
demonstrated in this study. (Int J Mass Spectrom 179/180 (1998)
195-205). (C) 1998 Elsevier Science B.V.
C1 Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
State Univ Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Cooks, RG, Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
CR ABBOUD JLM, 1996, J AM CHEM SOC, V118, P1126
BONDI A, 1964, J PHYS CHEM-US, V68, P441
BOWERS MT, 1979, GAS PHASE ION CHEM, V1
BROOKHART M, 1983, J ORGANOMET CHEM, V250, P395
BROOKHART M, 1988, PROG INORG CHEM, V36, P1
CACACE F, 1995, P NATL ACAD SCI USA, V92, P8635
CACACE F, 1997, P NATL ACAD SCI USA, V94, P3507
CACACE F, 1997, PURE APPL CHEM, V69, P227
CAMPBELL S, 1995, J AM CHEM SOC, V117, P12840
CECCHI P, 1996, ANGEW CHEM INT EDIT, V35, P2522
CERDA BA, 1996, J AM CHEM SOC, V118, P11884
CIPOLLINI R, 1995, J CHEM SOC CHEM COMM, P773
COBURN JW, 1982, AM VACUUM SOC MONOGR
COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
COOKS RG, 1998, ACCOUNTS CHEM RES, V31, P379
CRAIG SL, 1997, J PHYS CHEM A, V101, P19
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
FISHER ER, 1991, J PHYS CHEM-US, V95, P4765
FISHER ER, 1993, J PHYS CHEM-US, V97, P10204
FRENKING G, 1997, J AM CHEM SOC, V119, P6648
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GRANDINETTI F, 1993, INT J MASS SPECTROM, V124, P21
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
IGNACIO EW, 1990, J PHYS CHEM-US, V94, P7439
KETVIRTIS AE, 1996, INT J MASS SPECTROM, V153, P161
KETVIRTIS AE, 1997, J PHYS CHEM A, V101, P7258
KETVIRTIS AE, 1998, J PHYS CHEM A, V102, P1162
KICKEL BL, 1993, J PHYS CHEM-US, V97, P10198
MA SG, 1997, INT J MASS SPECTROM, V163, P89
MCGRADY GS, 1997, CHEM COMMUN 0821, P1547
MOLLER C, 1934, PHYS REV, V46, P618
MURPHY MK, 1976, J AM CHEM SOC, V98, P5781
PETRMICHL RH, 1988, J CHEM PHYS, V89, P5454
REENTS WD, 1984, INT J MASS SPECTROM, V59, P65
RICCA A, 1998, J PHYS CHEM A, V102, P876
RODRIQUEZ CF, 1992, CAN J CHEM, V70, P2234
SCHNIER PD, 1996, J AM CHEM SOC, V118, P7178
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SENZER SN, 1983, J APPL PHYS, V54, P3524
SURESH BS, 1987, J CHEM SOC DA, P1123
WALSH R, 1981, ACCOUNTS CHEM RES, V14, P246
WALSH R, 1983, J CHEM SOC FARAD T 1, V79, P2233
WANG KH, 1992, J CHEM PHYS, V97, P5489
WENTHOLD PG, 1996, J AM CHEM SOC, V118, P11865
WINTERS HF, 1992, SURF SCI REP, V14, P161
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
WONG PSH, 1997, J ORGANOMET CHEM, V539, P131
WU ZC, 1994, RAPID COMMUN MASS SP, V8, P777
YAMAMOTO H, 1996, APPL SURF SCI, V101, P333
YANG SS, 1995, J MASS SPECTROM, V30, P807
YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
NR 55
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1387-3806
J9 INT J MASS SPECTROM
JI Int. J. Mass Spectrom.
PD NOV 23
PY 1998
VL 180
BP 195
EP 205
PG 11
SC Physics, Atomic, Molecular & Chemical; Spectroscopy
GA 140RD
UT ISI:000077101400021
ER
PT J
AU Lino, JLS
Germano, JSE
da Silva, EP
Lima, MAP
TI Elastic cross sections and annihilation parameter for e(+)-H-2
scattering using the Schwinger multichannel method
SO PHYSICAL REVIEW A
LA English
DT Article
ID POSITRONS; COLLISIONS
AB We report detailed results for positron-H-2 collisions obtained with
the Schwinger multichannel method. Our calculations include
annihilation parameter, differential, integral, and momentum transfer
cross sections for energies below the positronium formation threshold.
The calculations were carried out in the static-plus-polarization
approximation with symmetry-resolved cross sections. Energy
(temperature) dependence and symmetry-resolved contributions for the
annihilation parameter Z(eff) are also reported. Our ab initio integral
cross sections are found to be in good agreement with the experimental
data. [S1050-2947(98)04409-6].
C1 Ctr Tecn Aeronautica, Inst Tecnol Aeronaut, Dept Fis, BR-12228900 Sao Jose Dos Campos, Brazil.
Univ Fed Ceara, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil.
UNICAMP, Inst Fis, BR-13083970 Campinas, SP, Brazil.
RP Lino, JLS, Ctr Tecn Aeronautica, Inst Tecnol Aeronaut, Dept Fis,
BR-12228900 Sao Jose Dos Campos, Brazil.
CR ARMOUR EAG, 1990, J PHYS B ATOM MOL PH, V23, P3057
CHARLTON M, 1983, J PHYS B-AT MOL OPT, V16, P323
DANBY G, 1990, J PHYS B ATOM MOL PH, V23, P1005
DASILVA EP, 1994, PHYS REV A, V49, R1527
DASILVA EP, 1996, PHYS REV LETT, V77, P1028
DASILVA EP, 1998, NUCL INSTRUM METH B, V143, P140
DAY DJ, 1992, HYPERFINE INTERACT, V73, P2017
GERMANO JSE, 1993, PHYS REV A, V47, P3976
GIBSON TL, 1992, J PHYS B ATOM MOL PH, V25, P1321
KOLOS W, 1965, J CHEM PHYS, V43, P2429
LARICCHIA G, 1995, AIP C P, V360, P385
LINO JLS, 1994, J PHYS B-AT MOL OPT, V27, P1881
MCCURDY CW, 1987, PHYS REV A, V36, P2061
MURPHY TJ, 1991, PHYS REV LETT, V67, P2954
PRZYBYLA DA, 1997, PHYS REV A, V55, P4244
STEIN TS, UNPUB
TAKATSUKA K, 1981, PHYS REV A, V24, P2473
NR 17
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD NOV
PY 1998
VL 58
IS 5
BP 3502
EP 3506
PG 5
SC Physics, Atomic, Molecular & Chemical; Optics
GA 138FT
UT ISI:000076961300022
ER
PT J
AU Moraes, LAB
Eberlin, MN
TI Dehydrobenzoyl cations: Distonic ions with dual free radical and
acylium ion reactivity
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CHARGED PHENYL RADICALS; GAS-PHASE; MASS-SPECTROMETRY; MOLECULE
REACTIONS; BIMOLECULAR REACTIONS; CYCLOTRON RESONANCE; SUBSTITUTION;
TRANSACETALIZATION; CHEMISTRY; ANILINE
AB In the gas phase, m- and p-dehydrobenzoyl cations display strong
duality of chemical behavior. The ions react selectively as either free
radicals or acylium ions, depending on the choice of the neutral
reaction partner. Transacetalization with 2-methyl-1,3-dioxolane,
ketalization with 2-methoxyethanol, and epoxide ring expansion with
epichlorohydrin demonstrate their acylium ion reactivity, whereas
(SCH3)-S-. abstraction with dimethyl disulfide demonstrates their free
radical reactivity. In one-pot reactions with gaseous mixtures of
epichlorohydrin and dimethyl disulfide, the m- and p-dehydrobenzoyl
cations react selectively at either site to form the two
monoderivatized ions in variable but controlled yields; further
reaction at either the remaining radical or the acylium charge site
forms a single biderivatized ion as the final product. The
o-dehydrobenzoyl cation also displays the expected radical and acylium
ion reactivities. But for the ortho isomer, binding of the nucleophilic
neutral to the free or derivatized C+=O group facilitates reactions at
the radical site. Hence, the ortho isomer displays a unique behavior;
its acylium ion reactions either occur simultaneously with, or are
followed by, H-abstraction radical reactions. As shown by ab initio
calculations, the three isomers display sigma-localized odd-spin and
pi-delocalized charge densities, which characterize distonic structures
with molecular orbital-separated radical and charge sites. The
dehydrobenzoyl cations are also, according to the calculations, the
most stable among 19 of the most feasible C7H4O+. isomers.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, UNICAMP, Inst Chem, CP 6154, BR-13083970 Campinas, SP,
Brazil.
CR ATTINA M, 1983, J AM CHEM SOC, V105, P1122
AVILA DV, 1994, J AM CHEM SOC, V116, P99
BEASLEY BJ, 1995, J MASS SPECTROM, V30, P384
BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P203
BOUMA WJ, 1980, ADV MASS SPECTROM A, V8, P178
CARVALHO M, 1998, CHEM-EUR J, V4, P1161
CARVALHO MC, 1997, J CHEM SOC PERK NOV, P2347
CARVALHO MC, 1997, J MASS SPECTROM, V32, P4437
CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
CHYALL LJ, 1994, J AM CHEM SOC, V116, P3135
CREASER CS, 1996, J CHEM SOC PERK MAR, P427
DEKOSTER CG, 1995, INT J MASS SPECTROM, V141, P1
DOUGLAS DJ, 1998, J AM SOC MASS SPECTR, V9, P101
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FLAMMANG R, 1992, RAPID COMMUN MASS SP, V6, P135
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN94 REVISION
GALLUP GA, 1976, INT J MASS SPECTROM, V22, P185
GOZZO FC, IN PRESS J ORG CHEM
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GOZZO FC, 1996, J CHEM SOC PERK APR, P587
HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
KUNZ H, 1991, COMPREHENSIVE ORGANI, V59, P659
LI R, 1996, INT J MASS SPECTROM, V157, P293
MILLER DL, 1983, ORG MASS SPECTROM, V18, P239
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, UNPUB J ORG CHEM
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J CHEM SOC PERK OCT, P2105
MORAES LAB, 1997, J ORG CHEM, V62, P5096
MOURGUES P, 1993, ORG MASS SPECTROM, V28, P1098
OLAH GA, 1976, CARBONIUM IONS, V5, CH35
PARADISI C, 1988, ORG MASS SPECTROM, V23, P521
RUSLI RD, 1990, CHEM BER, V123, P535
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SMITH RL, 1993, ORG MASS SPECTROM, V28, P1623
SMITH RL, 1995, J AM CHEM SOC, V117, P1393
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
STALEY RH, 1977, J AM CHEM SOC, V99, P5964
STIRK KG, 1991, J AM CHEM SOC, V113, P5880
STIRK KM, 1992, CHEM REV, V92, P1649
STIRK KM, 1992, J AM CHEM SOC, V114, P8604
STIRK KM, 1993, RAPID COMMUN MASS SP, V7, P392
THOEN KK, 1996, J AM CHEM SOC, V118, P8669
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
VANAMSTERDAM MW, 1993, ORG MASS SPECTROM, V28, P919
YATES BF, 1984, J AM CHEM SOC, V106, P5805
YU SJ, 1993, J AM CHEM SOC, V115, P9676
NR 55
TC 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 4
PY 1998
VL 120
IS 43
BP 11136
EP 11143
PG 8
SC Chemistry, Multidisciplinary
GA 136JE
UT ISI:000076855000015
ER
PT J
AU Dal Colle, M
Distefano, G
Modelli, A
Jones, D
Guerra, M
Olivato, PR
Ribeiro, DD
TI UV-photoelectron, electron transmission, and dissociative electron
attachment spectroscopies of acetone oximes
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PI-STAR ORBITALS; ULTRAVIOLET PHOTOELECTRON; INTRAMOLECULAR
INTERACTIONS; THIO GROUPS; TERT-BUTYL; AB-INITIO; X-ALPHA; DERIVATIVES;
AFFINITIES; BENZENE
AB The conformation and the electronic structure of several
alpha-heterosubstituted acetone oximes XCH2(CH3)C= NOH (X = H (1), F
(2), Cl (3), CH3O (4), C2H5S (5), and (CH3)(2)N (6)) have been
determined by means of a multidisciplinary approach based on
ultraviolet photoelectron (UP), electron transmission (ET), and
dissociative electron attachment (DEA) spectroscopies and fully
optimized ab initio 6-31G** and MP2/6-31G** calculations. The vertical
ionization energy (IE) and electron affinity (EA) values related to the
HOMO (pi(C=N)) and LUMO (pi*(C=N)) have been determined by the Delta
SCF and Delta MP2 (IE only) procedures. The compounds studied prefer an
anti (E) configuration between the OH and the CH2X group and a gauche
conformation of the C-X bond with respect to the double bond, except 2
and 4 for which a syn (Z) planar structure is nearly degenerate with
the E one. The spectral data, coupled with the results of the
calculations, indicate that the properties of the acetone oximes are
mainly governed by the mixing between the orbitals localized at the X
and C=N fragments and by electrostatic interactions between hydrogen
and the electronegative atoms. When X has poor donor and poor mesomeric
acceptor properties (X = F and OMe), the prevailing interaction is the
strong charge-transfer mixing of the hydroxyl oxygen lone pair with the
pi*(C=N) orbital and the X group moves in the main molecular plane.
C1 Univ Ferrara, Dipartimento Chim, I-44100 Ferrara, Italy.
Univ Bologna, Dipartimento Chim G Ciamician, I-40127 Bologna, Italy.
CNR, ICoCEA, I-40126 Bologna, Italy.
Univ Sao Paulo, Inst Quim, Sao Paulo, Brazil.
RP Distefano, G, Univ Ferrara, Dipartimento Chim, Via Borsari 46, I-44100
Ferrara, Italy.
CR BIERLEIN TK, 1951, ACTA CRYSTALLOGR, V4, P450
BONDI A, 1964, J PHYS CHEM-US, V68, P441
DALCOLLE M, 1995, J PHYS CHEM-US, V99, P15011
DANNENBERG JJ, 1994, J PHYS CHEM-US, V98, P6714
DARGELOS A, 1977, J CHEM PHYS, V67, P3011
DISTEFANO G, 1985, J CHEM SOC P2, P2037
DISTEFANO G, 1987, J CHEM SOC P2, P1459
DISTEFANO G, 1989, J ELECTRON SPECTROSC, V49, P281
DISTEFANO G, 1996, J CHEM SOC PERK AUG, P1661
DISTEFANO G, 1997, J MOL STRUCT THEOCHE, V418, P99
FRISCH MJ, 1995, GAUSSIAN 94
GUERRA M, 1984, CHEM PHYS, V91, P383
GUERRA M, 1990, CHEM PHYS LETT, V167, P315
JOHNSTON AR, 1982, J ELECTRON SPECTROSC, V25, P119
JONES D, 1994, J CHEM SOC P2, P1651
KOOPMANS T, 1933, PHYSICA, V1, P104
KULESHOVA LN, 1981, ACTA CRYSTALLOGR B, V37, P1363
MODELLI A, 1982, CHEM PHYS LETT, V86, P434
MODELLI A, 1983, CHEM PHYS, V77, P153
MODELLI A, 1983, J ELECTRON SPECTROSC, V31, P63
MODELLI A, 1984, TETRAHEDRON, V40, P3257
MODELLI A, 1986, CHEM PHYS LETT, V132, P448
MODELLI A, 1989, CHEM PHYS LETT, V163, P269
MODELLI A, 1990, CHEM PHYS, V145, P89
MODELLI A, 1992, J CHEM PHYS, V96, P2061
OLIVATO PR, 1984, J CHEM SOC P2, P1505
OLIVATO PR, 1995, SPECTROCHIM ACTA A, V51, P1479
OLIVATO PR, 1998, J CHEM SOC PERK JAN, P109
SANCHE L, 1972, PHYS REV A, V5, P1672
WAGNER G, 1974, CHEM BER, V107, P6877
NR 30
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 8
PY 1998
VL 102
IS 41
BP 8037
EP 8043
PG 7
SC Chemistry, Physical
GA 132EF
UT ISI:000076616800022
ER
PT J
AU Resende, SM
Wagner, B
TI Analysis of the reaction paths to dissociation of dichloro-ethylenes
into Cl-2 and C2H2
SO CHEMICAL PHYSICS
LA English
DT Article
ID AB-INITIO; PHOTOCHEMISTRY
AB The reaction paths to dissociation of dichloro-ethylenes (DCE) into
Cl-2 and acetylene (C2H2) in the gas phase were studied, at the
CCSD(T)/6-311G(d,p)//CASSCF(6,6)/6-31G(d) level of theory, including
zero point energy correction. The structures and energies of reactants,
transition states and products were determined through ab initio
calculations. There are two principal paths to dissociation. One of
them involves a number of transition states and intermediates where
internal rotations, H and Cl migrations are involved until the
dissociation into Cl and C2H2Cl radicals. The activation energy to this
path is about 97 kcal/mol. On the other hand, C2H2Cl radicals were also
predicted to be formed directly from cis- and trans-DCE. In addition,
we have determined several paths to isomerization among the trans-,
cis- and 1,1-dichloro-ethylene. We have concluded that these
isomerization paths have activation energies below to the dissociation
reaction. Therefore, the dissociation process can proceed from every
dichloro-ethylene. (C) 1998 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
RP Wagner, B, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac &
Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR BALDRIDGE KK, 1989, J PHYS CHEM-US, V93, P5107
FRISCH MJ, 1995, GAUSSIAN 94
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
HE GX, 1993, J PHYS CHEM-US, V97, P2186
LAURSEN SL, 1989, J PHYS CHEM-US, V93, P2328
LAURSEN SL, 1990, J PHYS CHEM-US, V94, P8175
LEE TJ, 1989, INT J QUANTUM CHEM S, V23, P199
LIDE DR, 1993, CRC HDB CHEM PHYSICS
RESENDE SM, 1997, MOL PHYS, V91, P635
RESENDE SM, 1998, J CHEM SOC FARADAY T, V94, P2895
RIEHL JF, 1994, J CHEM PHYS, V101, P5942
SCHMIDT M, 1993, J COMPUT CHEM, V14, P1346
NR 12
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD NOV 1
PY 1998
VL 238
IS 1
BP 11
EP 20
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 132AW
UT ISI:000076608400002
ER
PT J
AU Capaz, RB
Dal Pino, A
Joannopoulos, JD
TI Theory of carbon-carbon pairs in silicon.
SO PHYSICAL REVIEW B
LA English
DT Article
ID INTERSTITIAL-CARBON; IRRADIATED SILICON; DEFECTS
AB Interstitial-substitutional carbon pairs (CiCs) in silicon display
interesting metastable behavior associated with two different
structural configurations. In this work, we perform extensive ab initio
calculations on this system. Our results show the following. (i) The
metastable configuration for the neutral charge state displays C-1h
symmetry and it is reminiscent of the isolated interstitial carbon
configuration, i.e., a split interstitial C-Si pair with the
substitutional carbon bonded to the silicon interstitial. (ii) The
ground-state configuration also has C-1h symmetry, but it consists;of a
single silicon interstitial twofold coordinated in an unusual bridge
configuration between two substitutional carbon atoms. With an
activation energy of 0.07 eV, this configuration becomes a
motional-averaged state with C-3v symmetry. (iii) The ground state is
lower in; energy by 0.11 eV with respect to the metastable state. The
jump from one configuration to the other corresponds to a simple
''bond-switching'' mechanism with a calculated energy barrier of 0.13
eV. (iv) Both configurations have two electronic-states in the gap,
with gap-state wave functions consistent with the local bonding of the
defect complex in each case. (v) Analysis of local-mode vibrations on
the ground-state configuration indicates a stronger component in one of
the carbon atoms, which explains the experimentally observed isotope
splittings. Vibrational frequencies for the metastable configuration
are also predicted. All of these results are in satisfactory agreement
with experiments. [S0163-1829(98)07236-1].
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
Inst Tecnol Aeronaut, BR-12225 Sao Jose Dos Campos, Brazil.
MIT, Dept Phys, Cambridge, MA 02139 USA.
RP Capaz, RB, Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528,
BR-21945970 Rio De Janeiro, Brazil.
CR BEAN AR, 1970, SOLID STATE COMMUN, V8, P175
BURNARD MJ, 1993, PHYS REV B, V47, P10217
CAPAZ RB, 1994, PHYS REV B, V50, P7439
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DALPINO A, 1992, PHYS REV B, V45, P3304
DALPINO A, 1993, PHYS REV B, V47, P12554
DAVIES G, 1983, J PHYS C SOLID STATE, V16, P5503
DAVIES G, 1994, HDB SEMICONDUCTORS, V3, P1557
HOHENBERG P, 1964, PHYS REV, V136, B864
JONES R, 1995, MATER SCI FORUM, V196, P785
KEATING PN, 1966, PHYS REV, V145, P637
KOHN W, 1965, PHYS REV, V140, A1133
LEARY P, 1997, PHYS REV B, V55, P2188
MIKKELSEN JC, 1986, MRS S P, V59
NEEDELS M, 1991, MATER RES SOC S P, V209, P102
NEWMAN RC, 1969, J PHYS CHEM SOLIDS, V30, P1492
ODONNELL KP, 1983, PHYSICA B & C, V116, P258
PAULING L, 1960, NATURE CHEM BOND, P85
PAYNE MC, 1992, REV MOD PHYS, V64, P1045
PERDEW J, 1984, PHYS REV B, V23, P5048
RAPPE AM, 1990, PHYS REV B, V41, P1227
SONG LW, 1990, PHYS REV B, V42, P5765
TERSOFF J, 1990, PHYS REV LETT, V64, P1757
WATKINS GD, 1976, PHYS REV LETT, V36, P1329
ZHENG JF, 1994, 2I INT C PHYS SEM, P2363
NR 25
TC 8
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD OCT 15
PY 1998
VL 58
IS 15
BP 9845
EP 9850
PG 6
SC Physics, Condensed Matter
GA 129WJ
UT ISI:000076486800050
ER
PT J
AU Dos Santos, HF
O'Malley, PJ
De Almeida, WB
TI Gas phase and water solution conformational analysis of the herbicide
diuron (DCMU): an ab initio study
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
DE DCMU; diuron; conformational analysis; solvent effect; ab initio
calculation
ID PHOTOSYNTHETIC REACTION CENTER; PHOTOSYSTEM-II; AQUEOUS-SOLUTION; D1
PROTEIN; INHIBITORS; ENERGIES; BINDING
AB In the present work, the conformational equilibrium for the herbicide
diuron (DCMU) has been investigated using high level ab initio
calculations. The solvent effect was included through two different
continuum models: (1) the real cavity IPCM method and (2) the standard
dipole Onsager model SCRF. The effect due to solute-solvent
hydrogen-bond interactions was analyzed considering a hybrid
discreet-continuum model. At the Hartree-Fock level, the gas phase
results showed that only the trans forms (A and B) are present in the
equilibrium mixture, with the relative concentrations found to be 33%
(A) and 67% (B) (HF/6-311+G**//6-31G**). When the electronic
correlation effect is included (MP2/6-31G*//HF/6-31G*), a relative
stabilization of the cis forms was observed, with the conformational
distribution calculated as 38% (A), 50% (B), 6% (C) and 6% (D). The
trans conformations were found to be completely planar, which has been
considered to be a prerequisite for the herbicide binding. In water
solution, the ri ans conformation A should be the most abundant
conformer, the IPCM and SCRF values being ca. 100% and ca. 85%
respectively. The IPCM calculations with the isodensity level set to
0.0005 present a conformational distribution close to that obtained
from the hybrid model [92% (A) and 8% (B)], which has been considered
our best solvent approach. Regarding the biological action of urea-type
herbicides, the results presented here are important, because some QSAR
studies have suggested that the partition coefficient is related to the
herbicide activity, so the conformational equilibrium may play a role
in the biological action.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Manchester, Inst Sci & Technol, Dept Chem, Manchester M60 1QD, Lancs, England.
RP Dos Santos, HF, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim
Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR BOWYER J, 1990, Z NATURFORSCH C, V45, P379
CRAMER CJ, 1992, J COMPUT AID MOL DES, V6, P629
CREUZET S, 1989, Z NATURFORSCH C, V44, P435
DEALMEIDA WB, 1992, THEOCHEM, V253, P349
DEALMEIDA WB, 1995, STRUCT CHEM, V6, P383
DEISENHOFER J, 1985, NATURE, V318, P618
DOSSANTOS HF, 1998, J PHARM SCI, V87, P190
DRABER W, 1991, ANGEW CHEM INT EDIT, V30, P1621
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HANSCH C, 1995, CHEM BIOL ACS PROFES, P459
KARELSON M, 1996, CHEM REV, V96, P1027
KUBINYI H, 1993, QSAR HANSCH ANAL REL
LI GS, 1997, J PHYS CHEM A, V101, P7885
MICHEL H, 1988, BIOCHEMISTRY-US, V27, P1
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
PFEFER G, 1996, ACTA CRYSTALLOGR B 4, V52, P662
POPLE JA, 1993, ISRAEL J CHEM, V33, P345
SILVA THA, 1997, BIOORGAN MED CHEM, V5, P353
SILVA THA, 1997, STRUCT CHEM, V8, P95
SINNING I, 1992, TRENDS BIOCHEM SCI, V17, P150
SZAFRAN M, 1993, J COMPUT CHEM, V14, P371
TREBST A, 1984, Z NATURFORSCH C, V39, P405
TREBST A, 1993, PHYTOCHEMISTRY, V33, P969
VOET D, 1995, BIOCHEMISTRY
WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
WIBERG KB, 1995, J PHYS CHEM-US, V99, P9072
WIBERG KB, 1996, J COMPUT CHEM, V17, P185
NR 28
TC 7
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD SEP
PY 1998
VL 99
IS 5
BP 301
EP 311
PG 11
SC Chemistry, Physical
GA 125RC
UT ISI:000076250000004
ER
PT J
AU de Brito Mota, F
Justo, JF
Fazzio, A
TI Structural properties of amorphous silicon nitride
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC-STRUCTURE; INTERATOMIC POTENTIALS; MOLECULAR-DYNAMICS;
BETA-SI3N4; CHEMISTRY; SYSTEMS; BOND
AB We developed an empirical potential for interactions between Si and N
to describe silicon nitride systems using the Tersoff functional form.
The fitting parameters were found using a set of ab initio and
experimental results of the crystalline phase. Using this empirical
model, we explored the structural properties of amorphous silicon
nitride through Monte Carlo simulations, and compared them to available
experimental data. The good description of the a-SiNx system for a wide
range of nitrogen contents (0 < x < 1.5) shows the reliability of this
model.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
UFBA, Inst Fis, BR-40210340 Salvador, BA, Brazil.
RP de Brito Mota, F, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR AIYAMA T, 1979, J NONCRYSTALLINE SOL, V33, P131
ALLEN MP, 1987, COMPUTER SIMULATION
BALAMANE H, 1992, PHYS REV B, V46, P2250
BORGEN O, 1961, ACTA CHEM SCAND, V15, P1789
CUNHA C, 1993, PHYS REV B, V48, P17806
FLETCHER R, 1963, COMPUT J, V6, P163
FROHMANBENTCHKO.D, 1969, J APPL PHYS, V40, P3307
GRUN R, 1979, ACTA CRYSTALLOGR B, V35, P800
GURAYA MM, 1990, PHYS REV B, V42, P5677
HABRAKEN FHPM, 1994, MAT SCI ENG R, V12, P123
HARDIE D, 1957, NATURE, V180, P331
HERZBERG G, 1945, DIATOMIC MOL
KALIA RK, 1997, PHYS REV LETT, V78, P2144
KALIA RK, 1997, PHYS REV LETT, V78, P689
KATZ RN, 1980, SCIENCE, V208, P841
LIU AY, 1990, PHYS REV B, V41, P10727
MARTINMORENO L, 1987, PHYS REV B, V35, P9683
MCDONALD IR, 1972, MOL PHYS, V23, P41
MISAWA M, 1979, J NONCRYSTALLINE SOL, V34, P313
NIIHARA K, 1977, J MATER SCI, V12, P1233
PEPPER M, 1980, INSULATING FILMS SEM, V50, P193
POWELL MJ, 1981, APPL PHYS LETT, V38, P794
ROBERTSON J, 1991, PHILOS MAG B, V63, P44
SANFABIAN E, 1989, PHYS REV B, V39, P1844
TERSOFF J, 1986, PHYS REV LETT, V56, P632
TERSOFF J, 1988, PHYS REV B, V37, P6991
TERSOFF J, 1989, PHYS REV B, V39, P5566
UMESAKI N, 1992, J NON-CRYST SOLIDS, V150, P120
VASHISHTA P, 1990, PHYS REV B, V41, P12197
VASSILOU B, 1957, NATURE, V179, P435
VENEZUELA PPM, 1996, PHYS REV LETT, V77, P546
WYCKOFF RWG, 1986, CRYSTAL STRUCTURES
XU Y, 1988, PHYSICA B, V150, P32
NR 33
TC 32
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD OCT 1
PY 1998
VL 58
IS 13
BP 8323
EP 8328
PG 6
SC Physics, Condensed Matter
GA 125HU
UT ISI:000076232100036
ER
PT J
AU Resende, SM
Pliego, JR
De Almeida, WB
TI Free radical mechanism of the Cl-2 addition to acetylene
SO JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS
LA English
DT Article
ID MOLECULAR ELECTRONIC WAVEFUNCTIONS; ATOMS; SUBSTITUTIONS; INTERMEDIATE;
COMPLEXES; CHLORINE; SIGMA; C2H2
AB The free radical mechanism for the addition of Cl-2 to acetylene in the
gas phase has been studied. The structures and energies of reactants,
transition states and products were determined through ab initio
calculations of the stationary points on the potential-energy surface
(PES) for the interaction of these two molecules. Using BD(T)/6-311 +
G(2df,2p)//CASSCF(6,6)/6-31G(d,p) level of theory, the reaction rate
for the initiation step (Cl-2 + C2H2 --> Cl + C2H2Cl) was estimated as
10(-18) 1 mol(-1) s(-1) (at 298.15 K). This leads to the formation of a
small quantity of Cl and C2H2Cl radicals, the chain propagators, and
the following steps will only occur to an appreciable extent after an
induction period, which generates a measurable amount of these
radicals. The following steps were studied at the UCCSD(T)/6-311 +
G(2df,2p)//UMP2/6-31G(d,p) level of theory. The propagation reaction
C2H2 + Cl --> C2H2Cl occurs with an activation energy of -1.22 kcal
mol(-1), and produces a radical C2H2Cl, where the two hydrogens are on
opposite sides of the molecule (trans-isomer). This reaction has a rate
constant 2.85 x 10(10) 1 mol(-1) s(-1) at 298.15 K. The interconversion
of the two isomers of the C2H2Cl radical (cis-trans) is very fast, with
a rate constant 4.75 x 10(10) s(-1) and so these species can be
considered to be in equilibrium. The rate constants for the reaction
C2H2Cl + Cl-2 --> C2H2Cl2 + Cl, where the products trans- and
cis-1,2-dichloroethylenes are formed, are 1.95 x 10(10) and 3.63 x
10(9) 1 mol-l s(-1), respectively, and those for the two polymerization
reactions C2H2 + C2H2Cl --> C2H2C2H2Cl are ca. 10(2) 1 mol(-1) s(-1).
Hence, the latter reactions will not compete with the formation of
C2H2Cl2, and the polymerization products will not be produced in
meaningful amounts. Analysis of the kinetics data gives 97.3% of the
trans-1,2-dichloroethylene and 2.7% of the cis-1,2-dichloroethylene
products.
C1 UFMG, Dept Quim, Lab Quim Computac & Modelagem Mol, ICEX, BR-31270901 Belo Horizonte, MG, Brazil.
RP Resende, SM, UFMG, Dept Quim, Lab Quim Computac & Modelagem Mol, ICEX,
BR-31270901 Belo Horizonte, MG, Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BARTON D, 1979, COMPREHENSIVE ORGANI, V1
BLOEMINK HI, 1994, CHEM PHYS LETT, V223, P162
BLOEMINK HI, 1995, J CHEM SOC FARADAY T, V91, P1891
CIZEK J, 1966, J CHEM PHYS, V45, P4256
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HANDY NC, 1989, CHEM PHYS LETT, V164, P185
KAISER EW, 1992, INT J CHEM KINET, V24, P179
KAISER EW, 1996, J PHYS CHEM-US, V100, P4111
KRISHNAN R, 1980, J CHEM PHYS, V72, P4244
LEGON AC, 1995, CHEM PHYS LETT, V237, P291
LIDE DR, 1993, CRC HDB CHEM PHYSICS
MARCH J, 1985, ADV ORGANIC CHEM REA
MOLLER C, 1934, PHYS REV, V46, P618
PALDUS J, 1972, PHYS REV A, V5, P50
POPLE JA, 1976, INT J QUANTUM CHEM S, V10, P1
POUTSMA MZ, 1966, TETRAHEDRON, V22, P2167
RESENDE SM, 1997, MOL PHYS, V91, P635
ROOS BO, 1987, ADV CHEM PHYSICS, V69
RUEDENBERG K, 1982, CHEM PHYS, V71, P41
RUEDENBERG K, 1982, CHEM PHYS, V71, P51
RUEDENBERG K, 1982, CHEM PHYS, V71, P65
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SIEGBAHN PEM, 1981, J CHEM PHYS, V74, P2384
NR 24
TC 4
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 0956-5000
J9 J CHEM SOC FARADAY TRANS
JI J. Chem. Soc.-Faraday Trans.
PD OCT 7
PY 1998
VL 94
IS 19
BP 2895
EP 2900
PG 6
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 126HM
UT ISI:000076287900004
ER
PT J
AU Lopez-Castillo, A
TI Nonlinear dynamics of the hydrogen molecule
SO PHYSICAL REVIEW A
LA English
DT Article
ID 3-BODY COULOMB PROBLEM; HELIUM ATOM; QUANTUM DEFECTS; STATES;
QUANTIZATION; H-2; MODEL
AB The hydrogen molecule (H-2) contains the basic ingredients for
understanding the chemical bond, even more so than the hydrogen
molecule ion. H-2 is studied in the context of nonlinear dynamics. The
classical mechanics of H-2 is studied in three dimensions with nine,
six, and three degrees of freedom and in one dimension (two degrees of
freedom). The semiclassical quantization is made using the
Bohr-Sommerfeld rules and the Gutzwiller formula to calculate the
eigenvalues of the doubly occupied symmetric excited states of H-2. An
ab initio quantum calculation is performed and compared with
semiclassical results. The difficulties that appear in those
calculations are discussed, and a proposal of the experimental measure
is made.
C1 Univ Fed Sao Carlos, Dept Matemat, Ctr Ciencias & Tecnol, BR-13560970 Sao Paulo, Brazil.
RP Lopez-Castillo, A, Univ Fed Sao Carlos, Dept Matemat, Ctr Ciencias &
Tecnol, Caixa Postal 676, BR-13560970 Sao Paulo, Brazil.
CR BARANGER M, 1987, ANN PHYS-NEW YORK, V177, P330
BATES DR, 1953, PHILOS T ROY SOC A, V246, P215
BAUSCHLICHER CW, 1989, CHEM PHYS LETT, V159, P485
BOHR N, 1913, PHILOS MAG, V25, P10
COVENEY PV, 1984, J PHYS B ATOM MOL PH, V17, P319
DUAN YW, 1995, PHYS REV A, V52, P3497
EBERLY JH, 1990, PHYS REV A, V42, P5750
ERIKSON HA, 1949, PHYS REV, V75, P29
EZRA GS, 1991, J PHYS B ATOM MOL PH, V24, L413
GUBERMAN SL, 1983, J CHEM PHYS, V78, P1404
KRAGH H, 1977, J CHEM EDUC, V54, P208
LEOPOLD JG, 1980, J PHYS B ATOM MOL PH, V13, P1025
LEOPOLD JG, 1980, J PHYS B ATOM MOL PH, V13, P1037
LOPEZCASTILLO A, 1996, J PHYS B-AT MOL OPT, V29, P197
LOPEZCASTILLO A, 1996, PHYS REV LETT, V77, P4516
MENIS T, 1992, J PHYS B ATOM MOL PH, V25, L263
MULLER J, 1995, J CHEM PHYS, V103, P4985
OSTROVSKY VN, 1997, J PHYS B-AT MOL OPT, V30, P151
PAULI W, 1922, ANN PHYS-BERLIN, V68, P177
RAWLINGS D, 1991, MOTTEC 91, P381
RICHTER K, 1992, J PHYS B ATOM MOL PH, V25, P3929
SHIMAMURA I, 1990, PHYS REV A, V41, P3545
STIEFEL EL, 1971, LINEAR REGULAR CELES
STRAND MP, 1979, J CHEM PHYS, V70, P3812
SUGIURA Y, 1927, Z PHYS, V45, P484
TAKAGI H, 1983, PHYS REV A, V27, P691
VANVLECK JH, 1922, PHILOS MAG, V44, P842
WINTGEN D, 1988, PHYS REV LETT, V61, P1803
WINTGEN D, 1992, CHAOS, V2, P19
NR 29
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD SEP
PY 1998
VL 58
IS 3
BP 1846
EP 1858
PG 13
SC Physics, Atomic, Molecular & Chemical; Optics
GA 116MY
UT ISI:000075730200031
ER
PT J
AU De Almeida, WB
Dos Santos, HF
Zerner, MC
TI A theoretical study of the interaction of anhydrotetracycline with
Al(III)
SO JOURNAL OF PHARMACEUTICAL SCIENCES
LA English
DT Article
ID SOLVENT; TETRACYCLINE; ALUMINUM; PRODUCT; AM1
AB In this article the complexation of anhydrotetracycline (AHTC), the
major toxic decomposition product of the antibiotic tetracycline, with
Al(III) has been investigated using the AM1 semiempirical and ab initio
Hartree-Fock levels of theory. Different modes of complexation have
been considered with the structure of tetra- and pentacoordinated
complexes being fully optimized, In the gas phase, processes ii and
iii, which lead to the complexes with stoichiometry MHL2+, are favored.
Structure II ([AlLH2(OH)(H2O)](2+)) has the metal coordinated to the
O-11 and O-12 groups and the O-3 group protonated and is the global
minimum on the potential energy surface for the interaction. In water
solution, the Al(III) is predicted to form predominantly a
tetracoordinated complex at the O-am and O-3 site (V) of the AHTC with
the stoichiometry MH2L3+ (process i). The experimental proposal is the
complexed form with the metal ion coordinated to the O-11-O-12 moiety
(site II). The intramolecular proton transfer, which leads to the most
stable Al(III)-AHTC MHL2+ complex, has not been considered by the
experimentalists. The experimental structure was found to be
unfavorable in our calculations in both gas phase and water solution.
All the semiempirical results are in perfect agreement with the ab
initio calculations. So, we suggest that the experimental assignments
should be revised, taking into account the results obtained in the
present study.
C1 UFMG, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA.
RP De Almeida, WB, UFMG, ICEx, Dept Quim, Lab Quim Computac & Modelagem
Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR ALVAREZFERNANDE.A, 1969, J PHARM SCI, V58, P443
DEALMEIDA WB, 1997, 6 C CURR TRENDS COMP
DEALMEIDA WB, 1997, J CHEM SOC P2, V7, P1335
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DEWAR MJS, 1990, ORGANOMETALLICS, V9, P508
DOSSANTOS HF, 1998, J PHARM SCI, V87, P190
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HASAN T, 1985, J ORG CHEM, V50, P1755
KARELSON M, 1993, J PHYS CHEM-US, V97, P11901
KLANT A, 1993, J CHEM SOC P2, P799
LAMBS L, 1988, INORG CHEM, V27, P3001
MACHADO FC, 1995, J INORG BIOCHEM, V60, P163
MARTIN RB, 1994, ACCOUNTS CHEM RES, V27, P204
PALENIK GJ, 1978, J AM CHEM SOC, V100, P4458
RIVAIL JL, 1996, COMPUTATIONAL CHEM R, V1, P139
SIQUEIRA JM, 1994, J PHARM SCI, V83, P291
SZAFRAN M, 1993, J COMPUT CHEM, V14, P371
TOMASI J, 1994, CHEM REV, V94, P2027
WARSHEL A, 1981, ACCOUNTS CHEM RES, V14, P284
NR 19
TC 13
PU AMER PHARMACEUTICAL ASSN
PI WASHINGTON
PA 2215 CONSTITUTION AVE NW, WASHINGTON, DC 20037 USA
SN 0022-3549
J9 J PHARM SCI
JI J. Pharm. Sci.
PD SEP
PY 1998
VL 87
IS 9
BP 1101
EP 1108
PG 8
SC Chemistry, Medicinal; Chemistry, Multidisciplinary; Pharmacology &
Pharmacy
GA 117MQ
UT ISI:000075785600012
ER
PT J
AU Aleman, C
Casanovas, J
Galembeck, SE
TI PAPQMD parametrization of molecular systems with cyclopropyl rings:
Conformational study of homopeptides constituted by
l-aminocyclopropane-l-carboxylic acid
SO JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN
LA English
DT Article
DE MM and MD techniques; homopeptides; parametrization
ID FORCE-FIELD PARAMETRIZATION; ELECTROSTATIC POTENTIALS; NUCLEIC-ACIDS;
AMINO-ACIDS; AB-INITIO; C-ALPHA,ALPHA-DIALKYLATED GLYCINES; STRUCTURAL
VERSATILITY; ORGANIC-MOLECULES; ENERGY FUNCTIONS; ATOMIC CHARGES
AB The suitability of ab initio, semiempirical and density functional
methods as sources of stretching and bending parameters has been
explored using the PAPQMD (Program for Approximate Parametrization from
Quantum Mechanical Data) strategy. Results show that semiempirical
methods provide parameters comparable to those compiled on empirical
force fields. In this respect the AMI method seems to be a good method
to obtain parameters at a minimum computational cost. On the other
hand, harmonic force fields initially developed for proteins and DNA
have been extended to include compounds containing highly strained
three-membered rings, Like 1-aminocyclopropane-1-carboxylic acid. For
this purpose the cyclopropyl ring has been explicitly parametrized at
the AMI level considering different chemical environments. Finally, the
new set of parameters has been used to investigate the conformational
preferences of homopeptides constituted by
1-aminocyclopropane-1-carboxylic acid. Results indicate that such
compounds tend to adopt a helical conformation stabilized by
intramolecular hydrogen bonds between residues i and i + 3. This
conformation allows the arrangement of the cyclic side chains without
steric clashes.
C1 Univ Politecn Catalunya, ETS Enginyers Ind, Dept Enginyeriia Quim, E-08028 Barcelona, Spain.
Univ Rovira & Virgili, Fac Quim, Dept Quim Fis & Inorgan, E-43005 Tarragona, Spain.
Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Quim, BR-14049901 Ribeirao Preto, Brazil.
RP Aleman, C, Univ Politecn Catalunya, ETS Enginyers Ind, Dept Enginyeriia
Quim, Av Diagonal 647, E-08028 Barcelona, Spain.
CR ALEMAN C, 1991, J COMPUT CHEM, V12, P664
ALEMAN C, 1992, BIOPOLYMERS, V32, P621
ALEMAN C, 1992, J COMPUT AID MOL DES, V6, P331
ALEMAN C, 1993, BIOPOLYMERS, V33, P1811
ALEMAN C, 1993, J COMPUT AID MOL DES, V7, P721
ALEMAN C, 1993, J COMPUT CHEM, V14, P799
ALEMAN C, 1993, J COMPUT CHEM, V14, P799
ALEMAN C, 1994, BIOPOLYMERS, V34, P941
ALEMAN C, 1994, J CHEM SOC P2, P563
ALEMAN C, 1995, J ORG CHEM, V60, P910
ALEMAN C, 1996, J POLYM SCI POL PHYS, V34, P963
ALEMAN C, 1997, J PHYS CHEM B, V101, P5046
ALEMAN C, 1997, PROTEINS, V28, P83
ALEMAN C, 1997, PROTEINS, V29, P575
ALHAMBRA C, 1994, J COMPUT CHEM, V15, P12
ALLINGER NL, 1977, J AM CHEM SOC, V99, P8127
ALLINGER NL, 1989, J AM CHEM SOC, V111, P8551
BAGUS PS, 1977, J CHEM PHYS, V67, P618
BAKOWIES D, 1996, J COMPUT CHEM, V17, P87
BALARAM P, 1992, CURR OPINI STRUCT BI, V2, P1845
BEEKE AD, 1988, PHYS REV A, V38, P3098
BENEDETTI E, 1989, BIOPOLYMERS, V28, P175
BENEDETTI E, 1989, INT J BIOL MACROMOL, V11, P353
BIRNGHAM RC, 1975, J AM CHEM SOC, V97, P1285
BROOKS BR, 1983, J COMPUT CHEM, V4, P187
BROOKS CL, 1988, PROTEINS THEORETICAL
BUCK CW, 1990, J COMPUT CHEM, V11, P623
CHALLACOMBE M, 1991, J CHEM PHYS, V95, P1064
CLARK M, 1989, J COMPUT CHEM, V10, P982
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179
COX SR, 1984, J COMPUT CHEM, V5, P191
DECLERCQ E, 1993, MED RES REV, V13, P229
DECLERCQ E, 1995, J MED CHEM, V38, P2491
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DIBLASIO B, 1993, BIOPOLYMERS, V33, P1037
DINUR U, 1989, J AM CHEM SOC, V111, P5149
DINUR U, 1990, J COMPUT CHEM, V11, P1234
DUNCAN JL, 1969, J MOL SPECTROSC, V30, P253
FERENCZY GG, 1990, J COMPUT CHEM, V11, P159
FOGARASI G, 1984, ANNU REV PHYS CHEM, V35, P191
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HAGLER AT, 1974, J AM CHEM SOC, V96, P5319
HARIHARAN PC, 1974, MOL PHYS, V27, P209
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HERMANS J, 1984, BIOPOLYMERS, V23, P1513
HOPFINGER AJ, 1984, J COMPUT CHEM, V5, P486
HWANG MJ, 1994, J AM CHEM SOC, V116, P2515
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
KARLE IL, 1990, CURR SCI INDIA, V59, P875
KARPLUS M, 1990, NATURE, V347, P631
KOLLMAN P, 1990, AMBER 3 0A
KOTTALAM J, 1990, BIOPOLYMERS, V29, P1409
LEE C, 1988, PHYS REV B, V37, P785
LEE JH, 1991, J COMPUT CHEM, V12, P186
LEONARD JM, 1990, J COMPUT CHEM, V11, P952
LUQUE FJ, 1991, J AM CHEM SOC, V113, P5203
MAPLE JR, 1988, P NATL ACAD SCI USA, V85, P5350
MOMMANY FA, 1975, J PHYS CHEM-US, V79, P2361
NILSSON L, 1986, J COMPUT CHEM, V7, P591
OLIVELLA S, 1984, QCPE B, V4, P109
OROZCO M, 1990, J COMPUT CHEM, V11, P909
OROZCO M, 1993, ACTA CHIM HUNG, V130, P695
OROZCO M, 1993, J COMPUT CHEM, V14, P881
PARK JM, 1995, J COMPUT CHEM, V16, P1011
PRANATA J, 1991, J AM CHEM SOC, V113, P2810
PULAY P, 1978, J CHEM PHYS, V68, P5077
PULAY P, 1983, J CHEM PHYS, V79, P3382
REN J, 1995, NAT STRUCT BIOL, V2, P293
REYNOLDS CA, 1992, J AM CHEM SOC, V114, P9075
SERRALLACH A, 1974, J MOL SPECTROSC, V52, P94
SINGH UC, 1984, J COMPUT CHEM, V5, P191
SMYTHE ML, 1995, J AM CHEM SOC, V117, P5445
STEWART JJP, 1983, Q C P E B, V3, P101
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
TONIOLO C, 1991, MACROMOLECULES, V24, P4004
VANGUNSTEREN WF, 1990, ANGEW CHEM INT EDIT, V29, P992
WEINER SJ, 1986, J COMPUT CHEM, V7, P230
WILLIAMS DE, 1988, J COMPUT CHEM, V9, P745
WILLIAMS DE, 1990, BIOPOLYMERS, V29, P1397
WILLIAMS RW, 1991, J COMPUT CHEM, V12, P761
YAMAGUCHI Y, 1980, J CHEM PHYS, V73, P2310
YAMAMOTO S, 1985, J PHYS CHEM-US, V89, P3298
ZHANG L, 1994, J AM CHEM SOC, V116, P11915
NR 84
TC 9
PU KLUWER ACADEMIC PUBL
PI DORDRECHT
PA SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 0920-654X
J9 J COMPUT AID MOLEC DESIGN
JI J. Comput.-Aided Mol. Des.
PD MAY
PY 1998
VL 12
IS 3
BP 259
EP 273
PG 15
SC Computer Science, Interdisciplinary Applications; Biochemistry &
Molecular Biology; Biophysics
GA 116PR
UT ISI:000075734200004
ER
PT J
AU Sambrano, JR
de Sousa, AR
Queralt, JJ
Andres, J
Longo, E
TI A theoretical analysis on the intramolecular proton transfer of
alpha-alanine in an aqueous medium
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID AXES ELLIPSOIDAL CAVITY; GAS-PHASE; AB-INITIO; NONPERFECT
SYNCHRONIZATION; ABINITIO; GLYCINE; SOLVENT; ACETALDEHYDE; ZWITTERION;
ALGORITHM
AB Intramolecular proton transfer from oxygen to nitrogen atoms in the
alpha-alanine amino acid has been studied by ab initio methods at the
HF/6-31G*, HF/6-31 ++ G** and MP2/6-31 ++ G** levels of calculation
including the solvent effects by means of self-consistent reaction
field theory. An analysis of the results based on the natural bond
orbital charges shows that the transition structure presents an
imbalance in the sense that the charge shift lags behind the proton
transfer and that the bond formation is always in advance with respect
to the bond cleavage. All calculation levels show that the barrier
height associated with the conformational change on alpha-alanine is
larger than the proton transfer process. (C) 1998 Elsevier Science B.V.
All rights reserved.
C1 Univ Jaume I, Dept Ciencias Expt, Castello 12080, Spain.
Univ Estadual Paulista, Dept Matemat, BR-17030360 Bauru, SP, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Queralt, JJ, Univ Jaume I, Dept Ciencias Expt, Apartat 224, Castello
12080, Spain.
EM queralt@vents.uji.es
CR ANDRES J, 1997, RRD PHYS CHEM, V1, P99
BAKER J, 1986, J COMPUT CHEM, V7, P385
BAKER J, 1987, J COMPUT CHEM, V8, P563
BERNASCONI CF, 1987, ACCOUNTS CHEM RES, V20, P301
BERNASCONI CF, 1992, ACCOUNTS CHEM RES, V25, P9
BERNASCONI CF, 1992, ADV PHYS ORG CHEM, V27, P116
BERNASCONI CF, 1994, J AM CHEM SOC, V116, P5405
BERNASCONI CF, 1996, J AM CHEM SOC, V118, P10494
BONACCORSI R, 1984, J AM CHEM SOC, V106, P1945
BORGIS D, 1989, ENZYME CATALYSIS PRO
CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
CSASZAR AG, 1996, J PHYS CHEM-US, V100, P3541
DING YB, 1992, CHEM PHYS LETT, V199, P261
FERSHT A, 1985, ENZYME STRUCTURE MEC
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
JEFFREY GA, 1991, HYDROGEN BONDING BIO
KIRBY AJ, 1997, ACCOUNTS CHEM RES, V30, P290
LODISH H, 1995, MOL CELL BIOL
MIASKIEWICZ K, 1990, J SOLUTION CHEM, V19, P465
MOLLER C, 1934, PHYS REV, V46, P618
MOYANO A, 1989, J ORG CHEM, V54, P573
NAVARRETE JTL, 1997, THEOR CHEM ACC, V98, P5
QUERALT JJ, 1998, CHEM PHYS LETT, V283, P294
QUERALT JJ, 1998, CHEM PHYS, V229, P125
REED AE, 1988, CHEM REV, V88, P899
RINALDI D, 1983, J CHEM PHYS, V78, P834
RINALDI R, 1992, 622 QCPE IND U
RIVAIL JL, 1976, CHEM PHYS, V18, P233
RIVAIL JL, 1982, J CHIM PHYS PCB, V79, P1
STEWART R, 1985, PROTON APPL ORGANIC
TOMASI J, 1994, CHEM REV, V94, P2027
TOMASI J, 1994, STRUCTURE REACTIVITY, P10
TORTONDA FR, 1996, CHEM PHYS LETT, V260, P21
NR 33
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 11
PY 1998
VL 294
IS 1-3
BP 1
EP 8
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 118WP
UT ISI:000075864200001
ER
PT J
AU Almeida, AL
Martins, JBL
Taft, CA
Longo, E
Lester, WA
TI Ab initio and semiempirical studies of the adsorption and dissociation
of water on pure, defective, and doped MgO (001) surfaces
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID LARGE CLUSTER-MODELS; MAGNESIUM-OXIDE; CO INTERACTION;
ELECTRONIC-STRUCTURE; OXIDATIVE DIMERIZATION; CHARGE-DISTRIBUTION;
3D-METAL SURFACES; SOLID HYDROXIDES; ZNO SURFACES; HYDROGEN
AB Ab initio and semiempirical calculations of large cluster models have
been performed in order to study water adsorption and dissociation on
pure, defective (vacancies) and doped (Li, Na, K, Ca, Fe) MgO (001)
surfaces. The geometries of the adsorbed and dissociated molecules have
been optimized preparatory to analysis of binding energies, stretching
frequencies, charge transfers, preferential sites of interaction, and
bond distances. We have used Mulliken, natural bond order, and
electrostatic-derived atomic and overlap populations to analyze charge
distributions in the clusters. We have also investigated transition
structures, activation energies, energy gaps, HOMO, density of states,
SCF orbital energies as well as the acid-base properties of our cluster
model. Numerical results are compared, where possible, with experiment,
interpreted in the framework of various analytical models, and
correlated with site coordination numbers, corner and edge site
preferential locations, and direction of charge transfer. A thorough
charge analysis indicates substantial charge redistribution in the
magnesium oxide crystal as a result of water adsorption and
dissociation in pure, defective, and doped MgO crystals. The
introduction of heavier impurities and vacancies could produce
substantial changes in the physical and chemical properties of the
catalyst and increase the binding and dissociation energies. Some of
the largest changes originate from the introduction of vacancies. Two
and three-dimensional potential energy surfaces are used to investigate
activation energies of hydroxylation on the MgO surface. Stretching
frequencies are correlated with magnesium and oxygen coordination
numbers. (C) 1998 American Institute of Physics.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estat, BR-22290180 Rio De Janeiro, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Almeida, AL, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
Estat, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil.
CR ALMEIDA AL, 1996, UNPUB 4 WORLD C THEO
ANCHELL JL, 1996, J PHYS CHEM-US, V100, P18317
ANDRE JM, 1977, THEOR CHIM ACTA, V43, P239
BECKENKAMP K, 1992, J MOL STRUCT, V270, P393
BESLER BH, 1990, J COMPUT CHEM, V11, P431
BOEHM HP, 1983, CATALYSIS SCI TECHNO, V4, P39
BOUDART M, 1972, J AM CHEM SOC, V94, P6622
CARNEIRO JWD, 1987, J MOL STRUCT THEOCHE, V152, P281
CARNEIRO JWD, 1993, CHEM PHYS LETT, V202, P278
CAUSA M, 1986, PHYS REV B, V33, P1308
CHACONTAYLOR MR, 1996, J PHYS CHEM-US, V100, P7610
COLBOURN EA, 1982, SURF SCI, V117, P571
DAVYDOV AA, 1990, INFRARED SPECTROSCOP
DELEEUW NH, 1995, J PHYS CHEM-US, V99, P17219
DEROUANE EG, 1974, CHEM PHYS LETT, V28, P445
ERMOSHKIN AN, 1982, J PHYS C SOLID STATE, V15, P847
FOTY DC, 1977, J CATAL, V147, P2160
FRISCH MJ, 1992, GAUSSIAN 92
FUKUI K, MECH MOL MIGRATIONS, P2
FUKUI K, 1964, MOL ORBITALS CHEM PH
FUKUI K, 1965, TETRAHEDRON LETT, P4303
FUKUI K, 1966, TETRAHEDRON LETT, P51
GONIAKOWSKI J, 1993, SURF SCI, V287, P188
GONIAKOWSKI J, 1994, SURF SCI, V319, P68
GONIAKOWSKI J, 1994, SURF SCI, V68, P3198
GONIAKOWSKI J, 1995, SURF SCI, V323, P129
GUIMARES TC, IN PRESS PHYS REV B
HAY PJ, 1985, J CHEM PHYS, V82, P270
HERMANSSON K, 1991, J CHEM PHYS, V95, P3578
ITO T, 1985, J AM CHEM SOC, V107, P5062
ITO T, 1985, NATURE, V314, P721
JONES CF, 1984, J CHEM SOC FARAD T 1, V80, P2609
JUJIOKA HH, 1985, SURF SCI LETT, V149, L53
KNOZINGER E, 1993, SURF SCI, V290, P383
KRESIN VZ, 1992, CHEM PHYS LETT, V197, P1
KUNZ AB, 1976, INT J QUANTUM CHEM S, V10, P283
KUNZ AB, 1977, CHEM PHYS LETT, V45, P18
LANGEL W, 1994, PHYS REV LETT, V73, P504
LANGEL W, 1995, J CHEM PHYS, V103, P3240
LEMBERTON JL, 1984, J CATAL, V89, P69
LIANG SHC, 1986, J CATAL, V101, P293
LIN CH, 1987, J AM CHEM SOC, V109, P4808
LONGO E, 1985, ADV CERAM, V10, P592
LONGO E, 1985, LANGMUIR, V1, P456
LONGO E, 1987, HIGH TECH CERAMICS, P399
LUTZ HD, 1987, J MOL STRUCT, V156, P143
MARS P, 1963, ADV CATAL, V14, P35
MARTINS JBL, 1994, J MOL STRUCT, V303, P19
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
MARTINS JBL, 1995, J MOL STRUCT, V330, P411
MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
MARTINS JBL, 1996, THEOCHEM-J MOL STRUC, V363, P249
MCCARTHY MI, 1996, J PHYS CHEM-US, V100, P16990
OKAZAKI S, 1989, J CHEM PHYS, V90, P5595
ONISHI H, 1987, SURF SCI, V191, P479
PACCHIONI G, 1993, PHYS REV B, V48, P573
PAVAO AC, 1991, PHYS REV B, V43, P6962
PAVAO AC, 1991, PHYS REV B, V44, P1910
PAVAO AC, 1994, PHYS REV B, V50, P1868
PAVAO AC, 1994, TRENDS CHEM PHYS, V3, P109
PAVAO AC, 1995, SURF SCI, V323, P340
PAVAO AC, 1995, SURF SCI, V323, P40
PICAUD S, 1993, CHEM PHYS LETT, V209, P340
REED AE, 1985, J CHEM PHYS, V83, P735
RUSSO S, 1992, SURF SCI, V262, P245
SAWABE K, 1994, J CHEM PHYS, V101, P4819
SCAMEHORN CA, 1993, J CHEM PHYS, V99, P2786
SCHONBERGER U, 1995, PHYS REV B, V52, P8788
SEIDL PR, 1988, CHEM PHYS LETT, V373, P1147
SEIDL PR, 1990, CHEM PHYS LETT, V175, P183
SHIDO T, 1984, J CATAL, V89, P69
SHIDO T, 1989, J CHEM SOC FARAD T 1, V85, P441
SINGH UC, 1984, J COMPUT CHEM, V5, P129
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STIRNIMAN MJ, 1996, J CHEM PHYS, V105, P1295
TAFT CA, 1966, CHEM PHYS LETT, V248, P1164
TOSTES JGR, 1994, J MOL STRUCT THEOCHE, V306, P1019
TOSTES JGR, 1995, CHEM PHYS LETT, V237, P33
TOSTES JR, 1996, THEOCHEM-J MOL STRUC, V388, P85
TSYGANENKO AA, 1973, J MOL STRUCT, V19, P579
NR 80
TC 16
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD SEP 1
PY 1998
VL 109
IS 9
BP 3671
EP 3685
PG 15
SC Physics, Atomic, Molecular & Chemical
GA 114ZP
UT ISI:000075639300042
ER
PT J
AU Mendes, MA
Moraes, LAB
Sparrapan, R
Eberlin, MN
Kostiainen, R
Kotiaho, T
TI Oxygen atom transfer to positive ions: A novel reaction of ozone in the
gas phase
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID MASS-SPECTROMETRY; ACYLIUM IONS; RADICAL-CATION; KINETICS; CHEMISTRY;
O3; MECHANISMS; ATMOSPHERE; O-3(-); NO2
AB In the gas phase, neutral ozone (O-3) transfers an oxygen atom to
several positive ions, i.e. the radical cations of pyridines (R-Py+.; R
= H, CH3, C2H5, and Cl), pyrimidine (Pi(+).), and alkyl halides
(CH3X+.; X = Cl and I), and the halogen cations (X+; X = Cl, Br, and
I). Reactivity changes drastically within the halogen series (Cl+ much
less than Br+ less than or equal to I+), whereas no O-transfer occurs
to F+. The oxide derivatives R-Py+-O ., Pi(+)-O ., CH3X+-O ., and XO+
are formed, as demonstrated by pentaquadrupole (QqQqQ) double- and
triple-stage mass spectrometry. No oxygen atom transfer occurs,
however, in "inverse" reactions, i.e., those of ionized ozone (O-3(+).)
with the corresponding neutrals; and charge transfer dominates. Ab
initio calculations suggest that O-transfer from ozone to ionized
pyridine yields ionized pyridine N-oxide via simple nucleophilic
addition of ozone as opposed to 1,3-dipolar cycloaddition. Similar
nucleophilic addition followed by Oz loss is also the most likely
mechanism for O-transfer from ozone to the ionized alkyl halides and
halogen cations. This novel O-transfer reaction to positive ions, which
expands our knowledge of the rich chemistry of ozone, introduces a new
pathway for the gas-phase oxidation of halogen atoms, pyridines,
pyrimidines, alkyl halides, and analogues, and consequently for the
gas-phase generation of their chemically interesting but difficult to
access ionized oxides.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
Univ Helsinki, Dept Pharm, Div Pharmaceut Chem, FIN-00014 Helsinki, Finland.
