This file is indexed.

/usr/include/xtensor/xcontainer.hpp is in xtensor-dev 0.10.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
/***************************************************************************
* Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht    *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef XCONTAINER_HPP
#define XCONTAINER_HPP

#include <algorithm>
#include <functional>
#include <numeric>
#include <stdexcept>

#include "xiterable.hpp"
#include "xiterator.hpp"
#include "xmath.hpp"
#include "xoperation.hpp"
#include "xstrides.hpp"
#include "xtensor_forward.hpp"

namespace xt
{
    template <class D>
    struct xcontainer_iterable_types
    {
        using inner_shape_type = typename xcontainer_inner_types<D>::inner_shape_type;
        using container_type = typename xcontainer_inner_types<D>::container_type;
        using iterator = typename container_type::iterator;
        using const_iterator = typename container_type::const_iterator;
        using reverse_iterator = typename container_type::reverse_iterator;
        using const_reverse_iterator = typename container_type::const_reverse_iterator;
        using stepper = xstepper<D>;
        using const_stepper = xstepper<const D>;
    };

    /**
     * @class xcontainer
     * @brief Base class for dense multidimensional containers.
     *
     * The xcontainer class defines the interface for dense multidimensional
     * container classes. It does not embed any data container, this responsibility
     * is delegated to the inheriting classes.
     *
     * @tparam D The derived type, i.e. the inheriting class for which xcontainer
     *           provides the interface.
     */
    template <class D>
    class xcontainer : public xiterable<D>
    {
    public:

        using derived_type = D;

        using inner_types = xcontainer_inner_types<D>;
        using container_type = typename inner_types::container_type;
        using value_type = typename container_type::value_type;
        using reference = typename container_type::reference;
        using const_reference = typename container_type::const_reference;
        using pointer = typename container_type::pointer;
        using const_pointer = typename container_type::const_pointer;
        using size_type = typename container_type::size_type;
        using difference_type = typename container_type::difference_type;

        using shape_type = typename inner_types::shape_type;
        using strides_type = typename inner_types::strides_type;
        using backstrides_type = typename inner_types::backstrides_type;

        using inner_shape_type = typename inner_types::inner_shape_type;
        using inner_strides_type = typename inner_types::inner_strides_type;
        using inner_backstrides_type = typename inner_types::inner_backstrides_type;

        using iterable_base = xiterable<D>;

        using iterator = typename iterable_base::iterator;
        using const_iterator = typename iterable_base::const_iterator;

        using stepper = typename iterable_base::stepper;
        using const_stepper = typename iterable_base::const_stepper;

        using reverse_iterator = typename iterable_base::reverse_iterator;
        using const_reverse_iterator = typename iterable_base::const_reverse_iterator;

        size_type size() const noexcept;

        constexpr size_type dimension() const noexcept;

        const inner_shape_type& shape() const noexcept;
        const inner_strides_type& strides() const noexcept;
        const inner_backstrides_type& backstrides() const noexcept;

        template <class... Args>
        reference operator()(Args... args);

        template <class... Args>
        const_reference operator()(Args... args) const;

        reference operator[](const xindex& index);
        reference operator[](size_type i);
        const_reference operator[](const xindex& index) const;
        const_reference operator[](size_type i) const;

        template <class It>
        reference element(It first, It last);
        template <class It>
        const_reference element(It first, It last) const;

        container_type& data() noexcept;
        const container_type& data() const noexcept;

        value_type* raw_data() noexcept;
        const value_type* raw_data() const noexcept;
        const size_type raw_data_offset() const noexcept;

        template <class S>
        bool broadcast_shape(S& shape) const;

        template <class S>
        bool is_trivial_broadcast(const S& strides) const noexcept;

        iterator begin() noexcept;
        iterator end() noexcept;

        const_iterator begin() const noexcept;
        const_iterator end() const noexcept;
        const_iterator cbegin() const noexcept;
        const_iterator cend() const noexcept;

        reverse_iterator rbegin() noexcept;
        reverse_iterator rend() noexcept;

