This file is indexed.

/usr/share/gauche-0.9/0.9.5/lib/math/prime.scm is in gauche 0.9.5-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
;;;
;;; math/prime.scm - utilities related to prime numbers
;;;
;;;   Copyright (c) 2013-2016  Shiro Kawai  <shiro@acm.org>
;;;   Copyright (c) 2013  @cddddr
;;;
;;;   Redistribution and use in source and binary forms, with or without
;;;   modification, are permitted provided that the following conditions
;;;   are met:
;;;
;;;   1. Redistributions of source code must retain the above copyright
;;;      notice, this list of conditions and the following disclaimer.
;;;
;;;   2. Redistributions in binary form must reproduce the above copyright
;;;      notice, this list of conditions and the following disclaimer in the
;;;      documentation and/or other materials provided with the distribution.
;;;
;;;   3. Neither the name of the authors nor the names of its contributors
;;;      may be used to endorse or promote products derived from this
;;;      software without specific prior written permission.
;;;
;;;   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
;;;   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
;;;   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
;;;   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
;;;   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
;;;   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
;;;   TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;;;   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;;;   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;;;   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;;;   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;

(define-module math.prime
  (use srfi-27)
  (use srfi-42)
  (use gauche.uvector)
  (use gauche.generator)
  (use gauche.sequence)
  (use gauche.threads)
  (use data.sparse)
  (use util.match)
  (export primes *primes* reset-primes
          small-prime? *small-prime-bound*
          miller-rabin-prime? bpsw-prime?
          naive-factorize mc-factorize
          jacobi totient))
(select-module math.prime)

;;;
;;; Infinite sequence of prime numbers
;;;

;; This section of code is based on the segment sieve prime number generator
;; written by @cddddr.  Optimized by SK.  As of 0.9.4_pre2, it can generate
;; first 10^7 primes in 14sec on 2.4GHz Core2 machine.

(define (take-first-term a0 d lower-bound)
  (if (<= lower-bound a0)
      a0
      (+ a0 (* d (quotient (- lower-bound a0 (- d) 1) d)))))
(define (->odd x)  (if (odd? x) x (+ x 1)))
(define (->even x) (if (even? x) x (+ x 1)))
(define-inline (integer->index x) (ash x -1))

(define-constant *segment-size* (->even #e5e4))
(define-constant *first-segment-start*
  (->odd (ceiling->exact (expt *segment-size* 0.6))))
(define-constant *sieve-vec-size* (/ *segment-size* 2))
(define-constant *sieve-filler* '#u8(0))

;; sieve is a bytevector, representing a range of odd numbers.
;; given odd number N in the range [start, end] (where start and end
;; are both odd), (vector-ref bytevec (/ (- N start) 2)) is 0 if N
;; is composite, 1 if not.
(define (segment-sieve! bytevec start primes)
  (let ([root (floor->exact (sqrt (+ start *segment-size* -1)))]
        [start-index (integer->index start)])
    (let sieve! ([ps (cdr primes)])
      (match-let1 (p . qs) ps
        (when (<= p root)
          (let1 i (- (take-first-term (integer->index (* p p)) p start-index)
                     start-index)
            (u8vector-multi-copy! bytevec i p *sieve-filler*))
          (sieve! qs))))))

(define (bytevec->generator bytevec start)
  (let1 i 0
    (^[] (let loop ([j i])
           (cond [(>= j *sieve-vec-size*) (set! i j) (eof-object)]
                 [(not (zero? (u8vector-ref bytevec j)))
                  (set! i (+ j 1))
                  (+ (* j 2) start)]
                 [else (loop (+ j 1))])))))

(define (segment-prime-generator start primes)
  (let1 bytevec (make-u8vector *sieve-vec-size* 1)
    (segment-sieve! bytevec start primes)
    (bytevec->generator bytevec start)))

;; Head of prime sequence.  We don't make it a generator,
;; for we only need to calculate them once and it won't
;; take long.  We just wrap it with delay so that it won't
;; tax loading time.
(define *small-primes*
  (delay (list-ec (:range n 2 *first-segment-start*)
                  (if (every?-ec (:range j 2 (+ 1 (floor->exact (sqrt n))))
                                 (< 0 (mod n j))))
                  n)))

;; API
(define (primes)
  (define start *first-segment-start*)
  (define gen (list->generator (force *small-primes*)))
  (define (gen-primes)
    (let loop ([v (gen)])
      (if (eof-object? v)
        (begin
          (set! gen (segment-prime-generator start prime-lseq))
          (inc! start *segment-size*)
          (loop (gen)))
        v)))
  (define prime-lseq (generator->lseq gen-primes))
  prime-lseq)

;; API
(define *primes* (primes))

;; API
(define (reset-primes) (set! *primes* (primes)) (undefined))

;;;
;;; Primarity test
;;;

;; We provide both deterministic and probabilistic method.

