This file is indexed.

/usr/include/xtensor/xstridedview.hpp is in xtensor-dev 0.10.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
/***************************************************************************
* Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht    *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef XSTRIDEDVIEW_HPP
#define XSTRIDEDVIEW_HPP

#include <algorithm>
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>

#include "xexpression.hpp"
#include "xiterable.hpp"
#include "xstrides.hpp"
#include "xutils.hpp"
#include "xview.hpp"

namespace xt
{
    template <class CT, class S, class CD>
    class xstrided_view;

    template <class CT, class S, class CD>
    struct xcontainer_inner_types<xstrided_view<CT, S, CD>>
    {
        using xexpression_type = std::decay_t<CT>;
        using temporary_type = xarray<typename xexpression_type::value_type>;
    };

    template <class CT, class S, class CD>
    struct xiterable_inner_types<xstrided_view<CT, S, CD>>
    {
        using inner_shape_type = S;
        using inner_strides_type = inner_shape_type;
        using inner_backstrides_type_type = inner_shape_type;
        using const_stepper = xstepper<const xstrided_view<CT, S, CD>>;
        using stepper = xstepper<xstrided_view<CT, S, CD>>;
        using const_iterator = xiterator<const_stepper, inner_shape_type*, DEFAULT_LAYOUT>;
        using iterator = xiterator<stepper, inner_shape_type*, DEFAULT_LAYOUT>;
        using const_reverse_iterator = std::reverse_iterator<const_iterator>;
        using reverse_iterator = std::reverse_iterator<iterator>;
    };

    /*****************
     * xstrided_view *
     *****************/

    /**
     * @class xstrided_view
     * @brief View of an xexpression using strides
     *
     * The xstrided_view class implements a view utilizing an offset and strides 
     * into a multidimensional xcontainer. The xstridedview is currently used 
     * to implement `transpose`.
     * @tparam CT the closure type of the \ref xexpression type underlying this view
     * @tparam CD the closure type of the underlying data container
     * 
     * @sa stridedview, transpose
     */
    template <class CT, class S, class CD>
    class xstrided_view : public xview_semantic<xstrided_view<CT, S, CD>>,
                          public xexpression_iterable<xstrided_view<CT, S, CD>>
    {
    public:

        using self_type = xstrided_view<CT, S, CD>;
        using xexpression_type = std::decay_t<CT>;
        using semantic_base = xview_semantic<self_type>;

        using value_type = typename xexpression_type::value_type;
        using reference = typename xexpression_type::reference;
        using const_reference = typename xexpression_type::const_reference;
        using pointer = typename xexpression_type::pointer;
        using const_pointer = typename xexpression_type::const_pointer;
        using size_type = typename xexpression_type::size_type;
        using difference_type = typename xexpression_type::difference_type;

        using underlying_container_type = CD;

        using iterable_base = xexpression_iterable<self_type>;
        using inner_shape_type = typename iterable_base::inner_shape_type;
        using shape_type = inner_shape_type;
        using strides_type = shape_type;
        using backstrides_type = shape_type;
        using closure_type = const self_type;

        using stepper = typename iterable_base::stepper;
        using const_stepper = typename iterable_base::const_stepper;

        static constexpr layout_type static_layout = layout_type::dynamic;
        static constexpr bool contiguous_layout = false;

        using temporary_type = typename xcontainer_inner_types<self_type>::temporary_type;
        using base_index_type = xindex_type_t<shape_type>;

        xstrided_view(CT e, S&& shape, S&& strides, std::size_t offset) noexcept;
        xstrided_view(CT e, CD data, S&& shape, S&& strides, std::size_t offset) noexcept;

        template <class E>
        self_type& operator=(const xexpression<E>& e);

        template <class E>
        disable_xexpression<E, self_type>& operator=(const E& e);

        size_type size() const noexcept;
        size_type dimension() const noexcept;
        const shape_type& shape() const noexcept;
        const strides_type& strides() const noexcept;
        const backstrides_type& backstrides() const noexcept;
        layout_type layout() const noexcept;

        reference operator()();
        template <class... Args>
        reference operator()(Args... args);
        reference operator[](const xindex& index);
        reference operator[](size_type i);

        template <class It>
        reference element(It first, It last);

