This file is indexed.

/usr/include/xtensor/xview.hpp is in xtensor-dev 0.10.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
/***************************************************************************
* Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht    *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef XVIEW_HPP
#define XVIEW_HPP

#include <algorithm>
#include <array>
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>

#include "xbroadcast.hpp"
#include "xcontainer.hpp"
#include "xiterable.hpp"
#include "xsemantic.hpp"
#include "xtensor_forward.hpp"
#include "xview_utils.hpp"

namespace xt
{

    /*********************
     * xview declaration *
     *********************/

    template <class CT, class... S>
    struct xcontainer_inner_types<xview<CT, S...>>
    {
        using xexpression_type = std::decay_t<CT>;
        using temporary_type = view_temporary_type_t<xexpression_type, S...>;
    };

    template <bool is_const, class CT, class... S>
    class xview_stepper;

    template <class ST, class... S>
    struct xview_shape_type;

    template <class CT, class... S>
    struct xiterable_inner_types<xview<CT, S...>>
    {
        using xexpression_type = std::decay_t<CT>;
        using inner_shape_type = typename xview_shape_type<typename xexpression_type::shape_type, S...>::type;
        using stepper = xview_stepper<false, CT, S...>;
        using const_stepper = xview_stepper<true, CT, S...>;
        using iterator = xiterator<stepper, inner_shape_type*, DEFAULT_LAYOUT>;
        using const_iterator = xiterator<const_stepper, inner_shape_type*, DEFAULT_LAYOUT>;
        using reverse_iterator = std::reverse_iterator<iterator>;
        using const_reverse_iterator = std::reverse_iterator<const_iterator>;
    };

    /**
     * @class xview
     * @brief Multidimensional view with tensor semantic.
     *
     * The xview class implements a multidimensional view with tensor
     * semantic. It is used to adapt the shape of an xexpression without
     * changing it. xview is not meant to be used directly, but
     * only with the \ref view helper functions.
     *
     * @tparam CT the closure type of the \ref xexpression to adapt
     * @tparam S the slices type describing the shape adaptation
     *
     * @sa view, range, all, newaxis
     */
    template <class CT, class... S>
    class xview : public xview_semantic<xview<CT, S...>>,
                  public xexpression_iterable<xview<CT, S...>>
    {
    public:

        using self_type = xview<CT, S...>;
        using xexpression_type = std::decay_t<CT>;
        using semantic_base = xview_semantic<self_type>;

        using value_type = typename xexpression_type::value_type;
        using reference = typename xexpression_type::reference;
        using const_reference = typename xexpression_type::const_reference;
        using pointer = typename xexpression_type::pointer;
        using const_pointer = typename xexpression_type::const_pointer;
        using size_type = typename xexpression_type::size_type;
        using difference_type = typename xexpression_type::difference_type;

        using iterable_base = xexpression_iterable<self_type>;
        using inner_shape_type = typename iterable_base::inner_shape_type;
        using shape_type = inner_shape_type;
        using strides_type = shape_type;

        using slice_type = std::tuple<S...>;

        using stepper = typename iterable_base::stepper;
        using const_stepper = typename iterable_base::const_stepper;

        static constexpr layout_type static_layout = layout_type::dynamic;
        static constexpr bool contiguous_layout = false;

        // The argument FSL avoids the compiler to call this constructor
        // instead of the copy constructor when sizeof...(SL) == 0.
        template <class CTA, class FSL, class... SL>
        explicit xview(CTA&& e, FSL&& first_slice, SL&&... slices) noexcept;

        template <class E>
        self_type& operator=(const xexpression<E>& e);

        template <class E>
        disable_xexpression<E, self_type>& operator=(const E& e);

        size_type dimension() const noexcept;

        size_type size() const noexcept;
        const inner_shape_type& shape() const noexcept;
        const slice_type& slices() const noexcept;
        layout_type layout() const noexcept;

        template <class... Args>
        reference operator()(Args... args);
        reference operator[](const xindex& index);
        reference operator[](size_type i);
        template <class It>
        reference element(It first, It last);

        template <class... Args>
        const_reference operator()(Args... args) const;
        const_reference operator[](const xindex& index) const;
        const_reference operator[](size_type i) const;
        template <class It>
        const_reference element(It first, It last) const;