VTT Chem Technol, FIN-02044 Espoo, Finland.
RP Eberlin, MN, UNICAMP, Inst Chem, CP6154, BR-13083970 Campinas, SP,
Brazil.
CR ARNOLD ST, 1995, J CHEM PHYS, V103, P2454
ATKINSON R, 1984, CHEM REV, V84, P437
BAILEY PS, 1978, OZONATION ORGANIC CH, V1
BUSCH KL, 1988, MASS SPECTROMETRY MA
CACACE F, 1994, SCIENCE, V265, P208
CAREY FA, 1984, ADV ORGANIC CHEM
CARVALHO MC, 1997, J CHEM SOC PERK NOV, P2347
COOKS RG, 1973, METASTABLE IONS
DOMINE F, 1992, J PHYS CHEM-US, V96, P2171
DOUGLAS DJ, 1998, J AM SOC MASS SPECTR, V9, P101
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FEDCHAK JA, 1995, J CHEM PHYS, V103, P981
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GARNER MC, 1996, CHEM PHYS LETT, V248, P20
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
HAKOLA H, 1994, J ATMOS CHEM, V18, P75
HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
HUEY LG, 1995, J PHYS CHEM-US, V99, P5001
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
LEVSEN K, 1983, MASS SPECTROM REV, V2, P77
LI ZJ, 1995, J PHYS CHEM-US, V99, P13445
LIAS SG, 1988, J PHYS CHEM REF D S1, V17
MARCH J, 1985, ADV ORGANIC CHEM
MCEWAN MJ, 1975, CHEM ATMOSPHERE
MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
MOLINA MJ, 1994, PURE APPL CHEM, V265, P18177
MOLINA MJ, 1996, PURE APPL CHEM, V68, P1749
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J ORG CHEM, V62, P5096
NEWSON KA, 1995, INT J MASS SPECTROM, V148, P203
NEWSON KA, 1996, INT J MASS SPECTROM, V153, P151
SCHMELZ T, 1991, CHEM PHYS LETT, V183, P209
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SLANGER TG, 1994, SCIENCE, V265, P1817
SMITH D, 1995, MASS SPECTROM REV, V14, P255
STEINFELD JI, 1987, J PHYS CHEM REF DATA, V16, P911
STEVENSON DP, 1951, DISCUSS FARADAY SOC, P35
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
VIGGIANO AA, 1993, MASS SPECTROM REV, V12, P115
WANG NS, 1990, J PHYS CHEM-US, V94, P8787
NR 47
TC 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 12
PY 1998
VL 120
IS 31
BP 7869
EP 7874
PG 6
SC Chemistry, Multidisciplinary
GA 111CQ
UT ISI:000075420100023
ER
PT J
AU Justo, JF
Bazant, MZ
Kaxiras, E
Bulatov, VV
Yip, S
TI Interatomic potential for silicon defects and disordered phases
SO PHYSICAL REVIEW B
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; 90-DEGREES PARTIAL DISLOCATION;
CONCERTED-EXCHANGE MECHANISM; PURE AMORPHOUS-SILICON; LIQUID SILICON;
FORCE-FIELDS; ELECTRONIC-PROPERTIES; SELF-DIFFUSION; BULK PHASES; SI
AB We develop an empirical potential for silicon which represents a
considerable improvement over existing models in describing local
bonding for bulk defects and disordered phases. The model consists of
two- and three-body interactions with theoretically motivated
functional forms that capture chemical and physical trends as explained
in a companion paper. The numerical parameters in the functional form
are obtained by fitting to a set of ab initio results from
quantum-mechanical calculations based on density-functional theory in
the local-density approximation, which include various bulk phases and
defect structures. We test the potential by applying it to the
relaxation of point defects, core properties of partial dislocations
and the structure of disordered phases, none of which are included in
the fitting procedure. For dislocations, our model makes predictions in
excellent agreement with ab initio and tight-binding calculations. It
is the only potential known to describe both the 30 degrees- and 90
degrees-partial dislocations in the glide set {111}. The structural and
thermodynamic properties of the liquid and amorphous phases are also in
good agreement with experimental and ab initio results. Our potential
is capable of simulating a quench directly from the liquid to the
amorphous phase, and the resulting amorphous structure is more
realistic than with existing empirical preparation methods. These
advances in transferability come with no extra computational cost,
since force evaluation with our model is faster than with the popular
potential of Stillinger-Weber, thus allowing reliable atomistic
simulations of very large atomic systems. [S0163-1829(98)04026-0].
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
MIT, Dept Nucl Engn, Cambridge, MA 02139 USA.
RP Justo, JF, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ALINAGHIAN P, 1994, PHILOS MAG B, V69, P889
ALLEN MP, 1987, COMPUTER SIMULATION
ANTONELLI A, 1996, PHYS REV B, V53, P1310
ARIAS TA, 1994, PHYS REV LETT, V73, P680
BALAMANE H, 1992, PHYS REV B, V46, P2250
BARYAM Y, 1984, PHYS REV LETT, V52, P1129
BATRA IP, 1987, PHYS REV B, V35, P9552
BAZANT MZ, 1996, PHYS REV LETT, V77, P4370
BAZANT MZ, 1997, PHYS REV B, V56, P8542
BERNSTEIN N, 1997, PHYS REV B, V56, P10488
BIGGER JRK, 1992, PHYS REV LETT, V69, P2224
BISWAS R, 1987, PHYS REV B, V36, P7437
BLOCHL PE, 1993, PHYS REV LETT, V70, P2435
BOLDING BC, 1990, PHYS REV B, V41, P10568
BROUGHTON JQ, 1987, PHYS REV B, V35, P9120
BULATOV VV, 1995, PHILOS MAG A, V72, P453
CAR R, 1988, PHYS REV LETT, V60, P204
CARLSSON AE, 1990, PHYS REV B, V41, P1247
CARLSSON AE, 1990, SOLID STATE PHYS, V43, P1
CARLSSON AE, 1990, SPRINGER P PHYSICS, V48, P257
CHELIKOWSKY JR, 1989, PHYS REV LETT, V62, P292
CHELIKOWSKY JR, 1990, PHYS REV B, V41, P5735
CHELIKOWSKY JR, 1991, PHYS REV B, V44, P1538
CSANYI G, 1998, PHYS REV LETT, V80, P3984
DING KJ, 1986, PHYS REV B, V34, P6987
DUESBERY MS, 1991, PHYS REV B, V43, P5143
FORTNER J, 1989, PHYS REV B, V39, P5527
GLAZOV VM, 1969, LIQUID SEMICONDUCTOR
HANSEN LB, 1995, PHYS REV LETT, V75, P4444
HOLENDER JM, 1991, J PHYS-CONDENS MAT, V3, P1947
HUANG YM, 1995, PHYS REV LETT, V74, P3392
ISHIMARU M, 1996, PHYS REV B, V53, P7176
ISMAILBEIGI S, COMMUNICATION
JUSTO JF, UNPUB
KAXIRAS E, 1988, PHYS REV B, V38, P12736
KAXIRAS E, 1992, MODEL SIMUL MATER SC, V1, P91
KAXIRAS E, 1993, PHYS REV B, V47, P1659
KAXIRAS E, 1993, PHYS REV LETT, V70, P3752
KAXIRAS E, 1996, MATER RES SOC S P, V408, P79
KELIRES PC, 1988, PHYS REV LETT, V61, P562
KELLY PJ, 1992, PHYS REV B, V45, P6543
KUGLER S, 1989, PHYS REV B, V40, P8030
KWON I, 1994, PHYS REV B, V49, P7242
LI XP, 1988, PHYS REV B, V38, P3331
LUEDTKE WD, 1988, PHYS REV B, V37, P4656
MISTRIOTIS AD, 1989, PHYS REV B, V39, P1212
NANDEDKAR AS, 1990, PHILOS MAG A, V61, P873
NASTAR M, 1996, PHYS REV B, V53, P13521
NIELSEN OH, 1985, PHYS REV B, V32, P3792
NUNES RW, 1996, PHYS REV LETT, V77, P1516
PANDEY KC, 1986, PHYS REV LETT, V57, P2287
PANDEY KC, 1991, PHYS REV LETT, V66, P915
PARRINELLO M, 1981, J APPL PHYS, V52, P7182
PAYNE MC, 1992, REV MOD PHYS, V64, P1045
POON TW, 1990, PHYS REV LETT, V65, P2161
PORTER LJ, 1997, J APPL PHYS, V81, P96
ROORDA S, 1991, PHYS REV B, V44, P3702
SEONG H, 1996, PHYS REV B, V53, P9791
SIMMONS G, 1971, SINGLE CRYSTAL ELAST
STICH I, 1989, PHYS REV LETT, V63, P2240
STICH I, 1991, PHYS REV B, V44, P11092
STICH I, 1991, PHYS REV B, V44, P4262
STICH I, 1996, PHYS REV LETT, V76, P2077
STILLINGER FH, 1985, PHYS REV B, V31, P5262
SUZUKI T, 1991, DISLOCATION DYNAMICS, P99
TEICHLER H, 1989, SPRINGER P PHYSICS, V35, P25
TERSOFF J, 1988, PHYS REV B, V37, P6991
TERSOFF J, 1988, PHYS REV B, V38, P9902
TRINCZEK U, 1993, PHYS STATUS SOLIDI A, V137, P577
WALLACE DC, 1972, THERMODYNAMICS CRYST
WOOTEN F, 1985, PHYS REV LETT, V54, P1392
NR 71
TC 128
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 1
PY 1998
VL 58
IS 5
BP 2539
EP 2550
PG 12
SC Physics, Condensed Matter
GA 108UQ
UT ISI:000075284300040
ER
PT J
AU Augusti, R
Gozzo, FC
Moraes, LAB
Sparrapan, R
Eberlin, MN
TI The simplest azabutadienes in their N-protonated forms. Generation,
stability, and cycloaddition-reactivity in the gas phase
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID DIELS-ALDER REACTION; PENTAQUADRUPOLE MASS-SPECTROMETER;
MOLECULAR-ORBITAL METHODS; RADICAL-CATION; CARBONYL-COMPOUNDS; ACYLIUM
IONS; BASIS SETS; ISOMERS; TANDEM; DISSOCIATION
AB The simplest azabutadienes, i.e. 1-aza-1,3-butadiene and
2-aza-1,3-butadiene, are generated in their N-protonated forms 1 and 2
via gas-phase dissociative electron ionization of allylamine and
piperidine; respectively. Formation of 1 and 2 is suggested by simple
dissociation mechanisms, and supported by high-accuracy G2 ab initio
calculations, which show the ions to be stable, non-interconverting
species. Whereas 1 and 2 are unreactive toward ethylene and
cyclohexene, 2 reacts with alkenes activated by electron-donating
(OC2H5), electron-withdrawing (CN; COCH3), and vinyl and phenyl
substituents most likely by polar [4(+) + 2] cycloaddition, as
suggested by MS3 experiments and ab initio calculations. The
cycloadduct of 2 with ethyl vinyl ether is unstable and dissociates
promptly by ethanol loss; hence, net C2H2 addition occurs. This novel
vinylation reaction is proposed as a potential structurally diagnostic
test for both 2-azabutadienes and vinyl ethers. Isomer 1 is in general
much less reactive, and abundant adducts are only formed in reactions
with alkenes activated by electron-withdrawing substituents. In
reactions of 1 and 2 with esters (methyl acetate and dimethyl
carbonate), hydrogen-bridged ion-neutral complexes are formed as the
most abundant and stable products, as suggested by the ab initio
calculations. Acetone, fluoroacetone and acetonitrile form abundant
adducts with-bath 1 and 2; However, the experimental and theoretical
results on these adducts provide nb clear structural information.
Reactions of 1 with DMSO occur almost exclusively by proton transfer,
whereas 2 forms an abundant complex with DMSO. Limited reactivity is
observed for I and 2 with acetyl chloride and thionyl chloride; the
minor products observed were those of either dissociative proton
transfer or charge exchange.;The distinctive reactivities of 1 and 2
with styrene, ethyl vinyl ether, and dimethyl sulfoxide contrast to
their identical low energy CID behavior, and allow their
straightforward differentiation in the gas phase.
C1 State Univ Campinas, UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
Univ Fed Minas Gerais, Dept Chem, BR-31270901 Belo Horizonte, MG, Brazil.
RP Eberlin, MN, State Univ Campinas, UNICAMP, Inst Chem, CP 6154,
BR-13083970 Campinas, SP, Brazil.
CR ABBOUD JLM, 1993, J AM CHEM SOC, V115, P12468
BARLUENGA J, 1990, PURE APPL CHEM, V62, P1957
BASHEER MM, UNPUB
BAULD NL, 1992, ADV ELECTRON TRANSFE, V2, P1
BEIFUSS U, 1995, J CHEM SOC CHEM COMM, P2137
BELLVILLE DJ, 1981, J AM CHEM SOC, V103, P718
BOGER DL, 1987, HETER DIELSALDER MET
BOUCHOUX G, 1989, J AM CHEM SOC, V111, P5560
BOUCHOUX G, 1992, J AM CHEM SOC, V114, P10000
BOWERS MT, 1970, J PHYS CHEM-US, V74, P2583
BOYS SF, 1970, MOL PHYS, V19, P553
BUDZIKIEWICZ H, 1964, INTERPRETATION MASS
BUSCH KL, 1988, MASS SPECTROMETRY MA
CARVALHO M, 1998, CHEM-EUR J, V4, P1159
CASTLE LW, 1989, ORG MASS SPECTROM, V24, P637
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
DASS C, 1990, MASS SPECTROM REV, V9, P1
DUFFIELD AM, 1965, J AM CHEM SOC, V87, P810
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1994, J AM SOC MASS SPECTR, V6, P1
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GASSMAN PG, 1987, J AM CHEM SOC, V109, P2182
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GROENEWOLD GS, 1984, J AM CHEM SOC, V106, P539
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KENTTAMAA HI, 1989, J AM CHEM SOC, V111, P4122
KIM T, 1990, J AM CHEM SOC, V112, P6285
KNOELKER HJ, 1995, TETRAHEDRON LETT, V36, P8194
LIAS SG, 1988, J PHYS CHEM REF D S1, V17
LONGEVIALLE P, 1992, MASS SPECTROM REV, V11, P157
LU L, 1995, J MASS SPECTROM, V30, P581
MATTAY J, 1987, ANGEW CHEM INT EDIT, V26, P825
MIGRON Y, 1977, ORG MASS SPECTROM, V12, P500
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J ORG CHEM, V62, P5096
PORTER QN, 1985, MASS SPECTROMETRY HE
SCHMIDT RR, 1973, ANGEW CHEM INT EDIT, V12, P212
SCHMITTEL M, 1997, ANGEW CHEM INT EDIT, V36, P2550
SCHOFFSTALL AM, 1990, ADV CYCLOADDITION, V2, P1
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
TURECEK F, 1984, MASS SPECTROM REV, V3, P85
UGGERUD E, 1992, MASS SPECTROM REV, V11, P389
VANTILBORG MWE, 1980, ORG MASS SPECTROM, V15, P152
WINCEL H, 1989, INT J MASS SPECTROM, V91, P339
NR 55
TC 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD JUL 24
PY 1998
VL 63
IS 15
BP 4889
EP 4897
PG 9
SC Chemistry, Organic
GA 108JQ
UT ISI:000075263100008
ER
PT J
AU Carvalho, M
Gozzo, FC
Mendes, MA
Sparrapan, R
Kascheres, C
Eberlin, MN
TI Locating the charge site in heteroaromatic cations
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE ab initio calculations; collision-induced dissociation; in-molecule
reactions; mass spectrometry
ID GAS-PHASE; SOOT FORMATION; IONS; C3H3+; CHEMISTRY
AB Low-energy collision-induced dissociation (CID) and ion-molecule
reactions with 2-methyl-1,3-dioxolane (MD) performed by pentaquadrupole
(QqQqQ) mass spectrometry were applied to locate the charge site in
isomeric heteroaromatic cations. The 2-, 3-, and 4-pyridyl cations are
indistinguishable by CID. However, as suggest ed by MS3 experiments and
ab initio calculations, the 2-pyridyl cation reacts extensively with MD
by a transacetalization-like mechanism to afford a bicyclic
dihydrooxazolopyridyl cation. The 3- and 4-pyridyl cations, on the
contrary react predominantly with MD by proton transfer, as does the
analogous phenyl cation. The 2-. 4-, and 5-pyrimidyl cations display
characteristic CID behavior. In addition, the 2-pyrimidyl cation reacts
extensively with MD by the transacetalization-like mechanism, whereas
proton transfer occurs predominantly for the 4- and 5-pyrimidyl
cations. The ions thought to be the 2- and 3-furanyl and 2- and
3-thiophenyl cations show indistinguishable CID and ion-molecule
behavior. This is most likely the result of their inherent instability
in the gas phase and their spontaneous isomerization to the
corresponding butynoyl and butynethioyl cations HC=CHCH2C=O+ and
HC=CHCH2C=S+. These isomerizations, which are considerably exothermic
according to G2(MP2) ab initio calculations, are indicated by a series
of experimental results. The ions dissociate upon CID by loss of CO or
CS and undergo transacetalization with MD. Most informative is the
participation of HC=CHCH2C=S+ in a transacetalization/dissociation
sequence with replacement of sulfur by oxygen, which is structurally
diagnostic for thioacylium ions. It is therefore possible to locate the
charge site of the 2-pyridyl and the three 2-, 4-, and 5-pyrimidyl
cations and to identify the isomeric precursors from which they are
derived. However, rapid isomerization to the common HC=CHCH2-C=O(S)(+)
ion eliminates characteristic chemical behavior that could result from
different charge locations in the heteroaromatic 2- and 3-furanyl and
2- and 3-thiophenyl cations.
C1 UNICAMP, State Univ Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, UNICAMP, State Univ Campinas, Inst Chem, CP 6154,
BR-13083970 Campinas, SP, Brazil.
EM eberlin@iqm.unicamp.br
CR AULOOS PJ, 1981, J AM CHEM SOC, V103, P6505
BAYKUT G, 1986, COMBUST SCI TECHNOL, V45, P233
BOWERS MT, 1979, GAS PHASE ION MOL RE, V1
BUSCH KL, 1988, MASS SPECTROMETRY MA
CAMERON A, 1989, J PHYS CHEM-US, V93, P139
CARVALHO MC, 1997, J CHEM SOC PERK NOV, P2347
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
DENHERTOG HJ, 1965, HETEROCYCL CHEM, V4, P121
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FORESMAN JB, 1993, EXPLORING CHEM ELECT
FRANKLIN JL, 1972, ION MOL REACTIONS
FRISCH MJ, 1995, GAUSSIAN94 REVISION
GOZZO FC, UNPUB J ORG CHEM
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
HARRISON AG, 1983, CHEM IONIZATION MASS
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOLMES JL, 1979, CAN J CHEM, V57, P249
HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KAUFFMANN T, 1962, CHEM BER, V95, P949
KAUFFMANN T, 1963, CHEM BER, V96, P2519
KAUFFMANN T, 1965, ANGEW CHEM INT EDIT, V4, P543
KAUFFMANN T, 1965, ANGEW CHEM, V77, P557
KAUFFMANN T, 1971, ANGEW CHEM INT EDIT, V10, P20
KAUFFMANN T, 1971, ANGEW CHEM, V83, P21
LEVSEN K, 1983, MASS SPECTROM REV, V2, P77
LOSSING FP, 1972, CAN J CHEM, V50, P139
MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J CHEM SOC P2, V10, P2105
MORAES LAB, 1997, J ORG CHEM, V62, P5096
RADOM L, 1976, J AM CHEM SOC, V98, P10
SMYTH KC, 1982, COMBUST SCI TECHNOL, V28, P147
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
TSAI BP, 1975, J CHEM PHYS, V63, P4384
NR 39
TC 27
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA MUHLENSTRASSE 33-34, D-13187 BERLIN, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD JUL
PY 1998
VL 4
IS 7
BP 1161
EP 1168
PG 8
SC Chemistry, Multidisciplinary
GA 103ZD
UT ISI:000074987000005
ER
PT J
AU Aleman, C
Ishiki, HM
Armelin, EA
Junior, OA
Galembeck, SE
TI Free energies of solvation for peptides and polypeptides using SCRF
methods
SO CHEMICAL PHYSICS
LA English
DT Article
ID AQUEOUS SOLVATION; HYDROGEN-BOND; AB-INITIO; SOLVENT; MODEL; MOLECULES;
COMPLEXES; CONTINUUM; POLYMERS; RESIDUES
AB The effects of the aqueous solvent in the conformational preferences of
peptides and homopeptides have been investigated using two different
and widely used self-consistent reaction-field models. The free
energies of solvation were predicted using the polarizable continuum
model developed by Tomasi and co-workers and adapted to semi-empirical
hamiltonians by Orozco and Luque, and the solvation model developed by
Cramer and Truhlar. The set of compounds investigated is constituted by
five dipeptides with different chemical nature and structural
properties as well as by two homopeptides in which the size of the
polypeptidic chain was varied. Results provided by the different
methods are compared and discussed. (C) 1998 Elsevier Science B.V. All
rights reserved.
C1 Univ Politecn Catalunya, ETS Engn Ind Barcelona, Dept Engn Quim, E-08028 Barcelona, Spain.
Univ Fed Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Quim, Ribeirao Preto, SP, Brazil.
RP Aleman, C, Univ Politecn Catalunya, ETS Engn Ind Barcelona, Dept Engn
Quim, Diagonal 647, E-08028 Barcelona, Spain.
CR AGUILAR M, 1993, CHEM PHYS, V174, P397
ALAGONA G, 1986, J MOL STRUCT THEOCHE, V137, P263
ALEMAN C, 1994, BIOPOLYMERS, V34, P841
ALEMAN C, 1995, J ORG CHEM, V60, P910
ALEMAN C, 1995, J PHYS CHEM-US, V99, P17653
ALEMAN C, 1996, J BIOMOL STRUCT DYN, V14, P193
ALEMAN C, 1996, J PHYS CHEM-US, V100, P11480
ALEMAN C, 1997, CHEM PHYS, V222, P9
ALEMAN C, 1997, J ORG CHEM, V62, P6562
ALEMAN C, 1997, J PHYS CHEM B, V101, P3441
ALEMAN C, 1997, J PHYS CHEM B, V101, P5046
ALEMAN C, 1997, PROTEINS, V29, P575
ALEMAN R, 1997, PROTEIN-STRUCT FUNCT, V28, P83
BACHS M, 1994, J COMPUT CHEM, V15, P446
BONACCORSI R, 1984, J AM CHEM SOC, V106, P1945
CHIPOT C, 1994, J PHYS CHEM-US, V98, P1601
CHUDINOV GE, 1992, CHEM PHYS, V160, P41
CRAMER CJ, 1991, J AM CHEM SOC, V113, P8552
CRAMER CJ, 1992, SCIENCE, V256, P213
CRAMER CJ, 1995, 95147 UMSI
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
FORD GP, 1993, J MOL STRUCT THEOCHE, V283, P49
FRISCH MJ, 1995, GAUSSIAN94 REVISION
GIESEN DJ, 1995, J AM CHEM SOC, V117, P1057
HARIHARAN PC, 1973, THEOR CHIM ACTA, V23, P213
HAWKINS GD, 606 QCPE
HODGKIN EE, 1990, BIOPOLYMERS, V30, P533
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
KARELSON MM, 1989, TETRAHEDRON COMPUT M, V2, P295
KARELSON MM, 1990, J CHEM SOC P2, P195
LEO AJ, 1993, CHEM REV, V93, P1281
LEON S, 1997, J PHYS CHEM A, V101, P4208
LEON S, 1997, STRUCT CHEM, V8, P39
LUQUE FJ, 1993, J PHYS CHEM-US, V97, P4386
LUZHKOV V, 1992, J COMPUT CHEM, V13, P199
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
MOLLER C, 1934, PHYS REV, V46, P618
NAVAS JJ, 1996, J ORG CHEM, V61, P6849
OROZCO M, 1995, J AM CHEM SOC, V117, P1378
OROZCO M, 1995, J COMPUT CHEM, V16, P563
OROZCO M, 1996, J MOL STRUCT THEOCHE, V371, P269
PIEROTTI RA, 1976, CHEM REV, V76, P717
RAUHUT G, 1993, J AM CHEM SOC, V115, P9174
RINALDI D, 1973, THEOR CHIM ACTA, V32, P57
STEWART JJP, 1993, MOPAC 93 REVISION 2
SZAFRAN M, 1993, J COMPUT CHEM, V14, P371
TAPIA O, 1975, MOL PHYS, V29, P1653
TOMASI J, 1994, CHEM REV, V94, P2027
WANG B, 1992, J COMPUT CHEM, V12, P4162
WILBERG KB, 1993, J AM CHEM SOC, V115, P1078
NR 51
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD JUL 15
PY 1998
VL 233
IS 1
BP 85
EP 96
PG 12
SC Physics, Atomic, Molecular & Chemical
GA ZZ999
UT ISI:000074790600008
ER
PT J
AU Sparrapan, R
Mendes, MA
Ferreira, IPP
Eberlin, MN
Santos, C
Nogueira, JC
TI Gas-phase chemistry of the sulfur hexafluoride fragment ions SFn+
(n=0-5) and SFn2+ (n=2, 4). Ab initio thermochemistry of novel
reactions of S+. and SF+
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MASS-SPECTROMETRY; PROTON AFFINITY; KINETIC METHOD; ISOMERS
AB A systematic study of the gas-phase chemistry of the major positively
charged ions produced by 70 eV dissociative electron ionization of SF6,
i.e., SFn+ (n = 0-5) and SFn2+ (n = 2, 4), has been performed via
pentaquadrupole (QqQqQ) mass spectrometric experiments in conjunction
with G2(MP2) ab initio calculations. Comparison, under exactly the same
15 eV collision conditions, of the SFn+ proclivities to dissociate by F
loss was accomplished via a tandem-in-space three-dimensional MS2 scan.
The experimental SFn+ dissociation proclivities were found to correlate
perfectly with those expected from G2(MP2) dissociation thresholds.
Ion/molecule reactions of mass-selected SFn+ and SFn2+ were performed
with O-2 and the oxygenated neutral gases H2O, CO, CO2, and N2O. The
ions, under the very low energy (near zero) multiple collision
conditions employed, undergo either dissociation by F loss or charge
exchange, or participate in novel reactions that have been corroborated
by both MS3 experiments and G2(MP2) ab initio thermochemistry.
O-abstraction takes place in reactions of SF+ with O-2 and CO, and of
S+. with CO2 and O-2 and the corresponding oxyions F-SO+ and SO+. are
formed to great extents. CO-abstraction that yields ionized carbon
oxysulfide (COS+.) also occurs to a minor extent in reactions of S+.
with CO2. Reactions of SF+ with CO yields a minor COS+. product in a
net sulfur cation (S+.) transfer reaction. Theory corroborates the
experimental observations as the respective O-abstraction and S+.
transfer reactions are predicted by G2(MP2) ab initio thermochemistry
to be the most favorable processes.
C1 State Univ Campinas, UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
Univ Fed Sao Carlos, Dept Chem, BR-13560 Sao Carlos, SP, Brazil.
RP Eberlin, MN, State Univ Campinas, UNICAMP, Inst Chem, CP 6154,
BR-13083970 Campinas, SP, Brazil.
CR BABCOCK LM, 1981, J CHEM PHYS, V74, P5700
BABCOCK LM, 1981, J CHEM PHYS, V75, P3868
CARVALHO M, 1998, CHEM-EUR J, V4, P1159
CHEN CL, 1979, J CHEM PHYS, V71, P2897
CHEUNG YS, 1995, J AM CHEM SOC, V117, P9725
COB JW, 1982, PLASMA CHEM PLASMA P, V2, P1
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
DILLARD JG, 1975, J PHYS CHEM-US, V79, P2455
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FEHSENFELD FC, 1971, J CHEM PHYS, V54, P438
FRISCH MJ, 1995, GAUSSIAN94 REVISION
GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
GRANT ER, 1977, CHEM PHYS LETT, V52, P595
HIRAOKA K, 1995, J AM SOC MASS SPECTR, V6, P1137
IRIKURA KK, 1995, J CHEM PHYS, V102, P5357
JIAO CQ, 1993, J AM CHEM SOC, V115, P6268
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KARACHEVTEV AZ, 1985, SOV J CHEM PHYS, V3, P695
KOMIENKO O, 1997, ANAL CHEM, V69, P1536
LATIMER DR, 1994, J CHEM PHYS, V101, P3410
LYMAN JL, 1973, J PHYS CHEM-US, V77, P883
LYMAN JL, 1977, J CHEM PHYS, V67, P1868
MACKAY GI, 1992, INT J MASS SPECTROM, V117, P387
MCALPINE RD, 1985, ADV CHEM PHYS, V60, P31
MCLAFFERTY FW, 1989, WILEY NBS REGISTRY M, V1
MITCHELL KAR, 1969, CHEM REV, V69, P157
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J ORG CHEM, V62, P5096
PAULING L, 1960, NATURE CHEM BOND
RICHTER R, 1987, J CHEM PHYS, V87, P4615
RICHTER R, 1993, J CHEM PHYS, V87, P4615
SAUERS I, 1986, IEEE T ELECTR INSUL, V21, P111
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SHUL RJ, 1987, J PHYS CHEM-US, V91, P2556
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
SPARRAPAN R, UNPUB J PHYS CHEM A
STONE JA, 1989, INT J MASS SPECTROM, V94, P269
STONE JA, 1989, INT J MASS SPECTROM, V94, P269
TAMURA A, 1987, APPL PHYS LETT, V51, P1503
TICHY M, 1987, INT J MASS SPECTROM, V79, P231
VANBRUNT RJ, 1990, IEEE T ELECTR INSUL, V25, P76
WANG HX, 1993, PLASMA CHEM PLASMA P, V13, P1
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
ZANGERLE R, 1993, INT J MASS SPECTROM, V129, P117
NR 48
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUL 2
PY 1998
VL 102
IS 27
BP 5189
EP 5195
PG 7
SC Chemistry, Physical
GA ZZ640
UT ISI:000074751300006
ER
PT J
AU Casagrande, D
Srivastava, GP
Ferraz, AC
TI Theoretical calculations for Si(001)-(2x1)Cl
SO SURFACE SCIENCE
LA English
DT Article
DE adsorption; atomic geometry; chemisorption; semiconductor surfaces;
surface states
ID CL; PHOTOEMISSION; ADSORPTION; SURFACES; SI
AB We have investigated the atomic geometry, electronic states and bonding
at the Si(001)-(2 x 1) surface covered with a monolayer of Cl. The
calculations were performed with ab initio pseudopotentials, using a
plane wave basis and the local density approximation. We find that the
adsorption of Cl results in an elongated symmetric Si dimer. The
calculated Si-Cl, Si-Si (dimer) and Si-Si (back-bond) distances are
2.08 Angstrom, 2.43 Angstrom and 2.34 Angstrom, respectively. The Si-Cl
bond is inclined at 20 degrees with respect to the surface normal. Our
results for atomic geometry and electronic states are in good agreement
with available experimental data. (C) 1998 Elsevier Science B.V. All
rights reserved.
C1 Univ Exeter, Dept Phys, Exeter EX4 4QL, Devon, England.
Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, Brazil.
RP Srivastava, GP, Univ Exeter, Dept Phys, Stocker Rd, Exeter EX4 4QL,
Devon, England.
EM physics@ac.ex.uk
CR CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
JOHANSSON LSO, 1990, PHYS REV B, V42, P9534
KRUGER P, 1993, PHYS REV B, V47, P1898
LEE LQ, 1994, J PHYS-CONDENS MAT, V6, P6169
LEVINE JD, 1973, SURF SCI, V34, P90
PURDIE D, 1991, J PHYS-CONDENS MAT, V3, P7751
ROWE JE, 1977, PHYS REV B, V16, P1581
THORNTON G, 1989, SURF SCI, V211, P959
TROULLIER N, 1990, SOLID STATE COMMUN, V74, P613
NR 9
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD MAY 15
PY 1998
VL 404
IS 1-3
BP 653
EP 657
PG 5
SC Chemistry, Physical
GA ZY342
UT ISI:000074610800134
ER
PT J
AU Esteves, PM
Mota, CJA
Ramirez-Solis, A
Hernandez-Lamoneda, R
TI Mechanism of superacid catalyzed alkane activation: theoretical ab
initio studies of pentacoordinated carbonium ion rearrangement
SO TOPICS IN CATALYSIS
LA English
DT Article
DE carbonium ion; superacid; rearrangement; alkane activation
ID ELECTROPHILIC REACTIONS; ISOBUTANE CRACKING; ALIPHATIC-HYDROCARBONS;
DEUTERIUM-EXCHANGE; HYDROGEN-TRANSFER; SINGLE BONDS; Y-ZEOLITES; ACID
SITE; 3-CENTER; ETHANE
AB A theoretical ab initio study of the interconversion of
pentacoordinated carbonium ions was carried out. For the isobutonium
cations it was found that the respective C-carbonium ions were lower in
energy than the H-isobutonium ions. Nevertheless, the interconversion
of the 1-H-isobutonium cation in the C-isobutonium ion is a barrierless
process. This suggests that product arisen from C-C protonation in
liquid superacid and zeolite catalyzed alkane activation may be formed
by protonation in the outer and more accessible primary C-H bonds of
isobutane, rather than by direct protonation of the inner and more
steric demanding C-C bonds.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
Univ,CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BOHME DK, 1980, J CHEM PHYS, V73, P4976
BOYS SF, 1970, MOL PHYS, V19, P553
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
CHUPKA WA, 1971, J CHEM PHYS, V54, P4256
COLLINS SJ, 1996, J CHEM SOC FARADAY T, V92, P4347
COMMEYRAS A, 1969, J AM CHEM SOC, V91, P2929
CORMA A, 1985, J CATAL, V93, P30
CORMA A, 1989, ZEOLITES FACTS FIGUR, P49
CORMA A, 1994, J CATAL, V145, P171
DEKOCK RL, 1988, J CHEM EDUC, V65, P194
FRENCH M, 1975, CAN J CHEM, V53, P2268
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GIANNETTO G, 1986, J CHEM SOC CHEM COMM, P1302
GILLESPIE RJ, 1966, J CHEM SOC A, P1170
HAAG WO, 1984, P 8 INT C CAT, P305
HIRAO K, 1984, CHEM PHYS, V89, P237
HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
KIM SJ, 1993, J PHYS CHEM-US, V97, P12232
LOMBARDO EA, 1988, J CATAL, V110, P171
LOMBARDO EA, 1988, J CATAL, V112, P565
MARCH J, 1996, ADV ORG CHEM, P215
MCMURRY JE, 1992, ACCOUNTS CHEM RES, V25, P47
MOTA CJA, IN PRESS J AM CHEM S
MOTA CJA, UNPUB
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1969, J AM CHEM SOC, V91, P3261
OLAH GA, 1972, J AM CHEM SOC, V94, P808
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1973, J AM CHEM SOC, V95, P4952
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1979, SCIENCE, V206, P13
OLAH GA, 1985, SUPERACIDS
OLAH GA, 1987, HYPERCARBON CHEM
OLAH GA, 1992, CHEM ALKANES CYCLOAL, CH13
SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHREINER PR, 1993, J AM CHEM SOC, V115, P9659
SCHREINER PR, 1995, J AM CHEM SOC, V117, P453
SHERTUKDE PV, 1992, J CATAL, V136, P446
SOMMER J, 1992, J AM CHEM SOC, V114, P5884
SOMMER J, 1997, J AM CHEM SOC, V119, P3274
STEFANADIS C, 1991, J MOL CATAL, V67, P363
THOMPSON RC, 1965, INORG CHEM, V4, P1641
TRAEGER JC, 1981, J AM CHEM SOC, V103, P3647
YALURIS G, 1995, J CATAL, V153, P54
YALURIS G, 1995, J CATAL, V153, P65
NR 48
TC 15
PU BALTZER SCI PUBL BV
PI BUSSUM
PA PO BOX 221, 1400 AE BUSSUM, NETHERLANDS
SN 1022-5528
J9 TOPIC CATALYSIS
JI Top. Catal.
PY 1998
VL 6
IS 1-4
BP 163
EP 168
PG 6
SC Chemistry, Applied; Chemistry, Physical
GA ZW644
UT ISI:000074432300019
ER
PT J
AU do Monte, SA
Braga, M
TI Electronic factor for photoinduced electron transfer in
porphyrin-bridge-quinone systems
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID PHOTOSYNTHETIC REACTION CENTER; DISTANCE DEPENDENCE;
RHODOPSEUDOMONAS-VIRIDIS; SPHAEROIDES R-26; FIXED DISTANCES; LONE
PAIRS; MODEL; BICYCLO<2.2.2>OCTANE; SPACERS
AB Quantum-chemical calculations at a semiempirical level (CNDO/S) are
used for porphyrin-bridge-quinone systems and at an ab initio and
semiempirical level for CH2-bridge-CH22- systems. In both cases the
bridge is constituted by a number of aromatic, saturated or mixed
units. From these calculations the electronic factor (Delta) is
obtained, for photoinduced reaction (PET) in the first case and for
thermal reaction in the second case. The relative efficiency of the
bridges is discussed. For phenylene and staffane units, a
non-exponential dependence of Delta with distance is observed for PET,
while for the other two bridges the exponential behavior prevails. (C)
1998 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
RP do Monte, SA, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540
Recife, PE, Brazil.
CR ANTOLOVICH M, 1991, J PHYS CHEM-US, V95, P1933
BENE JD, 1968, J CHEM PHYS, V48, P1807
BENE JD, 1968, J CHEM PHYS, V49, P1221
BENE JD, 1969, J CHEM PHYS, V50, P1126
BERATAN DN, 1986, J AM CHEM SOC, V108, P4321
BORN M, 1920, Z PHYS, V1, P45
BRAGA M, 1992, INT J QUANTUM CHEM, V44, P839
BRAGA M, 1992, J PHYS CHEM-US, V96, P9218
BRAGA M, 1993, J PHYS CHEM-US, V97, P8929
CHANG CH, 1986, FEBS LETT, V205, P82
DEISENHOFER J, 1984, J MOL BIOL, V180, P385
DEISENHOFER J, 1989, SCIENCE, V245, P1463
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
ELLIS RL, 1972, THEOR CHIM ACTA, V26, P131
FRISCH MJ, 1992, GAUSSIAN 92
HELMS A, 1992, J AM CHEM SOC, V114, P6227
JORAN AD, 1984, J AM CHEM SOC, V106, P6090
KHUNDKAR LR, 1994, J AM CHEM SOC, V116, P9700
KIM K, 1994, J PHYS CHEM-US, V98, P11053
KOOPMANS T, 1934, PHYSICA, V1, P104
LARSSON S, 1981, J AM CHEM SOC, V103, P4034
LARSSON S, 1986, J CHEM PHYS, V85, P2548
LARSSON S, 1987, J CHEM PHYS, V86, P5223
LARSSON S, 1991, INT J QUANTUM CHEM, V18, P99
LELAND BA, 1985, J PHYS CHEM-US, V89, P5571
YEATES TO, 1988, P NATL ACAD SCI USA, V85, P7993
NR 26
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JUN 26
PY 1998
VL 290
IS 1-3
BP 136
EP 142
PG 7
SC Physics, Atomic, Molecular & Chemical
GA ZW963
UT ISI:000074466600022
ER
PT J
AU Martins, JBL
Taft, CA
Perez, MA
Stamato, FMLG
Longo, E
TI Theoretical study of metiamide, a histamine H-2 antagonist
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
ID GAS-PHASE; MOLECULAR DETERMINANTS; ACTIVATION MECHANISM; RECEPTOR
MODEL; TAUTOMERISM; HISTAMINE-H2-RECEPTOR; H-2-RECEPTORS;
2-METHYLHISTAMINE; 4-METHYLHISTAMINE; CONFORMATION
AB The requirements for H-2-antagonist activity so far identified for most
of the known antagonists of histamine are the presence of a
heterocyclic ring containing a basic center linked via a methylene
chain to a substituted guanidine or thiourea polar side chain.
Metiamide is a potent H-2 antagonist (pA2 = 6.06). We have used the ab
initio Hartree-Fock (HF) method in order to study the conformational
properties of the N-3-H tautomers of metiamide molecule; and histamine
monocation. Three basis set (the 3-21G*, 6-31G**, and 6-31 + G**) were
used, the results compared, and the geometric parameters fully
optimized. Our results indicate the preference of metiamide for a
folded conformation with an intramolecular hydrogen bonding between the
imidazole ring and one of the NH groups. The optimized geometrical
parameters and charge distributions of both molecules, using the
Mulliken, and natural bond order (NBO) analysis, are given and
discussed. (C) 1998 John Wiley & Sons, Inc.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290180 Rio De Janeiro, Brazil.
Univ Estadual Ponta Grossa, Ponta Grossa, Parana, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
Estatist, R Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil.
CR ALAGONA G, 1988, MOL PHYSICS CHEM BIO, V2, P507
ASH ASF, 1966, BRIT J PHARMACOL CHE, V27, P427
BLACK JW, 1975, J MED CHEM, V18, P905
BONNET JJ, 1973, J AM CHEM SOC, V95, P4829
CAMPILLO M, 1996, J MOL STRUCT THEOCHE, V371, P279
DURANT GJ, 1975, J MED CHEM, V18, P905
ENRIZ RD, 1993, J MOL STRUCT THEOCHE, V280, P5
ERIKS JC, 1993, MOL PHARMACOL, V44, P886
FRANKE R, 1984, THEORETICAL DRUG DES
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GANELLIN CR, 1973, J MED CHEM, V16, P610
GANELLIN CR, 1973, J MED CHEM, V16, P620
GANELLIN CR, 1974, MOL QUANTUM PHARM, P43
GANELLIN CR, 1982, PHARM HISTAMINE RECE, V3
GANELLIN CR, 1993, MEDICINAL CHEM, CH3
GIRALDO J, 1992, MOL PHARMACOL, V42, P373
GREEN JP, 1977, P NATL ACAD SCI USA, V74, P5697
HERNANDEZLAGUNA A, 1995, J PHYS CHEM-US, V99, P9087
JOESTEN MD, 1974, HYDROGEN BONDING
KERNS RC, 1978, J AM CHEM SOC, V100, P6587
KIER LB, 1968, J MED CHEM, V11, P441
KIER LB, 1986, J MED CHEM, V11, P441
KIMURA E, 1984, CHEM PHARM BULL, V32, P3569
LAGUNA AH, 1993, J AM CHEM SOC, V115, P1450
LAGUNA AH, 1995, J MOL STRUCT THEOCHE, V335, P77
LAGUNA AH, 1995, J PHYS CHEM-US, V99, P9087
LUQUE FJ, 1990, J CHIM PHYS PCB, V87, P1569
MAZUREK AP, 1987, MOL PHARMACOL, V31, P345
NAGY PI, 1994, J AM CHEM SOC, V116, P4898
PARDO L, 1991, MOL PHARMACOL, V40, P980
PIMENTEL GC, 1960, HYDROGEN BOND
PROUT K, 1974, ACTA CRYSTALLOGR B, V30, P2284
PULLMAN B, 1974, MOL PHARMACOL, V10, P360
REGGIO P, 1986, J MED CHEM, V29, P2412
RICHARDS WG, 1977, QUANTUM PHARM
SCHWARTZ JC, 1986, INNOVATIVE APPROACHE, P73
SMEYERS YG, 1985, J MOL STRUCT THEOCHE, V123, P431
SMEYERS YG, 1985, QSAR STRATEGIES DESI, P374
SMEYERS YG, 1990, J MOL STRUCT THEOCHE, V207, P157
STAMATO FML, 1990, J MOL STRUCT THEOCHE, V210, P447
STAMATO FML, 1992, J MOL STRUCT THEOCHE, V254, P505
TAPIA O, 1990, INT J QUANTUM CHEM, V38, P727
TOPIOL S, 1984, J MED CHEM, V27, P1531
TOPIOL S, 1987, J COMPUT CHEM, V8, P142
VEIDIS MV, 1969, J CHEM SOC A, V17, P2659
VINORADOV SN, 1971, HYDROGEN BONDING
VOGELSANGER B, 1991, J AM CHEM SOC, V113, P7864
WEINSTEIN H, 1976, MOL PHARMACOL, V12, P738
WEINSTEIN H, 1986, MOL PHARMACOL, V29, P28
NR 49
TC 9
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD JUL 15
PY 1998
VL 69
IS 1
BP 117
EP 128
PG 12
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA ZV457
UT ISI:000074306500013
ER
PT J
AU Rocha, WR
De Almeida, WB
TI Theoretical study of the olefin insertion reaction in the
heterobimetallic Pt(H)(PH3)(2)(SnCl3)(C2H4) compound
SO ORGANOMETALLICS
LA English
DT Article
ID ASYMMETRIC HYDROFORMYLATION; BERRY PSEUDOROTATION; CRYSTAL-STRUCTURE;
BASIS-SETS; COMPLEXES; REARRANGEMENT; PHOSPHORUS; MOLECULES; NMR; MO
AB Ab initio MO calculations at the MP4(SDQ)//MP2 level of theory were
carried out to investigate the energies and reaction mechanism for the
olefin insertion reaction (first step in the olefin hydroformylation
catalytic cycle) using heterobimetallic trans-Pt(H)(PH3)(2)(SnCl)(3) as
the active catalytic species. The electronic effects of SnCl3 on the
trigonal-bipyramidal intermediates formed were analyzed through the
charge decomposition analysis method. The results show that the major
role of the SnCl3 ligand is to stabilize the pentacoordinated
intermediates as well as to weaken the Pt-H bond trans to it, favoring
the insertion.
C1 UFMG, Dept Quim, Lab Quim Computac & Modelagem Mol, ICRx, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, UFMG, Dept Quim, Lab Quim Computac & Modelagem Mol,
ICRx, BR-31270901 Belo Horizonte, MG, Brazil.
CR AGBOSSOU F, 1995, CHEM REV, V95, P2485
ALBINATI A, 1985, J ORGANOMET CHEM, V295, P239
ANTES I, 1995, ORGANOMETALLICS, V14, P4263
CLARK HC, 1973, INORG CHEM, V12, P357
CORNILS B, 1980, NEW SYNTHESIS CARBON
DAPPRICH S, 1995, ANGEW CHEM INT EDIT, V34, P354
DAPPRICH S, 1995, ANGEW CHEM, V107, P383
DAPPRICH S, 1995, J PHYS CHEM-US, V99, P9352
DAVIDSON PJ, 1976, CHEM REV, V76, P219
DELPRA A, 1979, J CHEM SOC DA, P1862
DEMUYNCK J, 1977, NOUVEAU J CHIM, V1, P217
FRENKING G, 1997, J CHEM SOC DALT 0521, P1653
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GOMEZ M, 1991, ORGANOMETALLICS, V10, P4036
HARMON RE, 1973, CHEM REV, V73, P21
HAY PJ, 1985, J CHEM PHYS, V82, P270
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOFFMANN R, 1972, J AM CHEM SOC, V94, P3047
HOLLWARTH A, 1993, CHEM PHYS LETT, V208, P237
HOLMES RR, 1972, ACCOUNTS CHEM RES, V5, P296
HOLT MS, 1989, CHEM REV, V89, P11
JOHNSON BFG, 1972, J CHEM SOC CHEM COMM, P1312
KOGA N, 1988, J AM CHEM SOC, V110, P3417
KOGA N, 1991, CHEM REV, V91, P823
KOLLAR L, 1987, J ORGANOMET CHEM, V330, P305
KOLLAR L, 1988, J ORGANOMET CHEM, V350, P277
MUSAEV DG, 1996, ADV CHEM PHYS, V95, P61
PARRINELLO G, 1987, J AM CHEM SOC, V109, P7122
ROCHA WR, 1997, INT J QUANTUM CHEM, V65, P643
ROMEO R, 1975, J MOLECULAR CATAL, V1, P325
ROSSI AR, 1975, INORG CHEM, V14, P365
ROUNDHILL DM, 1975, ADV ORGANOMET CHEM, V13, P273
SCHWAGER I, 1976, J CATAL, V45, P256
SCRIVANTI A, 1986, J ORGANOMET CHEM, V314, P369
STRICH A, 1973, J AM CHEM SOC, V95, P5574
STRICH A, 1978, INORG CHEM, V4, P942
THORN DL, 1978, J AM CHEM SOC, V100, P2079
UGI I, 1971, ACCOUNTS CHEM RES, V4, P288
NR 38
TC 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD MAY 11
PY 1998
VL 17
IS 10
BP 1961
EP 1967
PG 7
SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
GA ZP802
UT ISI:000073789900015
ER
PT J
AU Ishiki, HM
Aleman, C
Galembeck, SE
TI Conformational preferences of flavone and isoflavone in the gas phase,
aqueous solution and organic solution
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; AB-INITIO; MODEL; PARAMETRIZATION;
PARAMETERS; SOLVENT; STATES; ENERGY
AB Flavone and isoflavone are an important class of secondary metabolites
that are widely distributed in nature. In this Letter we have
determined the conformational preferences of each compound in the gas
phase, aqueous solution and organic solution. Gas-phase calculations
were performed using AM1, MNDO, HF/3-21G, HF/6-31G(d) and
B3-LYP/6-31G(d) calculations. Besides solution calculations were
performed using the MST solvation model. (C) 1998 Elsevier Science B.V.
All rights reserved.
C1 Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Quim, Lab Modelagem Mol, BR-14049902 Ribeirao Preto, SP, Brazil.
Univ Politecn Catalunya, ETS Engn Ind Barcelona, Dept Engn Quim, E-08028 Barcelona, Spain.
RP Galembeck, SE, Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao
Pret, Dept Quim, Lab Modelagem Mol, Ave Bandelrantes 3900, BR-14049902
Ribeirao Preto, SP, Brazil.
CR ALEMAN C, 1996, J PHYS CHEM-US, V100, P1524
ALEMAN C, 1997, IN PRESS J ORG CHEM
BACHS M, 1994, J COMPUT CHEM, V15, P446
BAKER J, 1986, J COMPUT CHEM, V7, P385
BECKE AD, 1988, PHYS REV A, V38, P3098
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BLASDALE WC, 1945, J AM CHEM SOC, V67, P491
CODY V, 1994, J MOL STRUCT, V317, P89
COLLIE JN, 1899, J CHEM SOC, V75, P710
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
FOTSIS T, 1997, CANCER RES, V57, P2916
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P203
KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
KOES RE, 1994, BIOESSAYS, V16, P123
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LEANDERSON P, 1997, FREE RADICAL BIO MED, V23, P235
LEE C, 1988, PHYS REV B, V37, P785
LUQUE FJ, 1993, J PHYS CHEM-US, V97, P4386
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
MAHMOOD N, 1996, BIOCHEM BIOPH RES CO, V229, P73
MIERTUS S, 1981, CHEM PHYS, V55, P1981
MIERTUS S, 1982, CHEM PHYS, V65, P239
MIYAKE T, 1997, J AGR FOOD CHEM, V45, P1819
MOLLER C, 1934, PHYS REV, V46, P618
PIEROTTI RA, 1976, CHEM REV, V76, P717
RASTELLI G, 1995, EUR J MED CHEM, V30, P141
STEWART JJP, 1990, QCPE B, V10, P86
VAYA J, 1997, FOOD CHEM, V45, P3004
VAYA J, 1997, FREE RADICAL BIO MED, V23, P302
VENKATARAMAN K, 1962, CHEM FLAVONOIDS COMP
VRIELYNCK L, 1993, J MOL STRUCT, V297, P227
VRIELYNCK L, 1994, SPECTROCHIM ACTA A, V50, P2177
NR 34
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 8
PY 1998
VL 287
IS 5-6
BP 579
EP 584
PG 6
SC Physics, Atomic, Molecular & Chemical
GA ZP121
UT ISI:000073718500016
ER
PT J
AU Prudente, FV
Neto, JJS
TI The fitting of potential energy surfaces using neural networks.
Application to the study of the photodissociation processes
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DISCRETE VARIABLE REPRESENTATION; CROSS-SECTIONS; SCATTERING; MOLECULES
AB A back-propagation neural network is utilized to fit potential energy
surfaces and the transition dipole moment of the HCl+ ion, using the ab
initio electronic energies calculated by Pradhan, Kirby and Dalgarno.
These surfaces are used in the study of the photodissociation process.
The photodissociation cross section is calculated utilizing the equally
spaced discrete variable representation and the negative imaginary
potential method. (C) 1998 Elsevier Science B.V. All rights reserved.
C1 Univ Brasilia, Dept Fis, BR-70910900 Brasilia, DF, Brazil.
RP Prudente, FV, Univ Brasilia, Dept Fis, CP 04455, BR-70910900 Brasilia,
DF, Brazil.
CR BISHOP CM, 1982, REV SCI INSTRUM, V63, P4450
BLANK TB, 1995, J CHEM PHYS, V103, P4129
BROWN DFR, 1996, J CHEM PHYS, V105, P7597
COLBERT DT, 1992, J CHEM PHYS, V96, P1982
DARSEY JA, 1991, CHEM PHYS LETT, V177, P189
FRIEDMAN JH, 1991, ANN STAT, V19, P1
GARCIA E, 1985, MOL PHYS, V56, P621
MEYER W, 1986, J CHEM PHYS, V84, P891
PRADHAN AD, 1991, J CHEM PHYS, V95, P9009
PRESS WH, 1986, NUMERICAL RECIPES
PRUDENTE FV, 1997, J MOL STRUC-THEOCHEM, V394, P169
RODRIGUEZ A, 1991, J CHEM PHYS, V86, P4401
ROM N, 1991, CHEM PHYS, V151, P199
SEIDEMAN T, 1992, J CHEM PHYS, V96, P4412
SEIDEMAN T, 1992, J CHEM PHYS, V97, P2499
SEIDEMAN T, 1993, J CHEM PHYS, V98, P1989
SIMONS G, 1973, J CHEM PHYS, V59, P3229
SUMPTER BG, 1994, ANNU REV PHYS CHEM, V45, P439
VANDISHOECK EF, 1982, J CHEM PHYS, V77, P3693
ZUPAN J, 1993, NEURAL NETWORK CHEM
NR 20
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 8
PY 1998
VL 287
IS 5-6
BP 585
EP 589
PG 5
SC Physics, Atomic, Molecular & Chemical
GA ZP121
UT ISI:000073718500017
ER
PT J
AU Sambrano, JR
Andres, J
Beltran, A
Sensato, F
Longo, E
TI Theoretical study of the structure and stability of NbxOy, and NbxOy+
(x = 1-3; y = 2-5, 7, 8) clusters
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; ELECTRON LOCALIZATION; TOPOLOGICAL ANALYSIS;
EXACT EXCHANGE; BONDS; IONS
AB Geometric, thermodynamic and electronic properties of cluster neutrals
NbxOy and cations NbxOy+ (x = 1-3; y = 2-5, 7, 8) have been
characterized theoretically. A DFT calculation using a hybrid
combination of B3LYP with contracted Huzinaga basis sets. Numerical
results of the relative stabilities, ionization potentials and band
gaps of different clusters are in agreement with experiment. Analysis
of dissociation channels supports the more stable building blocks as
formed by NbO2, NbO2+ NbO3 and NbO3+ stoichiometries. The net atomic
charges suggest that oxygen donor molecules can interact more favorably
on central niobium atoms of cluster cations, while the interaction with
oxygen acceptor molecules is more favorable on the terminal oxygen
atoms of neutral clusters. A topological analysis of the electron
localization function gradient field indicates that the clusters may be
described as having a strong ionic interaction between Nb and O atoms.
Published by Elsevier Science B.V.
C1 Univ Estadual Paulista, Dept Matemat, BR-17030360 Bauru, SP, Brazil.
Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
Univ Fed Sao Carlos, Dept Quim, LIEC, BR-13565905 S Carlos, SP, Brazil.
RP Sambrano, JR, Univ Estadual Paulista, Dept Matemat, CP 473, BR-17030360
Bauru, SP, Brazil.
CR BADER RFW, 1990, ATOMS MOL
BAKER J, 1995, CHEM PHYS LETT, V237, P53
BECKE AD, 1990, J CHEM PHYS, V92, P5397
BECKE AD, 1993, J CHEM PHYS, V98, P5648
CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
CASTLEMAN AW, 1986, CHEM REV, V86, P589
DENG HT, 1996, J PHYS CHEM-US, V100, P13386
ELAZHARY AA, 1996, J PHYS CHEM-US, V100, P15056
FOSTER JP, 1980, J AM CHEM SOC, V102, P7211
GALBRAITH JM, 1996, J CHEM PHYS, V105, P862
HOLTHAUSEN MC, 1995, CHEM PHYS LETT, V240, P245
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
HUZINAGA S, 1985, BASIS SET MOL CALCUL
JENA P, 1992, PHYSICS CHEM FINITE, V374
KEESEE RG, 1986, J PHYS CHEM REF DATA, V15, P1011
LABONOWSKY JK, 1991, DENSITY FUNCTIONAL M
LEE C, 1988, PHYS REV B, V37, P785
LEE C, 1993, PHYS REV B, V98, P5648
LOPEZ X, 1996, CAN J CHEM, V74, P1032
NOURY S, 1997, TOPMOD PACKAGE
PARR RG, 1989, DENSITY FUNCTIONAL T
RAUHUT G, 1995, J PHYS CHEM-US, V99, P3093
REED AE, 1985, J CHEM PHYS, V83, P735
REED AE, 1988, CHEM REV, V88, P899
SAVIN A, 1992, ANGEW CHEM INT EDIT, V31, P187
SAVIN A, 1996, CAN J CHEM, V74, P1088
SEMINARIO JM, 1995, MODERN DENSITY FUNCT
SEMINARIO M, 1995, DENSITY FUNCTIONAL T
SILVI B, 1994, NATURE, V371, P683
STEVENS PJ, 1994, J PHYS CHEM-US, V98, P11623
WIERZBICKI A, 1996, J PHYS CHEM-US, V100, P11250
XU YC, 1995, J AM CHEM SOC, V117, P5413
ZIEGLER T, 1993, J AM CHEM SOC, V115, P636
ZIEGLER T, 1993, J AM CHEM SOC, V115, P636
NR 34
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 8
PY 1998
VL 287
IS 5-6
BP 620
EP 626
PG 7
SC Physics, Atomic, Molecular & Chemical
GA ZP121
UT ISI:000073718500023
ER
PT J
AU Bettega, MHF
Oliveira, AJS
Natalense, APP
Lima, MAP
Ferreira, LG
TI Static-exchange cross sections for electron-collisions with B2H6, C2H6,
Si2H6, and Ge2H6
SO EUROPEAN PHYSICAL JOURNAL D
LA English
DT Article
ID NORM-CONSERVING PSEUDOPOTENTIALS; LOW-ENERGY ELECTRONS;
INELASTIC-SCATTERING; POLYATOMIC-MOLECULES; ABINITIO; ETHANE;
EXCITATION; METHANE; SNH4; CH4
AB We report integral and differential cross sections from 5-30 eV for
elastic scattering of electrons by X2H6 (X=B, C, Si, Ge) obtained using
the Schwinger Multichannel Method with Pseudopotentials [M.K.F.
Bettega, L.G. Ferreira, M.A.P. Lima, Phys. Rev. A 47, 1111 (1993)]. We
compare our results with available experimental data and other
theoretical results, and also with previous results for XH4 (X=C, Si,
Ge) [M.H.F. Bettega, A.P.P. Natalense, M.A.P. Lime, L.G. Ferreira, J.
Chem. Phys. 103, 10566 (1995)]. To our knowledge this is the first ab
initio calculation of the B2H6 and Ge2H5 electron scattering cross
sections.
C1 Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Sao Paulo, Brazil.
UFMa, Dept Fis, BR-65040020 Sao Luiz, MA, Brazil.
RP Bettega, MHF, Univ Fed Parana, Dept Fis, Caixa Postal 19081,
BR-81531990 Curitiba, Parana, Brazil.
