This file is indexed.

/usr/include/xtensor/xmissing.hpp is in xtensor-dev 0.10.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/***************************************************************************
* Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht    *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef XMISSING_HPP
#define XMISSING_HPP

#include <array>
#include <cstddef>
#include <iterator>
#include <memory>
#include <utility>
#include <vector>

#include "xarray.hpp"
#include "xfunctorview.hpp"
#include "xoptional.hpp"
#include "xtensor.hpp"
#include "xtensor_forward.hpp"
#include "xutils.hpp"

namespace xt
{

    /**************************************
     * Optimized 1-D xoptional containers *
     **************************************/

    template <class T>
    struct xoptional_sequence_inner_types;

    template <class ITV, class ITB>
    class xoptional_iterator;

    template <class D>
    class xoptional_sequence
    {
    public:
        // Internal typedefs
        using inner_types = xoptional_sequence_inner_types<D>;

        using base_container_type = typename inner_types::base_container_type;
        using base_value_type = typename base_container_type::value_type;
        using base_reference = typename base_container_type::reference;
        using base_const_reference = typename base_container_type::const_reference;

        using flag_container_type = typename inner_types::flag_container_type;
        using flag_type = typename flag_container_type::value_type;
        using flag_reference = typename flag_container_type::reference;
        using flag_const_reference = typename flag_container_type::const_reference;

        // Container typedefs
        using value_type = xoptional<base_value_type, flag_type>;
        using reference = xoptional<base_reference, flag_reference>;
        using const_reference = xoptional<base_const_reference, flag_const_reference>;
        using pointer = std::nullptr_t;
        using const_pointer = std::nullptr_t;

        // Other typedefs
        using size_type = typename base_container_type::size_type;
        using difference_type = typename base_container_type::difference_type;
        using iterator = xoptional_iterator<typename base_container_type::iterator,
                                            typename flag_container_type::iterator>;
        using const_iterator = xoptional_iterator<typename base_container_type::const_iterator,
                                                  typename flag_container_type::const_iterator>;

        using reverse_iterator = xoptional_iterator<typename base_container_type::reverse_iterator,
                                                    typename flag_container_type::reverse_iterator>;
        using const_reverse_iterator = xoptional_iterator<typename base_container_type::const_reverse_iterator,
                                                          typename flag_container_type::const_reverse_iterator>;

        xoptional_sequence() = default;
        xoptional_sequence(size_type s, const base_value_type& v);

        template <class CTO, class CBO>
        xoptional_sequence(size_type s, const xoptional<CTO, CBO>& v);

        bool empty() const noexcept;
        size_type size() const noexcept;

        reference operator[](size_type i);
        const_reference operator[](size_type i) const;

        reference front();
        const_reference front() const;

        reference back();
        const_reference back() const;

        iterator begin() noexcept;
        iterator end() noexcept;

        const_iterator begin() const noexcept;
        const_iterator end() const noexcept;
        const_iterator cbegin() const noexcept;
        const_iterator cend() const noexcept;

        reverse_iterator rbegin() noexcept;
        reverse_iterator rend() noexcept;

        const_reverse_iterator rbegin() const noexcept;
        const_reverse_iterator rend() const noexcept;
        const_reverse_iterator crbegin() const noexcept;
        const_reverse_iterator crend() const noexcept;

    protected:

        base_container_type m_values;
        flag_container_type m_flags;
    };

    /****************************************************
     * xoptional_vector and xoptional_array inner types *
     ****************************************************/

    template <class T, std::size_t I>
    class xoptional_array;

    template <class T, std::size_t I>
    struct xoptional_sequence_inner_types<xoptional_array<T, I>>
    {
        using base_container_type = std::array<T, I>;
        using flag_container_type = std::array<bool, I>;
    };

    template <class T, class A, class BA>
    class xoptional_vector;

    template <class T, class A, class BA>
    struct xoptional_sequence_inner_types<xoptional_vector<T, A, BA>>
    {
        using base_container_type = std::vector<T, A>;
        using flag_container_type = std::vector<bool, BA>;
    };

