This file is indexed.

/usr/include/xtensor/xiterator.hpp is in xtensor-dev 0.10.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
/***************************************************************************
* Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht    *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef XITERATOR_HPP
#define XITERATOR_HPP

#include <array>
#include <algorithm>
#include <cstddef>
#include <iterator>
#include <vector>

#include "xexception.hpp"
#include "xlayout.hpp"
#include "xutils.hpp"

namespace xt
{

    /***********************
     * iterator meta utils *
     ***********************/

    template <class CT>
    class xscalar;

    namespace detail
    {
        template <class C>
        struct get_stepper_iterator_impl
        {
            using type = typename C::container_iterator;
        };

        template <class C>
        struct get_stepper_iterator_impl<const C>
        {
            using type = typename C::const_container_iterator;
        };

        template <class CT>
        struct get_stepper_iterator_impl<xscalar<CT>>
        {
            using type = typename xscalar<CT>::dummy_iterator;
        };

        template <class CT>
        struct get_stepper_iterator_impl<const xscalar<CT>>
        {
            using type = typename xscalar<CT>::const_dummy_iterator;
        };
    }

    template <class C>
    using get_stepper_iterator = typename detail::get_stepper_iterator_impl<C>::type;

    namespace detail
    {
        template <class ST>
        struct index_type_impl
        {
            using type = std::vector<typename ST::value_type>;
        };

        template <class V, std::size_t L>
        struct index_type_impl<std::array<V, L>>
        {
            using type = std::array<V, L>;
        };
    }

    template <class C>
    using xindex_type_t = typename detail::index_type_impl<C>::type;

    /************
     * xstepper *
     ************/

    template <class C>
    class xstepper
    {
    public:

        using container_type = C;
        using subiterator_type = get_stepper_iterator<C>;
        using subiterator_traits = std::iterator_traits<subiterator_type>;
        using value_type = typename subiterator_traits::value_type;
        using reference = typename subiterator_traits::reference;
        using pointer = typename subiterator_traits::pointer;
        using difference_type = typename subiterator_traits::difference_type;
        using size_type = typename container_type::size_type;
        using shape_type = typename container_type::shape_type;

        xstepper() = default;
        xstepper(container_type* c, subiterator_type it, size_type offset) noexcept;

        reference operator*() const;

        void step(size_type dim, size_type n = 1);
        void step_back(size_type dim, size_type n = 1);
        void reset(size_type dim);
        void reset_back(size_type dim);

        void to_begin();
        void to_end(layout_type l);

        bool equal(const xstepper& rhs) const;

    private:

        container_type* p_c;
        subiterator_type m_it;
        size_type m_offset;
    };

    template <class C>
    bool operator==(const xstepper<C>& lhs,
                    const xstepper<C>& rhs);

    template <class C>
    bool operator!=(const xstepper<C>& lhs,
                    const xstepper<C>& rhs);

    template <layout_type L>
    struct stepper_tools
    {

        template <class S, class IT, class ST>
        static void increment_stepper(S& stepper,
                                      IT& index,
                                      const ST& shape);

        template <class S, class IT, class ST>
        static void decrement_stepper(S& stepper,
                                      IT& index,
                                      const ST& shape);
    };

    /********************
     * xindexed_stepper *
     ********************/

    template <class E, bool is_const = true>
    class xindexed_stepper
    {
    public:

        using self_type = xindexed_stepper<E, is_const>;
        using xexpression_type = std::conditional_t<is_const, const E, E>;

        using value_type = typename xexpression_type::value_type;
        using reference = std::conditional_t<is_const,
                                             typename xexpression_type::const_reference,
                                             typename xexpression_type::reference>;
        using pointer = std::conditional_t<is_const,
                                           typename xexpression_type::const_pointer,
                                           typename xexpression_type::pointer>;
        using size_type = typename xexpression_type::size_type;
        using difference_type = typename xexpression_type::difference_type;

        using shape_type = typename xexpression_type::shape_type;
        using index_type = xindex_type_t<shape_type>;

        xindexed_stepper() = default;
        xindexed_stepper(xexpression_type* e, size_type offset, bool end = false) noexcept;

        reference operator*() const;

        void step(size_type dim, size_type n = 1);
        void step_back(size_type dim, size_type n = 1);
        void reset(size_type dim);
        void reset_back(size_type dim);

        void to_begin();
        void to_end(layout_type l);

        bool equal(const self_type& rhs) const;

    private:

        xexpression_type* p_e;
        index_type m_index;
        size_type m_offset;
    };

    template <class C, bool is_const>
    bool operator==(const xindexed_stepper<C, is_const>& lhs,
                    const xindexed_stepper<C, is_const>& rhs);

    template <class C, bool is_const>
    bool operator!=(const xindexed_stepper<C, is_const>& lhs,
                    const xindexed_stepper<C, is_const>& rhs);

