This file is indexed.

/usr/share/check_mk/modules/prediction.py is in check-mk-server 1.2.8p16-1ubuntu0.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#!/usr/bin/python
# -*- encoding: utf-8; py-indent-offset: 4 -*-
# +------------------------------------------------------------------+
# |             ____ _               _        __  __ _  __           |
# |            / ___| |__   ___  ___| | __   |  \/  | |/ /           |
# |           | |   | '_ \ / _ \/ __| |/ /   | |\/| | ' /            |
# |           | |___| | | |  __/ (__|   <    | |  | | . \            |
# |            \____|_| |_|\___|\___|_|\_\___|_|  |_|_|\_\           |
# |                                                                  |
# | Copyright Mathias Kettner 2014             mk@mathias-kettner.de |
# +------------------------------------------------------------------+
#
# This file is part of Check_MK.
# The official homepage is at http://mathias-kettner.de/check_mk.
#
# check_mk is free software;  you can redistribute it and/or modify it
# under the  terms of the  GNU General Public License  as published by
# the Free Software Foundation in version 2.  check_mk is  distributed
# in the hope that it will be useful, but WITHOUT ANY WARRANTY;  with-
# out even the implied warranty of  MERCHANTABILITY  or  FITNESS FOR A
# PARTICULAR PURPOSE. See the  GNU General Public License for more de-
# tails. You should have  received  a copy of the  GNU  General Public
# License along with GNU Make; see the file  COPYING.  If  not,  write
# to the Free Software Foundation, Inc., 51 Franklin St,  Fifth Floor,
# Boston, MA 02110-1301 USA.

# Code for predictive monitoring / anomaly detection

# Export data from an RRD file. This requires an up-to-date
# version of the rrdtools.


# Fetch RRD historic metrics data of a specific service. returns a tuple
# of (step, [value1, value2, ...])
# IMPORTANT: Until we have a central library, keep this function in sync with
# the function get_rrd_data() from web/prediction.py.
def get_rrd_data(hostname, service_description, varname, cf, fromtime, untiltime):
    step = 1
    rpn = "%s.%s" % (varname, cf.lower()) # "MAX" -> "max"
    lql = "GET services\n" \
          "Columns: rrddata:m1:%s:%d:%d:%d\n" \
          "OutputFormat: python\n" \
          "Filter: host_name = %s\n" \
          "Filter: description = %s\n" % (
             rpn, fromtime, untiltime, step, hostname, service_description)
    try:
        response = eval(simple_livestatus_query(lql))[0][0]
    except Exception, e:
        if opt_debug:
            raise
        raise MKGeneralException("Cannot get historic metrics via Livestatus: %s" % e)

    if not response:
        raise MKGeneralException("Got no historic metrics")

    real_fromtime, real_untiltime, step = response[:3]
    values = response[3:]
    return step, values


daynames = [ "monday", "tuesday", "wednesday", "thursday",
             "friday", "saturday", "sunday"]

# Check wether a certain time stamp lies with in daylight safing time (DST)
def is_dst(timestamp):
    return time.localtime(timestamp).tm_isdst

# Returns the timezone *including* DST shift at a certain point of time
def timezone_at(timestamp):
    if is_dst(timestamp):
        return time.altzone
    else:
        return time.timezone

def group_by_wday(t):
    wday = time.localtime(t).tm_wday
    day_of_epoch, rel_time = divmod(t - timezone_at(t), 86400)
    return daynames[wday], rel_time

def group_by_day(t):
    return "everyday", (t - timezone_at(t)) % 86400

def group_by_day_of_month(t):
    broken = time.localtime(t)
    mday = broken[2]
    return str(mday), (t - timezone_at(t)) % 86400

