This file is indexed.

/usr/include/xtensor/xstrides.hpp is in xtensor-dev 0.10.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/***************************************************************************
* Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht    *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef XSTRIDES_HPP
#define XSTRIDES_HPP

#include <cstddef>
#include <functional>
#include <numeric>

#include "xexception.hpp"
#include "xtensor_forward.hpp"

namespace xt
{

    template <class shape_type>
    auto compute_size(const shape_type& shape) noexcept;

    /***************
     * data offset *
     ***************/

    template <class size_type, class S, size_t dim = 0>
    size_type data_offset(const S& strides) noexcept;

    template <class size_type, class S, size_t dim = 0, class Arg, class... Args>
    size_type data_offset(const S& strides, Arg arg, Args... args) noexcept;

    template <class size_type, class S, class It>
    size_type element_offset(const S& strides, It first, It last) noexcept;

    /*******************
     * strides builder *
     *******************/

    template <class shape_type, class strides_type>
    std::size_t compute_strides(const shape_type& shape, layout_type l, strides_type& strides);

    template <class shape_type, class strides_type, class backstrides_type>
    std::size_t compute_strides(const shape_type& shape, layout_type l,
                                strides_type& strides, backstrides_type& backstrides);

    template <class shape_type, class strides_type>
    void adapt_strides(const shape_type& shape, strides_type& strides) noexcept;

    template <class shape_type, class strides_type, class backstrides_type>
    void adapt_strides(const shape_type& shape, strides_type& strides,
                       backstrides_type& backstrides) noexcept;

    /***********************
     * broadcast functions *
     ***********************/

    template <class S1, class S2>
    bool broadcast_shape(const S1& input, S2& output);

    template <class S1, class S2>
    bool broadcastable(const S1& s1, S2& s2);

    /********************************************
     * utility functions for strided containers *
     ********************************************/
    
    template <class C, class It>
    It strided_data_end(const C& c, It end, layout_type l)
    {
        using strides_type = std::decay_t<decltype(c.strides())>;
        if (c.dimension() == 0)
        {
            return end;
        }
        else
        {
            auto leading_stride = (l == layout_type::row_major ? c.strides().back() : c.strides().front());
            leading_stride = std::max(leading_stride, typename strides_type::value_type(1));
            return end - 1 + leading_stride;
        }
    }
     
    /******************
     * Implementation *
     ******************/

    template <class shape_type>
    inline auto compute_size(const shape_type& shape) noexcept
    {
        using size_type = std::decay_t<typename shape_type::value_type>;
        return std::accumulate(shape.cbegin(), shape.cend(), size_type(1), std::multiplies<size_type>());
    }

    namespace detail
    {
        template <class size_type, class S, std::size_t dim>
        inline size_type raw_data_offset(const S&) noexcept
        {
            return 0;
        }

        template <class size_type, class S, std::size_t dim, class Arg, class... Args>
        inline size_type raw_data_offset(const S& strides, Arg arg, Args... args) noexcept
        {
            return arg * strides[dim] + raw_data_offset<size_type, S, dim + 1>(strides, args...);
        }
    }

    template <class size_type, class S, std::size_t dim>
    inline size_type data_offset(const S&) noexcept
    {
        return 0;
    }

    template <class size_type, class S, std::size_t dim, class Arg, class... Args>
    inline size_type data_offset(const S& strides, Arg arg, Args... args) noexcept
    {
        constexpr std::size_t nargs = sizeof...(Args) + dim + 1;
        if (nargs == strides.size())
        {
            // Correct number of arguments: iterate
            return detail::raw_data_offset<size_type, S, dim, Arg, Args...>(strides, arg, args...);
        }
        else if (nargs > strides.size())
        {
            // Too many arguments: drop the first
            return data_offset<size_type, S, dim>(strides, args...);
        }
        else
        {
            // Too few arguments: right to left scalar product
            auto view = strides.cend() - nargs;
            return detail::raw_data_offset<size_type, const typename S::const_iterator, dim, Arg, Args...>(view, arg, args...);
        }
    }

