This file is indexed.

/usr/include/xtensor/xbuffer_adaptor.hpp is in xtensor-dev 0.10.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/***************************************************************************
* Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht    *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef XBUFFER_ADAPTOR_HPP
#define XBUFFER_ADAPTOR_HPP

#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <stdexcept>

#include "xstorage.hpp"

namespace xt
{
    struct no_ownership
    {
    };

    struct acquire_ownership
    {
    };

    namespace detail
    {

        template <class T, class A>
        class xbuffer_storage
        {
        public:

            using self_type = xbuffer_storage<T, A>;
            using allocator_type = A;
            using value_type = typename allocator_type::value_type;
            using reference = typename allocator_type::reference;
            using const_reference = typename allocator_type::const_reference;
            using pointer = typename allocator_type::pointer;
            using const_pointer = typename allocator_type::const_pointer;
            using size_type = typename allocator_type::size_type;
            using difference_type = typename allocator_type::difference_type;

            xbuffer_storage();
            xbuffer_storage(T*& data, size_type size, const allocator_type& alloc = allocator_type());

            size_type size() const noexcept;
            void resize(size_type size);

            pointer data() noexcept;
            const_pointer data() const noexcept;

            void swap(self_type& rhs) noexcept;

        private:

            pointer p_data;
            size_type m_size;
        };

        template <class T, class A>
        class xbuffer_owner_storage
        {
        public:

            using self_type = xbuffer_owner_storage<T, A>;
            using allocator_type = A;
            using value_type = typename allocator_type::value_type;
            using reference = typename allocator_type::reference;
            using const_reference = typename allocator_type::const_reference;
            using pointer = typename allocator_type::pointer;
            using const_pointer = typename allocator_type::const_pointer;
            using size_type = typename allocator_type::size_type;
            using difference_type = typename allocator_type::difference_type;

            xbuffer_owner_storage();
            xbuffer_owner_storage(T*& data, size_type size, const allocator_type& alloc = allocator_type());
            ~xbuffer_owner_storage();

            xbuffer_owner_storage(const self_type&) = delete;
            self_type& operator=(const self_type&);

            xbuffer_owner_storage(self_type&&);
            self_type& operator=(self_type&&);

            size_type size() const noexcept;
            void resize(size_type size);

            pointer data() noexcept;
            const_pointer data() const noexcept;

            allocator_type get_allocator() const noexcept;

            void swap(self_type& rhs) noexcept;

        private:

            pointer* p_data;
            size_type m_size;
            allocator_type m_allocator;
        };

        template <class T, class A, class O>
        struct get_buffer_storage
        {
            using type = xbuffer_storage<T, A>;
        };

        template <class T, class A>
        struct get_buffer_storage<T, A, acquire_ownership>
        {
            using type = xbuffer_owner_storage<T, A>;
        };

        template <class T, class A, class O>
        using buffer_storage_t = typename get_buffer_storage<T, A, O>::type;
    }

    template <class T, class O = no_ownership, class A = std::allocator<T>>
    class xbuffer_adaptor : private detail::buffer_storage_t<T, A, O>
    {
    public:

        using base_type = detail::buffer_storage_t<T, A, O>;
        using allocator_type = typename base_type::allocator_type;
        using value_type = typename base_type::value_type;
        using reference = typename base_type::reference;
        using const_reference = typename base_type::const_reference;
        using pointer = typename base_type::pointer;
        using const_pointer = typename base_type::const_pointer;

        using size_type = typename base_type::size_type;
        using difference_type = typename base_type::difference_type;

        using iterator = pointer;
        using const_iterator = const_pointer;
        using reverse_iterator = std::reverse_iterator<iterator>;
        using const_reverse_iterator = std::reverse_iterator<const_iterator>;

        xbuffer_adaptor() = default;