        const_reference operator()() const;
        template <class... Args>
        const_reference operator()(Args... args) const;
        const_reference operator[](const xindex& index) const;
        const_reference operator[](size_type i) const;

        template <class It>
        const_reference element(It first, It last) const;

        template <class O>
        bool broadcast_shape(O& shape) const;

        template <class O>
        bool is_trivial_broadcast(const O& strides) const noexcept;

        template <class ST>
        stepper stepper_begin(const ST& shape);
        template <class ST>
        stepper stepper_end(const ST& shape, layout_type l);

        template <class ST>
        const_stepper stepper_begin(const ST& shape) const;
        template <class ST>
        const_stepper stepper_end(const ST& shape, layout_type l) const;

        using container_iterator = typename std::decay_t<CD>::iterator;
        using const_container_iterator = typename std::decay_t<CD>::const_iterator;

        underlying_container_type& data() noexcept;
        const underlying_container_type& data() const noexcept;

        value_type* raw_data() noexcept;
        const value_type* raw_data() const noexcept;

        size_type raw_data_offset() const noexcept;

    protected:

        container_iterator data_xbegin() noexcept;
        const_container_iterator data_xbegin() const noexcept;
        container_iterator data_xend(layout_type l) noexcept;
        const_container_iterator data_xend(layout_type l) const noexcept;

    private:

        template <class C>
        friend class xstepper;

        template <class It>
        It data_xbegin_impl(It begin) const noexcept;

        template <class It>
        It data_xend_impl(It end, layout_type l) const noexcept;

        void assign_temporary_impl(temporary_type&& tmp);

        CT m_e;
        CD m_data;
        shape_type m_shape;
        strides_type m_strides;
        backstrides_type m_backstrides;
        std::size_t m_offset;

        friend class xview_semantic<xstrided_view<CT, S, CD>>;
    };

    /********************************
     * xstrided_view implementation *
     ********************************/

    /**
     * @name Constructor
     */
    //@{
    /**
     * Constructs an xstrided_view 
     * 
     * @param e the underlying xexpression for this view
     * @param shape the shape of the view
     * @param strides the strides of the view
     * @param offset the offset of the first element in the underlying container
     */
    template <class CT, class S, class CD>
    inline xstrided_view<CT, S, CD>::xstrided_view(CT e, S&& shape, S&& strides, std::size_t offset) noexcept
        : m_e(e), m_data(m_e.data()), m_shape(std::forward<S>(shape)), m_strides(std::forward<S>(strides)), m_offset(offset)
    {
        m_backstrides = make_sequence<backstrides_type>(m_shape.size(), 0);
        adapt_strides(m_shape, m_strides, m_backstrides);
    }

    template <class CT, class S, class CD>
    inline xstrided_view<CT, S, CD>::xstrided_view(CT e, CD data, S&& shape, S&& strides, std::size_t offset) noexcept
        : m_e(e), m_data(data), m_shape(std::forward<S>(shape)), m_strides(std::forward<S>(strides)), m_offset(offset)
    {
        m_backstrides = make_sequence<backstrides_type>(m_shape.size(), 0);
        adapt_strides(m_shape, m_strides, m_backstrides);
    }
    //@}

    /**
     * @name Extended copy semantic
     */
    //@{
    /**
     * The extended assignment operator.
     */
    template <class CT, class S, class CD>
    template <class E>
    inline auto xstrided_view<CT, S, CD>::operator=(const xexpression<E>& e) -> self_type&
    {
        return semantic_base::operator=(e);
    }
    //@}

    template <class CT, class S, class CD>
    template <class E>
    inline auto xstrided_view<CT, S, CD>::operator=(const E& e) -> disable_xexpression<E, self_type>&
    {
        std::fill(this->begin(), this->end(), e);
        return *this;
    }

    template <class CT, class S, class CD>
    inline void xstrided_view<CT, S, CD>::assign_temporary_impl(temporary_type&& tmp)
    {
        std::copy(tmp.cbegin(), tmp.cend(), this->xbegin());
    }

    /**
     * @name Size and shape
     */
    //@{
    /**
     * Returns the size of the xstrided_view.
     */
    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::size() const noexcept -> size_type
    {
        return compute_size(shape());
    }

    /**
     * Returns the number of dimensions of the xstrided_view.
     */
    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::dimension() const noexcept -> size_type
    {
        return m_shape.size();
    }

