This file is indexed.

/usr/lib/gcc/x86_64-linux-gnu/5/plugin/include/hash-table.h is in gcc-5-plugin-dev 5.5.0-12ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
/* A type-safe hash table template.
   Copyright (C) 2012-2015 Free Software Foundation, Inc.
   Contributed by Lawrence Crowl <crowl@google.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


/* This file implements a typed hash table.
   The implementation borrows from libiberty's htab_t in hashtab.h.


   INTRODUCTION TO TYPES

   Users of the hash table generally need to be aware of three types.

      1. The type being placed into the hash table.  This type is called
      the value type.

      2. The type used to describe how to handle the value type within
      the hash table.  This descriptor type provides the hash table with
      several things.

         - A typedef named 'value_type' to the value type (from above).

         - A static member function named 'hash' that takes a value_type
         pointer and returns a hashval_t value.

         - A typedef named 'compare_type' that is used to test when an value
         is found.  This type is the comparison type.  Usually, it will be the
         same as value_type.  If it is not the same type, you must generally
         explicitly compute hash values and pass them to the hash table.

         - A static member function named 'equal' that takes a value_type
         pointer and a compare_type pointer, and returns a bool.

         - A static function named 'remove' that takes an value_type pointer
         and frees the memory allocated by it.  This function is used when
         individual elements of the table need to be disposed of (e.g.,
         when deleting a hash table, removing elements from the table, etc).

      3. The type of the hash table itself.  (More later.)

   In very special circumstances, users may need to know about a fourth type.

      4. The template type used to describe how hash table memory
      is allocated.  This type is called the allocator type.  It is
      parameterized on the value type.  It provides four functions.

         - A static member function named 'data_alloc'.  This function
         allocates the data elements in the table.

         - A static member function named 'data_free'.  This function
         deallocates the data elements in the table.

   Hash table are instantiated with two type arguments.

      * The descriptor type, (2) above.

      * The allocator type, (4) above.  In general, you will not need to
      provide your own allocator type.  By default, hash tables will use
      the class template xcallocator, which uses malloc/free for allocation.


   DEFINING A DESCRIPTOR TYPE

   The first task in using the hash table is to describe the element type.
   We compose this into a few steps.

      1. Decide on a removal policy for values stored in the table.
         This header provides class templates for the two most common
         policies.

         * typed_free_remove implements the static 'remove' member function
         by calling free().

         * typed_noop_remove implements the static 'remove' member function
         by doing nothing.

         You can use these policies by simply deriving the descriptor type
         from one of those class template, with the appropriate argument.

         Otherwise, you need to write the static 'remove' member function
         in the descriptor class.

      2. Choose a hash function.  Write the static 'hash' member function.

      3. Choose an equality testing function.  In most cases, its two
      arguments will be value_type pointers.  If not, the first argument must
      be a value_type pointer, and the second argument a compare_type pointer.


   AN EXAMPLE DESCRIPTOR TYPE

   Suppose you want to put some_type into the hash table.  You could define
   the descriptor type as follows.

      struct some_type_hasher : typed_noop_remove <some_type>
      // Deriving from typed_noop_remove means that we get a 'remove' that does
      // nothing.  This choice is good for raw values.
      {
        typedef some_type value_type;
        typedef some_type compare_type;
        static inline hashval_t hash (const value_type *);
        static inline bool equal (const value_type *, const compare_type *);
      };

      inline hashval_t
      some_type_hasher::hash (const value_type *e)
      { ... compute and return a hash value for E ... }

      inline bool
      some_type_hasher::equal (const value_type *p1, const compare_type *p2)
      { ... compare P1 vs P2.  Return true if they are the 'same' ... }


   AN EXAMPLE HASH_TABLE DECLARATION

   To instantiate a hash table for some_type:

      hash_table <some_type_hasher> some_type_hash_table;

   There is no need to mention some_type directly, as the hash table will
   obtain it using some_type_hasher::value_type.

   You can then used any of the functions in hash_table's public interface.
   See hash_table for details.  The interface is very similar to libiberty's
   htab_t.


   EASY DESCRIPTORS FOR POINTERS

   The class template pointer_hash provides everything you need to hash
   pointers (as opposed to what they point to).  So, to instantiate a hash
   table over pointers to whatever_type,

      hash_table <pointer_hash <whatever_type>> whatever_type_hash_table;


   HASH TABLE ITERATORS

   The hash table provides standard C++ iterators.  For example, consider a
   hash table of some_info.  We wish to consume each element of the table:

      extern void consume (some_info *);

   We define a convenience typedef and the hash table:

      typedef hash_table <some_info_hasher> info_table_type;
      info_table_type info_table;

   Then we write the loop in typical C++ style:

      for (info_table_type::iterator iter = info_table.begin ();
           iter != info_table.end ();
           ++iter)
        if ((*iter).status == INFO_READY)
          consume (&*iter);

   Or with common sub-expression elimination:

      for (info_table_type::iterator iter = info_table.begin ();
           iter != info_table.end ();
           ++iter)
        {
          some_info &elem = *iter;
          if (elem.status == INFO_READY)
            consume (&elem);
        }

   One can also use a more typical GCC style:

      typedef some_info *some_info_p;
      some_info *elem_ptr;
      info_table_type::iterator iter;
      FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
        if (elem_ptr->status == INFO_READY)
          consume (elem_ptr);

*/


#ifndef TYPED_HASHTAB_H
#define TYPED_HASHTAB_H

#include "ggc.h"
#include "hashtab.h"
#include <new>

template<typename, typename, typename> class hash_map;
template<typename, typename> class hash_set;

/* The ordinary memory allocator.  */
/* FIXME (crowl): This allocator may be extracted for wider sharing later.  */

template <typename Type>
struct xcallocator
{
  static Type *data_alloc (size_t count);
  static void data_free (Type *memory);
};