        template <class ST>
        bool broadcast_shape(ST& shape) const;

        template <class ST>
        bool is_trivial_broadcast(const ST& strides) const;

        template <class ST>
        stepper stepper_begin(const ST& shape);
        template <class ST>
        stepper stepper_end(const ST& shape, layout_type l);

        template <class ST>
        const_stepper stepper_begin(const ST& shape) const;
        template <class ST>
        const_stepper stepper_end(const ST& shape, layout_type l) const;

        template <class T = xexpression_type>
        std::enable_if_t<has_raw_data_interface<T>::value, const typename T::container_type&>
        data() const;

        template <class T = xexpression_type>
        std::enable_if_t<has_raw_data_interface<T>::value, const typename T::strides_type>
        strides() const;

        template <class T = xexpression_type>
        std::enable_if_t<has_raw_data_interface<T>::value, const value_type*>
        raw_data() const;

        template <class T = xexpression_type>
        std::enable_if_t<has_raw_data_interface<T>::value, value_type*>
        raw_data();

        template <class T = xexpression_type>
        std::enable_if_t<has_raw_data_interface<T>::value, const std::size_t>
        raw_data_offset() const noexcept;

        size_type underlying_size(size_type dim) const;

    private:

        // VS 2015 workaround (yes, really)
        template <std::size_t I>
        struct lesser_condition
        {
            static constexpr bool value = (I + newaxis_count_before<S...>(I + 1) < sizeof...(S));
        };

        CT m_e;
        slice_type m_slices;
        inner_shape_type m_shape;

        template <typename std::decay_t<CT>::size_type... I, class... Args>
        reference access_impl(std::index_sequence<I...>, Args... args);

        template <typename std::decay_t<CT>::size_type... I, class... Args>
        const_reference access_impl(std::index_sequence<I...>, Args... args) const;

        template <typename std::decay_t<CT>::size_type I, class... Args>
        std::enable_if_t<lesser_condition<I>::value, size_type> index(Args... args) const;

        template <typename std::decay_t<CT>::size_type I, class... Args>
        std::enable_if_t<!lesser_condition<I>::value, size_type> index(Args... args) const;

        template <typename std::decay_t<CT>::size_type, class T>
        size_type sliced_access(const xslice<T>& slice) const;

        template <typename std::decay_t<CT>::size_type I, class T, class Arg, class... Args>
        size_type sliced_access(const xslice<T>& slice, Arg arg, Args... args) const;

        template <typename std::decay_t<CT>::size_type I, class T, class... Args>
        disable_xslice<T, size_type> sliced_access(const T& squeeze, Args...) const;

        using temporary_type = typename xcontainer_inner_types<self_type>::temporary_type;
        using base_index_type = xindex_type_t<shape_type>;

        template <class It>
        base_index_type make_index(It first, It last) const;

        void assign_temporary_impl(temporary_type&& tmp);

        friend class xview_semantic<xview<CT, S...>>;
    };

    template <class E, class... S>
    auto view(E&& e, S&&... slices);

    /*****************************
     * xview_stepper declaration *
     *****************************/

    namespace detail
    {
        template <class V>
        struct get_stepper_impl
        {
            using xexpression_type = typename V::xexpression_type;
            using type = typename xexpression_type::stepper;
        };

        template <class V>
        struct get_stepper_impl<const V>
        {
            using xexpression_type = typename V::xexpression_type;
            using type = typename xexpression_type::const_stepper;
        };
    }

    template <class V>
    using get_stepper = typename detail::get_stepper_impl<V>::type;

    template <bool is_const, class CT, class... S>
    class xview_stepper
    {
    public:

        using view_type = std::conditional_t<is_const,
                                             const xview<CT, S...>,
                                             xview<CT, S...>>;
        using substepper_type = get_stepper<view_type>;

        using value_type = typename substepper_type::value_type;
        using reference = typename substepper_type::reference;
        using pointer = typename substepper_type::pointer;
        using difference_type = typename substepper_type::difference_type;
        using size_type = typename view_type::size_type;

        using shape_type = typename substepper_type::shape_type;

        xview_stepper() = default;
        xview_stepper(view_type* view, substepper_type it,
                      size_type offset, bool end = false);

        reference operator*() const;