    /**
     * Returns the shape of the xstrided_view.
     */
    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::shape() const noexcept -> const shape_type&
    {
        return m_shape;
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::strides() const noexcept -> const strides_type&
    {
        return m_strides;
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::backstrides() const noexcept -> const backstrides_type&
    {
        return m_backstrides;
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::layout() const noexcept -> layout_type
    {
        return layout_type::row_major;
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::data() noexcept -> underlying_container_type&
    {
        return m_e.data();
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::data() const noexcept -> const underlying_container_type&
    {
        return m_e.data();
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::raw_data() noexcept -> value_type*
    {
        return m_e.raw_data();
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::raw_data() const noexcept -> const value_type*
    {
        return m_e.raw_data();
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::raw_data_offset() const noexcept -> size_type
    {
        return m_offset;
    }
    //@}

    /**
     * @name Data
     */
    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::operator()() -> reference
    {
        return m_e();
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::operator()() const -> const_reference
    {
        return m_e();
    }

    template <class CT, class S, class CD>
    template <class... Args>
    inline auto xstrided_view<CT, S, CD>::operator()(Args... args) -> reference
    {
        XTENSOR_ASSERT(check_index(shape(), args...));
        size_type index = m_offset + data_offset<size_type>(strides(), static_cast<size_type>(args)...);
        return m_data[index];
    }

    /**
     * Returns the element at the specified position in the xstrided_view. 
     * 
     * @param args a list of indices specifying the position in the view. Indices
     * must be unsigned integers, the number of indices should be equal or greater than
     * the number of dimensions of the view.
     */
    template <class CT, class S, class CD>
    template <class... Args>
    inline auto xstrided_view<CT, S, CD>::operator()(Args... args) const -> const_reference
    {
        XTENSOR_ASSERT(check_index(shape(), args...));
        size_type index = m_offset + data_offset<size_type>(strides(), static_cast<size_type>(args)...);
        return m_data[index];
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::operator[](const xindex& index) -> reference
    {
        return element(index.cbegin(), index.cend());
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::operator[](size_type i) -> reference
    {
        return operator()(i);
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::operator[](const xindex& index) const -> const_reference
    {
        return element(index.cbegin(), index.cend());
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::operator[](size_type i) const -> const_reference
    {
        return operator()(i);
    }

    /**
     * Returns a reference to the element at the specified position in the xstrided_view.
     * @param first iterator starting the sequence of indices
     * @param last iterator ending the sequence of indices
     * The number of indices in the sequence should be equal to or greater than the the number
     * of dimensions of the container..
     */
    template <class CT, class S, class CD>
    template <class It>
    inline auto xstrided_view<CT, S, CD>::element(It first, It last) -> reference
    {
        return m_data[m_offset + element_offset<size_type>(strides(), first, last)];
    }

    template <class CT, class S, class CD>
    template <class It>
    inline auto xstrided_view<CT, S, CD>::element(It first, It last) const -> const_reference
    {
        return m_data[m_offset + element_offset<size_type>(strides(), first, last)];
    }
    //@}

    /**
     * @name Broadcasting
     */
    //@{
    /**
     * Broadcast the shape of the xstrided_view to the specified parameter.
     * @param shape the result shape
     * @return a boolean indicating whether the broadcasting is trivial
     */
    template <class CT, class S, class CD>
    template <class O>
    inline bool xstrided_view<CT, S, CD>::broadcast_shape(O& shape) const
    {
        return xt::broadcast_shape(m_shape, shape);
    }

    /**
     * Compares the specified strides with those of the container to see whether
     * the broadcasting is trivial.
     * @return a boolean indicating whether the broadcasting is trivial
     */
    template <class CT, class S, class CD>
    template <class O>
    inline bool xstrided_view<CT, S, CD>::is_trivial_broadcast(const O& str) const noexcept
    {
        return str.size() == strides().size() &&
            std::equal(str.cbegin(), str.cend(), strides().begin());
    }
    //@}