    template <class size_type, class S, class It>
    inline size_type element_offset(const S& strides, It first, It last) noexcept
    {
        auto size = std::min(static_cast<typename S::size_type>(std::distance(first, last)), strides.size());
        return std::inner_product(last - size, last, strides.cend() - size, size_type(0));
    }

    namespace detail
    {
        template <class shape_type, class strides_type, class bs_ptr>
        inline void adapt_strides(const shape_type& shape, strides_type& strides,
                                  bs_ptr backstrides, typename strides_type::size_type i) noexcept
        {
            if (shape[i] == 1)
                strides[i] = 0;
            (*backstrides)[i] = strides[i] * (shape[i] - 1);
        }

        template <class shape_type, class strides_type>
        inline void adapt_strides(const shape_type& shape, strides_type& strides,
                                  std::nullptr_t, typename strides_type::size_type i) noexcept
        {
            if (shape[i] == 1)
                strides[i] = 0;
        }

        template <class shape_type, class strides_type, class bs_ptr>
        inline std::size_t compute_strides(const shape_type& shape, layout_type l,
                                           strides_type& strides, bs_ptr bs)
        {
            std::size_t data_size = 1;
            if (l == layout_type::row_major)
            {
                for (std::size_t i = strides.size(); i != 0; --i)
                {
                    strides[i - 1] = data_size;
                    data_size = strides[i - 1] * shape[i - 1];
                    adapt_strides(shape, strides, bs, i - 1);
                }
            }
            else
            {
                for (std::size_t i = 0; i < strides.size(); ++i)
                {
                    strides[i] = data_size;
                    data_size = strides[i] * shape[i];
                    adapt_strides(shape, strides, bs, i);
                }
            }
            return data_size;
        }
    }

    template <class shape_type, class strides_type>
    inline std::size_t compute_strides(const shape_type& shape, layout_type l, strides_type& strides)
    {
        return detail::compute_strides(shape, l, strides, nullptr);
    }

    template <class shape_type, class strides_type, class backstrides_type>
    inline std::size_t compute_strides(const shape_type& shape, layout_type l,
                                       strides_type& strides,
                                       backstrides_type& backstrides)
    {
        return detail::compute_strides(shape, l, strides, &backstrides);
    }

    template <class shape_type, class strides_type>
    inline void adapt_strides(const shape_type& shape, strides_type& strides) noexcept
    {
        for (typename shape_type::size_type i = 0; i < shape.size(); ++i)
        {
            detail::adapt_strides(shape, strides, nullptr, i);
        }
    }

    template <class shape_type, class strides_type, class backstrides_type>
    inline void adapt_strides(const shape_type& shape, strides_type& strides,
                              backstrides_type& backstrides) noexcept
    {
        for (typename shape_type::size_type i = 0; i < shape.size(); ++i)
        {
            detail::adapt_strides(shape, strides, &backstrides, i);
        }
    }

    template <class S1, class S2>
    inline bool broadcast_shape(const S1& input, S2& output)
    {
        bool trivial_broadcast = (input.size() == output.size());
        auto input_iter = input.crbegin();
        auto output_iter = output.rbegin();
        for (; input_iter != input.crend(); ++input_iter, ++output_iter)
        {
            if (*output_iter == 1)
            {
                *output_iter = *input_iter;
            }
            else if ((*input_iter != 1) && (*output_iter != *input_iter))
            {
                throw broadcast_error(output, input);
            }
            trivial_broadcast = trivial_broadcast && (*output_iter == *input_iter);
        }
        return trivial_broadcast;
    }

    template <class S1, class S2>
    inline bool broadcastable(const S1& s1, const S2& s2)
    {
        auto iter1 = s1.crbegin();
        auto iter2 = s2.crbegin();
        for (; iter1 != s1.crend() && iter2 != s2.crend(); ++iter1, ++iter2)
        {
            if ((*iter2 != 1) && (*iter1 != 1) && (*iter2 != *iter1))
            {
                return false;
            }
        }
        return true;
    }
}

#endif