/usr/lib/bup/bup/bloom.py is in bup 0.29-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 | """Discussion of bloom constants for bup:
There are four basic things to consider when building a bloom filter:
The size, in bits, of the filter
The capacity, in entries, of the filter
The probability of a false positive that is tolerable
The number of bits readily available to use for addressing filter bits
There is one major tunable that is not directly related to the above:
k: the number of bits set in the filter per entry
Here's a wall of numbers showing the relationship between k; the ratio between
the filter size in bits and the entries in the filter; and pfalse_positive:
mn|k=3 |k=4 |k=5 |k=6 |k=7 |k=8 |k=9 |k=10 |k=11
8|3.05794|2.39687|2.16792|2.15771|2.29297|2.54917|2.92244|3.41909|4.05091
9|2.27780|1.65770|1.40703|1.32721|1.34892|1.44631|1.61138|1.84491|2.15259
10|1.74106|1.18133|0.94309|0.84362|0.81937|0.84555|0.91270|1.01859|1.16495
11|1.36005|0.86373|0.65018|0.55222|0.51259|0.50864|0.53098|0.57616|0.64387
12|1.08231|0.64568|0.45945|0.37108|0.32939|0.31424|0.31695|0.33387|0.36380
13|0.87517|0.49210|0.33183|0.25527|0.21689|0.19897|0.19384|0.19804|0.21013
14|0.71759|0.38147|0.24433|0.17934|0.14601|0.12887|0.12127|0.12012|0.12399
15|0.59562|0.30019|0.18303|0.12840|0.10028|0.08523|0.07749|0.07440|0.07468
16|0.49977|0.23941|0.13925|0.09351|0.07015|0.05745|0.05049|0.04700|0.04587
17|0.42340|0.19323|0.10742|0.06916|0.04990|0.03941|0.03350|0.03024|0.02870
18|0.36181|0.15765|0.08392|0.05188|0.03604|0.02748|0.02260|0.01980|0.01827
19|0.31160|0.12989|0.06632|0.03942|0.02640|0.01945|0.01549|0.01317|0.01182
20|0.27026|0.10797|0.05296|0.03031|0.01959|0.01396|0.01077|0.00889|0.00777
21|0.23591|0.09048|0.04269|0.02356|0.01471|0.01014|0.00759|0.00609|0.00518
22|0.20714|0.07639|0.03473|0.01850|0.01117|0.00746|0.00542|0.00423|0.00350
23|0.18287|0.06493|0.02847|0.01466|0.00856|0.00555|0.00392|0.00297|0.00240
24|0.16224|0.05554|0.02352|0.01171|0.00663|0.00417|0.00286|0.00211|0.00166
25|0.14459|0.04779|0.01957|0.00944|0.00518|0.00316|0.00211|0.00152|0.00116
26|0.12942|0.04135|0.01639|0.00766|0.00408|0.00242|0.00157|0.00110|0.00082
27|0.11629|0.03595|0.01381|0.00626|0.00324|0.00187|0.00118|0.00081|0.00059
28|0.10489|0.03141|0.01170|0.00515|0.00259|0.00146|0.00090|0.00060|0.00043
29|0.09492|0.02756|0.00996|0.00426|0.00209|0.00114|0.00069|0.00045|0.00031
30|0.08618|0.02428|0.00853|0.00355|0.00169|0.00090|0.00053|0.00034|0.00023
31|0.07848|0.02147|0.00733|0.00297|0.00138|0.00072|0.00041|0.00025|0.00017
32|0.07167|0.01906|0.00633|0.00250|0.00113|0.00057|0.00032|0.00019|0.00013
Here's a table showing available repository size for a given pfalse_positive
and three values of k (assuming we only use the 160 bit SHA1 for addressing the
filter and 8192bytes per object):
pfalse|obj k=4 |cap k=4 |obj k=5 |cap k=5 |obj k=6 |cap k=6
2.500%|139333497228|1038.11 TiB|558711157|4262.63 GiB|13815755|105.41 GiB
1.000%|104489450934| 778.50 TiB|436090254|3327.10 GiB|11077519| 84.51 GiB
0.125%| 57254889824| 426.58 TiB|261732190|1996.86 GiB| 7063017| 55.89 GiB
This eliminates pretty neatly any k>6 as long as we use the raw SHA for
addressing.
filter size scales linearly with repository size for a given k and pfalse.