/* Allocate memory for COUNT data blocks.  */

template <typename Type>
inline Type *
xcallocator <Type>::data_alloc (size_t count)
{
  return static_cast <Type *> (xcalloc (count, sizeof (Type)));
}


/* Free memory for data blocks.  */

template <typename Type>
inline void
xcallocator <Type>::data_free (Type *memory)
{
  return ::free (memory);
}


/* Helpful type for removing with free.  */

template <typename Type>
struct typed_free_remove
{
  static inline void remove (Type *p);
};


/* Remove with free.  */

template <typename Type>
inline void
typed_free_remove <Type>::remove (Type *p)
{
  free (p);
}


/* Helpful type for a no-op remove.  */

template <typename Type>
struct typed_noop_remove
{
  static inline void remove (Type *p);
};


/* Remove doing nothing.  */

template <typename Type>
inline void
typed_noop_remove <Type>::remove (Type *p ATTRIBUTE_UNUSED)
{
}


/* Pointer hash with a no-op remove method.  */

template <typename Type>
struct pointer_hash : typed_noop_remove <Type>
{
  typedef Type *value_type;
  typedef Type *compare_type;
  typedef int store_values_directly;

  static inline hashval_t hash (const value_type &);

  static inline bool equal (const value_type &existing,
			    const compare_type &candidate);
};

template <typename Type>
inline hashval_t
pointer_hash <Type>::hash (const value_type &candidate)
{
  /* This is a really poor hash function, but it is what the current code uses,
     so I am reusing it to avoid an additional axis in testing.  */
  return (hashval_t) ((intptr_t)candidate >> 3);
}

template <typename Type>
inline bool
pointer_hash <Type>::equal (const value_type &existing,
			   const compare_type &candidate)
{
  return existing == candidate;
}

/* Hasher for entry in gc memory.  */

template<typename T>
struct ggc_hasher
{
  typedef T value_type;
  typedef T compare_type;
  typedef int store_values_directly;

  static void remove (T) {}

  static void
  ggc_mx (T p)
  {
    extern void gt_ggc_mx (T &);
    gt_ggc_mx (p);
  }

  static void
  pch_nx (T &p)
  {
  extern void gt_pch_nx (T &);
  gt_pch_nx (p);
  }

  static void
  pch_nx (T &p, gt_pointer_operator op, void *cookie)
  {
    op (&p, cookie);
  }
};

/* Hasher for cache entry in gc memory.  */

template<typename T>
struct ggc_cache_hasher
{
  typedef T value_type;
  typedef T compare_type;
  typedef int store_values_directly;

  static void remove (T &) {}

  /* Entries are weakly held because this is for caches.  */

  static void ggc_mx (T &) {}

  static void
  pch_nx (T &p)
  {
  extern void gt_pch_nx (T &);
  gt_pch_nx (p);
  }

  static void
  pch_nx (T &p, gt_pointer_operator op, void *cookie)
  {
    op (&p, cookie);
  }

  /* Clear out entries if they are about to be gc'd.  */

  static void
  handle_cache_entry (T &e)
  {
    if (e != HTAB_EMPTY_ENTRY && e != HTAB_DELETED_ENTRY && !ggc_marked_p (e))
      e = static_cast<T> (HTAB_DELETED_ENTRY);
  }
};


/* Table of primes and their inversion information.  */

struct prime_ent
{
  hashval_t prime;
  hashval_t inv;
  hashval_t inv_m2;     /* inverse of prime-2 */
  hashval_t shift;
};

extern struct prime_ent const prime_tab[];


/* Functions for computing hash table indexes.  */

extern unsigned int hash_table_higher_prime_index (unsigned long n)
   ATTRIBUTE_PURE;

/* Return X % Y using multiplicative inverse values INV and SHIFT.

   The multiplicative inverses computed above are for 32-bit types,
   and requires that we be able to compute a highpart multiply.

   FIX: I am not at all convinced that
     3 loads, 2 multiplications, 3 shifts, and 3 additions
   will be faster than
     1 load and 1 modulus
   on modern systems running a compiler.  */

inline hashval_t
mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
{
   hashval_t t1, t2, t3, t4, q, r;

   t1 = ((uint64_t)x * inv) >> 32;
   t2 = x - t1;
   t3 = t2 >> 1;
   t4 = t1 + t3;
   q  = t4 >> shift;
   r  = x - (q * y);

   return r;
}

/* Compute the primary table index for HASH given current prime index.  */

inline hashval_t
hash_table_mod1 (hashval_t hash, unsigned int index)
{
  const struct prime_ent *p = &prime_tab[index];
  gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
    return mul_mod (hash, p->prime, p->inv, p->shift);
}

/* Compute the secondary table index for HASH given current prime index.  */

inline hashval_t
hash_table_mod2 (hashval_t hash, unsigned int index)
{
  const struct prime_ent *p = &prime_tab[index];
  gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
  return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
}

