/usr/share/cafeobj-1.5/lib/nat.cafe is in cafeobj 1.5.7-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | **
** Copyright (c) 2000-2015, Toshimi Sawada. All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** * Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
**
** * Redistributions in binary form must reproduce the above
** copyright notice, this list of conditions and the following
** disclaimer in the documentation and/or other materials
** provided with the distribution.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR 'AS IS' AND ANY EXPRESSED
** OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
** ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
** DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
** GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
** INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
** NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**
sys:mod! NAT
principal-sort Nat
{
imports {
protecting (NZNAT)
protecting (NAT-VALUE)
}
signature {
op s _ : Nat -> NzNat { demod prec: 15 }
pred _ >= _ : Nat Nat { demod prec: 51 }
pred _ > _ : Nat Nat { demod prec: 51 }
pred _ <= _ : Nat Nat { demod prec: 51 }
pred _ < _ : Nat Nat { demod prec: 51 }
op _ * _ : Nat Nat -> Nat { assoc comm idr: 1 demod prec: 31 }
op _ + _ : Nat Nat -> Nat { assoc comm idr: 0 demod prec: 33 }
op sd : Nat Nat -> Nat { comm demod prec: 0 }
op _ quo _ : Nat NzNat -> Nat { demod prec: 31 }
op _ rem _ : Nat NzNat -> Nat { demod prec: 31 l-assoc }
pred _ divides _ : NzNat Nat { demod prec: 51 }
op p _ : NzNat -> Nat { demod prec: 15 }
}
axioms {
var M : Nat
var N : Nat
var NN : NzNat
eq [:BDEMOD]: sd(M,N) = #! (abs (- m n)) .
eq [:BDEMOD]: (M + N) = #! (+ m n) .
eq [:BDEMOD]: (M * N) = #! (* m n) .
eq [:BDEMOD]: (M quo NN) = #! (truncate m nn) .
eq [:BDEMOD]: (M rem NN) = #! (rem m nn) .
eq [:BDEMOD]: (NN divides M) = #! (= 0 (rem m nn)) .
eq [:BDEMOD]: (N < 0) = false .
eq [:BDEMOD]: (0 < NN) = true .
eq [:BDEMOD]: (NN <= 0) = false .
eq [:BDEMOD]: (0 <= N) = true .
eq [:BDEMOD]: (0 > N) = false .
eq [:BDEMOD]: (NN > 0) = true .
eq [:BDEMOD]: (0 >= NN) = false .
eq [:BDEMOD]: (N >= 0) = true .
eq [:BDEMOD]: (s 0) = 1 .
eq [:BDEMOD]: (p NN) = #! (- nn 1) .
}
}
lispq
(when (fboundp 'chaos-nat-tram-interface) (fmakunbound 'chaos-nat-tram-interface))
lispq
(defun chaos-nat-tram-interface ()
(setq *z-nat* (get-z-module-or-panic "NAT"))
(push *z-nat* *tram-builtin-modules*))
lispq
(eval-when (:execute :load-toplevel)
(chaos-nat-tram-interface))
protect NAT
provide nat
--
eof
|