This file is indexed.

/usr/share/cafeobj-1.5/lib/rwl.cafe is in cafeobj 1.5.7-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
** -*- Mode:CafeOBJ -*-
** system: Chaos
** module: library
** file: rwl.mod
**
** Copyright (c) 2000-2015, Toshimi Sawada. All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
**   * Redistributions of source code must retain the above copyright
**     notice, this list of conditions and the following disclaimer.
**
**   * Redistributions in binary form must reproduce the above
**     copyright notice, this list of conditions and the following
**     disclaimer in the documentation and/or other materials
**     provided with the distribution.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR 'AS IS' AND ANY EXPRESSED
** OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
** ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
** DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
** DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
** GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
** INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
** NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
** SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**
** -------------------------------------------------------------

**
** RWL
**
** allow using universal sorts
set sys universal-sort on

** we want to be very explicit here
set include BOOL off

sys:mod! RWL
      principal-sort Bool
{
  imports {
    protecting (BOOL)
    protecting (NAT-VALUE)
  }
  signature {
    -- [ Nat*, Nat < Nat* ]
    [ NzNat*, NzNat < NzNat* ]
    op * : -> NzNat* { constr }
    -- op + : -> Nat* { constr }
    -- op ! : -> Nat* { constr }
    pred _==>_ : *Cosmos* *Cosmos* { strat: (0) prec: 51 }

    ** NOTE: these two predicates are obsolate.
    -- _=(N:NzNat*)=>_ is equivalent to _=(1,N)=>*_
    -- pred _=(_)=>_ : *Cosmos* NzNat* *Cosmos* { strat: (0) prec: 51 }
    -- pred _=(_)=>_ suchThat _ : *Cosmos* NzNat* *Cosmos* Bool { strat: (0) prec: 51 }

    ** new search operators
    pred _=(_,_)=>*_ : *Cosmos* NzNat* NzNat* *Cosmos* { strat: (0) prec: 51 }
    pred _=(_,_)=>+_ : *Cosmos* NzNat* NzNat* *Cosmos* { strat: (0) prec: 51 }
    pred _=(_,_)=>!_ : *Cosmos* NzNat* NzNat* *Cosmos* { strat: (0) prec: 51 }
    pred _=(_,_)=>*_ suchThat _: *Cosmos* NzNat* NzNat* *Cosmos* Bool
      { strat: (0) prec: 51 }
    pred _=(_,_)=>+_suchThat_: *Cosmos* NzNat* NzNat* *Cosmos* Bool
      { strat: (0) prec: 51 }
    pred _=(_,_)=>!_suchThat_: *Cosmos* NzNat* NzNat* *Cosmos* Bool
      { strat: (0) prec: 51 }
    ** experimental -------------
    pred _=(_,_)=>*_suchThat_{_} : *Cosmos* NzNat* NzNat* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(_,_)=>+_suchThat_{_} : *Cosmos* NzNat* NzNat* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(_,_)=>!_suchThat_{_} : *Cosmos* NzNat* NzNat* *Cosmos* Bool *Cosmos*
    ** -------------------------
    -- suchThat 'state equality predicate'
    pred _=(_,_)=>*_withStateEq_ : *Cosmos* NzNat* NzNat* *Cosmos* *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(_,_)=>+_withStateEq_ : *Cosmos* NzNat* NzNat* *Cosmos* *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(_,_)=>!_withStateEq_ : *Cosmos* NzNat* NzNat* *Cosmos* *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(_,_)=>*_suchThat_withStateEq_ : *Cosmos* NzNat* NzNat* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(_,_)=>+_suchThat_withStateEq_ : *Cosmos* NzNat* NzNat* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }
   pred _=(_,_)=>!_suchThat_withStateEq_ : *Cosmos* NzNat* NzNat* *Cosmos* Bool *Cosmos*
     { strat: (0) prec: 51 }

    ** the followings are handy version of =(,)=>* etc.
    -- 
    pred _==>*_ : *Cosmos* *Cosmos* { strat: (0) prec: 51 }
    pred _==>+_ : *Cosmos* *Cosmos* { strat: (0) prec: 51 }
    pred _==>!_ : *Cosmos* *Cosmos* { strat: (0) prec: 51 }
    pred _==>1_ : *Cosmos* *Cosmos* { strat: (0) prec: 51 }
    pred _==>*_withStateEq_ : *Cosmos* *Cosmos* *Cosmos* { strat: (0) prec: 51 }
    pred _==>+_withStateEq_ : *Cosmos* *Cosmos* *Cosmos* { strat: (0) prec: 51 }
    pred _==>!_withStateEq_ : *Cosmos* *Cosmos* *Cosmos* { strat: (0) prec: 51 }
    pred _==>1_withStateEq_ : *Cosmos* *Cosmos* *Cosmos* { strat: (0) prec: 51 }