/* The below is some template meta programming to decide if we should use the
   hash table partial specialization that directly stores value_type instead of
   pointers to value_type.  If the Descriptor type defines the type
   Descriptor::store_values_directly then values are stored directly otherwise
   pointers to them are stored.  */
template<typename T> struct notype { typedef void type; };

template<typename T, typename = void>
struct storage_tester
{
  static const bool value = false;
};

template<typename T>
struct storage_tester<T, typename notype<typename
					 T::store_values_directly>::type>
{
  static const bool value = true;
};

 template<typename Traits>
 struct has_is_deleted
{
  template<typename U, bool (*)(U &)> struct helper {};
  template<typename U> static char test (helper<U, U::is_deleted> *);
  template<typename U> static int test (...);
  static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
};

template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
struct is_deleted_helper
{
  static inline bool
  call (Type &v)
  {
    return Traits::is_deleted (v);
  }
};

template<typename Type, typename Traits>
struct is_deleted_helper<Type *, Traits, false>
{
  static inline bool
  call (Type *v)
  {
    return v == HTAB_DELETED_ENTRY;
  }
};

 template<typename Traits>
 struct has_is_empty
{
  template<typename U, bool (*)(U &)> struct helper {};
  template<typename U> static char test (helper<U, U::is_empty> *);
  template<typename U> static int test (...);
  static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
};

template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
struct is_empty_helper
{
  static inline bool
  call (Type &v)
  {
    return Traits::is_empty (v);
  }
};

template<typename Type, typename Traits>
struct is_empty_helper<Type *, Traits, false>
{
  static inline bool
  call (Type *v)
  {
    return v == HTAB_EMPTY_ENTRY;
  }
};

 template<typename Traits>
 struct has_mark_deleted
{
  template<typename U, void (*)(U &)> struct helper {};
  template<typename U> static char test (helper<U, U::mark_deleted> *);
  template<typename U> static int test (...);
  static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
};

template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
struct mark_deleted_helper
{
  static inline void
  call (Type &v)
  {
    Traits::mark_deleted (v);
  }
};

template<typename Type, typename Traits>
struct mark_deleted_helper<Type *, Traits, false>
{
  static inline void
  call (Type *&v)
  {
    v = static_cast<Type *> (HTAB_DELETED_ENTRY);
  }
};

 template<typename Traits>
 struct has_mark_empty
{
  template<typename U, void (*)(U &)> struct helper {};
  template<typename U> static char test (helper<U, U::mark_empty> *);
  template<typename U> static int test (...);
  static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
};

template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
struct mark_empty_helper
{
  static inline void
  call (Type &v)
  {
    Traits::mark_empty (v);
  }
};

template<typename Type, typename Traits>
struct mark_empty_helper<Type *, Traits, false>
{
  static inline void
  call (Type *&v)
  {
    v = static_cast<Type *> (HTAB_EMPTY_ENTRY);
  }
};

/* User-facing hash table type.

   The table stores elements of type Descriptor::value_type, or pointers to
   objects of type value_type if the descriptor does not define the type
   store_values_directly.

   It hashes values with the hash member function.
     The table currently works with relatively weak hash functions.
     Use typed_pointer_hash <Value> when hashing pointers instead of objects.

   It compares elements with the equal member function.
     Two elements with the same hash may not be equal.
     Use typed_pointer_equal <Value> when hashing pointers instead of objects.

   It removes elements with the remove member function.
     This feature is useful for freeing memory.
     Derive from typed_null_remove <Value> when not freeing objects.
     Derive from typed_free_remove <Value> when doing a simple object free.

   Specify the template Allocator to allocate and free memory.
     The default is xcallocator.

     Storage is an implementation detail and should not be used outside the
     hash table code.

*/
template <typename Descriptor,
	 template<typename Type> class Allocator= xcallocator,
	 bool Storage = storage_tester<Descriptor>::value>
class hash_table
{
};

template <typename Descriptor,
	 template<typename Type> class Allocator>
class hash_table<Descriptor, Allocator, false>
{
  typedef typename Descriptor::value_type value_type;
  typedef typename Descriptor::compare_type compare_type;

public:
  hash_table (size_t);
  ~hash_table ();

  /* Current size (in entries) of the hash table.  */
  size_t size () const { return m_size; }

  /* Return the current number of elements in this hash table. */
  size_t elements () const { return m_n_elements - m_n_deleted; }

  /* Return the current number of elements in this hash table. */
  size_t elements_with_deleted () const { return m_n_elements; }

  /* This function clears all entries in the given hash table.  */
  void empty ();

  /* This function clears a specified SLOT in a hash table.  It is
     useful when you've already done the lookup and don't want to do it
     again. */

  void clear_slot (value_type **);

  /* This function searches for a hash table entry equal to the given
     COMPARABLE element starting with the given HASH value.  It cannot
     be used to insert or delete an element. */
  value_type *find_with_hash (const compare_type *, hashval_t);

/* Like find_slot_with_hash, but compute the hash value from the element.  */
  value_type *find (const value_type *value)
    {
      return find_with_hash (value, Descriptor::hash (value));
    }

  value_type **find_slot (const value_type *value, insert_option insert)
    {
      return find_slot_with_hash (value, Descriptor::hash (value), insert);
    }

  /* This function searches for a hash table slot containing an entry
     equal to the given COMPARABLE element and starting with the given
     HASH.  To delete an entry, call this with insert=NO_INSERT, then
     call clear_slot on the slot returned (possibly after doing some
     checks).  To insert an entry, call this with insert=INSERT, then
     write the value you want into the returned slot.  When inserting an
     entry, NULL may be returned if memory allocation fails. */
  value_type **find_slot_with_hash (const compare_type *comparable,
				    hashval_t hash, enum insert_option insert);

  /* This function deletes an element with the given COMPARABLE value
     from hash table starting with the given HASH.  If there is no
     matching element in the hash table, this function does nothing. */
  void remove_elt_with_hash (const compare_type *, hashval_t);

/* Like remove_elt_with_hash, but compute the hash value from the element.  */
  void remove_elt (const value_type *value)
    {
      remove_elt_with_hash (value, Descriptor::hash (value));
    }

  /* This function scans over the entire hash table calling CALLBACK for
     each live entry.  If CALLBACK returns false, the iteration stops.
     ARGUMENT is passed as CALLBACK's second argument. */
  template <typename Argument,
	    int (*Callback) (value_type **slot, Argument argument)>
  void traverse_noresize (Argument argument);

