/usr/share/asymptote/math.asy is in asymptote 2.41-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 | // Asymptote mathematics routines
int quadrant(real degrees)
{
return floor(degrees/90) % 4;
}
// Roots of unity.
pair unityroot(int n, int k=1)
{
return expi(2pi*k/n);
}
real csc(real x) {return 1/sin(x);}
real sec(real x) {return 1/cos(x);}
real cot(real x) {return tan(pi/2-x);}
real acsc(real x) {return asin(1/x);}
real asec(real x) {return acos(1/x);}
real acot(real x) {return pi/2-atan(x);}
real frac(real x) {return x-(int)x;}
pair exp(explicit pair z) {return exp(z.x)*expi(z.y);}
pair log(explicit pair z) {return log(abs(z))+I*angle(z);}
// Return an Nx by Ny unit square lattice with lower-left corner at (0,0).
picture grid(int Nx, int Ny, pen p=currentpen)
{
picture pic;
for(int i=0; i <= Nx; ++i) draw(pic,(i,0)--(i,Ny),p);
for(int j=0; j <= Ny; ++j) draw(pic,(0,j)--(Nx,j),p);
return pic;
}
bool polygon(path p)
{
return cyclic(p) && piecewisestraight(p);
}
// Return the intersection time of the point on the line through p and q
// that is closest to z.
real intersect(pair p, pair q, pair z)
{
pair u=q-p;
real denom=dot(u,u);
return denom == 0 ? infinity : dot(z-p,u)/denom;
}
// Return the intersection time of the extension of the line segment PQ
// with the plane perpendicular to n and passing through Z.
real intersect(triple P, triple Q, triple n, triple Z)
{
real d=n.x*Z.x+n.y*Z.y+n.z*Z.z;
real denom=n.x*(Q.x-P.x)+n.y*(Q.y-P.y)+n.z*(Q.z-P.z);
return denom == 0 ? infinity : (d-n.x*P.x-n.y*P.y-n.z*P.z)/denom;
}
// Return any point on the intersection of the two planes with normals
// n0 and n1 passing through points P0 and P1, respectively.
// If the planes are parallel return (infinity,infinity,infinity).
triple intersectionpoint(triple n0, triple P0, triple n1, triple P1)
{
real Dx=n0.y*n1.z-n1.y*n0.z;
real Dy=n0.z*n1.x-n1.z*n0.x;
real Dz=n0.x*n1.y-n1.x*n0.y;
if(abs(Dx) > abs(Dy) && abs(Dx) > abs(Dz)) {
Dx=1/Dx;
real d0=n0.y*P0.y+n0.z*P0.z;
real d1=n1.y*P1.y+n1.z*P1.z+n1.x*(P1.x-P0.x);
real y=(d0*n1.z-d1*n0.z)*Dx;
real z=(d1*n0.y-d0*n1.y)*Dx;
return (P0.x,y,z);
} else if(abs(Dy) > abs(Dz)) {
Dy=1/Dy;
real d0=n0.z*P0.z+n0.x*P0.x;
real d1=n1.z*P1.z+n1.x*P1.x+n1.y*(P1.y-P0.y);
real z=(d0*n1.x-d1*n0.x)*Dy;
real x=(d1*n0.z-d0*n1.z)*Dy;
return (x,P0.y,z);
} else {
if(Dz == 0) return (infinity,infinity,infinity);
Dz=1/Dz;
real d0=n0.x*P0.x+n0.y*P0.y;
real d1=n1.x*P1.x+n1.y*P1.y+n1.z*(P1.z-P0.z);
real x=(d0*n1.y-d1*n0.y)*Dz;
real y=(d1*n0.x-d0*n1.x)*Dz;
return (x,y,P0.z);
}
}
// Given a real array a, return its partial sums.
real[] partialsum(real[] a)
{
real[] b=new real[a.length];
real sum=0;
for(int i=0; i < a.length; ++i) {
sum += a[i];
b[i]=sum;
}
return b;
}
// Given a real array a, return its partial dx-weighted sums.
real[] partialsum(real[] a, real[] dx)
{
real[] b=new real[a.length];
real sum=0;
for(int i=0; i < a.length; ++i) {
sum += a[i]*dx[i];
b[i]=sum;
}
return b;
}
// Given an integer array a, return its partial sums.
int[] partialsum(int[] a)
{
int[] b=new int[a.length];
int sum=0;
for(int i=0; i < a.length; ++i) {
sum += a[i];
b[i]=sum;
}
return b;
}
// Given an integer array a, return its partial dx-weighted sums.