Here's a table of filter sizes for a 1 TiB repository:
pfalse| k=3 | k=4 | k=5 | k=6
2.500%| 138.78 MiB | 126.26 MiB | 123.00 MiB | 123.37 MiB
1.000%| 197.83 MiB | 168.36 MiB | 157.58 MiB | 153.87 MiB
0.125%| 421.14 MiB | 307.26 MiB | 262.56 MiB | 241.32 MiB
For bup:
* We want the bloom filter to fit in memory; if it doesn't, the k pagefaults
per lookup will be worse than the two required for midx.
* We want the pfalse_positive to be low enough that the cost of sometimes
faulting on the midx doesn't overcome the benefit of the bloom filter.
* We have readily available 160 bits for addressing the filter.
* We want to be able to have a single bloom address entire repositories of
reasonable size.
Based on these parameters, a combination of k=4 and k=5 provides the behavior
that bup needs. As such, I've implemented bloom addressing, adding and
checking functions in C for these two values. Because k=5 requires less space
and gives better overall pfalse_positive performance, it is preferred if a
table with k=5 can represent the repository.
None of this tells us what max_pfalse_positive to choose.
Brandon Low <lostlogic@lostlogicx.com> 2011-02-04
"""
import sys, os, math, mmap, struct
from bup import _helpers
from bup.helpers import (debug1, debug2, log, mmap_read, mmap_readwrite,
mmap_readwrite_private, unlink)
BLOOM_VERSION = 2
MAX_BITS_EACH = 32 # Kinda arbitrary, but 4 bytes per entry is pretty big
MAX_BLOOM_BITS = {4: 37, 5: 29} # 160/k-log2(8)
MAX_PFALSE_POSITIVE = 1. # Totally arbitrary, needs benchmarking
_total_searches = 0
_total_steps = 0
bloom_contains = _helpers.bloom_contains
bloom_add = _helpers.bloom_add
# FIXME: check bloom create() and ShaBloom handling/ownership of "f".
# The ownership semantics should be clarified since the caller needs
# to know who is responsible for closing it.
class ShaBloom:
"""Wrapper which contains data from multiple index files. """
def __init__(self, filename, f=None, readwrite=False, expected=-1):
self.name = filename
self.rwfile = None
self.map = None
assert(filename.endswith('.bloom'))
if readwrite:
assert(expected > 0)
self.rwfile = f = f or open(filename, 'r+b')
f.seek(0)