    /*************
     * xiterator *
     *************/

    namespace detail
    {
        template <class S>
        class shape_storage
        {
        public:

            using shape_type = S;
            using param_type = const S&;

            shape_storage() = default;
            shape_storage(param_type shape);
            const S& shape() const;

        private:

            S m_shape;
        };

        template <class S>
        class shape_storage<S*>
        {
        public:

            using shape_type = S;
            using param_type = const S*;

            shape_storage(param_type shape = 0);
            const S& shape() const;

        private:

            const S* p_shape;
        };

        template <layout_type L>
        struct LAYOUT_FORBIDEN_FOR_XITERATOR;
    }

    template <class It, class S, layout_type L>
    class xiterator : detail::shape_storage<S>
    {
    public:

        using self_type = xiterator<It, S, L>;

        using subiterator_type = It;
        using value_type = typename subiterator_type::value_type;
        using reference = typename subiterator_type::reference;
        using pointer = typename subiterator_type::pointer;
        using difference_type = typename subiterator_type::difference_type;
        using size_type = typename subiterator_type::size_type;
        using iterator_category = std::bidirectional_iterator_tag;

        using private_base = detail::shape_storage<S>;
        using shape_type = typename private_base::shape_type;
        using shape_param_type = typename private_base::param_type;
        using index_type = xindex_type_t<shape_type>;

        xiterator() = default;
        xiterator(It it, shape_param_type shape, bool reverse);

        self_type& operator++();
        self_type operator++(int);

        self_type& operator--();
        self_type operator--(int);

        reference operator*() const;
        pointer operator->() const;

        bool equal(const xiterator& rhs) const;

    private:

        subiterator_type m_it;
        index_type m_index;

        using checking_type = typename detail::LAYOUT_FORBIDEN_FOR_XITERATOR<L>::type;
    };

    template <class It, class S, layout_type L>
    bool operator==(const xiterator<It, S, L>& lhs,
                    const xiterator<It, S, L>& rhs);

    template <class It, class S, layout_type L>
    bool operator!=(const xiterator<It, S, L>& lhs,
                    const xiterator<It, S, L>& rhs);

    /*******************************
    * trivial_begin / trivial_end *
    *******************************/

    namespace detail
    {
        template <class C>
        constexpr auto trivial_begin(C& c) -> decltype(c.begin())
        {
            return c.begin();
        }

        template <class C>
        constexpr auto trivial_end(C& c) -> decltype(c.end())
        {
            return c.end();
        }

        template <class C>
        constexpr auto trivial_begin(const C& c) -> decltype(c.begin())
        {
            return c.begin();
        }

        template <class C>
        constexpr auto trivial_end(const C& c) -> decltype(c.end())
        {
            return c.end();
        }
    }

    /***************************
     * xstepper implementation *
     ***************************/

    template <class C>
    inline xstepper<C>::xstepper(container_type* c, subiterator_type it, size_type offset) noexcept
        : p_c(c), m_it(it), m_offset(offset)
    {
    }

    template <class C>
    inline auto xstepper<C>::operator*() const -> reference
    {
        return *m_it;
    }

    template <class C>
    inline void xstepper<C>::step(size_type dim, size_type n)
    {
        if (dim >= m_offset)
            m_it += n * p_c->strides()[dim - m_offset];
    }

    template <class C>
    inline void xstepper<C>::step_back(size_type dim, size_type n)
    {
        if (dim >= m_offset)
            m_it -= n * p_c->strides()[dim - m_offset];
    }

    template <class C>
    inline void xstepper<C>::reset(size_type dim)
    {
        if (dim >= m_offset)
            m_it -= p_c->backstrides()[dim - m_offset];
    }

    template <class C>
    inline void xstepper<C>::reset_back(size_type dim)
    {
        if (dim >= m_offset)
            m_it += p_c->backstrides()[dim - m_offset];
    }

    template <class C>
    inline void xstepper<C>::to_begin()
    {
        m_it = p_c->data_xbegin();
    }

    template <class C>
    inline void xstepper<C>::to_end(layout_type l)
    {
        m_it = p_c->data_xend(l);
    }

