This file is indexed.

/usr/include/xtensor/xindexview.hpp is in xtensor-dev 0.10.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
/***************************************************************************
* Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht    *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef XINDEXVIEW_HPP
#define XINDEXVIEW_HPP

#include <algorithm>
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>

#include "xexpression.hpp"
#include "xiterable.hpp"
#include "xstrides.hpp"
#include "xutils.hpp"

namespace xt
{

    template <class CT, class I>
    class xindexview;

    template <class CT, class I>
    struct xcontainer_inner_types<xindexview<CT, I>>
    {
        using xexpression_type = std::decay_t<CT>;
        using temporary_type = xarray<typename xexpression_type::value_type, xexpression_type::static_layout>;
    };

    template <class CT, class I>
    struct xiterable_inner_types<xindexview<CT, I>>
    {
        using inner_shape_type = std::array<std::size_t, 1>;
        using const_stepper = xindexed_stepper<xindexview<CT, I>>;
        using stepper = xindexed_stepper<xindexview<CT, I>, false>;
        using const_iterator = xiterator<const_stepper, inner_shape_type*, DEFAULT_LAYOUT>;
        using iterator = xiterator<stepper, inner_shape_type*, DEFAULT_LAYOUT>;
        using const_reverse_iterator = std::reverse_iterator<const_iterator>;
        using reverse_iterator = std::reverse_iterator<iterator>;
    };

    /**************
     * xindexview *
     **************/

    /**
     * @class xindexview
     * @brief View of an xexpression from vector of indices.
     *
     * The xindexview class implements a flat (1D) view into a multidimensional
     * xexpression yielding the values at the indices of the index array.
     * xindexview is not meant to be used directly, but only with the \ref index_view
     * and \ref filter helper functions.
     *
     * @tparam CT the closure type of the \ref xexpression type underlying this view
     * @tparam I the index array type of the view
     *
     * @sa index_view, filter
     */
    template <class CT, class I>
    class xindexview : public xview_semantic<xindexview<CT, I>>,
                       public xexpression_iterable<xindexview<CT, I>>
    {
    public:

        using self_type = xindexview<CT, I>;
        using xexpression_type = std::decay_t<CT>;
        using semantic_base = xview_semantic<self_type>;

        using value_type = typename xexpression_type::value_type;
        using reference = typename xexpression_type::reference;
        using const_reference = typename xexpression_type::const_reference;
        using pointer = typename xexpression_type::pointer;
        using const_pointer = typename xexpression_type::const_pointer;
        using size_type = typename xexpression_type::size_type;
        using difference_type = typename xexpression_type::difference_type;

        using iterable_base = xexpression_iterable<self_type>;
        using inner_shape_type = typename iterable_base::inner_shape_type;
        using shape_type = inner_shape_type;
        using strides_type = shape_type;

        using indices_type = I;

        using stepper = typename iterable_base::stepper;
        using const_stepper = typename iterable_base::const_stepper;

        using temporary_type = typename xcontainer_inner_types<self_type>::temporary_type;
        using base_index_type = xindex_type_t<shape_type>;

        static constexpr layout_type static_layout = layout_type::dynamic;
        static constexpr bool contiguous_layout = false;

        template <class I2>
        xindexview(CT e, I2&& indices) noexcept;

        template <class E>
        self_type& operator=(const xexpression<E>& e);

        template <class E>
        disable_xexpression<E, self_type>& operator=(const E& e);

        size_type size() const noexcept;
        size_type dimension() const noexcept;
        const inner_shape_type& shape() const noexcept;
        layout_type layout() const noexcept;

        reference operator()();
        template <class... Args>
        reference operator()(std::size_t idx, Args... /*args*/);
        reference operator[](const xindex& index);
        reference operator[](size_type i);

        template <class It>
        reference element(It first, It last);

        const_reference operator()() const;
        template <class... Args>
        const_reference operator()(std::size_t idx, Args... /*args*/) const;
        const_reference operator[](const xindex& index) const;
        const_reference operator[](size_type i) const;

        template <class It>
        const_reference element(It first, It last) const;

        template <class O>
        bool broadcast_shape(O& shape) const;

        template <class O>
        bool is_trivial_broadcast(const O& /*strides*/) const noexcept;

        template <class ST>
        stepper stepper_begin(const ST& shape);
        template <class ST>
        stepper stepper_end(const ST& shape, layout_type);

        template <class ST>
        const_stepper stepper_begin(const ST& shape) const;
        template <class ST>
        const_stepper stepper_end(const ST& shape, layout_type) const;

    private:

        CT m_e;
        const indices_type m_indices;
        const inner_shape_type m_shape;

        void assign_temporary_impl(temporary_type&& tmp);

        friend class xview_semantic<xindexview<CT, I>>;
    };

