This file is indexed.

/usr/include/xtensor/xtensor.hpp is in xtensor-dev 0.10.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/***************************************************************************
* Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht    *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef XTENSOR_HPP
#define XTENSOR_HPP

#include <algorithm>
#include <array>
#include <cstddef>
#include <utility>
#include <vector>

#include "xbuffer_adaptor.hpp"
#include "xcontainer.hpp"
#include "xsemantic.hpp"

namespace xt
{

    /***********************
     * xtensor declaration *
     ***********************/

    template <class EC, std::size_t N, layout_type L>
    struct xcontainer_inner_types<xtensor_container<EC, N, L>>
    {
        using container_type = EC;
        using shape_type = std::array<typename container_type::size_type, N>;
        using strides_type = shape_type;
        using backstrides_type = shape_type;
        using inner_shape_type = shape_type;
        using inner_strides_type = strides_type;
        using inner_backstrides_type = backstrides_type;
        using temporary_type = xtensor_container<EC, N, L>;
    };

    template <class EC, std::size_t N, layout_type L>
    struct xiterable_inner_types<xtensor_container<EC, N, L>>
        : xcontainer_iterable_types<xtensor_container<EC, N, L>>
    {
    };

    /**
     * @class xtensor_container
     * @brief Dense multidimensional container with tensor semantic and fixed
     * dimension.
     *
     * The xtensor_container class implements a dense multidimensional container
     * with tensor semantic and fixed dimension
     *
     * @tparam EC The type of the container holding the elements.
     * @tparam N The dimension of the container.
     * @tparam L The layout_type of the tensor.
     * @sa xtensor
     */
    template <class EC, size_t N, layout_type L>
    class xtensor_container : public xstrided_container<xtensor_container<EC, N, L>, L>,
                              public xcontainer_semantic<xtensor_container<EC, N, L>>
    {
    public:

        using self_type = xtensor_container<EC, N, L>;
        using base_type = xstrided_container<self_type, L>;
        using semantic_base = xcontainer_semantic<self_type>;
        using container_type = typename base_type::container_type;
        using value_type = typename base_type::value_type;
        using reference = typename base_type::reference;
        using const_reference = typename base_type::const_reference;
        using pointer = typename base_type::pointer;
        using const_pointer = typename base_type::const_pointer;
        using shape_type = typename base_type::shape_type;
        using inner_shape_type = typename base_type::inner_shape_type;
        using strides_type = typename base_type::strides_type;
        using backstrides_type = typename base_type::backstrides_type;
        using inner_strides_type = typename base_type::inner_strides_type;

        xtensor_container();
        xtensor_container(nested_initializer_list_t<value_type, N> t);
        explicit xtensor_container(const shape_type& shape, layout_type l = L);
        explicit xtensor_container(const shape_type& shape, const_reference value, layout_type l = L);
        explicit xtensor_container(const shape_type& shape, const strides_type& strides);
        explicit xtensor_container(const shape_type& shape, const strides_type& strides, const_reference value);
        explicit xtensor_container(container_type&& data, inner_shape_type&& shape, inner_strides_type&& strides);

        template <class S = shape_type>
        static xtensor_container from_shape(S&& s);

        ~xtensor_container() = default;

        xtensor_container(const xtensor_container&) = default;
        xtensor_container& operator=(const xtensor_container&) = default;

        xtensor_container(xtensor_container&&) = default;
        xtensor_container& operator=(xtensor_container&&) = default;

        template <class E>
        xtensor_container(const xexpression<E>& e);

        template <class E>
        xtensor_container& operator=(const xexpression<E>& e);

    private:

        container_type m_data;

        container_type& data_impl() noexcept;
        const container_type& data_impl() const noexcept;

        friend class xcontainer<xtensor_container<EC, N, L>>;
    };

    /*****************************************
     * xtensor_container_adaptor declaration *
     *****************************************/

    template <class EC, std::size_t N, layout_type L = DEFAULT_LAYOUT>
    class xtensor_adaptor;

    template <class EC, std::size_t N, layout_type L>
    struct xcontainer_inner_types<xtensor_adaptor<EC, N, L>>
    {
        using container_type = EC;
        using shape_type = std::array<typename container_type::size_type, N>;
        using strides_type = shape_type;
        using backstrides_type = shape_type;
        using inner_shape_type = shape_type;
        using inner_strides_type = strides_type;
        using inner_backstrides_type = backstrides_type;
        using temporary_type = xtensor_container<EC, N, L>;
    };

    template <class EC, std::size_t N, layout_type L>
    struct xiterable_inner_types<xtensor_adaptor<EC, N, L>>
        : xcontainer_iterable_types<xtensor_adaptor<EC, N, L>>
    {
    };