    /***************
     * stepper api *
     ***************/

    template <class CT, class S, class CD>
    template <class ST>
    inline auto xstrided_view<CT, S, CD>::stepper_begin(const ST& shape) -> stepper
    {
        size_type offset = shape.size() - dimension();
        return stepper(this, data_xbegin(), offset);
    }

    template <class CT, class S, class CD>
    template <class ST>
    inline auto xstrided_view<CT, S, CD>::stepper_end(const ST& shape, layout_type l) -> stepper
    {
        size_type offset = shape.size() - dimension();
        return stepper(this, data_xend(l), offset);
    }

    template <class CT, class S, class CD>
    template <class ST>
    inline auto xstrided_view<CT, S, CD>::stepper_begin(const ST& shape) const -> const_stepper
    {
        size_type offset = shape.size() - dimension();
        return const_stepper(this, data_xbegin(), offset);
    }

    template <class CT, class S, class CD>
    template <class ST>
    inline auto xstrided_view<CT, S, CD>::stepper_end(const ST& shape, layout_type l) const -> const_stepper
    {
        size_type offset = shape.size() - dimension();
        return const_stepper(this, data_xend(l), offset);
    }

    template <class CT, class S, class CD>
    template <class It>
    inline It xstrided_view<CT, S, CD>::data_xbegin_impl(It begin) const noexcept
    {
        return begin + m_offset;
    }

    template <class CT, class S, class CD>
    template <class It>
    inline It xstrided_view<CT, S, CD>::data_xend_impl(It end, layout_type l) const noexcept
    {
        return strided_data_end(*this, end, l);
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::data_xbegin() noexcept -> container_iterator
    {
        return data_xbegin_impl(m_data.begin());
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::data_xbegin() const noexcept -> const_container_iterator
    {
        return data_xbegin_impl(m_data.begin());
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::data_xend(layout_type l) noexcept -> container_iterator
    {
        return data_xend_impl(m_data.end(), l);
    }

    template <class CT, class S, class CD>
    inline auto xstrided_view<CT, S, CD>::data_xend(layout_type l) const noexcept -> const_container_iterator
    {
        return data_xend_impl(m_data.end(), l);
    }

    /**
     * Construct a strided view from an xexpression, shape, strides and offset.
     *
     * @param e xexpression
     * @param shape the shape of the view
     * @param strides the new strides of the view
     * @param offset the offset of the first element in the underlying container
     *
     * @tparam E type of xexpression
     * @tparam I shape and strides type
     *
     * @return the view
     */
    template <class E, class I>
    inline auto strided_view(E&& e, I&& shape, I&& strides, std::size_t offset = 0) noexcept
    {
        using view_type = xstrided_view<xclosure_t<E>, I, decltype(e.data())>;
        return view_type(std::forward<E>(e), std::forward<I>(shape), std::forward<I>(strides), offset);
    }

    /****************************
     * transpose implementation *
     ****************************/

    namespace detail
    {
        template <class E, class S>
        inline auto transpose_impl(E&& e, S&& permutation, check_policy::none)
        {
            if (sequence_size(permutation) != e.dimension())
            {
                throw transpose_error("Permutation does not have the same size as shape");
            }

            // permute stride and shape
            using strides_type = typename std::decay_t<E>::strides_type;
            strides_type temp_strides;
            resize_container(temp_strides, e.strides().size());

            using shape_type = typename std::decay_t<E>::shape_type;
            shape_type temp_shape;
            resize_container(temp_shape, e.shape().size());

            for (std::size_t i = 0; i < e.shape().size(); ++i)
            {
                if (std::size_t(permutation[i]) >= e.dimension())
                {
                    throw transpose_error("Permutation contains wrong axis");
                }
                temp_shape[i] = e.shape()[permutation[i]];
                temp_strides[i] = e.strides()[permutation[i]];
            }
            using view_type = xstrided_view<xclosure_t<E>, shape_type, decltype(e.data())>;
            return view_type(std::forward<E>(e), std::move(temp_shape), std::move(temp_strides), 0);
        }

        template <class E, class S>
        inline auto transpose_impl(E&& e, S&& permutation, check_policy::full)
        {
            // check if axis appears twice in permutation
            for (std::size_t i = 0; i < sequence_size(permutation); ++i)
            {
                for (std::size_t j = i + 1; j < sequence_size(permutation); ++j)
                {
                    if (permutation[i] == permutation[j])
                    {
                        throw transpose_error("Permutation contains axis more than once");
                    }
                }
            }
            return transpose_impl(std::forward<E>(e), std::forward<S>(permutation), check_policy::none());
        }
    }

    template <class E>
    inline auto transpose(E&& e) noexcept
    {
        using shape_type = typename std::decay_t<E>::shape_type;

        shape_type shape;
        resize_container(shape, e.shape().size());
        std::copy(e.shape().rbegin(), e.shape().rend(), shape.begin());

        shape_type strides;
        resize_container(strides, e.strides().size());
        std::copy(e.strides().rbegin(), e.strides().rend(), strides.begin());

        using view_type = xstrided_view<xclosure_t<E>, shape_type, decltype(e.data())>;
        return view_type(std::forward<E>(e), std::move(shape), std::move(strides), 0);
    }