;; single Miller-Rabin test.
;; n is the number to be tested, a is the chosen base.
;; returns #f if n is composite.
(define (miller-rabin-test a n)
  (let* ([n-1 (- n 1)]
         [s (twos-exponent-factor n-1)]
         [d (ash n-1 (- s))]
         [a^d (expt-mod a d n)])
    (or (= a^d 1)
        (let loop ([i 0] [a^d a^d])
          (cond [(= i s) #f]
                [(= a^d n-1) #t]
                [else (loop (+ i 1) (expt-mod a^d 2 n))])))))

;; For small integers, determinisitc Miller-Rabin is known.
;; Selfridge&Wagstaff  doi:10.2307/2006210
;; Jaeschke doi:10.2307/2153262
(define *deterministic-witnesses*
  ;; ((bound a ...) ...)
  ;; If the number to test is less than bound, we only need to test with a ...
  '((1373653 2 3)
    (9080191 31 73)
    (4759123141 2 7 61)
    (2152302898747 2 3 5 7 11)
    (3474749660383 2 3 5 7 11 13)
    (341550071728321 2 3 5 7 11 13 17)))

(define *small-prime-bound*
  (car (last *deterministic-witnesses*)))

(define (deterministic-miller-rabin n witnesses)
  (every?-ec (: a witnesses) (miller-rabin-test a n)))

;; If n is below *small-prime-bound*, returns deterministic
;; answer.  If n is over, always return #f.
(define (small-prime? n)
  (if (<= n 100)
    (boolean (memv n (take *primes* 25))) ; we have 25 primes below 100.
    (and-let* ([ (odd? n) ]
               [p (find (^p (< n (car p))) *deterministic-witnesses*)])
      (deterministic-miller-rabin n (cdr p)))))

(define *miller-rabin-random-source*
  (rlet1 s (make-random-source)
    (random-source-pseudo-randomize! s 1 1)))

(define default-miller-rabin-random-integer
  (random-source-make-integers *miller-rabin-random-source*))

;; API
(define (miller-rabin-prime? n :key (num-tests 7)
                             (random-integer default-miller-rabin-random-integer))
  (unless (and (exact-integer? n) (> n 1))
    (error "exact positive integer greater than 1 is expected, but got:" n))
  (and (odd? n) ; filter out the trivial case
       (if (< n *small-prime-bound*)
         (small-prime? n)
         (let ([bound (- (integer-length n) 2)]
               [tested '()]) ;; tested primes
           (define (rand)
             (let1 r (+ 2 (random-integer bound))
               (if (memv r tested)
                 (rand)
                 (begin (push! tested r) r))))
           (every?-ec (: k num-tests) (miller-rabin-test (rand) n))))))

;; Jacobi symbol calculation, used in bpsw-prime?
;;  http://en.wikipedia.org/wiki/Jacobi_symbol
;; There exists better algorithms, but let's see how the straightforward
;; one goes.

;; API
(define (jacobi a n) ; n is odd
  (define (J a n s)
    (cond [(= n 1) (* s 1)]
          [(= a 0) 0]
          [(odd? a) 
           (if (and (= (logand a 3) 3) (= (logand n 3) 3))
             (J (modulo n a) a (- s))
             (J (modulo n a) a s))]
          [else
           (let1 k (- (twos-exponent-factor a))
             (if (and (memv (logand n 7) '(3 5)) (odd? k))
               (J (ash a k) n (- s))
               (J (ash a k) n s)))]))
  (when (or (even? n) (< n 1))
    (error "n must be positive odd number, but got" n))
  (if (< a 0)
    (J (- a) n (if (= (logand n 3) 1) 1 -1))
    (J a n 1)))

;; Baillie-PSW primality test
;;  http://www.trnicely.net/misc/bpsw.html
;; It is known that this correctly identifies primes/composites below 10^17,
;; and it is very likely correct below 2^64 empirically.