    /**
     * @class xtensor_adaptor
     * @brief Dense multidimensional container adaptor with tensor semantic
     * and fixed dimension.
     *
     * The xtensor_adaptor class implements a dense multidimensional
     * container adaptor with tensor semantic and fixed dimension. It
     * is used to provide a multidimensional container semantic and a
     * tensor semantic to stl-like containers.
     *
     * @tparam EC The container type to adapt.
     * @tparam N The dimension of the adaptor.
     * @tparam L The layout_type of the adaptor.
     */
    template <class EC, std::size_t N, layout_type L>
    class xtensor_adaptor : public xstrided_container<xtensor_adaptor<EC, N, L>, L>,
                            public xadaptor_semantic<xtensor_adaptor<EC, N, L>>
    {
    public:

        using self_type = xtensor_adaptor<EC, N, L>;
        using base_type = xstrided_container<self_type, L>;
        using semantic_base = xadaptor_semantic<self_type>;
        using container_type = typename base_type::container_type;
        using shape_type = typename base_type::shape_type;
        using strides_type = typename base_type::strides_type;
        using backstrides_type = typename base_type::backstrides_type;

        using container_closure_type = adaptor_closure_t<container_type>;

        xtensor_adaptor(container_closure_type data);
        xtensor_adaptor(container_closure_type data, const shape_type& shape, layout_type l = layout_type::row_major);
        xtensor_adaptor(container_closure_type data, const shape_type& shape, const strides_type& strides);

        ~xtensor_adaptor() = default;

        xtensor_adaptor(const xtensor_adaptor&) = default;
        xtensor_adaptor& operator=(const xtensor_adaptor&);

        xtensor_adaptor(xtensor_adaptor&&) = default;
        xtensor_adaptor& operator=(xtensor_adaptor&&);

        template <class E>
        xtensor_adaptor& operator=(const xexpression<E>& e);

    private:

        container_closure_type m_data;

        container_type& data_impl() noexcept;
        const container_type& data_impl() const noexcept;

        using temporary_type = typename xcontainer_inner_types<self_type>::temporary_type;
        void assign_temporary_impl(temporary_type&& tmp);

        friend class xcontainer<xtensor_adaptor<EC, N, L>>;
        friend class xadaptor_semantic<xtensor_adaptor<EC, N, L>>;
    };

    /************************************
     * xtensor_container implementation *
     ************************************/

    /**
     * @name Constructors
     */
    //@{
    /**
     * Allocates an uninitialized xtensor_container that holds 0 element.
     */
    template <class EC, std::size_t N, layout_type L>
    inline xtensor_container<EC, N, L>::xtensor_container()
        : base_type(), m_data(1, value_type())
    {
    }

    /**
     * Allocates an xtensor_container with nested initializer lists.
     */
    template <class EC, std::size_t N, layout_type L>
    inline xtensor_container<EC, N, L>::xtensor_container(nested_initializer_list_t<value_type, N> t)
        : base_type()
    {
        base_type::reshape(xt::shape<shape_type>(t), true);
        L == layout_type::row_major ? nested_copy(m_data.begin(), t) : nested_copy(this->template xbegin<layout_type::row_major>(), t);
    }

    /**
     * Allocates an uninitialized xtensor_container with the specified shape and
     * layout_type.
     * @param shape the shape of the xtensor_container
     * @param l the layout_type of the xtensor_container
     */
    template <class EC, std::size_t N, layout_type L>
    inline xtensor_container<EC, N, L>::xtensor_container(const shape_type& shape, layout_type l)
        : base_type()
    {
        base_type::reshape(shape, l);
    }

    /**
     * Allocates an xtensor_container with the specified shape and layout_type. Elements
     * are initialized to the specified value.
     * @param shape the shape of the xtensor_container
     * @param value the value of the elements
     * @param l the layout_type of the xtensor_container
     */
    template <class EC, std::size_t N, layout_type L>
    inline xtensor_container<EC, N, L>::xtensor_container(const shape_type& shape, const_reference value, layout_type l)
        : base_type()
    {
        base_type::reshape(shape, l);
        std::fill(m_data.begin(), m_data.end(), value);
    }

    /**
     * Allocates an uninitialized xtensor_container with the specified shape and strides.
     * @param shape the shape of the xtensor_container
     * @param strides the strides of the xtensor_container
     */
    template <class EC, std::size_t N, layout_type L>
    inline xtensor_container<EC, N, L>::xtensor_container(const shape_type& shape, const strides_type& strides)
        : base_type()
    {
        base_type::reshape(shape, strides);
    }

    /**
     * Allocates an uninitialized xtensor_container with the specified shape and strides.
     * Elements are initialized to the specified value.
     * @param shape the shape of the xtensor_container
     * @param strides the strides of the xtensor_container
     * @param value the value of the elements
     */
    template <class EC, std::size_t N, layout_type L>
    inline xtensor_container<EC, N, L>::xtensor_container(const shape_type& shape, const strides_type& strides, const_reference value)
        : base_type()
    {
        base_type::reshape(shape, strides);
        std::fill(m_data.begin(), m_data.end(), value);
    }