        const_reverse_iterator rbegin() const noexcept;
        const_reverse_iterator rend() const noexcept;
        const_reverse_iterator crbegin() const noexcept;
        const_reverse_iterator crend() const noexcept;

        template <class S>
        stepper stepper_begin(const S& shape) noexcept;
        template <class S>
        stepper stepper_end(const S& shape, layout_type l) noexcept;

        template <class S>
        const_stepper stepper_begin(const S& shape) const noexcept;
        template <class S>
        const_stepper stepper_end(const S& shape, layout_type l) const noexcept;

        using container_iterator = typename container_type::iterator;
        using const_container_iterator = typename container_type::const_iterator;

        reference data_element(size_type i);
        const_reference data_element(size_type i) const;

    protected:

        xcontainer() = default;
        ~xcontainer() = default;

        xcontainer(const xcontainer&) = default;
        xcontainer& operator=(const xcontainer&) = default;

        xcontainer(xcontainer&&) = default;
        xcontainer& operator=(xcontainer&&) = default;

        container_iterator data_xbegin() noexcept;
        const_container_iterator data_xbegin() const noexcept;
        container_iterator data_xend(layout_type l) noexcept;
        const_container_iterator data_xend(layout_type l) const noexcept;

    private:

        template <class C>
        friend class xstepper;

        template <class It>
        It data_xend_impl(It end, layout_type l) const noexcept;

        inner_shape_type& mutable_shape();
        inner_strides_type& mutable_strides();
        inner_backstrides_type& mutable_backstrides();

        derived_type& derived_cast();
        const derived_type& derived_cast() const;
    };

    /**
     * @class xstrided_container
     * @brief Partial implementation of xcontainer that embeds the strides and the shape
     *
     * The xstrided_container class is a partial implementation of the xcontainer interface
     * that embed the strides and the shape of the multidimensional container. It does
     * not embed the data container, this responsibility is delegated to the inheriting
     * classes.
     *
     * @tparam D The derived type, i.e. the inheriting class for which xstrided_container
     *           provides the partial imlpementation of xcontainer.
     * @tparam L The layout_type of the xstrided_container.
     */
    template <class D, layout_type L>
    class xstrided_container : public xcontainer<D>
    {
    public:

        using base_type = xcontainer<D>;
        using container_type = typename base_type::container_type;
        using value_type = typename base_type::value_type;
        using reference = typename base_type::reference;
        using const_reference = typename base_type::const_reference;
        using pointer = typename base_type::pointer;
        using const_pointer = typename base_type::const_pointer;
        using size_type = typename base_type::size_type;
        using shape_type = typename base_type::shape_type;
        using strides_type = typename base_type::strides_type;
        using inner_shape_type = typename base_type::inner_shape_type;
        using inner_strides_type = typename base_type::inner_strides_type;
        using inner_backstrides_type = typename base_type::inner_backstrides_type;

        static constexpr layout_type static_layout = L;
        static constexpr bool contiguous_layout = static_layout != layout_type::dynamic;

        template <class S = shape_type>
        void reshape(const S& shape, bool force = false);
        template <class S = shape_type>
        void reshape(const S& shape, layout_type l);
        template <class S = shape_type>
        void reshape(const S& shape, const strides_type& strides);

        layout_type layout() const noexcept;

    protected:

        xstrided_container() noexcept;
        ~xstrided_container() = default;

        xstrided_container(const xstrided_container&) = default;
        xstrided_container& operator=(const xstrided_container&) = default;

        xstrided_container(xstrided_container&&) = default;
        xstrided_container& operator=(xstrided_container&&) = default;

        explicit xstrided_container(inner_shape_type&&, inner_strides_type&&) noexcept;

        inner_shape_type& shape_impl() noexcept;
        const inner_shape_type& shape_impl() const noexcept;

        inner_strides_type& strides_impl() noexcept;
        const inner_strides_type& strides_impl() const noexcept;

        inner_backstrides_type& backstrides_impl() noexcept;
        const inner_backstrides_type& backstrides_impl() const noexcept;

    private:

        inner_shape_type m_shape;
        inner_strides_type m_strides;
        inner_backstrides_type m_backstrides;
        layout_type m_layout = L;
    };