        void step(size_type dim, size_type n = 1);
        void step_back(size_type dim, size_type n = 1);
        void reset(size_type dim);
        void reset_back(size_type dim);

        void to_begin();
        void to_end(layout_type);

        bool equal(const xview_stepper& rhs) const;

    private:

        bool is_newaxis_slice(size_type index) const noexcept;
        void to_end_impl();

        template <class F>
        void common_step(size_type dim, size_type n, F f);

        template <class F>
        void common_reset(size_type dim, F f);

        view_type* p_view;
        substepper_type m_it;
        size_type m_offset;
    };

    template <bool is_const, class CT, class... S>
    bool operator==(const xview_stepper<is_const, CT, S...>& lhs,
                    const xview_stepper<is_const, CT, S...>& rhs);

    template <bool is_const, class CT, class... S>
    bool operator!=(const xview_stepper<is_const, CT, S...>& lhs,
                    const xview_stepper<is_const, CT, S...>& rhs);


    // meta-function returning the shape type for an xview
    template <class ST, class... S>
    struct xview_shape_type
    {
        using type = ST;
    };

    template <class I, std::size_t L, class... S>
    struct xview_shape_type<std::array<I, L>, S...>
    {
        using type = std::array<I, L - integral_count<S...>() + newaxis_count<S...>()>;
    };

    /************************
     * xview implementation *
     ************************/

    /**
     * @name Constructor
     */
    //@{
    /**
     * Constructs a view on the specified xexpression.
     * Users should not call directly this constructor but
     * use the view function instead.
     * @param e the xexpression to adapt
     * @param first_slice the first slice describing the view
     * @param slices the slices list describing the view
     * @sa view
     */
    template <class CT, class... S>
    template <class CTA, class FSL, class... SL>
    inline xview<CT, S...>::xview(CTA&& e, FSL&& first_slice, SL&&... slices) noexcept
        : m_e(std::forward<CTA>(e)), m_slices(std::forward<FSL>(first_slice), std::forward<SL>(slices)...),
          m_shape(make_sequence<shape_type>(m_e.dimension() - integral_count<S...>() + newaxis_count<S...>(), 0))
    {
        auto func = [](const auto& s) noexcept { return get_size(s); };
        for (size_type i = 0; i != dimension(); ++i)
        {
            size_type index = integral_skip<S...>(i);
            m_shape[i] = index < sizeof...(S) ?
                apply<std::size_t>(index, func, m_slices) : m_e.shape()[index - newaxis_count_before<S...>(index)];
        }
    }
    //@}

    /**
     * @name Extended copy semantic
     */
    //@{
    /**
     * The extended assignment operator.
     */
    template <class CT, class... S>
    template <class E>
    inline auto xview<CT, S...>::operator=(const xexpression<E>& e) -> self_type&
    {
        bool cond = (e.derived_cast().shape().size() == dimension()) &&
                    std::equal(shape().begin(), shape().end(), e.derived_cast().shape().begin());
        if (!cond)
        {
            semantic_base::operator=(broadcast(e.derived_cast(), shape()));
        }
        else
        {
            semantic_base::operator=(e);
        }
        return *this;
    }
    //@}

    template <class CT, class... S>
    template <class E>
    inline auto xview<CT, S...>::operator=(const E& e) -> disable_xexpression<E, self_type>&
    {
        std::fill(this->begin(), this->end(), e);
        return *this;
    }

    /**
     * @name Size and shape
     */
    //@{
    /**
     * Returns the size of the expression.
     */
    template <class CT, class... S>
    inline auto xview<CT, S...>::size() const noexcept -> size_type
    {
        return compute_size(shape());
    }

    /**
     * Returns the number of dimensions of the view.
     */
    template <class CT, class... S>
    inline auto xview<CT, S...>::dimension() const noexcept -> size_type
    {
        return m_shape.size();
    }

    /**
     * Returns the shape of the view.
     */
    template <class CT, class... S>
    inline auto xview<CT, S...>::shape() const noexcept -> const inner_shape_type&
    {
        return m_shape;
    }

    /**
     * Returns the slices of the view.
     */
    template <class CT, class... S>
    inline auto xview<CT, S...>::slices() const noexcept -> const slice_type&
    {
        return m_slices;
    }

    /**
     * Returns the slices of the view.
     */
    template <class CT, class... S>
    inline layout_type xview<CT, S...>::layout() const noexcept
    {
        return static_layout;
    }
    //@}

