This file is indexed.

/usr/share/cafeobj-1.5/lib/fopl.cafe is in cafeobj 1.5.7-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
** -*- Mode:CafeOBJ -*-
** system: Chaos
** module: PigNose
** file: fopl.mod
**
** Copyright (c) 2000-2015, Toshimi Sawada. All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
**   * Redistributions of source code must retain the above copyright
**     notice, this list of conditions and the following disclaimer.
**
**   * Redistributions in binary form must reproduce the above
**     copyright notice, this list of conditions and the following
**     disclaimer in the documentation and/or other materials
**     provided with the distribution.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR 'AS IS' AND ANY EXPRESSED
** OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
** ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
** DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
** GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
** INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
** NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**
** -------------------------------------------------------------

** Syntax of First Order Predicate Logic with Equality (FOPLE),
** coded in CafeOBJ. This is used by CafeOBJ's resolution based
** inference engine "PigNose".
** 

** ---------------------
** "1. ABSTRACT SYNTAX"
** ---------------------
-- Abstract syntax is defined by the modules depicted below:
" 
        T&F -(TVAL)-> ABS-FOPL(TVAL)
         |                |
       (TVAL)       (BASE-SYNTAX)  
         |                |
         v                v
    ABS-FOPL+EQ-1(TVAL, BASE-SYNTAX(TVAL))
"
** << BASIC THEORY MODULES >>
-- T&F : defines truth value.
-- ABS-FOPL : parameterized by T&V, and defines FOPL sentence.
-- ABS-FOPL+EQ-1 : parameterized by T&V and ABS-FOPL with sharing
--                 T&V(truth vlaue), defines FOPL having an equality.
--
** we don't want BOOL to be imported implicitly
set include BOOL off

** prefer very quiet mode
set quiet on

** TRUTH VALUE

sys:module* T&F
{
  [ TruthValue ]
  ops #t #f : -> TruthValue
}

protect T&F

** Abstract Syntax

sys:module* ABS-FOPL (TVAL :: T&F)
{
  ** Sentence is for general sentence of FOPL. 
  ** NOTE: "We do not treat open formula."
  -- if we enconter an open formula, we take its unversal closure
  -- for free variables.
  -- we don't distinguish atoms or formulas, etc. at this level.
  [ TruthValue < Sentence ]
  
  ** connectives
  -- and
  op and : Sentence Sentence -> Sentence
  -- or
  op or : Sentence Sentence -> Sentence
  -- imply
  op imply : Sentence Sentence -> Sentence
  -- iff
  op iff : Sentence Sentence -> Sentence
  -- not
  op not : Sentence -> Sentence

  ** quantifiers
  -- Var is for bound logical variables of quatified formulas.
  [ Var ]
  op forall : Var Sentence -> Sentence
  op exists : Var Sentence -> Sentence

}

protect ABS-FOPL

-- ;;; binding Lisp variable *allow-universal-sort* to t
-- ;;; allows users to access invisible system's universal
-- ;;; sorts.
lispq
(setq *allow-universal-sort* t)

** ABS-FOPL+EQ-1, 
-- theory module defining abstract syntax of FOPL with an equality.
--
"NOTE: We treate only equalities of CafeOBJ. 
       Completely ignore `transition' relation of `Rwriting Logic.
"
sys:module* ABS-FOPL+EQ-1 (TVAL :: T&F)
{
  protecting (ABS-FOPL(TVAL))
  ** equality
  op eq : *Cosmos* *Cosmos* -> Sentence
}

protect ABS-FOPL+EQ-1

** this is similar to the above, but have two different types of
** equalities. not used for now. 
-- module* ABS-FOPL+EQ-2 (TVAL :: T&F)
-- {
--   protecting (ABS-FOPL(TVAL))  
--   ** equalities
--   --  * eq  : to be interpreted initially.
--   --  * beq : to be interpreted loosely (behaviouraly).
--   -- we prepare two kinds of equality here, because underlying logic
--   -- of CafeOBJ module has corresponding equalities defined by 
--   -- `(c)eq' and '(c)beq'delaration form respectively.
--   op eq : Cosmos Cosmos -> Sentence
--   op beq : Cosmos Cosmos -> Sentence
-- }

** ----------------------------------------------------
** "2. MEDIATING MODULES for PRODUCING CONCRETE SYNTAX"
** ----------------------------------------------------

sys:module! MFOPL(TVAL :: T&F, SYNTAX :: ABS-FOPL(TVAL)){}
sys:module! MFOPL+EQ-1(TVAL :: T&F, SYNTAX :: ABS-FOPL+EQ-1(TVAL)){}

protect MFOPL
protect MFOPL+EQ-1

** --------------------
** "3. CONCRETE-SYNTAX"
** --------------------

"** NOTE **
 The rest of the codes in this file are very implementation specific."
-- Here are our general priciple of coding FOPL in our system:

"  1. use built-in sort Bool for truth value of FOPL."
--    (see the view `bool-as-truth-vlaue' below for the definition).
--    then, ordinal Bool-valued operations are considerd as predicates.
--    more precicely, they are treated as characteristic functions of
--    corresponding predicates(if we derive p(t) = true, p(t) is a 
--    theorem.) 
--    NOTE: Some important execptions are described in "2" below.
-- 
--    We are now faced with two levels of logical reasoning: the
--    clause level (in FOPL) and the term level (world of CafeOBJ).
--    we will simulate inference rules of FOPL on the term level.
--    but to work reasonably on both level simultaneously
--    (to keep the system sound w.r.t FOPL), the followings are
--    necessary: 
--    (1) for every Bool valued operation p,
--        any valid ground term `p(w)' must be either true or false, 
--        i.e.,`p(w) = true' or `p(w) = false' is a theorem. 
--        in other words, Bool must have exactly two elements denoting
--        truth values (true and false.)
--    (2) and of cource `true == false' must not be drivable. 
--

"  2. operators having Bool in its arity."
--    1. raises a problem in treating operators having Bool in its
--    arity. any terms with such operators as root cannot be a valid
--    sentence in FOPL. there are two cases:
--    (a) op P : ... Bool ... -> Bool
--    (b) op Q : ... Bool ... -> S      -- S is not Bool
-- 
--    Basically, if one want to use PigNose system, one cannot
--       define such operators, otherwise the result is unknown.
--       System (may) warn if it found such operations. 
-- 
--    But, built-in module BOOL does define such operators,
--       and how about equality operators?
--    
--       One of the reason we adopt sort Bool as truth value is
--       the usage of BOOL module by CafeOBJ users. BOOL provides
--       basic vehicle of logical calclus and people use it as such,
--       e.g, if we can show (t == t') = true, we conclude t = t'.
--       And Bool-valued terms are used as the condition part of axioms,
--       this is rather ungly, but its too late for now. 
--       
--        "Here is the way we took:"
--          Lift up (partially) operations of  BOOL to FOPL level.
--          * "and"       ---> &
--          * "or"        ---> |
--          * "not"       ---> ~
--          * "implies"   ---> ->
--          * "xor"       ---> (p | q) & (~p | ~q)
-- 
--          "We ignore all other operators".
--          This means that users cannot use other operations.
--          
--          * We don't use above operations directly at FOPL level,
--            instead system translate them to operators of FOPL
--            in automatic manner.
--          * Axioms of above operators are "not" used in inference.
--
--        "if_then_else_fi"
--          Users "cannot" use if_then_else_fi. We don't provide any
--          support for this operator. Also the following operators
--          has no support:
--            * "and-also"
--            * "or-else"
--       
--       For the equality operations see "3" below.
--
"  3. treatment of built-in equality operators:"
--    We have two built-in equality operators == and =b= in CafeOBJ.
--    in other words, we already internalize equalities of CafeOBJ
--    in itself, i.e., if we derive `(t == t') = true' we can conclude
--    t = t'(same as for =b=).
--    We throw away these internalization at FOPL level and maps
--    == (=b=) to equality of FOPL =. We do not distinguish == and =b=
--    at FOPL level. 
--    Like "and" etc. we translate == and =b= to = of FOPL, do not directly
--    use them in FOPL. 
--    System provides automatic translation of a formula (a term at CafeOBJ
--    level) having `==', or `=b=' (and `and', `or' etc. also) to pure proper
--   formula of FOPL.
-- 
"  4. other built-in CafeOBJ predicates:"
--    All of the other built-in predicates will not supported:
--    They are 
--         "==>"
--         "=(*)=>"
--         ":is"
--
" 5. Axioms of CafeOBJ moudule"
--   (A) Transitions are NOT supported. System does not provide any support.
--       They are completely ignored. 
-- 
--   (B) LHS = RHS if COND 
--       translated to
--       "[Vars] COND -> LHS = RHS"
--       ("~(COND) | LHS = RHS" in clause form.)
--

**
** built-in Bool as truth value of FOPL
**
view bool-as-truth-value from T&F to TRUTH-VALUE
{
  sort TruthValue -> Bool,
  op #t -> true,
  op #f -> false
}

** instance of concrete syntax of FOPL
-- assumes that view bool-as-truth-value will be used together 
-- with this for instantiating FOPL.

sys:module! FOPL-BASIC
{    
  protecting (TRUTH-VALUE)
  ** operators with coarity Bool are treated as predicates.
  -- we do not distingish `atom' and `formula' here,
  -- instead we simply declare `FoplSentence' for sentences of first
  -- order predicate logic.
  -- NOTE: FoplSentences are used as interface language only, 
  --       they will be transfered to sets of clause for real
  --       computations. 