    /**
     * Allocates an xtensor_container by moving specified data, shape and strides
     *
     * @param data the data for the xtensor_container
     * @param shape the shape of the xtensor_container
     * @param strides the strides of the xtensor_container
     */
    template <class EC, std::size_t N, layout_type L>
    inline xtensor_container<EC, N, L>::xtensor_container(container_type&& data, inner_shape_type&& shape, inner_strides_type&& strides)
        : base_type(std::move(shape), std::move(strides)), m_data(std::move(data))
    {
    }

    template <class EC, std::size_t N, layout_type L>
    template <class S>
    inline xtensor_container<EC, N, L> xtensor_container<EC, N, L>::from_shape(S&& s)
    {
        if (s.size() != N)
        {
            throw std::runtime_error("Cannot change dimension of xtensor.");
        }
        shape_type shape = forward_sequence<shape_type>(s);
        return self_type(shape);
    }
    //@}

    /**
     * @name Extended copy semantic
     */
    //@{
    /**
     * The extended copy constructor.
     */
    template <class EC, std::size_t N, layout_type L>
    template <class E>
    inline xtensor_container<EC, N, L>::xtensor_container(const xexpression<E>& e)
        : base_type()
    {
        // Avoids unintialized data because of (m_shape == shape) condition
        // in reshape (called by assign), which is always true when dimension == 0.
        if (e.derived_cast().dimension() == 0)
        {
            m_data.resize(1);
        }
        semantic_base::assign(e);
    }

    /**
     * The extended assignment operator.
     */
    template <class EC, std::size_t N, layout_type L>
    template <class E>
    inline auto xtensor_container<EC, N, L>::operator=(const xexpression<E>& e) -> self_type&
    {
        return semantic_base::operator=(e);
    }
    //@}

    template <class EC, std::size_t N, layout_type L>
    inline auto xtensor_container<EC, N, L>::data_impl() noexcept -> container_type&
    {
        return m_data;
    }

    template <class EC, std::size_t N, layout_type L>
    inline auto xtensor_container<EC, N, L>::data_impl() const noexcept -> const container_type&
    {
        return m_data;
    }

    /*******************
     * xtensor_adaptor *
     *******************/

    /**
     * @name Constructors
     */
    //@{
    /**
     * Constructs an xtensor_adaptor of the given stl-like container.
     * @param data the container to adapt
     */
    template <class EC, std::size_t N, layout_type L>
    inline xtensor_adaptor<EC, N, L>::xtensor_adaptor(container_closure_type data)
        : base_type(), m_data(std::forward<container_closure_type>(data))
    {
    }

    /**
     * Constructs an xtensor_adaptor of the given stl-like container,
     * with the specified shape and layout_type.
     * @param data the container to adapt
     * @param shape the shape of the xtensor_adaptor
     * @param l the layout_type of the xtensor_adaptor
     */
    template <class EC, std::size_t N, layout_type L>
    inline xtensor_adaptor<EC, N, L>::xtensor_adaptor(container_closure_type data, const shape_type& shape, layout_type l)
        : base_type(), m_data(std::forward<container_closure_type>(data))
    {
        base_type::reshape(shape, l);
    }

    /**
     * Constructs an xtensor_adaptor of the given stl-like container,
     * with the specified shape and strides.
     * @param data the container to adapt
     * @param shape the shape of the xtensor_adaptor
     * @param strides the strides of the xtensor_adaptor
     */
    template <class EC, std::size_t N, layout_type L>
    inline xtensor_adaptor<EC, N, L>::xtensor_adaptor(container_closure_type data, const shape_type& shape, const strides_type& strides)
        : base_type(), m_data(std::forward<container_closure_type>(data))
    {
        base_type::reshape(shape, strides);
    }
    //@}

    template <class EC, std::size_t N, layout_type L>
    inline auto xtensor_adaptor<EC, N, L>::operator=(const xtensor_adaptor& rhs) -> self_type&
    {
        base_type::operator=(rhs);
        m_data = rhs.m_data;
        return *this;
    }

    template <class EC, std::size_t N, layout_type L>
    inline auto xtensor_adaptor<EC, N, L>::operator=(xtensor_adaptor&& rhs) -> self_type&
    {
        base_type::operator=(std::move(rhs));
        m_data = rhs.m_data;
        return *this;
    }

    /**
     * @name Extended copy semantic
     */
    //@{
    /**
     * The extended assignment operator.
     */
    template <class EC, std::size_t N, layout_type L>
    template <class E>
    inline auto xtensor_adaptor<EC, N, L>::operator=(const xexpression<E>& e) -> self_type&
    {
        return semantic_base::operator=(e);
    }
    //@}

    template <class EC, std::size_t N, layout_type L>
    inline auto xtensor_adaptor<EC, N, L>::data_impl() noexcept -> container_type&
    {
        return m_data;
    }

    template <class EC, std::size_t N, layout_type L>
    inline auto xtensor_adaptor<EC, N, L>::data_impl() const noexcept -> const container_type&
    {
        return m_data;
    }

    template <class EC, std::size_t N, layout_type L>
    inline void xtensor_adaptor<EC, N, L>::assign_temporary_impl(temporary_type&& tmp)
    {
        base_type::shape_impl() = std::move(const_cast<shape_type&>(tmp.shape()));
        base_type::strides_impl() = std::move(const_cast<strides_type&>(tmp.strides()));
        base_type::backstrides_impl() = std::move(const_cast<backstrides_type&>(tmp.backstrides()));
        m_data = std::move(tmp.data());
    }
}

#endif