This file is indexed.

/usr/include/xtensor/xsemantic.hpp is in xtensor-dev 0.10.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/***************************************************************************
* Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht    *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef XSEMANTIC_HPP
#define XSEMANTIC_HPP

#include <functional>
#include <utility>

#include "xassign.hpp"
#include "xexpression.hpp"

namespace xt
{

    /**
     * @class xsemantic_base
     * @brief Base interface for assignable xexpressions.
     *
     * The xsemantic_base class defines the interface for assignable
     * xexpressions.
     *
     * @tparam D The derived type, i.e. the inheriting class for which xsemantic_base
     *           provides the interface.
     */
    template <class D>
    class xsemantic_base : public xexpression<D>
    {
    public:

        using base_type = xexpression<D>;
        using derived_type = typename base_type::derived_type;

        using temporary_type = typename xcontainer_inner_types<D>::temporary_type;

        template <class E>
        disable_xexpression<E, derived_type&> operator+=(const E&);

        template <class E>
        disable_xexpression<E, derived_type&> operator-=(const E&);

        template <class E>
        disable_xexpression<E, derived_type&> operator*=(const E&);

        template <class E>
        disable_xexpression<E, derived_type&> operator/=(const E&);

        template <class E>
        derived_type& operator+=(const xexpression<E>&);

        template <class E>
        derived_type& operator-=(const xexpression<E>&);

        template <class E>
        derived_type& operator*=(const xexpression<E>&);

        template <class E>
        derived_type& operator/=(const xexpression<E>&);

        template <class E>
        derived_type& assign(const xexpression<E>&);

        template <class E>
        derived_type& plus_assign(const xexpression<E>&);

        template <class E>
        derived_type& minus_assign(const xexpression<E>&);

        template <class E>
        derived_type& multiplies_assign(const xexpression<E>&);

        template <class E>
        derived_type& divides_assign(const xexpression<E>&);

    protected:

        xsemantic_base() = default;
        ~xsemantic_base() = default;

        xsemantic_base(const xsemantic_base&) = default;
        xsemantic_base& operator=(const xsemantic_base&) = default;

        xsemantic_base(xsemantic_base&&) = default;
        xsemantic_base& operator=(xsemantic_base&&) = default;

        template <class E>
        derived_type& operator=(const xexpression<E>&);
    };


    /**
     * @class xcontainer_semantic
     * @brief Implementation of the xsemantic_base interface
     * for dense multidimensional containers.
     *
     * The xcontainer_semantic class is an implementation of the
     * xsemantic_base interface for dense multidimensional
     * containers.
     *
     * @tparam D the derived type
     */
    template <class D>
    class xcontainer_semantic : public xsemantic_base<D>
    {
    public:

        using base_type = xsemantic_base<D>;
        using derived_type = D;
        using temporary_type = typename base_type::temporary_type;

        derived_type& assign_temporary(temporary_type&&);

        template <class E>
        derived_type& assign_xexpression(const xexpression<E>& e);

        template <class E>
        derived_type& computed_assign(const xexpression<E>& e);

        template <class E, class F>
        derived_type& scalar_computed_assign(const E& e, F&& f);

    protected:

        xcontainer_semantic() = default;
        ~xcontainer_semantic() = default;

        xcontainer_semantic(const xcontainer_semantic&) = default;
        xcontainer_semantic& operator=(const xcontainer_semantic&) = default;

        xcontainer_semantic(xcontainer_semantic&&) = default;
        xcontainer_semantic& operator=(xcontainer_semantic&&) = default;

        template <class E>
        derived_type& operator=(const xexpression<E>&);
    };


    /**
     * @class xadaptor_semantic
     * @brief Implementation of the xsemantic_base interface
     * for dense multidimensional container adaptors.
     *
     * The xadaptor_semantic class is an implementation of the
     * xsemantic_base interface for dense multidimensional
     * container adaptors.
     *
     * @tparam D the derived type
     */
    template <class D>
    class xadaptor_semantic : public xsemantic_base<D>
    {
    public:

        using base_type = xsemantic_base<D>;
        using derived_type = D;
        using temporary_type = typename base_type::temporary_type;

        derived_type& assign_temporary(temporary_type&&);

        template <class E>
        derived_type& assign_xexpression(const xexpression<E>& e);

        template <class E>
        derived_type& computed_assign(const xexpression<E>& e);

        template <class E, class F>
        derived_type& scalar_computed_assign(const E& e, F&& f);

    protected:

        xadaptor_semantic() = default;
        ~xadaptor_semantic() = default;

        xadaptor_semantic(const xadaptor_semantic&) = default;
        xadaptor_semantic& operator=(const xadaptor_semantic&) = default;

        xadaptor_semantic(xadaptor_semantic&&) = default;
        xadaptor_semantic& operator=(xadaptor_semantic&&) = default;

        template <class E>
        derived_type& operator=(const xexpression<E>&);
    };