;; Find first element D in the sequence (-1)^n (2n+1) where n >= 2
;; and JacobiSymbol(D,N) = -1.
;; D is expected to be small if N is not a perfect square.
(define (bpsw-find-D n)
  (let loop ([d 5] [s 1])
    (if (= (jacobi (* s d) n) -1)
      (* s d)
      (loop (+ d 2) (- s)))))

;; Strong Lucas-Selfridge test
(define (lucas-selfridge-test n P Q)

  ;; calculate U_d, V_d and Q^d mod n.  (d is such that n = d * 2^s)
  (define (calculate-UV n P Q D d)
    (let1 dsize (integer-length d)
      (let loop ([U 1] [V P] [U_2^m 1] [V_2^m P] [Q_m Q] [Q^d Q] [bit 1])
        (if (= bit dsize)
          (values U V Q^d)
          (let ([U_2^m_1 (modulo (* U_2^m V_2^m) n)]
                [V_2^m_1 (modulo (- (* V_2^m V_2^m) (* 2 Q_m)) n)]
                [Q_m_1   (modulo (* Q_m Q_m) n)])
            (if (not (logbit? bit d))
              (loop U V U_2^m_1 V_2^m_1 Q_m_1 Q^d (+ bit 1))
              (let ([U (half-modn (+ (* U_2^m_1 V) (* U V_2^m_1)))]
                    [V (half-modn (+ (* V_2^m_1 V) (* D U U_2^m_1)))]
                    [Q^d (modulo (* Q^d Q_m_1) n)])
                (loop U V U_2^m_1 V_2^m_1 Q_m_1 Q^d (+ bit 1)))))))))

  ;; divide by 2 modulo n; we know n is odd
  (define (half-modn x)
    (if (odd? x)
      (modulo (ash (+ x n) -1) n)
      (modulo (ash x -1) n)))
  
  (let* ([n+1 (+ n 1)]
         [s   (twos-exponent-factor n+1)]
         [d   (ash n+1 (- s))]
         [D   (bpsw-find-D n)]
         [P   1]
         [Q   (/ (- 1 D) 4)])
    (receive (U V Q^d) (calculate-UV n P Q D d)
      (or (zero? U)
          (zero? V)
          (let loop ([r 1] [V V] [Q^d Q^d])
            (if (>= r s)
              #f
              (let1 V (modulo (- (* V V) (* 2 Q^d)) n)
                (or (zero? V)
                    (loop (+ r 1) V (modulo (* Q^d Q^d) n))))))))))

;; API
(define (bpsw-prime? n)
  (cond [(< n 2) #f]
        [(= n 2) #t]
        [(even? n) #f]
        [else
         (let1 fs (naive-factorize n 1000)
           (cond
            [(not (null? (cdr fs))) #f] ; definitely composite
            [(< n 1000000) #t] ; we know it's prime
            [(not (miller-rabin-test 2 n)) #f]
            [(zero? (values-ref (exact-integer-sqrt n) 1)) #f] ;perfect square
            [else (lucas-selfridge-test n 1 (/ (- 1 (bpsw-find-D n)) 4))]))]))

;;;
;;; Factorization
;;;

(define-constant *small-factorize-table-limit* 50000)

(define-constant *small-factorize-table-index-limit*
  (/ (- *small-factorize-table-limit* 1) 2))

;; suitable for small n with memoization.  n is odd number.
;; mem-vec[k] remembers factorization of k*2+1.
;;
(define naive-factorize-1
  (let1 mem-vec (atom (make-sparse-vector))
    (define (->index n) (/ (- n 1) 2)) ; n must be odd
    (define (memo! i val)
      (when (< i *small-factorize-table-index-limit*)
        (atomic mem-vec (cut sparse-vector-set! <> i val)))
      val)
    (^[n divisor-limit]
      (let try [(n n) (ps *primes*)]
        ;; try to divide n with given primes.
        (let1 i (->index n)
          (or (and (< i *small-factorize-table-index-limit*)
                   (atomic mem-vec (cut sparse-vector-ref <> i #f)))
              (and (small-prime? n)
                   (memo! i `(,n)))
              (let loop ([ps ps])
                (let* ([p (car ps)] [p^2 (* p p)])
                  (cond [(> p divisor-limit) `(,n)] ; n can be composite, so no memo
                        [(< n p^2) (memo! i `(,n))]
                        [(= n p^2) (memo! i `(,p ,p))]
                        [else
                         (receive (q r) (quotient&remainder n p)
                           (if (zero? r)
                             (memo! i (cons p (try q ps)))
                             (loop (cdr ps))))])))))))))