CR BACHELET G, 1982, PHYS REV B, V46, P4199
BETTEGA MHF, 1993, PHYS REV A, V47, P1111
BETTEGA MHF, 1995, J CHEM PHYS, V103, P10566
BETTEGA MHF, 1996, INT J QUANTUM CHEM, V60, P821
BETTEGA MHF, 1996, J CHEM PHYS, V105, P1029
CURRY PJ, 1985, J PHYS B ATOM MOL PH, V18, P2303
DILON MA, 1994, J PHYS B ATOM MOL PH, V27, P1209
DUNNING TH, 1970, J CHEM PHYS, V53, P2823
GILLAN CJ, 1987, J PHYS B ATOM MOL PH, V20, P4585
HAMANN DR, 1979, PHYS REV LETT, V43, P1494
LIMA MAP, 1990, PHYS REV A, V41, P327
MAPSTONE B, 1992, J PHYS B ATOM MOL PH, V25, P491
NATALENSE APP, 1995, PHYS REV A, V52, R1
NATALENSE APP, 1996, PHYS REV A, V54, P5435
NESTMANN BM, 1994, J PHYS B ATOM MOL PH, V27, P2297
PFINGST K, 1994, J PHYS B ATOM MOL PH, V27, P2283
RESCIGNO TN, 1992, PHYS REV A, V45, P2894
RESCIGNO TN, 1992, PHYS REV A, V45, P7800
RESCIGNO TN, 1996, J CHEM PHYS, V104, P120
SUEOKA O, 1986, J PHYS B ATOM MOL PH, V19, P4035
SUN WG, 1992, J CHEM PHYS, V97, P5480
TAKATSUKA K, 1981, PHYS REV A, V24, P2473
TAKATSUKA K, 1984, PHYS REV A, V30, P1734
TANAKA H, 1988, J PHYS B ATOM MOL PH, V21, P1255
VARELLA MTD, 1997, Z PHYS D ATOM MOL CL, V39, P59
WINSTEAD C, 1991, J CHEM PHYS, V94, P5455
NR 26
TC 7
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6060
J9 EUR PHYS J D
JI Eur. Phys. J. D
PD MAR
PY 1998
VL 1
IS 3
BP 291
EP 296
PG 6
SC Physics, Atomic, Molecular & Chemical
GA ZM841
UT ISI:000073581700010
ER
PT J
AU Kahlal, S
Saillard, JY
Hamon, JR
Manzur, C
Carrillo, D
TI Molecular orbital analysis of the metal-hydrazide(2-) bonding in
co-ordination chemistry
SO JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
LA English
DT Review
ID X-RAY CRYSTAL; TUNGSTEN-DINITROGEN COMPLEXES; TRANSITION-METAL
COMPLEXES; BRIDGING ALKOXO LIGANDS; STRUCTURAL CHARACTERIZATION;
COORDINATED DINITROGEN; HYDRAZIDO(2-) COMPLEXES; MOLYBDENUM COMPLEXES;
ELECTRONIC-STRUCTURE; NITROGEN-FIXATION
AB The bonding in mono-and bis-hydrazido metal complexes has been studied
with the help of EHMO and ab initio calculations on various models as
well as on free hydrazide. The theoretical results have been analysed
together with a collection of structural data obtained through a
Cambridge Data Base search covering 118 compounds. Although generally
described as being a hydrazide(2-) ligand, its oxidation state is often
closer -1 in early transition-metal complexes, corresponding to the
following occupation of its frontier orbitals:
(sigma(n))(2)(pi(NN))(2)-(pi(sigma))(2)(pi*(NN))(1). The occupied
hydrazido pi(NN) orbital, which does not interact significantly with
the metal, is largely responsible for the significant double-bond
character of the N-N bond. The partial population of the pi*(NN) level,
which tends to reduce the N-N bond order, is partly balanced by
depopulation of the somewhat antibonding pi(sigma) orbital. Assuming
the traditional hydrazido(2-) formal charge, the ligand is a
six-electron donor in monohydrazido metal species if co-ordinated
linearly. If significantly bent, it is a four-electron donor. In the
case of cis bis(hydrazido) species, the two formally hydrazide(2-)
ligands act generally as a 10-electron donor system.
C1 Valparaiso Univ, Inst Quim, Lab Quim Inorgan, Valparaiso, Chile.
Univ Rennes 1, UMR CNRS 6511, Chim Solide & Inorgan Mol Lab, F-35042 Rennes, France.
Univ Rennes 1, UMR CNRS 6509, F-35042 Rennes, France.
RP Saillard, JY, Valparaiso Univ, Inst Quim, Lab Quim Inorgan, Ave Brasil
2950, Valparaiso, Chile.
CR *CAMBR CRYST DAT C, 1997, CAMBR DAT BAS SYST V
ALBRIGHT TA, 1985, ORBITAL INTERACTIONS
AMMETER JH, 1978, J AM CHEM SOC, V100, P3686
AOSHIMA T, 1992, J ORGANOMET CHEM, V423, P39
ARNDTSEN BA, 1991, J AM CHEM SOC, V113, P4971
ARNDTSEN BA, 1992, J AM CHEM SOC, V114, P7041
BAKAR MA, 1988, J CHEM SOC DA, P2525
BAKAR MA, 1988, J CHEM SOC DA, P2545
BARCLAY JE, 1990, J CHEM SOC DA, P2503
BARRIENTOSPENNA CF, 1982, INORG CHEM, V21, P2578
BARRY JT, 1997, POLYHEDRON, V16, P2113
BENSON MT, 1995, INORG CHEM, V34, P2348
BISHOP MW, 1979, J CHEM SOC DA, P1600
BISHOP PT, 1988, J ORGANOMET CHEM, V341, P373
BLOCK E, 1991, INORG CHEM, V30, P1736
BLOCK E, 1991, INORG CHIM ACTA, V181, P227
BLOWER PJ, 1985, J CHEM SOC DA, P2647
BRIDGEMAN AJ, 1995, J CHEM SOC DA, P1023
BULTITUDE J, 1986, J CHEM SOC CHEM COMM, P1748
BURRELL AK, 1994, J AM CHEM SOC, V116, P3813
BURT RJ, 1982, J CHEM SOC DA, P2295
BUSTOS C, 1991, INORG CHIM ACTA, V185, P25
BUSTOS C, 1994, INORG CHEM, V33, P1427
BUSTOS C, 1994, INORG CHEM, V33, P4937
CAI S, 1996, ORGANOMETALLICS, V15, P1023
CARRILLO D, 1992, INORG CHIM ACTA, V197, P209
CHATT J, 1979, J ORGANOMET CHEM, V170, C6
CHATT J, 1979, TRANSIT METAL CHEM, V4, P271
CHATT J, 1980, J CHEM SOC CHEM COMM, P786
CHATT J, 1982, INORG CHEM, V21, P2383
CHATT J, 1982, J CHEM SOC DA, P1041
CHATT J, 1982, J CHEM SOC DA, P345
CHISHOLM MH, 1987, COMPREHENSIVE COORDI, V2, P161
COIA GM, 1994, J AM CHEM SOC, V116, P3649
COIA GM, 1997, INORG CHEM, V36, P2341
CRAMER RE, 1988, ORGANOMETALLICS, V7, P841
CRICHTON BAL, 1980, TRANSIT METAL CHEM, V5, P316
CUNDARI TR, 1992, J AM CHEM SOC, V114, P7879
CUNDARI TR, 1993, ORGANOMETALLICS, V12, P4971
DAHLSTROM PL, 1982, INORG CHEM, V21, P933
DANOPOULOS AA, 1994, J CHEM SOC DA, P907
DANOPOULOS AA, 1997, POLYHEDRON, V16, P1081
DAY VW, 1976, J ORGANOMET CHEM, V112, C55
DEBORD JRD, 1993, INORG CHEM, V32, P785
DEETH RJ, 1991, J CHEM SOC DA, P1875
DEHNICKE K, 1989, POLYHEDRON, V8, P707
DEHNICKE K, 1993, CHEM REV, V93, P981
DILWORTH JR, 1981, J CHEM SOC CHEM COMM, P132
DILWORTH JR, 1982, J AM CHEM SOC, V104, P365
DILWORTH JR, 1983, INORG CHIM A-BIOINOR, V79, P208
DILWORTH JR, 1983, J CHEM SOC DA, P1489
DILWORTH JR, 1983, J CHEM SOC DA, P455
DILWORTH JR, 1985, INORG CHEM, V24, P2594
DILWORTH JR, 1992, POLYHEDRON, V11, P147
DILWORTH JR, 1993, POLYHEDRON, V12, P513
DILWORTH JR, 1997, J CHEM SOC DALT 0121, P269
DUBOIS DL, 1977, NOUV J CHIM, V1, P479
EINSTEIN FWB, 1982, INORG CHEM, V21, P2585
EMSLEY J, 1989, ELEMENTS
FITZROY MD, 1990, INORG CHIM ACTA, V169, P79
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GEBREYES K, 1986, INORG CHEM, V25, P405
GEORGE TA, 1990, POLYHEDRON, V9, P545
GEORGE TA, 1993, INORG CHEM, V32, P1706
GERNERT MB, 1996, ACTA CRYSTALLOGR C 3, V52, P545
GREEN JC, 1992, J CHEM SOC CHEM 0915, P1361
GREEN MLH, 1991, J CHEM SOC DA, P3781
GREEN MLH, 1997, J CHEM SOC DALT 0421, P1281
GREEN MLH, 1997, J CHEM SOC DALT 0521, P1719
HANSON IR, 1981, J CHEM SOC DA, P390
HEATH GA, 1974, J AM CHEM SOC, V96, P259
HENDERSON RA, 1983, ADV INORG CHEM, V27, P197
HIDAI M, 1976, INORG CHEM, V15, P2694
HIDAI M, 1984, J ORGANOMET CHEM, V272, P155
HIDAI M, 1986, J AM CHEM SOC, V108, P1562
HIRSCHKUCHMA M, 1997, J CHEM SOC DALT 0921, P3189
HOFFMANN R, 1962, J CHEM PHYS, V36, P2179
HOFFMANN R, 1963, J CHEM PHYS, V39, P1397
HOFFMANN R, 1982, ANGEW CHEM INT EDIT, V21, P711
HSIEH TC, 1988, INORG CHEM, V27, P241
HUGHES DL, 1981, ACTA CRYSTALLOGR B, V37, P557
IWANAMI K, 1981, B CHEM SOC JPN, V54, P1773
JIMENEZTENORIO M, 1994, J CHEM SOC DA, P2431
JOHNSON BFG, 1987, COMPREHENSIVE COORDI, V2, P99
JORGENSEN KA, 1993, INORG CHEM, V32, P1521
KANG H, 1988, J CHEM SOC CHEM COMM, P1192
KETTLER PB, 1994, INORG CHEM, V33, P5864
KOMORI K, 1983, CHEM LETT, P465
KORNER V, 1997, CHEM BER-RECL, V130, P489
KOSTIC NM, 1981, J AM CHEM SOC, V103, P4677
LATHAN WA, 1974, PROGR PHYS ORG CHEM, V11, P175
LIKAO J, 1995, ACTA CRYSTALLOGR 12, V51, P2486
LIN ZY, 1993, COORDIN CHEM REV, V123, P149
LYNE PD, 1994, J ORGANOMET CHEM, V478, P141
MAHY JP, 1984, J AM CHEM SOC, V106, P1699
MANZUR C, UNPUB
MANZUR C, 1996, INORG CHIM ACTA, V249, P245
MANZUR C, 1997, ACTA CRYSTALLOGR 10, V53, P1401
MANZUR C, 1997, INORG CHIM ACTA, V255, P73
MANZUR C, 1997, J CHEM CRYSTALLOGR, V27, P339
MANZUR C, 1998, INORG CHIM ACTA, V268, P199
MARCH FC, 1975, J ORGANOMET CHEM, V96, C43
MASON R, 1974, J AM CHEM SOC, V96, P260
MCCLEVERTY JA, 1987, TRANSIT METAL CHEM, V12, P283
MEALLI C, 1990, J CHEM EDUC, V67, P399
MOLLER C, 1934, PHYS REV, V46, P618
MOUNTFORD P, 1995, J CHEM SOC CHEM COMM, P2357
NICHOLSON T, 1985, J CHEM SOC CHEM COMM, P367
NICHOLSON T, 1987, POLYHEDRON, V6, P1577
NICHOLSON T, 1988, POLYHEDRON, V7, P171
NISHIHARA H, 1982, J AM CHEM SOC, V104, P4367
NUGENT WA, 1980, COORDIN CHEM REV, V31, P123
NUGENT WA, 1988, METAL LIGAND MULTIPL
OSBORNE JH, 1985, J AM CHEM SOC, V107, P7945
OSHITA H, 1990, CHEM LETT, P1303
OSHITA H, 1992, ORGANOMETALLICS, V11, P4116
PATERSSON GA, 1988, J CHEM PHYS, V89, P2193
PENG G, 1994, INORG CHEM, V33, P2864
PIETSCH MA, 1996, INORG CHEM, V35, P1273
RAPPE AK, 1982, J AM CHEM SOC, V104, P3287
RAPPE AK, 1982, J AM CHEM SOC, V104, P448
RAPPE AK, 1984, INORG CHEM, V23, P995
REDSHAW C, 1979, J CHEM SOC DA, P3343
RETBOLL M, 1995, ACTA CHEM SCAND, V49, P278
SCHOFIELD MH, 1991, INORG CHEM, V30, P3595
SEINO H, 1994, J AM CHEM SOC, V116, P7433
SEINO H, 1995, J AM CHEM SOC, V117, P12181
SEINO H, 1997, INORG CHEM, V36, P161
SHAIK SN, 1986, INORG CHIM ACTA, V115, L19
SHAIKH SN, 1988, INORG CHEM, V27, P1896
SHAIKH SN, 1988, INORG CHIM ACTA, V144, P147
SILAVWE ND, 1988, INORG CHEM, V27, P4669
STERGIOU AC, 1994, INORG CHIM ACTA, V217, P61
STREET AC, 1991, CHEM LETT, P383
SUTTON D, 1993, CHEM REV, V93, P995
VEITH M, 1976, ANGEW CHEM INT EDIT, V15, P387
WIGLEY DE, 1994, PROG INORG CHEM, V42, P239
WILLIAMS DN, 1992, J CHEM SOC DA, P739
WILLIAMS DS, 1993, ORGANOMETALLICS, V12, P4560
ZUBIETA J, 1990, INORG CHEM, V29, P4595
NR 140
TC 25
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 4WF,
CAMBS, ENGLAND
SN 0300-9246
J9 J CHEM SOC DALTON TRANS
JI J. Chem. Soc.-Dalton Trans.
PD APR 7
PY 1998
IS 7
BP 1229
EP 1240
PG 12
SC Chemistry, Inorganic & Nuclear
GA ZJ011
UT ISI:000073170600028
ER
PT J
AU Pliego, JR
Franca, MA
De Almeida, WB
TI Kinetics of the H2O+CCl2 reaction in gas phase and in solution by an
insertion mechanism
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CORRELATED MOLECULAR CALCULATIONS; LASER FLASH-PHOTOLYSIS;
GAUSSIAN-BASIS SETS; O-H BOND; AB-INITIO; DIMETHOXYCARBENE; ADDITIVITY;
METHYLENE; HYDRATION; CARBENES
AB The single-step insertion reaction of dichlorocarbene into the water OH
bond was investigated at the ab initio level of theory. We have used
additivity approximation to obtain an effective CCSD(T)/cc-pVTZ + diff
single-point energy calculation on MP2/DZP optimized geometries. The
solvent effect on the activation free energy was included by performing
Monte Carlo simulations and statistical perturbation theory. it was
found that direct insertion should not play an important role in the
H2O + CCl2 reaction. A mechanism involving two water molecules is
suggested as a possible alternative reaction pathway. (C) 1998 Elsevier
Science B.V.
C1 Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
RP Pliego, JR, Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Quim, Lab
Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR ADMASU A, 1997, J PHYS CHEM A, V101, P3832
BETHELL D, 1971, J CHEM SOC B, P23
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
CHIPOT C, 1994, J PHYS CHEM-US, V98, P11362
CURTISS LA, 1991, J CHEM PHYS, V94, P7221
CURTISS LA, 1992, J CHEM PHYS, V96, P9030
DU XM, 1990, J AM CHEM SOC, V112, P1920
DUNNING TH, 1977, METHODS ELECT STRUCT
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FRISCH MJ, 1995, GAUSSIAN 94
GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
GRILLER D, 1982, J AM CHEM SOC, V104, P5549
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1988, J AM CHEM SOC, V110, P1657
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1995, BOSS VERS 3 5
KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
KIRMSE W, 1993, J AM CHEM SOC, V115, P8918
MOSS RA, 1988, TETRAHEDRON LETT, V29, P6417
NOBES RH, 1982, CHEM PHYS LETT, V89, P497
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1997, J CHEM SOC FARADAY T, V93, P1881
POPLE JA, 1983, J AM CHEM SOC, V105, P6389
ROBINSON EA, 1961, J CHEM SOC, P1663
STAKER WS, 1991, J CHEM SOC FARADAY T, V87, P2421
TOSCANO JP, 1994, J AM CHEM SOC, V116, P8146
WANG JL, 1995, J AM CHEM SOC, V117, P5477
WOON DE, 1993, J CHEM PHYS, V98, P1358
ZUPANCIC JJ, 1985, TETRAHEDRON, V41, P1471
NR 31
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAR 13
PY 1998
VL 285
IS 1-2
BP 121
EP 126
PG 6
SC Physics, Atomic, Molecular & Chemical
GA ZF354
UT ISI:000072889100019
ER
PT J
AU Castellano, EE
Piro, OE
Caram, JA
Mirifico, MV
Aimone, SL
Vasini, EJ
Glossman, MD
TI Crystallographic study and molecular orbital calculations of
1,2,5-thiadiazole 1,1-dioxide derivatives
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE 1,2,5-thiadiazole; 1,1-dioxide derivatives; single-crystal x-ray
diffraction; ab initio MO calculations; structure; conformation;
reactivity
ID 3,4-DIPHENYL-1,2,5-THIADIAZOLE 1,1-DIOXIDE; CHEMICAL-REACTIVITY;
CRYSTAL-STRUCTURE; ACETONITRILE; ELECTROREDUCTION; HYDROLYSIS; SOLVENTS
AB Single-crystal x-ray diffraction studies are reported for 3,4-dimethyl
(I), 3-methyl-4-phenyl (II) and 3,4-diphenyl (III) derivatives of
1,2,5-thiadiazole 1,1-dioxide. Ab initio MO calculations on the
electronic structure, conformation and reactivity of I, II and III are
also reported and compared with the x-ray results. The structural data
are related to previous kinetic and electrochemical experimental
results on these compounds. (C) 1998 John Wiley & Sons, Ltd.
C1 Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, RA-1900 La Plata, Argentina.
Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
CONICET, Programa PROFIMO, RA-1900 La Plata, Argentina.
Natl Univ La Plata, INIFTA, CONICET, RA-1900 La Plata, Argentina.
Natl Univ La Plata, CEQUINOR, CONICET, RA-1900 La Plata, Argentina.
Univ Nacl Lujan, Dept Ciencias Basicas, RA-6700 Lujan, Argentina.
RP Piro, OE, Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, CC 67,
RA-1900 La Plata, Argentina.
EM Piro@ayelen.fisica.unlp.edu.ar
CR AMATO JS, 1982, J AM CHEM SOC, V104, P1375
ARAN VJ, 1988, ADV HETEROCYCL CHEM, V44, P81
BACHRACH SM, 1994, REV COMPUTATIONAL CH, V5
BAKER RJ, 1980, J ORG CHEM, V45, P482
BAUMGARTEL H, 1984, ENCY ELECTROCHEMISTR, V15, P168
CALDERON CE, 1979, ACTA CRYSTALLOGR B, V35, P2795
CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P1340
CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P2296
CARAM JA, 1994, ELECTROCHIM ACTA, V39, P939
CARAM JA, 1996, CAN J CHEM, V74, P1564
CROMER DT, 1974, INT TABLES CRYSTALLO, V4, P71
CROMER DT, 1974, INT TABLES XRAY CRYS, V4, P149
DUNN PJ, 1989, J CHEM SOC CHEM COMM, P1134
FOCESFOCES C, 1975, ACTA CRYSTALLOGR B, V31, P2310
FOCESFOCES C, 1977, ACTA CRYSTALLOGR B, V33, P910
FRENZ BA, 1983, ENRAF NONIUS STRUCTU
FRISCH MJ, 1995, GAUSSIAN 94
FUKUI K, 1973, THEORY ORIENTATION S
GLOSSMAN MD, 1995, THEOCHEM-J MOL STRUC, V330, P385
GLOSSMAN MD, 1996, ATUALIDADES FISICO Q, P526
GLOSSMAN MD, 1997, J MOL STRUCTURE THEO, V390, P67
HAMILTON WC, 1959, ACTA CRYSTALLOGR, V12, P609
JOHNSON CK, 1965, ORNL3794 ORTEP
MIRIFICO MV, 1991, ELECTROCHIM ACTA, V36, P167
MIRIFICO MV, 1991, INT J CHEM KINET, V23, P197
MIRIFICO MV, 1993, J PHYS ORG CHEM, V6, P341
MIRIFICO MV, 1995, AN QUIM, V91, P557
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
MULLIKEN RS, 1955, J CHEM PHYS, V23, P2338
PARR RG, 1984, J AM CHEM SOC, V106, P4049
PARR RG, 1989, DENSITY FUNCTIONAL T
PEARSON RG, 1963, J AM CHEM SOC, V85, P3533
PEARSON RG, 1966, SCIENCE, V151, P172
PERICHON J, 1978, ENCY ELECTROCHEMISTR, V11, P71
POLITZER P, 1981, CHEM APPL ATOMIC MOL
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SHELDRICK GM, 1976, SHELX PROGRAM CRYSTA
WEINSTOCK LM, 1984, COMPREHENSIVE HETERO, V6
YANG W, 1986, J AM CHEM SOC, V108, P5708
NR 40
TC 15
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD FEB
PY 1998
VL 11
IS 2
BP 91
EP 100
PG 10
SC Chemistry, Organic; Chemistry, Physical
GA ZD967
UT ISI:000072743700003
ER
PT J
AU Gomes, MG
Davanzo, CU
Silva, SC
Lopes, LGF
Santos, PS
Franco, DW
TI cis- and trans-nitrosyltetraammineruthenium(II). Spectral and
electrochemical properties and reactivity
SO JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
LA English
DT Article
ID RUTHENIUM NITROSYL COMPLEXES; REVERSIBLE ELECTRON-TRANSFER;
NITRIC-OXIDE; CHEMISTRY; BEHAVIOR; LIGAND
AB A synthetic route was developed for the preparation of
trans-[Ru(NH3)(4)(NO)X](n+), where X = isonicotinamide (isn), pyrazine
(pyz) or sulfite, and cis-[Ru(NH3)(4)(NO)(NO2)](2+). The complexes have
been characterized by elemental analysis, UV/VIS, infrared, H-1 NMR and
ESR spectroscopies, molar conductance measurements and cyclic
voltammetry. All showed v(NO) in the range characteristic of
metal-co-ordinated NO+ and do not exhibit any ESR signal, consistent
with the formulation of Ru-II-NO+. The equilibrium constants K-eq for
the reaction trans-[Ru(NH3)(4)(NO)X](3+) + 20H(-) reversible arrow
trans-[Ru(NH3)(4)(NO2)X](+) + H2O are 2.5 x 10(8) and 6 x 10(8) dm(6)
mol(-2) for X = isn or pyz. Cyclic voltammograms of the complexes in
aqueous solution exhibited reversible one-electron waveforms in the
potential range -0.13 to -0.38 V vs. SCE, which were assigned to the
[Ru(NH3)(4)(No)X](n+) --> [Ru(NH3)(4)(NO)X]((n-1)+) process. Nitric
oxide and trans-[Ru(NH3)(4)(H2O)X](2+) are the final products of the
reaction between Eu-II and trans-[Ru(NH3)(4)(NO)X](3+), L = isn or pyz.
Ab initio molecular orbital calculations performed for
trans-[Ru(NH3)(4)(NO)(pyz)](3+) and trans-[Ru(NH3)(4)(NO)(pyz)](2+),
and the products of the trans-[Ru(NH3)(4)(NO)(pyz)](3+) one-electron
electrochemical or chemical reduction, strongly suggest the added
electron is localized mainly on the nitrosyl ligand. A correlation was
observed between v(NO) and E-1/2 for the reversible reduction wave.
These results indicate that the nitric oxide reduction is facilitated
by strong pi-acceptor ligands trans to the NO. Nitric oxide and
trans-[Ru(NH3)(4)(H2O)X](3+) were formed when solutions containing
trans-[Ru(NH3)(4)(NO)X](3+) were irradiated in the range 310-370 nm.
C1 USP, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
Univ Fed Ceara, Dept Quim Analit & Fis Quim, Fortaleza, Ceara, Brazil.
Univ Estadual Campinas, Inst Quim, BR-13081970 Campinas, SP, Brazil.
USP, Inst Quim, BR-09500900 Sao Paulo, Brazil.
RP Franco, DW, USP, Inst Quim Sao Carlos, Caixa Postal 780, BR-13560970
Sao Carlos, SP, Brazil.
CR *HYP INC, 1994, HYPERCHEM 4
ALBERT A, 1971, DETERMINATION IONIZA
ARMOR JN, 1975, INORG CHEM, V14, P444
ARNELLE DR, 1995, ARCH BIOCHEM BIOPHYS, V318, P279
BAGATIN IA, 1996, SPECTROSC LETT, V29, P1409
BECKE AD, 1988, PHYS REV A, V38, P3098
BEDIOUI F, 1994, J ELECTROANAL CHEM, V377, P295
BENEDIX R, 1993, INORG CHIM ACTA, V204, P189
BOHLE DS, 1995, J AM CHEM SOC, V117, P9584
BORGES SSS, UNPUB INORG CHEM
BORGES SSS, 1996, 8 INT PHOT SOC C FOZ, P81
BOTTOMLEY F, 1978, ACCOUNTS CHEM RES, V11, P158
BOTTOMLEY F, 1989, REACTIONS COORDINATE, V2
BOTTOMLEY F, 1996, METHODS NITRIC OXIDE
BROWN GM, 1978, J AM CHEM SOC, V100, P2767
BUTLER AR, 1993, CHEM SOC REV, P233
CALLAHAN RW, 1975, J AM CHEM SOC, V97, P894
CALLAHAN RW, 1977, INORG CHEM, V16, P574
CLARKE MJ, 1978, J AM CHEM SOC, V100, P5068
CLARKE MJ, 1993, STRUCT BONDING BERLI, V81, P144
CRAMER WA, 1990, ENERGY TRANSDUCTION, P334
DAHMEN EAM, 1986, ELECTROANALYSIS THEO
DAVIES NA, 1997, CHEM COMMUN 0107, P47
EISENBERG R, 1975, ACCOUNTS CHEM RES, V8, P26
ELDER RC, 1977, INORG CHEM, V16, P1048
ENEMARK JH, 1974, COORDIN CHEM REV, V13, P339
FONTECAVE M, 1994, B SOC CHIM FR, V131, P620
FORD PC, 1993, FEBS LETT, V326, P1
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GODBOUT N, 1992, CAN J CHEM, V70, P560
GODWIN JB, 1971, INORG CHEM, V10, P2150
HAMPL V, 1996, METHODS NITRIC OXIDE, CH21
ISIED SS, 1974, INORG CHEM, V13, P1545
KARLIN KD, 1993, BIONORGANIC CHEM COP
KOSHLAND DE, 1992, SCIENCE, V258, P1861
KUBAS GJ, 1981, INORG CHEM, V20, P2667
KUEHN CG, 1980, PROG INORG CHEM, V27, P153
LEE C, 1988, PHYS REV B, V37, P785
LEGZDINS P, 1994, J AM CHEM SOC, V116, P12105
LOPES LGF, UNPUB INORG CHEM
MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
MASTONE J, 1975, J INORG NUCL CHEM, V37, P473
MAZZETTO SE, 1996, INORG CHEM, V35, P3509
NAKAMOTO K, 1986, INFRARED RAMAN SPECT
PALMER JW, 1960, J INORG NUCL CHEM, V15, P279
PELL S, 1973, INORG CHEM, V12, P873
PIPES DW, 1984, INORG CHEM, V23, P2466
REED CA, 1972, J CHEM SOC DA, P1243
RITCHERADDO GB, 1992, METAL NITROSYLS
RODRIGUEZ JA, 1997, 26 REUN AN SOC BRAS, S32
SADLER PJ, 1991, ADV INORG CHEM RAD, V36, P1
SCHREINER AF, 1972, INORG CHEM, V11, P880
SILVA SC, UNPUB
THIEMENS MH, 1991, SCIENCE, V251, P932
THIEMENS MH, 1995, ACS S SER, V587
WINK DA, 1995, METHODS COMPANION ME, V7, P14
WINTER ERS, 1971, J CATAL, V22, P158
NR 57
TC 44
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 4WF,
CAMBS, ENGLAND
SN 0300-9246
J9 J CHEM SOC DALTON TRANS
JI J. Chem. Soc.-Dalton Trans.
PD FEB 21
PY 1998
IS 4
BP 601
EP 607
PG 7
SC Chemistry, Inorganic & Nuclear
GA ZD135
UT ISI:000072654900016
ER
PT J
AU Morgon, NH
TI Theoretical calculation of proton affinities using basis set functions
defined by the generator coordinate method
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID GAS-PHASE ACIDITIES; COMPACT EFFECTIVE POTENTIALS; EXPONENT BASIS-SETS;
OPTIMIZATION TECHNIQUE; GAUSSIAN-2 THEORY; EFFICIENT; ENERGIES;
1ST-ROW; ATOMS; IONS
AB Ab initio calculations have been performed to determine the molecular
structure and proton affinity of a set of molecules. The basis sets
were developed for pseudopotentials using the GCM procedure, This
technique is potentially useful for large molecules for which similar
procedures (such as the G2 method and variations) were not feasible.
This method achieves performance similar to the G2 method at a lower
computational cost, The mean absolute deviation and the mean deviation
of the results from experimental are 3.5 and 1.7 kJ mol(-1),
respectively, compared with 4.6 and 2.2 kJ mol(-1) for the G2 method.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Morgon, NH, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13083970
Campinas, SP, Brazil.
EM nelson@iqm.unicamp.br
CR CHANDRA AK, 1996, J PHYS CHEM-US, V100, P11596
CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
CURTISS LA, 1991, J CHEM PHYS, V94, P7221
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
CUSTODIO R, 1992, CAN J CHEM, V70, P580
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DUNNING TH, 1977, METHODS ELECT STRUCT, P1
ERVIN KM, 1990, J AM CHEM SOC, V112, P5750
FELLER DF, 1979, THEOR CHIM ACTA, V52, P231
FRISCH MJ, 1994, GAUSSIAN 94 REVISION
GRAUL ST, 1990, J AM CHEM SOC, V112, P2517
LIAS SG, 1988, J PHYS CHEM REF DA S, V1, P17
MOHALLEM JR, 1986, INT J QUANTUM CH S20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MORGON NH, 1995, CHEM PHYS LETT, V235, P436
MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
MORGON NH, 1995, J PHYS CHEM-US, V99, P17832
MORGON NH, 1995, THEOCHEM-J MOL STRUC, V335, P11
MORGON NH, 1997, J AM CHEM SOC, V119, P1708
NELDER JA, 1965, COMPUT J, V7, P308
OCHTERSKI JW, 1995, J AM CHEM SOC, V117, P11299
SMITH BJ, 1991, J PHYS CHEM-US, V95, P10549
SMITH BJ, 1992, AUST J CHEM, V45, P285
SMITH BJ, 1995, CHEM PHYS LETT, V245, P123
SMITH BJ, 1995, J PHYS CHEM-US, V99, P6468
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1992, CAN J CHEM, V70, P612
TANABE FKJ, 1996, J PHYS CHEM-US, V100, P2862
NR 28
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAR 12
PY 1998
VL 102
IS 11
BP 2050
EP 2054
PG 5
SC Chemistry, Physical
GA ZC830
UT ISI:000072622400023
ER
PT J
AU Rocha, WR
Pliego, JR
Resende, SM
dos Santos, HF
de Oliveira, MA
de Almeida, WB
TI Ab initio conformational analysis of cyclooctane molecule
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE ab initio conformational analysis; cyclooctane molecule; potential
energy surface; Hartree-Fock theory; Moller-Plesset theory
ID GAUSSIAN-TYPE BASIS; ORBITAL METHODS; ORGANIC-MOLECULES; MECHANICS;
SPACE; OXOCANES; MINIMUM
AB The potential energy surface (PES) for the cyclooctane molecule was
comprehensively investigated at the Hartree-Fock (HF) level of theory
employing the 3-21G, 6-31G, and 6-31G* basis sets. Six distinct true
minimum energy structures (named B, BB, BC, CROWN, TBC, and TCC1),
characterized through harmonic frequency analysis, were located on the
multidimensional PES. Two transition state structures were also located
on the PES for the cyclooctane molecule. Electron correlation effects
were accounted for using the Moller-Plesset second-order perturbation
theory (MP2) approach. The predicted global minimum energy structure on
the ab initio PES for the cyclooctane molecule is the BC conformer. A
gas phase electron diffraction study at 300 K suggested a
conformational mixture while an NMR study in solution at 161.5 K
predicted the BC conformer as the predominant form. The equilibrium
constants reported in the present study, which were evaluated from the
nb initio calculated total Gibbs free energy change values, were in
good agreement with both experimental investigations. The ab initio
results showed that the low temperature condition significantly favored
the BC conformer while above room temperature both BC and CROWN
structures can coexist. (C) 1998 John Wiley & Sons, Inc.
C1 UFMG, ICEx, Dept Quim, LQC MM, BR-31270901 Belo Horizonte, MG, Brazil.
RP Rocha, WR, Univ Florida, Quantum Theory Project, 362 Williamson Hall,
Gainesville, FL 32611 USA.
CR ALMENNINGEN A, 1966, ACTA CHEM SCAND, V20, P2689
ANET FAL, 1973, J AM CHEM SOC, V95, P4424
ANET FAL, 1973, TETRAHEDRON LETT, V50, P5029
BOFILL JM, 1994, J COMPUT CHEM, V15, P1
BRECKNELL DJ, 1985, J MOL STRUCT THEOCHE, V124, P343
CHANG G, 1989, J AM CHEM SOC, V111, P4379
CULOT P, 1992, THEOR CHIM ACTA, V82, P189
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DOBLER M, 1966, HELV CHIM ACTA, V49, P2492
DOROFEEVA OV, 1990, J STRUCT CHEM, V31, P153
FERGUSON DM, 1989, J AM CHEM SOC, V111, P4371
FERGUSON DM, 1992, J COMPUT CHEM, V13, P525
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HENRICKSON JB, 1967, J AM CHEM SOC, V89, P7047
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LIPTON M, 1988, J COMPUT CHEM, V9, P343
PAKES PW, 1981, J PHYS CHEM-US, V85, P2469
PAKES PW, 1981, J PHYS CHEM-US, V85, P2476
POPLE JA, 1993, ISRAEL J CHEM, V33, P345
ROCHA WR, 1997, J COMPUT CHEM, V18, P254
SAUNDERS M, 1987, J AM CHEM SOC, V109, P3150
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
NR 23
TC 15
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD APR 15
PY 1998
VL 19
IS 5
BP 524
EP 534
PG 11
SC Chemistry, Multidisciplinary
GA ZC849
UT ISI:000072624700005
ER
PT J
AU Alves, JLA
Alves, HWL
de Oliveira, C
Valadao, RDSC
Leite, JR
TI Zinc-blende GaN: ab initio calculations
SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
TECHNOLOGY
LA English
DT Article
DE zinc-blende; wide-gap device concepts; molecular cluster calculations
ID EFFECTIVE CORE POTENTIALS; SEMICONDUCTOR COMPOUNDS; MOLECULAR
CALCULATIONS; ZINCBLENDE GAN; 110 SURFACE; RECONSTRUCTION; ORBITALS
AB The purpose of this paper is to contribute, on a theoretical basis, an
understanding of future wide-gap device concepts and applications based
on III-V nitride semiconductors. The electronic properties of
zinc-blende structure GaN and their (110), (100) and (111) surfaces are
investigated using ab initio calculations based on the full potential
linear augmented plane-wave (FPLAPW) method within the large unit cell
approach, and on the molecular Gaussian-92 code. Lattice constant,
cohesive energy, bulk modulus are obtained from total energy
calculations. Light-hole and heavy-hole effective masses along (100),
(111) and (110) directions and electron masses at Gamma point are
extracted from band structure calculations and compared with previous
ones based on pseudopotential methods. The hydrostatic pressure
dependence of the Gamma Gamma, Gamma X and Gamma L energy gaps are also
obtained. Comparing our band structure and 'molecular cluster'
calculations, the relaxations of the surfaces are found to be mostly
determined by local rehybridization or valence effects and are
basically independent of energy band features. (C) 1997 Elsevier
Science S.A.
C1 DCNAT FUNREI, BR-36300000 Sao Joao Del Rei, MG, Brazil.
DFMM IFUSP, BR-05389970 Sao Paulo, SP, Brazil.
RP Alves, JLA, DCNAT FUNREI, CP 110, BR-36300000 Sao Joao Del Rei, MG,
Brazil.
EM arestrup@dedalus.lcc.ufmg.br
CR CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHANG KJ, 1984, SOLID STATE COMMUN, V50, P105
EDGAR JH, 1994, DATAREVIEWS SERIES
FAN WJ, 1996, J APPL PHYS, V79, P188
FANCIULLI M, 1993, PHYS REV B, V48, P15144
FIORENTINI V, 1993, PHYS REV B, V47, P13353
FRISCH MJ, 1992, GAUSSIAN 92
HAY PJ, 1985, J CHEM PHYS, V82, P270
HAY PJ, 1985, J CHEM PHYS, V82, P299
JAFFE JE, 1996, PHYS REV B, V53, R4209
JHI SH, 1995, PHYS STATUS SOLIDI B, V191, P367
LAMBRECHT WRL, 1992, MATER RES SOC S P, V242, P367
MADELUNG O, 1982, LANDOLTBORNSTEIN N A, V17
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
PALUMMO M, 1992, PHYSICS SEMICONDUCTI, V1, P89
POWELL RC, 1993, J APPL PHYS, V73, P189
STRIFE S, 1992, J VAC SCI TECHNOL B, V10, P1237
SWARTS CA, 1980, J VAC SCI TECHNOL, V17, P982
SWARTS CA, 1981, SURF SCI, V110, P400
WADT WR, 1985, J CHEM PHYS, V82, P284
WIMMER E, 1981, PHYS REV B, V24, P864
NR 21
TC 4
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5107
J9 MATER SCI ENG B-SOLID STATE M
JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
PD DEC 18
PY 1997
VL 50
IS 1-3
BP 57
EP 60
PG 4
SC Materials Science, Multidisciplinary; Physics, Condensed Matter
GA YW795
UT ISI:000071974800014
ER
PT J
AU Ishiki, HM
Donate, PM
Galembeck, SE
TI Electronic structure of chromone and its hydroxylated derivatives on
positions 2 and 3
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE computational study; electronic structure; flavonoids; reactivity;
resonance
ID MOLECULAR-ORBITAL METHODS; INTRAMOLECULAR PROTON-TRANSFER;
GAUSSIAN-TYPE BASIS; CONFORMATIONAL-ANALYSIS; SEMIEMPIRICAL METHODS;
BASIS-SETS; ORGANIC-MOLECULES; OPTIMIZATION; FLAVONOIDS; PARAMETERS
AB The electronic structure of chromone (1) and those of its 2-hydroxy (2)
and 5-hydroxy (3) derivatives were studied by semiempirical and ab
initio molecular orbital methods. Several electronic parameters show
that the A-ring is an aromatic system, whereas the C-ring does not
present conjugation. In the C-ring, the double bonds are located in the
carbonyl group and between C(2)-C(3). These results were confirmed by
comparison with geometries of chromone derivatives which were
determined by X-ray diffraction data. The relative stability of
compounds (2) and (3) was explained and the sites of acid, basic,
nucleophilic and electrophilic attack were also determined. (C) 1998
Elsevier Science B.V.
C1 Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Quim, BR-14049901 Ribeirao Preto, SP, Brazil.
RP Galembeck, SE, Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao
Preto, Dept Quim, Ave Bandeirantes 3900, BR-14049901 Ribeirao Preto,
SP, Brazil.
EM segalemb@usp.br
CR AHUJA VK, 1978, INDIAN J CHEM A, V16, P531
BAKER J, 1986, J COMPUT CHEM, V7, P385
BESLER BH, 1990, J COMPUT CHEM, V11, P431
BEUGELMANS R, 1976, TETRAHEDRON LETT, V25, P2145
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BOUMAN TD, 1985, J PHYS CHEM-US, V89, P4460
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BROWN NMD, 1965, SPECTROCHIM ACTA, V21, P1277
CODY V, 1994, J MOL STRUCT, V317, P89
COLLIE JN, 1899, J CHEM SOC, V75, P710
COLLINS JB, 1976, J CHEM PHYS, V64, P5142
DEREU N, 1981, J ORGANOMET CHEM, V208, P23
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DICK B, 1990, J PHYS CHEM-US, V94, P5752
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
GEISSMAN TA, 1962, CHEM FLAVONOIDS COMP
GILLESPIE RJ, 1992, CHEM SOC REV, V21, P59
GORDON MH, 1995, J AGR FOOD CHEM, V43, P1784
HARBONE JB, 1988, FLAVONOIDS ADV RES 1
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HILA J, 1985, B SOC CHIM FR, V6, P1275
HUHEEY JE, 1972, INORGANIC CHEM PRINC
HVSTEEN B, 1983, BIOCHEM PHARMACOL, V32, P1141
ILIC P, 1982, J HETEROCYCLIC CHEM, V19, P625
KOES RE, 1994, BIOESSAYS, V16, P123
MATHIS CT, 1964, SPECTROCHIM ACTA, V20, P871
PEREIRA GK, 1996, THEOCHEM-J MOL STRUC, V363, P87
SAENGCHANTARA ST, 1986, NAT PROD REP, V3, P465
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SINGH UC, 1984, J COMPUT CHEM, V5, P129
SOMOGYI A, 1987, ACTA CHIM HUNG, V124, P855
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
STEWART JJP, 1990, J COMPUT AID MOL DES, V4, P1
VRIELYNCK L, 1993, J MOL STRUCT, V297, P227
WATSON WH, 1991, ACTA CRYSTALLOGR C, V47, P459
NR 36
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD FEB 2
PY 1998
VL 423
IS 3
BP 235
EP 243
PG 9
SC Chemistry, Physical
GA YX315
UT ISI:000072027900009
ER
PT J
AU Hollauer, E
Olabe, JA
TI A HF/CI-SD study of the low-lying states of nitroprusside ion
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE ab initio (SCF, CI-SD); nitroprusside; excited states; metastable
states; Na-2[Fe(CN)(5)NO]; pentacyanonitrosylferrate
ID TRANSPARENT MOLECULAR SYSTEMS; COMPACT EFFECTIVE POTENTIALS; METASTABLE
ELECTRONIC STATE; EXPONENT BASIS-SETS; OPTICAL DISPERSION;
SODIUM-NITROPRUSSIDE; POLARIZED-LIGHT; SINGLE-CRYSTAL; RAMAN-SPECTRA;
TGA-DTA
AB Since the discovering of two photoexcited metastable states of
crystalline sodium nitroprusside, Na-2[Fe(CN)(5)NO]..2H(2)O (SNP)
showing rather long lifetimes at temperatures below 160 K, much effort
has been devoted toward the study of its electronic structure. Despite
this tremendous effort the nature of the frontier orbitals and the
related low energy excitations remains controversial. Early
calculations, EHT, showed the HOMO as mainly the metallic 3d orbital
while the LUMO had a major pi* (NO) contribution. However INDO
calculations, clearly set the metal d orbital many electron-volts deep
in core. The vertical electronic spectrum have been estimated through
ab initio HF/CI-SD with a double-zeta quality basis set. The ab initio
results support Bottomley and Grein's interpretations and assign the
first electronic transitions to ligand-to-ligand charge-transfer
excitation from trans-cyano to nitrosyl ligands. The corresponding
oscillator strengths have been calculated showing comparable intensity
with the experimental results. The excitation energy of the metal -->
NO charge-transfer transition, 8e --> 13e (d(xz),d(yz) --> pi* NO) have
been estimated to be at 4.52 eV and show a rather intense absorption
band. The second CT excitation, 1b(2) --> 13e (d(xy) --> pi* NO),
pointed by previous works as a typical CT band, exhibits a small
intensity at 5.04 eV. In the calculations it was observed that SCF
orbital ordering are rather dependent on the metal basis set used.
Metallic minimal basis set show results in close agreement with EHT
early calculations while double-zeta basis set pushes the metallic d
orbitals deep away from the HOMO's. The HF orbital ordering has been
used to interpret photochemical and thermoanalysis experiments on SNP
and the results seem to fit properly with the calculated properties.
C1 Univ Fed Fluminense, Inst Quim, Dept Fisicoquim, BR-24210150 Niteroi, RJ, Brazil.
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Inorgan Analit & Quim Fis Inquimae, RA-1428 Buenos Aires, DF, Argentina.
EM gfqholl@vm.uff.br
olabe@ayelen.q3.fcen.uba.ar
CR AMALVY JI, 1986, AN ASOC QUIM ARGENT, V74, P437
AMALVY JI, 1986, J CRYST SPECTROSC, V16, P537
AMMETER JH, 1978, J AM CHEM SOC, V100, P3686
BOTTOMLEY F, 1979, ACTA CRYSTALLOGR B, V35, P2193
BOTTOMLEY F, 1980, J CHEM SOC DA, P1359
BRAGA M, 1981, PHYS REV B, V23, P4328
CALABRESE A, 1974, J AM CHEM SOC, V96, P5054
COOK DB, 1995, INT J QUANTUM CHEM, V53, P309
CRICHTON O, 1977, J CHEM SOC DA, V10, P986
DELLAVEDOVA CO, 1981, J MOL STRUCT, V70, P241
DUNNING TH, MODERN THEORETICAL M, V3
ESTRIN DA, 1996, INORG CHEM, V35, P3897
FENSKE RF, 1972, INORG CHEM, V11, P437
GENTILE LA, 1975, J THERM ANAL, V7, P279
GOLEBIEWSKI A, 1980, J MOL STRUCT, V67, P183
GUIDA JA, 1986, SOLID STATE COMMUN, V57, P175
GUIDA JA, 1988, SOLID STATE COMMUN, V66, P1007
HAUSER U, 1977, Z PHYS A, V280, P125
HAUSER U, 1977, Z PHYS A, V280, P17
HAUSER U, 1978, Z PHYS A ATOMS NUCL, V284, P9
HUZINAGA S, 1965, J CHEM PHYS, V42, P1293
JARZYNOWSKI T, 1977, ROCZ CHEM, V51, P2299
KRASSER W, 1984, J MOL STRUCT, V114, P57
KRASSER W, 1986, J RAMAN SPECTROSC, V17, P83
MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
MANOHARAN PT, 1966, INORG CHEM, V5, P823
MOHAI B, 1986, J THERM ANAL, V31, P157
NAKATSUJI H, 1990, J CHEM PHYS, V93, P1865
NAKATSUJI H, 1991, INT J QUANTUM CHEM, V39, P93
PIERLOOT K, 1993, J PHYS CHEM-US, V97, P12220
PRESSPRICH MR, 1994, J AM CHEM SOC, V116, P5233
RAPPE S, 1981, J CHEM PHYS, V85, P2607
RETZLAFF C, 1987, Z KRISTALLOGR, V180, P20
RIGOTTI G, 1984, J CRYST SPECTROSC, V14, P517
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1990, COMMUNICATION MAR
STEVENS WJ, 1992, CAN J CHEM, V70, P612
STEVENS WJ, 1993, J CHEM PHYS, V98, P5555
STOCHEL G, 1986, Z INORG CHEM, V25, P3663
TERRILE C, 1990, SOLID STATE COMMUN, V73, P481
VERGARA MM, 1987, J PHYS CHEM SOLIDS, V13, P48
WASIELEWSKA E, 1986, INORG CHIM ACTA, V113, P115
WOIKE T, 1983, SOLID STATE COMMUN, V45, P499
WOIKE T, 1983, SOLID STATE COMMUN, V45, P503
WOIKE T, 1990, SOLID STATE COMMUN, V73, P149
WOIKE T, 1993, SOLID STATE COMMUN, V86, P333
WOLFE SK, 1975, INORG CHEM, V14, P1049
ZOLLNER H, 1989, S CHEM PHYS LETT, V161, P497
ZOLLNER H, 1989, Z KRISTALLOGR, V188, P139
NR 50
TC 5
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD SEP-OCT
PY 1997
VL 8
IS 5
BP 495
EP 504
PG 10
SC Chemistry, Multidisciplinary
GA YT741
UT ISI:000071640400010
ER
PT J
AU Olivato, PR
Mondino, MG
Yreijo, MH
Wladislaw, B
Bjorklund, MB
Marzorati, L
Distefano, G
Dal Colle, M
Bombieri, G
Del Pra, A
TI Spectroscopic and theoretical studies on the conformation of some
alpha-sulfinylacetophenones
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID SUBSTITUTED CARBONYL-COMPOUNDS; ULTRAVIOLET PHOTOELECTRON-SPECTROSCOPY;
ELECTRONIC INTERACTION; INTRAMOLECULAR INTERACTIONS; ACETOPHENONES;
SPECTRA
AB IR nu(CO) and nu(SO) frequencies of some alpha-sulfinylacetophenones
[PhC(O)CH2S(O)R: R = Me 1, Et 2, Pr-i 3, Ph 4 and Bu' 5] have been
measured and their conformations are estimated with the help of ab
initio 6-31G** calculations and X-ray diffraction analyses. The
anomalous negative carbonyl frequency shifts for the cis(2) rotamer
together with the decrease of the cis:gauche population ratio in
solvents of increasing polarity for compounds 1-4 support the existence
of a strong intramolecular interaction between C=O and S=O dipoles,
which stabilizes the cis(2) rotamer more than the pi(CO)-sigma*(C-SO)
and pi(CO)*-sigma(C-SO) orbital interactions stabilize the gauche(3)
rotamer. The stability of the cis(2) rotamer is discussed in terms of
the electrostatic attraction between the C=O and S=O dipoles along with
the pi(S=O)*<--n(O(CO)) charge transfer which lead to an O-(C)...
S-(SO) contact shorter than the sum of the corresponding van der Waals
radii. The gauche(2) rotamer of 5 is more stable than the cis(2) one in
which steric strain between the carbonyl oxygen atom and the tert-butyl
group is present.
C1 Univ Sao Paulo, Inst Quim, BR-05599970 Sao Paulo, Brazil.
Univ Ferrara, Dipartimento Chim, I-44100 Ferrara, Italy.
Univ Milan, Ist Chim Farmaceut, I-20131 Milan, Italy.
RP Olivato, PR, Univ Sao Paulo, Inst Quim, Caixa Postal 26-077,
BR-05599970 Sao Paulo, Brazil.
CR ALCUDIA F, 1988, AN QUIM C-ORG BIOQ, V84, P333
ALTOMARE A, 1994, J APPL CRYSTALLOGR, V27, P435
BELLAMY LJ, 1975, ADV INFRARED GROUP F, P141
BELLAMY LJ, 1975, ADV INFRARED GROUP F, P143
BONFADA E, 1989, THESIS U SAO PAULO B
BUENO E, 1996, THESIS U SAO PAULO B
CHARTON M, 1977, DESIGN BIOPHARMACEUT, P228
DALCOLLE M, 1995, J PHYS CHEM-US, V99, P15011
DISTEFANO G, 1987, J CHEM SOC P2, P1459
DISTEFANO G, 1991, J CHEM SOC P2, P1195
DISTEFANO G, 1996, J CHEM SOC PERK AUG, P1661
ELIEL E, 1967, CONFORMATIONAL ANAL
FRISCH MJ, 1992, GAUSSIAN92
GASET A, 1968, B SOC CHIM FR, P4108
GRIESBAUM K, 1963, J AM CHEM SOC, V85, P1969
HANSCH C, 1970, SUBSTITUENT CONSTANT
JOHNSON CK, 1976, ORNL5138
JONES RN, 1968, NATL RES COUNCIL CAN, V12
JONES RN, 1969, NATL RES COUNCIL CAN, V13
KOBAYASHI T, 1974, B CHEM SOC JPN, V47, P2563
LOPES JCD, 1992, ANAIS ASS BRASIL QUI, V41, P87
LUMBROSO H, 1989, J MOL STRUCT, V212, P113
MONDINO MG, 1996, THESIS U SAO PAULO B
NARDELLI M, 1983, COMPUT CHEM, V7, P95
NARDELLI M, 1995, J APPL CRYSTALLOGR, V28, P659
OLIVATO PR, IN PRESS PHOSPHORUS
OLIVATO PR, 1987, PHOSPHORUS SULFUR, V33, P135
OLIVATO PR, 1989, PHOSPHORUS SULFUR, V44, P9
OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
OLIVATO PR, 1992, MAGN RESON CHEM, V30, P81
OLIVATO PR, 1992, PHOSPHORUS SULFUR, V66, P207
PITHA J, 1966, CAN J CHEM, V44, P3031
PITHA J, 1967, CAN J CHEM, V45, P2347
RIDDICK JA, 1970, ORGANIC SOLVENTS, V2
RUSSELL GA, 1966, J AM CHEM SOC, V88, P5498
SHELDRICK GM, 1993, SHELXL 93 PROGRAM CR
YOUNG VY, 1976, J CHEM PHYS, V65, P3187
NR 37
TC 16
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 4WF,
CAMBS, ENGLAND
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD JAN
PY 1998
IS 1
BP 109
EP 114
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA YR484
UT ISI:000071499900020
ER
PT J
AU Mohallem, JR
Vianna, RO
Quintao, AD
Pavao, AC
McWeeny, R
TI Pauling's resonating valence bond theory of metals: some studies on
lithium clusters
SO ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; GEOMETRIC STRUCTURE
AB We report for the first time fully ab initio valence bond (VB)
calculations with explicit use of the unsynchronized resonance
structures introduced by Pauling [1]. We show that resonance involving
these structures largely determines the stability and conformation of
the Li-4 cluster and plays a central role in a VB explanation of the
3-center bonds in planar alkali clusters. The theory can make
qualitative predictions on the behaviour of general metallic clusters,
and can relate stability and conformation to electronic structure, thus
indicating the origin of magic numbers. This first ab initio test of
Pauling's resonating VB theory confirms the importance of the metallic
orbital and the covalent character of the metal-metal bond.
C1 UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50740540 RECIFE,PE,BRAZIL.
UNIV PISA,DIPARTIMENTO CHIM & CHIM IND,I-56100 PISA,ITALY.
RP Mohallem, JR, UNIV FED MINAS GERAIS,INST CIENCIAS EXATAS,DEPT FIS,CP
702,BR-30161970 BELO HORIZONT,MG,BRAZIL.
CR AGUIAR JA, 1992, J MAG MAG MAT, V547, P104
BECKMANN HO, 1980, J CHEM PHYS, V73, P5182
BOBROWICZ FW, 1977, METHODS ELECTRONIC S, P79
BONACICKOUTECKY V, 1991, CHEM REV, V91, P1035
BOUSTANI I, 1987, PHYS REV B, V35, P9437
BOUSTANI I, 1988, J CHEM PHYS, V88, P5657
BRAGG WL, 1937, J ROY SOC ARTS, V85, P431
DUNNING TH, 1977, METHODS ELECT STRUCT, P1
GATTI C, 1987, THEOR CHIM ACTA, V72, P433
GERRATT J, 1980, P ROY SOC LOND A MAT, V371, P525
GONCALVES CP, UNPUB
KNIGHT WD, 1984, PHYS REV LETT, V52, P2141
MCADON MH, 1985, PHYS REV LETT, V55, P2563
MCWEENY R, 1959, P ROY SOC LOND A MAT, V253, P242
MCWEENY R, 1990, INT J QUANTUM CHEM S, V24, P733
PAULING L, 1948, NATURE, V161, P1029
PAULING L, 1949, P ROY SOC LOND A MAT, V196, P343
PAULING L, 1960, NATURE CHEM BOND
PAULING L, 1984, J SOLID STATE CHEM, V54, P2197
PAULING L, 1987, PHYS REV LETT, V59, P225
PAVAO AC, 1995, THEOCHEM-J MOL STRUC, V335, P59
PRESS WH, 1986, NUMERICAL RECIPES AR, CH10
QUINTAO AD, IN PRESS
RAY AK, 1993, PHYS REV B, V48, P14702
VOTER AF, 1981, CHEM PHYS, V57, P253
VOTER AF, 1986, J AM CHEM SOC, V108, P2830
WHELAND GW, 1955, RESONANCE ORGANIC CH
NR 27
TC 8
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010
SN 0178-7683
J9 Z PHYS D-ATOMS MOL CLUSTERS
JI Z. Phys. D-Atoms Mol. Clusters
PD NOV
PY 1997
VL 42
IS 2
BP 135
EP 143
PG 9
SC Physics, Atomic, Molecular & Chemical
GA YJ528
UT ISI:A1997YJ52800011
ER
PT J
AU Janotti, A
Fazzio, A
Piquini, P
Mota, R
TI Defect complexes in GaAs: First-principles calculations
SO PHYSICAL REVIEW B
LA English
DT Article
ID NATIVE DEFECTS; PSEUDOPOTENTIALS; IRRADIATION
AB The electronic and structural properties of selected defect complexes
in GaAs, created during electron or ion irradiation, are studied. An ab
initio calculation based on pseudopotential density-functional theory
is used. A supercell with 128 atoms is adopted in Car-Parrinello
scheme. For the antistructure pair (As-Ga+Ga-As), from the total-energy
calculations, first donor, first acceptor, and second acceptor levels
are observed, and a comparison is made with earlier, both theoretical
and experimental, results. Two other possible defect complexes
(V-As+As-Ga+Ga-i) and V-Ga+Ga-As+As-i), are discussed. It is shown that
the first one presents a metastable configuration, and the second one
is unstable presenting a spontaneous recombination. For all defect
complexes the formation energies and charge densities are discussed.
C1 UNIV FED SANTA MARIA,DEPT FIS,BR-97015900 SANTA MARIA,RS,BRAZIL.
RP Janotti, A, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05315970 SAO
PAULO,SP,BRAZIL.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BARAFF GA, 1986, PHYS REV B, V33, P7356
BOURGOIN JC, 1988, J APPL PHYS, V64, R65
CAR R, 1985, PHYS REV LETT, V55, P2471
DESOUZA JP, 1992, MATER RES SOC S P, V240, P887
DESOUZA JP, 1996, APPL PHYS LETT, V68, P535
DESOUZA JP, 1997, J APPL PHYS, V68, P680
HAUSMANN H, 1996, PHYS REV B, V54, P8527
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KRAMBROCK K, 1993, PHYS REV B, V47, P3987
LAKS DB, 1992, PHYS REV B, V45, P10965
PEARTON SJ, 1990, MATER SCI REP, V4, P313
PERDEW JP, 1981, PHYS REV B, V23, P5048
SCHMIDT TM, 1996, PHYS REV B, V53, P1315
NR 14
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 15
PY 1997
VL 56
IS 20
BP 13073
EP 13076
PG 4
SC Physics, Condensed Matter
GA YH588
UT ISI:A1997YH58800060
ER
PT J
AU Carvalho, MC
Juliano, VF
Kascheres, C
Eberlin, MN
TI Gas phase chemistry of the heterocumulene cations O=C=N+=C=O and
O=C=C=N+=O
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID ION-MOLECULE REACTIONS; PENTAQUADRUPOLE MASS-SPECTROMETER; KINETIC
METHOD; ACYLIUM IONS; ISOMERS; TANDEM; COLLISIONS; AFFINITIES; 3D
AB The low energy collisional dissociation and ion/molecule chemistry of
the heterocumulene cations O=C=N+=C=O 1 and O=C=C=N+=O 2 have been
investigated by pentaquadrupole mass spectrometry, and G2(MP2) ab
initio calculations applied to interrogate their relative stabilities
and dissociation thresholds, as well as those of six other conceivable
C2NO2+ isomers 3-8. The calculations show that the acyclic 1 (zero) and
2 (72.4 kcal mol(-1)) are the most stable isomers, whereas both the
location of the positive charge mainly at the CO-carbon and the short
CO bond lengths characterize their acylium ion structures, Two cyclic
isomers, i.e. 7 (131.3 kcal mol(-1)) and 8 (140.0) kcal mol(-1), were
also found to be stable, but placed at energy levels considerably
higher than 1. Exactly as predicted from G2(MP2) energy dissociation
thresholds, low-energy collisions cause dissociation of 1 exclusively
by CO loss to yield NCO+ of m/z 42. A more diverse dissociation
chemistry is predicted and exhibited by 2, which dissociates mainly by
loss of an oxygen atom (C2NO+ of m/z 54), CO (CNO+ of m/z 42) and C2O
(NO+ of m/z 30). Both ions are unreactive towards polar [4+2(+)]
cycloaddition with isoprene. However, they undergo ketalization with
2-methoxyethanol, and transacetalization with two cyclic neutral
acetals, i.e. 2-methyl-1,3-dioxolane and 1,3-dioxane, and these
structurally diagnostic ion/molecule reactions confirm experimentally
the acylium ion structures of 1 and 2. Cyclic 'ionic ketals', ie.