    /**
     * @class xview_semantic
     * @brief Implementation of the xsemantic_base interface for
     * multidimensional views
     *
     * The xview_semantic is an implementation of the xsemantic_base
     * interface for multidimensional views.
     *
     * @tparam D the derived type
     */
    template <class D>
    class xview_semantic : public xsemantic_base<D>
    {
    public:

        using base_type = xsemantic_base<D>;
        using derived_type = D;
        using temporary_type = typename base_type::temporary_type;

        derived_type& assign_temporary(temporary_type&&);

        template <class E>
        derived_type& assign_xexpression(const xexpression<E>& e);

        template <class E>
        derived_type& computed_assign(const xexpression<E>& e);

        template <class E, class F>
        derived_type& scalar_computed_assign(const E& e, F&& f);

    protected:

        xview_semantic() = default;
        ~xview_semantic() = default;

        xview_semantic(const xview_semantic&) = default;
        xview_semantic& operator=(const xview_semantic&) = default;

        xview_semantic(xview_semantic&&) = default;
        xview_semantic& operator=(xview_semantic&&) = default;

        template <class E>
        derived_type& operator=(const xexpression<E>&);
    };

    /*********************************
     * xsemantic_base implementation *
     *********************************/

    /**
     * @name Computed assignement
     */
    //@{
    /**
     * Adds the scalar \c e to \c *this.
     * @param e the scalar to add.
     * @return a reference to \c *this.
     */
    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::operator+=(const E& e) -> disable_xexpression<E, derived_type&>
    {
        return this->derived_cast().scalar_computed_assign(e, std::plus<>());
    }

    /**
     * Subtracts the scalar \c e from \c *this.
     * @param e the scalar to subtract.
     * @return a reference to \c *this.
     */
    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::operator-=(const E& e) -> disable_xexpression<E, derived_type&>
    {
        return this->derived_cast().scalar_computed_assign(e, std::minus<>());
    }

    /**
     * Multiplies \c *this with the scalar \c e.
     * @param e the scalar involved in the operation.
     * @return a reference to \c *this.
     */
    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::operator*=(const E& e) -> disable_xexpression<E, derived_type&>
    {
        return this->derived_cast().scalar_computed_assign(e, std::multiplies<>());
    }

    /**
     * Divides \c *this by the scalar \c e.
     * @param e the scalar involved in the operation.
     * @return a reference to \c *this.
     */
    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::operator/=(const E& e) -> disable_xexpression<E, derived_type&>
    {
        return this->derived_cast().scalar_computed_assign(e, std::divides<>());
    }

    /**
     * Adds the xexpression \c e to \c *this.
     * @param e the xexpression to add.
     * @return a reference to \c *this.
     */
    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::operator+=(const xexpression<E>& e) -> derived_type&
    {
        return operator=(this->derived_cast() + e.derived_cast());
    }

    /**
     * Subtracts the xexpression \c e from \c *this.
     * @param e the xexpression to subtract.
     * @return a reference to \c *this.
     */
    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::operator-=(const xexpression<E>& e) -> derived_type&
    {
        return operator=(this->derived_cast() - e.derived_cast());
    }

    /**
     * Multiplies \c *this with the xexpression \c e.
     * @param e the xexpression involved in the operation.
     * @return a reference to \c *this.
     */
    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::operator*=(const xexpression<E>& e) -> derived_type&
    {
        return operator=(this->derived_cast() * e.derived_cast());
    }

    /**
     * Divides \c *this by the xexpression \c e.
     * @param e the xexpression involved in the operation.
     * @return a reference to \c *this.
     */
    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::operator/=(const xexpression<E>& e) -> derived_type&
    {
        return operator=(this->derived_cast() / e.derived_cast());
    }
    //@}

    /**
     * @name Assign functions
     */
    /**
     * Assigns the xexpression \c e to \c *this. Ensures no temporary
     * will be used to perform the assignment.
     * @param e the xexpression to assign.
     * @return a reference to \c *this.
     */
    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::assign(const xexpression<E>& e) -> derived_type&
    {
        return this->derived_cast().assign_xexpression(e);
    }

    /**
     * Adds the xexpression \c e to \c *this. Ensures no temporary
     * will be used to perform the assignment.
     * @param e the xexpression to add.
     * @return a reference to \c *this.
     */
    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::plus_assign(const xexpression<E>& e) -> derived_type&
    {
        return this->derived_cast().computed_assign(this->derived_cast() + e.derived_cast());
    }

    /**
     * Subtracts the xexpression \c e to \c *this. Ensures no temporary
     * will be used to perform the assignment.
     * @param e the xexpression to subtract.
     * @return a reference to \c *this.
     */
    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::minus_assign(const xexpression<E>& e) -> derived_type&
    {
        return this->derived_cast().computed_assign(this->derived_cast() - e.derived_cast());
    }

    /**
     * Multiplies \c *this with the xexpression \c e. Ensures no temporary
     * will be used to perform the assignment.
     * @param e the xexpression involved in the operation.
     * @return a reference to \c *this.
     */
    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::multiplies_assign(const xexpression<E>& e) -> derived_type&
    {
        return this->derived_cast().computed_assign(this->derived_cast() * e.derived_cast());
    }