def group_by_everyhour(t):
    return "everyhour", (t - timezone_at(t)) % 3600


prediction_periods = {
    "wday" : {
        "slice"     : 86400, # 7 slices
        "groupby"   : group_by_wday,
        "valid"     : 7,
    },
    "day" : {
        "slice"     : 86400, # 31 slices
        "groupby"   : group_by_day_of_month,
        "valid"     : 28,
    },
    "hour" : {
        "slice"     : 86400, # 1 slice
        "groupby"   : group_by_day,
        "valid"     : 1,
    },
    "minute" : {
        "slice"     : 3600, # 1 slice
        "groupby"   : group_by_everyhour,
        "valid"     : 24,
    },
}


def get_prediction_timegroup(t, period_info):
    # Convert to local timezone
    timegroup, rel_time = period_info["groupby"](t)
    from_time = t - rel_time
    until_time = t - rel_time + period_info["slice"]
    return timegroup, from_time, until_time, rel_time


def compute_prediction(pred_file, timegroup, params, period_info, from_time, dsname, cf):
    # Collect all slices back into the past until the time horizon
    # is reached
    begin = from_time
    slices = []
    absolute_begin = from_time - params["horizon"] * 86400

    # The resolutions of the different time ranges differ. We interpolate
    # to the best resolution. We assume that the youngest slice has the
    # finest resolution. We also assume, that each step is always dividable
    # by the smallest step.

    # Note: due to the f**king DST, we can have several shifts between
    # DST and non-DST during are computation. We need to compensate for
    # those. DST swaps within slices are being ignored. The DST flag
    # is checked against the beginning of the slice.
    smallest_step = None
    while begin >= absolute_begin:
        tg, fr, un, rel = get_prediction_timegroup(begin, period_info)
        if tg == timegroup:
            step, data = get_rrd_data(g_hostname, g_service_description,
                                      dsname, cf, fr, un-1)
            if smallest_step == None:
                smallest_step = step
            slices.append((fr, step / smallest_step, data))
        begin -= period_info["slice"]

    # Now we have all the RRD data we need. The next step is to consolidate
    # all that data into one new array.
    num_points = len(slices[0][2])
    consolidated = []
    for i in xrange(num_points):
        point_line = []
        for from_time, scale, data in slices:
            idx = int(i / float(scale))
            if idx < len(data):
                d = data[idx]
                if d != None:
                    point_line.append(d)
            # else:
            #     date_str = time.strftime("%Y-%m-%d %H:%M", time.localtime(fr + ((un - fr) * i / float(num_points))))
            #     print "Keine Daten fur %s / %d/%s/ %.2f " % (date_str, i, float(scale),i/float(scale))

        if point_line:
            average = sum(point_line) / len(point_line)
            consolidated.append([
                 average,
                 min(point_line),
                 max(point_line),
                 stdev(point_line, average),
            ])
        else:
            consolidated.append([None, None, None, None])

    result = {
        "num_points" : num_points,
        "step"       : smallest_step,
        "columns"    : [ "average", "min", "max", "stdev" ],
        "points"     : consolidated,
    }
    return result

def stdev(point_line, average):
    return math.sqrt(sum([ (p-average)**2 for p in point_line ]) / len(point_line))


# cf: consilidation function (MAX, MIN, AVERAGE)
# levels_factor: this multiplies all absolute levels. Usage for example
# in the cpu.loads check the multiplies the levels by the number of CPU
# cores.
def get_predictive_levels(dsname, params, cf, levels_factor=1.0):
    # Compute timegroup
    now = time.time()
    period_info = prediction_periods[params["period"]]

    # timegroup: name of the group, like 'monday' or '12'
    # from_time: absolute epoch time of the first second of the
    # current slice.
    # until_time: absolute epoch of the first second *not* in the slice
    # rel_time: seconds offset of now in the current slice
    timegroup, from_time, until_time, rel_time = \
       get_prediction_timegroup(now, period_info)

    # Compute directory for prediction data
    dir = "%s/prediction/%s/%s/%s" % (var_dir, g_hostname,
             pnp_cleanup(g_service_description), pnp_cleanup(dsname))
    if not os.path.exists(dir):
        os.makedirs(dir)

    pred_file = "%s/%s" % (dir, timegroup)
    info_file = pred_file + ".info"