1,3-dioxonium ions, are formed in these reactions, as evidenced by
their MS3 spectra, which show extensive dissociation to re-form the
reactant ions. Whereas 1 readily forms a stable and covalently bound
adduct with pyridine, 2 reacts mainly by net CN+ and OCN+ transfer
via--most likely--the unstable (Py-2)(+) adduct.
C1 STATE UNIV CAMPINAS UNICAMP,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR BEAUGRAND C, 1989, ANAL CHEM, V61, P1447
BOWERS MT, 1979, GAS PHASE ION CHEM, V1
BUSCH KL, 1988, MASS SPECTROMETRY MA
COOKS RG, 1973, METASTABLE IONS
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
EBERLIN MN, IN PRESS MASS SPECTR
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
ELLER K, 1991, CHEM REV, V91, P1121
FARRAR JM, 1988, TECHNIQUES STUDY ION
FRANKLIN JL, 1972, ION MOL REACTIONS
FRISCH MJ, 1995, GAUSSIAN 94
GRAUL ST, 1990, J AM CHEM SOC, V112, P2517
HEATH TG, 1991, J AM SOC MASS SPECTR, V2, P270
HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
JALONEN J, 1985, J CHEM SOC CHEM COMM, P872
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KENTTAMAA HI, 1989, J AM CHEM SOC, V111, P4122
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KINTER MT, 1986, J AM CHEM SOC, V108, P1797
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
LEVSEN K, 1983, MASS SPECTROM REV, V2, P77
MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
MCLUCKEY SA, 1982, INT J MASS SPECTROM, V44, P215
MORAES LAB, IN PRESS J ORG CHEM
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J CHEM SOC PERK OCT, P2105
MORAES LAB, 1997, J ORG CHEM, V62, P5096
PARKARINEN JMH, 1996, J MASS SPECTROM, V31, P1003
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARZ H, 1989, PURE APPL CHEM, V61, P984
SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
SULZLE D, 1992, CHEM BER-RECL, V125, P279
THOEN KK, 1996, J AM SOC MASS SPECTR, V7, P1250
VAINIOTALO P, 1996, P 44 ASMS C MASS SPE, P453
WESDEMIOTIS C, 1987, CHEM REV, V87, P485
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
YANG SS, 1995, J MASS SPECTROM, V30, P807
ZAGOREVSKII DV, 1994, MASS SPECTROM REV, V13, P133
NR 45
TC 17
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD NOV
PY 1997
IS 11
BP 2347
EP 2352
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA YH013
UT ISI:A1997YH01300033
ER
PT J
AU Pliego, JR
DeAlmeida, WB
TI Reaction of CCl2 with CH2NH and the formation of dipolar and biradical
ylide structures
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID AB-INITIO; SPECTROSCOPIC DETECTION; 1,2-HYDROGEN MIGRATION;
POLYATOMIC-MOLECULES; CYCLO-ADDITIONS; RATE CONSTANTS; ABSOLUTE RATE;
DECOMPOSITION; SELECTIVITIES; PHOTOLYSIS
AB The potential energy surface for the reaction between CH2NH and CCl2
has been investigated using ab initio methods. We have performed
geometry optimizations at the MP2/6-31G* level of theory and single
point calculations at the MP4(SDQ)/6-311+ +G** level. The reaction step
for ylide formation has a free energy of activation predicted to be 5.0
kcal mol(-1). The parallel 1,2-cycloaddition reaction has a calculated
free energy barrier of 16.5 kcal mol(-1), indicating that this second
pathway is not competitive with ylide formation. The structure of the
azomethine ylide formed in the first reaction step is similar to that
found for the ylide resulting from the reaction of methylene with
ammonia and corresponds to a dipolar species, This is highly unstable
and rearranges to its more stable isomer, the biradical azomethine
ylide, which has a structure similar to the corresponding carbonyl
ylide. This species has a free energy barrier to ring closure
calculated to be 21.2 kcal mol(-1), so it has reasonable kinetic
stability, The resulting aziridine has a free energy of 24.1 kcal
mol(-1) lower than the biradical azomethine ylide, and the activation
free energy of ring opening is calculated to be 45.3 kcal mol(-1).
C1 UFMG,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEN MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BACH RD, 1995, J ORG CHEM, V60, P4653
BARTNIK R, 1984, TETRAHEDRON, V40, P2569
BONNEAU R, 1991, J AM CHEM SOC, V113, P9872
CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
COOK AG, 1962, J ORG CHEM, V27, P3686
DU XM, 1990, J AM CHEM SOC, V112, P1920
FRISH MJ, 1995, GAUSSIAN 94
GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
HOUK KN, 1980, J AM CHEM SOC, V102, P1504
HOUK KN, 1984, J AM CHEM SOC, V106, P4291
HOUK KN, 1985, TETRAHEDRON, V41, P1555
JACKSON JE, 1988, J AM CHEM SOC, V110, P5595
JACKSON JE, 1989, J AM CHEM SOC, V111, P6874
KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
LIU MTH, 1989, J AM CHEM SOC, V111, P6873
MACDONALD HHJ, 1972, CAN J CHEM, V50, P428
MILLER WH, 1980, J CHEM PHYS, V72, P99
MOSS RA, 1980, ACCOUNTS CHEM RES, V13, P58
MOSS RA, 1989, ACCOUNTS CHEM RES, V22, P15
NAITO T, 1994, J AM CHEM SOC, V116, P10080
PADWA A, 1991, CHEM REV, V91, P263
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1997, J CHEM PHYS, V106, P3582
POPLE JA, 1983, J AM CHEM SOC, V105, P6389
RONDAN NG, 1980, J AM CHEM SOC, V102, P1770
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
WALCH SP, 1993, J CHEM PHYS, V98, P3163
YAMAGUCHI Y, 1993, J AM CHEM SOC, V115, P5790
NR 29
TC 5
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD NOV
PY 1997
IS 11
BP 2365
EP 2369
PG 5
SC Chemistry, Organic; Chemistry, Physical
GA YH013
UT ISI:A1997YH01300035
ER
PT J
AU Sambrano, JR
Andres, J
Beltran, A
Sensato, FR
Leite, ER
Stamato, FMLG
Longo, E
TI An ab initio study of oxygen vacancies and doping process of Nb and Cr
atoms on TiO2 (110) surface models
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE ab initio; oxygen vacancy; doping; titanium oxide surface; varistor
ceramics
ID OXIDE; SOLVENT; VARISTORS; CLUSTERS
AB We theoretically investigated how the formation of oxygen vacancies and
the addition of niobium and chromium atoms as dopants modify the
varistor properties of TiO2. The calculations were carried out at the
HF level using a contracted basis set, developed by Huzinaga et al.. to
represent the atomic centers on the (110) surface for the large
(TiO2)(15) cluster model. The change of the values for the net atomic
charges and band gap after oxygen vacancy formation and the presence of
dopants in the lattice are analyzed and discussed. It is shown that the
formation of oxygen vacancies decreases the band gap while an opposite
effect is found when dopants are located in the reduced surface. The
theoretical results are compared with available experimental data. A
plausible explanation of the varistor behavior of this system is
proposed. (C) 1997 John Wiley & Sons, Inc.
C1 UNIV JAUME 1,DEPT CIENCIES EXPT,CASTELLO 12080,SPAIN.
UNIV FED SAO CARLOS,DEPT QUIM,LIEC,BR-13565905 SAO CARLOS,SP,BRAZIL.
RP Sambrano, JR, UNIV ESTADUAL PAULISTA,DEPT MATEMAT,CP 473,BR-17030360
BAURU,SP,BRAZIL.
CR BAGUS PS, 1991, CLUSTER MODELS SUR B, V283, P233
BERMUDEZ VM, 1981, PROG SURF SCI, V11, P1
BUENO PR, UNPUB
BUENO PR, 1996, J MATER SCI LETT, V15, P2048
CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
EGDELL RG, 1995, J MATER CHEM, V5, P499
FOSTER JP, 1980, J AM CHEM SOC, V102, P7211
FRISCH MJ, 1995, GAUSSIAN94 REVISION
GUPTA TK, 1985, J MATER SCI, V20, P4091
HADJIIVANOV KI, 1996, CHEM SOC REV, V25, P61
HAGFELDT A, 1992, INT J QUANTUM CHEM, V44, P477
HAGFELDT A, 1994, INT J QUANTUM CHEM, V49, P97
HEILAND G, 1984, CHEM PHYSICS SOLID S, V3
HENRICH VE, 1983, PROG SURF SCI, V14, P175
HENRICH VE, 1985, REP PROG PHYS, V48, P11
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
HUZINAGA S, 1985, COMPUT PHYS REP, V2, P279
INAMADA M, 1978, JPN J APPL PHYS, V17, P1
LEITE ER, 1992, J MATER SCI, V27, P5325
MARTINS JBL, 1993, INT J QUANTUM CHEM, V27, P643
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
MARTINS JBL, 1995, J MOL STRUCT THEOCHE, V330, P447
MARUCCO JF, 1981, J PHYS CHEM SOLIDS, V42, P363
MASUYAMA T, 1968, JPN J APPL PHYS, V7, P1294
PENNEWISS J, 1982, MATER LETT, V40, P536
PENNEWISS J, 1990, MATER LETT, V40, P219
PETTERSSON LGM, 1993, THEOR CHIM ACTA, V85, P345
PIANARO SA, 1995, J MATER SCI LETT, V14, P692
RANTALA TS, 1994, PHYS SCRIPTA, V54, P252
REED AE, 1985, J CHEM PHYS, V83, P735
REED AE, 1988, CHEM REV, V88, P899
RINALDI D, 1992, J COMPUT CHEM, V13, P675
RIVAIL JL, 1976, CHEM PHYS, V18, P233
RIVAIL JL, 1985, J MOL STRUCT THEOCHE, V120, P387
SAKAI Y, 1982, J COMPUT CHEM, V3, P6
SANON G, 1991, PHYS REV, V44, P5681
TAPIA O, 1975, MOL PHYS, V29, P1653
TAPIA O, 1992, THEORETICAL MODELS C, P435
TOMASI J, 1994, CHEM REV, V94, P2027
WATANABE Y, 1994, J NON-CRYST SOLIDS, V178, P84
YANG SL, 1995, J MATER RES, V10, P345
NR 41
TC 9
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD DEC 5
PY 1997
VL 65
IS 5
BP 625
EP 631
PG 7
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA YG650
UT ISI:A1997YG65000028
ER
PT J
AU Rocha, WR
DeAlmeida, WB
TI Reaction path for the insertion reaction of SnCl2 into the Pt-Cl bond:
An ab initio study
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
ID COMPACT EFFECTIVE POTENTIALS; EXPONENT BASIS-SETS; ASYMMETRIC
HYDROFORMYLATION; ORGANIC SYNTHESES; OLEFIN HYDROFORMYLATION;
ELECTRONIC-STRUCTURE; MOLECULAR-STRUCTURE; CRYSTAL-STRUCTURE;
TRANSITION-METAL; COMPLEXES
AB The reaction pathway for the insertion reaction of SnCl2 into the Pt-Cl
bond on the cis-Pt(Cl)(2)(PH3)(2) compound was investigated at the ab
initio MO level of theory. The optimized structure obtained for the
transition state indicates that this reaction proceeds through a
three-center transition state, and the formed intermediate
cis-Pt(Cl)(PH3)(2)(SnCl3) easily isomerizes to the
trans-Pt(Cl)(PH3)(2)(SnCl3) compound. The nature of the bonds was
investigated with the charge decomposition analysis (CDA) method and
this method indicates that the SnCl3 group is a stronger trans director
than is the PH3 group. (C) 1997 John Wiley & Sons, Inc.
C1 UFMG,ICEF,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR ALBINATI A, 1985, J ORGANOMET CHEM, V295, P239
ANDERSON GK, 1980, CHEM SOC REV, V9, P185
BAERENDS EJ, 1986, NATO ASI SER C-MATH, V176, P159
BAGUS PS, 1984, J CHEM PHYS, V80, P4378
BAGUS PS, 1984, J CHEM PHYS, V81, P1966
BAGUS PS, 1992, J CHEM PHYS, V96, P8962
BARDI R, 1982, J ORGANOMET CHEM, V224, P407
BARDI R, 1982, J ORGANOMET CHEM, V234, P107
BASOLO F, 1967, MECH INORGANIC REACT
BERRY RS, 1960, J CHEM PHYS, V32, P933
CAVINATO G, 1983, J ORGANOMET CHEM, V241, P275
CHATT J, 1953, J CHEM SOC, P2939
DAPPRICH S, 1994, CDA 2 1
DAPPRICH S, 1995, J PHYS CHEM-US, V99, P9352
DELPRA A, 1979, J CHEM SOC DA, P1862
DEWAR MJS, 1951, B SOC CHIM FR, V18, C79
EHLERS AW, 1996, ORGANOMETALLICS, V15, P105
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FUJIMOTO H, 1974, J CHEM PHYS, V60, P572
FUJIMOTO H, 1981, J AM CHEM SOC, V103, P752
GOMEZ M, 1991, ORGANOMETALLICS, V10, P4036
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOLLWARTH A, 1993, CHEM PHYS LETT, V208, P237
HSU CY, 1975, J AM CHEM SOC, V97, P3553
KATO S, 1974, J AM CHEM SOC, V94, P2024
KOLLAR L, 1987, J ORGANOMET CHEM, V330, P305
KOLLAR L, 1988, J ORGANOMET CHEM, V350, P277
OZAWA F, 1981, B CHEM SOC JPN, V54, P1868
PAONESSA RS, 1982, J AM CHEM SOC, V104, P3529
PARRINELLO G, 1987, J AM CHEM SOC, V109, P7122
PETTIT LD, 1971, Q REV, P1
PREGOSIN PS, 1978, HELV CHIM ACTA, V61, P1848
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1992, CAN J CHEM, V70, P612
STILLE JK, 1983, J MOL CATAL, V21, P203
WISNER JM, 1986, J AM CHEM SOC, V108, P347
ZIEGLER T, 1977, THEOR CHIM ACTA, V46, P1
ZIEGLER T, 1992, NATO ASI SER C, V378, P367
NR 39
TC 9
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD DEC 5
PY 1997
VL 65
IS 5
BP 643
EP 650
PG 8
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA YG650
UT ISI:A1997YG65000030
ER
PT J
AU Cordeiro, JMM
TI C-H center dot center dot center dot O and N-H center dot center dot
center dot O hydrogen bonds in liquid amides investigated by Monte
Carlo simulation
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE Monte Carlo simulation; amides; hydrogen bond; radial distribution
functions
ID X-RAY-DIFFRACTION; MOLECULAR-DYNAMICS SIMULATIONS; MO-SCF CALCULATIONS;
FORMAMIDE; METHYLFORMAMIDE; GEOMETRY; N,N-DIMETHYLFORMAMIDE; PEPTIDES;
MIXTURES; NEUTRON
AB Monte Carlo simulations of liquid formamide, N-methylformamide (MF),
and N,N-dimethylformamide (DMF) have been performed in the isothermal
and isobaric ensemble at 298 K and 1 atm, aiming to investigate the C-H
... O and N-H ... O hydrogen bonds. The interaction energy was
calculated using the classical 6-12 Lennard-Jones pairwise potential
plus a Coulomb term on a rigid six-site molecular model with the
potential parameters being optimized in this work. Theoretical values
obtained for heat of vaporization and liquid densities are in good
agreement with the experimental data. The radial distribution function
[RDF, g(r)] obtained compare well with R-X diffraction data available.
The RDF and molecular mechanics (MM2) minimization show that the C-H
... O interaction has a significant role in the structure of the three
liquids. These results are supported by ab initio calculations. This
Interaction is particularly important in the structure of MF. The
intensity of the N-H ... O hydrogen bond is greater in the MF than
formamide. This could explain some anomalous properties verified in MF.
(C) 1997 John Wiley & Sons, Inc.
RP Cordeiro, JMM, UNESP,FAC ENGN ILHA SOLTEIRA,DEPT QUIM & FIS,AV BRASIL
56,BR-15385000 ILHA SOLTEIRA,SP,BRAZIL.
CR *SER SOFTW, PCMODEL PROGR
ALLEN MP, 1987, COMPUTER SIMULATIONS
BERTOLASI V, 1995, ACTA CRYSTALLOGR B 6, V51, P1004
CARLSON HA, 1993, J COMPUT CHEM, V14, P1240
COURNOYER ME, 1984, MOL PHYS, V51, P119
DESIRAJU GR, 1990, J CHEM SOC CHEM COMM, V179, P454
DESIRAJU GR, 1991, ACCOUNTS CHEM RES, V24, P290
FANTONI AC, 1996, J CHEM SOC FARADAY T, V92, P343
FREITAS LCG, DIADORIM FORTRAN COD
FREITAS LCG, 1995, THEOCHEM-J MOL STRUC, V335, P189
FRISH MJ, 1992, GAUSSIAN REVISION A
GIBSON KD, 1990, J COMPUT CHEM, V11, P468
HAGLER AT, 1974, J AM CHEM SOC, V96, P5319
JORGENSEN WL, 1985, J AM CHEM SOC, V107, P569
JORGENSEN WL, 1991, CHEMTRACTS ORG CHEM, V4, P91
KALMAN E, 1983, Z NATURFORSCH A, V38, P231
LADANYI BM, 1993, ANNU REV PHYS CHEM, V44, P335
LIDE DR, 1992, CRC HDB PHYSICS CHEM
METROPOLIS N, 1953, J CHEM PHYS, V21, P108
NEUEFEIND J, 1992, MOL PHYS, V76, P143
OHTAKI H, 1983, B CHEM SOC JPN, V56, P2116
OHTAKI H, 1983, B CHEM SOC JPN, V56, P3406
OHTAKI H, 1986, B CHEM SOC JPN, V59, P271
RADNAI T, 1988, B CHEM SOC JPN, V61, P3845
RAO BG, 1990, J AM CHEM SOC, V112, P3803
SAGARIK KP, 1987, J CHEM PHYS, V86, P5117
SCHOESTER PC, 1995, Z NATURFORSCH A, V50, P38
SINOTI ALL, 1996, J BRAZIL CHEM SOC, V7, P133
STEINER T, 1994, J CHEM SOC CHEM COMM, P2341
STRAATSMA TP, 1992, ANNU REV PHYS CHEM, V43, P407
TAYLOR R, 1982, J AM CHEM SOC, V104, P5063
YASHONATH S, 1991, CHEM PHYS, V155, P351
NR 32
TC 10
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD DEC 5
PY 1997
VL 65
IS 5
BP 709
EP 717
PG 9
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA YG650
UT ISI:A1997YG65000037
ER
PT J
AU Mathon, J
Villeret, M
Umerski, A
Muniz, RB
Castro, JD
Edwards, DM
TI Quantum-well theory of the exchange coupling in magnetic multilayers
with application to Co/Cu/Co(001)
SO PHYSICAL REVIEW B
LA English
DT Article
ID NONMAGNETIC METALLIC LAYER; AB-INITIO CALCULATIONS; TORQUE METHOD;
OSCILLATIONS; SUPERLATTICES; STATES; MAGNETORESISTANCE; FERROMAGNETS;
CONFINEMENT; INTERFACES
AB Two parallel calculations of the-exchange coupling in a Co/Cu/Co(001)
trilayer, both using the same realistic s, p, and d tight-binding bands
with parameters determined from the ab initio band structures of bulk
Cu and Co, are reported. The coupling is first calculated within the
framework of the quantum-well (QW) formalism in which the periodic
behavior of the spectral density is exploited to derive an analytic
formula for the coupling valid for large spacer thicknesses. On the
other hand, an alternative expression for the coupling, referred to as
cleavage formula, is derived that allows accurate and efficient
numerical evaluation of the coupling. An analytic approximation to this
expression, valid in the asymptotic region of large spacer thickness,
is also obtained. These two approaches are discussed in relation to
other existing theoretical formulations of the coupling. The numerical
results for the coupling obtained from the cleavage formula are first
compared with the analytical QW calculation. The agreement between the
two calculations is impressive and entirely justifies the analytical QW
approach. The numerical calculation fully confirms the result of the QW
formalism that, for trilayers with thick Co layers, the short-period
oscillation due to the minority electrons from the vicinity of the Cu
Fermi-surface (FS) necks is dominant, the contribution of the
long-period oscillation being negligible. This is shown, in the
analytical QW formalism, to be due to the existence of bound states for
the minority-spin electrons at the Cu FS necks in the ferromagnetic
configuration. The dominant short-period oscillation has been confirmed
by spin-polarized scanning electron microscopy and observed directly in
the most recent photoemission experiments. The full confinement of the
minority electrons at the neck of the Cu FS also leads to a strong
temperature dependence of the short-period oscillation and an initial
decay of the coupling with spacer thickness N that is much slower than
predicted by the usual 1/N-2 law. For the electrons at the belly of the
Cu FS, the confinement is weak in both spin channels and the
long-period oscillation hardly changes between zero and room
temperatures. In addition, the belly contribution to the coupling
decreases at T=0 K following the usual 1/N-2 dependence. The amplitude
of the calculated coupling approximate to 1.2 mJ/m(2) at the first
antiferromagnetic peak of Cu is only a factor of 3 larger than the
observed coupling strength. Finally, the coupling for 2 ML of Co
embedded in Cu has also been evaluated from the cleavage formula. A
large initial coupling strength (3.4 mJ/m(2)) and comparable
contributions from the shea-and long-oscillation periods are obtained.
This is in complete agreement with theoretical results reported by
other groups. [S0163-1829(97)04138-6].
C1 UNIV FED FLUMINENSE,DEPT FIS,NITEROI,RJ,BRAZIL.
UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT MATH,LONDON SW7 2BZ,ENGLAND.
RP Mathon, J, CITY UNIV LONDON,DEPT MATH,LONDON EC1V 0HB,ENGLAND.
CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472
BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1
BRUNO P, 1991, PHYS REV LETT, V67, P1602
BRUNO P, 1992, PHYS REV B, V46, P261
BRUNO P, 1995, PHYS REV B, V52, P411
CASTRO JD, 1994, PHYS REV B, V49, P16062
CASTRO JDE, 1995, PHYS REV B, V51, P12876
CASTRO JDE, 1996, PHYS REV B, V53, P13306
DRCHAL V, 1996, PHYS REV B, V53, P15036
EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85
EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941
EDWARDS DM, 1991, PHYS REV LETT, V67, P493
EDWARDS DM, 1995, J MAGN MAGN MATER 1, V140, P517
FEREIRA M, 1996, J PHYS CONDENS MATT, V8, P11259
HERMAN F, 1991, J APPL PHYS, V69, P4783
JOHNSON MT, 1993, MATER RES SOC S P, V313, P93
KROMPIEWSKI S, 1994, EUROPHYS LETT, V26, P303
KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105
KUDRNOVSKY J, 1996, PHYS REV B, V53, P5125
LANG P, 1993, PHYS REV LETT, V71, P1927
LANG P, 1996, PHYS REV B, V53, P9092
LEE BC, 1995, PHYS REV B, V52, P3499
LEE DH, 1981, PHYS REV B, V23, P4988
MATHON J, 1989, J PHYS-CONDENS MAT, V1, P2505
MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873
MATHON J, 1993, J MAGN MAGN MATER, V127, L261
MATHON J, 1995, PHYS REV LETT, V74, P3696
MORUZZI VL, 1978, CALCULATED ELECTRONI
NORDSTROM L, 1994, PHYS REV B, V50, P13058
OPPENEER PM, 1993, PHYSICS TRANSITION M, V1
ORTEGA JE, 1992, PHYS REV LETT, V69, P844
ORTEGA JE, 1993, PHYS REV B, V47, P1540
PAPACONSTANTOPO.DA, 1986, HDB BAND STRUCTURE E
PARKIN SSP, 1990, PHYS REV LETT, V64, P2304
PARKIN SSP, 1992, MATER RES SOC S P, V231, P195
SANCHO MPL, 1985, J PHYS F MET PHYS, V15, P851
SEGOVIA P, 1996, PHYS REV LETT, V77, P3455
SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995
STILES MD, 1993, PHYS REV B, V48, P7238
UMERSKI A, 1997, PHYS REV B, V55, P5266
VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923
VANSCHILFGAARDE M, 1995, PHYS REV LETT, V74, P4063
WEBER W, 1995, EUROPHYS LETT, V31, P431
NR 43
TC 35
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 1
PY 1997
VL 56
IS 18
BP 11797
EP 11809
PG 13
SC Physics, Condensed Matter
GA YF528
UT ISI:A1997YF52800068
ER
PT J
AU Enderlein, R
Sipahi, GM
Scolfaro, LMR
Leite, JR
TI Density functional theory for holes in semiconductors
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DELTA-DOPED GAAS; FERMI-EDGE SINGULARITY; NIPI-SUPERSTRUCTURE;
QUANTUM-WELLS; CRYSTALS; GAS
AB A long standing problem of solid state theory is solved, being the
derivation of a set of self-consistent one-particle equations for the
interacting multicomponent hole gas of a semiconductor in an external
potential. Combining effective mass theory with density functional
theory, the Hohenberg-Kohn theorem is generalized and a set of
generalized Kohn-Sham equations is obtained for the multicomponent gas.
It is demonstrated how the exchange-correlation potential matrix may be
calculated by the local density approximation. Explicit results are
given for the Gamma(8) valence band holes of zinc blende type
semiconductors. [S0031-9007(97)04490-6].
RP Enderlein, R, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05315970
SAO PAULO,BRAZIL.
CR ANDO T, 1985, J PHYS SOC JPN, V54, P1528
BANGERT E, 1974, 12TH P INT C PHYS SE, P714
BROIDO DA, 1985, PHYS REV B, V31, P888
DHARMAWARDANA MWC, 1982, PHYS REV A, V26, P2096
DOHLER GH, 1972, PHYS STATUS SOLIDI B, V52, P533
DOHLER GH, 1972, PHYS STATUS SOLIDI, V52, P79
ENDERLEIN R, IN PRESS
HOHENBERG P, 1964, PHYS REV, V136, B864
KOHN W, 1965, PHYS REV, V140, A1133
LUTTINGER JM, 1955, PHYS REV, V97, P869
REBOREDO FA, 1993, PHYS REV B, V47, P4655
RICHARDS D, 1993, PHYS REV B, V47, P9629
SINGWI KS, 1968, PHYS REV, V176, P589
SIPAHI GM, 1996, PHYS REV B, V53, P9930
WAGNER J, 1991, PHYS REV B, V43, P12134
NR 15
TC 22
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 10
PY 1997
VL 79
IS 19
BP 3712
EP 3715
PG 4
SC Physics, Multidisciplinary
GA YF186
UT ISI:A1997YF18600042
ER
PT J
AU Moraes, LAB
Eberlin, MN
TI Transacetalization of 1,3-dioxane with acylium and sulfinyl cations in
the gas phase
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID ION-MOLECULE REACTIONS; MASS-SPECTROMETRY; ORBITAL METHODS; BASIS SETS;
ISOMERS; 1,3-DIOXOLANES; SUBSTITUTION; INSTRUMENT; SCANS; 3D
AB Transacetalization occurs extensively In gas phase ion-molecule
reactions of 1,3-dioxane with a variety of acylium ions [R-C+=O; R =
CH3, C2H5, Ph, CH3O, Cl, CH2=CH, (CH3)(2)N] and a sulfur analogue, the
thioacetyl ion CH3-C+=S. Six-membered 1,3-dioxanylium ions and
analogues, i.e. cyclic 'ionic (thio)ketals', are formed, as evidenced
by pentaquadrupole triple-stage collision-dissociation mass spectra and
MP2/6-311G(d,p)//6-311G(d,p) + ZPE ab initio calculations, as well as
by O-18 labelling experiments. Transacetalization with 1,3-dioxane is
not a general reaction for sulfinyl cations (R-S+=O). They react either
moderately (CH3-S+=O) or extensively (CH2=CH-S+=O) by
transacetalization, form abundant intact adducts (Ph-S+=O) or undergo
mainly proton transfer and/or hydride abstraction reactions (Cl-S+=O,
CH3O-S+=O and C2H5O-S+=O). Competitive MS2 experiments are employed to
compare the transacetalization reactivity of different acylium ions,
and that of two cyclic neutral acetals, that is 1,3-dioxane and
1,3-dioxolane. All the cyclic 'ionic ketals) dissociate exclusively
under low-energy collision conditions to regenerate the original
reactant ion species, a simple dissociation chemistry that is amply
demonstrated to be a very general characteristic of the
transacetalization products. The cyclic 'ionic thioketal' formed in
transacetalization with CH3-C+=S is found, however, to dissociate
exclusively to the oxygen analogue ion CH3-C+=O, a triple-stage mass
spectrometric(MS3) experiment that constitutes a novel gas-phase
strategy for conversion of thioacylium ions into acylium ions.
C1 UNICAMP,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR ATTINA M, 1983, J AM CHEM SOC, V105, P1122
CAREY FA, 1984, ADV ORGANIC CHEM
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
CREASER CS, 1996, J CHEM SOC PERK MAR, P427
EBERLIN MN, IN PRESS MASS SPECTR
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
EBERLIN MN, 1997, J AM CHEM SOC, V119
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
GOZZO FC, 1996, J CHEM SOC PERK APR, P587
HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
KUMAKURA M, 1978, J PHYS CHEM-US, V82, P639
KUNZ H, 1991, COMPREHENSIVE ORGANI, V59, P659
LEINONEN A, 1994, ORG MASS SPECTROM, V29, P295
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J ORG CHEM, V62, P5096
PARADISI C, 1988, ORG MASS SPECTROM, V23, P521
RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
STALEY RH, 1977, J AM CHEM SOC, V99, P5964
VAINIOTALO P, 1996, P 44 ASMS C MASS SPE, P453
NR 37
TC 18
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD OCT
PY 1997
IS 10
BP 2105
EP 2111
PG 7
SC Chemistry, Organic; Chemistry, Physical
GA YB261
UT ISI:A1997YB26100035
ER
PT J
AU Jorge, FE
deCastro, EVR
daSilva, ABF
TI A universal Gaussian basis set for atoms Cerium through Lawrencium
generated with the generator coordinate Hartree-Fock method
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE universal Gaussian basis set; generator coordinate Hartree-Fock method;
heavy atoms
ID SLATER-TYPE BASES; LYING EXCITED-STATES; COULOMB CALCULATIONS;
HEAVY-ATOMS; EQUATIONS; VERSION
AB The generator coordinate Hartree-Fock method is applied to generate a
universal Gaussian basis set for the heavy atoms from Ce (Z = 58)
through Lr (Z = 103). The Hartree-Fock energies obtained with our
universal Gaussian basis set are compared with the new numerical
Hartree-Fock results of Koga et al., when available, and with
geometrical Gaussian basis sets results available in the Literature.
The universal Gaussian basis set presented here is generated taking
into account the shell constraint (the sharing of exponential functions
between all s, p, d, and f atomic orbitals), and can be used as
starting basis set in ab initio relativistic Hartree-Fock-Roothaan
calculations. (C) 1997 John Wiley & Sons, Inc.
C1 UNIV SAO PAULO, INST QUIM DE SAO CARLOS, DEPT QUIM & FIS MOL, BR-13560970 SAO CARLOS, SP, BRAZIL.
UNIV FED DO ESPIRITO SANTO, CCE, DEPT QUIM, VITORIA, ES, BRAZIL.
UNIV FED DO ESPIRITO SANTO, CCE, DEPT FIS, VITORIA, ES, BRAZIL.
CR CLEMENTI E, 1991, MOTECC MODERN TECHNI, P58
DACOSTA HFM, 1987, MOL PHYS, V62, P91
DASILVA ABF, 1989, MOL PHYS, V68, P433
DASILVA ABF, 1993, CAN J CHEM, V71, P1713
DASILVA ABF, 1993, CHEM PHYS LETT, V201, P37
DASILVA ABF, 1993, CHEM PHYS LETT, V203, P201
DASILVA ABF, 1993, MOL PHYS, V78, P1301
DASILVA ABF, 1996, CAN J CHEM, V74, P1526
FISCHER CF, 1977, HARTREEFOCK METHOD A
KOGA T, 1995, INT J QUANTUM CHEM, V54, P261
MALLI GL, 1993, PHYS REV A, V47, P143
MALLI GL, 1994, J CHEM PHYS, V101, P6829
MATSUOKA O, 1987, CHEM PHYS LETT, V140, P567
MOHALLEM JR, 1986, INT J QUANTUM CH S20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MOHALLEM JR, 1987, J CHEM PHYS, V86, P5043
MOHANTY AK, 1990, J CHEM PHYS, V93, P1829
OKADA S, 1989, J CHEM PHYS, V91, P4193
NR 18
TC 11
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD OCT
PY 1997
VL 18
IS 13
BP 1565
EP 1569
PG 5
SC Chemistry, Multidisciplinary
GA YA494
UT ISI:A1997YA49400001
ER
PT J
AU Guimaraes, TC
Pavao, AC
Taft, CA
Lester, WA
TI Interaction mechanism of N-2 with the Cr (110) surface
SO PHYSICAL REVIEW B
LA English
DT Article
ID ANGLE-RESOLVED PHOTOEMISSION; RAY-ABSORPTION-SPECTRA; HIGHER
EXCITED-STATES; ELECTRONIC-STRUCTURE; CHEMISORBED MOLECULES; 3D-METAL
SURFACES; TRANSITION-METALS; CO CHEMISORPTION; DISSOCIATION; PRECURSOR
AB The interaction:of N-2 With the Cr (110) surface is analyzed using the
ab initio Hartree-Fock method and a Cr5N2 cluster. Our results indicate
that the tilted state is energetically favored over perpendicular
adsorption. The Mulliken surface-->N-2 charge transfer, overlap
populations as well as N-N distances increase in the tilted
configuration. We also analyze the stretching frequencies, geometrical
parameters, natural bond orbital populations, density of states,
orbital energies,charge-density distribution and orbital contours. We
propose a model to explain the catalytic dissociation of N-2 On the Cr
(110) surface.
C1 CTR BRASILEIRO PESQUISAS FIS,BR-22290180 RIO JANEIRO,BRAZIL.
UNIV CALIF BERKELEY,LAWRENCE BERKELEY LAB,DIV CHEM SCI,BERKELEY,CA 94720.
UNIV CALIF BERKELEY,DEPT CHEM,BERKELEY,CA 94720.
UNIV ESTADO BAHIA,DEPT DESENHO & TECNOL,SALVADOR,BA,BRAZIL.
RP Guimaraes, TC, UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50670900
RECIFE,PE,BRAZIL.
CR BADER RFW, 1990, ATOMS MOL QUANTUM TH
BAGUS PS, 1980, J ELECTRON SPECTROSC, V20, P253
BENNDORF C, 1985, SURF SCI, V163, L675
BJORMEHJOLM O, 1994, PHYS REV LETT, V19, P2551
BJORNEHOLM O, 1993, PHYS REV B, V47, P2308
BLYHOLDER G, 1964, J PHYS CHEM-US, V68, P2772
BOZSO F, 1977, J CATAL, V49, P18
DEPAOLA RA, 1986, CHEM PHYS LETT, V128, P343
DOWBEN PA, 1984, SURF SCI, V147, P89
DOWBEN PA, 1988, SURF SCI, V193, P336
DOWBEN PA, 1991, SURF SCI, V254, L482
EGELHOFF WF, 1984, SURF SCI, V141, L324
ERTL G, 1984, PHYS REV LETT, V53, P850
FORESMAN JB, 1996, EXPLORING CHEM ELECT
FREUND HJ, 1983, PHYS REV LETT, V50, P768
FREUND HJ, 1987, SURF SCI, V185, P187
FRISCH MJ, 1992, GAUSSIAN 92
FUKUDA Y, 1988, SURF SCI, V203, L651
GRUNZE M, 1984, PHYS REV LETT, V53, P850
HASSE G, 1987, SURF SCI, V191, P75
HAY PJ, 1985, J CHEM PHYS, V82, P270
HERMANN K, 1981, SOLID STATE COMMUN, V38, P1257
HESKETT D, 1984, SURF SCI, V139, P558
HESKETT D, 1985, SURF SCI, V164, P490
HO W, 1980, SURF SCI, V95, P171
HORN K, 1982, SURF SCI, V118, P465
IBACH H, 1982, ELECTRON ENERGY LOSS
IBBOTSON DE, 1981, SURF SCI, V110, P313
MAHAN GD, 1978, J CHEM PHYS, V68, P1344
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NIEUWENHUYS BE, 1981, SURF SCI, V105, P505
NORTON PR, 1978, SURF SCI, V72, P33
ORTEGA JE, 1994, PHYS REV B, V49, P859
PAULING L, 1960, NATURE CHEM BOND
PAULING L, 1984, J SOLID STATE CHEM, V54, P297
PAVAO AC, 1955, SURF SCI, V323, P340
PAVAO AC, 1991, PHYS REV B, V43, P6962
PAVAO AC, 1994, PHYS REV B, V50, P1868
PIVETEAU B, 1994, PHYS REV B, V49, P8402
PLUMMER EW, 1985, SURF SCI, V158, P58
REED AE, 1985, J CHEM PHYS, V83, P735
SANDELL A, 1993, PHYS REV LETT, V70, P2000
SHINN ND, 1985, J CHEM PHYS, V83, P5928
SHINN ND, 1986, PHYS REV B, V33, P1464
SHINN ND, 1988, PHYS REV B, V38, P12248
SHINN ND, 1990, PHYS REV B, V41, P9771
SINDER M, 1994, PHYS REV B, V50, P2775
SPENCER ND, 1982, J CATAL, V74, P129
STOHR J, 1982, PHYS REV B, V26, P4111
TOMANEK D, 1985, PHYS REV B, V31, P2488
TSAI MC, 1985, SURF SCI, V155, P387
UEBA H, 1986, SURF SCI, V169, P153
UMBACH E, 1984, SOLID STATE COMMUN, V51, P365
WHITMAN LJ, 1986, J CHEM PHYS, V85, P3788
WIBERG KB, 1993, J COMPUT CHEM, V14, P1504
WU Y, 1987, SURF SCI, V179, L26
WU Y, 1988, SURF SCI, V203, L651
ZDANSKY EOF, 1993, PHYS REV B, V48, P2632
ZHAO J, 1994, PHYS REV B, V20, P424
ZHOU RH, 1992, J PHYS-CONDENS MAT, V4, P2429
NR 60
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD SEP 15
PY 1997
VL 56
IS 11
BP 7001
EP 7010
PG 10
SC Physics, Condensed Matter
GA XY806
UT ISI:A1997XY80600093
ER
PT J
AU Aleman, C
Galembeck, SE
TI Intramolecular electronic and hydrogen-bonding interactions in
N,N'-dimethyl-2,3-di-O-methyl-L-tartaramide
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID L-TARTARIC ACID; MST-SCRF CALCULATIONS; CONFORMATIONAL-ANALYSIS;
PSEUDOROTATIONAL EQUILIBRIUM; PENTOFURANOSE MOIETY; POLY(ETHYLENE
OXIDE); ENERGY CALCULATIONS; COUPLING-CONSTANTS; FURANOSE RING;
FORCE-FIELD
AB The changes in energy of the
N,N'-dimethyl-2,3-di-O-methyl-L-tartaramide, model compound of
polytartaramides based on 2,3-di-O-methyl-L-tartaric acid and
1,n-alkanediamine, have been analyzed by ab initio quantum mechanical
calculations. The influences of the gauche oxygen effect have been
investigated in the gas phase as well as in aqueous, chloroform, and
carbon tetrachloride solutions. The results indicate that polarizable
environments enhance the gauche oxygen effect, but the amount of
stabilization depends on the electronic characteristics of the solvent.
C1 UNIV SAO PAULO,FAC FILOSOFIA CIENCIAS & LETRAS RIBEIRAO PRET,DEPT QUIM,BR-14049901 RIBEIRAO PRET,SP,BRAZIL.
RP Aleman, C, UNIV POLITECN CATALUNYA,ETS ENGN IND BARCELONA,DEPT ENGN
QUIM,DIAGONAL 647,E-08028 BARCELONA,SPAIN.
CR ABRAHAM RJ, 1972, J AM CHEM SOC, V94, P1913
ALEMAN C, 1993, J COMPUT AID MOL DES, V7, P241
ALEMAN C, 1994, J CHEM SOC P2, P563
ALEMAN C, 1995, J ORG CHEM, V60, P6135
ALEMAN C, 1995, J PHYS CHEM-US, V99, P17653
ALEMAN C, 1996, J PHYS CHEM-US, V100, P1524
ALEMAN C, 1996, TETRAHEDRON, V52, P8275
ALTONA C, 1972, J AM CHEM SOC, V94, P8205
ALTONA C, 1973, J AM CHEM SOC, V95, P2333
BACHS M, 1994, J COMPUT CHEM, V15, P446
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BOU JJ, 1994, MACROMOLECULES, V27, P5263
BOU JJ, 1995, POLYMER, V36, P181
CASANOVAS J, 1994, J COMPUT AID MOL DES, V8, P441
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
ELIEL EL, 1973, J AM CHEM SOC, V95, P8041
FREY RF, 1991, J AM CHEM SOC, V113, P7129
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GEJJI SP, 1994, CHEM PHYS LETT, V226, P427
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HOSSAIN N, 1993, NUCLEOS NUCLEOT, V12, P499
INOMATA K, 1992, J PHYS CHEM-US, V96, P7934
IRIBARREN I, 1996, MACROMOLECULES, V29, P4397
IRIBARREN I, 1996, MACROMOLECULES, V29, P8413
LEON S, 1997, STRUCT CHEM, V8, P39
LUQUE FJ, 1993, J PHYS CHEM-US, V97, P4386
LUQUE FJ, 1994, J COMPUT CHEM, V15, P847
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
MATSUURA H, 1987, J MOL STRUCT, V156, P293
MIERTUS S, 1982, CHEM PHYS, V65, P239
MOLLER C, 1934, PHYS REV, V46, P618
MULLERPLATHE F, 1994, MACROMOLECULES, V27, P6040
NAVAS JJ, 1996, J ORG CHEM, V61, P6849
OLSON WK, 1982, J AM CHEM SOC, V104, P270
OLSON WK, 1982, J AM CHEM SOC, V104, P278
OROZCO M, 1994, CHEM PHYS, V182, P237
OROZCO M, 1995, J AM CHEM SOC, V117, P1378
OROZCO M, 1995, J COMPUT CHEM, V16, S563
PEREIRA GK, IN PRESS J MOL STRUC
PEREIRA GK, 1996, THEOCHEM-J MOL STRUC, V363, P87
PIEROTTI RA, 1976, CHEM REV, V76, P717
PLAVEC J, 1993, J AM CHEM SOC, V115, P9734
RODRIGUEZGALAN A, 1992, J POLYM SCI POL CHEM, V30, P713
SHANG HS, 1994, J AM CHEM SOC, V116, P1528
SOSANUMA K, 1995, MACROMOLECULES, V28, P8629
STEWART JJP, 1993, MOPAC 93 REVISION 2
TASAKI K, 1985, POLYM J, V17, P641
THIBAUDEAU C, 1994, J AM CHEM SOC, V116, P8033
VEGA MC, 1992, J BIOMOL STRUCT DYN, V10, P1
VOIGHTMARTIN IG, 1995, MACROMOLECULES, V28, P242
YOSHIDA H, 1992, CHEM PHYS LETT, V196, P601
NR 52
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD SEP 19
PY 1997
VL 62
IS 19
BP 6562
EP 6567
PG 6
SC Chemistry, Organic
GA XX490
UT ISI:A1997XX49000024
ER
PT J
AU Martins, JBL
Taft, CA
Longo, E
Andres, J
TI Ab initio study of CO and H-2 interaction on ZnO surfaces using a small
cluster model
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE ab initio; adsorption; ZnO
ID OXIDE SURFACES; ZINC-OXIDE; ABINITIO CALCULATIONS; METHANOL SYNTHESIS;
CARBON-MONOXIDE; METAL; PHOTOELECTRON; ADSORPTION; POTENTIALS; SITES
AB We have studied the adsorption of H-2 and CO molecules, as well as the
dissociation of H-2, on the (ZnO)(6) cluster model using the ab initio
Hartree-Fock method. The effective core potential was used for Zn, C,
and O atoms at double-zeta-type valence basis set level, whereas for H
we used Dunning's basis set, We have also added polarization and
diffuse functions to the O, C, and H basis set. The CO molecule
interacts with the lowest coordination zinc sites which are located on
the edge between the (0001) and (10 (1) over bar 0) surfaces. The
decrease in CO bond length upon adsorption on ZnO surfaces is
associated with the charge transfer from CO to the surface, Our
calculations indicate the 5 sigma orbital from adsorbed CO stabilized
to a 1.56 eV deeper energy, Of all the configurations investigated, the
molecular H-2 interaction has the lowest binding energy with a decrease
in H-2 bond strength, The H-2 molecule also dissociates on the zinc and
oxygen sites of the ZnO cluster, and the preferential dissociation site
is the oxygen which has a coordination number of two. The H-2
dissociation shows a large stabilization energy for the most stable
adsorption site which is the lowest coordination site. Molecular CO and
H-2 adsorption yields a smaller change in the estimated energy gaps and
ionization potentials, We have also analysed the geometry of the
adsorbed molecules, the Mulliken charge, the orbital SCF energies, and
also the molecular orbital densities and contour plots. Our results are
compared with the available experimental data, (C) 1997 Elsevier
Science B.V.
C1 UNIV FED SAO CARLOS,DEPT QUIM,BR-13560905 SAO CARLOS,SP,BRAZIL.
UNIV JAUME 1,DEPT CIENCIAS EXPT,CASTELLO DE PLANA,SPAIN.
RP Martins, JBL, CTR BRASILEIRO PESQUISAS FIS,DEPT MAT CONDENSADA & FIS
ESTATIST,RUA XAVIER SIGAUD 150,BR-22290 RIO JANEIRO,BRAZIL.
CR ABRAHAMS SC, 1969, ACTA CRYSTALLOGR B, V25, P1233
ANDERSON AB, 1986, J AM CHEM SOC, V108, P1385
BOLIS V, 1989, J CHEM SOC FARAD T 1, V85, P855
CHANG CC, 1973, J PHYS CHEM-US, V77, P2634
DAMICO KL, 1983, J AM CHEM SOC, V105, P6380
DENT AL, 1969, J PHYS CHEM-US, V73, P3772
EARLEY CW, 1993, J COMPUT CHEM, V14, P216
FERRARI AM, 1996, INT J QUANTUM CHEM, V58, P241
FRISCH MJ, 1992, GAUSSIAN 92
GAY RR, 1980, J AM CHEM SOC, V102, P6752
HAY PJ, 1985, J CHEM PHYS, V82, P270
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HENGLEIN A, 1989, CHEM REV, V89, P1861
JACOBI K, 1984, SURF SCI, V141, P109
KITCHEN DB, 1989, J PHYS CHEM-US, V93, P7265
KLIER K, 1982, ADV CATAL, V31, P243
LIN JY, 1991, J AM CHEM SOC, V113, P8312
LIN JY, 1992, INORG CHEM, V31, P686
MARTINS JBL, IN PRESS J MOL STRUC
MARTINS JBL, 1994, J MOL STRUCT, V303, P19
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P347
MARTINS JBL, 1996, THEOCHEM-J MOL STRUC, V363, P249
MAVRIDIS A, 1989, J AM CHEM SOC, V111, P2482
MERCHAN M, 1987, J CHEM PHYS, V87, P1690
MOLLER PJ, 1995, SURF SCI, V323, P102
SCARANO D, 1992, SURF SCI, V276, P281
SOLOMON EI, 1993, CHEM REV, V93, P2623
SPANHEL L, 1991, J AM CHEM SOC, V113, P2826
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
VEILLARD A, 1991, CHEM REV, V91, P743
ZAKI MI, 1987, SPECTROCHIM ACTA A, V43, P1455
ZHANPEISOV NU, 1994, J STRUCT CHEM, V35, P9
NR 33
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD JUN 30
PY 1997
VL 398
BP 457
EP 466
PG 10
SC Chemistry, Physical
GA XV714
UT ISI:A1997XV71400050
ER
PT J
AU Gong, XG
Guenzburger, D
Saitovitch, EB
TI Structure and dynamic properties of neutral and ionized SiH5 and Si2H3
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID SPECTROSCOPY; SPECTRUM; ENTHALPIES; MOLECULES; DISILYNE; RADICALS;
SILANE; CATION; BANDS; ATOMS
AB The equilibrium structures and dynamical properties of neutral and
ionized SiH5, and Si2H3 have been studied using the ab initio molecular
dynamics method. The obtained equilibrium structures are in good
agreement with other highly precise methods. In SiH5+, we have clearly
observed that H-2 rotates about the C-3 axis. In Si2H3+, we have found
that H atoms can interchange positions frequently and also the
structure changes. The different dynamical behaviors of the Si-H and
C-H molecules has been addressed. (C) 1997 Published by Elsevier
Science B.V.
C1 CTR BRASILEIRO PESQUISAS FIS,URCA,RJ,BRAZIL.
RP Gong, XG, NANJING UNIV,INST SOLID STATE PHYS,NATL LAB SOLID STATE
MICROSTRUCT,NANJING 210093,PEOPLES R CHINA.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BECERRA R, 1992, J PHYS CHEM-US, V96, P10856
BETRENCOURT M, 1986, J CHEM PHYS, V84, P4121
BOGEY M, 1991, PHYS REV LETT, V66, P413
BOO DW, 1993, CHEM PHYS LETT, V211, P358
BOO DW, 1995, J CHEM PHYS, V103, P514
BORRMANN A, 1996, CHEM PHYS LETT, V252, P1
BUDA F, 1989, PHYS REV LETT, V63, P294
CAO YB, 1993, J PHYS CHEM-US, V97, P5215
CAR R, 1985, PHYS REV LETT, V55, P2471
COLEGROVE BT, 1990, J CHEM PHYS, V93, P7230
COLEGROVE BT, 1990, J PHYS CHEM-US, V94, P5593
CURTISS LA, 1991, J CHEM PHYS, V95, P2433
DAVIES PB, 1994, J CHEM PHYS, V100, P6166
DEMOLLIENS A, 1989, J AM CHEM SOC, V111, P5623
GONG XG, IN PRESS
HOHENBERG P, 1964, PHYS REV B, V136, P864
HU CH, 1992, CHEM PHYS LETT, V190, P543
KHANNA SN, 1995, PHYS REV B, V51, P13705
KIRKPATRICK S, 1983, SCIENCE, V220, P671
KOHN W, 1965, PHYS REV, V140, A1133
NAKAMURA K, 1985, J CHEM PHYS, V83, P4504
OLAH GA, 1973, CARBOCATIONS ELECTRO
PERDEW JP, 1981, PHYS REV B, V23, P5048
RING MA, 1992, J PHYS CHEM-US, V96, P10848
SAX AF, 1991, J PHYS CHEM-US, V95, P1768
SCHLEYER PV, 1983, CHEM PHYS LETT, V95, P477
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SCUSERIA GE, 1993, NATURE, V366, P512
SMITH DM, 1992, J CHEM PHYS, V96, P1741
TSE JS, 1995, PHYS REV LETT, V74, P876
VOLATRON F, 1990, CHEM PHYS LETT, V166, P49
NR 32
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD AUG 29
PY 1997
VL 275
IS 3-4
BP 392
EP 398
PG 7
SC Physics, Atomic, Molecular & Chemical
GA XV887
UT ISI:A1997XV88700038
ER
PT J
AU Morgon, NH
Linnert, HV
deSouza, LAG
Riveros, JM
TI Gas-phase nucleophilic reactions in SO2F2: experiment and theory
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID COMPACT EFFECTIVE POTENTIALS; EXPONENT BASIS-SETS; OPTIMIZATION
TECHNIQUE; ADDITION-ELIMINATION; IONS; FLUORIDE; SULFUR; ATOMS;
THERMOCHEMISTRY; SUBSTITUTION
AB The gas-phase ion-molecule reactions of simple anions (HO-, CH3O-,
NH2-) with SO2F2 proceed with rate constants close to the collision
limit. The energy surface for the OH-/SO2F2 reaction has been
characterized by ab initio calculations using basis functions adapted
for a pseudopotential and corrected for anionic systems by the
generator coordinate method (GCM) at the QCISD(T)/(ECP/TZV/GCM) level.
The calculations indicate that reaction occurs by initial addition of
the anion to SO2F2 to form a hypervalent sulfur species. The high
efficiency of the reaction is associated with a low energy barrier
separating the initial adduct from the product side ion-neutral
complex. (C) 1997 Elsevier Science B.V.
C1 UNIV SAO PAULO,INST CHEM,BR-05599970 SAO PAULO,BRAZIL.
RP Morgon, NH, UNIV CAMPINAS,INST CHEM,CAMPINAS,SP,BRAZIL.
CR ALKORTA I, 1994, THEOR CHIM ACTA, V89, P1
BACHRACH SM, 1996, J PHYS CHEM-US, V100, P3535
CHEUNG YS, 1995, J AM CHEM SOC, V117, P9725
CLARY DC, 1997, J CHEM PHYS, V106, P575
CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
CUSTODIO R, 1992, CAN J CHEM, V70, P580
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DASILVA MLP, 1995, J MASS SPECTROM, V30, P733
DUNNING TH, 1977, MODERN THEORETICAL C, V3, P1
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GLUKHOVTSEV MN, 1995, J AM CHEM SOC, V117, P2024
GORDON IM, 1989, CHEM SOC REV, V19, P65
GRABOWSKI JJ, 1989, J AM CHEM SOC, V111, P1193
HAGEN K, 1978, J MOL STRUCT, V44, P187
IRIKURA KK, 1995, J CHEM PHYS, V102, P5357
LARSON JW, 1985, J AM CHEM SOC, V107, P766
LARSON JW, 1987, INORG CHEM, V26, P4018
LIAS SG, 1988, J PHYS CHEM S1, V235, P436
MCKEE ML, 1996, J PHYS CHEM-US, V100, P3473
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
MILLER KJ, 1979, J AM CHEM SOC, V101, P7206
MORGON NH, 1995, CHEM PHYS LETT, V235, P436
MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
MORGON NH, 1995, J PHYS CHEM-US, V99, P17832
MORGON NH, 1995, THEOCHEM-J MOL STRUC, V335, P11
OKUYAMA T, 1990, CHEM SULPHINIC ACIDS, P623
RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
ROZAS I, 1996, J CHEM SOC PERK MAR, P461
SMITH D, 1977, INT J MASS SPECTROM, V23, P123
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1992, CAN J CHEM, V70, P612
SU T, 1975, INT J MASS SPECTROM, V17, P211
WANG HB, 1994, J PHYS CHEM-US, V98, P1608
YANG KY, 1995, J PHYS CHEM-US, V99, P15035
NR 34
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 5
PY 1997
VL 275
IS 5-6
BP 457
EP 462
PG 6
SC Physics, Atomic, Molecular & Chemical
GA XV888
UT ISI:A1997XV88800004
ER
PT J
AU Srivastava, RM
Seabra, GM
TI Preparation and reactions of 3-[3-(aryl)-1,2,4-oxadiazol-5-yl]
propionic acids
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE arylamidoximes; bis-1,2,4-oxadiazoles; diaryl-1,2,4-oxadiazoles;
ab-initio sto-3g calculations
AB The synthesis of title compounds 3a-g, from arylamidoximes 1a-g and
succinic anhydride in high yields is described. 1,2,4-Oxadiazoles 3a-f
were also obtained by carrying out the reaction in a domestic microwave
oven. Preliminary pharmacological evaluations demonstrated that 3b-e
possess analgesic properties. Ab initio molecular orbital calculations
of the type STO-3G have been performed for compounds 3a, 4a, 5a and 6a.
C1 UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50670901 RECIFE,PE,BRAZIL.
CR AFIATPOUR P, 1994, BRAZ J MED BIOL RES, V27, P1403
ARBASINO M, 1963, ATTI ACCAD NAZL SFMN, V34, P532
BALLARD RE, 1968, SPECTROCHIM ACTA A, V24, P1975
BARRANS J, 1959, CR HEBD ACAD SCI, V249, P1096
BLATT AH, 1943, ORG SYNTH, V2, P165
BRAM G, 1991, CHEM IND-LONDON, P396
FRISCH MJ, 1992, GAUSSAIN 92
HIROTA T, 1994, ACTA CRYSTALLOGR C, V50, P807
KALINOWSKI HO, 1984, 13C NMR SPECTROSKOPI, P183
LEITE LFC, 1983, THESIS U FEDERAL PER
LEITE LFCD, 1989, B SOC CHIM BELG, V98, P203
LOPEZ JP, 1983, J MOL STRUCT, V94, P203
MILLER JA, 1989, CHEM BER, V22, P243
MILLER JA, 1989, CHEM BER, V22, P2796
MOUSSEBOIS C, 1964, HELV CHIM ACTA, V47, P942
PARK CH, 1977, HAKSUL YONGUCHI CHUN, V4, P133
SCHULZ O, 1985, CHEM BER, V18, P2459
SRIVASTAVA M, 1984, J HETEROCYCLIC CHEM, V21, P1193
SRIVASTAVA RM, 1977, J ORG CHEM, V42, P1555
SRIVASTAVA RM, 1983, GAZZ CHIM ITAL, V113, P845
SRIVASTAVA RM, 1984, J CHEM ENG DATA, V29, P221
SRIVASTAVA RM, 1989, QUIM NOVA, V12, P221
SRIVASTAVA RM, 1992, J BRAZIL CHEM SOC, V3, P117
SRIVASTAVA RM, 1993, J BRAZIL CHEM SOC, V4, P84
NR 24
TC 9
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PY 1997
VL 8
IS 4
BP 397
EP 405
PG 9
SC Chemistry, Multidisciplinary
GA XV685
UT ISI:A1997XV68500013
ER
PT J
AU Pfannes, HD
TI Simple theory of superparamagnetism and spin-tunneling in Mossbauer
spectroscopy
SO HYPERFINE INTERACTIONS
LA English
DT Article
ID MAGNETIC-RELAXATION; SPECTRA; MOLECULES; DISSIPATION; SYSTEMS
AB The magnetic relaxation of isolated small (< 100 Angstrom) monodomain
magnetic particles is due to superparamagnetic relaxation (predominant
at high temperatures) and eventually quantum tunneling of the magnetic
moment (at low temperatures). The superparamagnetic relaxation process
can be formally described by an (multiple phonon absorption and
emission) Orbach process with an anisotropy Hamiltonian due to
crystalline or form anisotropy (H) over cap(Ion) = S-z(2) and a usual
dynamical spin-Hamiltonian for the spin-phonon interaction. From this
Mossbauer spectra can be calculated using ab-initio or stochastic
methods. Phonon-assisted tunneling and its influence on Mossbauer
spectra are discussed.
RP Pfannes, HD, UNIV FED MINAS GERAIS,DEPT FIS,CP 702,BR-30123970 BELO
HORIZONT,MG,BRAZIL.
CR BROWN WF, 1959, J APPL PHYS, V30, S130
BROWN WF, 1963, PHYS REV, V130, P1677
CALDEIRA AO, 1981, PHYS REV LETT, V46, P211
CALDEIRA AO, 1983, ANN PHYS-NEW YORK, V149, P374
CHUDNOVSKY EM, 1994, PHYS REV LETT, V72, P3433
CIANCHI L, 1986, REP PROG PHYS, V49, P1243
DATTAGUPTA S, 1977, PHYS REV B, V16, P3893
GARG A, 1994, J APPL PHYS 2, V76, P6168
HARTMANNBOUTRON F, 1995, J PHYS I, V5, P1281
HARTMANNBOUTRON F, 1996, INT J MOD PHYS B, V10, P2577
HARTMANNBOUTRON F, 1996, J PHYS I, V6, P137
MORUP S, 1980, APPLICATIONS MOSSBAU, V2, P1
NEEL L, 1949, ANN GEOPHYS, V5, P99
ORBACH R, 1972, ELECT PARAMAGNETIC R, P121
PFANNES HD, 1994, HYPERFINE INTERACT, V83, P79
POLITI P, 1995, PHYS REV LETT, V75, P537
STAMP PCE, 1992, INT J MOD PHYS B, V6, P1355
STONER EC, 1991, IEEE T MAGN, V27, P3475
VILLAIN J, 1994, EUROPHYS LETT, V27, P159
NR 19
TC 7
PU BALTZER SCI PUBL BV
PI AMSTERDAM
PA ASTERWEG 1A, 1031 HL AMSTERDAM, NETHERLANDS
SN 0304-3843
J9 HYPERFINE INTERACTIONS
JI Hyperfine Interact.