    /******************************
     * xcontainer implementation *
     ******************************/

    template <class D>
    template <class It>
    inline It xcontainer<D>::data_xend_impl(It end, layout_type l) const noexcept
    {
        return strided_data_end(*this, end, l);
    }

    template <class D>
    inline auto xcontainer<D>::mutable_shape() -> inner_shape_type&
    {
        return derived_cast().shape_impl();
    }

    template <class D>
    inline auto xcontainer<D>::mutable_strides() -> inner_strides_type&
    {
        return derived_cast().strides_impl();
    }

    template <class D>
    inline auto xcontainer<D>::mutable_backstrides() -> inner_backstrides_type&
    {
        return derived_cast().backstrides_impl();
    }

    template <class D>
    inline auto xcontainer<D>::derived_cast() -> derived_type&
    {
        return *static_cast<derived_type*>(this);
    }

    template <class D>
    inline auto xcontainer<D>::derived_cast() const -> const derived_type&
    {
        return *static_cast<const derived_type*>(this);
    }

    /**
     * @name Size and shape
     */
    //@{
    /**
     * Returns the number of element in the container.
     */
    template <class D>
    inline auto xcontainer<D>::size() const noexcept -> size_type
    {
        return data().size();
    }

    /**
     * Returns the number of dimensions of the container.
     */
    template <class D>
    inline constexpr auto xcontainer<D>::dimension() const noexcept -> size_type
    {
        return shape().size();
    }

    /**
     * Returns the shape of the container.
     */
    template <class D>
    inline auto xcontainer<D>::shape() const noexcept -> const inner_shape_type&
    {
        return derived_cast().shape_impl();
    }

    /**
     * Returns the strides of the container.
     */
    template <class D>
    inline auto xcontainer<D>::strides() const noexcept -> const inner_strides_type&
    {
        return derived_cast().strides_impl();
    }

    /**
     * Returns the backstrides of the container.
     */
    template <class D>
    inline auto xcontainer<D>::backstrides() const noexcept -> const inner_backstrides_type&
    {
        return derived_cast().backstrides_impl();
    }
    //@}


    /**
     * @name Data
     */
    //@{
    /**
     * Returns a reference to the element at the specified position in the container.
     * @param args a list of indices specifying the position in the container. Indices
     * must be unsigned integers, the number of indices should be equal or greater than
     * the number of dimensions of the container.
     */
    template <class D>
    template <class... Args>
    inline auto xcontainer<D>::operator()(Args... args) -> reference
    {
        XTENSOR_ASSERT(check_index(shape(), args...));
        size_type index = data_offset<size_type>(strides(), static_cast<size_type>(args)...);
        return data()[index];
    }

    /**
     * Returns a constant reference to the element at the specified position in the container.
     * @param args a list of indices specifying the position in the container. Indices
     * must be unsigned integers, the number of indices should be equal or greater than
     * the number of dimensions of the container.
     */
    template <class D>
    template <class... Args>
    inline auto xcontainer<D>::operator()(Args... args) const -> const_reference
    {
        XTENSOR_ASSERT(check_index(shape(), args...));
        size_type index = data_offset<size_type>(strides(), static_cast<size_type>(args)...);
        return data()[index];
    }

    /**
     * Returns a reference to the element at the specified position in the container.
     * @param index a sequence of indices specifying the position in the container. Indices
     * must be unsigned integers, the number of indices in the list should be equal or greater
     * than the number of dimensions of the container.
     */
    template <class D>
    inline auto xcontainer<D>::operator[](const xindex& index) -> reference
    {
        return element(index.cbegin(), index.cend());
    }

    template <class D>
    inline auto xcontainer<D>::operator[](size_type i) -> reference
    {
        return operator()(i);
    }