    /*****************************************************
     * xoptional_vector and xoptional_array declarations *
     *****************************************************/

    template <class T, std::size_t I>
    class xoptional_array : public xoptional_sequence<xoptional_array<T, I>>
    {
    public:

        using self_type = xoptional_array;
        using base_type = xoptional_sequence<self_type>;
        using base_value_type = typename base_type::base_value_type;
        using size_type = typename base_type::size_type;

        xoptional_array() = default;
        xoptional_array(size_type s, const base_value_type& v);

        template <class CTO, class CBO>
        xoptional_array(size_type s, const xoptional<CTO, CBO>& v);
    };

    template <class T, class A = std::allocator<T>, class BA = std::allocator<bool>>
    class xoptional_vector : public xoptional_sequence<xoptional_vector<T, A, BA>>
    {
    public:

        using self_type = xoptional_vector;
        using base_type = xoptional_sequence<self_type>;
        using base_value_type = typename base_type::base_value_type;

        using value_type = typename base_type::value_type;
        using size_type = typename base_type::size_type;
        using difference_type = typename base_type::difference_type;
        using reference = typename base_type::reference;
        using const_reference = typename base_type::const_reference;
        using pointer = typename base_type::pointer;
        using const_pointer = typename base_type::const_pointer;

        using iterator = typename base_type::iterator;
        using const_iterator = typename base_type::const_iterator;
        using reverse_iterator = typename base_type::reverse_iterator;
        using const_reverse_iterator = typename base_type::const_reverse_iterator;

        xoptional_vector() = default;
        xoptional_vector(size_type, const base_value_type&);

        template <class CTO, class CBO>
        xoptional_vector(size_type, const xoptional<CTO, CBO>&);

        void resize(size_type);
        void resize(size_type, const base_value_type&);
        template <class CTO, class CBO>
        void resize(size_type, const xoptional<CTO, CBO>&);
    };

    /**********************************
     * xoptional_iterator declaration *
     **********************************/

    template <class ITV, class ITB>
    class xoptional_iterator
    {
    public:

        using self_type = xoptional_iterator<ITV, ITB>;

        // Internal typedefs
        using base_value_type = typename ITV::value_type;
        using base_reference = typename ITV::reference;

        using flag_type = typename ITB::value_type;
        using flag_reference = typename ITB::reference;

        // Container typedefs
        using value_type = xoptional<base_value_type, flag_type>;
        using reference = xoptional<base_reference, flag_reference>;

        using pointer = std::nullptr_t;
        using difference_type = typename ITV::difference_type;
        using iterator_category = std::random_access_iterator_tag;

        xoptional_iterator() = default;
        xoptional_iterator(ITV itv, ITB itb);

        self_type& operator++();
        self_type operator++(int);

        reference operator*() const;
        pointer operator->() const;

        self_type& operator--();
        self_type operator--(int);

        self_type& operator+=(difference_type n);
        self_type& operator-=(difference_type n);

        self_type operator+(difference_type n) const;
        self_type operator-(difference_type n) const;
        difference_type operator-(const self_type& rhs) const;

        bool equal(const xoptional_iterator& rhs) const;

    private:

        ITV m_itv;
        ITB m_itb;
    };

    template <class ITV, class ITB>
    bool operator==(const xoptional_iterator<ITV, ITB>&, const xoptional_iterator<ITV, ITB>&);

    template <class ITV, class ITB>
    bool operator!=(const xoptional_iterator<ITV, ITB>&, const xoptional_iterator<ITV, ITB>&);

    /*************************************
     * xoptional_sequence implementation *
     *************************************/

    template <class D>
    xoptional_sequence<D>::xoptional_sequence(size_type s, const base_value_type& v)
        : m_values(make_sequence<base_container_type>(s, v)),
          m_flags(make_sequence<flag_container_type>(s, true))
    {
    }

    template <class D>
    template <class CTO, class CBO>
    xoptional_sequence<D>::xoptional_sequence(size_type s, const xoptional<CTO, CBO>& v)
        : m_values(make_sequence<base_container_type>(s, v.value())), m_flags(make_sequence<flag_container_type>(s, v.has_value()))
    {
    }

    template <class D>
    auto xoptional_sequence<D>::empty() const noexcept -> bool
    {
        return m_values.empty();
    }

    template <class D>
    auto xoptional_sequence<D>::size() const noexcept -> size_type
    {
        return m_values.size();
    }

    template <class D>
    auto xoptional_sequence<D>::operator[](size_type i) -> reference
    {
        return reference(m_values[i], m_flags[i]);
    }

    template <class D>
    auto xoptional_sequence<D>::operator[](size_type i) const -> const_reference
    {
        return const_reference(m_values[i], m_flags[i]);
    }

    template <class D>
    auto xoptional_sequence<D>::front() -> reference
    {
        return reference(m_values.front(), m_flags.front());
    }

    template <class D>
    auto xoptional_sequence<D>::front() const -> const_reference
    {
        return const_reference(m_values.front(), m_flags.front());
    }

    template <class D>
    auto xoptional_sequence<D>::back() -> reference
    {
        return reference(m_values.back(), m_flags.back());
    }

    template <class D>
    auto xoptional_sequence<D>::back() const -> const_reference
    {
        return const_reference(m_values.back(), m_flags.back());
    }