  /* Like traverse_noresize, but does resize the table when it is too empty
     to improve effectivity of subsequent calls.  */
  template <typename Argument,
	    int (*Callback) (value_type **slot, Argument argument)>
  void traverse (Argument argument);

  class iterator
  {
  public:
    iterator () : m_slot (NULL), m_limit (NULL) {}

    iterator (value_type **slot, value_type **limit) :
      m_slot (slot), m_limit (limit) {}

    inline value_type *operator * () { return *m_slot; }
    void slide ();
    inline iterator &operator ++ ();
    bool operator != (const iterator &other) const
      {
	return m_slot != other.m_slot || m_limit != other.m_limit;
      }

  private:
    value_type **m_slot;
    value_type **m_limit;
  };

  iterator begin () const
    {
      iterator iter (m_entries, m_entries + m_size);
      iter.slide ();
      return iter;
    }

  iterator end () const { return iterator (); }

  double collisions () const
    {
      return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
    }

private:

  value_type **find_empty_slot_for_expand (hashval_t);
  void expand ();

  /* Table itself.  */
  typename Descriptor::value_type **m_entries;

  size_t m_size;

  /* Current number of elements including also deleted elements.  */
  size_t m_n_elements;

  /* Current number of deleted elements in the table.  */
  size_t m_n_deleted;

  /* The following member is used for debugging. Its value is number
     of all calls of `htab_find_slot' for the hash table. */
  unsigned int m_searches;

  /* The following member is used for debugging.  Its value is number
     of collisions fixed for time of work with the hash table. */
  unsigned int m_collisions;

  /* Current size (in entries) of the hash table, as an index into the
     table of primes.  */
  unsigned int m_size_prime_index;
};

template<typename Descriptor, template<typename Type> class Allocator>
hash_table<Descriptor, Allocator, false>::hash_table (size_t size) :
  m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0)
{
  unsigned int size_prime_index;

  size_prime_index = hash_table_higher_prime_index (size);
  size = prime_tab[size_prime_index].prime;

  m_entries = Allocator <value_type*> ::data_alloc (size);
  gcc_assert (m_entries != NULL);
  m_size = size;
  m_size_prime_index = size_prime_index;
}

template<typename Descriptor, template<typename Type> class Allocator>
hash_table<Descriptor, Allocator, false>::~hash_table ()
{
  for (size_t i = m_size - 1; i < m_size; i--)
    if (m_entries[i] != HTAB_EMPTY_ENTRY && m_entries[i] != HTAB_DELETED_ENTRY)
      Descriptor::remove (m_entries[i]);

  Allocator <value_type *> ::data_free (m_entries);
}

/* Similar to find_slot, but without several unwanted side effects:
    - Does not call equal when it finds an existing entry.
    - Does not change the count of elements/searches/collisions in the
      hash table.
   This function also assumes there are no deleted entries in the table.
   HASH is the hash value for the element to be inserted.  */

template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator, false>::value_type **
hash_table<Descriptor, Allocator, false>
::find_empty_slot_for_expand (hashval_t hash)
{
  hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
  size_t size = m_size;
  value_type **slot = m_entries + index;
  hashval_t hash2;

  if (*slot == HTAB_EMPTY_ENTRY)
    return slot;
  gcc_checking_assert (*slot != HTAB_DELETED_ENTRY);

  hash2 = hash_table_mod2 (hash, m_size_prime_index);
  for (;;)
    {
      index += hash2;
      if (index >= size)
        index -= size;

      slot = m_entries + index;
      if (*slot == HTAB_EMPTY_ENTRY)
        return slot;
      gcc_checking_assert (*slot != HTAB_DELETED_ENTRY);
    }
}

/* The following function changes size of memory allocated for the
   entries and repeatedly inserts the table elements.  The occupancy
   of the table after the call will be about 50%.  Naturally the hash
   table must already exist.  Remember also that the place of the
   table entries is changed.  If memory allocation fails, this function
   will abort.  */

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, false>::expand ()
{
  value_type **oentries = m_entries;
  unsigned int oindex = m_size_prime_index;
  size_t osize = size ();
  value_type **olimit = oentries + osize;
  size_t elts = elements ();

  /* Resize only when table after removal of unused elements is either
     too full or too empty.  */
  unsigned int nindex;
  size_t nsize;
  if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
    {
      nindex = hash_table_higher_prime_index (elts * 2);
      nsize = prime_tab[nindex].prime;
    }
  else
    {
      nindex = oindex;
      nsize = osize;
    }

  value_type **nentries = Allocator <value_type *> ::data_alloc (nsize);
  gcc_assert (nentries != NULL);
  m_entries = nentries;
  m_size = nsize;
  m_size_prime_index = nindex;
  m_n_elements -= m_n_deleted;
  m_n_deleted = 0;

  value_type **p = oentries;
  do
    {
      value_type *x = *p;

      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
        {
          value_type **q = find_empty_slot_for_expand (Descriptor::hash (x));

          *q = x;
        }

      p++;
    }
  while (p < olimit);

  Allocator <value_type *> ::data_free (oentries);
}

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, false>::empty ()
{
  size_t size = m_size;
  value_type **entries = m_entries;
  int i;

  for (i = size - 1; i >= 0; i--)
    if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
      Descriptor::remove (entries[i]);

  /* Instead of clearing megabyte, downsize the table.  */
  if (size > 1024*1024 / sizeof (PTR))
    {
      int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
      int nsize = prime_tab[nindex].prime;

      Allocator <value_type *> ::data_free (m_entries);
      m_entries = Allocator <value_type *> ::data_alloc (nsize);
      m_size = nsize;
      m_size_prime_index = nindex;
    }
  else
    memset (entries, 0, size * sizeof (value_type *));
  m_n_deleted = 0;
  m_n_elements = 0;
}

/* This function clears a specified SLOT in a hash table.  It is
   useful when you've already done the lookup and don't want to do it
   again. */