    /**
     * Returns a constant reference to the element at the specified position in the container.
     * @param index a sequence of indices specifying the position in the container. Indices
     * must be unsigned integers, the number of indices in the list should be equal or greater
     * than the number of dimensions of the container.
     */
    template <class D>
    inline auto xcontainer<D>::operator[](const xindex& index) const -> const_reference
    {
        return element(index.cbegin(), index.cend());
    }

    template <class D>
    inline auto xcontainer<D>::operator[](size_type i) const -> const_reference
    {
        return operator()(i);
    }

    /**
     * Returns a reference to the element at the specified position in the container.
     * @param first iterator starting the sequence of indices
     * @param last iterator ending the sequence of indices
     * The number of indices in the sequence should be equal to or greater
     * than the number of dimensions of the container.
     */
    template <class D>
    template <class It>
    inline auto xcontainer<D>::element(It first, It last) -> reference
    {
        XTENSOR_ASSERT(check_element_index(shape(), first, last));
        return data()[element_offset<size_type>(strides(), first, last)];
    }

    /**
     * Returns a reference to the element at the specified position in the container.
     * @param first iterator starting the sequence of indices
     * @param last iterator ending the sequence of indices
     * The number of indices in the sequence should be equal to or greater
     * than the number of dimensions of the container.
     */
    template <class D>
    template <class It>
    inline auto xcontainer<D>::element(It first, It last) const -> const_reference
    {
        XTENSOR_ASSERT(check_element_index(shape(), first, last));
        return data()[element_offset<size_type>(strides(), first, last)];
    }

    /**
     * Returns a reference to the buffer containing the elements of the container.
     */
    template <class D>
    inline auto xcontainer<D>::data() noexcept -> container_type&
    {
        return derived_cast().data_impl();
    }

    /**
     * Returns a constant reference to the buffer containing the elements of the
     * container.
     */
    template <class D>
    inline auto xcontainer<D>::data() const noexcept -> const container_type&
    {
        return derived_cast().data_impl();
    }

    /**
     * Returns the offset to the first element in the container.
     */
    template <class D>
    inline auto xcontainer<D>::raw_data() noexcept -> value_type*
    {
        return data().data();
    }

    template <class D>
    inline auto xcontainer<D>::raw_data() const noexcept -> const value_type*
    {
        return data().data();
    }

    /**
     * Returns the offset to the first element in the container.
     */
    template <class D>
    inline auto xcontainer<D>::raw_data_offset() const noexcept -> const size_type
    {
        return size_type(0);
    }
    //@}

    /**
     * @name Broadcasting
     */
    //@{
    /**
     * Broadcast the shape of the container to the specified parameter.
     * @param shape the result shape
     * @return a boolean indicating whether the broadcasting is trivial
     */
    template <class D>
    template <class S>
    inline bool xcontainer<D>::broadcast_shape(S& shape) const
    {
        return xt::broadcast_shape(this->shape(), shape);
    }

    /**
     * Compares the specified strides with those of the container to see whether
     * the broadcasting is trivial.
     * @return a boolean indicating whether the broadcasting is trivial
     */
    template <class D>
    template <class S>
    inline bool xcontainer<D>::is_trivial_broadcast(const S& str) const noexcept
    {
        return str.size() == strides().size() &&
            std::equal(str.cbegin(), str.cend(), strides().begin());
    }
    //@}

    /****************
     * iterator api *
     ****************/

    /**
     * @name Iterators
     */
    //@{
    /**
     * Returns an iterator to the first element of the buffer containing
     * the elements of the container.
     */
    template <class D>
    inline auto xcontainer<D>::begin() noexcept -> iterator
    {
        return data().begin();
    }

    /**
     * Returns an iterator to the element following the last element of
     * the buffer containing the elements of the container.
     */
    template <class D>
    inline auto xcontainer<D>::end() noexcept -> iterator
    {
        return data().end();
    }

    /**
     * Returns a constant iterator to the first element of the buffer
     * containing the elements of the container.
     */
    template <class D>
    inline auto xcontainer<D>::begin() const noexcept -> const_iterator
    {
        return cbegin();
    }

    /**
     * Returns a constant iterator to the element following the last
     * element of the buffer containing the elements of the container.
     */
    template <class D>
    inline auto xcontainer<D>::end() const noexcept -> const_iterator
    {
        return cend();
    }

