/usr/include/coin/CoinFloatEqual.hpp is in coinor-libcoinutils-dev 2.10.14+repack1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | /* $Id: CoinFloatEqual.hpp 1416 2011-04-17 09:57:29Z stefan $ */
// Copyright (C) 2000, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#ifndef CoinFloatEqual_H
#define CoinFloatEqual_H
#include <algorithm>
#include <cmath>
#include "CoinFinite.hpp"
/*! \file CoinFloatEqual.hpp
\brief Function objects for testing equality of real numbers.
Two objects are provided; one tests for equality to an absolute tolerance,
one to a scaled tolerance. The tests will handle IEEE floating point, but
note that infinity == infinity. Mathematicians are rolling in their graves,
but this matches the behaviour for the common practice of using
<code>DBL_MAX</code> (<code>numeric_limits<double>::max()</code>, or similar
large finite number) as infinity.
<p>
Example usage:
@verbatim
double d1 = 3.14159 ;
double d2 = d1 ;
double d3 = d1+.0001 ;
CoinAbsFltEq eq1 ;
CoinAbsFltEq eq2(.001) ;
assert( eq1(d1,d2) ) ;
assert( !eq1(d1,d3) ) ;
assert( eq2(d1,d3) ) ;
@endverbatim
CoinRelFltEq follows the same pattern. */
/*! \brief Equality to an absolute tolerance
Operands are considered equal if their difference is within an epsilon ;
the test does not consider the relative magnitude of the operands.
*/
class CoinAbsFltEq
{
public:
//! Compare function
inline bool operator() (const double f1, const double f2) const
{ if (CoinIsnan(f1) || CoinIsnan(f2)) return false ;
if (f1 == f2) return true ;
return (fabs(f1-f2) < epsilon_) ; }
/*! \name Constructors and destructors */
//@{
/*! \brief Default constructor
Default tolerance is 1.0e-10.
*/
CoinAbsFltEq () : epsilon_(1.e-10) {}
//! Alternate constructor with epsilon as a parameter
CoinAbsFltEq (const double epsilon) : epsilon_(epsilon) {}
//! Destructor
virtual ~CoinAbsFltEq () {}
//! Copy constructor
CoinAbsFltEq (const CoinAbsFltEq& src) : epsilon_(src.epsilon_) {}
//! Assignment
CoinAbsFltEq& operator= (const CoinAbsFltEq& rhs)
{ if (this != &rhs) epsilon_ = rhs.epsilon_ ;
return (*this) ; }
//@}
private:
/*! \name Private member data */
//@{
//! Equality tolerance.
double epsilon_ ;
//@}
} ;
/*! \brief Equality to a scaled tolerance
Operands are considered equal if their difference is within a scaled
epsilon calculated as epsilon_*(1+CoinMax(|f1|,|f2|)).
*/
class CoinRelFltEq
{
public:
//! Compare function
inline bool operator() (const double f1, const double f2) const
{ if (CoinIsnan(f1) || CoinIsnan(f2)) return false ;
if (f1 == f2) return true ;
if (!CoinFinite(f1) || !CoinFinite(f2)) return false ;
double tol = (fabs(f1)>fabs(f2))?fabs(f1):fabs(f2) ;
return (fabs(f1-f2) <= epsilon_*(1+tol)) ; }
/*! \name Constructors and destructors */
//@{
#ifndef COIN_FLOAT
/*! Default constructor
Default tolerance is 1.0e-10.
*/
CoinRelFltEq () : epsilon_(1.e-10) {}
#else
/*! Default constructor
Default tolerance is 1.0e-6.
*/
CoinRelFltEq () : epsilon_(1.e-6) {} ; // as float
#endif
//! Alternate constructor with epsilon as a parameter
CoinRelFltEq (const double epsilon) : epsilon_(epsilon) {}
//! Destructor
virtual ~CoinRelFltEq () {}
//! Copy constructor
CoinRelFltEq (const CoinRelFltEq & src) : epsilon_(src.epsilon_) {}
//! Assignment
CoinRelFltEq& operator= (const CoinRelFltEq& rhs)
{ if (this != &rhs) epsilon_ = rhs.epsilon_ ;
return (*this) ; }
//@}
private:
/*! \name Private member data */
//@{
//! Base equality tolerance
double epsilon_ ;
//@}
} ;
#endif
|