    pred _==>1_suchThat_ : *Cosmos* *Cosmos* Bool { strat: (0) prec: 51 }
    pred _==>*_suchThat_ : *Cosmos* *Cosmos* Bool { strat: (0) prec: 51 }
    pred _==>+_suchThat_ : *Cosmos* *Cosmos* Bool { strat: (0) prec: 51 }
    pred _==>!_suchThat_ : *Cosmos* *Cosmos* Bool { strat: (0) prec: 51 }
    pred _==>1_suchThat_ withStateEq_ : *Cosmos* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }
    pred _==>*_suchThat_withStateEq_ : *Cosmos* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }
    pred _==>+_suchThat_withStateEq_ : *Cosmos* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }
    pred _==>!_suchThat_withStateEq_ : *Cosmos* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }

    pred _=(_)=>*_ : *Cosmos* NzNat* *Cosmos* { strat: (0) prec: 51 }
    pred _=(_)=>+_ : *Cosmos* NzNat* *Cosmos* { strat: (0) prec: 51 }
    pred _=(_)=>!_ : *Cosmos* NzNat* *Cosmos* { strat: (0) prec: 51 }
    pred _=(_)=>*_ withStateEq(_) : *Cosmos* NzNat* *Cosmos* *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(_)=>+_withStateEq(_) : *Cosmos* NzNat* *Cosmos* *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(_)=>!_withStateEq(_) : *Cosmos* NzNat* *Cosmos* *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(_)=>*_suchThat_ : *Cosmos* NzNat* *Cosmos* Bool { strat: (0) prec: 51 }
    pred _=(_)=>+_suchThat_ : *Cosmos* NzNat* *Cosmos* Bool { strat: (0) prec: 51 }
    pred _=(_)=>!_suchThat_ : *Cosmos* NzNat* *Cosmos* Bool { strat: (0) prec: 51 }
    pred _=(_)=>*_suchThat_withStateEq_ : *Cosmos* NzNat* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(_)=>+_suchThat_withStateEq_ : *Cosmos* NzNat* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(_)=>!_suchThat_withStateEq_ : *Cosmos* NzNat* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }

    pred _=(,_)=>*_ : *Cosmos* NzNat* *Cosmos* { strat: (0) prec: 51 }
    pred _=(,_)=>+_ : *Cosmos* NzNat* *Cosmos* { strat: (0) prec: 51 }
    pred _=(,_)=>!_ : *Cosmos* NzNat* *Cosmos* { strat: (0) prec: 51 }
    pred _=(,_)=>*_withStateEq_ : *Cosmos* NzNat* *Cosmos* *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(,_)=>+_withStateEq_ : *Cosmos* NzNat* *Cosmos* *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(,_)=>!_withStateEq_ : *Cosmos* NzNat* *Cosmos* *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(,_)=>*_suchThat_ : *Cosmos* NzNat* *Cosmos* Bool { strat: (0) prec: 51 }
    pred _=(,_)=>+_suchThat_: *Cosmos* NzNat* *Cosmos* Bool { strat: (0) prec: 51 }
    pred _=(,_)=>!_suchThat_: *Cosmos* NzNat* *Cosmos* Bool { strat: (0) prec: 51 }
    pred _=(,_)=>*_suchThat_withStateEq_ : *Cosmos* NzNat* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(,_)=>+_suchThat_withStateEq_ : *Cosmos* NzNat* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }
    pred _=(,_)=>!_suchThat_withStateEq_ : *Cosmos* NzNat* *Cosmos* Bool *Cosmos*
      { strat: (0) prec: 51 }

    ** new experimental search predicate
    pred _=(_,_)=>+_if_suchThat_{_} : *Cosmos* NzNat* NzNat* *Cosmos* Bool Bool *Cosmos*
      { strat: (0) prec: 51 }

    ** _=>_ : 
    pred _=>_ : *Cosmos* *Cosmos* { strat: (0) prec: 51 }
  }
  axioms {
    var CXU : *Cosmos*
    var CYU : *Cosmos*
    var COND : Bool
    var MAX-R : NzNat*
    var MAX-D : NzNat*
    var PRED : *Cosmos*
    var BIND : *Cosmos*