    /**
     * @name Data
     */
    //@{
    /**
     * Returns a reference to the element at the specified position in the view.
     * @param args a list of indices specifying the position in the view. Indices
     * must be unsigned integers, the number of indices should be equal or greater
     * than the number of dimensions of the view.
     */
    template <class CT, class... S>
    template <class... Args>
    inline auto xview<CT, S...>::operator()(Args... args) -> reference
    {
        return access_impl(std::make_index_sequence<(sizeof...(Args) + integral_count<S...>() > newaxis_count<S...>() ?
                                                        sizeof...(Args) + integral_count<S...>() - newaxis_count<S...>() :
                                                        0)>(),
                           args...);
    }

    template <class CT, class... S>
    inline auto xview<CT, S...>::operator[](const xindex& index) -> reference
    {
        return element(index.cbegin(), index.cend());
    }

    template <class CT, class... S>
    inline auto xview<CT, S...>::operator[](size_type i) -> reference
    {
        return operator()(i);
    }

    template <class CT, class... S>
    template <class It>
    inline auto xview<CT, S...>::element(It first, It last) -> reference
    {
        // TODO: avoid memory allocation
        auto index = make_index(first, last);
        return m_e.element(index.cbegin(), index.cend());
    }

    /**
     * Returns a constant reference to the element at the specified position in the view.
     * @param args a list of indices specifying the position in the view. Indices must be
     * unsigned integers, the number of indices should be equal or greater than the number
     * of dimensions of the view.
     */
    template <class CT, class... S>
    template <class... Args>
    inline auto xview<CT, S...>::operator()(Args... args) const -> const_reference
    {
        return access_impl(std::make_index_sequence<(sizeof...(Args) + integral_count<S...>() > newaxis_count<S...>() ?
                                                        sizeof...(Args) + integral_count<S...>() - newaxis_count<S...>() :
                                                        0)>(),
                           args...);
    }

    template <class CT, class... S>
    inline auto xview<CT, S...>::operator[](const xindex& index) const -> const_reference
    {
        return element(index.cbegin(), index.cend());
    }

    template <class CT, class... S>
    inline auto xview<CT, S...>::operator[](size_type i) const -> const_reference
    {
        return operator()(i);
    }

    template <class CT, class... S>
    template <class It>
    inline auto xview<CT, S...>::element(It first, It last) const -> const_reference
    {
        // TODO: avoid memory allocation
        auto index = make_index(first, last);
        return m_e.element(index.cbegin(), index.cend());
    }

    /**
     * Returns the data holder of the underlying container (only if the view is on a realized
     * container). ``xt::eval`` will make sure that the underlying xexpression is
     * on a realized container.
     */
    template <class CT, class... S>
    template <class T>
    inline auto xview<CT, S...>::data() const ->
        std::enable_if_t<has_raw_data_interface<T>::value, const typename T::container_type&>
    {
        return m_e.data();
    }

    /**
     * Return the strides for the underlying container of the view.
     */
    template <class CT, class... S>
    template <class T>
    inline auto xview<CT, S...>::strides() const ->
        std::enable_if_t<has_raw_data_interface<T>::value, const typename T::strides_type>
    {
        using strides_type = typename T::strides_type;
        strides_type temp = m_e.strides();
        strides_type strides = make_sequence<strides_type>(m_e.dimension() - integral_count<S...>(), 0);

        auto func = [](const auto& s) { return xt::step_size(s); };
        size_type i = 0, idx;

        for (; i < sizeof...(S); ++i)
        {
            idx = integral_skip<S...>(i);
            if (idx >= sizeof...(S))
            {
                break;
            }
            strides[i] = m_e.strides()[idx] * apply<size_type>(idx, func, m_slices);
        }
        for (; i < strides.size(); ++i)
        {
            strides[i] = m_e.strides()[idx++];
        }

        return strides;
    }

    /**
     * Return the pointer to the underlying buffer.
     */
    template <class CT, class... S>
    template <class T>
    inline auto xview<CT, S...>::raw_data() const ->
        std::enable_if_t<has_raw_data_interface<T>::value, const value_type*>
    {
        return m_e.raw_data();
    }

    template <class CT, class... S>
    template <class T>
    inline auto xview<CT, S...>::raw_data() ->
        std::enable_if_t<has_raw_data_interface<T>::value, value_type*>
    {
        return m_e.raw_data();
    }