int[] partialsum(int[] a, int[] dx)
{
int[] b=new int[a.length];
int sum=0;
for(int i=0; i < a.length; ++i) {
sum += a[i]*dx[i];
b[i]=sum;
}
return b;
}
// If strict=false, return whether i > j implies a[i] >= a[j]
// If strict=true, return whether i > j implies a[i] > a[j]
bool increasing(real[] a, bool strict=false)
{
real[] ap=copy(a);
ap.delete(0);
ap.push(0);
bool[] b=strict ? (ap > a) : (ap >= a);
b[a.length-1]=true;
return all(b);
}
// Return the first and last indices of consecutive true-element segments
// of bool[] b.
int[][] segmentlimits(bool[] b)
{
int[][] segment;
bool[] n=copy(b);
n.delete(0);
n.push(!b[b.length-1]);
int[] edge=(b != n) ? sequence(1,b.length) : null;
edge.insert(0,0);
int stop=edge[0];
for(int i=1; i < edge.length; ++i) {
int start=stop;
stop=edge[i];
if(b[start])
segment.push(new int[] {start,stop-1});
}
return segment;
}
// Return the indices of consecutive true-element segments of bool[] b.
int[][] segment(bool[] b)
{
int[][] S=segmentlimits(b);
return sequence(new int[](int i) {
return sequence(S[i][0],S[i][1]);
},S.length);
}
// If the sorted array a does not contain x, insert it sequentially,
// returning the index of x in the resulting array.
int unique(real[] a, real x) {
int i=search(a,x);
if(i == -1 || x != a[i]) {
++i;
a.insert(i,x);
}
return i;
}
int unique(string[] a, string x) {
int i=search(a,x);
if(i == -1 || x != a[i]) {
++i;
a.insert(i,x);
}
return i;
}
bool lexorder(pair a, pair b) {
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
bool lexorder(triple a, triple b) {
return a.x < b.x || (a.x == b.x && (a.y < b.y || (a.y == b.y && a.z < b.z)));
}
real[] zero(int n)
{
return sequence(new real(int) {return 0;},n);
}
real[][] zero(int n, int m)
{
real[][] M=new real[n][];
for(int i=0; i < n; ++i)
M[i]=sequence(new real(int) {return 0;},m);
return M;
}
bool square(real[][] m)
{
int n=m.length;
for(int i=0; i < n; ++i)
if(m[i].length != n) return false;
return true;
}
bool rectangular(real[][] m)
{
int n=m.length;
if(n > 0) {
int m0=m[0].length;
for(int i=1; i < n; ++i)
if(m[i].length != m0) return false;
}
return true;
}
bool rectangular(pair[][] m)
{
int n=m.length;
if(n > 0) {
int m0=m[0].length;
for(int i=1; i < n; ++i)
if(m[i].length != m0) return false;
}
return true;
}
bool rectangular(triple[][] m)
{
int n=m.length;
if(n > 0) {
int m0=m[0].length;
for(int i=1; i < n; ++i)
if(m[i].length != m0) return false;
}
return true;
}
// draw the (infinite) line going through P and Q, without altering the
// size of picture pic.
void drawline(picture pic=currentpicture, pair P, pair Q, pen p=currentpen)
{
pic.add(new void (frame f, transform t, transform T, pair m, pair M) {
// Reduce the bounds by the size of the pen.
m -= min(p); M -= max(p);
// Calculate the points and direction vector in the transformed space.
t=t*T;
pair z=t*P;
pair v=t*Q-z;
// Handle horizontal and vertical lines.
if(v.x == 0) {
if(m.x <= z.x && z.x <= M.x)
draw(f,(z.x,m.y)--(z.x,M.y),p);
} else if(v.y == 0) {
if(m.y <= z.y && z.y <= M.y)
draw(f,(m.x,z.y)--(M.x,z.y),p);
} else {
// Calculate the maximum and minimum t values allowed for the
// parametric equation z + t*v
real mx=(m.x-z.x)/v.x, Mx=(M.x-z.x)/v.x;
real my=(m.y-z.y)/v.y, My=(M.y-z.y)/v.y;
real tmin=max(v.x > 0 ? mx : Mx, v.y > 0 ? my : My);
real tmax=min(v.x > 0 ? Mx : mx, v.y > 0 ? My : my);
if(tmin <= tmax)
draw(f,z+tmin*v--z+tmax*v,p);
}
},true);
}
real interpolate(real[] x, real[] y, real x0, int i)
{
int n=x.length;
if(n == 0) abort("Zero data points in interpolate");
if(n == 1) return y[0];
if(i < 0) {
real dx=x[1]-x[0];
return y[0]+(y[1]-y[0])/dx*(x0-x[0]);
}
if(i >= n-1) {
real dx=x[n-1]-x[n-2];
return y[n-1]+(y[n-1]-y[n-2])/dx*(x0-x[n-1]);
}
real D=x[i+1]-x[i];
real B=(x0-x[i])/D;
real A=1.0-B;
return A*y[i]+B*y[i+1];
}
// Linearly interpolate data points (x,y) to (x0,y0), where the elements of
// real[] x are listed in ascending order and return y0. Values outside the
// available data range are linearly extrapolated using the first derivative
// at the nearest endpoint.