    ** histrical builtin ==> is equivalent with =(1,*)=>*
    eq (CXU ==> CYU) = CXU =(1,*)=>* CYU .

    -- ==>
    eq (CXU ==>1 CYU) = (CXU =(1,*)=>+ CYU) .
    eq (CXU ==>* CYU) = (CXU =(*,*)=>* CYU) .
    eq (CXU ==>! CYU) = (CXU =(*,*)=>! CYU) .
    eq (CXU ==>+ CYU) = (CXU =(*,*)=>+ CYU) .
    eq (CXU ==>1 CYU suchThat COND) = (CXU =(1,*)=>+ CYU suchThat COND) .
    eq (CXU ==>* CYU suchThat COND) = (CXU =(*,*)=>* CYU suchThat COND) .
    eq (CXU ==>! CYU suchThat COND) = (CXU =(*,*)=>! CYU suchThat COND) .
    eq (CXU ==>+ CYU suchThat COND) = (CXU =(*,*)=>+ CYU suchThat COND) .
    eq (CXU ==>1 CYU withStateEq(PRED)) = (CXU =(1,*)=>+ CYU withStateEq(PRED)) .
    eq (CXU ==>* CYU withStateEq(PRED)) = (CXU =(*,*)=>* CYU withStateEq(PRED)) .
    eq (CXU ==>! CYU withStateEq(PRED)) = (CXU =(*,*)=>! CYU withStateEq(PRED)) .
    eq (CXU ==>+ CYU withStateEq(PRED)) = (CXU =(*,*)=>+ CYU withStateEq(PRED)) .
    eq (CXU ==>1 CYU suchThat COND withStateEq(PRED))
    = (CXU =(1,*)=>+ CYU suchThat COND withStateEq(PRED)) .
    eq (CXU ==>* CYU suchThat COND withStateEq(PRED))
    = (CXU =(*,*)=>* CYU suchThat COND withStateEq(PRED)) .
    eq (CXU ==>! CYU suchThat COND withStateEq(PRED))
    = (CXU =(*,*)=>! CYU suchThat COND withStateEq(PRED)) .
    eq (CXU ==>+ CYU suchThat COND withStateEq(PRED))
    = (CXU =(*,*)=>+ CYU suchThat COND withStateEq(PRED)) .

    -- =(NzNat*)=>
    eq (CXU =(MAX-R)=>* CYU) = (CXU =(MAX-R,*)=>* CYU) .
    eq (CXU =(MAX-R)=>! CYU) = (CXU =(MAX-R,*)=>! CYU) .
    eq (CXU =(MAX-R)=>+ CYU) = (CXU =(MAX-R,*)=>+ CYU) .
    eq (CXU =(MAX-R)=>* CYU suchThat COND) = (CXU =(MAX-R,*)=>* CYU suchThat COND) .
    eq (CXU =(MAX-R)=>! CYU suchThat COND) = (CXU =(MAX-R,*)=>! CYU suchThat COND) .
    eq (CXU =(MAX-R)=>+ CYU suchThat COND) = (CXU =(MAX-R,*)=>+ CYU suchThat COND) .
    eq (CXU =(MAX-R)=>* CYU withStateEq(PRED)) = (CXU =(MAX-R,*)=>* CYU withStateEq(PRED)) .
    eq (CXU =(MAX-R)=>! CYU withStateEq(PRED)) = (CXU =(MAX-R,*)=>! CYU withStateEq(PRED)) .
    eq (CXU =(MAX-R)=>+ CYU withStateEq(PRED)) = (CXU =(MAX-R,*)=>+ CYU withStateEq(PRED)) .
    eq (CXU =(MAX-R)=>* CYU suchThat COND withStateEq(PRED))
    = (CXU =(MAX-R,*)=>* CYU suchThat COND withStateEq(PRED)) .
    eq (CXU =(MAX-R)=>! CYU suchThat COND withStateEq(PRED))
    = (CXU =(MAX-R,*)=>! CYU suchThat COND withStateEq(PRED)) .
    eq (CXU =(MAX-R)=>+ CYU suchThat COND withStateEq(PRED))
    = (CXU =(MAX-R,*)=>+ CYU suchThat COND withStateEq(PRED)) .