PY 1997
VL 110
IS 1-2
BP 127
EP 134
PG 8
SC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter;
Physics, Nuclear
GA XV680
UT ISI:A1997XV68000015
ER
PT J
AU daSilva, JBP
Ramos, MN
Suto, E
Bruns, RE
TI Transferability of the cis- and trans-dichloroethylene atomic polar
tensors
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PHASE INTENSITY MEASUREMENTS; PRINCIPAL COMPONENT ANALYSIS;
DIPOLE-MOMENT DERIVATIVES; EFFECTIVE CHARGES; INFRARED INTENSITIES;
DIFLUOROETHYLENE
AB The isotopic invariance criterion, ab initio molecular orbital results,
and principal component analysis are used to resolve the sign
ambiguities of the dipole moment derivatives for cis-dichloroethylene
and the out-of-plane derivatives of trans-dichloroethylene. Atomic
polar tensors (APTs) for CiS-C2H2Cl2 and cis-C2D2Cl2 as well as
out-of-plane polar tensor elements for trans-C2H2Cl2 and trans-C2D2Cl2
are reported. Mean dipole moment derivatives of the difluoro-and
dichloroethylenes are compared and interpreted as atomic charges. The
APTs of cis-dichloroethylene are transferred to trans-dichloroethylene
to calculate its infrared fundamental vibrational intensities. These
intensities are in much better agreement with the experimental
intensities than those calculated by a MP2/6-311++G(d,p) wave function.
The transferability of mean dipole moment derivatives between the cis
and trans-dichloroethylenes is demonstrated using a simple potential
model and carbon and chlorine core electron binding energies obtained
by ESCA spectroscopy.
C1 UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13083970 CAMPINAS,SP,BRAZIL.
UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50739901 RECIFE,PE,BRAZIL.
CR BASSI ABM, 1975, THESIS U ESTADUAL CA
BIARGE JF, 1961, ANALES REAL SOC ES A, V57, P81
CIOSLOWSKI J, 1989, J AM CHEM SOC, V111, P8333
CRAIG NC, 1996, J PHYS CHEM-US, V100, P5310
CRAWFORD BL, 1952, J CHEM PHYS, V20, P977
FRISCH MJ, 1992, GAUSSIAN 92
GUADAGNINI PH, 1995, J AM CHEM SOC, V117, P4144
GUADAGNINI PH, 1997, J AM CHEM SOC, V119, P4224
HOPPER MJ, 1983, J CHEM PHYS, V79, P19
KAGEL RO, 1983, J CHEM PHYS, V78, P7029
KAGEL RO, 1984, J PHYS CHEM-US, V88, P521
MARDIA KV, 1979, MULTIVARIATE ANAL, P213
NEWTON JH, 1976, J CHEM PHYS, V64, P3036
OVEREND J, 1963, INFRARED SPECTROSCOP, CH10
PERSON WB, 1974, J CHEM PHYS, V61, P1040
RAMOS MN, 1985, J PHYS CHEM-US, V89, P4979
SCARMINIO IS, 1989, TRAC-TREND ANAL CHEM, V8, P326
SCHAFER L, 1986, J MOL STRUCT, V145, P135
SIEGBAHN K, 1969, ESCA APPLIED FREE MO
SUTO E, 1991, J COMPUT CHEM, V12, P885
SUTO E, 1991, J PHYS CHEM-US, V95, P9716
SUTO E, 1993, J PHYS CHEM-US, V97, P6161
NR 22
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 28
PY 1997
VL 101
IS 35
BP 6293
EP 6298
PG 6
SC Chemistry, Physical
GA XT955
UT ISI:A1997XT95500020
ER
PT J
AU Ma, SG
Wong, P
Cooks, RG
Gozzo, FC
Eberlin, MN
TI Stereoelectronic effects in phosphorus dichloride cation pyridine
complexes
SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES
LA English
DT Article
DE kinetic method; stereoelectronic effects; cation affinity; PCL2+;
thermochemistry; agostic effects
ID MS(3) MASS-SPECTROMETRY; GAS-PHASE BASICITIES; AMMONIUM ION AFFINITIES;
TRANSITION-METAL BONDS; PROTON-BOUND DIMERS; KINETIC METHOD;
ELECTRON-AFFINITIES; PCL2 RADICALS; ACIDITIES; AM1
AB The kinetic method is applied to order the relative affinities of a
group of substituted pyridines towards PC2+ relationships with the
affinities towards other cations. The absolute affinities are estimated
with the aid of AM1 molecular orbital calculations while the PCl2+
affinity of pyridine itself is also estimated by ab initio calculations
at MP2/6-31G(d,p)//6-31G(d,p) level to be 76.0 kcal mol(-1). The
experiments employ the PCl2+-bound dimer of two pyridines generated via
ion/ molecule reactions between the mass-selected PCl2+ ion and a
mixture of pyridines. The dimers, examined using MS3 experiments,
fragment exclusively to yield the pyridine/PCl2+ monomers and this is
consistent with ab initio RHF/6-31G(d,p) and AM1 molecular orbital
calculations which show a tetrahedral complex with a N-P-N angle of 129
degrees. For meta- and parasubstituted pyridines, there is an excellent
linear correlation (slope 0.69) between the logarithm of the ratio of
the two fragment ion abundances and the proton affinity of the
corresponding substituted pyridine. Similar correlations are observed
for other cations (SiCl3+, Cl+, SF3+ and SiCl+) and it is shown that
both the number of degrees of freedom in the dimer and the cation
affinity control this correlation.
Dimers comprising ortho-substituted pyridines show decreased affinities
due to stereoelectronic interactions between the ortho-substituted
alkyl group and the central PCl2+ cation. A set of gas phase
stereoelectronic parameters (S-k) is determined and ordered as 2-MePy
(-0.38) < 2,4-diMePy (-0.84) < 2,6-diMePy (-0.86) < 2,5-diMePy (-1.08)
< 2,3-diMePy (-1.26). AM1 calculations show that the eclipsed
conformation of 2-methylpyridine/PCl2+ adduct is more stable than the
staggered conformation by approx. 3 kcal mol(-1) and this is suggested
to be due to a favorable agostic interaction between the hydrogen of
the ortho methyl group and the central phosphorus atom. The most stable
conformation is found when the two chlorines face the two hydrogens of
the ortho methyl substituent in a ''face-to-face'' interaction. This
novel type of interaction is also the reason for the relatively small
magnitude of S-k, the stereoelectronic parameter, in
2,6-dimethylpyridine. The overall stereoelectronic effects of the
ortho-substituent(s) on PCl2+ affinities indicate that steric effects
dominate electronic effects in this system. The PCl2+ ion behaves
similarly in its steric and agostic effects to SF3+ and very
differently to SiCl+ which displays uniquely strong agostic effects.
(C) 1997 Elsevier Science B.V.
C1 PURDUE UNIV,DEPT CHEM,W LAFAYETTE,IN 47907.
STATE UNIV CAMPINAS,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR ABBOUD JLM, 1989, J AM CHEM SOC, V111, P8960
ABBOUD JLM, 1996, J AM CHEM SOC, V118, P1126
ANDREWS L, 1969, J PHYS CHEM-US, V73, P2774
BOJESEN G, 1994, J CHEM SOC P2, P1029
BONAZZOLA L, 1981, J CHEM PHYS, V75, P4829
BRODBELTLUSTIG JS, 1989, TALANTA, V36, P255
BROOKHART M, 1983, J ORGANOMET CHEM, V250, P395
BROOKHART M, 1988, PROG INORG CHEM, V36, P1
BRUM JL, 1994, J PHYS CHEM-US, V98, P5587
BURINSKY DJ, 1984, J AM CHEM SOC, V106, P2770
CHEN GD, 1995, INT J MASS SPECTROM, V151, P69
CHEN GD, 1995, J MASS SPECTROM, V30, P1167
COOKS RG, 1977, J AM CHEM SOC, V99, P1279
COOKS RG, 1989, ADV MASS SPECTROM, V11, P33
COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
CRAIG SL, UNPUB J PHYS CHEM
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DEWAR MJS, 1991, J AM CHEM SOC, V113, P735
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
GRAUL ST, 1990, INT J MASS SPECTROM, V96, P181
GREEN MLH, 1984, PURE APPL CHEM, V56, P47
GUTSEV GL, 1994, CHEM PHYS, V179, P325
HASS MJ, 1993, INT J MASS SPECTROM, V124, P115
HOKE SH, 1994, J AM CHEM SOC, V116, P4888
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KING RB, 1994, ENCY INORGANIC CHEM, V1, P35
LATIFZADEH L, 1995, CHEM PHYS LETT, V241, P13
LEE HN, IN PRESS J PHYS CHEM
LI XP, 1993, ORG MASS SPECTROM, V28, P366
LIOU CC, 1992, J AM CHEM SOC, V114, P6761
MAJUMDAR TK, 1992, J AM CHEM SOC, V114, P2897
MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
MCLUCKEY SA, 1983, INT J MASS SPECTROM, V52, P165
NOURSE BD, 1991, INT J MASS SPECTROM, V106, P249
OZGEN T, 1983, INT J MASS SPECTROM, V48, P427
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SETHSON I, 1992, J AM CHEM SOC, V114, P953
VELJKOVIC M, 1985, ADV MASS SPECTROM B, V10, P1149
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
WRIGHT LG, 1982, INT J MASS SPECTROM, V42, P115
WU HF, 1993, J AM SOC MASS SPECTR, V4, P718
WU ZC, 1992, RAPID COMMUN MASS SP, V6, P403
WU ZC, 1994, RAPID COMMUN MASS SP, V8, P777
YANG SS, 1995, J MASS SPECTROM, V30, P184
YANG SS, 1995, J MASS SPECTROM, V30, P807
YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
NR 48
TC 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-1176
J9 INT J MASS SPECTROM ION PROC
JI Int. J. Mass Spectrom. Ion Process.
PD APR
PY 1997
VL 163
IS 1-2
BP 89
EP 99
PG 11
SC Physics, Atomic, Molecular & Chemical; Spectroscopy
GA XL627
UT ISI:A1997XL62700008
ER
PT J
AU Moraes, LAB
Gozzo, FC
Eberlin, MN
Vainiotalo, P
TI Transacetalization with acylium ions. A structurally diagnostic
ion/molecule reaction for cyclic acetals and ketals in the gas phase
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; MASS-SPECTROMETRY; BASIS SETS; SUBSTITUTION;
ISOMERS
AB Transacetalization takes place in high yields in gas phase ion/molecule
reactions of acylium ions (RC+=O) with a variety of cyclic acetals and
ketals, that is, five-, six-, and seven-membered 1,3-O,O-heterocycles
and their mono-sulfur and nitrogen analogues. A general, structurally
diagnostic method for the gas phase characterization of cyclic acetals
and ketals is therefore available. Transacetalization occurs via
initial O(or S)-acylation, followed by a ring-opening/ring-re-forming
process in which a neutral carbonyl compound is eliminated and cyclic
''ionic ketals'' (that is, cyclic 1,3-dioxonium ions and analogues) are
formed. The nature of the substituents at the 2-position, which are
eliminated in the course of the reaction, is found to affect
considerably the extent of transacetalization. Substituents not at the
2-position remain in the ionic products; hence positional isomers
produce different cyclic ''ionic ketals'' and are easily
differentiated. The triple-stage (MS3) mass spectra of the cyclic
''ionic ketals'' show in all cases major dissociation to re-form the
reactant acylium ion, a unique dissociation chemistry that is
equivalent to the hydrolysis of neutral acetals and ketals and which is
then determined to be a very general characteristic of cyclic ''ionic
ketals''. Additionally, the O-18-labeled transacetalization product of
1,3-dioxolane shows dissociation to both CH3C+=O-18 and CH3C+=O to the
same extent, which confirms its cyclic ''ionic ketal'' structure and
the ''oxygen-scrambling'' mechanism of transacetalization. Ab initio
MP2/6-31G(d,p)//6-31G-(d,p) + ZPE energy surface diagrams show that
transacetalization is the most exothermic, thermodynamically favorable
process in reactions of CH3C+=O with 1,3-dioxolane and 1,3-oxathiolane,
whereas 1,3-dithiolane is unreactive due to the endothermicity of the
initial acylation step.
C1 UNICAMP,INST CHEM CP6154,BR-13083970 CAMPINAS,SP,BRAZIL.
UNIV JOENSUU,DEPT CHEM,FIN-80101 JOENSUU,FINLAND.
CR ATTINA M, 1983, J AM CHEM SOC, V105, P1122
BOGERT MT, 1933, J AM CHEM SOC, V55, P3741
CAREY FA, 1984, ADV ORGANIC CHEM
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
CREASER CS, 1996, J CHEM SOC PERK MAR, P427
EBERLIN MN, IN PRESS MASS SPECTR
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
GOZZO FC, 1996, J CHEM SOC PERK APR, P587
HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
KUMAKURA M, 1978, J PHYS CHEM-US, V82, P639
LEIONONEN A, 1994, ORG MASS SPECTROM, V29, P295
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LA, IN PRESS J CHEM S P2
MORAES LAB, 1996, J ORG CHEM, V61, P8726
OLAH GA, 1964, FRIEDELCRAFTS RELATE, V3
OLAH GA, 1976, CARBONIUM IONS, V5, P2084
PARADISI C, 1988, ORG MASS SPECTROM, V23, P521
RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
STALEY RH, 1977, J AM CHEM SOC, V99, P5964
VAINIOTALO P, 1996, P 44 ASMS C MASS SPE, P453
NR 38
TC 47
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD JUL 25
PY 1997
VL 62
IS 15
BP 5096
EP 5103
PG 8
SC Chemistry, Organic
GA XN357
UT ISI:A1997XN35700035
ER
PT J
AU Gong, XG
TI Structure and stability of cluster-assembled solid Al12C(Si): A
first-principles study
SO PHYSICAL REVIEW B
LA English
DT Article
ID MAGNETIC-PROPERTIES; METALLIC CLUSTERS; ALUMINUM CLUSTERS; CRYSTALS;
SYSTEMS; C-60
AB We have proposed a possible crystal structure for the cluster-assembled
solid Al12C(Si), and its electronic structures and stability have been
studied in the framework of density functional theory and ab initio
molecular dynamics. We find that Al12C(Si) clusters are condensed by
van der Waals force, with a very small cohesive energy of similar to
1.1 eV. The combined steepest descent on ions shows that upon the
formation of solid the relaxation of atomic distances in the Al12C(Si)
cluster is very small. The stability of the Al12C solid is also
confirmed by a dynamical simulation at low temperature.
C1 ACAD SINICA,INST SOLID STATE PHYS,HEFEI 230031,PEOPLES R CHINA.
CTR BRASILEIRO PESQUISAS FIS,RIO JANEIRO,BRAZIL.
RP Gong, XG, NANJING UNIV,INST SOLID STATE PHYS,NATL LAB SOLID STATE
MICROSTRUCT,NANJING 210093,PEOPLES R CHINA.
CR *JENA P, 1992, PHYSICS CHEM FINITE
BACHELET GB, 1982, PHYS REV B, V26, P4199
BENOIT M, 1996, PHYS REV LETT, V76, P2934
CAR R, 1985, PHYS REV LETT, V55, P2471
CHENG HP, 1991, PHYS REV B A, V43, P10647
GONG XG, 1993, PHYS REV LETT, V70, P2078
HOHENBERG P, 1964, PHYS REV, V136, B864
HOHENBERG P, 1995, PHYS REV, V140, A1133
IDO H, 1990, J APPL PHYS, V67, P4978
KAWAI R, UNPUB
KHANNA SN, 1992, PHYS REV LETT, V69, P1664
KHANNA SN, 1994, CHEM PHYS LETT, V219, P479
KHANNA SN, 1995, PHYS REV B, V51, P13705
KROTO H, 1988, SCIENCE, V242, P1139
KUMAR V, UNPUB
LIU F, 1996, CHEM PHYS LETT, V248, P213
PERDEW JP, 1981, PHYS REV B, V23, P5048
SAITO S, 1991, PHYS REV LETT, V66, P2637
SEITSONEN AP, 1993, PHYS REV B, V48, P1981
SEITSONEN AP, 1995, J CHEM PHYS, V103, P8075
SHOEMAKER DP, 1952, ACTA CRYSTALLOGR, V5, P637
SUN DY, 1996, PHYS REV B, V54, P17051
WHITTEN RL, 1990, MRS LATE NEWS SESSIO
YI JY, 1990, CHEM PHYS LETT, V174, P461
YOU JQ, 1995, PHYS REV B, V51, P1358
ZHANG GW, 1994, J APPL PHYS 2, V76, P7037
NR 26
TC 23
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL 15
PY 1997
VL 56
IS 3
BP 1091
EP 1094
PG 4
SC Physics, Condensed Matter
GA XM766
UT ISI:A1997XM76600035
ER
PT J
AU Srivastava, RM
Pavao, AC
Seabra, GM
Brown, RK
TI Anomeric effect enhancement in C-5-substituted 2-methoxytetrahydropyrans
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE anomeric effect; 2-methoxytetrahydropyran; conformation; AM1
calculations; HF/6-31g** basis set
AB cis- and trans-2,5-Dimethoxytetrahydropyrans,
cis-2,5-dimethoxy-6-methyltetrahydropyran and
2-methoxy-5-methyltetrahydropyran have been examined to see the effect
of an OCH3 group at position 5 on the degree of anomeric effect in
substituted 2-methoxytetrahydropyrans. The present study shows that
this group stabilises the C-2 electronegative substituent in the axial
position. Semi-empirical and ab initio molecular orbital calculations
support this view. AM1 calculation gives lower enthalpies as well as
lower dipole moments for the compounds having an OCH3 group in the
axial position at C-2 over the equatorial form in
2-methoxytetrahydropyrans. This enhanced stabilisation is attributed to
the electrostatic interaction between the partial positive charge at
C-5 and the partial negative charge of the aglycone oxygen atom. (C)
1997 Elsevier Science B.V.
C1 UNIV ALBERTA,DEPT CHEM,EDMONTON,AB,CANADA.
RP Srivastava, RM, UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50670901
RECIFE,PE,BRAZIL.
CR ANDERSON CB, 1964, CHEM IND-LONDON, P2054
ANDERSON CB, 1968, TETRAHEDRON, V24, P1707
BOOTH GE, 1966, J ORG CHEM, V31, P544
BOOTH H, 1982, J CHEM SOC CHEM COMM, P1047
BOOTH H, 1985, J CHEM SOC CHEM COMM, P467
BOOTH H, 1992, TETRAHEDRON, V48, P6151
BUEMI G, 1988, J MOL STRUCT THEOCHE, V164, P379
DESCOTES G, 1970, B SOC CHIM FR, P3730
DESLONGCHAMPS P, 1983, STEREOELECTRONIC EFF
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
ELIEL EL, 1962, TETRAHEDRON LETT, P97
ELIEL EL, 1968, J ORG CHEM, V33, P3754
FRISCH MJ, 1992, GAUSSIAN 92
GELIN M, 1970, B SOC CHIM FR, P3723
HALL SS, 1978, J ORG CHEM, V43, P667
JUARISTI E, 1992, TETRAHEDRON, V48, P5019
JUARISTI E, 1995, ANOMERIC EFFECT
KIRBY AJ, 1983, ANOMERIC EFFECT RELA
LEMIEUX RU, 1969, CAN J CHEM, V47, P4427
LEMIEUX RU, 1971, PURE APPL CHEM, V25, P527
MONNERET C, 1978, CARBOHYD RES, V65, P35
MONNERET C, 1987, J CARBOHYD CHEM, V6, P221
PIERSON GO, 1968, J ORG CHEM, V33, P2572
PRALY JP, 1987, CAN J CHEM, V65, P213
PULAG P, 1977, MODERN THEORETICAL C, V4
SOUZA AMA, 1986, THESIS U FEDERAL PER
SRIVASTAVA RM, 1970, CAN J CHEM, V48, P2334
STEWART JJP, 1990, J COMPUT AID MOL DES, V4, P1
STEWART JJP, 1993, MOPAC 9300 MANUAL
SWEET F, 1968, CAN J CHEM, V46, P1543
TVAROSKA I, 1981, CARBOHYD RES, V90, P173
TVAROSKA I, 1989, ADV CARBOHYD CHEM, P75
VENTURA ON, 1989, J MOL STRUCT THEOCHE, V187, P55
WIBERG KB, 1989, J AM CHEM SOC, V111, P4821
WOOD G, 1969, CAN J CHEM, V47, P429
WOODS RJ, 1991, J CHEM SOC CHEM COMM, P334
WOODS RJ, 1995, J PHYS CHEM-US, V99, P3832
NR 37
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD JUL 7
PY 1997
VL 412
IS 1-2
BP 51
EP 58
PG 8
SC Chemistry, Physical
GA XL894
UT ISI:A1997XL89400006
ER
PT J
AU Glaser, MA
Clark, NA
Garcia, E
Walba, DM
TI Quantum chemistry based force fields for soft matter
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE liquid crystal; modeling; force fields; quantum chemistry
ID FERROELECTRIC LIQUID-CRYSTALS; HIGH SPONTANEOUS POLARIZATION; OPLS
POTENTIAL FUNCTIONS; MONTE-CARLO SIMULATIONS;
NUCLEAR-MAGNETIC-RESONANCE; MOLECULAR-DYNAMICS
AB We describe the use of ab initio electronic structure calculations in
the development of high-quality classical interaction potentials for
liquid crystal modeling. Our focus is on methods for the rapid,
on-demand creation of force fields for use in mean field theory based
calculations of materials properties, employed for routine
pre-synthesis evaluation of novel liquid crystalline materials. The
role of quantum chemistry in the development of intermolecular
interaction potentials for large-scale simulations of soft matter is
also discussed, and directions for future work are outlined. The
utility of quantum chemistry derived force fields for liquid crystal
modeling is illustrated by two example applications: mean field theory
based prediction of the spontaneous polarization density P of
ferroelectric liquid crystals, and large-scale simulation studies of
the nanosegregation of polymer precursors in smectic liquid crystal
hosts. (C) 1997 Elsevier Science B.V.
C1 UNIV BRAZILIA,DEPT CHEM,BRASILIA,BRAZIL.
UNIV COLORADO,DEPT CHEM & BIOCHEM,BOULDER,CO 80309.
RP Glaser, MA, UNIV COLORADO,DEPT PHYS,CONDENSED MATTER LAB,BOULDER,CO
80309.
CR 1996, LIQCRYST DATABASE 5
*BIOS MOL SIM, 1995, CERIUS2
*WAV INC, SPART
BAHR C, 1986, MOL CRYST LIQ CRYST, V4, P31
BAHR C, 1987, MOL CRYST LIQ CRYST, V148, P29
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BRIGGS JM, 1990, J COMPUT CHEM, V11, P958
BRIGGS JM, 1991, J PHYS CHEM-US, V95, P3315
DEMUS D, 1983, WISSENSCHAFTL BEITRA, V41, P18
FRISCH MJ, 1995, GAUSSIAN 94
GLASER MA, UNPUB
GLASER MA, 1995, MOL PHYS REP, V10, P26
GLASER MA, 1996, UNPUB
GUYMON CA, 1997, SCIENCE, V275, P57
HEHRE WJ, 1995, PRACTICAL STRATEGIES
HO MS, 1993, FERROELECTRICS, V138, P51
JORGENSEN WL, 1984, J AM CHEM SOC, V106, P6638
JORGENSEN WL, 1993, J COMPUT CHEM, V14, P206
KELLER P, 1985, J PHYS PARIS G, V4, P2203
LIDE DR, 1996, CRC HDB CHEM PHYSICS
MAYO SL, 1990, J PHYS CHEM-US, V94, P8897
POON CD, 1989, J CHEM PHYS, V91, P7392
POON CD, 1989, LIQ CRYST, V5, P1159
PRICE SL, 1991, COMPUTER SIMULATION, P183
RAPPE AK, 1991, J PHYS CHEM-US, V95, P3358
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024
SEXTON JC, 1992, NUCL PHYS B, V380, P665
SIEPMANN JI, 1993, NATURE, V365, P330
SMITH GD, 1995, MACROMOLECULES, V28, P5804
STONE AJ, 1991, HYDROGEN BONDED LIQU, P25
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
WATANABE M, 1993, J CHEM PHYS, V99, P8063
YOSHINO K, 1987, MOL CRYST LIQ CRYST, V144, P87
NR 34
TC 10
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUL 30
PY 1997
VL 53
IS 8
BP 1325
EP 1346
PG 22
SC Spectroscopy
GA XL198
UT ISI:A1997XL19800024
ER
PT J
AU Resende, SM
DeAlmeida, WB
TI Ab initio study of the formation of molecular complexes between Cl-2
and C2H2
SO MOLECULAR PHYSICS
LA English
DT Article
ID ROTATIONAL SPECTROSCOPY; HYDROGEN-FLUORIDE; ABINITIO; PHOTOCHEMISTRY;
INTERMEDIATE; SURFACE; WATER
AB The intermolecular potential energy surface (PES) for the interaction
between the Cl-2 and C2H2 molecules has been comprehensively
investigated using nb initio methods, aiming to locate the possible
stationary points. The calculations were performed with the double zeta
plus double polarization (DZ2P), triple zeta plus polarization (TZP)
and triple zeta plus double polarization (TZ2P) basis sets, including
electron correlation at the second-order Moller-Plesset (MP2) level,
and basis set superposition error correction. Six stationary points
were located on the PES: a T-shaped form where one chlorine atom is
attached to the acetylene triple bond (b pi-a sigma type), a parallel
form, a slipped parallel form, a crossed form and an inclined and a
symmetric inverse T-shaped forms, where the van der Waals bond is
between one of the H atoms of the acetylene and the Cl-Cl bond. At the
MP2/TZ2P//MP2/TZP level of calculation, only the T-shaped and the
parallel forms are minimum energy structures, and their stabilization
energies are 2.002 and 0.422 kcal mol(-1) respectively. The two inverse
T-shaped forms and the slipped parallel form are predicted to be
first-order transition states at this level of calculation, and their
stabilization energies are 0.709 kcal mol(-1) for the inclined form,
0.694 kcal mol(-1) for the symmetric form, and 0.624 kcal mol(-1) for
the slipped parallel form, which suggest that the intermolecular PES is
very flat in this region. The crossed form is a second-order transition
state, and it is stabilized by 0.390 kcal mol(-1). The shifts of the
intramolecular frequencies upon complexation are also discussed. The
global minimum is the T-shaped bn-ao structure, and the geometry, the
intermolecular stretching force constant and the charge redistribution
on complex formation lead to a classification of the outer (weak) type
according to Mulliken. These results show the weakness of this
interaction, which is dominated by dispersion forces, characteristic of
the complexes between molecules without a permanent electric dipole,
such as C2H2 and Cl-2.
RP Resende, SM, UNIV FED MINAS GERAIS,ICEX,DEPT QUIM,LAB QUIM COMPUTAC &
MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR ANDREWS L, 1983, J CHEM PHYS, V79, P3670
AULT BS, 1987, J PHYS CHEM-US, V91, P4723
BLAKE JF, 1989, J AM CHEM SOC, V111, P1919
BLOEMINK H, 1995, J CHEM SOC CHEM COMM, V18, P1833
BLOEMINK HI, 1994, CHEM PHYS LETT, V223, P162
BLOEMINK HI, 1995, J CHEM SOC FARADAY T, V91, P1891
BOYS SF, 1970, MOL PHYS, V19, P533
DEALMEIDA WB, 1989, CHEM PHYS, V137, P143
DEALMEIDA WB, 1990, CHEM PHYS, V141, P297
DEALMEIDA WB, 1993, J PHYS CHEM-US, V97, P2560
FRISCH MJ, 1995, GAUSSIAN 94
HOBZA P, 1988, CHEM REV, V88, P871
INGOLD CK, 1969, STRUCTURE MECHANISM
KANG HC, 1996, CHEM PHYS LETT, V254, P135
LAURSEN SL, 1989, J PHYS CHEM-US, V93, P2328
LAURSEN SL, 1990, J PHYS CHEM-US, V94, P8175
LEGON AC, 1995, J CHEM SOC FARADAY T, V91, P1881
MULLIKEN RS, 1952, J PHYS CHEM-US, V56, P801
NOVOA JJ, 1994, CHEM PHYS, V186, P175
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1996, THEOR CHIM ACTA, V93, P333
RESENDE SM, 1996, CHEM PHYS, V206, P1
RESENDE SM, 1997, IN PRESS J PHYS CHEM
SCHMIDT M, 1993, J COMPUT CHEM, V14, P1346
NR 25
TC 5
PU TAYLOR & FRANCIS LTD
PI LONDON
PA ONE GUNPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE
SN 0026-8976
J9 MOL PHYS
JI Mol. Phys.
PD JUL
PY 1997
VL 91
IS 4
BP 635
EP 641
PG 7
SC Physics, Atomic, Molecular & Chemical
GA XK031
UT ISI:A1997XK03100005
ER
PT J
AU Martins, JBL
Longo, E
Taft, CA
Andres, J
TI Ab initio and semiempirical MO studies using large cluster models of CO
and H-2 adsorption and dissociation on ZnO surfaces with the formation
of ZnH and OH species.
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE ab initio; semiempirical MO study; cluster model
ID ZINC-OXIDE SURFACES; METHANOL SYNTHESIS; PHOTOELECTRON-SPECTROSCOPY;
ROOM-TEMPERATURE; CARBON-MONOXIDE; HYDROGEN; MECHANISMS; POTENTIALS;
PARAMETERS; CATALYST
AB We have used ab initio MO as well as MNDO, AM1 and PM3 semiempirical
methods with large (ZnO)(60) clusters to study the H-2 and CO
adsorption, as well as the H-2 dissociation, on ZnO surfaces with the
formation of ZnH and OH species. From the optimized adsorption and
dissociation geometries, we analyse Mulliken populations, binding
energies, band gaps, and bonding distances. The calculated SCF orbital
energies, density of states and stretch frequencies are compared with
infrared and ultraviolet photoelectron experiments. We analyse the
effect of cluster size on our calculations, hydrogen bonding, and
heterolytic dissociation, as well as the diversity and stability of the
bonding sites, and compare our results obtained using both ab initio
and semiempirical methods. (C) 1997 Elsevier Science B.V.
C1 UNIV FED SAO CARLOS,DEPT QUIM,BR-13565905 SAO CARLOS,SP,BRAZIL.
UNIV JAUME 1,DEPT CIENCIAS EXPT,CASTELLO DE PLANA 12080,SPAIN.
RP Martins, JBL, CTR BRASILEIRO PESQUISAS FIS,DEPT MAT CONDENSADA & FIS
ESTATIST,RUA XAVIER SIGAUD 150,BR-22290180 RIO JANEIRO,BRAZIL.
CR AU CT, 1988, SURF SCI, V197, P391
BOCCUZZI F, 1978, J CATAL, V51, P150
BOLIS V, 1989, J CHEM SOC FARAD T 1, V85, P855
CHANG CC, 1973, J PHYS CHEM-US, V77, P2634
DAMICO KL, 1983, J AM CHEM SOC, V105, P6380
DENT AL, 1969, J PHYS CHEM-US, V73, P3772
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
EISCHENS RP, 1962, J CATAL, V1, P180
FRISCH MJ, 1992, GAUSSIAN 92
FUBINI B, 1982, J CHEM SOC F1, V78, P153
FUJITA S, 1993, B CHEM SOC JPN, V66, P3094
GAY RR, 1980, J AM CHEM SOC, V102, P6752
GHIOTTI G, 1993, SURF SCI A, V287, P228
GIAMELLO E, 1983, J CHEM SOC FARAD T 1, V79, P1995
GRUNZE M, 1981, J CRYST GROWTH, V52, P241
HAY PJ, 1985, J CHEM PHYS, V82, P270
HOTAN W, 1979, SURF SCI, V83, P162
HOWARD J, 1984, J CHEM SOC FARAD T 1, V80, P225
HUSSAIN G, 1990, J CHEM SOC FARADAY T, V86, P1615
JACOBI K, 1984, SURF SCI, V141, P109
KLIER K, 1982, ADV CATAL, V31, P243
LEY L, 1974, PHYS REV B, V9, P600
LONGO E, 1984, ADV CERAM, V10, P526
LONGO E, 1985, LANGMUIR, V1, P456
MARTINS JBL, 1993, INT J QUANTUM CHEM, V27, P643
MARTINS JBL, 1994, J MOL STRUCT, V303, P19
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P347
MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
MARTINS JBL, 1996, J MOL STRUCT, V363, P249
MOLLER PJ, 1995, SURF SCI, V323, P102
SEANOR DA, 1965, J CHEM PHYS, V42, P2967
SOLOMON EI, 1993, CHEM REV, V93, P2623
SPANHEL L, 1991, J AM CHEM SOC, V113, P2826
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JP, 1983, QCPE B, V3, P43
ZERNER MC, 1991, REV COMPUTATIONAL CH
NR 39
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD JUN 2
PY 1997
VL 397
BP 147
EP 157
PG 11
SC Chemistry, Physical
GA XJ804
UT ISI:A1997XJ80400015
ER
PT J
AU Acioli, PH
TI Review of quantum Monte Carlo methods and their applications
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE quantum Monte Carlo; correlation energy; jellium model; variational
Monte Carlo; diffusion Monte Carlo
ID GENERALIZED GRADIENT APPROXIMATION; LOCAL-DENSITY APPROXIMATION;
METAL-SURFACES; GROUND-STATE; EXCHANGE-ENERGY; WAVE-FUNCTIONS;
GREEN-FUNCTION; ELECTRON-GAS; MOLECULES; SOLIDS
AB Correlation energy makes a small but very important contribution to the
total energy of an electronic system. Among the traditional methods
used to study electronic correlation are coupled clusters (CC),
configuration interaction (CI) and many-body perturbation theory (MBPT)
in quantum chemistry, and density functional theory (DFT) in solid
state physics. An alternative method, which has been applied
successfully to systems ranging from the homogeneous electron gas, to
atoms, molecules, solids and clusters is quantum Monte Carlo (QMC). In
this method the Schrodinger equation is transformed to a diffusion
equation which is solved using stochastic methods. In this work we
review some of the basic aspects of QMC in two of its variants,
variational (VMC) and diffusion Monte Carlo (DMC). We also review some
of its applications, such as the homogeneous electron gas, atoms and
the inhomogeneous electron gas (jellium surface). The correlation
energy obtained by Ceperley and Alder (D.M. Ceperley and B.J. Alder,
Physical Review, 45 (1980) 566), as parameterized by Perdew and Zunger
(J.P. Perdew and A. Zunger, Phys. Rev. B23 (1980) 5469), is one of the
most used in DFT calculations in the local density approximation (LDA).
Unfortunately, the use of the LDA in inhomogeneous systems is
questionable, and better approximations are desired or even necessary.
We present results of the calculations performed on metallic surfaces
in the jellium model which can be useful to obtain better
approximations for the exchange and correlation functionals. We have
computed the electronic density, work function, surface energy and pair
correlation functions for a jellium slab at the average density of
magnesium (r(s) = 2.66). Since there is an exact expression for the
exchange and correlation functional in terms of the pair correlation
functions, the knowledge of such functions near the edge of the surface
may be useful to obtain exchange and correlation functionals valid for
inhomogeneous systems. From the exchange and correlation functional we
can conclude that the exchange-correlation hole is nearly spherical in
the bulk region but elongated in the direction perpendicular to the
surface as the electron approaches the edge of the surface, showing the
anisotropic character of the electronic correlation near the surface.
(C) 1997 Elsevier Science B.V.
RP Acioli, PH, UNIV BRASILIA,DEPT FIS,BR-70910900 BRASILIA,DF,BRAZIL.
CR ACIOLI PH, UNPUB
ACIOLI PH, 1994, J CHEM PHYS, V100, P8169
ACIOLI PH, 1996, PHYS REV B, V54, P17199
ANDERSON JB, 1995, INT REV PHYS CHEM, V14, P85
BACHELET GB, 1989, PHYS REV LETT, V62, P2088
BECKE AD, 1988, PHYS REV A, V38, P3098
BOSIN A, UNPUB
BOYS SF, 1969, P ROY SOC LOND A MAT, V31, P43
CAFFAREL M, 1992, J CHEM PHYS, V97, P8415
CEPERLEY D, 1978, PHYS REV B, V18, P3126
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CEPERLEY DM, 1981, RECENT PROGR MANY BO, P262
CEPERLEY DM, 1984, J CHEM PHYS, V81, P5833
CEPERLEY DM, 1986, J STAT PHYS, V43, P815
CHASE MW, 1985, J PHYS CHEM REF D S1, V14, P535
CHEN B, IN PRESS
FAHY S, 1988, PHYS REV LETT, V61, P1631
FAHY S, 1990, PHYS REV B, V42, P3503
GROSSMAN JC, 1995, PHYS REV B, V52, P16735
GROSSMAN JC, 1995, PHYS REV LETT, V74, P1323
HAMMOND BL, 1987, J CHEM PHYS, V87, P1130
HAMMOND BL, 1994, MONTE CARLO METHODS
HANDY NC, 1973, J CHEM PHYS, V58, P279
HOHENBERG P, 1964, PHYS REV, V136, B864
HOLMSTROM JE, 1969, ARK FYS, V40, P133
HU CD, 1985, PHYS SCRIPTA, V32, P391
KALOS MH, 1962, PHYS REV, V128, P1791
KOHN W, 1965, PHYS REV, V140, A113
KROTSCHECK E, 1985, PHYS REV B, V32, P5693
KWON YK, 1993, PHYS REV B, V48, P12037
LANG ND, 1970, PHYS REV B, V1, P4555
LANG ND, 1971, PHYS REV B, V3, P1215
LANGRETH DC, 1983, PHYS REV B, V28, P1809
LI XP, 1991, PHYS REV B, V44, P10929
LI XP, 1992, PHYS REV B, V45, P6124
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
MITAS L, 1991, J CHEM PHYS, V95, P3467
MITAS L, 1994, PHYS REV A, V49, P4411
MITAS L, 1994, PHYS REV LETT, V72, P2438
NEEDS RJ, 1990, PHYS REV B, V42, P10933
OLSEN J, 1991, PHYS REV A, V43, P3355
PERDEW JP, 1986, PHYS REV B, V33, P8800
PERDEW JP, 1989, PHYS REV B, V40, P3399
PERDEW JP, 1992, PHYS REV B, V46, P6671
PERDEW JP, 1993, PHYS REV B, V48, P4978
REYNOLDS PJ, 1982, J CHEM PHYS, V77, P5593
ROOTHAN CCJ, 1951, PHYS REV, V97, P1474
SHAVITT I, 1977, METHODS ELECT STRUCT
SIEGBAHN PEM, 1983, METHODS COMPUTATIONA
SLATER JC, 1929, PHYS REV, V34, P1293
UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719
UMRIGAR CJ, 1993, J CHEM PHYS, V94, P3657
VEILLARD A, 1968, J CHEM PHYS, V49, P2415
ZHANG ZY, 1990, PHYS REV B, V41, P5674
NR 54
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD MAY 2
PY 1997
VL 394
IS 2-3
BP 75
EP 85
PG 11
SC Chemistry, Physical
GA XF583
UT ISI:A1997XF58300002
ER
PT J
AU Mota, CJA
Esteves, PM
RamirezSolis, A
HernandezLamoneda, R
TI Protonated isobutane. A theoretical ab initio study of the isobutonium
cations
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID HYDROGEN-DEUTERIUM EXCHANGE; ELECTROPHILIC REACTIONS; ELECTROSTATIC
POTENTIALS; PROTOLYSIS DEUTEROLYSIS; ELECTRONIC-STRUCTURE;
CARBONIUM-IONS; SINGLE BONDS; CARBOCATIONS; 3-CENTER; MOLECULES
AB The structure and energy of the isobutonium cations, protonated
isobutane, were studied by ab initio methods. At MP2(full)/6-31G**
level, besides the C-isobutonium cation (5), the 2-H-isobutonium cation
(6), and the 1-H-isobutonium cation (7), two additional structures,
representing the van der Wads complex between methane and isopropyl.
cation (8) and hydrogen plus tert-butyl cation (9), could also be
characterized. The,energy increases in the order 9 < 8 < 5 < 6 < 7,
indicating the lower energy of the van der Waals complexes. The
experimental proton affinity of isobutane is in good agreement with the
calculated values for the van der Waals complexes 8 and 9, indicating
the facility of rupture of the three center bond in 5 and 6. On the
other hand, the relative order of stability of the isobutonium cations
can explain the experimental gas phase protonation of isobutane by
small electrophiles, such as H-3(+) and H3O+, as well as the H-D
exchange in liquid superacid.
C1 UNIV AUTONOMA ESTADO MORELOS,FAC CIENCIAS,CUERNAVACA 62210,MORELOS,MEXICO.
RP Mota, CJA, UNIV FED RIO DE JANEIRO,DEPT QUIM ORGAN,INST
QUIM,BR-21949900 RIO JANEIRO,BRAZIL.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BISCHOF PK, 1975, J AM CHEM SOC, V97, P2278
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BURWELL RL, 1948, J AM CHEM SOC, V70, P3128
BURWELL RL, 1954, J AM CHEM SOC, V76, P5822
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
COLLINS SJ, 1994, CHEM PHYS LETT, V228, P246
CORMA A, 1993, CATAL REV, V35, P483
DEKOCK RL, 1988, J CHEM EDUC, V65, P194
DUPUIS M, 1994, HONDO 8 5 CHEM STATI
DYCZMONS V, 1970, CHEM PHYS LETT, V5, P361
FIELD FH, 1968, ACCOUNTS CHEM RES, V1, P42
FRISCH MJ, 1995, GUASSIAN 94 REVISION
HACHOUMY M, 1995, THESIS U L PASTEUR
HIRAO K, 1984, CHEM PHYS, V89, P237
HIRAOKA K, 1975, CAN J CHEM, V53, P970
HIRAOKA K, 1975, J CHEM PHYS, V63, P394
HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
HIRAOKA K, 1978, INT J MASS SPEC ION, V27, P139
HOBZA P, 1995, J COMPUT CHEM, V16, P1315
HOGEVEEN H, 1967, RECL TRAV CHIM PAY B, V86, P1313
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P703
HOUT RF, 1982, J COMPUT CHEM, V3, P234
KOHLER HJ, 1978, CHEM PHYS LETT, V58, P175
LIAS SG, 1984, J PHYS CHEM REF DATA, V13, P695
LIDE DR, 1994, CRC HDB CHEM PHYSICS
LOMBARDO EA, 1988, J CATAL, V112, P565
MCMURRY JE, 1992, ACCOUNTS CHEM RES, V25, P47
MOTA CJA, 1996, J PHYS CHEM-US, V100, P12418
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1969, J AM CHEM SOC, V91, P3261
OLAH GA, 1971, J AM CHEM SOC, V93, P1251
OLAH GA, 1972, J AM CHEM SOC, V94, P808
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1987, HYPERCARBON CHEM
OLAH GA, 1987, HYPERCARBON CHEM, P222
OTVOS JW, 1951, J AM CHEM SOC, V73, P5741
POIRIER RA, 1982, J MOL STRUCT THEOCHE, V88, P343
RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
SCHELEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SHERTUKDE PV, 1992, J CATAL, V136, P446
SOMMER J, 1992, J AM CHEM SOC, V114, P5884
SOMMER J, 1997, J AM CHEM SOC, V119, P32474
STEVENSON DP, 1952, J AM CHEM SOC, V74, P3269
TALROZE VL, 1952, DOKL AKAD NAUK SSSR, V86, P909
NR 49
TC 38
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD JUN 4
PY 1997
VL 119
IS 22
BP 5193
EP 5199
PG 7
SC Chemistry, Multidisciplinary
GA XC669
UT ISI:A1997XC66900016
ER
PT J
AU Pliego, JR
DeAlmeida, WB
TI Absolute proton affinity and basicity of the carbenes CH2, CF2, CCl2,
C(OH)(2), FCOH, CPh2 and fluorenylidene
SO JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS
LA English
DT Article
ID O-H BOND; POLYATOMIC-MOLECULES; ION
AB Ab initio molecular orbital calculations were performed in order to
determine the absolute proton affinity and basicity of some carbenes.
For the species CH2, CF2, CCl2 C(OH)(2), and FCOH, the G2(MP2) method
was utilized, and we have obtained the values 207.0, 177.4, 209.6,
217.3 and 199.9 kcal mol(-1), respectively, for the absolute proton
affinities. For CPh2 and fluorenylidene the calculation was performed
at the HF/DZ + (P)/HF/DZ and MP2/DZ/HF/DZ levels of theory. For CPh2 we
have obtained an absolute proton affinity of 275.0 kcal mol(-1) and,
for fluorenylidene, the value is 272.4 kcal mol(-1). The implication of
these results for the carbene reaction mechanism with PH groups is
discussed.
C1 UFMG,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BETHELL D, 1971, J CHEM SOC B, P23
CEYER ST, 1979, J CHEM PHYS, V70, P14
CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
DIXON DA, 1991, J PHYS CHEM-US, V95, P4180
DU XM, 1990, J AM CHEM SOC, V112, P1920
FRISCH MJ, 1995, GAUSSIAN 94
GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
GRILLER D, 1983, J AM CHEM SOC, V104, P5849
HILLEBRAND C, 1996, J PHYS CHEM-US, V100, P9698
KIRMSE W, 1964, CARBENE CHEM
KIRMSE W, 1981, J AM CHEM SOC, V103, P5935
KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
LEE C, 1996, J PHYS CHEM-US, V100, P7398
LEVI BA, 1977, J AM CHEM SOC, V99, P8454
LIAS SG, 1988, J PHYS CHEM REF D S1, V17
NG CY, 1977, J CHEM PHYS, V67, P4235
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
POPLE JA, 1983, J AM CHEM SOC, V105, P6389
VOGT J, 1975, J AM CHEM SOC, V97, P6682
WALCH SP, 1993, J CHEM PHYS, V98, P3163
ZUPANCIC JJ, 1985, TETRAHEDRON, V41, P1471
NR 23
TC 10
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0956-5000
J9 J CHEM SOC FARADAY TRANS
JI J. Chem. Soc.-Faraday Trans.
PD MAY 21
PY 1997
VL 93
IS 10
BP 1881
EP 1883
PG 3
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA XC287
UT ISI:A1997XC28700004
ER
PT J
AU Zeng, Z
Duan, Y
Guenzburger, D
TI Magnetism, chemical bonding, and hyperfine properties in the nanoscale
antiferromagnet [Fe(OMe)(2)(O2CCH2Cl)](10)
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC-STRUCTURE; CLUSTER; TRANSITION; PARTICLES; ARRAYS; WHEEL;
STATE
AB The electronic and magnetic properties of the nanometer-size
antiferromagnet [Fe(OMe)(2)(O2CCH2Cl)](10) are investigated with the
first-principles spin-polarized discrete variational method, in the
framework of density-functional theory. Magnetic moments, densities of
slates, and charge- and spin-density maps are obtained. The Mossbauer
hyperfine parameters isomer shift, quadrupole splitting, and hyperfine
field are obtained from the calculations and compared to reported
experimental values when available.
RP Zeng, Z, CTR BRASILEIRO PESQUISAS FIS,CBPF,RUA DR XAVIER SIGAUD
150,BR-22290180 RIO JANEIRO,BRAZIL.
CR AWSCHALOM DD, 1992, PHYS REV LETT, V68, P3092
AWSCHALOM DD, 1992, SCIENCE, V258, P414
AWSCHALOM DD, 1995, PHYS TODAY, V48, P43
BAERENDS EJ, 1973, CHEM PHYS, V2, P41
BARBARA B, 1990, PHYS LETT A, V145, P205
BENCINI A, 1995, J CHEM SOC DA, P963
CANESCHI A, 1996, INORG CHIM ACTA, V243, P295
CAO PL, 1982, PHYS REV B, V25, P2124
DELFS C, 1993, INORG CHEM, V32, P3099
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DUFEK P, 1995, PHYS REV LETT, V75, P3545
ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
ELLIS DE, 1970, PHYS REV B, V2, P2887
ELLIS DE, 1994, ELECT DENSITY FUNCTI
GATTESCHI D, 1994, SCIENCE, V265, P1054
GATTESCHI D, 1996, INORG CHEM, V35, P1926
GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
GUENZBURGER D, 1980, PHYS REV B, V22, P4203
GUENZBURGER D, 1987, PHYS REV B, V36, P6971
KENT AD, 1994, J APPL PHYS 2, V76, P6656
MELDRUM FC, 1992, SCIENCE, V257, P522
MICHAEL RD, 1992, J MAGN MAGN MATER, V111, P29
PAPAEFTHYMIOU GC, 1992, PHYS REV B, V46, P10366
PARR RG, 1989, DENSITY FUNCTIONAL T
POWELL AK, 1995, J AM CHEM SOC, V117, P2491
SESSOLI R, 1993, NATURE, V365, P141
SHENOY GK, 1978, MOSSBAUER ISOMER SHI
SMYTH JF, 1991, J APPL PHYS, V69, P5262
STPIERRE TG, 1987, J MAGN MAGN MATER, V69, P276
TAFT KL, 1990, J AM CHEM SOC, V112, P9629
TAFT KL, 1994, J AM CHEM SOC, V116, P823
TERRA J, 1991, PHYS REV B, V44, P8584
TERRA J, 1995, J PHYS CHEM-US, V99, P4935
UMRIGAR C, 1980, PHYS REV B, V21, P852
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
ZIOLO RF, 1992, SCIENCE, V257, P219
NR 36
TC 10
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 1
PY 1997
VL 55
IS 18
BP 12522
EP 12528
PG 7
SC Physics, Condensed Matter
GA XA260
UT ISI:A1997XA26000081
ER
PT J
AU Ferraz, AC
Srivastava, GP
TI Atomic geometry and electronic structure of S/InP(001)
SO SURFACE SCIENCE
LA English
DT Article
DE adatoms; density functional calculations; indium phosphide; sulfur;
surface electronic phenomena; surface relaxation and reconstruction
ID PASSIVATED INP(100)-(1X1) SURFACE
AB We have performed ab initio pseudopotential calculations of the atomic
geometry and electronic states for a monolayer S-covered (001) surface
of InP. It is found that for the 1 x 1 periodicity with S in the bridge
site, the overlayer-substrate distance between S and In is 1.3 Angstrom
and the In-S-In angle is 113.8 degrees. While the calculated In-S-In
angle is close to the experimentally deduced value, we find that our
prediction of overlayer-substrate distance is smaller than the value
obtained from LEED analysis. We also discuss the energetics of
formation of long and short dimer bonds for the 1 x 2, 2 x 1 and 2 x 2
reconstructions of the surface.
C1 UNIV EXETER,DEPT PHYS,EXETER EX4 4QL,DEVON,ENGLAND.
RP Ferraz, AC, UNIV SAO PAULO,INST FIS,CP 66318,BR-05389970 SAO
PAULO,SP,BRAZIL.
CR GONZE X, 1991, PHYS REV B, V44, P8503
JIN JM, 1995, PHYS REV LETT, V75, P878
LU ZH, 1992, APPL PHYS LETT, V60, P2773
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
PERDEW JP, 1981, PHYS REV B, V23, P5048
TAO Y, 1992, APPL PHYS LETT, V60, P2669
WARREN OL, 1995, PHYS REV B, V52, P2959
NR 7
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD APR 20
PY 1997
VL 377
IS 1-3
BP 121
EP 124
PG 4
SC Chemistry, Physical
GA WZ496
UT ISI:A1997WZ49600027
ER
PT J
AU Urquhart, SG
Turci, CC
Tyliszczak, T
Brook, MA
Hitchcock, AP
TI Core excitation spectroscopy of phenyl- and methyl-substituted silanol,
disiloxane, and disilane compounds: Evidence for pi-delocalization
across the Si-C-phenyl bond
SO ORGANOMETALLICS
LA English
DT Article
ID ABSOLUTE OSCILLATOR-STRENGTHS; INNER-SHELL SPECTROSCOPY;
HIGH-RESOLUTION; K-EDGE; ELECTRON-EXCITATION; GAS-PHASE; SPECTRA;
MOLECULES; PHOTOABSORPTION; MONOCHROMATOR
AB The Si 1s and 2p solid state photoabsorption (total electron yield)
spectra of triphenylsilanol, hexaphenyldisiloxane, and
hexaphenyldisilane and the Si 1s spectra (total ion yield) of gaseous
trimethylsilanol, hexamethyldisiloxane, hexamethyldisilane, and
trimethylmethoxysilane have been recorded using synchrotron radiation.
These spectra are compared to inner shell electron energy loss spectra
of gaseous triphenylsilanol, hexaphenyldisilane,
trimethylmethoxysilane, hexamethyldisiloxane, and hexamethyldisilane in
the Si 2p and C 1s regions, measured under scattering conditions where
electric dipole transitions dominate (2.5 keV residual energy, theta
less than or equal to 2 degrees). Comparison of the Si 1s and Si 2p
spectra of the Ph3Si-X and Me3Si-X species shows there are low-lying
transitions at Si which occur exclusively in the Ph3Si-X species. These
transitions are attributed to (Si 1s(-1),pi*Si-Ph) and (Si
2p(-1),pi*Si-Ph) states in which the core excited electron is
delocalized across the Si-C(phenyl) bond into the pi* levels ofthe
phenylring. Extended Huckel and ab initio molecular orbital
calculations of the core excitation spectra support this
interpretation. Transitions characteristic of Si-Si and Si-O bonds are
also identified.
C1 MCMASTER UNIV,DEPT CHEM,HAMILTON,ON L8S 4M1,CANADA.
UNIV FED RIO JANEIRO,INST QUIM,BR-21910900 RIO JANEIRO,BRAZIL.
CR *WAV INC, 1994, SPART VERS 4 0
AGREN H, 1995, CHEM PHYS, V195, P47
BADER M, 1986, J PHYS-PARIS, V47, P501
BADER RFW, 1990, ATOMS MOL QUANTUM TH
BOCK H, 1968, J CHEM SOC B, P1158
BODEUR S, 1990, PHYS REV A, V41, P252
BOUISSET E, 1991, J PHYS B ATOM MOL PH, V24, P1609
BOZEK JD, 1990, CHEM PHYS, V145, P131
BRION CE, 1982, AIP C P, V94, P429
COOPER G, 1990, CHEM PHYS, V140, P147
COOPER G, 1995, CHEM PHYS, V196, P293
DAVIS DW, 1974, SPECTROSC RELAT PHEN, V3, P157
EASTMOND R, 1972, TETRAHEDRON, V28, P4601
FLANK AM, 1991, Z PHYS D ATOM MOL CL, V21, P357
FRANCIS JT, 1992, J PHYS CHEM-US, V96, P6598
GARDELIS S, 1996, APPL SURF SCI, V102, P408
GILLESPIE RJ, UNPUB
GREENWOOD NN, 1984, CHEM ELEMENTS
HENKE BL, 1982, ATOM DATA NUCL DATA, V27, P1
HITCHCOCK AP, 1988, CHEM PHYS, V121, P265
HITCHCOCK AP, 1990, PHYSICA SCRIPTA T, V31, P159
HITCHCOCK AP, 1993, SURF SCI, V291, P350
HITCHCOCK AP, 1994, J ELECTRON SPECTROSC, V67, P1
HORSLEY JA, 1985, J CHEM PHYS, V83, P6099
HOWELL J, 1982, FORTICON8 PROGRAM QC
HUNT WJ, 1969, CHEM PHYS LETT, V3, P414
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
IWATA S, 1978, JPN J APPL PHYS, V17, P109
JOLLY WL, 1984, ATOM DATA NUCL DATA, V31, P109
KELFVE P, 1980, PHYS SCR, V21, P75
KENNAN JJ, 1993, SILOXANE POLYM, P72
KOSUGI N, 1980, CHEM PHYS LETT, V74, P500
KOSUGI N, 1987, THEOR CHIM ACTA, V72, P150
KOSUGI N, 1992, CHEM PHYS LETT, V190, P481
KOSUGI N, 1992, J CHEM PHYS, V97, P8842
KWART H, 1977, D ORBITALS CHEM SILI
LI D, 1993, SOLID STATE COMMUN, V87, P613
MCGRATH R, 1992, PHYS REV B, V45, P9327
MEALLI C, 1990, J CHEM EDUC, V67, P399
MILLER AA, 1964, I EC PROD RES DEV, V3, P1964
MURPHY CM, 1950, IND ENG CHEM, V42, P2462
NOLL W, 1968, CHEM TECHNOLOGY SILI
PATAI S, 1989, CHEM ORGANIC SILICON
PITT CG, 1972, J CHEM SOC CHEM COMM, P28
REED AE, 1990, J AM CHEM SOC, V112, P1434
SCHWARZ WHE, 1975, CHEM PHYS, V11, P217
SCHWARZ WHE, 1987, CHEM PHYS, V117, P73
SHAMBAYATI S, 1990, J AM CHEM SOC, V112, P697
SODHI RNS, 1984, J ELECTRON SPECTROSC, V34, P363
SOMMER LH, 1946, J AM CHEM SOC, V68, P2282
STOHR J, 1992, NEXAFS SPECTROSCOPY
SUTHERLAND DGJ, 1992, J CHEM PHYS, V97, P7918
SUTHERLAND DGJ, 1993, PHYS REV B, V48, P15089
TAN KH, 1982, CAN J PHYS, V60, P131
URQUHART SG, UNPUB J AM CHEM SOC
URQUHART SG, 1994, CHEM PHYS, V189, P757
URQUHART SG, 1995, J POLYM SCI POL PHYS, V33, P1603
WALSH R, 1989, CHEM ORGANIC SILICON
WINKLER DC, 1994, CHEM PHYS LETT, V222, P1
XIONG JZ, 1996, CHEM PHYS, V203, P81
YANG BX, 1992, NUCL INSTRUM METH A, V316, P422
YANG BX, 1992, REV SCI INSTRUM 2B, V63, P1355
NR 62
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD MAY 13
PY 1997
VL 16
IS 10
BP 2080
EP 2088
PG 9
SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
GA WY882
UT ISI:A1997WY88200014
ER
PT J
AU Cerqueira, M
Nasar, RS
Longo, E
Varela, JA
Beltran, A
Llusar, R
Andres, J
TI Piezoelectric behaviour of PZT doped with calcium: A combined
experimental and theoretical study
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID MORPHOTROPIC PHASE-BOUNDARY; PERTURBED-ION; CRYSTALS; SEPARABILITY;
SIMULATION; CERAMICS; FILMS; MODEL
AB An experimental and theoretical study on the piezoelectric behaviour of
PZT doped with a range of calcium ion concentrations is presented. A
systematic study of the effect on the piezoelectric properties of PZT
doped with various concentrations of CaO at constant sintering
temperature and sintering time was carried out. The remanent
polarization, planar coupling factor and frequency-thickness constant
increase with calcium concentration. Ab initio perturbed ion
calculations show that the lattice energy decreases with calcium
addition for both tetragonal and rhombohedral phases of PZT.
C1 UNIV JAUME 1,DEPT CIENCIES EXPT,CASTELLO 12080,SPAIN.
UFSCAR,DEPT QUIM,LAB INTERDISCIPLINAR ELECTROQUIM & CERAM,BR-13565 SAO CARLOS,SP,BRAZIL.
UNESP,INST QUIM,BR-14800900 ARARAQUARA,SP,BRAZIL.
CR ANDRES J, 1993, INT J QUANTUM CHEM S, V27, P175
ANDRES J, 1994, CHEM PHYS LETT, V221, P249
BANNO H, 1967, JPN J APPL PHYS, V6, P954
BELTRAN A, 1993, J PHYS CHEM-US, V97, P2555
BERNARD J, 1971, PIEZOELECTRIC CERAMI
CHAKRAVORTY SJ, 1989, PHYS REV A, V39, P2290
CLEMENTI E, 1974, ATOM DATA NUCL DATA, V14, P177
COMES R, 1970, ACTA CRYSTALLOGR A, V26, P244
FLOREZ M, 1992, CLUSTER MODELS SURFA, P605
HANKEY DL, 1980, THESIS PENNSYLVANIA
HIMERATH BV, 1983, J AM CERAM SOC, V66, P790
HSUEH CC, 1993, INTEGR FERROELECTR, V3, P21
HUZINAGA S, 1971, J CHEM PHYS, V55, P5543
JAFFE B, 1971, PIEZOELECTRIC CERAMI
KAKEGAWA K, 1977, SOLID STATE COMMUN, V24, P769
KAWAGUCHI T, 1984, APPL OPTICS, V23, P2187
KULCSAR F, 1959, J AM CERAM SOC, V42, P49
KUMADA A, 1985, JPN J APPL PHYS S, V24, P739
LAL R, 1988, BRIT CERAM TRANS J, V87, P99
LINES EM, 1977, PRINCIPLES APPL FERR
LUANA V, 1988, J MOL STRUCT THEOCHE, V166, P215
LUANA V, 1989, PHYS REV B, V39, P11093
LUANA V, 1990, PHYS REV B, V41, P3800
LUANA V, 1990, PHYS REV B, V42, P1791
LUANA V, 1992, CLUSTER MODELS SURFA, P619
MATSUO Y, 1965, J AM CERAM SOC, V48, P289
MCLEAN AD, 1981, ATOM DATA NUCL DATA, V26, P197
NOMURA S, 1955, J PHYS SOC JPN, V10, P108
OHMO T, 1973, J JPN SOC POWDER MET, V20, P154
PAIVASANTOS CP, 1990, THESIS
PETROVSKY VI, 1993, INTEGR FERROELECTR, V3, P59
PRESTON KD, 1992, APPL PHYS LETT, V60, P2831
SAHA SK, 1992, AM CERAM SOC BULL, V71, P1424
SHIRANE G, 1953, J PHYS SOC JPN, V8, P615
STOTZ S, 1987, FERROELECTRICS, V76, P123
TURIK AV, 1987, SOV PHYS-TECH PHYS, V25, P1251
UCHINO K, 1986, AM CERAM SOC BULL, V65, P647
VASILIU F, 1983, PHYS STATUS SOLIDI A, V80, P637
VENKATARAMANI S, 1980, AM CERAM SOC B, V59, P462
WOOD VE, 1992, J APPL PHYS, V71, P4557
YAMAGUCHI O, 1989, J AM CERAM SOC, V72, P1065
YAMAGUCHI T, 1976, CERAM INT, V2, P76
YAMAMOTO T, 1992, AM CERAM SOC BULL, V71, P978
ZHANG QM, 1994, J APPL PHYS, V1, P75
NR 44
TC 4
PU CHAPMAN HALL LTD
PI LONDON
PA 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN
SN 0022-2461
J9 J MATER SCI
JI J. Mater. Sci.