    /**
     * Returns a transpose view by permuting the xexpression e with @p permutation.
     * @param e the input expression
     * @param permutation the sequence containing permutation
     * @param check_policy the check level (check_policy::full() or check_policy::none())
     * @tparam Tag selects the level of error checking on permutation vector defaults to check_policy::none.
     */
    template <class E, class S, class Tag = check_policy::none>
    inline auto transpose(E&& e, S&& permutation, Tag check_policy = Tag())
    {
        return detail::transpose_impl(std::forward<E>(e), std::forward<S>(permutation), check_policy);
    }

#ifdef X_OLD_CLANG
    template <class E, class I, class Tag = check_policy::none>
    inline auto transpose(E&& e, std::initializer_list<I> permutation, Tag check_policy = Tag())
    {
        std::vector<I> perm(permutation);
        return detail::transpose_impl(std::forward<E>(e), std::move(perm), check_policy);
    }
#else
    template <class E, class I, std::size_t N, class Tag = check_policy::none>
    inline auto transpose(E&& e, const I (&permutation)[N], Tag check_policy = Tag())
    {
        return detail::transpose_impl(std::forward<E>(e), permutation, check_policy);
    }
#endif

    namespace detail
    {
        template <class CT>
        class expression_adaptor
        {
        public:
            using xexpression_type = std::decay_t<CT>;
            using shape_type = typename xexpression_type::shape_type;
            using index_type = xindex_type_t<shape_type>;
            using size_type = typename xexpression_type::size_type;
            using value_type = typename xexpression_type::value_type;
            using reference = typename xexpression_type::reference;

            expression_adaptor(CT&& e) : m_e(e)
            {
                resize_container(m_index, m_e.dimension());
                m_size = compute_size(m_e.shape());
                compute_strides(m_e.shape(), layout_type::row_major, m_strides);
            }

            const reference operator[](std::size_t idx) const
            {
                std::div_t dv{};
                for (size_type i = 0; i < m_strides.size(); ++i)
                {
                    dv = std::div((int) idx, (int) m_strides[i]);
                    idx = dv.rem;
                    m_index[i] = dv.quot;
                }
                return m_e.element(m_index.begin(), m_index.end());
            }

            size_type size() const
            {
                return m_size;
            }

        private:
            CT m_e;
            shape_type m_strides;
            mutable index_type m_index;
            size_type m_size;
        };
    }

    class slice_vector : private std::vector<std::array<long int, 3>>
    {

    public:
        using index_type = long int;
        using base_type = std::vector<std::array<index_type, 3>>;

        // propagating interface
        using base_type::begin;
        using base_type::cbegin;
        using base_type::end;
        using base_type::cend;
        using base_type::size;
        using base_type::operator[];
        using base_type::push_back;

        inline slice_vector() = default;

        template <class E, class... Args>
        inline slice_vector(const xexpression<E>& e, Args... args)
        {
            const auto& de = e.derived_cast();
            m_shape.resize(de.shape().size());
            std::copy(de.shape().begin(), de.shape().end(), m_shape.begin());
            append(args...);
        }

        template <class... Args>
        inline slice_vector(const std::vector<std::size_t>& shape, Args... args)
        {
            m_shape = shape;
            append(args...);
        }

        template <class T, class... Args>
        inline void append(const T& s, Args... args)
        {
            push_back(s);
            append(args...);
        }

        inline void append()
        {
        }

        template <class T>
        inline void push_back(const xslice<T>& s)
        {
            auto ds = s.derived_cast();
            base_type::push_back({ds(0), (index_type)ds.size(), (index_type)ds.step_size()});
        }