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, false>::clear_slot (value_type **slot)
{
  gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
		         || *slot == HTAB_EMPTY_ENTRY
			 || *slot == HTAB_DELETED_ENTRY));

  Descriptor::remove (*slot);

  *slot = static_cast <value_type *> (HTAB_DELETED_ENTRY);
  m_n_deleted++;
}

/* This function searches for a hash table entry equal to the given
   COMPARABLE element starting with the given HASH value.  It cannot
   be used to insert or delete an element. */

template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator, false>::value_type *
hash_table<Descriptor, Allocator, false>
::find_with_hash (const compare_type *comparable, hashval_t hash)
{
  m_searches++;
  size_t size = m_size;
  hashval_t index = hash_table_mod1 (hash, m_size_prime_index);

  value_type *entry = m_entries[index];
  if (entry == HTAB_EMPTY_ENTRY
      || (entry != HTAB_DELETED_ENTRY && Descriptor::equal (entry, comparable)))
    return entry;

  hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
  for (;;)
    {
      m_collisions++;
      index += hash2;
      if (index >= size)
        index -= size;

      entry = m_entries[index];
      if (entry == HTAB_EMPTY_ENTRY
          || (entry != HTAB_DELETED_ENTRY
	      && Descriptor::equal (entry, comparable)))
        return entry;
    }
}

/* This function searches for a hash table slot containing an entry
   equal to the given COMPARABLE element and starting with the given
   HASH.  To delete an entry, call this with insert=NO_INSERT, then
   call clear_slot on the slot returned (possibly after doing some
   checks).  To insert an entry, call this with insert=INSERT, then
   write the value you want into the returned slot.  When inserting an
   entry, NULL may be returned if memory allocation fails. */

template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator, false>::value_type **
hash_table<Descriptor, Allocator, false>
::find_slot_with_hash (const compare_type *comparable, hashval_t hash,
		       enum insert_option insert)
{
  if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
    expand ();

  m_searches++;

  value_type **first_deleted_slot = NULL;
  hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
  hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
  value_type *entry = m_entries[index];
  size_t size = m_size;
  if (entry == HTAB_EMPTY_ENTRY)
    goto empty_entry;
  else if (entry == HTAB_DELETED_ENTRY)
    first_deleted_slot = &m_entries[index];
  else if (Descriptor::equal (entry, comparable))
    return &m_entries[index];

  for (;;)
    {
      m_collisions++;
      index += hash2;
      if (index >= size)
	index -= size;

      entry = m_entries[index];
      if (entry == HTAB_EMPTY_ENTRY)
	goto empty_entry;
      else if (entry == HTAB_DELETED_ENTRY)
	{
	  if (!first_deleted_slot)
	    first_deleted_slot = &m_entries[index];
	}
      else if (Descriptor::equal (entry, comparable))
	return &m_entries[index];
    }

 empty_entry:
  if (insert == NO_INSERT)
    return NULL;

  if (first_deleted_slot)
    {
      m_n_deleted--;
      *first_deleted_slot = static_cast <value_type *> (HTAB_EMPTY_ENTRY);
      return first_deleted_slot;
    }

  m_n_elements++;
  return &m_entries[index];
}

/* This function deletes an element with the given COMPARABLE value
   from hash table starting with the given HASH.  If there is no
   matching element in the hash table, this function does nothing. */

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, false>
::remove_elt_with_hash (const compare_type *comparable, hashval_t hash)
{
  value_type **slot = find_slot_with_hash (comparable, hash, NO_INSERT);
  if (*slot == HTAB_EMPTY_ENTRY)
    return;

  Descriptor::remove (*slot);

  *slot = static_cast <value_type *> (HTAB_DELETED_ENTRY);
  m_n_deleted++;
}

/* This function scans over the entire hash table calling CALLBACK for
   each live entry.  If CALLBACK returns false, the iteration stops.
   ARGUMENT is passed as CALLBACK's second argument. */

template<typename Descriptor, template<typename Type> class Allocator>
template<typename Argument,
	  int (*Callback) (typename hash_table<Descriptor, Allocator,
					       false>::value_type **slot,
			   Argument argument)>
void
hash_table<Descriptor, Allocator, false>::traverse_noresize (Argument argument)
{
  value_type **slot = m_entries;
  value_type **limit = slot + size ();

  do
    {
      value_type *x = *slot;

      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
        if (! Callback (slot, argument))
          break;
    }
  while (++slot < limit);
}

/* Like traverse_noresize, but does resize the table when it is too empty
   to improve effectivity of subsequent calls.  */

template <typename Descriptor,
	  template <typename Type> class Allocator>
template <typename Argument,
	  int (*Callback) (typename hash_table<Descriptor, Allocator,
					       false>::value_type **slot,
			   Argument argument)>
void
hash_table<Descriptor, Allocator, false>::traverse (Argument argument)
{
  size_t size = m_size;
  if (elements () * 8 < size && size > 32)
    expand ();

  traverse_noresize <Argument, Callback> (argument);
}

/* Slide down the iterator slots until an active entry is found.  */

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, false>::iterator::slide ()
{
  for ( ; m_slot < m_limit; ++m_slot )
    {
      value_type *x = *m_slot;
      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
        return;
    }
  m_slot = NULL;
  m_limit = NULL;
}

/* Bump the iterator.  */

template<typename Descriptor, template<typename Type> class Allocator>
inline typename hash_table<Descriptor, Allocator, false>::iterator &
hash_table<Descriptor, Allocator, false>::iterator::operator ++ ()
{
  ++m_slot;
  slide ();
  return *this;
}