    /**
     * Divides \c *this by the xexpression \c e. Ensures no temporary
     * will be used to perform the assignment.
     * @param e the xexpression involved in the operation.
     * @return a reference to \c *this.
     */
    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::divides_assign(const xexpression<E>& e) -> derived_type&
    {
        return this->derived_cast().computed_assign(this->derived_cast() / e.derived_cast());
    }

    template <class D>
    template <class E>
    inline auto xsemantic_base<D>::operator=(const xexpression<E>& e) -> derived_type&
    {
        temporary_type tmp(e);
        return this->derived_cast().assign_temporary(std::move(tmp));
    }

    /**************************************
     * xcontainer_semantic implementation *
     **************************************/

    /**
     * Assigns the temporary \c tmp to \c *this.
     * @param tmp the temporary to assign.
     * @return a reference to \c *this.
     */
    template <class D>
    inline auto xcontainer_semantic<D>::assign_temporary(temporary_type&& tmp) -> derived_type&
    {
        using std::swap;
        swap(this->derived_cast(), tmp);
        return this->derived_cast();
    }

    template <class D>
    template <class E>
    inline auto xcontainer_semantic<D>::assign_xexpression(const xexpression<E>& e) -> derived_type&
    {
        xt::assign_xexpression(*this, e);
        return this->derived_cast();
    }

    template <class D>
    template <class E>
    inline auto xcontainer_semantic<D>::computed_assign(const xexpression<E>& e) -> derived_type&
    {
        xt::computed_assign(*this, e);
        return this->derived_cast();
    }

    template <class D>
    template <class E, class F>
    inline auto xcontainer_semantic<D>::scalar_computed_assign(const E& e, F&& f) -> derived_type&
    {
        xt::scalar_computed_assign(*this, e, std::forward<F>(f));
        return this->derived_cast();
    }

    template <class D>
    template <class E>
    inline auto xcontainer_semantic<D>::operator=(const xexpression<E>& e) -> derived_type&
    {
        return base_type::operator=(e);
    }

    /************************************
     * xadaptor_semantic implementation *
     ************************************/

    /**
     * Assigns the temporary \c tmp to \c *this.
     * @param tmp the temporary to assign.
     * @return a reference to \c *this.
     */
    template <class D>
    inline auto xadaptor_semantic<D>::assign_temporary(temporary_type&& tmp) -> derived_type&
    {
        this->derived_cast().assign_temporary_impl(std::move(tmp));
        return this->derived_cast();
    }

    template <class D>
    template <class E>
    inline auto xadaptor_semantic<D>::assign_xexpression(const xexpression<E>& e) -> derived_type&
    {
        xt::assign_xexpression(*this, e);
        return this->derived_cast();
    }

    template <class D>
    template <class E>
    inline auto xadaptor_semantic<D>::computed_assign(const xexpression<E>& e) -> derived_type&
    {
        xt::computed_assign(*this, e);
        return this->derived_cast();
    }

    template <class D>
    template <class E, class F>
    inline auto xadaptor_semantic<D>::scalar_computed_assign(const E& e, F&& f) -> derived_type&
    {
        xt::scalar_computed_assign(this, e, std::forward<F>(f));
        return this->derived_cast();
    }

    template <class D>
    template <class E>
    inline auto xadaptor_semantic<D>::operator=(const xexpression<E>& e) -> derived_type&
    {
        return base_type::operator=(e);
    }

    /*********************************
     * xview_semantic implementation *
     *********************************/

    /**
     * Assigns the temporary \c tmp to \c *this.
     * @param tmp the temporary to assign.
     * @return a reference to \c *this.
     */
    template <class D>
    inline auto xview_semantic<D>::assign_temporary(temporary_type&& tmp) -> derived_type&
    {
        this->derived_cast().assign_temporary_impl(std::move(tmp));
        return this->derived_cast();
    }

    template <class D>
    template <class E>
    inline auto xview_semantic<D>::assign_xexpression(const xexpression<E>& e) -> derived_type&
    {
        xt::assert_compatible_shape(*this, e);
        xt::assign_data(*this, e, false);
        return this->derived_cast();
    }

    template <class D>
    template <class E>
    inline auto xview_semantic<D>::computed_assign(const xexpression<E>& e) -> derived_type&
    {
        xt::assert_compatible_shape(*this, e);
        xt::assign_data(*this, e, false);
        return this->derived_cast();
    }

    template <class D>
    template <class E, class F>
    inline auto xview_semantic<D>::scalar_computed_assign(const E& e, F&& f) -> derived_type&
    {
        D& d = this->derived_cast();
        std::transform(d.xbegin(), d.xend(), d.xbegin(),
                       [e, &f](const auto& v) { return f(v, e); });
        return this->derived_cast();
    }

    template <class D>
    template <class E>
    inline auto xview_semantic<D>::operator=(const xexpression<E>& e) -> derived_type&
    {
        return base_type::operator=(e);
    }
}

#endif