    /**
     * Returns a constant iterator to the first element of the buffer
     * containing the elements of the container.
     */
    template <class D>
    inline auto xcontainer<D>::cbegin() const noexcept -> const_iterator
    {
        return data().cbegin();
    }

    /**
     * Returns a constant iterator to the element following the last
     * element of the buffer containing the elements of the container.
     */
    template <class D>
    inline auto xcontainer<D>::cend() const noexcept -> const_iterator
    {
        return data().cend();
    }
    //@}

    /**
     * @name Reverse iterators
     */
    //@{
    /**
     * Returns an iterator to the first element of the reversed buffer containing
     * the elements of the container.
     */
    template <class D>
    inline auto xcontainer<D>::rbegin() noexcept -> reverse_iterator
    {
        return data().rbegin();
    }

    /**
     * Returns an iterator to the element following the last element of
     * the reversed buffer containing the elements of the container.
     */
    template <class D>
    inline auto xcontainer<D>::rend() noexcept -> reverse_iterator
    {
        return data().rend();
    }

    /**
     * Returns a constant iterator to the first element of the reversed
     * buffer containing the elements of the container.
     */
    template <class D>
    inline auto xcontainer<D>::rbegin() const noexcept -> const_reverse_iterator
    {
        return data().rbegin();
    }

    /**
     * Returns a constant iterator to the element following the last
     * element of the reversed buffer containing the elements of the container.
     */
    template <class D>
    inline auto xcontainer<D>::rend() const noexcept -> const_reverse_iterator
    {
        return data().rend();
    }

    /**
     * Returns a constant iterator to the first element of the reversed
     * buffer containing the elements of the container.
     */
    template <class D>
    inline auto xcontainer<D>::crbegin() const noexcept -> const_reverse_iterator
    {
        return data().crbegin();
    }

    /**
     * Returns a constant iterator to the element following the last
     * element of the reversed buffer containing the elements of the container.
     */
    template <class D>
    inline auto xcontainer<D>::crend() const noexcept -> const_reverse_iterator
    {
        return data().crend();
    }
    //@}

    /***************
     * stepper api *
     ***************/

    template <class D>
    template <class S>
    inline auto xcontainer<D>::stepper_begin(const S& shape) noexcept -> stepper
    {
        size_type offset = shape.size() - dimension();
        return stepper(static_cast<derived_type*>(this), data_xbegin(), offset);
    }

    template <class D>
    template <class S>
    inline auto xcontainer<D>::stepper_end(const S& shape, layout_type l) noexcept -> stepper
    {
        size_type offset = shape.size() - dimension();
        return stepper(static_cast<derived_type*>(this), data_xend(l), offset);
    }

    template <class D>
    template <class S>
    inline auto xcontainer<D>::stepper_begin(const S& shape) const noexcept -> const_stepper
    {
        size_type offset = shape.size() - dimension();
        return const_stepper(static_cast<const derived_type*>(this), data_xbegin(), offset);
    }

    template <class D>
    template <class S>
    inline auto xcontainer<D>::stepper_end(const S& shape, layout_type l) const noexcept -> const_stepper
    {
        size_type offset = shape.size() - dimension();
        return const_stepper(static_cast<const derived_type*>(this), data_xend(l), offset);
    }

    template <class D>
    inline auto xcontainer<D>::data_xbegin() noexcept -> container_iterator
    {
        return data().begin();
    }

    template <class D>
    inline auto xcontainer<D>::data_xbegin() const noexcept -> const_container_iterator
    {
        return data().begin();
    }

    template <class D>
    inline auto xcontainer<D>::data_xend(layout_type l) noexcept -> container_iterator
    {
        return data_xend_impl(data().end(), l);
    }

    template <class D>
    inline auto xcontainer<D>::data_xend(layout_type l) const noexcept -> const_container_iterator
    {
        return data_xend_impl(data().end(), l);
    }

    template <class D>
    inline auto xcontainer<D>::data_element(size_type i) -> reference
    {
        return data()[i];
    }

    template <class D>
    inline auto xcontainer<D>::data_element(size_type i) const -> const_reference
    {
        return data()[i];
    }