    /***************
     * xfiltration *
     ***************/

    /**
     * @class xfiltration
     * @brief Filter of a xexpression for fast scalar assign.
     *
     * The xfiltration class implements a lazy filtration of a multidimentional
     * \ref xexpression, optimized for scalar and computed scalar assignments.
     * Actually, the \ref xfiltration class IS NOT an \ref xexpression and the
     * scalar and computed scalar assignments are the only method it provides.
     * The filtering condition is not evaluated until the filtration is assigned.
     *
     * xfiltration is not meant to be used directly, but only with the \ref filtration
     * helper function.
     *
     * @tparam ECT the closure type of the \ref xexpression type underlying this filtration
     * @tparam CCR the closure type of the filtering \ref xexpression type
     *
     * @sa filtration
     */
    template <class ECT, class CCT>
    class xfiltration
    {
    public:

        using self_type = xfiltration<ECT, CCT>;
        using xexpression_type = std::decay_t<ECT>;
        using const_reference = typename xexpression_type::const_reference;

        xfiltration(ECT e, CCT condition);

        template <class E>
        disable_xexpression<E, self_type&> operator=(const E&);

        template <class E>
        disable_xexpression<E, self_type&> operator+=(const E&);

        template <class E>
        disable_xexpression<E, self_type&> operator-=(const E&);

        template <class E>
        disable_xexpression<E, self_type&> operator*=(const E&);

        template <class E>
        disable_xexpression<E, self_type&> operator/=(const E&);

    private:

        template <class F>
        self_type& apply(F&& func);

        ECT m_e;
        CCT m_condition;
    };

    /*****************************
     * xindexview implementation *
     *****************************/

    /**
     * @name Constructor
     */
    //@{
    /**
     * Constructs an xindexview, selecting the indices specified by \a indices.
     * The resulting xexpression has a 1D shape with a length of n for n indices.
     * 
     * @param e the underlying xexpression for this view
     * @param indices the indices to select
     */
    template <class CT, class I>
    template <class I2>
    inline xindexview<CT, I>::xindexview(CT e, I2&& indices) noexcept
        : m_e(e), m_indices(std::forward<I2>(indices)), m_shape({m_indices.size()})
    {
    }
    //@}

    /**
     * @name Extended copy semantic
     */
    //@{
    /**
     * The extended assignment operator.
     */
    template <class CT, class I>
    template <class E>
    inline auto xindexview<CT, I>::operator=(const xexpression<E>& e) -> self_type&
    {
        return semantic_base::operator=(e);
    }
    //@}

    template <class CT, class I>
    template <class E>
    inline auto xindexview<CT, I>::operator=(const E& e) -> disable_xexpression<E, self_type>&
    {
        std::fill(this->begin(), this->end(), e);
        return *this;
    }

    template <class CT, class I>
    inline void xindexview<CT, I>::assign_temporary_impl(temporary_type&& tmp)
    {
        std::copy(tmp.cbegin(), tmp.cend(), this->xbegin());
    }

    /**
     * @name Size and shape
     */
    //@{
    /**
     * Returns the size of the xindexview.
     */
    template <class CT, class I>
    inline auto xindexview<CT, I>::size() const noexcept -> size_type
    {
        return compute_size(shape());
    }

    /**
     * Returns the number of dimensions of the xindexview.
     */
    template <class CT, class I>
    inline auto xindexview<CT, I>::dimension() const noexcept -> size_type
    {
        return 1;
    }

    /**
     * Returns the shape of the xindexview.
     */
    template <class CT, class I>
    inline auto xindexview<CT, I>::shape() const noexcept -> const inner_shape_type&
    {
        return m_shape;
    }

    template <class CT, class I>
    inline layout_type xindexview<CT, I>::layout() const noexcept
    {
        return static_layout;
    }

    //@}

    /**
     * @name Data
     */
    template <class CT, class I>
    inline auto xindexview<CT, I>::operator()() -> reference
    {
        return m_e();
    }

    template <class CT, class I>
    inline auto xindexview<CT, I>::operator()() const -> const_reference
    {
        return m_e();
    }

    template <class CT, class I>
    template <class... Args>
    inline auto xindexview<CT, I>::operator()(std::size_t idx, Args... /*args*/) -> reference
    {
        return m_e[m_indices[idx]];
    }