  [ Bool < FoplSentence,
    VarDeclList ]
  ** VarDeclList is for declaring bound logical variables of
  -- quantifiers. we use CafeOBJ variables for logical variables
  -- of FOPL to be defined. this causes no problem, because
  -- all variables in ordinal terms are treated as universally
  -- quantified logical variables in corresponding clauses.
  ** wanted to be more neat and clean,..
  op _,_ : *Cosmos* *Cosmos* -> VarDeclList { r-assoc }

  ** quantifiers : note precedence is defined as very low.
  -- forall
  op \A[_]_ : *Cosmos* FoplSentence -> FoplSentence
    {prec: 125 strategy:(0)}
  -- exists
  op \E[_]_ : *Cosmos* FoplSentence -> FoplSentence
    {prec: 125 strategy:(0)}

  ** connectives
  -- and
  op _&_ : FoplSentence FoplSentence -> FoplSentence
    {prec: 101 r-assoc strategy:(0)}
  -- or
  op _|_ : FoplSentence FoplSentence -> FoplSentence
    {prec: 107 r-assoc strategy: (0)}
  -- implies
  op _->_ : FoplSentence FoplSentence -> FoplSentence
    {prec: 120 r-assoc strategy: (0)}
  -- iff
  op _<->_ : FoplSentence FoplSentence -> FoplSentence
    {prec: 120 r-assoc strategy:(0)}
  -- not : note very high precedence
  op ~_ : FoplSentence -> FoplSentence
    {prec: 0 strategy:(0)}
}

protect FOPL-BASIC

** instance of concrete syntax of FOPL with an equality
**
sys:module! FOPL-BASIC+EQ-1
{
  protecting (FOPL-BASIC)
  op _=_ : *Cosmos* *Cosmos* -> FoplSentence
    {prec: 51 strategy: (0)}
}

protect FOPL-BASIC+EQ-1

** instance of concrete syntax of FOPL with two equality
-- module! FOPL-BASIC+EQ-2
-- {
--   protecting (FOPL-BASIC+EQ-1)
--   op _*=*_ : Cosmos Cosmos -> FoplSentence
--     {prec: 113 strategy: (0)}
-- }

** The concrete syntax we use.
** FOPL-SENTENCE
** 

make FOPLE-SENTENCE
(MFOPL+EQ-1(bool-as-truth-value,
            FOPL-BASIC+EQ-1 { sort Sentence -> FoplSentence,
			      sort Var -> *Cosmos*,
			      op and -> _&_,
			      op or -> _|_,
			      op imply -> (_->_),
			      op iff -> _<->_,
			      op forall -> \A[_]_,
			      op exists -> \E[_]_,
			      op not -> ~_,
			      op eq -> _=_}))

protect FOPLE-SENTENCE

**
** We need some Lisp accessible values for PigNose engine.
**
** `install-fopl-sentece' treat this. 

lispq (install-fopl-sentence "FOPLE-SENTENCE" :eq '("_" "=" "_"))

** >>NOT USED<<
-- internal representation of formula: 
--
-- module! FOPL-CLAUSE-FORM
-- {
--   protecting(FOPL-SENTENCE)
--   [ FoplClause,
--     FoplSentence < FoplSentenceSeq ]
--   op _;_ : FoplSentenceSeq FoplSentenceSeq -> FoplSentenceSeq {r-assoc}
--  -- ![_] performs formula to clause form translation. just for debug.
--  op ![_] : FoplSentenceSeq -> FoplClause
--  op [_] : FoplSentenceSeq -> FoplClause
-- }

-- lispq (install-fopl-clause-form)


** Users must import this to use "PigNose".
**
** FOPL-CLAUSE
sys:module! FOPL-CLAUSE
 {
   protecting (FOPLE-SENTENCE)
  -- built-in equality demodulators.
   pred EQ : *Cosmos* *Cosmos* {demod}
   pred NE : *Cosmos* *Cosmos* {demod}
  -- for answer literal.
   pred $Ans : *Cosmos* 

   eq[:BDEMOD]: EQ(X:*Cosmos*, Y:*Cosmos*)
   = #!! (coerce-to-bool
	    (term-equational-equal x y)) .
   eq[:BDEMOD]: NE(X:*Cosmos*, Y:*Cosmos*)
   = #!! (coerce-to-bool
	    (not (term-equational-equal x y))) .

 }

** for internalize $Ans
lispq
(install-fopl-clause)

** We don't need to touch universal sort any more.
lispq
(setq *allow-universal-sort* nil)

** built in for invariance check.
lispq
(setq *pn-proof-module*
  (eval-ast (%module-decl* "( invariance check )" :object :hard nil)))

lispq
(setq *pn-refinement-check-module*
   (eval-ast (%module-decl* "( refinment check )" :object :hard nil)))
lispq
(progn (setf (module-hidden *pn-proof-module*) t)
       (setf (module-hidden *pn-refinement-check-module*) t))

lispq
(setq .pn-ignore-ops.
  (list *bool-and*
	*bool-or*
	*bool-not*
	*sort-membership*
	*bool-if*
	*bool-imply*
	*bool-iff*
	*bool-xor*
	*bool-equal*
	*beh-equal*
	*bool-nonequal*
	*beh-eq-pred*
	*bool-and-also*
	*bool-or-else*))

**
set include BOOL on
set quiet off
**> providing fopl
protect FOPL-CLAUSE
provide fopl
provide FOPL-CLAUSE
**
eof