    template <class C>
    inline bool xstepper<C>::equal(const xstepper& rhs) const
    {
        return p_c == rhs.p_c && m_it == rhs.m_it && m_offset == rhs.m_offset;
    }

    template <class C>
    inline bool operator==(const xstepper<C>& lhs,
                           const xstepper<C>& rhs)
    {
        return lhs.equal(rhs);
    }

    template <class C>
    inline bool operator!=(const xstepper<C>& lhs,
                           const xstepper<C>& rhs)
    {
        return !(lhs.equal(rhs));
    }

    template <>
    template <class S, class IT, class ST>
    void stepper_tools<layout_type::row_major>::increment_stepper(S& stepper,
                                                                  IT& index,
                                                                  const ST& shape)
    {
        using size_type = typename S::size_type;
        size_type i = index.size();
        while (i != 0)
        {
            --i;
            if (index[i] != shape[i] - 1)
            {
                ++index[i];
                stepper.step(i);
                return;
            }
            else
            {
                index[i] = 0;
                if (i != 0)
                {
                    stepper.reset(i);
                }
            }
        }
        if (i == 0)
        {
            stepper.to_end(layout_type::row_major);
        }
    }

    template <>
    template <class S, class IT, class ST>
    void stepper_tools<layout_type::row_major>::decrement_stepper(S& stepper,
                                                                  IT& index,
                                                                  const ST& shape)
    {
        using size_type = typename S::size_type;
        size_type i = index.size();
        while (i != 0)
        {
            --i;
            if (index[i] != 0)
            {
                --index[i];
                stepper.step_back(i);
                return;
            }
            else
            {
                index[i] = shape[i] - 1;
                if (i != 0)
                {
                     stepper.reset_back(i);
                }
            }
        }
        if (i == 0)
        {
            stepper.to_begin();
        }
    }

    template <>
    template <class S, class IT, class ST>
    void stepper_tools<layout_type::column_major>::increment_stepper(S& stepper,
                                                                     IT& index,
                                                                     const ST& shape)
    {
        using size_type = typename S::size_type;
        size_type size = index.size();
        size_type i = 0;
        while (i != size)
        {
            if (index[i] != shape[i] - 1)
            {
                ++index[i];
                stepper.step(i);
                return;
            }
            else
            {
                index[i] = 0;
                if (i != size - 1)
                {
                    stepper.reset(i);
                }
            }
            ++i;
        }
        if (i == size)
        {
            stepper.to_end(layout_type::column_major);
        }
    }

    template <>
    template <class S, class IT, class ST>
    void stepper_tools<layout_type::column_major>::decrement_stepper(S& stepper,
                                                                     IT& index,
                                                                     const ST& shape)
    {
        using size_type = typename S::size_type;
        size_type size = index.size();
        size_type i = 0;
        while (i != size)
        {
            if (index[i] != 0)
            {
                --index[i];
                stepper.step_back(i);
                return;
            }
            else
            {
                index[i] = shape[i] - 1;
                if (i != size - 1)
                {
                    stepper.reset_back(i);
                }
            }
            ++i;
        }
        if (i == size)
        {
            stepper.to_begin();
        }
    }

    /***********************************
     * xindexed_stepper implementation *
     ***********************************/

    template <class C, bool is_const>
    inline xindexed_stepper<C, is_const>::xindexed_stepper(xexpression_type* e, size_type offset, bool end) noexcept
        : p_e(e), m_index(make_sequence<index_type>(e->shape().size(), size_type(0))), m_offset(offset)
    {
        if (end)
            to_end(layout_type::row_major);
    }

    template <class C, bool is_const>
    inline auto xindexed_stepper<C, is_const>::operator*() const -> reference
    {
        return p_e->element(m_index.cbegin(), m_index.cend());
    }

    template <class C, bool is_const>
    inline void xindexed_stepper<C, is_const>::step(size_type dim, size_type n)
    {
        if (dim >= m_offset)
            m_index[dim - m_offset] += n;
    }

    template <class C, bool is_const>
    inline void xindexed_stepper<C, is_const>::step_back(size_type dim, size_type n)
    {
        if (dim >= m_offset)
            m_index[dim - m_offset] -= n;
    }

    template <class C, bool is_const>
    inline void xindexed_stepper<C, is_const>::reset(size_type dim)
    {
        if (dim >= m_offset)
            m_index[dim - m_offset] = 0;
    }