/* A partial specialization used when values should be stored directly.  */

template <typename Descriptor,
	 template<typename Type> class Allocator>
class hash_table<Descriptor, Allocator, true>
{
  typedef typename Descriptor::value_type value_type;
  typedef typename Descriptor::compare_type compare_type;

public:
  explicit hash_table (size_t, bool ggc = false);
  ~hash_table ();

  /* Create a hash_table in gc memory.  */

  static hash_table *
  create_ggc (size_t n)
  {
    hash_table *table = ggc_alloc<hash_table> ();
    new (table) hash_table (n, true);
    return table;
  }

  /* Current size (in entries) of the hash table.  */
  size_t size () const { return m_size; }

  /* Return the current number of elements in this hash table. */
  size_t elements () const { return m_n_elements - m_n_deleted; }

  /* Return the current number of elements in this hash table. */
  size_t elements_with_deleted () const { return m_n_elements; }

  /* This function clears all entries in the given hash table.  */
  void empty ();

  /* This function clears a specified SLOT in a hash table.  It is
     useful when you've already done the lookup and don't want to do it
     again. */

  void clear_slot (value_type *);

  /* This function searches for a hash table entry equal to the given
     COMPARABLE element starting with the given HASH value.  It cannot
     be used to insert or delete an element. */
  value_type &find_with_hash (const compare_type &, hashval_t);

/* Like find_slot_with_hash, but compute the hash value from the element.  */
  value_type &find (const value_type &value)
    {
      return find_with_hash (value, Descriptor::hash (value));
    }

  value_type *find_slot (const value_type &value, insert_option insert)
    {
      return find_slot_with_hash (value, Descriptor::hash (value), insert);
    }

  /* This function searches for a hash table slot containing an entry
     equal to the given COMPARABLE element and starting with the given
     HASH.  To delete an entry, call this with insert=NO_INSERT, then
     call clear_slot on the slot returned (possibly after doing some
     checks).  To insert an entry, call this with insert=INSERT, then
     write the value you want into the returned slot.  When inserting an
     entry, NULL may be returned if memory allocation fails. */
  value_type *find_slot_with_hash (const compare_type &comparable,
				    hashval_t hash, enum insert_option insert);

  /* This function deletes an element with the given COMPARABLE value
     from hash table starting with the given HASH.  If there is no
     matching element in the hash table, this function does nothing. */
  void remove_elt_with_hash (const compare_type &, hashval_t);

/* Like remove_elt_with_hash, but compute the hash value from the element.  */
  void remove_elt (const value_type &value)
    {
      remove_elt_with_hash (value, Descriptor::hash (value));
    }

  /* This function scans over the entire hash table calling CALLBACK for
     each live entry.  If CALLBACK returns false, the iteration stops.
     ARGUMENT is passed as CALLBACK's second argument. */
  template <typename Argument,
	    int (*Callback) (value_type *slot, Argument argument)>
  void traverse_noresize (Argument argument);

  /* Like traverse_noresize, but does resize the table when it is too empty
     to improve effectivity of subsequent calls.  */
  template <typename Argument,
	    int (*Callback) (value_type *slot, Argument argument)>
  void traverse (Argument argument);

  class iterator
  {
  public:
    iterator () : m_slot (NULL), m_limit (NULL) {}

    iterator (value_type *slot, value_type *limit) :
      m_slot (slot), m_limit (limit) {}

    inline value_type &operator * () { return *m_slot; }
    void slide ();
    inline iterator &operator ++ ();
    bool operator != (const iterator &other) const
      {
	return m_slot != other.m_slot || m_limit != other.m_limit;
      }

  private:
    value_type *m_slot;
    value_type *m_limit;
  };

  iterator begin () const
    {
      iterator iter (m_entries, m_entries + m_size);
      iter.slide ();
      return iter;
    }

  iterator end () const { return iterator (); }

  double collisions () const
    {
      return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
    }

private:
  template<typename T> friend void gt_ggc_mx (hash_table<T> *);
  template<typename T> friend void gt_pch_nx (hash_table<T> *);
  template<typename T> friend void
    hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
  template<typename T, typename U, typename V> friend void
  gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
  template<typename T, typename U> friend void gt_pch_nx (hash_set<T, U> *,
							  gt_pointer_operator,
							  void *);
  template<typename T> friend void gt_pch_nx (hash_table<T> *,
					      gt_pointer_operator, void *);

  value_type *alloc_entries (size_t n) const;
  value_type *find_empty_slot_for_expand (hashval_t);
  void expand ();
  static bool is_deleted (value_type &v)
    {
      return is_deleted_helper<value_type, Descriptor>::call (v);
    }
  static bool is_empty (value_type &v)
    {
      return is_empty_helper<value_type, Descriptor>::call (v);
    }

  static void mark_deleted (value_type &v)
    {
      return mark_deleted_helper<value_type, Descriptor>::call (v);
    }

  static void mark_empty (value_type &v)
    {
      return mark_empty_helper<value_type, Descriptor>::call (v);
    }

  /* Table itself.  */
  typename Descriptor::value_type *m_entries;

  size_t m_size;

  /* Current number of elements including also deleted elements.  */
  size_t m_n_elements;

  /* Current number of deleted elements in the table.  */
  size_t m_n_deleted;

  /* The following member is used for debugging. Its value is number
     of all calls of `htab_find_slot' for the hash table. */
  unsigned int m_searches;

  /* The following member is used for debugging.  Its value is number
     of collisions fixed for time of work with the hash table. */
  unsigned int m_collisions;

  /* Current size (in entries) of the hash table, as an index into the
     table of primes.  */
  unsigned int m_size_prime_index;