    template <class D>
    auto xoptional_sequence<D>::begin() noexcept -> iterator
    {
        return iterator(m_values.begin(), m_flags.begin());
    }

    template <class D>
    auto xoptional_sequence<D>::end() noexcept -> iterator
    {
        return iterator(m_values.end(), m_flags.end());
    }

    template <class D>
    auto xoptional_sequence<D>::begin() const noexcept -> const_iterator
    {
        return cbegin();
    }

    template <class D>
    auto xoptional_sequence<D>::end() const noexcept -> const_iterator
    {
        return cend();
    }

    template <class D>
    auto xoptional_sequence<D>::cbegin() const noexcept -> const_iterator
    {
        return const_iterator(m_values.cbegin(), m_flags.cbegin());
    }

    template <class D>
    auto xoptional_sequence<D>::cend() const noexcept -> const_iterator
    {
        return const_iterator(m_values.cend(), m_flags.cend());
    }

    template <class D>
    auto xoptional_sequence<D>::rbegin() noexcept -> reverse_iterator
    {
        return reverse_iterator(m_values.rbegin(), m_flags.rbegin());
    }

    template <class D>
    auto xoptional_sequence<D>::rend() noexcept -> reverse_iterator
    {
        return reverse_iterator(m_values.rend(), m_flags.rend());
    }

    template <class D>
    auto xoptional_sequence<D>::rbegin() const noexcept -> const_reverse_iterator
    {
        return crbegin();
    }

    template <class D>
    auto xoptional_sequence<D>::rend() const noexcept -> const_reverse_iterator
    {
        return crend();
    }

    template <class D>
    auto xoptional_sequence<D>::crbegin() const noexcept -> const_reverse_iterator
    {
        return const_reverse_iterator(m_values.crbegin(), m_flags.crbegin());
    }

    template <class D>
    auto xoptional_sequence<D>::crend() const noexcept -> const_reverse_iterator
    {
        return const_reverse_iterator(m_values.crend(), m_flags.crend());
    }

    /*******************************************************
     * xoptional_array and xoptional_vector implementation *
     *******************************************************/

    template <class T, std::size_t I>
    xoptional_array<T, I>::xoptional_array(size_type s, const base_value_type& v)
        : base_type(s, v)
    {
    }

    template <class T, std::size_t I>
    template <class CTO, class CBO>
    xoptional_array<T, I>::xoptional_array(size_type s, const xoptional<CTO, CBO>& v)
        : base_type(s, v)
    {
    }

    template <class T, class A, class BA>
    xoptional_vector<T, A, BA>::xoptional_vector(size_type s, const base_value_type& v)
        : base_type(s, v)
    {
    }

    template <class T, class A, class BA>
    template <class CTO, class CBO>
    xoptional_vector<T, A, BA>::xoptional_vector(size_type s, const xoptional<CTO, CBO>& v)
        : base_type(s, v)
    {
    }

    template <class T, class A, class BA>
    void xoptional_vector<T, A, BA>::resize(size_type s)
    {
        // Default to missing
        this->m_values.resize(s);
        this->m_flags.resize(s, false);
    }

    template <class T, class A, class BA>
    void xoptional_vector<T, A, BA>::resize(size_type s, const base_value_type& v)
    {
        this->m_values.resize(s, v);
        this->m_flags.resize(s, true);
    }

    template <class T, class A, class BA>
    template <class CTO, class CBO>
    void xoptional_vector<T, A, BA>::resize(size_type s, const xoptional<CTO, CBO>& v)
    {
        this->m_values.resize(s, v.value());
        this->m_flags.resize(s, v.has_value());
    }

    /*************************************
     * xoptional_iterator implementation *
     *************************************/

    template <class ITV, class ITB>
    xoptional_iterator<ITV, ITB>::xoptional_iterator(ITV itv, ITB itb)
        : m_itv(itv), m_itb(itb)
    {
    }

    template <class ITV, class ITB>
    auto xoptional_iterator<ITV, ITB>::operator++() -> self_type&
    {
        ++m_itv;
        ++m_itb;
        return *this;
    }

    template <class ITV, class ITB>
    auto xoptional_iterator<ITV, ITB>::operator++(int) -> self_type
    {
        self_type tmp(*this);
        ++(*this);
        return tmp;
    }

    template <class ITV, class ITB>
    auto xoptional_iterator<ITV, ITB>::operator--() -> self_type&
    {
        --m_itv;
        --m_itb;
        return *this;
    }

    template <class ITV, class ITB>
    auto xoptional_iterator<ITV, ITB>::operator--(int) -> self_type
    {
        self_type tmp(*this);
        --(*this);
        return tmp;
    }