    template <class C, bool is_const>
    inline void xindexed_stepper<C, is_const>::reset_back(size_type dim)
    {
        if (dim >= m_offset)
            m_index[dim - m_offset] = p_e->shape()[dim - m_offset] - 1;
    }

    template <class C, bool is_const>
    inline void xindexed_stepper<C, is_const>::to_begin()
    {
        std::fill(m_index.begin(), m_index.end(), size_type(0));
    }

    template <class C, bool is_const>
    inline void xindexed_stepper<C, is_const>::to_end(layout_type)
    {
        m_index = p_e->shape();
    }

    template <class C, bool is_const>
    inline bool xindexed_stepper<C, is_const>::equal(const self_type& rhs) const
    {
        return p_e == rhs.p_e && m_index == rhs.m_index && m_offset == rhs.m_offset;
    }

    template <class C, bool is_const>
    inline bool operator==(const xindexed_stepper<C, is_const>& lhs,
                           const xindexed_stepper<C, is_const>& rhs)
    {
        return lhs.equal(rhs);
    }

    template <class C, bool is_const>
    inline bool operator!=(const xindexed_stepper<C, is_const>& lhs,
                           const xindexed_stepper<C, is_const>& rhs)
    {
        return !lhs.equal(rhs);
    }

    /****************************
     * xiterator implementation *
     ****************************/

    namespace detail
    {
        template <class S>
        inline shape_storage<S>::shape_storage(param_type shape)
            : m_shape(shape)
        {
        }

        template <class S>
        inline const S& shape_storage<S>::shape() const
        {
            return m_shape;
        }

        template <class S>
        inline shape_storage<S*>::shape_storage(param_type shape)
            : p_shape(shape)
        {
        }

        template <class S>
        inline const S& shape_storage<S*>::shape() const
        {
            return *p_shape;
        }

        template <>
        struct LAYOUT_FORBIDEN_FOR_XITERATOR<layout_type::row_major>
        {
            using type = int;
        };

        template <>
        struct LAYOUT_FORBIDEN_FOR_XITERATOR<layout_type::column_major>
        {
            using type = int;
        };
    }

    template <class It, class S, layout_type L>
    inline xiterator<It, S, L>::xiterator(It it, shape_param_type shape, bool reverse)
        : private_base(shape), m_it(it),
          m_index(reverse ? forward_sequence<index_type, const shape_type&>(this->shape())
                          : make_sequence<index_type>(this->shape().size(), size_type(0)))
    {
        if (reverse)
        {
            auto iter_begin = (L == layout_type::row_major)  ? m_index.begin() : m_index.begin() + 1;
            auto iter_end = (L == layout_type::row_major) ? m_index.end() - 1 : m_index.end();
            std::transform(iter_begin, iter_end, iter_begin, [](const auto& v) { return v - 1; });
        }
    }

    template <class It, class S, layout_type L>
    inline auto xiterator<It, S, L>::operator++() -> self_type&
    {
        stepper_tools<L>::increment_stepper(m_it, m_index, this->shape());
        return *this;
    }

    template <class It, class S, layout_type L>
    inline auto xiterator<It, S, L>::operator++(int) -> self_type
    {
        self_type tmp(*this);
        ++(*this);
        return tmp;
    }

    template <class It, class S, layout_type L>
    inline auto xiterator<It, S, L>::operator--() -> self_type&
    {
        stepper_tools<L>::decrement_stepper(m_it, m_index, this->shape());
        return *this;
    }

    template <class It, class S, layout_type L>
    inline auto xiterator<It, S, L>::operator--(int) -> self_type
    {
        self_type tmp(*this);
        --(*this);
        return tmp;
    }

    template <class It, class S, layout_type L>
    inline auto xiterator<It, S, L>::operator*() const -> reference
    {
        return *m_it;
    }

    template <class It, class S, layout_type L>
    inline auto xiterator<It, S, L>::operator->() const -> pointer
    {
        return &(*m_it);
    }

    template <class It, class S, layout_type L>
    inline bool xiterator<It, S, L>::equal(const xiterator& rhs) const
    {
        return m_it == rhs.m_it && this->shape() == rhs.shape();
    }

    template <class It, class S, layout_type L>
    inline bool operator==(const xiterator<It, S, L>& lhs,
                           const xiterator<It, S, L>& rhs)
    {
        return lhs.equal(rhs);
    }

    template <class It, class S, layout_type L>
    inline bool operator!=(const xiterator<It, S, L>& lhs,
                           const xiterator<It, S, L>& rhs)
    {
        return !(lhs.equal(rhs));
    }
}

#endif