real interpolate(real[] x, real[] y, real x0)
{
return interpolate(x,y,x0,search(x,x0));
}
private string nopoint="point not found";
// Return the nth intersection time of path g with the vertical line through x.
real time(path g, real x, int n=0)
{
real[] t=times(g,x);
if(t.length <= n) abort(nopoint);
return t[n];
}
// Return the nth intersection time of path g with the horizontal line through
// (0,z.y).
real time(path g, explicit pair z, int n=0)
{
real[] t=times(g,z);
if(t.length <= n) abort(nopoint);
return t[n];
}
// Return the nth y value of g at x.
real value(path g, real x, int n=0)
{
return point(g,time(g,x,n)).y;
}
// Return the nth x value of g at y=z.y.
real value(path g, explicit pair z, int n=0)
{
return point(g,time(g,(0,z.y),n)).x;
}
// Return the nth slope of g at x.
real slope(path g, real x, int n=0)
{
pair a=dir(g,time(g,x,n));
return a.y/a.x;
}
// Return the nth slope of g at y=z.y.
real slope(path g, explicit pair z, int n=0)
{
pair a=dir(g,time(g,(0,z.y),n));
return a.y/a.x;
}
// A quartic complex root solver based on these references:
// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html
// Neumark, S., Solution of Cubic and Quartic Equations, Pergamon Press
// Oxford (1965).
pair[] quarticroots(real a, real b, real c, real d, real e)
{
real Fuzz=100000*realEpsilon;
// Remove roots at numerical infinity.
if(abs(a) <= Fuzz*(abs(b)+Fuzz*(abs(c)+Fuzz*(abs(d)+Fuzz*abs(e)))))
return cubicroots(b,c,d,e);
// Detect roots at numerical zero.
if(abs(e) <= Fuzz*(abs(d)+Fuzz*(abs(c)+Fuzz*(abs(b)+Fuzz*abs(a)))))
return cubicroots(a,b,c,d);
real ainv=1/a;
b *= ainv;
c *= ainv;
d *= ainv;
e *= ainv;
pair[] roots;
real[] T=cubicroots(1,-2c,c^2+b*d-4e,d^2+b^2*e-b*c*d);
if(T.length == 0) return roots;
real t0=T[0];
pair[] sum=quadraticroots((1,0),(b,0),(t0,0));
pair[] product=quadraticroots((1,0),(t0-c,0),(e,0));
if(abs(sum[0]*product[0]+sum[1]*product[1]+d) <
abs(sum[0]*product[1]+sum[1]*product[0]+d))
product=reverse(product);
for(int i=0; i < 2; ++i)
roots.append(quadraticroots((1,0),-sum[i],product[i]));
return roots;
}
pair[][] fft(pair[][] a, int sign=1)
{
pair[][] A=new pair[a.length][];
int k=0;
for(pair[] v : a) {
A[k]=fft(v,sign);
++k;
}
a=transpose(A);
k=0;
for(pair[] v : a) {
A[k]=fft(v,sign);
++k;
}
return transpose(A);
}
// Given a matrix A with independent columns, return
// the unique vector y minimizing |Ay - b|^2 (the L2 norm).
// If the columns of A are not linearly independent,
// throw an error (if warn == true) or return an empty array
// (if warn == false).
real[] leastsquares(real[][] A, real[] b, bool warn=true)
{
real[] solution=solve(AtA(A),b*A,warn=false);
if (solution.length == 0 && warn)
abort("Cannot compute least-squares approximation for " +
"a matrix with linearly dependent columns.");
return solution;
}
// Namespace
struct rootfinder_settings {
static real roottolerance = 1e-4;
}
real findroot(real f(real), real a, real b,
real tolerance=rootfinder_settings.roottolerance,
real fa=f(a), real fb=f(b))
{
return _findroot(f,a,b,tolerance,fa,fb);
}
|