    /*************************************
     * xstrided_container implementation *
     *************************************/

    template <class D, layout_type L>
    inline xstrided_container<D, L>::xstrided_container() noexcept
        : base_type()
    {
        m_shape = make_sequence<inner_shape_type>(base_type::dimension(), 1);
    }

    template <class D, layout_type L>
    inline xstrided_container<D, L>::xstrided_container(inner_shape_type&& shape, inner_strides_type&& strides) noexcept
        : base_type(), m_shape(std::move(shape)), m_strides(std::move(strides))
    {
        m_backstrides = make_sequence<inner_backstrides_type>(m_shape.size(), 0);
        adapt_strides(m_shape, m_strides, m_backstrides);
    }

    template <class D, layout_type L>
    inline auto xstrided_container<D, L>::shape_impl() noexcept -> inner_shape_type&
    {
        return m_shape;
    }

    template <class D, layout_type L>
    inline auto xstrided_container<D, L>::shape_impl() const noexcept -> const inner_shape_type&
    {
        return m_shape;
    }

    template <class D, layout_type L>
    inline auto xstrided_container<D, L>::strides_impl() noexcept -> inner_strides_type&
    {
        return m_strides;
    }

    template <class D, layout_type L>
    inline auto xstrided_container<D, L>::strides_impl() const noexcept -> const inner_strides_type&
    {
        return m_strides;
    }

    template <class D, layout_type L>
    inline auto xstrided_container<D, L>::backstrides_impl() noexcept -> inner_backstrides_type&
    {
        return m_backstrides;
    }

    template <class D, layout_type L>
    inline auto xstrided_container<D, L>::backstrides_impl() const noexcept -> const inner_backstrides_type&
    {
        return m_backstrides;
    }

    /**
     * Return the layout_type of the container
     * @return layout_type of the container
     */
    template <class D, layout_type L>
    layout_type xstrided_container<D, L>::layout() const noexcept
    {
        return m_layout;
    }

    /**
     * Reshapes the container.
     * @param shape the new shape
     * @param force force reshaping, even if the shape stays the same (default: false)
     */
    template <class D, layout_type L>
    template <class S>
    inline void xstrided_container<D, L>::reshape(const S& shape, bool force)
    {
        if (m_shape.size() != shape.size() || !std::equal(std::begin(shape), std::end(shape), std::begin(m_shape)) || force)
        {
            if (m_layout == layout_type::dynamic || m_layout == layout_type::any)
            {
                m_layout = layout_type::row_major;  // fall back to row major
            }
            m_shape = forward_sequence<shape_type>(shape);
            resize_container(m_strides, m_shape.size());
            resize_container(m_backstrides, m_shape.size());
            size_type data_size = compute_strides(m_shape, m_layout, m_strides, m_backstrides);
            this->data().resize(data_size);
        }
    }

    /**
     * Reshapes the container.
     * @param shape the new shape
     * @param l the new layout_type
     */
    template <class D, layout_type L>
    template <class S>
    inline void xstrided_container<D, L>::reshape(const S& shape, layout_type l)
    {
        if (L != layout_type::dynamic && l != L)
        {
            throw std::runtime_error("Cannot change layout_type if template parameter not layout_type::dynamic.");
        }
        m_layout = l;
        reshape(shape, true);
    }

    /**
     * Reshapes the container.
     * @param shape the new shape
     * @param strides the new strides
     */
    template <class D, layout_type L>
    template <class S>
    inline void xstrided_container<D, L>::reshape(const S& shape, const strides_type& strides)
    {
        if (L != layout_type::dynamic)
        {
            throw std::runtime_error("Cannot reshape with custom strides when layout() is != layout_type::dynamic.");
        }
        m_shape = forward_sequence<shape_type>(shape);
        m_strides = strides;
        resize_container(m_backstrides, m_strides.size());
        adapt_strides(m_shape, m_strides, m_backstrides);
        m_layout = layout_type::dynamic;
        this->data().resize(compute_size(m_shape));
    }
}

#endif