;; API
(define (naive-factorize n :optional (divisor-limit +inf.0))
  (if (<= n 3)
    `(,n)
    (let1 k (twos-exponent-factor n)
      (if (= k 0)
        (naive-factorize-1 n divisor-limit)
        ;; avoid simple recursion to naive-factorize for every factor of 2
        ;; to save intermediate results generation (effective when n is bignum).
        (let loop ([i 0] [r '()])
          (if (= i k)
            (let1 m (ash n (- k))
              (reverse r (if (= m 1)
                           '()
                           (naive-factorize (ash n (- k)) divisor-limit))))
            (loop (+ i 1) (cons 2 r))))))))

;; Monte Carlo factorization
;;  R. P. Brent, An improved Monte Carlo factorization algorithm, BIT 20 (1980), 176-184.
;;  http://maths-people.anu.edu.au/~brent/pub/pub051.html

;; Single trial of factorizing n using x0 as the initial seed.
;; If this returns a number, it's a nontrivial divisor of n.
;; If this returns #f, you need to retry with different x0.
(define (mc-find-divisor-1 n x0)
  (define (f x) (modulo (+ (* x x) 3) n))
  (define (f^ r x) ; apply f on x for r times, e.g (f (f x)) for r=2
    (let loop ([r r] [x x])
      (if (= r 1) (f x) (loop (- r 1) (f x)))))
  ;; the step value m: in the big-step loop, we only compute gcd for
  ;; every m-th value of the series x_i.
  (define m (ceiling->exact (log n 2)))
  ;; 'big-step' loop
  (define (big-step x y q r k)
    (do ([i (min m (- r k)) (- i 1)]
         [y y (f y)]
         [q q (modulo (* q (abs (- x y))) n)])
        [(= i 0) (values (gcd q n) q y)]))
  (define (big-stride x y q r)
    (let loop ([ys y] [k 0])
      (receive (G q y) (big-step x ys q r k)
        (cond [(or (>= k (- r m)) (> G 1)) (values G ys y q)]
              [else (loop y (+ k m))]))))
  (define (small-stride x ys)
    (let loop ([ys (f ys)])
      (let1 G (gcd (abs (- x ys)) n)
        (if (> G 1) G (loop (f ys))))))

  ;; The main body
  (let loop ([y x0] [r 1] [q 1])
    (let ([x y] [y (f^ r y)])
      (receive (G ys y q) (big-stride x y q r)
        (if (> G 1)
          (if (< G n)
            G
            (let1 G (small-stride x ys)
              (and (< G n) G)))           ; if (= G N), we failed.
          (loop y (* r 2) q))))))

;; Try MC factorization.  Returns (divisor . quotient).
;; Note: This will loop forever if N is a prime.  The caller should
;; exclude primes.  Unfortunately, we don't have a deterministic primality
;; test > 2^64 yet.  
(define (mc-try-factorize n)
  (let loop ()
    (if-let1 d (mc-find-divisor-1 n (random-integer n))
      (cons d (quotient n d))
      (loop))))

;; API
(define (mc-factorize n)
  ;; Break up n.  We first exclude primes if possible.
  ;; The worst case scenario is that n contains a factor
  ;; greater than 2^64---in which case we'll take forever.
  (define (smash n)
    (if (definite-prime? n)
      `(,n)
      (let1 d (mc-try-factorize n)
        (append (smash (car d)) (smash (cdr d))))))

  (define (definite-prime? n)
    (cond [(< n *small-prime-bound*) (small-prime? n)]
          [(< n 18446744073709551616) (bpsw-prime? n)]; (expt 2 64)
          [else #f]))

  (define try-prime-limit 1000)

  ;; We exclude trivial factors first.
  (let* ([ps (naive-factorize n try-prime-limit)]
         [n (last ps)])
    (if (< n (* try-prime-limit try-prime-limit))
      ps ;; we're completely done
      (let1 nf (smash n) ; n may be composite, so try to break it more.
        (if (null? (cdr nf))
          ps  ; n is unbreakable, so the original factorization was fine.
          (sort (append nf (drop-right ps 1))))))))

;;;
;;; Fun stuff
;;;

(define (totient n)
  (if (<= n 2)
    1
    (fold (^[pk phi] (* phi (expt (car pk) (- (length pk) 1)) (- (car pk) 1)))
          1 (group-sequence (mc-factorize n)))))

;; Wishlist
;;   deterministic prime?  (maybe using AKS primality test)
;;   more sophisticated integer factorization