PD MAY 1
PY 1997
VL 32
IS 9
BP 2381
EP 2386
PG 6
SC Materials Science, Multidisciplinary
GA WY350
UT ISI:A1997WY35000020
ER
PT J
AU deMelo, CP
Fonseca, TL
TI Polarizabilities of defect-bearing polyenic chains
SO SYNTHETIC METALS
LA English
DT Article
DE ab initio quantum chemical methods and calculations
AB We investigate the effect of the presence of conformational defects on
the polarization response of conjugated chains. Our ab initio results
for the polarizabilities of small C2n+1H2n+3+, and C2nH2n+2++ oligomers
of polyacetylene confirm previous suggestions that the nonlinear
optical properties of these systems are highly dependent on the type of
conformational defect introduced. Especially, we call attention to the
fact that the first hyperpolarizability of soliton bearing chains has
opposite signs' for positive and negative defects.
RP deMelo, CP, UNIV FED PERNAMBUCO,DEPT FIS,BR-50670901 RECIFE,PE,BRAZIL.
CR ANDERSON T, 1994, BRAZ J PHYS, V24, P756
DEMELO CP, UNPUB CHEM PHYS LETT
DEMELO CP, 1988, J CHEM PHYS, V88, P2567
DUCASSE L, 1993, SYNTHETIC MET, V55, P4536
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
KIRTMAN B, 1995, J CHEM PHYS, V102, P5350
LINDSAY GA, 1995, POLYM 2 ORDER NONLIN
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
NR 8
TC 4
PU ELSEVIER SCIENCE SA LAUSANNE
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD FEB 15
PY 1997
VL 85
IS 1-3
BP 1085
EP 1086
PG 2
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
Polymer Science
GA WX708
UT ISI:A1997WX70800028
ER
PT J
AU DelNero, J
Laks, B
Custodio, R
TI Polycarbonitrile: A semiempirical, ab initio and density functional
study of molecular stability
SO SYNTHETIC METALS
LA English
DT Article
DE polycarbonitrile; semiempirical; ab initio; density functional method;
conformational structure
ID POLYMETHINEIMINE; POLYMERS
AB The theoretical literature data with respect to the electronic
properties of this compound is quite scarce and makes use of the planar
all-trans structure as the most stable for the calculations. In this
work semiempirical (AMI and PM3), ab initio (at the Hartree-Fock level)
and density functional theory (using the correlation functional of
Vosko, Wille and Nussair) were used to analyse the conformational
stability of the all-trans and all-cis dimers, trimers and tetramers of
polycarbonitrile. The semiempirical and ab initio calculations at the
Hartree-Fock level showed in general that the all-trans structure with
respect to other conformers is the most unstable structure. The
inclusion of electronic correlation energy through the MP2 calculations
or the VWN functional method suggest that the trans structure is the
most stable. The relative energies calculated at the correlated level
presented differences around 2 kcal/mol among the different conformers.
While the all-cis compounds presented a planar structure for any of the
three methods, the all-trans polymer showed a strong deviation of
planarity with a set of local minima in its energy surface. These
results suggest that further calculations on the electronic properties
of this polymer can be significantly different of those actually
available in the literature.
C1 UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13083970 CAMPINAS,SP,BRAZIL.
RP DelNero, J, UNIV ESTADUAL CAMPINAS,INST FIS,BR-13083970
CAMPINAS,SP,BRAZIL.
CR BREDAS JL, 1983, J CHEM PHYS, V78, P6137
KARPFEN A, 1979, CHEM PHYS LETT, V64, P299
MOLLER C, 1934, PHYS REV, V46, P618
SPRINGBORG M, 1991, SYNTHETIC MET, V41, P4393
VOSKO SH, 1980, CAN J PHYS, V58, P1200
NR 5
TC 6
PU ELSEVIER SCIENCE SA LAUSANNE
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD FEB 15
PY 1997
VL 85
IS 1-3
BP 1127
EP 1128
PG 2
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
Polymer Science
GA WX708
UT ISI:A1997WX70800049
ER
PT J
AU Eberlin, MN
Sorrilha, AEPM
Gozzo, FC
Pimpim, RS
TI Novel [3+2] 1,3-cycloaddition of the ionized carbonyl ylide +CH2OCH2
center dot with carbonyl compounds in the gas phase
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID DISTONIC RADICAL CATIONS; ION-MOLECULE REACTIONS; CATALYZED
DIELS-ALDER; MASS-SPECTROMETRY; PERICYCLIC-REACTIONS; ORBITAL METHODS;
DIMETHYL ETHER; ETHYLENE-OXIDE; ACYLIUM IONS; BASIS SETS
AB For the first time [3 + 2] 1,3-cycloaddition of an ionized carbonyl
ylide has been observed in gas phase ion-molecule reactions of
(+CH2OCH2.) (1) with several carbonyl compounds. The reaction, which
competes with electrophilic addition that leads to net CH2.+ transfer,
occurs across the C=O double bond of acetaldehyde and several acyclic
ketones yielding ionized 4,3-dialkyl-1,3-dioxolanes as unstable
cycloadducts. Rapid dissociation of the nascent cycloadducts by loss of
a 4-alkyl substituent as a radical leads to the observed products, that
is cyclic 3-alkyl-1,3-dioxolanylium ions. Cycloaddition of 1 with
cyclic ketones yields bicyclic spiro adducts, which also undergo rapid
dissociation. Cyclobutanone yields ionized 1,3-dioxaspiro[4,3]octane,
which dissociates exclusively by neutral ethene loss to ionized
4-methylene-1,3-dioxolane. Ionized 1,3-dioxaspiro[4,4]nonane is formed
in reactions with cyclopentanone, and its rapid dissociation by loss of
C3H6 and C2H5. yields the ionized 4-methylene-1,3-dioxolanylium and the
4-ethenyl-1,3-dioxolanylium product ions, respectively. A systematic
study of this novel reaction and characterization of the product ions
carried out via pentaquadrupole (QqQqQ) multiple stage (MS-(1) and MS3)
mass spectrometric experiments provide experimental evidence for the
cycloaddition mechanism. The dissociation chemistry observed for the
cycloaddition products correlate well with their proposed structures
and was compared to that of both isomeric and reference ions. Ab initio
MP2/6-31G(d,p)//HF/6-31G(d,p) + ZPE potential energy surface diagrams
for the reactions of 1 with acetone, fluoroacetone, and
1,1,1-trifluoroncetone support the operation of the two competitive
reaction pathways, that is CH2.+ transfer and [3 + 2]
1,3-cyclonddition/dissociation, and show that the cycloaddition process
is favored by electron-withdrawing substituents.
RP Eberlin, MN, UNIV CAMPINAS,INST CHEM,CP 6154,BR-13083970
CAMPINAS,SP,BRAZIL.
CR AUDIER H, 1964, B SOC CHIM FR, P1880
BASHER MM, IN PRESS
BAULD NL, 1987, ACCOUNTS CHEM RES, V20, P371
BAUMANN BC, 1981, J AM CHEM SOC, V103, P6223
BELLVILLE DJ, 1981, J AM CHEM SOC, V103, P718
BIANCHI G, 1977, CHEM DOUBLE BON 1 SA, P369
BLAIR AS, 1973, CAN J CHEM, V51, P703
BOGER DL, 1987, HETERO DIELSALDER ME
BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P1
BOUMA WJ, 1979, J AM CHEM SOC, V101, P5540
BOUMA WJ, 1980, ADV MASS SPECTROM A, V8, P178
BOUMA WJ, 1980, J AM CHEM SOC, V102, P2246
BOUMA WJ, 1983, J AM CHEM SOC, V105, P1743
BOWERS MT, 1970, J PHYS CHEM-US, V74, P2583
BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR
CASTLE LW, 1989, ORG MASS SPECTROM, V24, P637
DASS C, 1990, MASS SPECTROM REV, V9, P1
DOMINH T, 1970, J AM CHEM SOC, V92, P1402
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1993, P 41 ASMS C MASS SPE, P975
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
FLEMING I, 1976, FRONTIER ORBITALS OR
FRASERMONTEIRO ML, 1982, J PHYS CHEM-US, V86, P739
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN 94
FUKUI K, 1971, ACCOUNTS CHEM RES, V4, P57
GASSMAN PG, 1987, J AM CHEM SOC, V109, P2182
GILLON A, 1982, TETRAHEDRON, V38, P1477
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
GOZZO FC, 1996, J CHEM SOC PERK APR, P587
GROENEWOLD GS, 1984, J AM CHEM SOC, V106, P539
HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOFFMANN RW, 1968, CHEM BER, V101, P3861
HOLMES JL, 1975, CAN J CHEM, V53, P2076
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KEOUGH T, 1982, ANAL CHEM, V54, P2540
KIM T, 1990, J AM CHEM SOC, V112, P6285
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
MATTAY J, 1987, ANGEW CHEM INT EDIT, V26, P825
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, UNPUB J ORG CHEM
MORAES LAB, 1996, J ORG CHEM, V61, P8726
NOBES RH, 1987, CHEM PHYS LETT, V135, P78
NOURSE BD, 1992, ORG MASS SPECTROM, V27, P453
POTTS KT, 1984, 1 3 DIPOLAR CYCLOADD
RADOM L, 1984, PURE APPL CHEM, V56, P1831
SCHMIDT RR, 1973, ANGEW CHEM INT EDIT, V12, P212
SCHOFFSTALL AM, 1990, ADV CYCLOADDITION, V2, P1
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
SMITH RL, 1993, J AM CHEM SOC, V115, P10348
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
STIRK KM, 1992, CHEM REV, V92, P1649
STIRK KM, 1992, J AM CHEM SOC, V114, P8604
TERLOUW JK, 1983, J CHEM SOC CHEM COMM, P1121
VANDESANDE CC, 1975, J AM CHEM SOC, V97, P4613
VANIOTALO P, 1996, P 44 ASMS C MASS SPE, P453
VANTILBORG MWE, 1980, ORG MASS SPECTROM, V15, P152
VANVELZEN PNT, 1981, CHEM PHYS LETT, V83, P55
YAMAGUCHI Y, 1993, J AM CHEM SOC, V115, P5790
YATES BF, 1984, J AM CHEM SOC, V106, P5805
YATES BF, 1986, TETRAHEDRON, V42, P6225
YU SJ, 1993, J AM SOC MASS SPECTR, V4, P117
NR 71
TC 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD APR 16
PY 1997
VL 119
IS 15
BP 3550
EP 3557
PG 8
SC Chemistry, Multidisciplinary
GA WU272
UT ISI:A1997WU27200017
ER
PT J
AU Morgon, NH
Argenton, AB
daSilva, MLP
Riveros, JM
TI Experimental and theoretical characterization of FSi(OCH3)(2)(OCH2)(-):
A gas phase fluoride-siloxirane adduct
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID OPTIMIZATION TECHNIQUE; SUBSTITUTED SILANES; BASIS-SETS; H SYSTEM;
ANIONS; THERMOCHEMISTRY; CHEMISTRY; IONS; AFFINITIES; MOLECULES
AB The structural characteristics and reactivity of the gas-phase
FSi(OCH3)(2)(OCH2)(-) ion were investigated by a combination of ab
initio calculations and FT-ICR techniques. The theoretical calculations
for different possible structures reveal that carbanion and alkoxide
ion type structures lead to ring closure upon geometry optimization to
yield two different cyclic fluoride-siloxirane structures. The
FSi(OCH3)(2)(cyc-OCH2)(-) ions containing the elusive siloxirane ring
are estimated to be extremely stable with respect to F-(69 kcal
mol(-1)) dissociation in agreement with earlier calculations on simpler
systems. Experimentally, this ion is formed as a minor product (7%) in
the gas-phase ion/molecule reaction of F- with Si(OMe)(4) and is
observed to undergo readily fluoride transfer to the parent neutral.
This strongly suggests an ion with a structure corresponding to a
fluoride adduct of a siloxirane species, Reaction of
FSi(OCH3)(2)(OCH2)(-) with BF3, hexafluorobenzene, and gas-phase acids
more acidic than ethanol further suggests that this ion is capable of
reacting as an alkoxide type nucleophile or base. This latter behavior
has been associated with the possibility of ring opening of the
siloxirane in the collision complex that mediates this ion/molecule
reaction.
C1 UNIV SAO PAULO,INST CHEM,BR-05599970 SAO PAULO,BRAZIL.
CR ALLENDORF MD, 1992, J PHYS CHEM-US, V96, P428
ALLENDORF MD, 1995, J PHYS CHEM-US, V99, P15285
BARTMESS JE, 1993, NIST STANDARD REFERE
BENSON SW, 1976, THERMOCHEMICAL KINET, P60
BIERBAUM VM, 1976, J AM CHEM SOC, V98, P4229
BOATZ JA, 1988, J AM CHEM SOC, V110, P352
BRICKHOUSE MD, 1988, J AM CHEM SOC, V110, P2706
BROOK AG, 1974, ACCOUNTS CHEM RES, V7, P77
CHU JCS, 1995, J PHYS CHEM-US, V99, P663
COLVIN EW, 1981, SILICON ORGANIC SYNT, CH5
CORRIU R, 1980, J ORGANOMET CHEM, V9, P357
CUSTODIO R, 1992, CAN J CHEM, V70, P580
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DAMRAUER R, 1990, ORGANOMETALLICS, V9, P999
DAMRAUER R, 1991, J AM CHEM SOC, V113, P4431
DAMRAUER R, 1995, CHEM REV, V95, P1137
DEPUY CH, 1980, J AM CHEM SOC, V102, P5012
DEPUY CH, 1984, ORGANOMETALLICS, V3, P362
DEPUY CH, 1987, ACCOUNTS CHEM RES, V20, P127
DRIESS M, 1996, ANGEW CHEM INT EDIT, V35, P828
DUNNING TH, 1977, METHODS ELECT STRUCT, P1
FRERIKS IL, 1991, J AM CHEM SOC, V113, P9119
GORDON MS, 1992, ADV GAS PHASE ION CH, P203
GRIMM DT, 1992, J AM CHEM SOC, V114, P1227
HO P, 1995, J PHYS CHEM-US, V99, P2166
KREMPP M, 1995, ORGANOMETALLICS, V14, P170
LARSON JW, 1985, J AM CHEM SOC, V107, P766
MAIER G, 1994, ANGEW CHEM INT EDIT, V33, P1248
MAIER G, 1995, J AM CHEM SOC, V117, P12712
MORGON NH, UNPUB
MORGON NH, 1995, CHEM PHYS LETT, V235, P436
MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
MORGON NH, 1995, J PHYS CHEM-US, V99, P17832
NICHOLAS JB, 1995, J CHEM PHYS, V103, P8031
RODRIQUEZ CF, 1992, CAN J CHEM, V70, P2234
SCHLEGEL HB, 1993, J AM CHEM SOC, V115, P10916
SCHLEGEL HB, 1993, J PHYS CHEM-US, V97, P8207
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHWARZ H, 1989, CHEM ORGANIC SILICON, P445
SHERRILL CD, 1996, J AM CHEM SOC, V118, P7158
SILVA MLP, 1995, J MASS SPECTROM, V30, P733
SKANCKE PN, 1994, J PHYS CHEM-US, V98, P3154
SMITH BJ, 1991, J PHYS CHEM-US, V95, P10549
STEVENS WJ, 1984, J CHEM PHYS, V81, P6086
SULLIVAN SA, 1981, J AM CHEM SOC, V103, P480
TAYLOR WS, 1995, J AM CHEM SOC, V117, P6497
WEST R, 1971, J AM CHEM SOC, V93, P282
WETZEL DM, 1989, J AM CHEM SOC, V111, P3835
ZHONG ML, 1996, J AM CHEM SOC, V118, P636
NR 49
TC 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 19
PY 1997
VL 119
IS 7
BP 1708
EP 1716
PG 9
SC Chemistry, Multidisciplinary
GA WJ097
UT ISI:A1997WJ09700025
ER
PT J
AU Varella, MTD
Bettega, MHF
Lima, MAP
TI Cross sections for rotational excitations of CH4, SiH4, GeH4, SnH4 and
PbH4 by electron impact
SO ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS
LA English
DT Article
ID TEMPERATURE; SCATTERING; MOLECULES
AB We report differential and integral cross sections for rotational
excitation of XH(4) molecules (X: C, Si, Ge, Sn, Pb) from 7.5-30 eV by
electron impact. These cross sections were derived from fixed-nuclei
scattering amplitudes (Bettega et al. 1995) obtained using the
Schwinger Multichannel Method with Pseudopotentials (SMCPP) (Bettega et
al. 1993). Our results represent the first rotational excitation cross
sections for molecules as large as GeH4, SnH4 and PbH4 using entirely
ab initio procedures. The cross sections for CH4 and SiH4 obtained with
pseudopotentials are in very good agreement with all-electron
calculations and with other theoretical results. A comparison between
our calculated cross sections and experimental data for CH4 is in
general encouraging, but some discrepancies remain. We found inelastic
rotational cross sections and momentum transfer cross sections to be
larger for SiH4, GeH4, SnH4 and PbH4 than for CH4. We could explain
this feature.
C1 UNIV FED PARANA,DEPT FIS,BR-81531990 CURITIBA,PARANA,BRAZIL.
RP Varella, MTD, UNIV ESTADUAL CAMPINAS,INST FIS GLEB WATAGHIN,BR-13083970
CAMPINAS,SP,BRAZIL.
CR ABULSABI N, 1983, J CHEM PHYS, V78, P1213
BETTEGA MHF, 1993, PHYS REV A, V47, P1111
BETTEGA MHF, 1995, J CHEM PHYS, V103, P10566
BRESCANSIN LM, 1989, PHYS REV A, V40, P5577
GARSCADDEN A, 1992, Z PHYS D ATOM MOL CL, V24, P97
GIANTURCO FA, 1988, PHYS SCRI T, V23, P141
GIANTURCO FA, 1995, PHYS REV A, V52, P1257
JAIN A, 1983, J PHYS B-AT MOL OPT, V16, P3077
JAIN A, 1991, Z PHYS D ATOM MOL CL, V21, P153
MULLER R, 1985, J PHYS B ATOM MOL PH, V18, P3971
NATALENSE APP, 1995, PHYS REV A, V52, R1
ROSE ME, 1957, ELEMENTARY THEORY AN
SHIMAMURA I, 1984, ELECT MOL COLLISIONS
NR 13
TC 13
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010
SN 0178-7683
J9 Z PHYS D-ATOMS MOL CLUSTERS
JI Z. Phys. D-Atoms Mol. Clusters
PD JAN
PY 1997
VL 39
IS 1
BP 59
EP 67
PG 9
SC Physics, Atomic, Molecular & Chemical
GA WF781
UT ISI:A1997WF78100011
ER
PT J
AU Tostes, JR
Seidl, PR
Taft, CA
Lie, SK
Carneiro, JWD
Brown, W
Lester, WA
TI Carbon-carbon and carbon-hydrogen hyperconjugation in neutral alcohols
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE hyperconjugation; neutral alcohol; carbon-carbon bonding;
carbon-hydrogen bonding; charge distribution
ID MOLECULAR-ORBITAL THEORY; NEGATIVE HYPERCONJUGATION;
ELECTRONIC-STRUCTURE; CHARGE-DISTRIBUTION; AB-INITIO; METHYL;
CONFORMATIONS; CONSEQUENCES; SUBSTITUENTS; SPECTROSCOPY
AB A short review of hyperconjugation is presented emphasizing
carbon-carbon and carbon-hydrogen hyperconjugation in neutral alcohols
of different sizes and geometries. Charge distribution and geometrical
parameters, involving adjacent 'acceptor' carbon-hydrogen and
carbon-carbon bonds such as those found on methanol ethanol, 2-propanol
t-butanol, exo and endo norbornol as well as their tetra-penta- and
hexacyclic analogs in different conformations provide sensitive probes
for hyperconjugation.
C1 UNIV FED FLUMINENSE,DEPT QUIM GERAL & INORGAN,BR-24249 NITEROI,RJ,BRAZIL.
UNIV FED FLUMINENSE,DEPT FIS,BR-24249 NITEROI,RJ,BRAZIL.
UNIV FED RIO DE JANEIRO,ESCOLA QUIM,RIO JANEIRO,BRAZIL.
CTR BRASILEIRO PESQUISAS FIS,BR-22290 RIO JANEIRO,BRAZIL.
UNIV CALIF BERKELEY,LAWRENCE BERKELEY LAB,DIV CHEM SCI,BERKELEY,CA 94720.
UNIV CALIF BERKELEY,DEPT CHEM,BERKELEY,CA 94720.
RP Tostes, JR, UNIV FED FLUMINENSE,DEPT QUIM FIS,BR-24249
NITEROI,RJ,BRAZIL.
CR ADCOCK W, 1990, J ORG CHEM, V55, P1411
ALBRIGHT TA, 1985, ORBITAL INTERACTIONS, P171
APBLETT A, 1991, CAN J CHEM, V69, P1022
BADER RFW, 1983, J AM CHEM SOC, V105, P5061
BASSINDALE AR, 1969, ORGANOMET CHEM, V20, P29
BELLAMY LJ, 1976, J PHYS CHEM-US, V80, P1217
BROWN KL, 1994, INORG CHEM, V33, P4189
CARNEIRO JWD, 1987, J MOL STRUCT THEOCHE, V152, P281
CARNEIRO JWD, 1993, CHEM PHYS LETT, V202, P278
CHAMBERS RD, 1973, FLUORINE ORGANIC CHE
CRAMER CJ, 1993, J AM CHEM SOC, V115, P9315
DACOSTA NB, 1994, J MOL STRUCT, V305, P19
DAVIS DD, 1981, J ORGANOMET CHEM, V206, P21
DELLA EW, 1994, J CHEM SOC CHEM COMM, P417
DESLONGCHAMPS P, 1983, STEREOELECTRONIC EFF
DILL JD, 1976, J AM CHEM SOC, V98, P1663
DOLBIER WR, 1984, J AM CHEM SOC, V106, P1871
FORSYTH DA, 1986, J AM CHEM SOC, V108, P2157
GONDO Y, 1994, SPECTROCHIM ACTA A, V50, P1451
HAMLOW HP, 1964, TETRAHEDRON LETT, P2553
HANSTEIN W, 1970, J AM CHEM SOC, V92, P7476
HANSTEIN W, 1970, J AM CHEM SOC, V94, P7476
HERNANDEZ V, 1994, J MOL STRUCT, V324, P189
IGNATYEV IS, 1989, J MOL STRUCT, V197, P291
KIRBY AJ, 1983, ANOMERIC EFFECT RELA
KOPPEL IA, 1994, J AM CHEM SOC, V116, P8654
LAMBERT JB, 1990, TETRAHEDRON, V46, P2677
LAMBERT JB, 1992, J AM CHEM SOC, V114, P10246
LAUBE T, 1995, ACCOUNTS CHEM RES, V28, P399
LEMIEUX RU, 1974, TETRAHEDRON, V30, P1033
MURUGAVEL R, 1993, INORG CHEM, V32, P5447
OLIVER AM, 1989, J AM CHEM SOC, V111, P7259
PAULING L, 1960, NATURE CHEM BOND, P609
PITT CG, 1973, J ORGANOMET CHEM, V61, P49
PROSS A, 1980, J AM CHEM SOC, V102, P2253
RADOM L, 1972, J AM CHEM SOC, V94, P2371
RADOM L, 1982, PROGR THEORETICAL OR, P3
RASTOGI RC, 1992, J INDIAN CHEM SOC, V69, P310
REED AE, 1983, J CHEM PHYS, V78, P4066
REED AE, 1987, J AM CHEM SOC, V109, P7362
REED AE, 1990, J AM CHEM SOC, V112, P1434
RODRIQUEZ CF, 1993, THEOCHEM-J MOL STRUC, V99, P205
ROMERS C, 1969, TOP STEREOCHEM, V4, P39
RONDAN NG, 1985, J AM CHEM SOC, V107, P2099
SALZNER U, 1992, CHEM PHYS LETT, V401, P190
SALZNER U, 1993, J AM CHEM SOC, V115, P10231
SCHLEYER PV, 1983, TETRAHEDRON, V39, P1141
SCHLEYER PV, 1985, J AM CHEM SOC, V107, P6393
SCHLEYER PV, 1991, J AM CHEM SOC, V113, P3990
SCHNEIDER WF, 1995, J AM CHEM SOC, V117, P478
SEIDL PR, 1988, CHEM PHYS LETT, V1147, P373
SEIDL PR, 1990, CHEM PHYS LETT, V175, P183
SEIDL PR, 1990, J MOL STRUCT THEOCHE, V204, P183
SIEHL HU, 1992, J AM CHEM SOC, V114, P9343
SKANCKE A, 1992, J MOL STRUCT THEOCHE, V259, P411
TAFT CA, 1996, CHEM PHYS LETT, V248, P164
TEH CK, 1989, CHEM PHYS LETT, V158, P351
TOSTES JGR, 1994, J MOL STRUCT THEOCHE, V306, P1019
TOSTES JGR, 1995, CHEM PHYS LETT, V237, P33
VINKOVIC V, 1992, TETRAHEDRON LETT, V33, P7441
VOLATRON ID, 1994, J PHYS CHEM-US, V98, P10728
WIBERG KB, 1993, J AM CHEM SOC, V115, P614
WILLIAMS JO, 1981, J MOL STRUCT, V76, P11
WOLFE S, 1972, ACCOUNTS CHEM RES, V5, P102
NR 64
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD DEC 11
PY 1996
VL 388
BP 85
EP 95
PG 11
SC Chemistry, Physical
GA WE809
UT ISI:A1996WE80900013
ER
PT J
AU Lins, JOMDL
Nascimento, MAC
TI Theoretical investigation of the methane activation reaction on
protonated zeolite from generalized valence-bond plus configuration
interaction calculations
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE activation energy; methane activation; transition state; zeolite
ID MOLECULAR ELECTROSTATIC POTENTIALS; DISSOCIATION ENERGIES; ATOMIC
CHARGES; EXCHANGE; DEHYDROGENATION; DENSITY; CD4
AB Generalized valence-bond plus configuration interaction calculations
are performed to study the activation of methane by a protonated model
zeolite. The resulting transition state exhibits carbenium-like ion
character, with a positively charged methyl group and an almost neutral
hydrogen molecule to be formed. The nature of the transition state is
similar to that obtained with density functional theory (DFT), in spite
of significant differences in the geometry of the optimized model
clusters. The activation barrier for the dehydrogenation process was
found to be 74.8 kcal mol(-1), which compares well with the DFT value
of 82.0 kcal mol(-1).
C1 UNIV FED RIO DE JANEIRO,DEPT FISICOQUIM,INST QUIM,BR-21949900 RIO JANEIRO,BRAZIL.
CR BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BROBOWICZ FW, 1977, MODERN THEORETICAL C, CH4
CARTER EA, 1988, J CHEM PHYS, V88, P3132
CHIANG AS, 1984, CHEM ENG SCI, V39, P1451
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
DAVIS ME, 1991, IND ENG CHEM RES, V30, P1675
DAVIS ME, 1995, STUD SURF SCI CATAL, V97, P35
ESTEVES PM, UNPUB
EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
HIROTA E, 1979, J MOL SPECTROSC, V77, P213
KRAMER GJ, 1993, NATURE, V363, P529
KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
MCIVER JW, 1971, CHEM PHYS LETT, V10, P303
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NASCIMENTO MAC, UNPUB J PHYS CHEM
RAPPE AK, 1988, GRADGVB PROGRAM
SILVA SC, 1993, THEOCHEM-J MOL STRUC, V101, P51
STACH H, 1986, ZEOLITES, V6, P74
STEFANADIS C, 1991, J MOL CATAL, V67, P363
VANSANTEN RA, 1995, CHEM REV, V95, P637
WANG LS, 1993, CATAL LETT, V21, P35
WOODS RJ, 1990, J COMPUT CHEM, V11, P297
NR 23
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD NOV 18
PY 1996
VL 371
BP 237
EP 243
PG 7
SC Chemistry, Physical
GA WD890
UT ISI:A1996WD89000027
ER
PT J
AU Rocha, WR
DeAlmeida, WB
TI Quantum-mechanical and molecular mechanics conformational analysis of
1,5-cyclooctadiene
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
ID GAUSSIAN-TYPE BASIS; MM3 FORCE-FIELD; SEMIEMPIRICAL METHODS;
ORGANIC-MOLECULES; ORBITAL METHODS; OPTIMIZATION; PARAMETERS
AB The 1,5-cyclooctadiene (COD) molecule can easily form complexes with
transition metals with the molecular structure of various of these
complexes being proposed with the aid of X-ray diffraction methods. The
fact that the complexes exhibit weak metal-GOD bonds makes it very
important in inorganic synthesis and catalysis. In this work the
potential energy surface (PES) for the GOD molecule was comprehensively
investigated first with molecular mechanics (casing the MM3 force
field); and, in a second stage, at the ab initio Hartree-Fock level of
theory employing the 3-21G*, 6-31G, and 6-31G* basis sets and also
including electron correlation effects at the Moller-Plesset
second-order perturbation theory level. This work revealed that there
are three distinct conformers of the COD molecule with the predicted
lowest energy conformation being in agreement with the proposed
structure based on experimental electron diffraction data. (C) 1997 by
John Wiley & Sons, Inc.
C1 UFMG,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,ICEX,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR ALLINGER NL, 1975, TETRAHEDRON, V31, P21
ALLINGER NL, 1989, J AM CHEM SOC, V111, P111
ALLINGER NL, 1990, J COMPUT CHEM, V11, P848
ALLINGER NL, 1993, J COMPUT CHEM, V14, P655
ANET FAL, 1973, J AM CHEM SOC, V95, P3407
DEALMEIDA WB, 1996, IN PRESS ANN 3 LAT A
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DOSSANTOS HF, IN PRESS INF TECNOL
DOVAL AMG, 1995, J HETEROCYCLIC CHEM, V32, P557
ERMER O, 1976, J AM CHEM SOC, V98, P3964
GLICK MD, 1965, J ORGANOMET CHEM, V3, P200
HAGNER K, 1982, J PHYS CHEM-US, V86, P117
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HENDRA PJ, 1961, SPECTROCHIM ACTA, V17, P913
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
IBERS JA, 1962, ACTA CRYSTALLOGR, V15, P923
LII JH, 1989, J AM CHEM SOC, V111, P8566
MOLLER C, 1934, PHYS REV, V46, P618
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
VANDENHENDE JH, 1963, J AM CHEM SOC, V85, P1009
NR 23
TC 7
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD JAN 30
PY 1997
VL 18
IS 2
BP 254
EP 259
PG 6
SC Chemistry, Multidisciplinary
GA WB112
UT ISI:A1997WB11200009
ER
PT J
AU Wong, PSH
Ma, SG
Yang, SS
Cooks, RG
Gozzo, FC
Eberlin, MN
TI Sulfur trifluoride cation (SF3+) affinities of pyridines determined by
the kinetic method: Stereoelectronic effects in the gas phase
SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
LA English
DT Article
ID MS(3) MASS-SPECTROMETRY; BOND-DISSOCIATION ENERGIES; TRANSITION-METAL
BONDS; PROTON AFFINITY; CHEMISTRY; CARBONYL; SF6
AB Ion/molecule reactions performed by pentaquadrupole mass spectrometry
are used to generate cluster ions in which neutral pyridines are bound
to the polyatomic cation SF3+. The dimeric ions Py(1)SF(3)(+)Py(2),
where Py(1) and Py(2) represent substituted pyridines, are shown to
have loosely bound structures by collision-induced dissociation (MS(3))
experiments and by semiempirical AM1 and ab initio RHF/G-S1G(d, p)
molecular orbital calculations. In the case of dimers comprised of
meta- and/or para-substituted pyridines (unhindered pyridines), there
is an excellent Linear correlation between the logarithm of the
fragment ion abundance ratio In{[Py(1)(SF3+)]/[Py(SF3+)]} and the
proton affinities (PA) of the constituent pyridines. Semiempirical
calculations are used to estimate the SF3+ affinities of pyridines
which are found to be in the range of 25-31 kcal/mol. The SF3+
affinities show an excellent linear correlation with the proton
affinities of the pyridines, and the relationship SF3+ affinity
(kcal/mol) = 0.73PA - 135.8 between the two affinities is derived. The
effective temperature of the dimeric ions is determined to be 595 +/-
69 K, which is in good agreement with values of around 600 K obtained
experimentally in studies on many other systems activated under similar
conditions. Ortho-substituted pyridines show lower than expected
affinities due to stereoelectronic effects that decrease the cation
affinities. Gas-phase stereoelectronic parameters (S-k) are measured
from the deviation from the PA correlation and are ordered as 2-MePy
(-1.09) < 2,6-diMePy (-1.11) < 2-EtPy (-1.91) < 2,3-diMePy (-2.15) <
2,5-diMePy (-2.25) < 2,4-diMePy (-2.40). Overall, the steric effects
are larger than those in the corresponding Cl+-bound dimers but smaller
than those in the bulky [OCNCO+] system. Calculations show evidence for
agostic bonding that offsets the steric effects in some eases. The
eclipsed conformation of 2-methylpyridine/SF3+ adduct is found to be
more stable than the staggered form by 0.8 kcal/mol, due to auxiliary
agostic bonding between the hydrogen of the ortho methyl substituent
and the sulfur atom. Calculations on atomic charge distribution reveal
that the positive charge is mainly on the sulfur atom (+1.99) and the
charge on the bonding hydrogen S-H-C (+0.07) is considerably lower than
that on the other two methyl hydrogens (+0.14), which appears to be a
good indication of agostic binding. The most stable form of the
2-ethylpyridine/SF3+ adduct is found when the N-C-1-C-alpha-C-beta
dihedral angle is approximately 60 degrees, where the ethyl hydrogen is
directed toward the SF3 group via an interesting six-membered ring
alignment. The experiments show a remarkably small steric effect in
2,6-dimethylpyridine, probably due to strong agostic bonding enhanced
by the buttressing effect that shortens the S-H distance. In addition,
the face-to-face interactions of the F atoms and the H atoms further
stabilize this form. (C) 1997 American Society for Mass Spectrometry
C1 PURDUE UNIV,BROWN LAB,DEPT CHEM,W LAFAYETTE,IN 47907.
UNICAMP,INST CHEM,CAMPINAS,SP,BRAZIL.
CR AYNG SS, 1996, J AM SOC MASS SPECTR, V7, P198
BABCOCK LM, 1981, J CHEM PHYS, V75, P3864
BOWERS MT, 1979, GAS PHASE ION CHEM, V1
BROOKHART M, 1983, J ORGANOMET CHEM, V250, P395
BROOKHART M, 1988, PROG INORG CHEM, V36, P1
CARMONA E, 1991, J AM CHEM SOC, V113, P4322
CHEUNG YS, 1995, J AM CHEM SOC, V117, P9725
COOKS RG, 1989, ADV MASS SPECTROM, V11, P33
COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
CORDERMAN RR, 1976, J AM CHEM SOC, V98, P3998
CRABTREE RH, 1985, INORG CHEM, V24, P1986
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DILLARD JG, 1975, J PHYS CHEM-US, V79, P2455
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
FEHSENFELD FC, 1971, J CHEM PHYS, V54, P438
FRANKLIN JL, 1972, ION MOL REACTIONS
FUTRELL JH, 1986, GASEOUS ION CHEM MAS
GREEN MLH, 1984, PURE APPL CHEM, V56, P47
HARRISON AG, 1983, CHEM IONIZATION MASS
HERRON JT, 1987, J PHYS CHEM REF DATA, V16, P1
HO Y, 1992, J AM CHEM SOC, V114, P10961
JENKINS HDB, 1994, TETRAHEDRON LETT, V34, P6543
JONES RW, 1982, J PHYS CHEM-US, V86, P1387
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KOGA N, 1984, J AM CHEM SOC, V106, P4625
LATIMER DR, 1994, J CHEM PHYS, V101, P3410
LIAS SG, 1975, ION MOL REACTIONS TH
MACKAY GI, 1992, INT J MASS SPECTROM, V117, P38
MAJUMDAR TK, 1992, J AM CHEM SOC, V114, P2897
MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
NOURSE BD, 1991, INT J MASS SPECTROM, V106, P249
OPERTI L, 1988, J AM CHEM SOC, V110, P3847
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
STONE JA, 1989, INT J MASS SPECTROM, V94, P269
TAMURA A, 1987, APPL PHYS LETT, V51, P1503
YANG SS, 1995, J MASS SPECTROM, V30, P184
YANG SS, 1995, J MASS SPECTROM, V30, P807
ZANGERLE R, 1993, INT J MASS SPECTROM, V129, P117
NR 40
TC 20
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010
SN 1044-0305
J9 J AMER SOC MASS SPECTROM
JI J. Am. Soc. Mass Spectrom.
PD JAN
PY 1997
VL 8
IS 1
BP 68
EP 75
PG 8
SC Chemistry, Analytical; Chemistry, Physical; Spectroscopy
GA WA210
UT ISI:A1997WA21000010
ER
PT J
AU Olivato, PR
Rittner, R
TI Conformational and electronic interaction studies of some
alpha-mono-heterosubstituted carbonyl compounds
SO REVIEWS ON HETEROATOM CHEMISTRY
LA English
DT Article
DE alpha-heterosubstituted carbonyl compounds; conformational isomerism;
electronic interactions
ID SOLUTION-STATE CONFORMATIONS; VIBRATIONAL ASSIGNMENT;
INTERNAL-ROTATION; ULTRAVIOLET PHOTOELECTRON; ABINITIO CALCULATIONS;
MOLECULAR-MECHANICS; MICROWAVE-SPECTRUM; IR SPECTROSCOPY;
FLUOROACETONE; DERIVATIVES
AB nu(CO) frequencies and intensities of some alpha-heterosubstituted
carbonyl compounds [XCH(2)C(O)Y: X = F, OMe, NR(2), Cl, Br, SEt, or I;
and Y = Me, Ph, SR, OMe or NEt(2)], together with molecular mechanics
calculations indicated the existence of cis-gauche rotational
isomerism. In solvents of low polarity the gauche rotamers predominate
over the cis ones, except for the fluoro and methoxy derivatives of
acetophenone and methyl acetate series. The progressive increase in the
gauche rotamer population in each series, on going from the fluoro to
the iodo derivative has been mainly ascribed to the increasing
contribution of the pi*(CO)/sigma(C-X) and pi*(CO)/n(X) orbital
interactions. The carbonyl frequency shifts of the cis rotamers are
interpreted as being due to the substituent field and inductive
effects, while the corresponding shifts of the gauche rotamers have
been attributed to an interplay of inductive and hyperconjugative
effects. The carbonyl shifts induced by inductive (Delta nu(I)), field
(Delta nu(F)) and hyperconjugative effects (Delta nu(H)) were estimated
separately for the acetone derivatives. The larger negative carbonyl
gauche shifts (Delta nu(g)) along with a higher non-additivity effect
(Delta delta) of the alpha-methylene carbon chemical shifts can be
associated with stronger pi*(CO)/sigma(C-X) and pi*(CO)/n(X) orbital
interactions. The higher stabilization of the gauche rotamers for the
alpha-akylthio carbonyl compounds, the larger nu(CO) gauche shifts and
the lower non-additivity effect for the alpha-methylene carbon have
been interpreted as being due to the simultaneous occurrence of
pi*(CO)/sigma(C-S) and pi(CO)/sigma*(C-S) orbital interactions. The
progressive bathochromic shifts of n(O) --> pi*(CO) transition for the
alpha-heterosubstituted ketones, on going from the fluorine to the
iodine substituent, were mainly ascribed to a contribution of the
hyperconjugative interaction (pi*(CO)/sigma*(C-X)). Ab initio
calculations, and photoelectron and electron transmission
spectroscopies have supported, in general, the mentioned orbital
interactions.
C1 UNIV SAO PAULO,INST QUIM,BR-05599970 SAO PAULO,BRAZIL.
UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
BASSO EA, 1993, J ORG CHEM, V58, P7865
BONNIOL A, 1979, CR ACAD SCI C CHIM, V288, P407
CANTACUZENE D, 1976, CAN J CHEM, V54, P2759
CANTACUZENE J, 1972, TETRAHEDRON, V28, P717
COOK BR, 1967, J CHEM PHYS, V47, P1700
DISTEFANO G, 1991, J CHEM SOC P2, P1195
DUDDECK H, 1986, TOP STEREOCHEM, V16, P219
DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
DURIG JR, 1991, SPECTROCHIM ACTA A, V47, P105
DURIG JR, 1992, J RAMAN SPECTROSC, V23, P253
EISENSTEIN O, 1974, TETRAHEDRON, V30, P1717
FAUSTO R, 1986, J MOL STRUCT, V144, P225
FRASER RR, 1995, CAN J CHEM, V73, P88
GASET A, 1968, B SOC CHIM FR, P4108
GODUNOV IA, 1994, RUSS CHEM B, V43, P723
GODUNOV IA, 1994, ZH FIZ KHIM, V68, P1057
GOUGH TE, 1967, CAN J CHEM, V45, P2529
GUERRERO SA, 1983, J CHEM SOC PERK T 2, P1053
GUTIERREZ MA, 1982, ORG MAGN RESONANCE, V20, P20
JONES D, 1994, J CHEM SOC P2, P1651
KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P1124
KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P3577
KARABATSOS GJ, 1970, TOP STEREOCHEM, V5, P167
KLAPSTEIN D, 1988, CAN J SPECTROSC, V33, P161
LUMBROSO H, 1987, J MOL STRUCT, V162, P131
LUMBROSO H, 1987, J MOL STRUCT, V162, P141
LUMBROSO H, 1989, J MOL STRUCT, V212, P113
MARTINS MAP, 1981, SPECTROSC LETT, P505
MAURY C, 1991, J MOL STRUCT, V246, P267
MEYER AY, 1980, ISRAEL J CHEM, V20, P57
MEYER M, 1992, CHEM BRIT, P785
MIDO Y, 1985, J MOL STRUCT, V129, P253
NESMEYANOV AN, 1975, DOKL AKAD NAUK, V220, P162
OIKE F, 1992, THESIS U SAO PAULO
OLIVATO PR, UNPUB
OLIVATO PR, 1979, J CHEM PHYS, V70, P1677
OLIVATO PR, 1984, J CHEM SOC P2, P1505
OLIVATO PR, 1985, PHOSPHORUS SULFUR, V24, P225
OLIVATO PR, 1990, J CHEM SOC P2, P465
OLIVATO PR, 1990, PHOSPHORUS SULFUR, V47, P391
OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
OLIVATO PR, 1992, CAN J APPL SPECTROSC, V37, P37
OLIVATO PR, 1992, PHOSPHORUS SULFUR, V71, P107
OLIVATO PR, 1993, PHOSPHORUS SULFUR, V82, P7
OLIVATO PR, 1994, PHOSPHORUS SULFUR, V95, P391
OLIVATO PR, 1995, SPECTROCHIM ACTA A, V51, P1479
PAN YH, 1967, CAN J CHEM, V45, P2943
PHAN HV, 1990, J MOL STRUCT THEOCHE, V209, P333
RAMARAO M, 1976, ORG MAGN RESONANCE, V39, P329
RITTNER R, 1987, RECENT ADV ORGANIC N, P127
RITTNER R, 1988, MAGN RESON CHEM, V26, P51
RITTNER R, 1988, MAGN RESON CHEM, V26, P73
RITTNER R, 1988, QUIM NOVA, V8, P170
RITTNER R, 1990, SPECTROSC INT J, V8, P173
RITTNER R, 1991, SPECTROSC-INT J, V9, P31
SAEGEBARTH E, 1970, J CHEM PHYS, V52, P3555
SHAPIRO BL, 1973, J MAGN RESON, V10, P65
SUMATHI R, 1993, J MOL STRUCT THEOCHE, V280, P49
VANDERVEKEN BJ, 1993, J MOL STRUCT, V293, P55
VARNALI T, 1993, J MOL STRUCT THEOCHE, V280, P169
WLADISLAW B, 1980, J CHEM SOC P2, P453
YAMAGUCHI I, 1995, J MOL STRUCT, V352, P309
YATES K, 1969, SPECTROCHIM ACTA A, V25, P765
YATES P, 1961, CAN J CHEM, V39, P1977
NR 65
TC 16
PU MYU K K
PI TOKYO
PA SCIENTIFIC PUBLISHING DIV, 2-32-3 SENDAGI, BUNKYO-KU, TOKYO 113, JAPAN
SN 0915-6151
J9 REV HETEROATOM CHEM
JI Rev. Heteroatom Chem.
PY 1996
VL 15
BP 115
EP 159
PG 45
SC Chemistry, Multidisciplinary
GA VV529
UT ISI:A1996VV52900006
ER
PT J
AU Camargo, AC
Igualada, JA
Beltran, A
Llusar, R
Longo, E
Andres, J
TI An ab initio perturbed ion study of structural properties of TiO2,
SnO2, and GeO2 rutile lattices
SO CHEMICAL PHYSICS
LA English
DT Article
ID VANADIUM-DOPED ZIRCON; PERIODIC HARTREE-FOCK; TITANIUM-DIOXIDE;
ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURES; OXIDE; PRINCIPLES;
POLYMORPHS; DYNAMICS; SURFACES
AB This work describes a theoretical quantum mechanical study on TiO2,
SnO2 and GeO2 rutile structures in order to characterize the geometric,
mechanical, thermodynamic and electronic properties of these systems.
The doping processes of V4+ at the sixfold-coordinated site have been
studied with the aim of determining the relative stability of pure and
doped structures. Ab initio perturbed ion calculations with Slater-type
orbitals for representing atomic centers and large cluster models have
been used. Local geometry optimizations have been performed to
determine the lattice energy, lattice parameters and bulk modulus, as
well as the force constant and vibrational frequencies (nu) of the
breathing vibrational modes, a(1g), in the sixfold-coordinated site.
Numerical results are analyzed and compared with experimental data, the
geometrical distances obtained by computer simulation being in
agreement with the reported experimental values. The difference in
energy for the substitution of Ti4+, Sn4+ and Ge4+ for V4+ in TiO2,
SnO2 and GeO2, respectively is very dependent on the method used to
represent these doping processes. The TiO2, SnO2 lattices show a
decrease in the nu value from the pure to the doped structure while a
opposite trend is obtained for the GeO2 structure. The validity of the
methodology is discussed.
C1 UNIV JAUME 1,DEPT EXPT SCI,CASTELLO 12080,SPAIN.
UNIV FED SAO CARLOS,DEPT CHEM,BR-131560 SAO CARLOS,BRAZIL.
CR ANDRES J, 1994, CHEM PHYS LETT, V221, P249
ANDRES J, 1995, CHEM PHYS LETT, V236, P521
ANDRES J, 1995, J PHYS CHEM SOLIDS, V56, P901
ANDRES J, 1995, J PHYS CHEM-US, V99, P8092
ANDRES J, 1995, THEOCHEM-J MOL STRUC, V330, P313
BAUR WH, 1956, ACTA CRYSTALLOGR, V9, P515
BELTRAN A, 1993, J PHYS CHEM-US, V97, P2555
BELTRAN A, 1994, J PHYS CHEM-US, V98, P7741
BELTRAN A, 1995, INT J QUANTUM CHEM S, V29, P685
BELTRAN A, 1995, J PHYS CHEM-US, V99, P6493
BIRCH F, 1952, J GEOPHYS RES, V57, P227
BONIFACIC V, 1982, J CHEM PHYS, V76, P2537
BURDETT JK, 1985, INORG CHEM, V24, P2244
BURDETT JK, 1987, J AM CHEM SOC, V109, P3639
CATLOW CRA, 1990, NATURE, V347, P243
CATLOW CRA, 1993, J SOLID STATE CHEM, V106, P13
CHAKRAVORTY SJ, 1989, PHYS REV A, V39, P2290
CLEMENTI E, 1974, ATOM DATA NUCL DATA, V14, P177
DEBIASI RS, 1994, J PHYS CHEM SOLIDS, V55, P453
DIXON R, 1995, J CHEM SOC FARADAY T, V91, P3495
FAHMI A, 1993, PHYS REV B, V47, P11717
GLASSFORD KM, 1992, PHYS REV B, V46, P1284
HAGFELDT A, 1992, INT J QUANTUM CHEM, V44, P477
HAGFELDT A, 1994, INT J QUANTUM CHEM, V49, P97
HAGFELDT A, 1994, SOL ENERG MAT SOL C, V31, P481
HAZEN RM, 1981, J PHYS CHEM SOLIDS, V42, P143
HUZINAGA S, 1971, J CHEM PHYS, V55, P5543
HUZINAGA S, 1973, ADV QUANTUM CHEM, V7, P1987
JOLLY LH, 1994, EUR J MINERAL, V6, P7
KOHL D, 1989, SENSOR ACTUATOR, V18, P71
LASSALETTA G, 1995, J PHYS CHEM-US, V99, P1484
LIAO KH, 1995, J PHYS CHEM-US, V99, P4569
LINSEBIGLER AL, 1995, CHEM REV, V95, P735
LUANA V, 1988, J MOL STRUCT THEOCHE, V166, P215
LUANA V, 1990, PHYS REV B, V41, P3800
LUANA V, 1990, PHYS REV B, V42, P1791
LUANA V, 1992, CLUSTER MODELS SURFA, P605
LUANA V, 1992, J CHEM PHYS, V97, P6544
LUANA V, 1993, COMPUT PHYS COMMUN, V77, P107
MARUTHAMUTHU P, 1995, J PHYS CHEM-US, V99, P3636
MCWEENY R, 1959, P ROY SOC LOND A MAT, V253, P242
NAKATO Y, 1986, J PHYS CHEM-US, V90, P6210
NICOLOSO N, 1990, BER BUNSEN PHYS CHEM, V94, P731
OKADA F, 1990, J PHYS CHEM-US, V94, P5900
POUMELLEC B, 1991, J PHYS-CONDENS MAT, V3, P8195
POWELL MJD, 1970, NUMERICAL METHODS NO
RAMAMOORTHY M, 1994, PHYS REV B, V49, P16721
RAMANA MV, 1988, J CHEM PHYS, V88, P2637
SAKAI Y, 1985, J CHEM PHYS, V82, P270
SAUER J, 1989, CHEM REV, V363, P493
SAUER J, 1993, NATURE, V363, P493
SCHINDLER KM, 1990, J PHYS CHEM-US, V94, P8222
SILVI B, 1990, J CHEM PHYS, V93, P2637
SILVI B, 1991, J PHYS CHEM SOLIDS, V52, P1005
SIROKY K, 1994, TALANTA, V41, P1735
VOS K, 1977, J PHYS C SOLID STATE, V10, P917
WOLD A, 1993, SOLID STATE CHEM SYN
XU WX, 1996, J SOLID STATE CHEM, V121, P301
YU N, 1995, PHYS REV B, V49, P4768
NR 59
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD DEC 1
PY 1996
VL 212
IS 2-3
BP 381
EP 391
PG 11
SC Physics, Atomic, Molecular & Chemical
GA VV617
UT ISI:A1996VV61700010
ER
PT J
AU Teles, LK
Scolfaro, LMR
Enderlein, R
Leite, JR
Josiek, A
Schikora, D
Lischka, K
TI Structural properties of cubic GaN epitaxial layers grown on beta-SiC
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; GALLIUM NITRIDE; AB-INITIO; INTERFACES
AB Self-consistent Eight-binding total energy calculations are performed
to study the deposition of a few layers of cubic GaN on (100) beta-SiC
substrates. Cohesion energies, atomic displacements, dangling bond
occupancies and surface reconstructions are calculated for a variety of
epitaxial systems including monolayers of either Ga or N as well as
single and double bilayers of GaN on either Si or C terminated
substrates. The SiC substrates and Ga-N epitaxial layers are
represented by 2x2 supercells of 9 Si and C monolayers plus the
respective number of monolayers of Ga and N atoms. Depending on the
system, surface atoms dimerize either symmetrically or asymmetrically
resulting in either 2x1, c-2x2, or 2x2 surface reconstructions. At the
substrate-epitaxial-layer interfaces, N binds stronger than Ga to
either Si or C. Interface mixing is found to be energetically not
advantageous for both C- and Si-terminated substrates, although for the
latter the obtained small energy differences may suggest the
possibility of mixing. (C) 1996 American Institute of Physics.
C1 UNIV BORDEAUX 1,LAB COMPOSITES THERMOSTRUCT,F-33600 PESSAC,FRANCE.
UNIV GESAMTHSCH PADERBORN,FB PHYS 6,D-33098 PADERBORN,GERMANY.
RP Teles, LK, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05389970 SAO
PAULO,BRAZIL.
CR ALVES JLA, COMMUNICATION
ALVES JLA, IN PRESS MAT SCI ENG
BECHSTEDT F, 1985, PHYS STAT US SOLID B, V131, P646
BECHSTEDT F, 1988, SEMICONDUCTOR SURFAC
BRANDT O, 1995, PHYS REV B, V52, R2253
CAPAZ RB, 1995, PHYS REV B, V51, P17755
CHURCHER N, 1986, J PHYS C SOLID STATE, V19, P4413
HARBEKE G, 1982, PHYSICS GROUP 4 ELEM, V17
HARRISON WA, 1980, ELECTRONIC STRUCTURE
JOSIEK A, 1992, SUPERLATTICE MICROST, V12, P225
KACKELL P, 1994, PHYS REV B, V50, P17037
MAJEWSKI JA, 1987, PHYS REV B, V35, P9666
NAKAMURA S, 1994, APPL PHYS LETT, V64, P1687
NAKAMURA S, 1996, JPN J APPL PHYS 2, V35, L74
NEUGEBAUER J, 1990, J CRYST GROWTH, V101, P332
NEUGEBAUER J, 1992, SUPERLATTICE MICROST, V11, P393
PAISLEY MJ, 1989, J VAC SCI TECHNOL A, V7, P701
PARRY DE, 1975, SURF SCI, V49, P433
PETALAS J, 1995, PHYS REV B, V52, P8082
POLLMANN J, 1980, FESTKORPERPROBLEME, V20, P117
SASAKI T, 1988, J APPL PHYS, V64, P4531
SCHIKORA D, IN PRESS
SHERWIN ME, 1991, J APPL PHYS, V69, P8423
SITAR Z, 1992, J MATER SCI LETT, V11, P261
STRITE S, 1991, J VAC SCI TECHNOL B, V9, P1924
NR 25
TC 9
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD DEC 1
PY 1996
VL 80
IS 11
BP 6322
EP 6328
PG 7
SC Physics, Applied
GA VV267
UT ISI:A1996VV26700036
ER
PT J
AU Zeng, Z
Ellis, DE
Guenzburger, D
BaggioSaitovitch, E
TI Spin density and magnetism of rare-earth nickel borocarbides:
RNi(2)B(2)C
SO PHYSICAL REVIEW B
LA English
DT Article
ID ANTIFERROMAGNETIC SUPERCONDUCTOR HONI2B2C; ELECTRONIC-STRUCTURE; BORIDE
CARBIDE; R=RARE EARTH; INTERMETALLIC COMPOUNDS; QUATERNARY COMPOUNDS;
SINGLE-CRYSTALS; ENERGY-GAP; B-C; YNI2B2C
AB The rare-earth spin moments in quarternary borocarbides RNi(2)B(2)C,
R=Pr, Nd, Sm, Gd, Ho, Tm are determined by self-consistent density
functional theory, using the embedded cluster formalism. Spin-polarized
electronic structure calculations considering antiferromagnetic
coupling between R-C layers are performed. Spin polarization of the
lattice is examined in detail and related to observed ferromagnetic
ordering in R-C layers and antiferromagnetic ordering between layers.
The observed superconductivity of Y, Lu, Tm, Er, and Ho compounds and
regions of coexistence with antiferromagnetism in Tm and Ho is
discussed in terms of the magnitude of R moments, differences in R
4f-5d hybridization, and resulting lattice polarization.
RP Zeng, Z, CTR BRASILEIRO PESQUISAS FIS,RUA XAVIER SIGAUD 150,BR-22290180
RIO JANEIRO,BRAZIL.
CR ABRIKOSOV AA, 1961, SOV PHYS JETP, V12, P1243
ALLENO E, 1995, PHYSICA C, V242, P169
BAERENDS EJ, 1973, CHEM PHYS, V2, P41
BALTENSPERGER W, 1963, PHYS KONDENS MATER, V1, P20
BUDKO SL, 1995, PHYS REV B, V52, P305
CANEPA F, 1994, NUOVO CIMENTO D, V16, P1857
CARTER SA, 1995, PHYS REV B, V51, P12644
CAVA RJ, 1994, NATURE, V367, P146
CAVA RJ, 1994, NATURE, V367, P252
CHO BK, 1995, PHYS REV B, V52, R3844
COEHOORN R, 1994, PHYSICA C, V228, P331
DECROUX M, 1982, SUPERCONDUCTIVITY TE, V34, P57
DEGENENS PG, 1966, CR HEBD ACAD SCI, V247, P1836
DEGENNES PG, 1962, J PHYS RADIUM, V23, P510
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DUNLAP BD, 1983, J MAGN MAGN MATER, V37, P211
DUNLAP BD, 1988, PHYS REV B, V39, P6224
EISAKI H, 1994, PHYS REV B, V50, P647
EKINO T, 1994, PHYSICA C, V235, P2529
ELLIOTT RJ, 1972, MAGNETIC PROPERTIES, P1
ELLIS DE, 1970, PHYS REV B, V2, P2887
ELLIS DE, 1979, PHYS REV B, V20, P1198
ELLIS DE, 1994, ELECT DENSITY FUNCTI, P263
ELMASSALAMI M, 1995, J PHYS-CONDENS MAT, V7, P10015
ELMASSALAMI M, 1995, PHYSICA C, V244, P41
FISCHER O, 1990, FERROMAGNETIC MATERI, V5, P465
FULDE P, 1966, PHYS REV, V141, P275
GINZBURG VL, 1957, SOV PHYS JETP, V4, P153
GRIGEREIT TE, 1994, PHYS REV LETT, V73, P2756
GUO GY, 1990, PHYS REV B, V41, P6372
GUPTA LC, 1994, PHYSICA C 1, V235, P150
HALLEY JW, 1988, THEORIES HIGH TEMPER
HANSON ME, 1995, PHYS REV B, V51, P674
HUANG Q, 1995, PHYS REV B, V51, P3701
JOHNSTONHALPERIN E, 1995, PHYS REV B, V51, P12852
KITTEL C, 1968, SOLID STATE PHYS, V22, P1
KOHARA T, 1995, PHYS REV B, V51, P3985
LAWRIE DD, 1995, PHYSICA C, V245, P159
LEE JI, 1994, PHYS REV B, V50, P4030
LEGVOLD S, 1980, FERROMAGNETIC MATERI, V1, P183
MAPLE MB, 1968, PHYS LETT A, V26, P513
MAPLE MB, 1973, MAGNETISM, V5, P289
MAPLE MB, 1987, PHYSICA B & C, V148, P155
MAPLE MB, 1989, J LESS-COMMON MET, V149, P405
MATTHEISS LF, 1994, PHYS REV B, V49
MATTHEISS LF, 1994, SOLID STATE COMMUN, V91, P587
MULDER FM, 1995, J ALLOY COMPD, V217, P118
MULLERHARTMANN E, 1971, PHYS REV LETT, V26, P428
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MURAYAMA C, 1994, PHYSICA C 4, V235, P2545
NAGARAJAN R, 1994, PHYS REV LETT, V72, P274
PARR RG, 1989, DENSITY FUNCTIONAL T
PELLEGRIN E, 1995, PHYS REV B, V51, P16159
PICKETT WE, 1994, PHYS REV LETT, V72, P3702
PRASSIDES K, 1995, EUROPHYS LETT, V29, P641
RHEE JY, 1995, PHYS REV B, V51, P15585
RIBLET G, 1971, SOLID STATE COMMUN, V9, P1663
ROSEN A, 1976, J CHEM PHYS, V65, P3629
SANCHEZ DR, 1996, PHYS REV LETT, V76, P507
SCHMIDT H, 1994, PHYSICA C, V229, P315
SIEGRIST T, 1994, NATURE, V367, P254
SINHA SK, 1995, PHYS REV B, V51, P681
SLATER JC, 1974, QUANTUM THEORY MOL S, V4
SUN YY, 1994, PHYSICA C, V230, P435
SZYTULA A, 1994, HDB CRYSTAL STRUCTUR
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P129
XU M, 1994, PHYSICA C 4, V235, P2533
XU M, 1994, PHYSICA C, V227, P321
ZARESTKY J, 1995, PHYS REV B, V51, P678
ZENG Z, IN PRESS PHYSICA C
ZENG Z, 1996, PHYS REV B, V53, P6613
ZHOU H, 1987, PHYS REV B, V36, P594
NR 72
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 1
PY 1996
VL 54
IS 18
BP 13020
EP 13029
PG 10
SC Physics, Condensed Matter
GA VT682
UT ISI:A1996VT68200060
ER
PT J
AU Morgon, NH
Giroldo, T
Linnert, HV
Riveros, JM
TI Isomerization of the molecular ion of allyl bromide
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID DISTONIC RADICAL CATIONS; MASS-SPECTROMETRY NRMS; X = CL; GAS-PHASE;
AB-INITIO; OPTIMIZATION TECHNIQUE; IONIZATION ENERGIES;
ORGANIC-MOLECULES; SPECTRA; NEUTRALIZATION
AB The molecular ion of allyl bromide has been characterized by nb initio
molecular orbital calculations at the MP4(SDTQ) level with optimized
geometries at the MP2 level in order to account for experimental data
suggesting the presence of two isomers. The calculations predict the
existence of an allyl bromide molecular ion with structural parameters
resembling the neutral species except for a lengthening of the double
bond. This structure is calculated to be more stable than a cyclic
bromonium radical cation structure, Rearrangement of the molecular ion
of allyl bromide to that of 1-bromopropene is shown to be possible
through a transition state represented by the distonic ion,
(BrHCCH2CH2.)-Br-+, lying just below the dissociation limit of the
allyl bromide molecular ion. Studies based on ion/molecule reactivity
of C3H5Br.+ ions generated from allyl bromide and 1-bromopropene with
ammonia, methanol, allyl bromide, and charge transfer reactions
strongly suggest that a small fraction of the molecular ions of allyl
bromide isomerize to the 1-bromopropene molecular ion as predicted by
the calculation. These experiments cannot establish unequivocally
whether the allyl bromide molecular ions retain the structure of the
parent molecules as predicted by the calculations or undergo
ion/molecule reactions mediated by a bromonium type complex. Charge
transfer experiments also suggest the adiabatic ionization energy of
allyl bromide to be 9.83 +/- 0.07 eV.