    # In previous versions it could happen that the files were created with 0 bytes of size
    # which was never handled correctly so that the prediction could never be used again until
    # manual removal of the files. Clean this up.
    for file_path in [ pred_file, info_file ]:
        if os.path.exists(file_path) and os.stat(file_path).st_size == 0:
            os.unlink(file_path)

    # Check, if we need to (re-)compute the prediction file. This is
    # the case if:
    # - no prediction has been done yet for this time group
    # - the prediction from the last time is outdated
    # - the prediction from the last time has done with other parameters
    try:
        last_info = eval(file(info_file).read())
        for k, v in params.items():
            if last_info.get(k) != v:
                if opt_debug:
                    sys.stderr.write("Prediction parameters have changed.\n")
                last_info = None
                break
    except IOError:
        if opt_debug:
            sys.stderr.write("No previous prediction for group %s available.\n" % timegroup)
        last_info = None

    if last_info and last_info["time"] + period_info["valid"] * period_info["slice"] < now:
        if opt_debug:
            sys.stderr.write("Prediction of %s outdated.\n" % timegroup)
        last_info = None

    if last_info:
        # TODO: faster file format. Binary encoded?
        prediction = eval(file(pred_file).read())

    else:
        # Remove all prediction files that result from other
        # prediction periods. This is e.g. needed if the user switches
        # the parameter from 'wday' to 'day'.
        for f in os.listdir(dir):
            if f.endswith(".info"):
                try:
                    info = eval(file(dir + "/" + f).read())
                    if info["period"] != params["period"]:
                        if opt_debug:
                            sys.stderr.write("Removing obsolete prediction %s\n" % f[:-5])
                        os.remove(dir + "/" + f)
                        os.remove(dir + "/" + f[:-5])
                except:
                    pass

        if opt_debug:
            sys.stderr.write("Computing prediction for time group %s.\n" % timegroup)
        prediction = compute_prediction(pred_file, timegroup, params, period_info, from_time, dsname, cf)
        info = {
            "time"         : now,
            "range"        : (from_time, until_time),
            "cf"           : cf,
            "dsname"       : dsname,
            "slice"        : period_info["slice"],
        }
        info.update(params)
        file(info_file, "w").write("%r\n" % info)
        file(pred_file, "w").write("%r\n" % prediction)

    # Find reference value in prediction
    index = int(rel_time / prediction["step"])
    # print "rel_time: %d, step: %d, Index: %d, num_points: %d" % (rel_time, prediction["step"], index, prediction["num_points"])
    # print prediction.keys()
    reference = dict(zip(prediction["columns"], prediction["points"][index]))
    # print "Reference: %s" % reference
    ref_value = reference["average"]
    stdev = reference["stdev"]
    levels = []
    if not ref_value: # No reference data available
        levels = ((None, None), (None, None))
    else:
        for what, sig in [ ( "upper", 1 ), ( "lower", -1 )]:
            p = "levels_" + what
            if p in params:
                how, (warn, crit) = params[p]
                if how == "absolute":
                    this_levels = (ref_value + (sig * warn * levels_factor), ref_value + (sig * crit * levels_factor))
                elif how == "relative":
                    this_levels = (ref_value + sig * (ref_value * warn / 100),
                                   ref_value + sig * (ref_value * crit / 100))
                else: #  how == "stdev":
                    this_levels = (ref_value + sig * (stdev * warn),
                                  ref_value + sig * (stdev * crit))

                if what == "upper" and "levels_upper_min" in params:
                    limit_warn, limit_crit = params["levels_upper_min"]
                    this_levels = (max(limit_warn, this_levels[0]), max(limit_crit, this_levels[1]))
                levels.append(this_levels)
            else:
                levels.append((None, None))


    # print levels
    return ref_value, levels


def pnp_cleanup(s):
    return s \
        .replace(' ',  '_') \
        .replace(':',  '_') \
        .replace('/',  '_') \
        .replace('\\', '_')