    /**
     * Return the offset to the first element of the view in the underlying container.
     */
    template <class CT, class... S>
    template <class T>
    inline auto xview<CT, S...>::raw_data_offset() const noexcept ->
        std::enable_if_t<has_raw_data_interface<T>::value, const std::size_t>
    {
        auto func = [](const auto& s) { return xt::value(s, 0); };
        typename T::size_type offset = m_e.raw_data_offset();

        for (size_type i = 0; i < sizeof...(S); ++i)
        {
            size_type s = apply<size_type>(i, func, m_slices) * m_e.strides()[i];
            offset += s;
        }
        return offset;
    }
    //@}

    template <class CT, class... S>
    inline auto xview<CT, S...>::underlying_size(size_type dim) const -> size_type
    {
        return m_e.shape()[dim];
    }

    /**
     * @name Broadcasting
     */
    //@{
    /**
     * Broadcast the shape of the view to the specified parameter.
     * @param shape the result shape
     * @return a boolean indicating whether the broadcasting is trivial
     */
    template <class CT, class... S>
    template <class ST>
    inline bool xview<CT, S...>::broadcast_shape(ST& shape) const
    {
        return xt::broadcast_shape(m_shape, shape);
    }

    /**
     * Compares the specified strides with those of the view to see whether
     * the broadcasting is trivial.
     * @return a boolean indicating whether the broadcasting is trivial
     */
    template <class CT, class... S>
    template <class ST>
    inline bool xview<CT, S...>::is_trivial_broadcast(const ST& /*strides*/) const
    {
        return false;
    }
    //@}

    template <class CT, class... S>
    template <typename std::decay_t<CT>::size_type... I, class... Args>
    inline auto xview<CT, S...>::access_impl(std::index_sequence<I...>, Args... args) -> reference
    {
        return m_e(index<I>(args...)...);
    }

    template <class CT, class... S>
    template <typename std::decay_t<CT>::size_type... I, class... Args>
    inline auto xview<CT, S...>::access_impl(std::index_sequence<I...>, Args... args) const -> const_reference
    {
        return m_e(index<I>(args...)...);
    }

    template <class CT, class... S>
    template <typename std::decay_t<CT>::size_type I, class... Args>
    inline auto xview<CT, S...>::index(Args... args) const -> std::enable_if_t<lesser_condition<I>::value, size_type>
    {
        return sliced_access<I - integral_count_before<S...>(I) + newaxis_count_before<S...>(I + 1)>
            (std::get<I + newaxis_count_before<S...>(I + 1)>(m_slices), args...);
    }

    template <class CT, class... S>
    template <typename std::decay_t<CT>::size_type I, class... Args>
    inline auto xview<CT, S...>::index(Args... args) const -> std::enable_if_t<!lesser_condition<I>::value, size_type>
    {
        return argument<I - integral_count<S...>() + newaxis_count<S...>()>(args...);
    }

    template <class CT, class... S>
    template <typename std::decay_t<CT>::size_type I, class T>
    inline auto xview<CT, S...>::sliced_access(const xslice<T>& slice) const -> size_type
    {
        return slice.derived_cast()(0);
    }

    template <class CT, class... S>
    template <typename std::decay_t<CT>::size_type I, class T, class Arg, class... Args>
    inline auto xview<CT, S...>::sliced_access(const xslice<T>& slice, Arg arg, Args... args) const -> size_type
    {
        return slice.derived_cast()(argument<I>(arg, args...));
    }

    template <class CT, class... S>
    template <typename std::decay_t<CT>::size_type I, class T, class... Args>
    inline auto xview<CT, S...>::sliced_access(const T& squeeze, Args...) const -> disable_xslice<T, size_type>
    {
        return squeeze;
    }