    -- =(,NzNat*)=>
    eq (CXU =(,MAX-D)=>* CYU) = (CXU =(*,MAX-D)=>* CYU) .
    eq (CXU =(,MAX-D)=>! CYU) = (CXU =(*,MAX-D)=>! CYU) .
    eq (CXU =(,MAX-D)=>+ CYU) = (CXU =(*,MAX-D)=>+ CYU) .
    eq (CXU =(,MAX-D)=>* CYU suchThat COND)
      = (CXU =(*,MAX-D)=>* CYU suchThat COND) .
    eq (CXU =(,MAX-D)=>! CYU suchThat COND)
      = (CXU =(*,MAX-D)=>! CYU suchThat COND) .
    eq (CXU =(,MAX-D)=>+ CYU suchThat COND)
      = (CXU =(*,MAX-D)=>+ CYU suchThat COND) .
    eq (CXU =(,MAX-D)=>* CYU withStateEq(PRED))
      = (CXU =(*,MAX-D)=>* CYU withStateEq(PRED)) .
    eq (CXU =(,MAX-D)=>! CYU withStateEq(PRED))
      = (CXU =(*,MAX-D)=>! CYU withStateEq(PRED)) .
    eq (CXU =(,MAX-D)=>+ CYU withStateEq(PRED))
      = (CXU =(*,MAX-D)=>+ CYU withStateEq(PRED)) .
    eq (CXU =(,MAX-D)=>* CYU suchThat COND withStateEq(PRED))
      = (CXU =(*,MAX-D)=>* CYU suchThat COND withStateEq(PRED)) .
    eq (CXU =(,MAX-D)=>! CYU suchThat COND withStateEq(PRED))
      = (CXU =(*,MAX-D)=>! CYU suchThat COND withStateEq(PRED)) .
    eq (CXU =(,MAX-D)=>+ CYU suchThat COND withStateEq(PRED))
      = (CXU =(*,MAX-D)=>+ CYU suchThat COND withStateEq(PRED)) .

    -- =(NzNat*, NzNat*)=>
    eq (CXU =(MAX-R, MAX-D)=>* CYU) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :zero? t)) .
    eq (CXU =(MAX-R, MAX-D)=>! CYU) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :final? t)) .
    eq (CXU =(MAX-R, MAX-D)=>+ CYU) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D)) .
    eq (CXU =(MAX-R, MAX-D)=>* CYU suchThat COND) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :zero? t :cond cond)) .
    eq (CXU =(MAX-R, MAX-D)=>* CYU suchThat COND {BIND}) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :zero? t :cond cond :bind bind)) .
    eq (CXU =(MAX-R, MAX-D)=>! CYU suchThat COND) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :final? t :cond cond)) .
    eq (CXU =(MAX-R, MAX-D)=>! CYU suchThat COND {BIND}) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :final? t :cond cond :bind bind)) .
    eq (CXU =(MAX-R, MAX-D)=>+ CYU suchThat COND) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :cond cond)) .
    eq (CXU =(MAX-R, MAX-D)=>+ CYU suchThat COND {BIND}) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :cond cond :bind bind)) .

    -- =(NzNat*, NzNat*)=> withStateEq(BoolTerm/2)
    eq (CXU =(MAX-R, MAX-D)=>* CYU withStateEq(PRED)) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :zero? t :pred PRED)) .
    eq (CXU =(MAX-R, MAX-D)=>! CYU withStateEq(PRED)) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :final? t :pred PRED)) .
    eq (CXU =(MAX-R, MAX-D)=>+ CYU withStateEq(PRED)) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :pred PRED)) .
    eq (CXU =(MAX-R, MAX-D)=>* CYU suchThat COND withStateEq(PRED)) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :zero? t :cond cond :pred PRED)) .
    eq (CXU =(MAX-R, MAX-D)=>! CYU suchThat COND withStateEq(PRED)) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :final? t :cond cond :pred PRED)) .
    eq (CXU =(MAX-R, MAX-D)=>+ CYU suchThat COND withStateEq(PRED)) = 
      #!! (rwl-sch-set-result
	     (rwl-search :term cxu :pattern cyu :max-result MAX-R
		:max-depth MAX-D :cond cond :pred PRED)) .
    ** if
    eq (S:*Cosmos* =(MR:NzNat* ,MD:NzNat)=>+ SS:*Cosmos* if CC:Bool suchThat P:Bool { B:*Cosmos* }) =
      #!! (rwl-sch-set-result
	     (rwl-search :term S :pattern SS :max-result MR :max-depth MD :zero? nil
		:final? nil :cond P :if CC :bind B)) .
    ** =>
    -- eq (CXU => CYU) = #!! (rwl-sch-set-result (rwl-check-one-step-reachability CXU CYU)) .
       eq (CXU => CYU) = CXU =(1,*)=>* CYU .
  }
}

lispq
(when (fboundp 'setup-rwl) (fmakunbound 'setup-rwl))

** setup 
lispq
(defun setup-rwl ()
  (setq *rwl-module* (eval-modexp "RWL"))
  (final-setup *rwl-module*)
  (with-in-module (*rwl-module*)
    (let* ((rwl-op-info (find-operator '("_" "=>" "_") 2 *rwl-module*))
	   (rwl-pred (and rwl-op-info (lowest-method* (car (opinfo-methods rwl-op-info))))))
      (unless rwl-pred
	(with-output-panic-message ()
	  (print "could not find _=>_")
	  (break)))
      (setq *rwl-predicate* rwl-pred))))

lispq
(setup-rwl)
-- lispq
-- (setup-tram-bool-modules)
lispq
(init-builtin-universal)
**
set sys universal-sort off
set include BOOL on
**
protect RWL
provide rwl
**
eof