        template <class A, class B, class C>
        inline void push_back(const xrange_adaptor<A, B, C>& s)
        {
            auto idx = size() - newaxis_count;
            if (idx >= m_shape.size())
            {
                throw std::runtime_error("Too many slices in slice vector for shape");
            }
            auto ds = s.get(m_shape[idx]);
            base_type::push_back({(index_type)ds(0), (index_type)ds.size(), (index_type)ds.step_size()});
        }

        inline void push_back(xall_tag /*s*/)
        {
            auto idx = size() - newaxis_count;
            if (idx >= m_shape.size())
            {
                throw std::runtime_error("Too many slices in slice vector for shape");
            }
            base_type::push_back({0, (index_type)m_shape[idx], 1});
        }

        inline void push_back(xnewaxis_tag /*s*/)
        {
            ++newaxis_count;
            base_type::push_back({-1, 0, 0});
        }

        inline void push_back(index_type i)
        {
            base_type::push_back({i, 0, 0});
        }

    private:

        std::vector<std::size_t> m_shape;
        std::size_t newaxis_count = 0;
    };

    namespace detail
    {
        template <class E, std::enable_if_t<has_raw_data_interface<std::decay_t<E>>::value>* = nullptr>
        inline auto&& get_data(E&& e)
        {
            return e.data();
        }

        template <class E, std::enable_if_t<has_raw_data_interface<std::decay_t<E>>::value>* = nullptr>
        inline std::size_t get_offset(E&& e)
        {
            return e.raw_data_offset();
        }

        template <class E, std::enable_if_t<has_raw_data_interface<std::decay_t<E>>::value>* = nullptr>
        inline auto&& get_strides(E&& e)
        {
            return e.strides();
        }

        template <class E, std::enable_if_t<!has_raw_data_interface<std::decay_t<E>>::value>* = nullptr>
        inline auto get_data(E&& e) -> expression_adaptor<xclosure_t<E>>
        {
            return std::move(expression_adaptor<xclosure_t<E>>(e));
        }

        template <class E, std::enable_if_t<!has_raw_data_interface<std::decay_t<E>>::value>* = nullptr>
        inline std::size_t get_offset(E&& /*e*/)
        {
            return 0;
        }

        template <class E, std::enable_if_t<!has_raw_data_interface<std::decay_t<E>>::value>* = nullptr>
        inline auto get_strides(E&& e)
        {
            std::vector<std::size_t> strides;
            strides.resize(e.shape().size());
            compute_strides(e.shape(), layout_type::row_major, strides);
            return strides;
        }
    }

    template <class E, class S>
    inline auto dynamic_view(E&& e, S&& slices)
    {
        // Compute dimension
        std::size_t dimension = e.dimension();

        for (const auto& el : slices)
        {
            if (el[0] >= 0 && el[1] == 0)
            {
                // treat this like a single integral and remove from shape
                --dimension;
            }
            else if (el[0] == -1 && el[1] == 0)
            {
                // treat this like a new axis
                ++dimension;
            }
        }

        // Compute strided view

        std::size_t offset = detail::get_offset(e);
        using shape_type = typename std::vector<std::size_t>;

        shape_type new_shape(dimension);
        shape_type new_strides(dimension);

        auto old_shape = e.shape();
        auto&& old_strides = detail::get_strides(e);

        std::size_t i = 0;
        std::size_t idx = 0;
        std::size_t newaxis_skip = 0;

        for (; i < slices.size(); ++i)
        {
            if (slices[i][0] >= 0)
            {
                offset += slices[i][0] * old_strides[i];
            }

            if (slices[i][1] != 0 && slices[i][2] != 0)
            {
                new_shape[idx] = slices[i][1];
                new_strides[idx] = slices[i][2] * old_strides[i - newaxis_skip];
                ++idx;
            }
            else if (slices[i][0] == -1)  // newaxis
            {
                new_shape[idx] = 1;
                new_strides[idx] = 0;
                ++newaxis_skip;
                ++idx;
            }
        }

        for (; i < old_shape.size(); ++i)
        {
            new_shape[idx] = old_shape[i];
            new_strides[idx] = old_strides[i];
            ++idx;
        }

        auto data = detail::get_data(e);

        using view_type = xstrided_view<xclosure_t<E>, shape_type, decltype(data)>;
        return view_type(std::forward<E>(e), std::forward<decltype(data)>(data), std::move(new_shape), std::move(new_strides), offset);
    }
}

#endif