    template <class CT, class... S>
    template <class It>
    inline auto xview<CT, S...>::make_index(It first, It last) const -> base_index_type
    {
        auto index = make_sequence<typename xexpression_type::shape_type>(m_e.dimension(), 0);
        auto func1 = [&first](const auto& s)
        {
            return get_slice_value(s, first);
        };
        auto func2 = [](const auto& s)
        {
            return xt::value(s, 0);
        };
        for (size_type i = 0; i != m_e.dimension(); ++i)
        {
            size_type k = newaxis_skip<S...>(i);
            std::advance(first, k - i);
            if (first != last)
            {
                index[i] = k < sizeof...(S) ?
                    apply<size_type>(k, func1, m_slices) : *first++;
            }
            else
            {
                index[i] = k < sizeof...(S) ?
                    apply<size_type>(k, func2, m_slices) : 0;
            }
        }
        return index;
    }

    template <class CT, class... S>
    inline void xview<CT, S...>::assign_temporary_impl(temporary_type&& tmp)
    {
        std::copy(tmp.cbegin(), tmp.cend(), this->xbegin());
    }

    namespace detail
    {
        template <class E, class... S>
        inline std::size_t get_underlying_shape_index(std::size_t I)
        {
            return I - newaxis_count_before<get_slice_type<E, S>...>(I);
        }

        template <class E, std::size_t... I, class... S>
        inline auto make_view_impl(E&& e, std::index_sequence<I...>, S&&... slices)
        {
            using view_type = xview<closure_t<E>, get_slice_type<std::decay_t<E>, S>...>;
            return view_type(std::forward<E>(e),
                get_slice_implementation(e, std::forward<S>(slices), get_underlying_shape_index<std::decay_t<E>, S...>(I))...
            );
        }
    }

    /**
     * Constructs and returns a view on the specified xexpression. Users
     * should not directly construct the slices but call helper functions
     * instead.
     * @param e the xexpression to adapt
     * @param slices the slices list describing the view
     * @sa range, all, newaxis
     */
    template <class E, class... S>
    inline auto view(E&& e, S&&... slices)
    {
        return detail::make_view_impl(std::forward<E>(e), std::make_index_sequence<sizeof...(S)>(), std::forward<S>(slices)...);
    }

    /***************
     * stepper api *
     ***************/

    template <class CT, class... S>
    template <class ST>
    inline auto xview<CT, S...>::stepper_begin(const ST& shape) -> stepper
    {
        size_type offset = shape.size() - dimension();
        return stepper(this, m_e.stepper_begin(m_e.shape()), offset);
    }

    template <class CT, class... S>
    template <class ST>
    inline auto xview<CT, S...>::stepper_end(const ST& shape, layout_type l) -> stepper
    {
        size_type offset = shape.size() - dimension();
        return stepper(this, m_e.stepper_end(m_e.shape(), l), offset, true);
    }

    template <class CT, class... S>
    template <class ST>
    inline auto xview<CT, S...>::stepper_begin(const ST& shape) const -> const_stepper
    {
        size_type offset = shape.size() - dimension();
        const xexpression_type& e = m_e;
        return const_stepper(this, e.stepper_begin(m_e.shape()), offset);
    }

    template <class CT, class... S>
    template <class ST>
    inline auto xview<CT, S...>::stepper_end(const ST& shape, layout_type l) const -> const_stepper
    {
        size_type offset = shape.size() - dimension();
        const xexpression_type& e = m_e;
        return const_stepper(this, e.stepper_end(m_e.shape(), l), offset, true);
    }

    /********************************
     * xview_stepper implementation *
     ********************************/

    template <bool is_const, class CT, class... S>
    inline xview_stepper<is_const, CT, S...>::xview_stepper(view_type* view, substepper_type it,
                                                            size_type offset, bool end)
        : p_view(view), m_it(it), m_offset(offset)
    {
        if (!end)
        {
            auto func = [](const auto& s) { return xt::value(s, 0); };
            for (size_type i = 0; i < sizeof...(S); ++i)
            {
                if (!is_newaxis_slice(i))
                {
                    size_type s = apply<size_type>(i, func, p_view->slices());
                    size_type index = i - newaxis_count_before<S...>(i);
                    m_it.step(index, s);
                }
            }
        }
        else
        {
            to_end_impl();
        }
    }

    template <bool is_const, class CT, class... S>
    inline auto xview_stepper<is_const, CT, S...>::operator*() const -> reference
    {
        return *m_it;
    }

    template <bool is_const, class CT, class... S>
    inline void xview_stepper<is_const, CT, S...>::step(size_type dim, size_type n)
    {
        auto func = [this](size_type index, size_type offset) { m_it.step(index, offset); };
        common_step(dim, n, func);
    }