    template <class ITV, class ITB>
    auto xoptional_iterator<ITV, ITB>::operator+=(difference_type n) -> self_type&
    {
        m_itv += n;
        m_itb += n;
        return *this;
    }

    template <class ITV, class ITB>
    auto xoptional_iterator<ITV, ITB>::operator-=(difference_type n) -> self_type&
    {
        m_itv -= n;
        m_itb -= n;
        return *this;
    }

    template <class ITV, class ITB>
    auto xoptional_iterator<ITV, ITB>::operator+(difference_type n) const -> self_type
    {
        return self_type(m_itv + n, m_itb + n);
    }

    template <class ITV, class ITB>
    auto xoptional_iterator<ITV, ITB>::operator-(difference_type n) const -> self_type
    {
        return self_type(m_itv - n, m_itb - n);
    }

    template <class ITV, class ITB>
    auto xoptional_iterator<ITV, ITB>::operator-(const self_type& rhs) const -> difference_type
    {
        return m_itv - rhs.m_itv;
    }

    template <class ITV, class ITB>
    auto xoptional_iterator<ITV, ITB>::operator*() const -> reference
    {
        return reference(*m_itv, *m_itb);
    }

    template <class ITV, class ITB>
    auto xoptional_iterator<ITV, ITB>::operator-> () const -> std::nullptr_t
    {
        return nullptr;
    }

    template <class ITV, class ITB>
    auto xoptional_iterator<ITV, ITB>::equal(const xoptional_iterator& rhs) const -> bool
    {
        return m_itv == rhs.m_itv && m_itb == rhs.m_itb;
    }

    template <class ITV, class ITB>
    bool operator==(const xoptional_iterator<ITV, ITB>& lhs, const xoptional_iterator<ITV, ITB>& rhs)
    {
        return lhs.equal(rhs);
    }

    template <class ITV, class ITB>
    bool operator!=(const xoptional_iterator<ITV, ITB>& lhs, const xoptional_iterator<ITV, ITB>& rhs)
    {
        return !lhs.equal(rhs);
    }

    /*******************************************************
     * value() and has_value() xfunctorview implementation *
     *******************************************************/

    namespace detail
    {
        template <class E>
        struct value_forwarder
        {
            // internal types
            using xexpression_type = std::decay_t<E>;
            using optional_type = typename xexpression_type::value_type;
            using optional_reference = typename xexpression_type::reference;
            using optional_const_reference = typename xexpression_type::const_reference;

            // types
            using value_type = typename optional_type::value_type;
            using reference = typename optional_reference::value_closure;
            using const_reference = typename optional_const_reference::value_closure;
            using pointer = value_type*;
            using const_pointer = const value_type*;

            template <class T>
            decltype(auto) operator()(T&& t) const
            {
                return std::forward<T>(t).value();
            }
        };

        template <class E>
        struct flag_forwarder
        {
            // internal types
            using xexpression_type = std::decay_t<E>;
            using optional_type = typename xexpression_type::value_type;
            using optional_reference = typename xexpression_type::reference;
            using optional_const_reference = typename xexpression_type::const_reference;

            // types
            using value_type = typename optional_type::flag_type;
            using reference = typename optional_reference::flag_closure;
            using const_reference = typename optional_const_reference::flag_closure;
            using pointer = value_type*;
            using const_pointer = const value_type*;

            template <class T>
            decltype(auto) operator()(T&& t) const
            {
                return std::forward<T>(t).has_value();
            }
        };
    }

    template <class E>
    auto value(E&& e)
        -> disable_xoptional<typename std::decay_t<E>::value_type, E>
    {
        return std::forward<E>(e);
    }

    template <class E>
    auto has_value(E&& e)
        -> disable_xoptional<typename std::decay_t<E>::value_type, decltype(ones<bool>(std::forward<E>(e).shape()))>
    {
        return ones<bool>(std::forward<E>(e).shape());
    }

    template <class E>
    auto value(E&& e)
        -> enable_xoptional<typename std::decay_t<E>::value_type, xfunctorview<detail::value_forwarder<E>, xclosure_t<E>>>
    {
        using type = xfunctorview<detail::value_forwarder<E>, xclosure_t<E>>;
        return type(std::forward<E>(e));
    }

    template <class E>
    auto has_value(E&& e)
        -> enable_xoptional<typename std::decay_t<E>::value_type, xfunctorview<detail::flag_forwarder<E>, xclosure_t<E>>>
    {
        using type = xfunctorview<detail::flag_forwarder<E>, xclosure_t<E>>;
        return type(std::forward<E>(e));
    }

    /***************************
     * value_or implementation *
     ***************************/
}

#endif