    /**
     * Returns the element at the specified position in the xindexview. 
     * 
     * @param idx the position in the view
     */
    template <class CT, class I>
    template <class... Args>
    inline auto xindexview<CT, I>::operator()(std::size_t idx, Args... /*args*/) const -> const_reference
    {
        return m_e[m_indices[idx]];
    }

    template <class CT, class I>
    inline auto xindexview<CT, I>::operator[](const xindex& index) -> reference
    {
        return m_e[m_indices[index[0]]];
    }

    template <class CT, class I>
    inline auto xindexview<CT, I>::operator[](size_type i) -> reference
    {
        return operator()(i);
    }

    template <class CT, class I>
    inline auto xindexview<CT, I>::operator[](const xindex& index) const -> const_reference
    {
        return m_e[m_indices[index[0]]];
    }

    template <class CT, class I>
    inline auto xindexview<CT, I>::operator[](size_type i) const -> const_reference
    {
        return operator()(i);
    }

    /**
     * Returns a reference to the element at the specified position in the xindexview.
     * @param first iterator starting the sequence of indices
     * The number of indices in the sequence should be equal to or greater 1.
     */
    template <class CT, class I>
    template <class It>
    inline auto xindexview<CT, I>::element(It first, It /*last*/) -> reference
    {
        return m_e[m_indices[(*first)]];
    }

    template <class CT, class I>
    template <class It>
    inline auto xindexview<CT, I>::element(It first, It /*last*/) const -> const_reference
    {
        return m_e[m_indices[(*first)]];
    }
    //@}

    /**
     * @name Broadcasting
     */
    //@{
    /**
     * Broadcast the shape of the xindexview to the specified parameter.
     * @param shape the result shape
     * @return a boolean indicating whether the broadcasting is trivial
     */
    template <class CT, class I>
    template <class O>
    inline bool xindexview<CT, I>::broadcast_shape(O& shape) const
    {
        return xt::broadcast_shape(m_shape, shape);
    }

    /**
     * Compares the specified strides with those of the container to see whether
     * the broadcasting is trivial.
     * @return a boolean indicating whether the broadcasting is trivial
     */
    template <class CT, class I>
    template <class O>
    inline bool xindexview<CT, I>::is_trivial_broadcast(const O& /*strides*/) const noexcept
    {
        return false;
    }
    //@}

    /***************
     * stepper api *
     ***************/

    template <class CT, class I>
    template <class ST>
    inline auto xindexview<CT, I>::stepper_begin(const ST& shape) -> stepper
    {
        size_type offset = shape.size() - dimension();
        return stepper(this, offset);
    }

    template <class CT, class I>
    template <class ST>
    inline auto xindexview<CT, I>::stepper_end(const ST& shape, layout_type) -> stepper
    {
        size_type offset = shape.size() - dimension();
        return stepper(this, offset, true);
    }

    template <class CT, class I>
    template <class ST>
    inline auto xindexview<CT, I>::stepper_begin(const ST& shape) const -> const_stepper
    {
        size_type offset = shape.size() - dimension();
        return const_stepper(this, offset);
    }

    template <class CT, class I>
    template <class ST>
    inline auto xindexview<CT, I>::stepper_end(const ST& shape, layout_type) const -> const_stepper
    {
        size_type offset = shape.size() - dimension();
        return const_stepper(this, offset, true);
    }

    /******************************
     * xfiltration implementation *
     ******************************/

    /**
     * @name Constructor
     */
    //@{
    /**
     * Constructs a xfiltration on the given expression \c e, selecting
     * the elements matching the specified \c condition. 
     *
     * @param e the \ref xexpression to filter.
     * @param condition the filtering \ref xexpression to apply.
     */
    template <class ECT, class CCT>
    inline xfiltration<ECT, CCT>::xfiltration(ECT e, CCT condition)
        : m_e(e), m_condition(condition)
    {
    }
    //@}

    /**
     * @name Extended copy semantic
     */
    //@{
    /**
     * Assigns the scalar \c e to \c *this.
     * @param e the scalar to assign.
     * @return a reference to \ *this.
     */
    template <class ECT, class CCT>
    template <class E>
    inline auto xfiltration<ECT, CCT>::operator=(const E& e) -> disable_xexpression<E, self_type&>
    {
        return apply([this, &e](const_reference v, bool cond) { return cond ? e : v; });
    }
    //@}

    /**
     * @name Computed assignement
     */
    //@{
    /**
     * Adds the scalar \c e to \c *this.
     * @param e the scalar to add.
     * @return a reference to \c *this.
     */
    template <class ECT, class CCT>
    template <class E>
    inline auto xfiltration<ECT, CCT>::operator+=(const E& e) -> disable_xexpression<E, self_type&>
    {
        return apply([this, &e](const_reference v, bool cond) { return cond ? v + e : v; });
    }

    /**
     * Subtracts the scalar \c e from \c *this.
     * @param e the scalar to subtract.
     * @return a reference to \c *this.
     */
    template <class ECT, class CCT>
    template <class E>
    inline auto xfiltration<ECT, CCT>::operator-=(const E& e) -> disable_xexpression<E, self_type&>
    {
        return apply([this, &e](const_reference v, bool cond) { return cond ? v - e : v; });
    }