    template <bool is_const, class CT, class... S>
    inline void xview_stepper<is_const, CT, S...>::step_back(size_type dim, size_type n)
    {
        auto func = [this](size_type index, size_type offset) { m_it.step_back(index, offset); };
        common_step(dim, n, func);
    }

    template <bool is_const, class CT, class... S>
    inline void xview_stepper<is_const, CT, S...>::reset(size_type dim)
    {
        auto func = [this](size_type index, size_type offset) { m_it.step_back(index, offset); };
        common_reset(dim, func);
    }

    template <bool is_const, class CT, class... S>
    inline void xview_stepper<is_const, CT, S...>::reset_back(size_type dim)
    {
        auto func = [this](size_type index, size_type offset) { m_it.step(index, offset); };
        common_reset(dim, func);
    }

    template <bool is_const, class CT, class... S>
    inline void xview_stepper<is_const, CT, S...>::to_begin()
    {
        m_it.to_begin();
    }

    template <bool is_const, class CT, class... S>
    inline void xview_stepper<is_const, CT, S...>::to_end(layout_type l)
    {
        m_it.to_end(l);
        to_end_impl();
    }

    template <bool is_const, class CT, class... S>
    inline bool xview_stepper<is_const, CT, S...>::equal(const xview_stepper& rhs) const
    {
        return p_view == rhs.p_view && m_it == rhs.m_it && m_offset == rhs.m_offset;
    }

    template <bool is_const, class CT, class... S>
    inline bool xview_stepper<is_const, CT, S...>::is_newaxis_slice(size_type index) const noexcept
    {
        // A bit tricky but avoids a lot of template instantiations
        return newaxis_count_before<S...>(index + 1) != newaxis_count_before<S...>(index);
    }

    template <bool is_const, class CT, class... S>
    inline void xview_stepper<is_const, CT, S...>::to_end_impl()
    {
        auto func = [](const auto& s) { return xt::value(s, get_size(s) - 1); };
        for (size_type i = 0; i < sizeof...(S); ++i)
        {
            if (!is_newaxis_slice(i))
            {
                size_type s = apply<size_type>(i, func, p_view->slices());
                size_type index = i - newaxis_count_before<S...>(i);
                s = p_view->underlying_size(index) - 1 - s;
                m_it.step_back(index, s);
            }
        }
    }

    template <bool is_const, class CT, class... S>
    template <class F>
    void xview_stepper<is_const, CT, S...>::common_step(size_type dim, size_type n, F f)
    {
        if (dim >= m_offset)
        {
            auto func = [](const auto& s) noexcept { return step_size(s); };
            size_type index = integral_skip<S...>(dim);
            if (!is_newaxis_slice(index))
            {
                size_type step_size = index < sizeof...(S) ?
                    apply<size_type>(index, func, p_view->slices()) : 1;
                index -= newaxis_count_before<S...>(index);
                f(index, step_size * n);
            }
        }
    }

    template <bool is_const, class CT, class... S>
    template <class F>
    void xview_stepper<is_const, CT, S...>::common_reset(size_type dim, F f)
    {
        auto size_func = [](const auto& s) noexcept { return get_size(s); };
        auto step_func = [](const auto& s) noexcept { return step_size(s); };
        size_type index = integral_skip<S...>(dim);
        if (!is_newaxis_slice(index))
        {
            size_type size = index < sizeof...(S) ? apply<size_type>(index, size_func, p_view->slices()) : p_view->shape()[dim];
            if (size != 0)
            {
                size = size - 1;
            }
            size_type step_size = index < sizeof...(S) ? apply<size_type>(index, step_func, p_view->slices()) : 1;
            index -= newaxis_count_before<S...>(index);
            f(index, step_size * size);
        }
    }

    template <bool is_const, class CT, class... S>
    inline bool operator==(const xview_stepper<is_const, CT, S...>& lhs,
                           const xview_stepper<is_const, CT, S...>& rhs)
    {
        return lhs.equal(rhs);
    }

    template <bool is_const, class CT, class... S>
    inline bool operator!=(const xview_stepper<is_const, CT, S...>& lhs,
                           const xview_stepper<is_const, CT, S...>& rhs)
    {
        return !(lhs.equal(rhs));
    }
}

#endif