# Decide if we want to mmap() the pages as writable ('immediate'
# write) or else map them privately for later writing back to
# the file ('delayed' write). A bloom table's write access
# pattern is such that we dirty almost all the pages after adding
# very few entries. But the table is so big that dirtying
# *all* the pages often exceeds Linux's default
# /proc/sys/vm/dirty_ratio or /proc/sys/vm/dirty_background_ratio,
# thus causing it to start flushing the table before we're
# finished... even though there's more than enough space to
# store the bloom table in RAM.
#
# To work around that behaviour, if we calculate that we'll
# probably end up touching the whole table anyway (at least
# one bit flipped per memory page), let's use a "private" mmap,
# which defeats Linux's ability to flush it to disk. Then we'll
# flush it as one big lump during close().
pages = os.fstat(f.fileno()).st_size / 4096 * 5 # assume k=5
self.delaywrite = expected > pages
debug1('bloom: delaywrite=%r\n' % self.delaywrite)
if self.delaywrite:
self.map = mmap_readwrite_private(self.rwfile, close=False)
else:
self.map = mmap_readwrite(self.rwfile, close=False)
else:
self.rwfile = None
f = f or open(filename, 'rb')
self.map = mmap_read(f)
got = str(self.map[0:4])
if got != 'BLOM':
log('Warning: invalid BLOM header (%r) in %r\n' % (got, filename))
return self._init_failed()
ver = struct.unpack('!I', self.map[4:8])[0]
if ver < BLOOM_VERSION:
log('Warning: ignoring old-style (v%d) bloom %r\n'
% (ver, filename))
return self._init_failed()
if ver > BLOOM_VERSION:
log('Warning: ignoring too-new (v%d) bloom %r\n'
% (ver, filename))
return self._init_failed()
self.bits, self.k, self.entries = struct.unpack('!HHI', self.map[8:16])
idxnamestr = str(self.map[16 + 2**self.bits:])
if idxnamestr:
self.idxnames = idxnamestr.split('\0')
else:
self.idxnames = []
def _init_failed(self):
if self.map:
self.map = None
if self.rwfile:
self.rwfile.close()
self.rwfile = None
self.idxnames = []
self.bits = self.entries = 0
def valid(self):
return self.map and self.bits
def __del__(self):
self.close()
def close(self):
if self.map and self.rwfile:
debug2("bloom: closing with %d entries\n" % self.entries)
self.map[12:16] = struct.pack('!I', self.entries)
if self.delaywrite:
self.rwfile.seek(0)
self.rwfile.write(self.map)
else:
self.map.flush()
self.rwfile.seek(16 + 2**self.bits)
if self.idxnames:
self.rwfile.write('\0'.join(self.idxnames))
self._init_failed()
def pfalse_positive(self, additional=0):
n = self.entries + additional
m = 8*2**self.bits
k = self.k
return 100*(1-math.exp(-k*float(n)/m))**k
def add(self, ids):
"""Add the hashes in ids (packed binary 20-bytes) to the filter."""
if not self.map:
raise Exception("Cannot add to closed bloom")
self.entries += bloom_add(self.map, ids, self.bits, self.k)
def add_idx(self, ix):
"""Add the object to the filter."""
self.add(ix.shatable)
self.idxnames.append(os.path.basename(ix.name))
def exists(self, sha):
"""Return nonempty if the object probably exists in the bloom filter.
If this function returns false, the object definitely does not exist.
If it returns true, there is a small probability that it exists
anyway, so you'll have to check it some other way.
"""
global _total_searches, _total_steps
_total_searches += 1
if not self.map:
return None
found, steps = bloom_contains(self.map, str(sha), self.bits, self.k)
_total_steps += steps
return found
def __len__(self):
return int(self.entries)
def create(name, expected, delaywrite=None, f=None, k=None):
"""Create and return a bloom filter for `expected` entries."""
bits = int(math.floor(math.log(expected*MAX_BITS_EACH/8,2)))
k = k or ((bits <= MAX_BLOOM_BITS[5]) and 5 or 4)
if bits > MAX_BLOOM_BITS[k]:
log('bloom: warning, max bits exceeded, non-optimal\n')
bits = MAX_BLOOM_BITS[k]
debug1('bloom: using 2^%d bytes and %d hash functions\n' % (bits, k))
f = f or open(name, 'w+b')
f.write('BLOM')
f.write(struct.pack('!IHHI', BLOOM_VERSION, bits, k, 0))
assert(f.tell() == 16)
# NOTE: On some systems this will not extend+zerofill, but it does on
# darwin, linux, bsd and solaris.
f.truncate(16+2**bits)
f.seek(0)
if delaywrite != None and not delaywrite:
# tell it to expect very few objects, forcing a direct mmap
expected = 1
return ShaBloom(name, f=f, readwrite=True, expected=expected)
def clear_bloom(dir):
unlink(os.path.join(dir, 'bup.bloom'))
|