        template <class OW = O, class = std::enable_if_t<std::is_same<OW, acquire_ownership>::value>>
        xbuffer_adaptor(T*& data, size_type size, const allocator_type& alloc = allocator_type());

        template <class OW = O, class = std::enable_if_t<std::is_same<OW, no_ownership>::value>>
        xbuffer_adaptor(T* data, size_type size, const allocator_type& alloc = allocator_type());

        bool empty() const noexcept;
        using base_type::size;
        using base_type::resize;

        reference operator[](size_type i);
        const_reference operator[](size_type i) const;

        reference front();
        const_reference front() const;

        reference back();
        const_reference back() const;

        iterator begin();
        iterator end();

        const_iterator begin() const;
        const_iterator end() const;
        const_iterator cbegin() const;
        const_iterator cend() const;

        reverse_iterator rbegin();
        reverse_iterator rend();

        const_reverse_iterator rbegin() const;
        const_reverse_iterator rend() const;
        const_reverse_iterator crbegin() const;
        const_reverse_iterator crend() const;

        using base_type::data;
        using base_type::swap;
    };

    template <class T, class O, class A>
    bool operator==(const xbuffer_adaptor<T, O, A>& lhs,
                    const xbuffer_adaptor<T, O, A>& rhs);

    template <class T, class O, class A>
    bool operator!=(const xbuffer_adaptor<T, O, A>& lhs,
                    const xbuffer_adaptor<T, O, A>& rhs);

    template <class T, class O, class A>
    bool operator<(const xbuffer_adaptor<T, O, A>& lhs,
                   const xbuffer_adaptor<T, O, A>& rhs);

    template <class T, class O, class A>
    bool operator<=(const xbuffer_adaptor<T, O, A>& lhs,
                    const xbuffer_adaptor<T, O, A>& rhs);

    template <class T, class O, class A>
    bool operator>(const xbuffer_adaptor<T, O, A>& lhs,
                   const xbuffer_adaptor<T, O, A>& rhs);

    template <class T, class O, class A>
    bool operator>=(const xbuffer_adaptor<T, O, A>& lhs,
                    const xbuffer_adaptor<T, O, A>& rhs);

    template <class T, class O, class A>
    void swap(xbuffer_adaptor<T, O, A>& lhs,
              xbuffer_adaptor<T, O, A>& rhs) noexcept;

    /*******************
     * adaptor_closure *
     *******************/

    namespace detail
    {
        template <class C>
        struct adaptor_closure_impl
        {
            using type = C&;
        };

        template <class T, class O, class A>
        struct adaptor_closure_impl<xbuffer_adaptor<T, O, A>>
        {
            using type = xbuffer_adaptor<T, O, A>;
        };
    }

    template <class C>
    using adaptor_closure_t = typename detail::adaptor_closure_impl<C>::type;

    /**********************************
     * xbuffer_storage implementation *
     **********************************/

    namespace detail
    {
        template <class T, class A>
        inline xbuffer_storage<T, A>::xbuffer_storage()
            : p_data(nullptr), m_size(0)
        {
        }

        template <class T, class A>
        inline xbuffer_storage<T, A>::xbuffer_storage(T*& data, size_type size, const allocator_type&)
            : p_data(data), m_size(size)
        {
        }

        template <class T, class A>
        inline auto xbuffer_storage<T, A>::size() const noexcept -> size_type
        {
            return m_size;
        }

        template <class T, class A>
        inline void xbuffer_storage<T, A>::resize(size_type size)
        {
            if (size != m_size)
                throw std::runtime_error("xbuffer_storage not resizable");
        }

        template <class T, class A>
        inline auto xbuffer_storage<T, A>::data() noexcept -> pointer
        {
            return p_data;
        }

        template <class T, class A>
        inline auto xbuffer_storage<T, A>::data() const noexcept -> const_pointer
        {
            return p_data;
        }

        template <class T, class A>
        inline void xbuffer_storage<T, A>::swap(self_type& rhs) noexcept
        {
            using std::swap;
            swap(p_data, rhs.p_data);
            swap(m_size, rhs.m_size);
        }
    }