  /* if m_entries is stored in ggc memory.  */
  bool m_ggc;
};

template<typename Descriptor, template<typename Type> class Allocator>
hash_table<Descriptor, Allocator, true>::hash_table (size_t size, bool ggc) :
  m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
  m_ggc (ggc)
{
  unsigned int size_prime_index;

  size_prime_index = hash_table_higher_prime_index (size);
  size = prime_tab[size_prime_index].prime;

  m_entries = alloc_entries (size);
  m_size = size;
  m_size_prime_index = size_prime_index;
}

template<typename Descriptor, template<typename Type> class Allocator>
hash_table<Descriptor, Allocator, true>::~hash_table ()
{
  for (size_t i = m_size - 1; i < m_size; i--)
    if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
      Descriptor::remove (m_entries[i]);

  if (!m_ggc)
    Allocator <value_type> ::data_free (m_entries);
  else
    ggc_free (m_entries);
}

/* This function returns an array of empty hash table elements.  */

template<typename Descriptor, template<typename Type> class Allocator>
inline typename hash_table<Descriptor, Allocator, true>::value_type *
hash_table<Descriptor, Allocator, true>::alloc_entries (size_t n) const
{
  value_type *nentries;

  if (!m_ggc)
    nentries = Allocator <value_type> ::data_alloc (n);
  else
    nentries = ::ggc_cleared_vec_alloc<value_type> (n);

  gcc_assert (nentries != NULL);
  for (size_t i = 0; i < n; i++)
    mark_empty (nentries[i]);

  return nentries;
}

/* Similar to find_slot, but without several unwanted side effects:
    - Does not call equal when it finds an existing entry.
    - Does not change the count of elements/searches/collisions in the
      hash table.
   This function also assumes there are no deleted entries in the table.
   HASH is the hash value for the element to be inserted.  */

template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator, true>::value_type *
hash_table<Descriptor, Allocator, true>
::find_empty_slot_for_expand (hashval_t hash)
{
  hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
  size_t size = m_size;
  value_type *slot = m_entries + index;
  hashval_t hash2;

  if (is_empty (*slot))
    return slot;
#ifdef ENABLE_CHECKING
  gcc_checking_assert (!is_deleted (*slot));
#endif

  hash2 = hash_table_mod2 (hash, m_size_prime_index);
  for (;;)
    {
      index += hash2;
      if (index >= size)
        index -= size;

      slot = m_entries + index;
      if (is_empty (*slot))
        return slot;
#ifdef ENABLE_CHECKING
      gcc_checking_assert (!is_deleted (*slot));
#endif
    }
}

/* The following function changes size of memory allocated for the
   entries and repeatedly inserts the table elements.  The occupancy
   of the table after the call will be about 50%.  Naturally the hash
   table must already exist.  Remember also that the place of the
   table entries is changed.  If memory allocation fails, this function
   will abort.  */

	  template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, true>::expand ()
{
  value_type *oentries = m_entries;
  unsigned int oindex = m_size_prime_index;
  size_t osize = size ();
  value_type *olimit = oentries + osize;
  size_t elts = elements ();

  /* Resize only when table after removal of unused elements is either
     too full or too empty.  */
  unsigned int nindex;
  size_t nsize;
  if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
    {
      nindex = hash_table_higher_prime_index (elts * 2);
      nsize = prime_tab[nindex].prime;
    }
  else
    {
      nindex = oindex;
      nsize = osize;
    }

  value_type *nentries = alloc_entries (nsize);
  m_entries = nentries;
  m_size = nsize;
  m_size_prime_index = nindex;
  m_n_elements -= m_n_deleted;
  m_n_deleted = 0;

  value_type *p = oentries;
  do
    {
      value_type &x = *p;

      if (!is_empty (x) && !is_deleted (x))
        {
          value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));

          *q = x;
        }

      p++;
    }
  while (p < olimit);

  if (!m_ggc)
    Allocator <value_type> ::data_free (oentries);
  else
    ggc_free (oentries);
}

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, true>::empty ()
{
  size_t size = m_size;
  value_type *entries = m_entries;
  int i;

  for (i = size - 1; i >= 0; i--)
    if (!is_empty (entries[i]) && !is_deleted (entries[i]))
      Descriptor::remove (entries[i]);

  /* Instead of clearing megabyte, downsize the table.  */
  if (size > 1024*1024 / sizeof (PTR))
    {
      int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
      int nsize = prime_tab[nindex].prime;

      if (!m_ggc)
	Allocator <value_type> ::data_free (m_entries);
      else
	ggc_free (m_entries);

      m_entries = alloc_entries (nsize);
      m_size = nsize;
      m_size_prime_index = nindex;
    }
  else
    memset (entries, 0, size * sizeof (value_type));
  m_n_deleted = 0;
  m_n_elements = 0;
}

/* This function clears a specified SLOT in a hash table.  It is
   useful when you've already done the lookup and don't want to do it
   again. */

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, true>::clear_slot (value_type *slot)
{
  gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
		         || is_empty (*slot) || is_deleted (*slot)));

  Descriptor::remove (*slot);

  mark_deleted (*slot);
  m_n_deleted++;
}

/* This function searches for a hash table entry equal to the given
   COMPARABLE element starting with the given HASH value.  It cannot
   be used to insert or delete an element. */

template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator, true>::value_type &
hash_table<Descriptor, Allocator, true>
::find_with_hash (const compare_type &comparable, hashval_t hash)
{
  m_searches++;
  size_t size = m_size;
  hashval_t index = hash_table_mod1 (hash, m_size_prime_index);

  value_type *entry = &m_entries[index];
  if (is_empty (*entry)
      || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
    return *entry;

  hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
  for (;;)
    {
      m_collisions++;
      index += hash2;
      if (index >= size)
        index -= size;

      entry = &m_entries[index];
      if (is_empty (*entry)
          || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
        return *entry;
    }
}