    /**
     * Multiplies \c *this with the scalar \c e.
     * @param e the scalar involved in the operation.
     * @return a reference to \c *this.
     */
    template <class ECT, class CCT>
    template <class E>
    inline auto xfiltration<ECT, CCT>::operator*=(const E& e) -> disable_xexpression<E, self_type&>
    {
        return apply([this, &e](const_reference v, bool cond) { return cond ? v * e : v; });
    }

    /**
     * Divides \c *this by the scalar \c e.
     * @param e the scalar involved in the operation.
     * @return a reference to \c *this.
     */
    template <class ECT, class CCT>
    template <class E>
    inline auto xfiltration<ECT, CCT>::operator/=(const E& e) -> disable_xexpression<E, self_type&>
    {
        return apply([this, &e](const_reference v, bool cond) { return cond ? v / e : v; });
    }

    template <class ECT, class CCT>
    template <class F>
    inline auto xfiltration<ECT, CCT>::apply(F&& func) -> self_type&
    {
        std::transform(m_e.cbegin(), m_e.cend(), m_condition.cbegin(), m_e.begin(), func);
        return *this;
    }

    /**
     * @brief creates an indexview from a container of indices.
     *        
     * Returns a 1D view with the elements at \a indices selected.
     *
     * @param e the underlying xexpression
     * @param indices the indices to select
     * 
     * \code{.cpp}
     * xarray<double> a = {{1,5,3}, {4,5,6}};
     * b = index_view(a, {{0, 0}, {1, 0}, {1, 1}});
     * std::cout << b << std::endl; // {1, 4, 5}
     * b += 100;
     * std::cout << a << std::endl; // {{101, 5, 3}, {104, 105, 6}}
     * \endcode
     */
    template <class E, class I>
    inline auto index_view(E&& e, I&& indices) noexcept
    {
        using view_type = xindexview<xclosure_t<E>, std::decay_t<I>>;
        return view_type(std::forward<E>(e), std::forward<I>(indices));
    }
#ifdef X_OLD_CLANG
    template <class E, class I>
    inline auto index_view(E&& e, std::initializer_list<std::initializer_list<I>> indices) noexcept
    {
        std::vector<xindex> idx;
        for (auto it = indices.begin(); it != indices.end(); ++it)
        {
            idx.emplace_back(xindex(it->begin(), it->end()));
        }
        using view_type = xindexview<xclosure_t<E>, std::vector<xindex>>;
        return view_type(std::forward<E>(e), std::move(idx));
    }
#else
    template <class E, std::size_t L>
    inline auto index_view(E&& e, const xindex (&indices)[L]) noexcept
    {
        using view_type = xindexview<xclosure_t<E>, std::array<xindex, L>>;
        return view_type(std::forward<E>(e), to_array(indices));
    }
#endif

    /**
     * @brief creates a view into \a e filtered by \a condition.
     *        
     * Returns a 1D view with the elements selected where \a condition evaluates to \em true.
     * This is equivalent to \verbatim{index_view(e, where(condition));}\endverbatim
     * The returned view is not optimal if you just want to assign a scalar to the filtered
     * elements. In that case, you should consider using the \ref filtration function
     * instead.
     *
     * @param e the underlying xexpression
     * @param condition xexpression with shape of \a e which selects indices
     *
     * \code{.cpp}
     * xarray<double> a = {{1,5,3}, {4,5,6}};
     * b = filter(a, a >= 5);
     * std::cout << b << std::endl; // {5, 5, 6}
     * \endcode
     *
     * \sa filtration
     */
    template <class E, class O>
    inline auto filter(E&& e, O&& condition) noexcept
    {
        auto indices = where(std::forward<O>(condition));
        using view_type = xindexview<xclosure_t<E>, decltype(indices)>;
        return view_type(std::forward<E>(e), std::move(indices));
    }

    /**
     * @brief creates a filtration of \c e filtered by \a condition.
     *
     * Returns a lazy filtration optimized for scalar assignment.
     * Actually, scalar assignment and computed scalar assignments
     * are the only available methods of the filtration, the filtration
     * IS NOT an \ref xexpression.
     *
     * @param e the \ref xexpression to filter
     * @param condition the filtering \ref xexpression
     *
     * \code{.cpp}
     * xarray<double> a = {{1,5,3}, {4,5,6}};
     * filtration(a, a >= 5) += 2;
     * std::cout << a << std::endl; // {{1, 7, 3}, {4, 7, 8}}
     * \endcode
     */
    template <class E, class C>
    inline auto filtration(E&& e, C&& condition) noexcept
    {
        using filtration_type = xfiltration<xclosure_t<E>, xclosure_t<C>>;
        return filtration_type(std::forward<E>(e), std::forward<C>(condition));
    }
}

#endif