C1 UNIV SAO PAULO,INST QUIM,BR-05599970 SAO PAULO,BRAZIL.
CR BERMAN DW, 1979, J AM CHEM SOC, V101, P1239
BIERI G, 1981, J ELECTRON SPECTROSC, V23, P281
BIERI G, 1982, J ELECTRON SPECTRY R, V27, P129
BLANCHETTE MC, 1987, ORG MASS SPECTROM, V22, P701
BOWEN RD, 1991, ACCOUNTS CHEM RES, V24, P364
BOWERS MT, 1980, J AM CHEM SOC, V102, P4830
BOYS SF, 1970, MOL PHYS, V19, P553
BURGERS PC, 1983, ORG MASS SPECTROM, V18, P596
BUSCH KL, 1988, MASS SPECTROMETRY MA
CARRUPT PA, 1991, INT J MASS SPECTROM, V110, R1
CUSTODIO R, 1992, CAN J CHEM, V70, P580
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
CUSTODIO R, 1993, J MOL STRUCT THEOCHE, V281, P75
DUNNING TH, 1977, METHODS ELECTRONIC S, CH1
DURIG JR, 1980, J PHYS CHEM-US, V94, P3543
FOX T, 1996, J PHYS CHEM-US, V100, P2950
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
GAUMANN T, 1990, HELV CHIM ACTA, V73, P1215
GAUMANN T, 1990, HELV CHIM ACTA, V73, P2218
GAUMANN T, 1991, J AM SOC MASS SPECTR, V2, P372
GIROLDO T, UNPUB
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
HALGREN TA, 1977, CHEM PHYS LETT, V49, P225
HAMILTON TP, 1990, J AM CHEM SOC, V112, P8260
HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
HECK AJR, 1995, J AM SOC MASS SPECTR, V6, P11
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HOLMES JL, COMMUNICATION
HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
HOLMES JL, 1989, MASS SPECTROM REV, V8, P513
HONOVICH JP, 1985, INT J MASS SPECTROM, V42, P33
HUDSON CE, 1995, J AM SOC MASS SPECTR, V6, P1037
ISOLANI PC, 1992, QUIM NOVA, V15, P351
LAY JO, 1983, J AM CHEM SOC, V105, P3445
LIAS SG, 1976, INT J CHEM KINET, V8, P725
LIAS SG, 1978, CHEM PHYS LETT, V54, P147
LIAS SG, 1978, J AM CHEM SOC, V100, P6027
LIAS SG, 1984, J PHYS CHEM REF DATA, V13, P695
LIAS SG, 1994, NIST STANDARD REFERE
MAYER I, 1992, CHEM PHYS LETT, V191, P497
MCADOO DJ, 1993, ACCOUNTS CHEM RES, V26, P295
MCLAFFERTY FW, 1962, ANAL CHEM, V34, P2
MEOTNER M, 1976, CHEM PHYS LETT, V4, P484
MINES GW, 1973, SPECTROCHIM ACTA A, V29, P1377
MORGON NH, 1995, CHEM PHYS LETT, V235, P436
MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
NAGY PI, 1995, J CHEM PHYS, V102, P6812
RADOM L, 1992, INT J MASS SPECTROM, V118, P339
REYNOLDS CH, 1992, J AM CHEM SOC, V114, P8676
RIVEROS JM, 1983, INT J MASS SPECTROM, V47, P183
RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
RIVEROS JM, 1991, RAPID COMMUN MASS SP, V5, P387
SCHEI H, 1982, J MOL STRUCT, V17, P269
SEVILLA MD, 1995, J PHYS CHEM-US, V99, P1060
SHALER TA, 1994, J AM CHEM SOC, V116, P9222
SKANCKE A, 1995, J PHYS CHEM-US, V99, P13886
STIRK KM, 1992, CHEM REV, V92, P1649
STIRK KM, 1992, J AM CHEM SOC, V114, P8604
STIRK KM, 1994, INT J MASS SPECTROM, V130, P187
TERLOUW JK, 1987, ANGEW CHEM INT EDIT, V26, P805
TRAEGER JC, 1984, INT J MASS SPECTROM, V58, P259
VANTILBORG MWEM, 1983, INT J MASS SPECTROM, V54, P299
WADT WR, 1985, J CHEM PHYS, V82, P284
WESDEMIOTIS C, 1987, CHEM REV, V87, P485
WORRELL CW, 1974, J ELECTRON SPECTROSC, V3, P359
XANTHEAS SS, 1996, J PHYS CHEM-US, V100, P3989
YATES BF, 1986, TETRAHEDRON, V42, P6225
NR 67
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD NOV 14
PY 1996
VL 100
IS 46
BP 18048
EP 18056
PG 9
SC Chemistry, Physical
GA VT708
UT ISI:A1996VT70800008
ER
PT J
AU Araujo, RCMU
Ramos, MN
TI An ab initio study of the molecular properties of the acetylene-HX
hydrogen complexes
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE ab initio calculation; acetylene; hydrogen bonding; infrared; molecular
complex
ID VANDERWAALS MOLECULES; ROTATIONAL SPECTRUM; ATOMIC CHARGES; GAS-PHASE;
ABINITIO; INTENSITIES; DIMER; HCL; HF
AB MP2/6-311++G** ab initio molecular orbital calculations indicate that
larger Delta Q(corr) intermolecular charge transfer values are
associated with stronger hydrogen bonds in the acetylene-HX complexes
where X is F, Cl CN, NC or CCH. The MP2/6-311++G** H-bond lengths are
in very good agreement with the corresponding experimental values.
The H-X stretching frequency is shifted downward upon H-bond formation.
Its displacement shows an excellent linear correlation with the
intermolecular charge transfer, in agreement with the experimental
behaviour previously observed in such complexes. As expected, the more
pronounced effect on the IR intensities occurs with the H-X stretching
intensity, and it is much enhanced after complexation owing to the
charge-flux term.
The new low-frequency vibrational modes arising from complexation show
several interesting features and their normal modes are schematically
described herein.
C1 UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50739901 RECIFE,PE,BRAZIL.
RP Araujo, RCMU, UNIV FED PARAIBA,DEPT QUIM,BR-58036300 JOAO
PESSOA,PARAIBA,BRAZIL.
CR ALDRICH PD, 1983, J CHEM PHYS, V78, P3521
ARAUJO RCMU, 1995, SPECTROCHIM ACTA A, V51, P821
BOYS SF, 1970, MOL PHYS, V19, P553
BUCKINGHAM AD, 1986, INT REV PHYS CHEM, V5, P107
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
CRAW JS, 1991, SPECTROCHIM ACTA A, V47, P69
DELBENE JE, 1992, INT J QUANTUM CHEM Q, V26, P527
FRASER GT, 1988, J CHEM PHYS, V89, P6028
FRISCH MJ, 1992, GAUSSIAN 92 GAUSS IN
GUSSONI M, 1984, J MOL STRUCT, V113, P323
KESTNER NR, 1968, J CHEM PHYS, V48, P252
KING WT, 1976, J PHYS CHEM-US, V80, P2521
LEGON AC, 1980, P ROY SOC LOND A MAT, V370, P213
LEGON AC, 1981, J CHEM PHYS, V75, P625
LEGON AC, 1986, CHEM REV, V86, P635
MCDONALD SA, 1980, J AM CHEM SOC, V102, P2892
POPLE JA, 1982, CHEM PHYS LETT, V91, P185
POPLE JA, 1983, J CHEM PHYS, V78, P4063
RAMOS MN, 1988, CHEM PHYS LETT, V151, P397
RAMOS MN, 1991, J MOL STRUCT, V248, P281
READ WG, 1982, J CHEM PHYS, V76, P2238
SVEIN S, 1993, J CHEM PHYS, V98, P2170
TANG TH, 1990, J MOL STRUCT THEOCHE, V207, P319
TOSTES JGR, 1987, J PHYS CHEM-US, V91, P3157
NR 24
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD AUG 26
PY 1996
VL 366
IS 3
BP 233
EP 240
PG 8
SC Chemistry, Physical
GA VP836
UT ISI:A1996VP83600009
ER
PT J
AU Sorrilha, AEPM
Gozzo, FC
Pimpim, RS
Eberlin, MN
TI Multiple stage pentaquadrupole mass spectrometry for generation and
characterization of gas-phase ionic species. The case of the
PyC(2)H(5)(+center dot) isomers
SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
LA English
DT Article
ID DISTONIC RADICAL CATIONS; MOLECULAR-ORBITAL METHODS; REACTIVE
COLLISIONS; BASIS SETS; CHEMISTRY; IDENTIFICATION; AMMONIA; OXIDE;
DERIVATIVES; INSTRUMENT
AB Eleven isomers with the PyC(2)H(5)(+.) composition, which include three
conventional (1-3) and eight distonic radical cations (4-11), have been
generated and in most cases successfully characterized in the gas phase
via tandem-in-space multiple-stage pentaquadrupole MS(2) and MS(3)
experiments, The three conventional radical cations,that is, the
ionized ethylpyridines C2H5-C5H4N+.(1-3), were generated via direct
70-eV electron ionization of the neutrals, whereas sequences of
chemical ionization and collision-induced dissociation (CID) or
mass-selected ion-molecule reactions were used to generate the distonic
ions H2C.-C5H4N+-CH3 (4-6), CH3-C5H4N+-CH2. (7-9), C5H5N+-CH2CH2. (10),
and C5H5N+-CH.-CH3 (11). Unique features of the low-energy (15-eV) CID
an ion-molecule reaction chemistry with the diradical oxygen molecule
of the isomers were used for their structural characterization. All the
ion-molecule reaction products of a mass-selected ion, each associated
with its corresponding CID fragments, were collected in a single
three-dimensional mass spectrum. Ab initio calculations at the
ROMP2/6-31G(d, p)//6-31G(d, p) + ZPE level of theory were performed to
estimate the energetics involved in interconversions within the
PyC(2)H(5)(+.) system, which provided theoretical support for facile 4
reversible arrow 7 interconversion evidenced in both CID and
ion-molecule reaction experiments. The ab initio spin densities for the
alpha-distonic ions 4-9 and 11 were found to be largely on the
methylene or methyne formal radical sites, which thus ruled out
substantial odd-spin delocalization throughout the neighboring pyridine
ring. However, only 8 and 9 (and 10) react extensively with oxygen by
radical coupling, hence high spin densities on the radical site of the
distonic ions do not necessarily lead to radical coupling reaction with
oxygen. The very typical ''spatially separated'' ab initio charge and
spin densities of 4-11 were used to classify them as distonic ions,
whereas 1-3 show, as expected, ''localized'' electronic structures
characteristic of conventional radical ions. (C) 1996 American Society
for Mass Spectrometry
C1 STATE UNIV CAMPINAS,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR *MINN SUP CTR INC, 1993, XMOL VERS 1 3 1
BATEMAN RH, 1992, INT J MASS SPECTROM, V115, P205
BEASLEY BJ, 1995, J MASS SPECTROM, V30, P384
BJORNHOLM T, 1988, J AM CHEM SOC, V110, P3862
BORTOLINI O, 1993, ORG MASS SPECTROM, V28, P1313
BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P203
BOUMA WJ, 1980, ADV MASS SPECTROM A, V8, P178
BOWERS MT, 1979, GAS PHASE ION CHEM
BUSH KL, 1989, MASS SPECTROMETRY MA
CAREY FA, 1984, ADV ORGANIC CHEM
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
COOKS RG, 1979, COLLISION SPECTROSCO
DEKOSTER CG, 1990, INT J MASS SPECTROM, V98, P178
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P69
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
FETTEROLF DD, 1984, ORG MASS SPECTROM, V19, P104
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN94
GLENDENING ED, NBO VERSION 3 1
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GOZZO FC, 1993, P 41 ASMS C MASS SPE, A974
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
GOZZO FC, 1996, J CHEM SOC PERK APR, P587
GROSS ML, 1972, ANAL CHEM, V44, P974
GROSS ML, 1973, J AM CHEM SOC, V93, P1267
HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
HEATH TG, 1991, J AM SOC MASS SPECTR, V2, P270
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KASCHERES C, 1988, ANAL CHIM ACTA, P223
KAUFFMANN T, 1962, CHEM BER, V95, P949
KENTTAMAA HI, 1989, J AM CHEM SOC, V111, P4122
KENTTAMAA HI, 1994, ORG MASS SPECTROM, V29, P1
KINTER MT, 1986, J AM CHEM SOC, V108, P1797
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
LARSEN E, 1978, ORG MASS SPECTROM, V13, P417
LAY JO, 1983, J AM CHEM SOC, V105, P3445
LEVSEN K, 1983, MASS SPECTROM REV, V2, P77
LEWIS ES, 1992, J AM CHEM SOC, V84, P3847
LEWIS GN, 1916, J AM CHEM SOC, V38, P762
MABUD MA, 1987, J AM CHEM SOC, V109, P7597
MALEKNIA S, 1991, J AM SOC MASS SPECTR, V2, P212
MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
MCLAFFERTY FW, 1993, INTERPRETATION MASS
MOLLER C, 1934, PHYS REV, V46, P618
PORTER QN, 1985, MASS SPECTROMETRY HE, P633
RADOM L, 1984, PURE APPL CHEM, V56, P1831
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
SIMONETTA M, 1968, STRUCTURAL CHEM MOL, P769
STALEY RH, 1974, J AM CHEM SOC, V96, P1260
STIRK KM, 1992, CHEM REV, P92
VAIRAMANI M, 1990, MASS SPECTROM REV, V9, P235
VANDEGUCHTE WJ, 1990, ORG MASS SPECTROM, V25, P309
VANDESANDE CC, 1975, J AM CHEM SOC, V97, P4613
WESDEMIOTIS C, 1991, ORG MASS SPECTROM, V26, P671
WESTMORE JB, 1986, MASS SPECTROM REV, V5, P381
WITTNEBEN D, 1990, INT J MASS SPECTROM, V100, P545
WRONKA J, 1984, J AM CHEM SOC, V106, P67
WYSOCKI VH, 1990, J AM CHEM SOC, V112, P5110
YATES BF, 1984, J AM CHEM SOC, V106, P5805
YATES BF, 1986, TETRAHEDRON, V42, P6225
YU SJ, 1993, J AM CHEM SOC, V115, P9676
YU SJ, 1993, J AM SOC MASS SPECTR, V4, P117
NR 71
TC 15
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010
SN 1044-0305
J9 J AMER SOC MASS SPECTROM
JI J. Am. Soc. Mass Spectrom.
PD NOV
PY 1996
VL 7
IS 11
BP 1126
EP 1137
PG 12
SC Chemistry, Analytical; Chemistry, Physical; Spectroscopy
GA VP553
UT ISI:A1996VP55300006
ER
PT J
AU Silva, CR
Reilly, JP
TI Theoretical calculations on excited electronic states of benzaldehyde
and observation of the S-2<-S-0 jet-cooled spectrum
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID PLANE VIBRATIONAL MODES; BAND SYSTEM; ABSORPTION-SPECTRA;
CARBONYL-COMPOUNDS; MASS-SPECTROMETRY; SUPERSONIC JETS; TRIPLET-STATES;
GAS-PHASE; IONIZATION; PHOSPHORESCENCE
AB The S-2(pi pi*)<--S-0 spectrum of jet-cooled benzaldehyde has been
recorded by laser ionization. The O-0(0) band has been located at 35
191 cm(-1). Ten fundamental vibrations have been assigned following a
vibrational analysis assisted by theoretical calculations. Ab initio
molecular orbital methods have been used to examine the electronically
excited states of benzaldehyde. On pi*<--pi excitation the primary
geometric distortions are in the formyl group, while on pi*<--pi
excitation these are mainly in the aromatic ring. Vibrational
frequencies were found to be in reasonable agreement with the
experimental data for the states studied (S-0, S-1(n pi*), S-2(pi pi*),
and T(n pi*)), and the calculations provided a useful guide in
assigning the observed excited state fundamentals.
C1 INDIANA UNIV,DEPT CHEM,BLOOMINGTON,IN 47405.
UNIV FED RIO DE JANEIRO,DEPT FISICOQUIM,INST QUIM,BR-21949900 RIO JANEIRO,BRAZIL.
CR ABE H, 1984, CHEM PHYS LETT, V109, P217
ALMASY F, 1933, J CHIM PHYS PCB, V30, P528
ALMASY F, 1933, J CHIM PHYS PCB, V30, P634
ANTONOV VS, 1981, APPL PHYS, V24, P89
BERGER M, 1973, J AM CHEM SOC, V95, P1717
BIRON M, 1985, CHEM PHYS LETT, V116, P250
BIST HD, 1966, J MOL SPECTROSC, V21, P76
BIST HD, 1967, J MOL SPECTROSC, V24, P413
BIST HD, 1970, APPL SPECTROSC, V24, P292
BOCK CW, 1985, J MOL STRUCT THEOCHE, V122, P155
BOCK CW, 1987, J PHYS CHEM-US, V91, P6120
BRAND JCD, 1966, J MOL SPECTROSC, V20, P359
BRUHLMANN U, 1983, CHEM PHYS, V81, P439
COLBY SM, 1994, INT J MASS SPECTROM, V131, P125
COUSSENS B, 1992, J MOL STRUCT THEOCHE, V259, P331
DAVIDSON ER, 1992, CHEM PHYS LETT, V197, P123
ELSTON HJ, 1993, J PHYS CHEM-US, V97, P5506
FORESMAN JB, 1992, J PHYS CHEM-US, V96, P135
FORESMAN JB, 1993, EXPLORING CHEM ELECT
FRISCH MJ, 1992, GAUSSIAN 92
GARG SN, 1951, J SCI RES BANARAS, V2, P153
GARRIGOULAGRANG.C, 1961, J CHIM PHYS PCB, V58, P559
GILBERT A, 1991, ESSENTIALS MOL PHOTO
GOODMAN L, 1972, MOL PHOTOCHEM, V4, P369
GREEN JHS, 1976, SPECTROCHIM ACTA PT, V32, P1265
HADAD CM, 1993, J PHYS CHEM-US, V97, P4293
HARMONY MD, 1979, J PHYS CHEM REF DATA, V8, P619
HAYASHI H, 1974, MOL PHYS, V27, P969
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HIRATA Y, 1980, J CHEM PHYS, V72, P5505
HOLLAS JM, 1963, SPECTROCHIM ACTA, V19, P1425
HOLLAS JM, 1968, J CHEM PHYS, V49, P1745
HOLLAS JM, 1973, CHEM PHYS, V1, P385
HOLLAS JM, 1973, J MOL SPECTROSC CHEM, V1, P62
HOLLAS JM, 1978, J MOL SPECTROSC, V73, P240
HOPKINS JB, 1980, J CHEM PHYS, V72, P5039
HUBBARD LM, 1981, J AM CHEM SOC, V103, P3313
IIJIMA T, 1969, B CHEM SOC JPN, V42, P2159
IMANISHI S, 1951, J CHEM PHYS, V19, P389
IMANISHI S, 1952, B CHEM SOC JPN, V25, P150
INUZUKA K, 1965, B CHEM SOC JPN, V38, P1055
ITO M, 1994, DYNAMICS EXCITED MOL, CH4
ITOH T, 1988, CHEM PHYS LETT, V151, P166
JAIN YS, 1973, J MOL SPECTROSC, V47, P126
KAKAR RK, 1970, J CHEM PHYS, V52, P3803
KIMURA K, 1965, THEOR CHIM ACTA, V3, P164
KING GW, 1971, J MOL SPECTROSC, V37, P543
KOYANAGI M, 1973, CHEM P LETT, V21, P1
KOYANAGI M, 1979, CHEM PHYS, V39, P237
LEOPOLD DG, 1981, J CHEM PHYS, V75, P4758
LIN CT, 1971, J MOL SPECTROM, V37, P280
LIPP ED, 1981, J MOL SPECTROSC, V87, P242
LOMBARDI JR, 1976, J CHEM PHYS, V65, P2357
LONG SR, 1983, J CHEM PHYS, V78, P3341
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1997
OHMORI N, 1988, J PHYS CHEM-US, V92, P1086
OLMSTED J, 1971, J MOL SPECTROSC, V40, P71
OPSAL RB, 1985, ANAL CHEM, V57, P1884
OTIS CE, 1980, REV SCI INSTRUM, V51, P1128
PEDLEY JB, 1986, THERMOCHEMICAL DATA
PENNER GH, 1987, J MOL STRUCT THEOCHE, V152, P201
POLEVOY AV, 1984, KHIM VYS ENERG, V18, P195
POLEVOY AV, 1987, KHIM FIZ, V6, P620
POLEVOY AV, 1990, SOV J CHEM PHYS, V6, P1157
POPLE JA, 1981, INT J QUANTUM CHEM S, V15, P269
PRILESHAJEWA N, 1935, ACTA PHYSICOCHIM URS, V3, P195
REINSCH M, 1990, J PHYS ORG CHEM, V3, P81
RIDLEY JE, 1979, J MOL SPECTROSC, V76, P71
ROBINSON GW, 1954, J CHEM PHYS, V22, P1384
ROSENSTOCK HM, 1977, J PHYS CHEM REF D S1, V6
SCHAEFER T, 1982, J MOL STRUCT THEOCHE, V89, P93
SCHERER JR, 1963, SPECTROCHIM ACTA, V19, P601
SCHERER JR, 1965, SPECTROCHIM ACTA, V21, P321
SCHULER H, 1950, Z NATURFORSCH, V5, P448
SELISKAR CJ, 1978, CHEM PHYS LETT, V59, P47
SHAH AK, 1978, SPECTROCHIM ACTA A, V34, P749
SILVA CR, IN PRESS
SILVA CR, 1996, THESIS INDIANA U
SMOLAREK J, 1972, J MOL SPECTROSC, V43, P416
SNEH O, 1991, J PHYS CHEM-US, V95, P7154
STOCKBURGER M, 1962, Z PHYS CHEM FRANKFUR, V31, P350
STOICHEFF BP, 1954, CAN J PHYS, V32, P339
TAKAGI K, 1963, J PHYS SOC JPN, V18, P1174
THAKUR SN, 1977, INDIAN J PHYS, V51, P184
VARSANYI G, 1969, VIBRATIONAL SPECTRA
VILLA E, 1988, CHEM PHYS LETT, V147, P43
WALSH AD, 1946, T FARADAY SOC, V42, P62
WALSH AD, 1953, J CHEM SOC, P2306
WHIFFEN DH, 1956, J CHEM SOC, P1350
WIBERG KB, 1984, J PHYS CHEM-US, V88, P4723
WILSON EB, 1934, PHYS REV, V45, P706
YANG JJ, 1983, J PHYS CHEM-US, V87, P2255
YANG JJ, 1985, J PHYS CHEM-US, V89, P3426
ZWARICH R, 1971, J MOL SPECTROSC, V38, P336
NR 94
TC 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD OCT 24
PY 1996
VL 100
IS 43
BP 17111
EP 17123
PG 13
SC Chemistry, Physical
GA VP261
UT ISI:A1996VP26100006
ER
PT J
AU deMelo, CP
Fonseca, TL
TI Ab initio polarizabilities of polyenic chains with conformational
defects
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID VARIATIONAL PERTURBATIONAL TREATMENT; NONLINEAR-OPTICAL PROPERTIES;
CONJUGATED CHAINS; LINEAR-POLARIZABILITIES; POLYACETYLENE; ABINITIO;
POLYMERS; HYPERPOLARIZABILITY; SOLITONS; POLYPYRROLE
AB We present an ab initio Hartree-Fock study of the electronic
polarizabilities of the C2n+1H2n+3+ (2 < n < 11) and C2nH2n+2++ (2 < n
< 15) oligomers of polyacetylene. After a complete geometry
optimization implemented through the GAUSSIAN 92 program, the
longitudinal components of the linear polarizabilities were
analytically determined and the second hyperpolarizabilities calculated
through a finite field procedure. While the first hyperpolarizabilities
of the bipolaron-like structures vanish (since inversion symmetry is
preserved), the dominant component beta(xxy) of the soliton chains was
obtained analytically. We confirm that the polarizabilities of these
polyenic oligomers are quite sensitive to the nature of the
conformational defect present.
RP deMelo, CP, UNIV FED PERNAMBUCO,DEPT FIS,BR-50670901 RECIFE,PE,BRAZIL.
CR ANDERSON T, 1994, BRAZ J PHYS, V24, P756
CHAMPAGNE B, COMMUNICATION
CHAMPAGNE B, 1992, INT J QUANTUM CHEM, V42, P1009
CRAIG GSW, 1993, J AM CHEM SOC, V115, P860
DEMELO CP, 1987, CHEM PHYS LETT, V140, P537
DEMELO CP, 1988, J CHEM PHYS, V88, P2558
DEMELO CP, 1988, J CHEM PHYS, V88, P2567
DUCASSE L, 1992, J CHEM PHYS, V97, P9389
DUCASSE L, 1993, SYNTHETIC MET, V55, P4536
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
HURST GJB, 1988, J CHEM PHYS, V89, P385
KIRTMAN B, 1995, J CHEM PHYS, V102, P5350
PRASAD PN, 1988, NONLINEAR OPTICAL EL
PRASAD PN, 1991, INTRO NONLINEAR OPTI
ROBINS KA, 1995, SYNTHETIC MET, V71, P1671
ROTH S, 1987, ADV PHYS, V36, P385
SALEM L, 1966, MOL ORBITAL THEORY C
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SKOTHEIM TA, 1986, HDB CONDUCTING POLYM, V1
TOTO JL, 1994, J CHEM PHYS, V101, P3945
TOTO JL, 1995, CHEM PHYS LETT, V245, P660
TOTO JL, 1995, J CHEM PHYS, V102, P8048
TOTO JL, 1996, J CHEM PHYS, V104, P8586
TOTO TT, 1995, CHEM PHYS LETT, V244, P59
VILLAR HO, 1988, J CHEM PHYS, V88, P1003
VILLAR HO, 1988, J CHEM PHYS, V88, P2859
VILLAR HO, 1988, PHYS REV B, V37, P2520
VILLESUZANNE A, 1992, J CHEM PHYS, V96, P495
WILLIAMS DJ, 1983, NONLINEAR OPTICAL PR
NR 29
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD OCT 11
PY 1996
VL 261
IS 1-2
BP 28
EP 34
PG 7
SC Physics, Atomic, Molecular & Chemical
GA VL879
UT ISI:A1996VL87900006
ER
PT J
AU Ornellas, FR
Iwata, S
TI Structures and energetics of new nitrogen and silicon molecules: An ab
initio study of Si2N2
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID DENSITY-FUNCTIONAL METHODS; SPECTROSCOPIC PROPERTIES; VIBRATIONAL
FREQUENCIES; INTERSTELLAR CLOUDS; DIAZASILENE SINN; HARTREE-FOCK; BOND;
CHEMISTRY; SI2H2; ENERGIES
AB New species with molecular formula Si2N2, not yet observed
experimentally, are described theoretically for the first time. Nine
different stationary points have been examined and the effects of
electronic correlation on the structural parameters, harmonic
frequencies, and relative energies are described at increasingly higher
levels of correlation treatment (MP2, MP4, CCSD(T)). The global minimum
corresponds to a linear singlet state ((1) Sigma(g)(+)) SiNNSi. At the
CCSD(T) level, the next most stable species (at 15.08 kcal/mol) has a
nonclassical tetrahedral-like structure similar to the global minimum
of Si2H2. This is followed by another local minimum with a linear
structure SiNSiN (at 20.25 kcal/mol) and by a rhomboidal-type structure
(at 21.33 kcal/mol), which is in fact a transition state connecting two
equivalent tetrahedral-like structures. Another nonclassical structure
similar to the monobridged one in the case of Si2H2 was also found to
be a local minimum (at 28.18 kcal/mol). An interconversion path from
this latter structure to the linear SiNNSi one is likely to occur via
another transition state located at about 38 kcal/mol. With the
exception of the linear isomer SiNNSi, the triplet states were found to
lie very high energetically and to correspond to unstable structures.
None of these species exhibits any appreciable amount of
silicon-silicon bonding, and the analogue of cyanogen (NCCN) NSiSiN is
unstable. The nature of the bonding in the most relevant species is
also discussed, as well the energetics of dissociation. An analysis of
the energetics and structural similarities and differences between
Si2N2, C2N2, Si2H2, and Si2C2 is also carried out. Caution must be
exercized in generalizing results at a low level of theory since they
have not been confirmed by the CCSD(T) calculations.
C1 INST MOL SCI,OKAZAKI,AICHI 444,JAPAN.
RP Ornellas, FR, UNIV SAO PAULO,DEPT QUIM FUNDAMENTAL,INST QUIM,CP
26077,BR-05599970 SAO PAULO,BRAZIL.
CR BALDRIDGE KK, 1987, ANNU REV PHYS CHEM, V38, P211
BILLY M, 1969, CR ACAD SCI C CHIM, V269, P919
BOGEY M, 1991, PHYS REV LETT, V66, P413
BOLDYREV AI, 1993, J PHYS CHEM-US, V97, P5875
BOLDYREV AI, 1994, J PHYS CHEM-US, V98, P1427
BOLTON EE, 1992, J CHEM PHYS, V97, P5586
BOTSCHWINA P, 1990, CHEM PHYS, V141, P311
BOTSCHWINA P, 1994, CHEM PHYS LETT, V225, P480
BRUNA PJ, 1984, CAN J PHYS, V62, P1508
CAI ZL, 1992, J CHEM SOC FARADAY T, V88, P1611
CARLOTTI M, 1974, CAN J PHYS, V52, P340
COLEGROVE BT, 1990, J PHYS CHEM-US, V94, P5593
CORDONNIER M, 1992, J CHEM PHYS, V97, P7984
DEKOCK RL, 1988, J CHEM PHYS, V89, P3016
DEKOCK RL, 1989, INORG CHEM, V28, P1680
DURIG JR, 1972, J CHEM PHYS, V56, P5652
ELHANINE M, 1992, J PHYS II, V2, P931
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
FROUDAKIS G, 1994, J CHEM PHYS, V101, P6790
GOLDBERG N, 1993, CHEM BER, V126, P2753
GOLDBERG N, 1994, J CHEM PHYS, V101, P2871
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GORDON MS, 1986, CHEM PHYS LETT, V126, P451
GORDON MS, 1986, MOL STRUCTURES ENERG, V1, P101
GREV RS, 1992, J CHEM PHYS, V97, P7990
HAGEN K, 1977, J AM CHEM SOC, V99, P1365
HERBST E, 1989, ASTRON ASTROPHYS, V222, P205
HUBER KP, 1979, MOL SPECTRA MOL STRU, V4
IGNATYEV IS, 1992, J PHYS CHEM-US, V96, P7632
IRAQI M, 1993, J PHYS CHEM-US, V97, P11371
ITO H, 1993, CHEM PHYS LETT, V208, P328
KAWAMATA H, IN PRESS J CHEM PHYS
KISHI R, 1994, CHEM PHYS LETT, V224, P200
KISHI R, 1996, J CHEM PHYS, V104, P8593
KRISHNAN R, 1980, J CHEM PHYS, P560
KUTZELNIGG W, 1984, ANGEW CHEM INT EDIT, V23, P272
LAMMERTSMA K, 1988, J AM CHEM SOC, V110, P5239
LANGER WD, 1990, ASTROPHYS J, V352, P123
LEMBKE RR, 1977, J AM CHEM SOC, V99, P416
LUKE BT, 1986, J AM CHEM SOC, V108, P260
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
MOLLER C, 1934, PHYS REV, V46, P618
MURRAY CW, 1993, J PHYS CHEM-US, V97, P1868
NAULIN C, 1993, CHEM PHYS LETT, V202, P452
NGUYEN MT, 1989, CHEM PHYS LETT, V157, P430
ORNELLAS FR, 1996, J PHYS CHEM-US, V100, P10919
PARISEL O, 1996, J CHEM PHYS, V104, P1979
POPLE JA, 1954, J CHEM PHYS, V22, P541
POPLE JA, 1991, J CHEM PHYS, V95, P4385
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479
RANKIN DW, 1990, J CHEM SOC, A1224
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SCHAEFER HF, 1982, ACCOUNTS CHEM RES, V15, P283
SCHNICK W, 1993, ANGEW CHEM INT EDIT, V32, P806
SCUSERIA GE, 1991, CHEM PHYS LETT, V176, P27
SEFYANI F, 1994, ASTROPHYS J, V434, P816
SHIMANOUCHI T, 1977, J PHYS CHEM REF DATA, V6, P993
SOMMERFELD T, 1995, J CHEM PHYS, V103, P1057
SOMMERFELD T, 1996, J CHEM PHYS, V104, P1464
SUDHAKAR PV, 1989, J PHYS CHEM-US, V93, P7289
SUNIL KK, 1990, CHEM PHYS LETT, V171, P185
TRUONG TN, 1986, J AM CHEM SOC, V108, P1775
WALTENBURG HN, 1995, CHEM REV, V95, P1589
WANG J, 1994, J PHYS CHEM-US, V98, P1844
WIBERG N, 1986, ANGEW CHEM INT EDIT, V25, P79
ZHENG C, 1986, J AM CHEM SOC, V108, P1876
NR 66
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD OCT 3
PY 1996
VL 100
IS 40
BP 16155
EP 16161
PG 7
SC Chemistry, Physical
GA VK731
UT ISI:A1996VK73100019
ER
PT J
AU Distefano, G
DalColle, M
dePalo, M
Jones, D
Bombieri, G
DelPra, A
Olivato, PR
Mondino, MG
TI Experimental and theoretical study of the intramolecular interactions
determining the conformation of beta-carbonyl sulfoxides
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID ULTRAVIOLET PHOTOELECTRON-SPECTROSCOPY; ELECTRON TRANSMISSION
SPECTROSCOPY; MOLECULAR-PROPERTIES; IR SPECTROSCOPY; SPECTRA;
ACETOPHENONES; DERIVATIVES; ACETONES
AB Information on the geometrical and electronic structures of
alpha-methylsulfinylacetophenone, C6H5C(O)CH2S(O)CH3 2, have been
obtained from X-ray diffraction analysis, UV photoelectron spectroscopy
and ab initio 6-31G**calculations. A comparison of the results with
those obtained from the spectra and the computations on
alpha-methylthioacetophenone, C6H5C(O)CH2SCH3 1 and
alpha-methylsulfonylacetophenone, C6H5C(O)CH2SO2CH3 3, together with
previous results on; beta-keto sulfides and beta-keto sulfones
indicates that the CH2-S(O) bond in is quasi-cis to the carbonyl group
in the gas and solid phase, at variance with the other beta-carbonyl
thioderivatives which adopt a gauche conformation. Eigenvector
analysis, electron charge distribution at various atoms and/or groups
and geometric parameters indicate that the cis conformation of 2 is
stabilized by a strong non-bonded interaction between the negatively
charged carbonyl oxygen and the positively charged sulfur atom from
which it is separated by a distance (2.8-2.9 Angstrom much shorter than
the sum of the the van der Waals radii. The predominant charge transfer
interaction in 3 and related sulfones occurs in the opposite direction
(O-SO2-->C-CO). The inversion of We direction of the charge transfer
(and the change of the cis/gauche orientation of the thio group) from
sulfone to sulfoxide is associated with an increase of electron
affinity of the thio group in the latter, and could explain its smaller
thermal stability.
Ab initio 3-21G* calculations on several conformations of the
bis-thioderivatives C6H5C(O)CH(SCH3)S(O)CH3 4, C6H5C(O)CH(SR)SO(2)R (R
= Me 5 and Ph 6) and C6H5C(O)CH(SOCH3)SO2CH3 7, together with X-ray
diffraction (4, 6 and 7) and photoelectron spectroscopy (4) analyses
confirmed the cis (SOR) and gauche (SR and SO(2)R) preferred
orientation of the thio groups with respect to the carbonyl group as
observed in the monosubstituted derivatives. In 4 and 7 the S-SO atom
is about 30 degrees out of the cis plane [O(1)-C(2)C(3)].
C1 CNR,AREA RIC,ICOCEA,I-40129 BOLOGNA,ITALY.
UNIV MILAN,IST CHIM FARMACEUT,I-2013 MILAN,ITALY.
UNIV SAO PAULO,INST QUIM,BR-05508 SAO PAULO,BRAZIL.
RP Distefano, G, UNIV FERRARA,DIPARTMENTO CHIM,VIA BORSARI 46,I-44100
FERRARA,ITALY.
CR 1974, INT TABLES XRAY CRYS, V4, P101
1981, CALCULATES ANTOMIQUE
BERTHELAT JC, 1977, MOL PHYS, V33, P159
BERTHELAT JC, 1978, PSATOM MANUAL
BERTONCELLO R, 1989, J CHEM SOC P2
BOCK H, 1974, CHEM BER, V107, P2299
BONDI A, 1964, J PHYS CHEM-US, V68, P441
DALCOLLE M, 1995, J PHYS CHEM-US, V99, P15011
DISTEFANO G, 1987, J CHEM SOC P2, P1459
DISTEFANO G, 1989, J ELECTRON SPECTROSC, V49, P281
DISTEFANO G, 1991, J CHEM SOC P2, P1195
DUPUIS M, PHSONDO MODIFIED VER
FRISCH BMJ, 1992, GAUSSIAN 92
GAL JF, 1985, J CHEM SOC P2, P103
GROSSERT JS, 1984, CAN J CHEM, V62, P798
GUERRERO SA, 1983, J CHEM SOC PERK T 2, P1053
HOFFMANN R, 1971, ACCOUNTS CHEM RES, V4, P1
JOHNSON CK, 1976, 5138 ORNL
JONES D, 1994, J CHEM SOC P2, P1661
LUMBROSO H, 1989, J MOL STRUCT, V212, P113
MARTIN HD, 1986, J ELECTRON SPECTROSC, V41, P385
MODELLI A, UNPUB
MODELLI A, 1991, CHEM PHYS LETT, V181, P361
NARDELLI M, 1983, COMPUT CHEM, V7, P95
OLIVATO PR, UNPUB
OLIVATO PR, 1976, CAN J CHEM, V54, P3026
OLIVATO PR, 1984, J CHEM SOC P2, P1505
OLIVATO PR, 1985, PHOSPHORUS SULFUR, V24, P225
OLIVATO PR, 1987, PHOSPHORUS SULFUR, V33, P135
OLIVATO PR, 1990, PHOSPHORUS SULFUR, V47, P391
OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
OLIVATO PR, 1992, MAGN RESON CHEM, V30, P81
OLIVATO PR, 1992, PHOSPHORUS SULFUR, V71, P107
ROSS B, 1968, RJ518 IBM RES
SHELDRICK EM, 1985, SHELX 86 CRYSTALLOGR
SHELDRICK GM, 1976, SHELX PROGRAM CRYSTA
WAGNER G, 1974, CHEM BER, V107, P68
WLADISLAW B, 1980, J CHEM SOC P2, P453
NR 38
TC 21
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD AUG
PY 1996
IS 8
BP 1661
EP 1669
PG 9
SC Chemistry, Organic; Chemistry, Physical
GA VC214
UT ISI:A1996VC21400019
ER
PT J
AU Alejandre, J
LozadaCassou, M
Degreve, L
TI Effect of pore geometry on a confined hard sphere fluid
SO MOLECULAR PHYSICS
LA English
DT Article
ID ELECTRICAL DOUBLE-LAYER; EXTENSION HYPERNETTED-CHAIN; INTEGRAL-EQUATION
APPROACH; ORNSTEIN-ZERNIKE EQUATION; DENSITY FUNCTIONAL THEORY; 3 POINT
EXTENSION; MONTE-CARLO; PAIR CORRELATION; CHARGED WALL;
STATISTICAL-MECHANICS
AB The structure of a hard sphere fluid confined by model slit and
cylindrical pores is investigated. Results from grand canonical Monte
Carlo (GCMC) simulations and from the hypernetted chain/mean spherical
approximation (HNC/MSA) equation are reported. GCMC results are
compared with those from the HNC/MSA equation, and agreement is good.
The effect of confinement on liquids at the same chemical potentials is
that the absorption of the hard sphere fluid into the pores decreases
with increasing confinement, i.e., when going from planar to
cylindrical geometry or by narrowing the pores. The adsorption on the
pore walls has, in general, the opposite behaviour. For high bulk
concentrations and certain values of cylindrical pore diameter the
concentration profile is higher at the centre of the pore than next to
the pore wall. A very strong, but continuous, transition occurs in the
concentration profile, as a function of the cylinder's diameter. These
results could be of some interest in catalysis studies.
C1 UNIV AUTONOMA METROPOLITANA IZTAPALAPA,DEPT FIS,MEXICO CITY 09340,DF,MEXICO.
UNIV SAO PAULO,DEPT QUIM,FAC FILOSOFIA CIENCIAS & LETRAS,BR-14040 SAO PAULO,BRAZIL.
RP Alejandre, J, UNIV AUTONOMA METROPOLITANA IZTAPALAPA,DEPT QUIM,APARTADO
POSTAL 55-534,MEXICO CITY 09340,DF,MEXICO.
CR ALEJANDRE J, 1990, CHEM PHYS LETT, V175, P111
ALLEN MP, 1987, COMPUTER SIMULATION
ATTARD P, 1989, J CHEM PHYS, V91, P3072
BACQUET R, 1984, J PHYS CHEM-US, V88, P2660
BALL PC, 1988, MOL PHYS, V63, P159
BLUM L, J CHEM PHYS, V75, P5974
BLUM L, 1981, J CHEM PHYS, V74, P1902
CARNAHAN NF, 1969, J CHEM PHYS, V51, P635
CARNIE SL, 1981, J CHEM PHYS, V74, P1293
CICCOTTI G, 1990, SIMULATION LIQUIDS S
DEGREVE L, 1993, J CHEM PHYS, V98, P8905
DEGREVE L, 1995, MOL PHYS, V86, P759
EVANS R, 1992, FUNDAMENTALS INHOMOG, CH3
FELLER SE, 1993, MOL PHYS, V80, P721
FELLER SE, 1994, J COLLOID INTERF SCI, V162, P208
GONZALEZTOVAR E, 1989, J PHYS CHEM-US, V93, P3761
GONZALEZTOVAR E, 1991, J CHEM PHYS, V95, P6784
HENDERSON D, P ROY SOC LOND A MAT, V410, P409
HENDERSON D, 1976, MOL PHYS, V31, P1291
HENDERSON D, 1978, J CHEM PHYS, V69, P5441
HENDERSON D, 1979, J ELECTROANAL CH INF, V102, P315
HENDERSON D, 1995, CHEM PHYS LETT, V234, P25
HENDERSON DJ, 1992, FUNDAMENTAL INHOMOGE
HENDERSON JR, 1992, FUNDAMENTALS INHOMOG, CH2
KJELLANDER R, 1984, CHEM PHYS LETT, V112, P49
KJELLANDER R, 1988, CHEM PHYS LETT, V149, P102
LOZADACASSOU M, 1981, CHEM PHYS LETT, V81, P472
LOZADACASSOU M, 1981, J CHEM PHYS, V75, P1412
LOZADACASSOU M, 1982, J CHEM PHYS, V77, P5150
LOZADACASSOU M, 1982, J CHEM PHYS, V77, P5258
LOZADACASSOU M, 1983, J PHYS CHEM-US, V87, P3279
LOZADACASSOU M, 1984, J CHEM PHYS, V80, P3344
LOZADACASSOU M, 1990, J CHEM PHYS, V92, P1194
LOZADACASSOU M, 1990, J CHEM PHYS, V93, P1386
LOZADACASSOU M, 1996, PHYS REV E A, V53, P522
MARTINA E, 1983, CHEM PHYS LETT, V94, P205
MCQUARRIE DA, 1976, STATISTICAL MECHANIC
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
NICHOLSON D, 1982, COMPUTER SIMULATION
NIELABA P, 1985, CHEM PHYS LETT, V117, P46
OLIVARES W, 1980, J PHYS CHEM-US, V84, P863
OUTHWAITE CW, 1991, ELECTROCHIM ACTA, V36, P1747
OUTHWAITE CW, 1991, MOL PHYS, V74, P367
PLISCHKE M, 1984, J PHYS CHEM-US, V88, P6544
PLISCHKE M, 1986, P ROY SOC LOND A MAT, V404, P323
PLISCHKE M, 1989, ELECTROCHIM ACTA, V34, P1863
RICKAYZEN G, 1985, MOL PHYS, V55, P161
ROSINBERG ML, 1984, J CHEM PHYS, V81, P3700
SANCHEZSANCHEZ JE, 1992, CHEM PHYS LETT, V190, P202
SLOTH P, 1990, J CHEM PHYS, V93, P1292
SNOOK IK, 1980, J CHEM PHYS, V72, P2907
TARAZONA P, 1987, MOL PHYS, V60, P573
VALLEAU JP, 1991, J CHEM PHYS, V95, P520
WIDOM B, 1963, J CHEM PHYS, V39, P2808
WOOD WW, 1968, PHYSICS SIMPLE LIQUI, P115
YEOMANS L, 1993, J CHEM PHYS, V98, P1436
YOSHIZAWA H, 1993, J PHYS CHEM-US, V97, P11300
ZHOU Y, 1989, MOL PHYS, V68, P1265
ZHOU YQ, 1989, MOL PHYS, V66, P767
ZHOU YQ, 1989, MOL PHYS, V66, P791
NR 60
TC 5
PU TAYLOR & FRANCIS LTD
PI LONDON
PA ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE
SN 0026-8976
J9 MOL PHYS
JI Mol. Phys.
PD AUG 10
PY 1996
VL 88
IS 5
BP 1317
EP 1336
PG 20
SC Physics, Atomic, Molecular & Chemical
GA VB761
UT ISI:A1996VB76100013
ER
PT J
AU Pliego, JR
DeAlmeida, WB
TI Reaction paths for aqueous decomposition of CCl2
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
AB The potential energy surface (PES) for the H2O + CCl2 reaction was
investigated at the ab initio SCF and MP2 levels of theory, employing
the DZP basis set, in order to determine the mechanism of basic aqueous
decomposition of CCl2. Several possible pathways were considered,
including reactions with other H2O molecules and OH-. We have found
that the first step corresponds to insertion of CCl2 into the O-H bond
of water, resulting in the CHCl2OH species. This molecule loses HCl in
one elimination reaction catalyzed by OH-, forming ClCHO. Again, OH-
catalyzes the elimination of other HCl, resulting in CO, the
decomposition product. The first step is the slow one, and we have used
transition-state theory to estimate the rate constant for the aqueous
decomposition of CCl2, The obtained rate constant was used for building
a general picture of CHCl3, decomposition in basic aqueous solution.
The results of the present study are in agreement with experimental
observations.
C1 UNIV FED MINAS GERAIS,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BETHELL D, 1973, ORGANIC REACTIVE INT
DUNNING TH, 1977, METHODS ELECTRONIC S
FRANCISCO JS, 1993, J AM CHEM SOC, V115, P3761
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
HINE J, 1950, J AM CHEM SOC, V72, P2438
HINE J, 1954, J AM CHEM SOC, V76, P2688
KIRMSE W, 1964, CARBENE CHEM
PILEGO JR, 1996, CHEM PHYS LETT, V249, P136
ROBINSON EA, 1961, J CHEM SOC, P1663
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
NR 10
TC 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD JUL 25
PY 1996
VL 100
IS 30
BP 12410
EP 12413
PG 4
SC Chemistry, Physical
GA UY938
UT ISI:A1996UY93800041
ER
PT J
AU Mota, CJA
Esteves, PM
deAmorim, MB
TI Theoretical studies of carbocations adsorbed over a large zeolite
cluster. Implications on hydride transfer reactions
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID SHAPE-SELECTIVE CATALYSIS; HIGH-SILICA ZEOLITES; HYDROGEN-TRANSFER;
HYDROXYL-GROUPS; CARBENIUM IONS; DEUTERIUM EXCHANGE; SN2-SN1 SPECTRUM;
MOLECULAR-MODELS; CARBONIUM-IONS; HY ZEOLITES
AB A semiempirical MNDO study of simple alkylcarbenium ions (Me, Et, i-Pr,
t-Bu) on a large and more realistic cluster, comprising a hexagonal
prism and a sodalite unit (3) and simulating different adsorption sites
on zeolite Y, was carried out. On going from H to bulky alkyl groups,
there is an increasing tendency to stretch the Al-O bond length and to
decrease the Si-O-Al bond angle. Nevertheless, the proton and the alkyl
groups are covalently bonded to the framework, as expressed by the high
bond orders, near unity. Adsorption on site O-4, located in the
sodalite, is energetically disfavored by 2-4 kcal/mol relative to
adsorption on site O-1, in the hexagonal prism. The MNDO calculations
on cluster 3 showed a reasonable agreement with ab initio calculations
of carbenium ions adsorbed on smaller clusters 1 and 2, except when
adsorption on O-4 is considered, indicating that steric strain, due to
the crystalline structure, plays an important role. Adsorption on
Si-O-Si sites is about 45 kcal/mol higher in energy than the
correspondent adsorption on Si-O-Al sites. This result may explain the
observed experimental dependence of hydride transfer reactions with the
structural Si/Al ratio, also suggesting the participation of the
zeolite structure in the transition state.
C1 UNIV FED RIO DE JANEIRO,INST QUIM,BR-21949900 RIO JANEIRO,BRAZIL.
UNIV FED RIO DE JANEIRO,NPPN,BR-21941540 RIO JANEIRO,BRAZIL.
RP Mota, CJA, PETROBRAS CENPES,ILHA FUNDAO Q 7,BR-21949900 RIO
JANEIRO,BRAZIL.
CR ABBOT J, 1988, J CATAL, V113, P353
ABBOT J, 1989, J CATAL, V115, P1
ARONSON MT, 1989, J AM CHEM SOC, V111, P840
BATES S, 1994, J MOL STRUCT THEOCHE, V306, P57
BENTLEY TW, 1976, J AM CHEM SOC, V98, P7658
BENTLEY TW, 1981, J AM CHEM SOC, V103, P5466
BHATIA S, 1989, CATAL REV, V31, P431
BIBBY DM, 1992, APPL CATAL A-GEN, V93, P1
BITTENCOURT R, IN PRESS
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
CATLOW CRA, 1992, MODELLING STRUCTURE
CHANG CD, 1983, HYDROCARBONS METHANO
CHEN NY, 1986, CATAL REV, V28, P185
CHENG WC, 1989, J CATAL, V119, P354
CORMA A, 1985, J CATAL, V93, P30
CORMA A, 1985, J CATAL, V94, P445
CORMA A, 1989, APPL CATAL, V47, P125
CORMA A, 1989, J CATAL, V115, P551
CORMA A, 1989, ZEOLITES FACTS FIGUR, P49
CORMA A, 1994, J CATAL, V145, P171
CSICSERY SM, 1984, ZEOLITES, V4, P202
CZJZEK M, 1992, J PHYS CHEM-US, V96, P1535
DAVIS ME, 1991, IND ENG CHEM RES, V30, P1675
DAVIS ME, 1993, ACCOUNTS CHEM RES, V26, P111
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DUBSKY J, 1979, J MOL CATAL, V6, P321
DWYER J, 1991, J CHEM SOC FARADAY T, V87, P783
EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
FORSTER H, 1987, ZEOLITES, V7, P508
GALE JD, 1991, J CHEM SOC CHEM COMM, P178
GORB LG, 1991, KINET KATAL, V32, P1114
HABIB ET, 1990, HYDROCARBON CHEM FCC, P1
HAW JF, 1989, J AM CHEM SOC, V111, P2052
HAW JF, 1994, J AM CHEM SOC, V116, P7308
HOSER H, 1987, APPL CATAL, V30, P11
JACQUINOT E, 1990, APPL CATAL, V60, P101
JIRAK Z, 1980, J PHYS CHEM SOLIDS, V41, P1089
KASSAB E, 1993, J PHYS CHEM-US, V97, P9034
KAZANSKY VB, 1989, J CATAL, V119, P108
KAZANSKY VB, 1991, ACCOUNTS CHEM RES, V24, P379
KAZANSKY VB, 1992, J MOL CATAL, V74, P257
KAZANSKY VB, 1994, CATAL LETT, V28, P211
KIRICSI I, 1988, J CHEM SOC F1, V82, P491
KRAMER GJ, 1991, J AM CHEM SOC, V113, P6435
KRAMER GJ, 1993, J AM CHEM SOC, V115, P2887
KRAMER GJ, 1993, NATURE, V363, P529
KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
KUSTOV LM, 1981, J CATAL, V72, P149
LECHER JA, 1994, CATAL LETT, V27, P91
LUKYANOV DB, 1994, J CATAL, V145, P54
LUKYANOV DB, 1994, J CATAL, V146, P87
MEIER WM, 1987, ATLAS ZEOLITE STRUCT
MORTIER WJ, 1968, J CATAL, V45, P367
MOTA CJA, IN PRESS
MOTA CJA, 1991, J CHEM SOC CHEM COMM, P171
MOTA CJA, 1992, J AM CHEM SOC, V114, P1121
MOTA CJA, 1993, NEW FRONTIERS CATALY, P463
MOTA CJA, 1994, J CHEM SOC FARADAY T, V90, P2297
MOTA CJA, 1995, IND ENG CHEM RES, V34, P4326
OLSON DH, 1969, J CATAL, V13, P221
OMALLEY PJ, 1988, J PHYS CHEM-US, V92, P3005
OZIN GA, 1990, J PHYS CHEM-US, V94, P8289
PINE LA, 1984, J CATAL, V85, P466
REDONDO A, 1993, J PHYS CHEM-US, V97, P11754
RICHARDSON BR, 1990, J AM CHEM SOC, V112, P2886
ROCHETTES BM, 1990, J APPL CATAL, V58, P35
SAUER J, 1989, CHEM REV, V89, P199
SAUER J, 1990, CHEM PHYS LETT, V173, P26
SCHERZER J, 1989, CATAL REV SCI ENG, V31, P215
SCHRODER KP, 1992, CHEM PHYS LETT, V188, P320
SENCHENYA IN, 1991, CATAL LETT, V8, P317
SENCHENYA IN, 1991, CATALYSIS ADSORPTION, P653
SHANNO DF, 1985, J OPTIMIZ THEORY APP, V46, P87
SHERTUKDE PV, 1992, J CATAL, V136, P446
SOMMER J, 1994, J AM CHEM SOC, V116, P5491
SOMMER J, 1995, J AM CHEM SOC, V117, P1135
STEPANOV AG, 1992, CATAL LETT, V13, P407
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
SZOSTAK R, 1991, STUD SURF SCI CATAL, V58, P153
TEUNISSEN EH, 1992, J PHYS CHEM-US, V96, P366
TEUNISSEN EH, 1993, J PHYS CHEM-US, V97, P203
VANSANTEN RA, 1994, ADV ZEOLITE SCI APPL, P273
VANSANTEN RA, 1995, CHEM REV, V95, P637
VAUGHAN DEW, 1988, CHEM ENG PROGR FEB, P25
VENUTO PB, 1979, FLUID CATALYTIC CRAC
VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13713
ZARDKOOHI M, 1987, J AM CHEM SOC, V109, P5278
ZHAO YX, 1993, J CATAL, V140, P243
NR 90
TC 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD JUL 25
PY 1996
VL 100
IS 30
BP 12418
EP 12423
PG 6
SC Chemistry, Physical
GA UY938
UT ISI:A1996UY93800043
ER
PT J
AU Venezuela, PPM
Fazzio, A
TI Ab initio study of N impurity in amorphous germanium
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; MOLECULAR-DYNAMICS; SILICON; NITROGEN; SYSTEMS;
PSEUDOPOTENTIALS; SEMICONDUCTORS; CARBON; STATE; MODEL
AB The electronic and structural properties of N-atom-doped amorphous
germanium are obtained by ab initio, total energy calculations. We find
that the 3-fold coordinated N impurity (N-3) and the 4-fold coordinated
N impurity (N-4) present negative effective Coulombic interactions.
Analysis of these results shows that the electrical effect of n-type
doping due to N atoms is not related only to chemical equilibrium
between N-3 and N-4.
RP Venezuela, PPM, UNIV SAO PAULO,INST FIS,CP 66318,BR-05389970 SAO
PAULO,SP,BRAZIL.
CR ANDERSON PW, 1975, PHYS REV LETT, V34, P953
BACHELET GB, 1982, PHYS REV B, V26, P4199
BARYAM Y, 1986, PHYS REV LETT, V56, P2203
BARYAM Y, 1986, PHYS REV LETT, V57, P467
BROWER KL, 1982, PHYS REV B, V26, P6040
BYER W, 1984, SEMICONDUCTORS SEM C, V21, CH8
CAR R, 1985, PHYS REV LETT, V55, P2471
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHAMBOULEYRON I, 1993, APPL PHYS LETT, V62, P58
CUNHA C, 1993, PHYS REV B, V48, P17806
ELLIOTT SR, 1993, P 15 INT C AM SEM, V164
ETHERINGTON G, 1982, J NONCRYST SOLIDS, V48, P265
HOHENBERG P, 1964, PHYS REV, V136, B864
KELIRES PC, 1993, PHYS REV B, V47, P1829
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
LEE CH, 1994, PHYS REV B, V49, P11448
PERDEW JP, 1981, PHYS REV B, V23, P5048
SCHULTZ PA, 1986, PHYS REV B, V34, P2532
SPEAR WE, 1975, SOLID STATE COMMUN, V17, P1193
STICH I, 1991, PHYS REV B, V44, P11092
STREET RA, 1982, PHYS REV LETT, V49, P1187
TAKANO Y, 1983, J NON-CRYST SOLIDS, V55, P325
TERSOFF J, 1989, PHYS REV B, V39, P5566
TERSOFF J, 1994, PHYS REV B, V49, P16349
ZANATTA AR, 1992, PHYS REV B, V46, P2119
ZHOU JH, 1993, J APPL PHYS, V74, P5086
NR 27
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUL 15
PY 1996
VL 77
IS 3
BP 546
EP 549
PG 4
SC Physics, Multidisciplinary
GA UW791
UT ISI:A1996UW79100034
ER
PT J
AU Ferraz, AC
daSilva, RC
TI Atomic and electronic structures of Te adsorbed on GaAs(100) and
InAs(100)
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; gallium arsenide; indium arsenide;
tellurium
ID SURFACES; GAAS; GROWTH
AB We report results of density functional theory total energy and force
calculations of Te covered GaAs- and InAs(100)-(2 X 1). The adsorption
is studied for the coverages of 1/2 and 1 monolayer of Te. The atomic
positions of the adsorbate and the three outermost substrate layers are
fully relaxed and the equilibrium surface geometries are given. We
discuss how the adsorption modifies the dean surface geometry and the
electronic structures.