    /****************************************
     * xbuffer_owner_storage implementation *
     ****************************************/

    namespace detail
    {
        template <class T, class A>
        inline xbuffer_owner_storage<T, A>::xbuffer_owner_storage()
            : p_data(nullptr), m_size(0), m_allocator()
        {
        }

        template <class T, class A>
        inline xbuffer_owner_storage<T, A>::xbuffer_owner_storage(T*& data, size_type size, const allocator_type& alloc)
            : p_data(&data), m_size(size), m_allocator(alloc)
        {
        }

        template <class T, class A>
        inline xbuffer_owner_storage<T, A>::~xbuffer_owner_storage()
        {
            if (p_data != nullptr)
            {
                safe_destroy_deallocate(m_allocator, *p_data, m_size);
                p_data = nullptr;
                m_size = 0;
            }
        }

        template <class T, class A>
        inline auto xbuffer_owner_storage<T, A>::operator=(const self_type& rhs) -> self_type&
        {
            using std::swap;
            if (this != &rhs)
            {
                allocator_type al = std::allocator_traits<allocator_type>::select_on_container_copy_construction(rhs.get_allocator());
                pointer tmp = safe_init_allocate(al, rhs.m_size);
                if (xtrivially_default_constructible<value_type>::value)
                {
                    std::uninitialized_copy(*(rhs.p_data), *(rhs.p_data) + rhs.m_size, tmp);
                }
                else
                {
                    std::copy(*(rhs.p_data), *(rhs.p_data) + rhs.m_size, tmp);
                }
                swap(*p_data, tmp);
                m_size = rhs.m_size;
                swap(m_allocator, al);
                safe_destroy_deallocate(al, tmp, m_size);
            }
            return *this;
        }

        template <class T, class A>
        inline xbuffer_owner_storage<T, A>::xbuffer_owner_storage(self_type&& rhs)
            : p_data(rhs.p_data), m_size(rhs.m_size), m_allocator(std::move(rhs.m_allocator))
        {
            rhs.p_data = nullptr;
            rhs.m_size = 0;
        }

        template <class T, class A>
        inline auto xbuffer_owner_storage<T, A>::operator=(self_type&& rhs) -> self_type&
        {
            swap(rhs);
            return *this;
        }

        template <class T, class A>
        inline auto xbuffer_owner_storage<T, A>::size() const noexcept -> size_type
        {
            return m_size;
        }

        template <class T, class A>
        void xbuffer_owner_storage<T, A>::resize(size_type size)
        {
            using std::swap;
            if (size != m_size)
            {
                pointer tmp = safe_init_allocate(m_allocator, size);
                swap(*p_data, tmp);
                swap(m_size, size);
                safe_destroy_deallocate(m_allocator, tmp, size);
            }
        }

        template <class T, class A>
        inline auto xbuffer_owner_storage<T, A>::data() noexcept -> pointer
        {
            return *p_data;
        }

        template <class T, class A>
        inline auto xbuffer_owner_storage<T, A>::data() const noexcept -> const_pointer
        {
            return *p_data;
        }

        template <class T, class A>
        inline auto xbuffer_owner_storage<T, A>::get_allocator() const noexcept -> allocator_type
        {
            return allocator_type(m_allocator);
        }

        template <class T, class A>
        inline void xbuffer_owner_storage<T, A>::swap(self_type& rhs) noexcept
        {
            using std::swap;
            swap(p_data, rhs.p_data);
            swap(m_size, rhs.m_size);
            swap(m_allocator, rhs.m_allocator);
        }
    }