/* This function searches for a hash table slot containing an entry
   equal to the given COMPARABLE element and starting with the given
   HASH.  To delete an entry, call this with insert=NO_INSERT, then
   call clear_slot on the slot returned (possibly after doing some
   checks).  To insert an entry, call this with insert=INSERT, then
   write the value you want into the returned slot.  When inserting an
   entry, NULL may be returned if memory allocation fails. */

template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator, true>::value_type *
hash_table<Descriptor, Allocator, true>
::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
		       enum insert_option insert)
{
  if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
    expand ();

  m_searches++;

  value_type *first_deleted_slot = NULL;
  hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
  hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
  value_type *entry = &m_entries[index];
  size_t size = m_size;
  if (is_empty (*entry))
    goto empty_entry;
  else if (is_deleted (*entry))
    first_deleted_slot = &m_entries[index];
  else if (Descriptor::equal (*entry, comparable))
    return &m_entries[index];

  for (;;)
    {
      m_collisions++;
      index += hash2;
      if (index >= size)
	index -= size;

      entry = &m_entries[index];
      if (is_empty (*entry))
	goto empty_entry;
      else if (is_deleted (*entry))
	{
	  if (!first_deleted_slot)
	    first_deleted_slot = &m_entries[index];
	}
      else if (Descriptor::equal (*entry, comparable))
	return &m_entries[index];
    }

 empty_entry:
  if (insert == NO_INSERT)
    return NULL;

  if (first_deleted_slot)
    {
      m_n_deleted--;
      mark_empty (*first_deleted_slot);
      return first_deleted_slot;
    }

  m_n_elements++;
  return &m_entries[index];
}

/* This function deletes an element with the given COMPARABLE value
   from hash table starting with the given HASH.  If there is no
   matching element in the hash table, this function does nothing. */

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, true>
::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
{
  value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
  if (is_empty (*slot))
    return;

  Descriptor::remove (*slot);

  mark_deleted (*slot);
  m_n_deleted++;
}

/* This function scans over the entire hash table calling CALLBACK for
   each live entry.  If CALLBACK returns false, the iteration stops.
   ARGUMENT is passed as CALLBACK's second argument. */

template<typename Descriptor,
	  template<typename Type> class Allocator>
template<typename Argument,
	  int (*Callback) (typename hash_table<Descriptor, Allocator,
					       true>::value_type *slot,
			   Argument argument)>
void
hash_table<Descriptor, Allocator, true>::traverse_noresize (Argument argument)
{
  value_type *slot = m_entries;
  value_type *limit = slot + size ();

  do
    {
      value_type &x = *slot;

      if (!is_empty (x) && !is_deleted (x))
        if (! Callback (slot, argument))
          break;
    }
  while (++slot < limit);
}

/* Like traverse_noresize, but does resize the table when it is too empty
   to improve effectivity of subsequent calls.  */

template <typename Descriptor,
	  template <typename Type> class Allocator>
template <typename Argument,
	  int (*Callback) (typename hash_table<Descriptor, Allocator,
					       true>::value_type *slot,
			   Argument argument)>
void
hash_table<Descriptor, Allocator, true>::traverse (Argument argument)
{
  size_t size = m_size;
  if (elements () * 8 < size && size > 32)
    expand ();

  traverse_noresize <Argument, Callback> (argument);
}

/* Slide down the iterator slots until an active entry is found.  */

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, true>::iterator::slide ()
{
  for ( ; m_slot < m_limit; ++m_slot )
    {
      value_type &x = *m_slot;
      if (!is_empty (x) && !is_deleted (x))
        return;
    }
  m_slot = NULL;
  m_limit = NULL;
}

/* Bump the iterator.  */

template<typename Descriptor, template<typename Type> class Allocator>
inline typename hash_table<Descriptor, Allocator, true>::iterator &
hash_table<Descriptor, Allocator, true>::iterator::operator ++ ()
{
  ++m_slot;
  slide ();
  return *this;
}


/* Iterate through the elements of hash_table HTAB,
   using hash_table <....>::iterator ITER,
   storing each element in RESULT, which is of type TYPE.  */

#define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
  for ((ITER) = (HTAB).begin (); \
       (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
       ++(ITER))

/* ggc walking routines.  */

template<typename E>
static inline void
gt_ggc_mx (hash_table<E> *h)
{
  typedef hash_table<E> table;

  if (!ggc_test_and_set_mark (h->m_entries))
    return;

  for (size_t i = 0; i < h->m_size; i++)
    {
      if (table::is_empty (h->m_entries[i])
	  || table::is_deleted (h->m_entries[i]))
	continue;

      E::ggc_mx (h->m_entries[i]);
    }
}

template<typename D>
static inline void
hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op,
			     void *cookie)
{
  hash_table<D> *map = static_cast<hash_table<D> *> (h);
  gcc_checking_assert (map->m_entries == obj);
  for (size_t i = 0; i < map->m_size; i++)
    {
      typedef hash_table<D> table;
      if (table::is_empty (map->m_entries[i])
	  || table::is_deleted (map->m_entries[i]))
	continue;

      D::pch_nx (map->m_entries[i], op, cookie);
    }
}

template<typename D>
static void
gt_pch_nx (hash_table<D> *h)
{
  bool success
    = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>);
  gcc_checking_assert (success);
  for (size_t i = 0; i < h->m_size; i++)
    {
      if (hash_table<D>::is_empty (h->m_entries[i])
	  || hash_table<D>::is_deleted (h->m_entries[i]))
	continue;

      D::pch_nx (h->m_entries[i]);
    }
}

template<typename D>
static inline void
gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie)
{
  op (&h->m_entries, cookie);
}

template<typename H>
inline void
gt_cleare_cache (hash_table<H> *h)
{
  if (!h)
    return;

  for (typename hash_table<H>::iterator iter = h->begin (); iter != h->end ();
       ++iter)
    H::handle_cache_entry (*iter);
}

#endif /* TYPED_HASHTAB_H */