RP Ferraz, AC, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05389970 SAO
PAULO,BRAZIL.
CR CAR R, 1985, PHYS REV LETT, V55, P2471
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CIBERT J, 1989, PHYS REV B, V39, P12047
COHENSOLAL G, 1989, APPL PHYS LETT, V49, P1519
COPEL M, 1989, PHYS REV LETT, V63, P632
ETGENS VH, 1993, PHYS REV B, V47, P10607
FELDMAN RD, 1986, APPL PHYS LETT, V48, P248
GOBIL Y, 1989, SURF SCI, V211, P969
GONZE X, 1991, PHYS REV B, V44, P8503
GRANDJEAN N, 1992, PHYS REV LETT, V69, P799
KIM TW, 1994, APPL PHYS LETT, V64, P2526
MIWA RH, IN PRESS
MONCKHORST HJ, 1976, PHYS REV B, V13, P5188
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
OHNO T, 1991, SURF SCI, V255, P229
PERDEW JP, 1981, PHYS REV B, V23, P5048
QIAN GX, 1988, PHYS REV B, V38, P7649
RODRIGUES WN, 1995, IN PRESS SOLID STATE
SPINDT CJ, 1989, APPL PHYS LETT, V55, P861
NR 19
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD MAY 15
PY 1996
VL 352
BP 379
EP 382
PG 4
SC Chemistry, Physical
GA UV254
UT ISI:A1996UV25400072
ER
PT J
AU Ornellas, FR
Iwata, S
TI Ab initio studies of silicon and nitrogen clusters: Cyclic or linear
Si2N?
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS;
PERTURBATION-THEORY; DERIVATIVES; ABINITIO; SPECTRUM; STATES; BOND;
SICO; SINN
AB Theoretical studies are carried out on the doublet and quartet states
of three isomeric forms of the species Si2N. Correlation effects on the
structural parameters, harmonic frequencies, and relative energies are
investigated at increasingly higher levels of theory (MP2, MP4, and
CCSD(T)) and basis sets (DZP, cc-pVTZ-f, and cc-pVTZ). At the highest
level of theory (CCSD(T)/cc-pVTZ) all three isomers are found to be
thermodynamically stable species with the symmetric linear structure
(SiNSi) as the global minimum; a symmetric cyclic structure (93.1
degrees) lies only 4.90 kcal/mol higher in energy, while the asymmetric
linear isomer (SiSiN) is much higher located (85.23 kcal/mol).
Dissociation of the most stable isomer into the channels SiN + Si and
Si-2 + N would require 123 and 148 kcal/mol, respectively, including
the zero-point energies. Chemical bonding as reflected in bond
distances indicates a SiN bond character intermediate between that of a
single and a double bonds in the linear SiNSi isomer (1.644 Angstrom),
changing then to a single bond in the cyclic structure (1.695 Angstrom)
and a double bond in SiSiN (1.608 Angstrom). The energetics involved in
various dissociation channels is also analyzed, as well as the strength
of the vibronic interaction in the linear isomer estimated by the
computation of the Renner parameter. A comparison with the molecules
C2N, Si2C, Si2C-, and Si2O clearly shows structural and stability
trends among these triatomics.
C1 INST MOLEC SCI,OKAZAKI,AICHI 444,JAPAN.
RP Ornellas, FR, UNIV SAO PAULO,INST QUIM,DEPT QUIM FUNDAMENTAL,CP
26077,BR-05599970 SAO PAULO,BRAZIL.
CR ANDERSSON K, 1992, J CHEM PHYS, V96, P1218
BALDRIDGE KK, 1987, ANNU REV PHYS CHEM, V38, P211
BEAGLEY B, 1972, J STRUCT CHEM, V11, P371
BOLDYREV AI, 1993, J PHYS CHEM-US, V97, P5875
BOLDYREV AI, 1994, J PHYS CHEM-US, V98, P1427
BOLTON EE, 1992, J CHEM PHYS, V97, P5586
DAVIDSON ER, 1991, MODERN TECHNIQUES CO, P381
DEKOCK RL, 1988, J CHEM PHYS, V89, P3016
DEKOCK RL, 1989, INORG CHEM, V28, P1680
DUNNING TH, 1977, MODERN THEORETICAL C, V3, P1
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
GERHOLD G, 1972, AM J PHYS, V40, P988
GOLDBERG N, 1994, J CHEM PHYS, V101, P2871
GORDON MS, 1986, CHEM PHYS LETT, V126, P451
GORDON MS, 1986, MOL STRUCTURES ENERG, V1, P101
GORDON MS, 1990, J PHYS CHEM-US, V94, P5527
GUELIN M, 1986, ASTRON ASTROPHYS, V157, L17
HERZBERG G, 1933, Z PHYS CHEM B-CHEM E, V21, P410
HERZBERG G, 1966, MOL SPECTRA MOL STRU, V3
HIRAO K, 1993, CHEM PHYS LETT, V201, P59
HUBER KP, 1979, MOL SPECTRA MOL STRU, V4
IGNATYEV IS, 1992, J PHYS CHEM-US, V96, P7632
IRAQI M, 1993, J PHYS CHEM-US, V97, P11371
KAFAFI ZH, 1983, J PHYS CHEM-US, V87, P797
KISHI R, IN PRESS
KOLZLOWSKI PM, 1994, CHEM PHYS LETT, V222, P615
KOLZLOWSKI PM, 1994, J CHEM PHYS, V100, P3672
LEE TJ, 1984, J CHEM PHYS, V81, P356
LEMBKE RR, 1977, J AM CHEM SOC, V99, P416
LUKE BT, 1986, J AM CHEM SOC, V108, P260
MARTIN JML, 1994, CHEM PHYS LETT, V226, P475
MOLLER C, 1934, PHYS REV, V46, P618
MURPHY RB, 1992, J CHEM PHYS, V97, P4974
NAKANO H, 1993, CHEM PHYS LETT, V207, P372
PETERSON KA, 1995, J PHYS CHEM-US, V99, P3898
PRESILLAMARQUEZ JD, 1991, J CHEM PHYS, V95, P5612
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479
RANKIN DW, 1990, J CHEM SOC, A1224
RENNER R, 1934, Z PHYS, V92, P172
RITTBY CML, 1991, J CHEM PHYS, V95, P5609
SCHAEFER HF, 1982, ACCOUNTS CHEM RES, V15, P283
SCHNICK W, 1993, ANGEW CHEM INT EDIT, V32, P806
SCUSERIA GE, 1991, CHEM PHYS LETT, V176, P27
TRUONG TN, 1986, J AM CHEM SOC, V108, P1775
WALTENBURG HN, 1995, CHEM REV, V95, P1589
WOON DE, 1993, J CHEM PHYS, V98, P1358
NR 47
TC 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD JUN 27
PY 1996
VL 100
IS 26
BP 10919
EP 10927
PG 9
SC Chemistry, Physical
GA UU477
UT ISI:A1996UU47700013
ER
PT J
AU Pliego, JR
Resende, SM
DeAlmeida, WB
TI Ab initio MP2 study of the HF center dot center dot center dot ClF
complex using various extended basis sets and bond functions
SO THEORETICA CHIMICA ACTA
LA English
DT Article
DE van der Waals complex; transition states; extended basis sets; bond
functions; electronic correlation
ID ABINITIO CALCULATIONS; SYSTEMS
AB The stationary points on the intermolecular potential energy surface
(PES) for the HF ... CIF complex have been investigated at the
second-order Moller-Plesset perturbation theory (MP2) level using
various extended bais sets, including diffuse functions, and also bond
functions. The last ones were placed at different intermolecular
positions, for distinct stationary points. The basis set superposition
errors (BSSE) were accounted for using the counterpoise method. Besides
the anti-H-bonded and H-bonded minimum energy structures, four
transition state structures were also located on the PES. It was shown
that higher polarization functions are required for the description of
the anti H-bonded isomer and diffuse functions had to be included for
the H-bonded isomer. The bond functions are able to replace the f(Cl,
F) and d(H) polarization functions at a lower computational cost.
However, for the H-bonded isomer intramolecuIar electron correlation
also plays an important role. So we have to use diffuse nucleus
centered polarization functions for an adequate description of
intermolecular and intramolecular correlation.
RP Pliego, JR, UFMG,LAB QUIM COMPUTAC & MODELAGEM MOL,DEPT
QUIM,ICEX,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BONE RGA, 1990, THEOR CHIM ACTA, V78, P133
BOYS SF, 1970, MOL PHYS, V19, P533
CHALASINSKI G, 1988, CHEM REV, V88, P943
CHALASINSKI G, 1994, CHEM REV, V94, P1723
DEALMEIDA WB, 1991, THEOCHEM, V228, P191
DEALMEIDA WB, 1993, J CHEM PHYS, V99, P5917
DEALMEIDA WB, 1993, THEOCHEM, V285, P277
DEALMEIDA WB, 1995, SPECTROCHIM ACTA A, V51, P653
DUNNING TH, 1977, METHODS ELECT STRUCT, P1
HOBZA P, 1981, CHEM PHYS LETT, V82, P469
HOBZA P, 1988, CHEM REV, V88, P871
HOBZA P, 1994, CHEM REV, V94, P1767
HOBZA P, 1994, THEOR CHIM ACTA, V88, P233
LEGON AC, 1994, FARADAY DISCUSS, V97, P19
LEOPOLD KR, 1994, CHEM REV, V94, P1807
NESBITT DJ, 1988, CHEM REV, V88, P843
NEUSSER HJ, 1994, CHEM REV, V94, P1829
NOVICK SE, 1976, J CHEM PHYS, V65, P5115
RENDELL APL, 1987, J CHEM PHYS, V87, P535
RESENDE SM, UNPUB
RESENDE SM, 1995, J CHEM PHYS, V102, P4184
SCHM, 1993, UJ, V14, P1347
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SLANINA Z, 1991, THEOCHEM, V235, P51
SLANINA Z, 1994, THERMOCHIM ACTA, V231, P55
TAO FM, 1992, CHEM PHYS LETT, V194, P162
TAO FM, 1992, J CHEM PHYS, V97, P4989
TAO FM, 1993, J CHEM PHYS, V98, P3049
VANDERAVOIRD A, 1994, CHEM REV, V94, P1931
VANLENTHE JH, 1987, ADV CHEM PHYS, V69, P522
YAN YB, 1994, CHEM PHYS LETT, V230, P480
ZHANG DH, 1995, J CHEM PHYS, V102, P2315
NR 32
TC 4
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010
SN 0040-5744
J9 THEOR CHIM ACTA
JI Theor. Chim. Acta
PD JUN
PY 1996
VL 93
IS 6
BP 333
EP 342
PG 10
SC Chemistry, Physical
GA UT564
UT ISI:A1996UT56400002
ER
PT J
AU Resende, SM
DeAlmeida, WB
TI A theoretical study of tunneling in the (HCCH)(2) complex
SO CHEMICAL PHYSICS
LA English
DT Article
ID RESOLUTION INFRARED-SPECTROSCOPY; POTENTIAL-ENERGY SURFACE; ACETYLENE
DIMER; MICROWAVE; ABINITIO; (HF)2; SPECTRUM; MOTION
AB The internal motion in the acetylene dimer has been investigated at the
ab initio Moller-Plesset second-order perturbation theory (MP2) level,
employing the double-zeta plus polarization function (DZP) basis set.
Basis set superposition errors (BSSE) corrections were included using
the counterpoise method. A two-dimensional (2D) Hamiltonian for the
tunneling motion, considering the two bending modes in the dimer plane
was solved variationally, using as the potential energy function a
two-dimensional ab initio intermolecular potential energy surface
(PES), Coupling of the intramolecular vibration and dimer internal
rotation has been neglected. Also, the synchronized one-dimensional
(1D) tunneling motion was obtained through a change of variables which
allowed the separation of the motion along the minimum energy path and
the one perpendicular to it. Anharmonicity corrections were also added
to the 1D procedure to reach the 2D results. The calculated splitting
of transition frequencies are compared with the experimental data. The
1D Hamiltonian including anharmonicity corrections is shown to be a
very efficient and computational inexpensive procedure for treating the
tunneling motion.
C1 UNIV FED MINAS GERAIS,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR ALTHORPE SC, 1991, CHEM PHYS LETT, V187, P345
BERNSTEIN E, 1990, ATOMIC MOL CLUSTERS
BONE RGA, 1990, THEOR CHIM ACTA, V78, P133
BOYS SF, 1970, MOL PHYS, V19, P533
BRYANT GW, 1988, J CHEM SOC F2, V84, P1443
BUMGARNER RE, 1991, CHEM PHYS LETT, V176, P123
DEALMEIDA WB, 1993, CHEM PHYS, V169, P185
DEALMEIDA WB, 1993, J CHEM PHYS, V99, P5617
DEALMEIDA WB, 1993, J PHYS CHEM-US, V97, P2560
DEALMEIDA WB, 1993, MOL PHYS, V78, P1351
DEALMEIDA WB, 1993, MOL STRUCT THEOCHEM, V285, P77
DEALMEIDA WB, 1994, MOL PHYS, V81, P1397
DEALMEIDA WB, 1995, SPECTROCHIM ACTA A, V51, P653
DUNNING TH, 1970, J CHEM PHYS, V53, P2823
FRASER GT, 1988, J CHEM PHYS, V89, P6028
FRASER GT, 1989, J CHEM PHYS, V90, P2097
FRASER GT, 1989, J CHEM PHYS, V90, P6077
HA TK, 1993, J PHYS CHEM-US, V97, P11415
HOBZA P, 1988, CHEM REV, V88, P871
MAKAREWICZ J, 1993, J CHEM PHYS, V99, P3694
MILLER RE, 1984, J CHEM PHYS, V80, P5453
MOLLER C, 1934, PHYS REV, V46, P618
OHSHIMA Y, 1988, CHEM PHYS LETT, V147, P1
PLIEGO JR, 1996, IN PRESS THEORET CHI
PRICHARD D, 1987, CHEM PHYS LETT, V135, P9
PRICHARD DG, 1988, J CHEM PHYS, V89, P115
RESENDE SM, 1995, J CHEM PHYS, V102, P4184
RICE JK, 1990, J CHEM PHYS, V92, P6408
SADLEJ J, 1994, J CHEM PHYS, V100, P4272
SCHMIDT MW, 1990, QCPE B, V10, P52
SUNI II, 1993, J CHEM PHYS, V98, P988
TENNYSON J, 1982, J CHEM PHYS, V77, P5664
VONPUTTKAMER K, 1987, MOL PHYS, V62, P1047
ZHANG DH, 1995, J CHEM PHYS, V102, P2315
NR 34
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD MAY 15
PY 1996
VL 206
IS 1-2
BP 1
EP 8
PG 8
SC Physics, Atomic, Molecular & Chemical
GA UP170
UT ISI:A1996UP17000001
ER
PT J
AU Alves, JLA
Alves, HWL
deCastilho, CMC
TI Hydrogen, oxygen and chlorine adsorption on Ag(110) surface: A cluster
calculation
SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
TECHNOLOGY
LA English
DT Article
DE hydrogen; oxygen; chlorine; adsorption; silver
ID EFFECTIVE CORE POTENTIALS; MOLECULAR CALCULATIONS
AB The adsorption of atoms on Ag(110) surfaces has been widely
investigated both theoretically and experimentally. The importance of
the (110) face results from the much better catalytic properties of the
single crystal Ag(110) compared with polycrystalline samples. The aim
of this work is to study the systems Ag(110): H, O, Cl by means of
rigorous ab initio quantum-chemical calculations. We have investigated
several possible binding sites, geometries, elastic constants, binding
energies and charge distributions for H, O and Cl on Ag(110) surfaces
simulated by clusters Ag, (n = 3,10).
C1 UNIV FED BAHIA,INST FIS,BR-40210340 SALVADOR,BA,BRAZIL.
RP Alves, JLA, FDN ENSINO SUPER SAO DEL REI,FUNREI,DEPT CIENCIAS NAT,PRACA
D HELVECIO,74,BR-36300000 SAO JOAO REI,MG,BRAZIL.
CR FRISCH MJ, 1992, GAUSSIAN 92
HAY PJ, 1985, J CHEM PHYS, V82, P270
HAY PJ, 1985, J CHEM PHYS, V82, P299
MARTIN RL, 1983, SURF SCI, V130, P283
SELMANI A, 1986, INT J QUANTUM CHEM, V29, P829
SELMANI A, 1988, SURF SCI, V206, P279
WADT WR, 1985, J CHEM PHYS, V82, P284
NR 7
TC 6
PU ELSEVIER SCIENCE SA LAUSANNE
PI LAUSANNE 1
PA PO BOX 564, 1001 LAUSANNE 1, SWITZERLAND
SN 0921-5107
J9 MATER SCI ENG B-SOLID STATE M
JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
PD FEB
PY 1996
VL 37
IS 1-3
BP 139
EP 141
PG 3
SC Materials Science, Multidisciplinary; Physics, Condensed Matter
GA UM735
UT ISI:A1996UM73500025
ER
PT J
AU Pereira, GK
Donate, PM
Galembeck, SE
TI Electronic structure of hydroxylated derivatives of the flavylium cation
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE anthocyanins; computational study; electronic structure; flavonoids;
flavylium cation
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; ORGANIC-MOLECULES;
BASIS-SETS; ANTHOCYANINS
AB The electronic structure of the flavylium cation (1) and those of some
of its hydroxylated derivatives were studied by semiempirical and ab
initio molecular orbital methods. This ion presents a small resonance
in the pyrylium group (C-ring), which is not conjugated to the phenyl
group (B-ring). The planarity of the molecule is due to a hydrogen bond
between the oxygen atom in C-ring and some hydrogen atoms in B-ring.
There is also a repulsive interaction between hydrogen atoms of these
rings. The theoretical locations of the sites of nucleophilic and
electrophilic attack corresponds to those experimentally observed.
Monohydroxylation does not cause important alterations in the
electronic structure of the cation (1) except for the substitution on
C(4'), which causes the appearance of resonance between B- and C-rings.
C1 UNIV SAO PAULO,FAC FILOSOFIA CIENCIAS & LETRAS RIBEIRAO PRET,DEPT QUIM,BR-14049901 RIBEIRAO PRET,SP,BRAZIL.
CR BAKER J, 1986, J COMPUT CHEM, V7, P385
BENT HA, 1961, CHEM REV, V61, P275
BESLER BH, 1990, J COMPUT CHEM, V11, P431
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BROUILLARD R, 1988, FLAVONOIDS ADV RES 1, P525
BUSETTA PB, 1974, ACTA CRYSTALLOGR B, V30, P1448
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
FLEMING I, 1976, FRONTIER ORBITALS OR
GOTO T, 1991, ANGEW CHEM INT EDIT, V30, P17
GUEDES MC, 1993, THESIS U CAMPINAS CA
HARBORNE JB, 1988, FLAVONOIDS ADV RES 1, P1
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOLTON TA, 1994, TRENDS BIOTECHNOL, V12, P40
HUHEEY JE, 1972, INORGANIC CHEM PRINC
IACOBUCCI GA, 1983, TETRAHEDRON, V39, P3005
KOES RE, 1994, BIOESSAYS, V16, P123
LISTER CE, 1994, J SCI FOOD AGR, V64, P155
MERLIN JC, 1994, PHYTOCHEMISTRY, V35, P227
MERLIN JC, 1994, SPECTROCHIM ACTA A, V50, P703
NESSLER CL, 1994, TRANSGENIC RES, V3, P109
RASTELLI G, 1993, J MOL STRUCT THEOCHE, V279, P157
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHWINN KE, 1994, PHYTOCHEMISTRY, V35, P145
STEWART JJP, 1990, J COMPUT AID MOL DES, V4, P1
UENO K, 1977, ACTA CRYSTALLOGR B, V33, P111
UENO K, 1977, ACTA CRYSTALLOGR B, V33, P114
NR 27
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD MAR 29
PY 1996
VL 363
IS 1
BP 87
EP 96
PG 10
SC Chemistry, Physical
GA UH856
UT ISI:A1996UH85600007
ER
PT J
AU Abraham, RJ
Jones, AD
Warne, MA
Rittner, R
Tormena, CF
TI Conformational analysis .27. NMR, solvation and theoretical
investigation of conformational isomerism in fluoro- and
1,1-difluoro-acetone
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID SUBSTITUTED CARBONYL-COMPOUNDS; VIBRATIONAL ASSIGNMENT;
INTERNAL-ROTATION; ABINITIO CALCULATIONS; ELECTRONIC INTERACTION;
BARRIERS; STABILITY; FLUOROACETONE; CHLORIDE; SPECTRA
AB The solvent and temperature dependence of the H-1 and C-13 NMR spectra
of fluoroacetone (FA), 1,1-difluoroacetone (DFA) and
1,1,1-trifluoroacetone (TFA) are reported and the (4)J(HF), (1)J(CF)
and (2)J(CF) couplings analysed using ab initio calculations and
solvation theory.
In FA the energy difference (E(cis) - E(tr)) between the cis (F-C-C=O 0
degrees) and trans (F-C-C=O 180 degrees) conformers is 2.2 kcal mol(-1)
in the vapour, decreasing to 1.0 kcal mol(-1) in CCl4 solution and to
-0.6 kcal mol(-1) in the pure liquid.
In DFA the conformational equilibrium is between the less polar cis
(H-C-C=O 0 degrees) and a gauche conformation (H-C-C=O 104 degrees).
The energy difference (E(g) - E(cis)) is +0.8 kcal mol(-1) in the
vapour, decreasing to 0.1 kcal mol(-1) in CCl4 solution and to -0.6
kcal mol(-1) in the pure liquid.
The vapour state energy difference for FA compares well with that
calculated (2.8 kcal mol(-1) at MP4/6-31G*). DFA calculations at this
level gave only one minimum in the potential surface corresponding to
the cis form, A minimum for the gauche conformer was only found when
sol solvation was included in the ab initio calculations, or at much
larger basis sets (6-311++G**).
The conformer couplings obtained show that the (4)J(HF) coupling
(F-C-C-CH3) is proportional to cos(2) theta, where theta is the F-C-C-C
dihedral angle. The (1)J(CF) and (2)J(CF) couplings also show a
pronounced orientation dependence which could be of particular utility
in those cases where other couplings are not present.
C1 UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13083970 CAMPINAS,SP,BRAZIL.
RP Abraham, RJ, UNIV LIVERPOOL,DEPT CHEM,POB 147,LIVERPOOL L69
3BX,MERSEYSIDE,ENGLAND.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1994, J CHEM SOC P2, P949
ABRAHAM RJ, 1995, J CHEM SOC P2, P1973
CHOI SC, 1985, CAN J CHEM, V63, P836
COOK BR, 1967, J CHEM PHYS, V47, P1700
CROWDER GA, 1967, J CHEM PHYS, V47, P367
DURIG JR, 1989, J CHEM PHYS, V90, P6840
DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
DURIG JR, 1991, J MOL STRUCT, V242, P179
DURIG JR, 1991, J RAMAN SPECTROSC, V22, P141
EWING DF, 1972, J CHEM SOC P2, P701
FOREMAN JB, 1993, EXPLORING CHEM ELECT
FRISCH MJ, 1992, GAUSSIAN 92
GUERRERO SA, 1983, J CHEM SOC PERK T 2, P1053
JONES GIL, 1973, J MOL STRUCT, V18, P1
JONES VIP, 1970, J CHEM SOC B, P1719
KAISEN CR, 1982, THESIS U ESTADUAL CA
KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P1124
KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P3572
KHAN AY, 1969, J CHEM PHYS, V50, P1801
LUMBROSO H, 1987, J MOL STRUCT, V162, P131
OLIVATO PR, 1992, CAN J APPL SPECTROSC, V37, P37
PHAN HV, 1993, SPECTROCHIM ACTA A, V49, P1967
SAEGEBARTH E, 1967, J CHEM PHYS, V46, P3088
SAEGEBARTH E, 1970, J CHEM PHYS, V52, P3555
SHAPIRO BL, 1970, J MAGN RESON, V3, P336
SHAPIRO BL, 1973, J MAGN RESON, V10, P65
SHAPIRO BL, 1973, J MAGN RESON, V11, P355
SHAPIRO BL, 1973, J MAGN RESON, V9, P305
VANEIJCK BP, 1972, J MOL STRUCT, V11, P67
VEKEN BJV, 1993, J MOL STRUCT, V293, P55
WEAST RC, HDB CHEM PHYSICS
WOLFE S, 1972, ACCOUNTS CHEM RES, V5, P102
WOODWARD AJ, 1970, J MOL SPECTROSC, V35, P127
WOODWARD AJ, 1970, J PHYS CHEM-US, V74, P798
NR 37
TC 26
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD APR
PY 1996
IS 4
BP 533
EP 539
PG 7
SC Chemistry, Organic; Chemistry, Physical
GA UF122
UT ISI:A1996UF12200010
ER
PT J
AU Gozzo, FC
Sorrilha, AEPM
Eberlin, MN
TI The generation, stability, dissociation and ion molecule chemistry of
sulfinyl cations in the gas phase
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID MASS-SPECTROMETRY; ELECTRON-IMPACT; ORBITAL METHODS; ACYLIUM IONS;
BASIS SETS; INTERMEDIATE; SUBSTITUTION; ISOMERS; C2H3O+
AB Sulfinyl cations [R-S+-O (R = CH3, Ph, Cl, CH3O and C2H5O)] have been
demonstrated by MO calculations in conjunction with pentaquadrupole
multidimensional (2D and 3D) MS(2) and MS(3) mass spectrometric
experiments to be stable and easily accessible gas phase species, and
their dissociation and ion/molecule chemistry have been studied.
Potential energy surface diagrams indicate that the sulfoxides
(CH3)(2)S=O, Ph(2)S=O, Cl2S=O, (CH3O)(2)S=O and (C2H5O)(2)S=O do not
undergo rearrangement upon dissociative ionization, yielding the
corresponding sulfinyl cations as primary fragments, Ph(CH3)S=O-+., on
the other hand, is predicted to isomerize to CH3-S-O-Ph(+.) via a
four-membered ring transition state, yielding upon further CH3. loss
the isomeric ion S=O+-Ph. The sulfinyl cations were found by ab initio
calculations to be much more stable than their S=O+-R isomers, hence
isomerization via [1,2-R] shifts is not expected, Direct cleavage of
the R-SO+ bonds and/or processes that are preceded by isomerization
dominate the low-energy collision dissociation chemistry of the
sulfinyl cations, thus providing limited structural information. On the
other hand, a general and structurally diagnostic ion/molecule reaction
with 2-methyl-1,3-dioxolane occurs for all the sulfinyl cations
yielding abundant net oxirane (C2H4O) addition products. The reaction
probably occurs via a transketalization-like mechanism that leads to
cyclic 2-thia-1,3-dioxolanylium ions. This reactivity parallels that of
several acylium (R-C+=O) and thioacylium ions (R-C+=S), and is not
shared by the isomeric ions SO+-Ph and CH2=S+-OH. While the
corresponding acylium ions react extensively with isoprene by [4 +
2(+)] cycloaddition, only the phenylsulfinyl cation Ph-S+=O yields an
abundant cycloadduct.
C1 STATE UNIV CAMPINAS UNICAMP,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR *MIN SUP CTR INC, 1993, XMOL VER 1 3 1
APPEL R, 1966, CHEM BER, V99, P3108
ATTINA M, 1983, J AM CHEM SOC, V105, P1122
BAAR BV, 1986, J CHEM SOC CHEM COMM, P1607
BASHER MM, UNPUB
BEAUGRAND C, 1989, ADV MASS SPECTROM A, V11, P256
BLICKE FF, 1942, ORG REACTIONS, V1, P303
BOGERT MT, 1933, J AM CHEM SOC, V55, P3741
BOWERS MT, 1979, GAS PHASE ION CHEM
BOWIE JH, 1966, TETRAHEDRON, V22, P3515
BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR
BUSH KL, 1989, MASS SPECTROMETRY MA
CAREY FA, 1983, ADV ORGANIC CHEM
CARLSEN L, 1988, J AM CHEM SOC, V110, P6701
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
CHAPMAN JR, 1993, PRACTICAL ORGANIC MA
CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1992, GAUSSIAN92
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GOZZO FC, 1993, P 41 ASMS C MASS SPE, P974
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
GU M, 1992, J AM CHEM SOC, V114, P7146
HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
JOHNSTONE RAW, 1979, MASS SPECTROMETRY, V5, P277
JULIANO VF, IN PRESS ANAL CHEM
KHMELNITSKII RA, 1977, RUSS CHEM REV, V46, P46
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
KUMAKURA M, 1978, J PHYS CHEM-US, V82, P639
LINDNER E, 1968, ANGEW CHEM INT EDIT, V7, P548
LIU LK, 1983, ORG MASS SPECTROM, V18, P22
LU L, 1995, J MASS SPECTROM, V30, P581
MANNICH C, 1936, CHEM BER, V69, P2299
MCGIBBON GA, 1994, CHEM PHYS LETT, V218, P499
MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
MCLAFFERTY FW, 1993, INTERPRETATION MASS
MEYERSON S, 1964, ANAL CHEM, V36, P1294
MOLLER C, 1934, PHYS REV, V46, P618
MORRISON JD, 1986, 34TH P AM SOC MASS S, P222
MUKAIYAMA T, 1982, ORG REACTIONS, V28, P203
NIXON WB, 1978, INT J MASS SPECTROM, V26, P115
NOBES RH, 1983, J AM CHEM SOC, V105, P309
OLAH GA, 1964, FRIEDELCRAFTS RELATE, V3
OLAH GA, 1974, J AM CHEM SOC, V96, P3581
OLAH GA, 1976, CARBONIUM IONS, V5, P2049
OLAH GA, 1980, ANGEW CHEM INT EDIT, V19, P812
PARADISI C, 1988, ORG MASS SPECTROM, V23, P521
PEERS AM, 1975, INT J MASS SPECTROM, V16, P321
PIHLAJA K, 1988, CHEM SULPHONES SULPH, P125
PIHLAJA K, 1988, ORG MASS SPECTROM, V23, P770
POTZINGER P, 1975, Z NATURFORSCH A, V30, P340
RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
ROLSTON JH, 1969, J AM CHEM SOC, V91, P1469
SABLIER M, 1994, TETRAHEDRON LETT, V35, P2895
SCHWARTZ JC, 1989, INT J MASS SPECTROM, V3, P305
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
STALEY RH, 1977, J AM CHEM SOC, V99, P5964
TURECEK F, 1983, ORG MASS SPECTROM, V18, P608
TURECEK F, 1984, MASS SPECTROM REV, V3, P85
TURECEK F, 1989, J AM CHEM SOC, V111, P7696
WEBER R, 1980, ORG MASS SPECTROM, V15, P138
YANG SS, 1995, J MASS SPECTROM, V30, P807
NR 73
TC 17
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD APR
PY 1996
IS 4
BP 587
EP 596
PG 10
SC Chemistry, Organic; Chemistry, Physical
GA UF122
UT ISI:A1996UF12200020
ER
PT J
AU Blaszkowski, SR
Nascimento, MAC
vanSanten, RA
TI Activation of C-H and C-C bonds by an acidic zeolite: A density
functional study
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID MOLECULAR-SIEVES; OPTIMIZATION; ENERGIES; APPROXIMATION; BEHAVIOR;
GEOMETRY
AB Density functional theory is used to determine transition states and
the corresponding energy barriers of the reactions related to C-H bond
activation of hydrogen exchange and dehydrogenation of ethane catalyzed
by a protonated zeolite as well as hydride transfer between methanol
and a methoxide (CH3-zeolite) species. Additionally the C-C bond
activation involved in the acid catalyzed cracking reaction of ethane
was investigated. The computed activation barriers are 118 for hydrogen
exchange, 202 for hydride transfer, 292 for cracking and finally 297
for dehydrogenation, all in kilojoules per mole. For the cracking
reaction, two different transition states with the same activation
barrier have been obtained, dependent on the approach of the ethane
molecule to the zeolite cluster. A study of the relation between
acidity and the structure of the zeolite shows that the transition
state for the hydrogen exchange reaction is rather covalent and its
geometry resembles the well-known carbonium ion, while the others are
rather ionic carbenium ions. From the calculated activation barriers as
well as vibrational, rotational, and translational partition functions,
reaction rate constants have been evaluated by means of the transition
state reaction rate theory.
C1 EINDHOVEN UNIV TECHNOL,SCHUIT INST CATALYSIS,INORGAN CHEM LAB,5600 MB EINDHOVEN,NETHERLANDS.
EINDHOVEN UNIV TECHNOL,CATALYSIS THEORY GRP,5600 MB EINDHOVEN,NETHERLANDS.
RP Blaszkowski, SR, FED UNIV RIO DE JANEIRO,DEPT QUIM FIS,INST QUIM,CIDADE
UNIV,BLOCO A,BR-21949900 RIO JANEIRO,BRAZIL.
CR ANDZELM J, 1987, CHEM PHYS LETT, V142, P169
ANDZELM J, 1992, J CHEM PHYS, V96, P1280
BECKE AD, 1988, PHYS REV A, V38, P3098
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BLASZKOWSKI SR, 1995, J PHYS CHEM-US, V99, P11728
BOHME DK, 1975, INTERACTIONS IONS MO, P489
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
COLLINS SJ, 1995, J CATAL, V153, P94
CORMA A, 1994, J CATAL, V145, P58
ENGELHARDT J, 1995, J CATAL, V151, P1
EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
FAN LY, 1992, J AM CHEM SOC, V114, P10890
FROST AA, 1961, KINETICS MECHANISMS
GILBERT RG, 1990, THEORY UNIMOLECULAR
GODBOUT N, 1992, CAN J CHEM, V70, P560
HEAD JD, 1989, ADV QUANTUM CHEM, V20, P239
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HOCEVAR S, 1992, J CATAL, V135, P518
HOHENBERG P, 1964, PHYS REV B, V136, P864
HOUTE JJ, 1992, INT J MASS SPECTROM, V155, P173
KAZANSKY VB, 1994, CATAL LETT, V27, P345
KAZANSKY VB, 1994, CATAL LETT, V28, P211
KOHN W, 1965, PHYS REV, V140, A1133
KRAMER GJ, 1993, J AM CHEM SOC, V115, P2887
KRAMER GJ, 1993, NATURE, V363, P529
KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
LERCHER JA, 1994, CATAL LETT, V27, P91
MCIVER JW, 1971, CHEM PHYS LETT, V10, P303
MEUSINGER J, 1995, J CATAL, V152, P189
MOORE JW, 1990, KINETICS MECHANISM
MOULIJN JA, 1995, STUDIES SURFACE SCI, V79, P69
ONO Y, 1992, CATAL REV SCI ENG, V34, P179
PERDEW JP, 1986, PHYS REV B, V33, P8822
ROBERTS JD, 1981, BASIC PRINCIPLES ORG, P121
SHLEGEL HB, 1987, AB INITIO METHODS QU
STACH H, 1993, PURE APPL CHEM, V65, P2193
STEFANADIS C, 1991, J MOL CATAL, V67, P363
VANSANTE RA, 1990, NATO ASI SER B-PHYS, V221, P227
VANSANTEN RA, 1995, J CHEM REV, V95, P637
VOSKO SH, 1980, CAN J PHYS, V58, P1200
WILSON EB, 1955, MOL VIBRATIONS
YALURIS G, 1995, J CATAL, V153, P65
NR 42
TC 76
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD FEB 29
PY 1996
VL 100
IS 9
BP 3463
EP 3472
PG 10
SC Chemistry, Physical
GA TX766
UT ISI:A1996TX76600024
ER
PT J
AU daSilva, JBP
daCosta, NB
Ramos, MN
Fausto, R
TI Vibrational spectra and structure of the cis and trans conformers of
methyl nitrite: An ab initio MO study
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
ID ABINITIO CALCULATIONS; MICROWAVE-SPECTRA; PHASE
AB The vibrational and conformational properties exhibited by nethyl
nitrite (CH3ON=O) were studied by ab initio MO methods (HF-SCF and MP2)
using both the 6-31G and 6-311G basis sets without or with the
inclusion of diffuse and/or polarization functions, Fully optimized
geometries, relative stabilities, dipole moments and harmonic force
fields for both the cis and trans conformers of this molecule were
determined and the results compared with available experimental data.
In agreement with the experimental results, the calculations involving
polarization functions at the MP2 level of theory indicate that the
most stable conformer of methyl nitrite is the planar cis conformer,
where the methyl group is eclipsing the N=O bond, while the trans form
was predicted to have a higher energy than this form by about 4 kJ
mol(-1) The conformational dependence of some relevant structural
parameters was used to characterize the most important intramolecular
interactions present in the studied conformers, and their calculated
infrared spectra were used to review previous assignments of the
experimentally observed bands for both the normal and deuterated
(CD3ON=O) species. Chemometrics methods (principal components and
two-level factorial designing) were used both to analyze the effect of
changing the basis set and level of theory used to perform the
calculations, and to aid comparison between the experimental and
calculated vibrational spectra.
C1 UNIV COIMBRA,DEPT QUIM,P-3049 COIMBRA,PORTUGAL.
UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50740250 RECIFE,PE,BRAZIL.
CR *INF INC, 1991, EIN SIGHT PATT REC S
BAUER SH, 1980, J PHYS CHEM-US, V84, P2507
BODENBINDER M, 1994, J PHYS CHEM-US, V98, P6441
BOX GEP, 1978, STATISTICS EXPT
BROWN HW, 1964, J MOL SPECTROSC, V13, P305
CHAUVEL JP, 1983, J PHYS CHEM-US, V87, P1622
CONBOY CB, 1986, J PHYS CHEM-US, V90, P4353
CORDELL FR, 1980, J MOL STRUCT, V64, P57
CORKILL MJ, 1978, 7 AUST S MOL STRUCT
FARIA MDG, 1990, BUILD G VIBRAT
FARIA MDG, 1990, TRANSFORMER VERSION
FELDER P, 1979, CHEM PHYS LETT, V66, P283
FELDER P, 1981, SPECTROCHIM ACTA, V37, P337
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1992, GAUSSIAN 92
FUHER F, 1976, NATL RES COUNCIL CAN, V15, P1
GHOSH PN, 1980, CHEM PHYS, V53, P39
GHOSH PN, 1981, SPECTROCHIM ACTA A, V37, P347
GORDON MS, 1980, CHEM PHYS LETT, V163, P76
GRAY P, 1963, T FARADAY SOC, V59, P347
INGLEFIELD PT, 1968, MOL PHYS, V15, P65
KLABOE P, 1967, SPECTROCHIM ACTA A, V23, P2957
KRISHNAN R, 1980, J CHEM PHYS, V192, P690
LEES RM, 1968, J CHEM PHYS, V48, P5299
MAVDIA KV, 1979, MULTIVARIATE ANAL, CH8
PULAY P, 1979, J AM CHEM SOC, V101, P2550
ROOK FL, 1982, J MOL SPECTROSC, V93, P101
SCARMINIO IS, 1989, TRAC-TREND ANAL CHEM, V8, P326
SCHLEGEL HB, 1975, THESIS QUEENS U KING
STIDHAM HD, 1990, J RAMAN SPECTROSC, V21, P615
SUTO E, 1991, J COMPUT CHEM, V12, P885
TARTE PJ, 1979, J AM CHEM SOC, V101, P2550
TEIXEIRADIAS JJC, 1986, J MOL STRUCT, V133, P199
TOMAGAWA K, 1984, J MOL STRUCT, V125, P131
TURNER PH, 1979, J CHEM SOC F2, V2, P317
TURNER PH, 1979, J PHYS CHEM-US, V83, P1473
VANDERVEKEN BJ, 1989, J MOL STRUCT THEOCHE, V200, P413
VANDERVEKEN BJ, 1990, J PHYS CHEM-US, V94, P4029
NR 38
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD JAN 22
PY 1996
VL 375
IS 1-2
BP 153
EP 180
PG 28
SC Chemistry, Physical
GA TX261
UT ISI:A1996TX26100014
ER
PT J
AU Tanabe, FKJ
Morgon, NH
Riveros, JM
TI Relative gas-phase bromide and iodide affinity of simple solvent
molecules determined by FT-ICR
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID TRANSFORM MASS-SPECTROMETRY; HALIDE-IONS; CHLORIDE-ION; EQUILIBRIA
MEASUREMENTS; EXCHANGE EQUILIBRIA; IMPULSE EXCITATION; BRONSTED ACIDS;
BOND STRENGTHS; NEGATIVE-IONS; COMPLEXES
AB The gas-phase ion/molecule reaction of CH3O- with bromo- and
iodobenzene has been used to generate Br-(CH3OH) and I-(CH3OH) ions in
an FT-ICR spectrometer. These ions are shown to undergo rapid solvent
exchange with molecules of comparable or higher halide affinity. The
equilibrium constants have been determined for these exchange reactions
and the relative bromide free-energy affinity at 335 K (-Delta G
degrees/kcal mol(-1)) is shown to increase in the order H2O (0.0) <
CH3OH (1.07) < CH3CN (1.51) similar to C2H5OH (1.53) < i-C3H7OH (1.88)
< CH3NO2 (2.34). For I-, a similar trend is observed except that C2H5OH
< CH3CN. Ab initio calculations were carried out at the MP4(SDTQ) level
with geometry optimization at the MP2 level and using the generator
coordinate method to add diffuse functions to the Br basis set. Changes
in entropies for the gas-phase equilibrium experiments were estimated
from the calculated vibrational frequencies, and the enthalpies of
solvation were derived by using the reported value for Br-(CH3OH) as a
reference point.
C1 UNIV SAO PAULO,INST QUIM,BR-05599970 SAO PAULO,BRAZIL.
CR ABBOUD JLM, 1989, J AM CHEM SOC, V111, P8960
ARSHADI M, 1970, J PHYS CHEM-US, V74, P1475
BURDETT NA, 1982, J CHEM SOC F1, V78, P2997
CALDWELL G, 1984, J AM CHEM SOC, V106, P967
CALDWELL GW, 1989, ORG MASS SPECTROM, V24, P8
CASTLEMAN AW, 1986, CHEM REV, V86, P589
DANGNHU M, 1990, J MOL SPECTROSC, V140, P412
DOUGHERTY RC, 1974, ORG MASS SPECTROM, V8, P81
DUNBAR RC, 1994, J PHYS CHEM-US, V98, P8705
DUNNING TH, 1977, METHODS ELECTRONIC S, CH1
EVANS DH, 1987, J CHEM PHYS, V86, P2927
FAIGLE JFG, 1976, J AM CHEM SOC, V98, P2049
FRISCH C, 1992, GAUSSIAN 92 REVISION
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
GRAUL ST, 1990, J AM CHEM SOC, V112, P2517
HEHRE WJ, 1986, AB INITIO MOL ORBITA, CH6
HIRAOKA K, 1988, J PHYS CHEM-US, V92, P3943
HIRAOKA K, 1991, INT J MASS SPECTROM, V109, P133
HIRAOKA K, 1993, CHEM PHYS LETT, V208, P491
HIRAOKA K, 1993, J AM SOC MASS SPECTR, V4, P58
HOP CECA, 1990, INT J MASS SPECTROM, V101, P191
ISOLANI PC, 1992, QUIM NOVA, V15, P351
KATRITZKY AR, 1990, J AM CHEM SOC, V112, P2472
KEBARLE P, 1972, IONS ION PAIRS ORGAN, V1
KEBARLE P, 1979, PURE APPL CHEM, V51, P63
KEESEE RG, 1980, CHEM PHYS LETT, V74, P139
KEESEE RG, 1986, J PHYS CHEM REF DATA, V15, P1011
LARSON JW, 1983, J AM CHEM SOC, V105, P2944
LARSON JW, 1984, CAN J CHEM, V62, P675
LARSON JW, 1984, J AM CHEM SOC, V106, P517
LINNERT HV, COMMUNICATION
LINNERT HV, UNPUB
LINNERT HV, 1993, J CHEM SOC CHEM COMM, P48
LINNERT HV, 1994, INT J MASS SPECTROM, V140, P165
MCIVER RT, 1989, INT J MASS SPECTROM, V89, P343
MCIVER RT, 1989, REV SCI INSTRUM, V60, P400
MORGON NH, 1995, CHEM PHYS LETT, V235, P436
MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
PAUL GJC, 1991, J AM CHEM SOC, V113, P1148
PITZER KS, 1942, J CHEM PHYS, V10, P428
RIVEROS JM, 1973, J AM CHEM SOC, V95, P4066
RIVEROS JM, 1991, J AM CHEM SOC, V113, P1053
SENA M, 1994, RAPID COMMUN MASS SP, V8, P1031
SIECK LW, 1985, J PHYS CHEM-US, V89, P5552
SIEVERS HL, 1995, J AM CHEM SOC, V117, P2313
THOLMANN D, 1994, J PHYS CHEM-US, V98, P2002
VANDEGUCHTE WJ, 1990, INT J MASS SPECTROM, V95, P317
VANDERHART WJ, 1988, INT J MASS SPECTROM, V82, P17
WADT WR, 1985, J CHEM PHYS, V82, P284
YAMABE S, 1986, CHEM PHYS LETT, V131, P261
YAMDAGNI R, 1972, J AM CHEM SOC, V94, P2940
NR 51
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD FEB 22
PY 1996
VL 100
IS 8
BP 2862
EP 2866
PG 5
SC Chemistry, Physical
GA TX257
UT ISI:A1996TX25700014
ER
PT J
AU Schmidt, TM
Fazzio, A
Caldas, MJ
TI Germanium negative-U center in GaAs
SO PHYSICAL REVIEW B
LA English
DT Article
ID DX-CENTER; PERSISTENT PHOTOCONDUCTIVITY; ALXGA1-XAS ALLOYS;
HYDROSTATIC-PRESSURE; DEEP DONORS; GE; SEMICONDUCTORS; STATES; SI;
ENERGETICS
AB The DX center related to the Ge impurity in GaAs is investigated by ab
initio pseudopotential calculations within the local-density
aproximation. Our results indicate that the behavior of the Ge-Ga
defect is qualitatively different from the broken-bond model usually
associated to Si-Ga, even if the electronic structure behaves in a very
similar way. Indeed, for the Ge impurity our calculations show that
already for breathing-mode relaxations of the Ge neighbors, in T-d
symmetry, a negative-U behavior is found, and many details of the
experimental data can be explained.
C1 UNIV FED UBERLANDIA,DEPT CIENCIAS FIS,BR-38400902 UBERLANDIA,MG,BRAZIL.
RP Schmidt, TM, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05389970 SAO
PAULO,BRAZIL.
CR BAJ M, COMMUNICATION
BAJ M, 1993, PHYS REV LETT, V71, P3529
BAJ M, 1994, MATER SCI FORUM, V143, P1019
BOURGOIN J, 1981, SPRINGER SERIES SOLI, V22
CALDAS MJ, 1990, INT J QUANTUM CHEM S, V24, P563
CALDAS MJ, 1990, PHYS REV LETT, V65, P2046
CALDAS MJ, 1994, SOLID STATE COMMUN, V89, P493
CAR R, 1985, PHYS REV LETT, V55, P2471
CHADI DJ, 1973, PHYS REV B, V8, P5747
CHADI DJ, 1988, PHYS REV LETT, V61, P873
CHADI DJ, 1989, PHYS REV B, V39, P10063
DABROWSKI J, 1988, PHYS REV LETT, V60, P2183
DABROWSKI J, 1992, MATER SCI FORUM, V83, P735
DISSANAYAKE A, 1992, PHYS REV B, V45, P13996
DMOCHOWSKI JE, 1990, 20TH P INT C PHYS SE, V1, P658
FAZZIO A, 1984, PHYS REV B, V30, P3430
FAZZIO A, 1993, 21 P INT C BEIJ, V1, P1713
FAZZIO A, 1993, 21 P INT C BEIJ, V2, P1713
FUJISAWA T, 1990, JPN J APPL PHYS PT 2, V29, L388
FURTHMULLER J, 1992, PHYS REV B, V46, P3839
GHOSH S, 1992, PHYS REV B, V46, P7533
IHM J, 1979, J PHYS C SOLID STATE, V12, P4409
JONES R, 1991, PHYS REV B, V44, P3407
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KUMAGAI O, 1984, APPL PHYS LETT, V45, P1322
LANG DV, 1979, PHYS REV B, V19, P1015
LI MF, 1987, PHYS REV B, V36, P4531
MEHRAN F, 1972, SOLID STATE COMMUN, V11, P661
MOONEY PM, 1990, J APPL PHYS, V67, R1
MORGAN TN, 1986, PHYS REV B, V34, P2664
MOSSER V, 1991, PHYS REV LETT, V66, P1737
PANTELIDES ST, 1974, PHYS REV B, V10, P638
SAARINEN K, 1994, PHYS REV B, V49, P8005
SAITO M, 1993, MOD PHYS LETT B, V7, P1567
SAITO M, 1993, PHYS REV B, V47, P13205
SCHMIDT TM, UNPUB
SCHMIDT TM, 1992, SOLID STATE COMMUN, V82, P83
SKIERBISZEWSKI C, 1993, APPL PHYS LETT, V63, P3209
SLATER JC, 1974, SELF CONSISTENT FIEL, V4
STUMPF RS, UNPUB
SUSKI T, 1991, J APPL PHYS, V69, P3087
TACHIKAWA M, 1985, JPN J APPL PHYS PT 2, V24, L893
THEIS TN, 1991, J ELECTRON MATER, V20, P35
VANDERWEL PJ, 1993, J PHYS-CONDENS MAT, V5, P5001
YAMAGUCHI E, 1991, J PHYS SOC JPN, V60, P3093
NR 45
TC 10
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD JAN 15
PY 1996
VL 53
IS 3
BP 1315
EP 1321
PG 7
SC Physics, Condensed Matter
GA TU290
UT ISI:A1996TU29000063
ER
PT J
AU Pliego, JR
DeAlmeida, WB
TI Searching for the ylide structure. An ab initio study of the H2O...CCl2
complex
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DICHLOROCARBENE
AB The potential energy surface (PES) for the H2O...CCl2 complex has been
investigated at the self-consistent field level with a DZP basis set in
order to search for stationary points and to verify the possible
formation of an ylide species. Six stationary points were located on
the PES, being one minimum, three first-order transition sates (TS) and
two second-order TS structures. A stable ylide species was not found,
and an explanation for this is given based on electrostatic grounds,
The unique minimum corresponds to an H-bond structure, with a
dissociation energy of 845.5 cm(-1), calculated including zero point
energy correction, a more extended basis set, electron correlation
effects at the MP2 level and taking into account basis set
superposition errors employing the counterpoise method.
RP Pliego, JR, UFMG,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM
MOLEC,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BETHELL D, 1973, ORGANIC REACTIVE INT
BOYS SF, 1970, MOL PHYS, V19, P553
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
CAI ZL, 1993, CHEM PHYS LETT, V210, P481
CARTER EA, 1988, J CHEM PHYS, V88, P1752
CHALASINSKI G, 1994, CHEM REV, V94, P1723
CHATEAUNEUF JE, 1990, J AM CHEM SOC, V112, P3217
DEALMEIDA WB, 1993, J PHYS CHEM-US, V97, P2560
DEALMEIDA WB, 1994, CHEM PHYS LETT, V231, P283
DEALMEIDA WB, 1994, MOL PHYS, V81, P1397
DEALMEIDA WB, 1995, SPECTROCHIM ACTA A, V51, P653
DUNNING TH, 1977, METHODS ELECTRONIC S
GOBBI A, 1993, J CHEM SOC CHEM COMM, P1162
GUTSEV GL, 1991, J PHYS CHEM-US, V95, P7220
HOBZA P, 1988, CHEM REV, V88, P71
KIM SJ, 1991, J CHEM PHYS, V94, P2063
KIRMSE W, 1964, CARBENE CHEM
MOSS RA, 1989, ACCOUNTS CHEM RES, V22, P15
PLIEGO JR, UNPUB
RESENDE SM, 1995, J CHEM PHYS, V102, P4184
RUSSO N, 1992, J CHEM PHYS, V97, P5031
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
NR 22
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JAN 26
PY 1996
VL 249
IS 1-2
BP 136
EP 140
PG 5
SC Physics, Atomic, Molecular & Chemical
GA TR918
UT ISI:A1996TR91800023
ER
PT J
AU Giordan, M
Custodio, R
Trigo, JR
TI Pyrrolizidine alkaloids necine bases: Ab initio, semiempirical, and
molecular mechanics approaches to molecular properties
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
ID BUTTERFLIES DANAUS-PLEXIPPUS; ARCTIID MOTH; PARAMETERS; OPTIMIZATION
AB The structural stabilities of endo and exo conformations of retronecine
and heliotridine molecules were analyzed using different ab initio,
semiempirical, and molecular mechanics methods. All electron and
pseudopotential nb initio calculations at the Hartree-Fock level of
theory with 6-31G* and CEP-31G* basis sets provided structures in
excellent agreement with available experimental results obtained from
X-ray crystal structure and H-1-NMR (nuclear magnetic resonance)
studies in D2O solutions. The exo conformations showed a greater
stability for both molecules. The most significant difference between
the calculations was found in the ring planarity of heliotridine, whose
distortion was associated with the interaction between the O(11)H group
and the C(1)-C(2) double bond as well as with a hydrogen bond between
O(11)H and N(4). The discrepancy between pseudopotential and
all-electron optimized geometries was reduced after inclusion of the
innermost electrons of C(1), C(2), and N(4) in the core potential
calculation. The MNDO, AM1, and PM3 semiempirical results showed poor
agreement with experimental data. The five-membered rings were observed
to be planar for AM1 and MNDO calculations. The PM3 calculations for
exo-retronecine showed a greater stability than the endo conformer, in
agreement with ab initio results. A good agreement was observed between
MM3 and nb initio geometries, with small differences probably due to
hydrogen bonds. While exo-retronecine was calculated to be more stable
than the endo conformer, the MM3 calculations suggested that
endo-heliotridine was slightly more stable than the exo form. (C) 1996
by John Wiley & Sons, Inc.
C1 UNIV ESTADUAL CAMPINAS,INST BIOL,DEPT ZOOL,LAB ECOL QUIM,BR-13081970 CAMPINAS,SP,BRAZIL.
RP Giordan, M, UNIV ESTADUAL CAMPINAS,DEPT FISICOQUIM,INST
QUIM,BR-13081970 CAMPINAS,SP,BRAZIL.
CR ALLINGER NL, MM392 QCPE IND U
ALLINGER NL, 1989, J AM CHEM SOC, V111, P8551
ALLINGER NL, 1989, J AM CHEM SOC, V111, P8566
ALLINGER NL, 1989, J AM CHEM SOC, V111, P8576
BOPPRE M, 1986, NATURWISSENSCHAFTEN, V73, P17
BOPPRE M, 1990, J CHEM ECOL, V16, P165
CULVENOR CCJ, 1965, AUST J CHEM, V18, P1605
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
EDGAR JA, 1975, PHIL T R SOC LOND B, V272, P467
EDGAR JA, 1979, EXPERIENTIA, V35, P1447
FERGUSON DM, 1992, J COMPUT CHEM, V13, P525
FRISCH MJ, 1992, GAUSSIAN 92
GELBAUM LT, 1985, ACTA CRYSTALLOGR C, V41, P1342
HARTMANN T, 1988, CELL CULTURE SOMATIC, V5, P277
HARTMANN T, 1995, ALKALOIDS CHEM BIOL, V9, P155
HAY DG, 1982, ACTA CRYSTALLOGR B, V38, P155
HEHRE WJ, 1986, AB INITIO MOL ORBITA, P137
KARPLUS M, 1963, J AM CHEM SOC, V85, P2870
KELLEY RB, 1987, EXPERIENTIA, V43, P943
LEMPEREUR KM, 1989, J NAT PRODUCTS, V52, P360
MACKAY MF, 1982, ACTA CRYSTALLOGR B, V38, P2754
MACKAY MF, 1983, ACTA CRYSTALLOGR C, V39, P785
MATTOCKS AR, 1972, PHYTOCHEMICAL ECOLOG, P179
MATTOCKS AR, 1986, CHEM TOXICOLOGY PYRR
NISHIDA R, 1991, AGR BIOL CHEM TOKYO, V55, P1787
RIZAK AFM, 1991, NATURALLY OCCURRING, P1
RIZAK AFM, 1991, NATURALLY OCCURRING, P211
STELLJES ME, 1990, J CHEM ECOL, V16, P1459
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
STOECKLIEVANS H, 1976, HELV CHIM ACTA, V59, P2168
STOECKLIEVANS H, 1982, ACTA CRYSTALLOGR B, V38, P1617
SUSSMAN JL, 1973, ACTA CRYSTALLOGR B, V29, P2918
TRIGO JR, 1993, ALCALOIDES PIRROLIZI
TRIGO JR, 1993, J CHEM ECOL, V19, P669
TRIGO JR, 1994, J CHEM ECOL, V20, P2603
VILKOV LV, 1983, DETERMINATION GEOMET
WODAK SJ, 1975, ACTA CRYSTALLOGR B, V31, P569
NR 40
TC 7
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD JAN 30
PY 1996
VL 17
IS 2
BP 156
EP 166
PG 11
SC Chemistry, Multidisciplinary
GA TM791
UT ISI:A1996TM79100003
ER
PT J
AU DeAzevedo, ALMS
Neto, BB
Scarminio, IS
DeOliveira, AE
Bruns, RE
TI A chemometric analysis of ab initio vibrational frequencies and
infrared intensities of methyl fluoride
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
ID DIPOLE-MOMENT DERIVATIVES; THEORETICAL THERMOCHEMISTRY; ANALYTIC
EVALUATION; MOLECULES; SIGNS; HEATS; CH3F
AB Factorial design and principal component analyses are applied to CH3F
infrared frequencies and intensities calculated from ab initio wave
functions. In the factorial analysis, the quantitative effects of
changing from a 6-31G to a 6-311G basis, of including polarization and
diffuse orbitals, and of correcting for electron correlation using the
second-order Moller-Plesset procedure are determined for all
frequencies and intensities. The most significant main effect observed
for the frequencies corresponds to the shift from Hartree-Fock to MP2
calculations, which tends to lower all frequency values by
approximately 100 cm(-1). For the intensities, the main effects are
larger for the CF stretching and the CH3 asymmetric stretching modes.
Interaction effects between two or more of the four factors are found
to be of minor importance, except for the interaction between
correlation and polarization. The principal component analysis
indicates that wave functions with polarization and diffuse orbitals at
the second-order Moller-Plesset level provide the best estimates for
the harmonic frequencies, but not for the intensities. For the
frequencies, the first principal component distinguishes between MP2
and Hartree-Fock calculations, while the second component separates the
wave functions with polarization orbitals from those without these
orbitals. For the intensities, the separation is similar but less well
defined. This analysis also shows that wave function optimization to
calculate accurate intensities is more difficult than an optimization
for frequencies. (C) 1996 by John Wiley & Sons, Inc.
C1 UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13081970 CAMPINAS,SP,BRAZIL.
UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50739 RECIFE,PE,BRAZIL.
UNIV ESTADUAL LONDRINA,DEPT QUIM,LONDRINA,PARANA,BRAZIL.
CR BARROW GM, 1952, P ROY SOC LOND A MAT, V213, P27
BLOM CE, 1978, J MOL SPECTROSC, V70, P449
BOX GEP, 1978, STATISTICS EXPT
DILAURO C, 1966, J MOL SPECTROSC, V21, P386
DUNCAN JL, 1972, MOL PHYS, V24, P553
FRISCH MJ, 1992, GAUSSIAN 92
KONDO S, 1982, J CHEM PHYS, V76, P809
MARDIA KV, 1979, MULTIVARIATE ANAL, CH8
MILLER MD, 1989, J PHYS CHEM-US, V93, P4495
NEWTON JH, 1976, J CHEM PHYS, V64, P3036
PERSON WB, 1977, J CHEM PHYS, V66, P1442
PERSON WB, 1982, VIBRATIONAL INTENSIT, P271
POPLE JA, 1985, J PHYS CHEM-US, V89, P2198
POPLE JA, 1987, J PHYS CHEM-US, V91, P155
RUSSELL JW, 1966, J CHEM PHYS, V45, P3383
SCARMINIO IS, 1989, TRAC-TREND ANAL CHEM, V8, P326
SIMANDIRAS ED, 1987, CHEM PHYS, V114, P9
SOSA C, 1987, J CHEM PHYS, V86, P6937
STANTON JF, 1989, J CHEM PHYS, V90, P3241
SUTO E, 1991, J COMPUT CHEM, V12, P885
SUTO E, 1993, J MOL STRUCT THEOCHE, V282, P81
YAMAGUCHI Y, 1986, J CHEM PHYS, V84, P2262
NR 22
TC 6
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD JAN 30
PY 1996
VL 17
IS 2
BP 167
EP 177
PG 11
SC Chemistry, Multidisciplinary
GA TM791
UT ISI:A1996TM79100004
ER
EF
|