    /**********************************
     * xbuffer_adaptor implementation *
     **********************************/

    template <class T, class O, class A>
    template <class OW, class>
    inline xbuffer_adaptor<T, O, A>::xbuffer_adaptor(T*& data, size_type size, const allocator_type& alloc)
        : base_type(data, size, alloc)
    {
    }

    template <class T, class O, class A>
    template <class OW, class>
    inline xbuffer_adaptor<T, O, A>::xbuffer_adaptor(T* data, size_type size, const allocator_type& alloc)
        : base_type(data, size, alloc)
    {
    }

    template <class T, class O, class A>
    bool xbuffer_adaptor<T, O, A>::empty() const noexcept
    {
        return size() == 0;
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::operator[](size_type i) -> reference
    {
        return data()[i];
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::operator[](size_type i) const -> const_reference
    {
        return data()[i];
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::front() -> reference
    {
        return data()[0];
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::front() const -> const_reference
    {
        return data()[0];
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::back() -> reference
    {
        return data()[size() - 1];
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::back() const -> const_reference
    {
        return data()[size() - 1];
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::begin() -> iterator
    {
        return data();
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::end() -> iterator
    {
        return data() + size();
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::begin() const -> const_iterator
    {
        return data();
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::end() const -> const_iterator
    {
        return data() + size();
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::cbegin() const -> const_iterator
    {
        return begin();
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::cend() const -> const_iterator
    {
        return end();
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::rbegin() -> reverse_iterator
    {
        return reverse_iterator(end());
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::rend() -> reverse_iterator
    {
        return reverse_iterator(begin());
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::rbegin() const -> const_reverse_iterator
    {
        return const_reverse_iterator(end());
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::rend() const -> const_reverse_iterator
    {
        return const_reverse_iterator(begin());
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::crbegin() const -> const_reverse_iterator
    {
        return rbegin();
    }

    template <class T, class O, class A>
    inline auto xbuffer_adaptor<T, O, A>::crend() const -> const_reverse_iterator
    {
        return rend();
    }

    template <class T, class O, class A>
    inline bool operator==(const xbuffer_adaptor<T, O, A>& lhs,
                           const xbuffer_adaptor<T, O, A>& rhs)
    {
        return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin());
    }

    template <class T, class O, class A>
    inline bool operator!=(const xbuffer_adaptor<T, O, A>& lhs,
                           const xbuffer_adaptor<T, O, A>& rhs)
    {
        return !(lhs == rhs);
    }

    template <class T, class O, class A>
    inline bool operator<(const xbuffer_adaptor<T, O, A>& lhs,
                          const xbuffer_adaptor<T, O, A>& rhs)
    {
        return std::lexicographical_compare(lhs.begin(), lhs.end(),
                                            rhs.begin(), rhs.end(),
                                            std::less<T>());
    }

    template <class T, class O, class A>
    inline bool operator<=(const xbuffer_adaptor<T, O, A>& lhs,
                           const xbuffer_adaptor<T, O, A>& rhs)
    {
        return std::lexicographical_compare(lhs.begin(), lhs.end(),
                                            rhs.begin(), rhs.end(),
                                            std::less_equal<T>());
    }

    template <class T, class O, class A>
    inline bool operator>(const xbuffer_adaptor<T, O, A>& lhs,
                          const xbuffer_adaptor<T, O, A>& rhs)
    {
        return std::lexicographical_compare(lhs.begin(), lhs.end(),
                                            rhs.begin(), rhs.end(),
                                            std::greater<T>());
    }

    template <class T, class O, class A>
    inline bool operator>=(const xbuffer_adaptor<T, O, A>& lhs,
                           const xbuffer_adaptor<T, O, A>& rhs)
    {
        return std::lexicographical_compare(lhs.begin(), lhs.end(),
                                            rhs.begin(), rhs.end(),
                                            std::greater_equal<T>());
    }

    template <class T, class O, class A>
    inline void swap(xbuffer_adaptor<T, O, A>& lhs,
                     xbuffer_adaptor<T, O, A>& rhs) noexcept
    {
        lhs.swap(rhs);
    }
}

#endif