This file is indexed.

/usr/lib/gcc-cross/s390x-linux-gnu/7/plugin/include/config/s390/s390.h is in gcc-7-plugin-dev-s390x-linux-gnu 7.3.0-16ubuntu3cross1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
/* Definitions of target machine for GNU compiler, for IBM S/390
   Copyright (C) 1999-2017 Free Software Foundation, Inc.
   Contributed by Hartmut Penner (hpenner@de.ibm.com) and
                  Ulrich Weigand (uweigand@de.ibm.com).
                  Andreas Krebbel (Andreas.Krebbel@de.ibm.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef _S390_H
#define _S390_H

/* Optional architectural facilities supported by the processor.  */

enum processor_flags
{
  PF_IEEE_FLOAT = 1,
  PF_ZARCH = 2,
  PF_LONG_DISPLACEMENT = 4,
  PF_EXTIMM = 8,
  PF_DFP = 16,
  PF_Z10 = 32,
  PF_Z196 = 64,
  PF_ZEC12 = 128,
  PF_TX = 256,
  PF_Z13 = 512,
  PF_VX = 1024,
  PF_ARCH12 = 2048,
  PF_VXE = 4096
};

/* This is necessary to avoid a warning about comparing different enum
   types.  */
#define s390_tune_attr ((enum attr_cpu)(s390_tune > PROCESSOR_2964_Z13 ? PROCESSOR_2964_Z13 : s390_tune ))

/* These flags indicate that the generated code should run on a cpu
   providing the respective hardware facility regardless of the
   current cpu mode (ESA or z/Architecture).  */

#define TARGET_CPU_IEEE_FLOAT \
	(s390_arch_flags & PF_IEEE_FLOAT)
#define TARGET_CPU_IEEE_FLOAT_P(opts) \
	(opts->x_s390_arch_flags & PF_IEEE_FLOAT)
#define TARGET_CPU_ZARCH \
	(s390_arch_flags & PF_ZARCH)
#define TARGET_CPU_ZARCH_P(opts) \
	(opts->x_s390_arch_flags & PF_ZARCH)
#define TARGET_CPU_LONG_DISPLACEMENT \
	(s390_arch_flags & PF_LONG_DISPLACEMENT)
#define TARGET_CPU_LONG_DISPLACEMENT_P(opts) \
	(opts->x_s390_arch_flags & PF_LONG_DISPLACEMENT)
#define TARGET_CPU_EXTIMM \
	(s390_arch_flags & PF_EXTIMM)
#define TARGET_CPU_EXTIMM_P(opts) \
	(opts->x_s390_arch_flags & PF_EXTIMM)
#define TARGET_CPU_DFP \
	(s390_arch_flags & PF_DFP)
#define TARGET_CPU_DFP_P(opts) \
	(opts->x_s390_arch_flags & PF_DFP)
#define TARGET_CPU_Z10 \
	(s390_arch_flags & PF_Z10)
#define TARGET_CPU_Z10_P(opts) \
	(opts->x_s390_arch_flags & PF_Z10)
#define TARGET_CPU_Z196 \
	(s390_arch_flags & PF_Z196)
#define TARGET_CPU_Z196_P(opts) \
	(opts->x_s390_arch_flags & PF_Z196)
#define TARGET_CPU_ZEC12 \
	(s390_arch_flags & PF_ZEC12)
#define TARGET_CPU_ZEC12_P(opts) \
	(opts->x_s390_arch_flags & PF_ZEC12)
#define TARGET_CPU_HTM \
	(s390_arch_flags & PF_TX)
#define TARGET_CPU_HTM_P(opts) \
	(opts->x_s390_arch_flags & PF_TX)
#define TARGET_CPU_Z13 \
	(s390_arch_flags & PF_Z13)
#define TARGET_CPU_Z13_P(opts) \
	(opts->x_s390_arch_flags & PF_Z13)
#define TARGET_CPU_VX \
	(s390_arch_flags & PF_VX)
#define TARGET_CPU_VX_P(opts) \
	(opts->x_s390_arch_flags & PF_VX)
#define TARGET_CPU_ARCH12 \
	(s390_arch_flags & PF_ARCH12)
#define TARGET_CPU_ARCH12_P(opts) \
	(opts->x_s390_arch_flags & PF_ARCH12)
#define TARGET_CPU_VXE \
	(s390_arch_flags & PF_VXE)
#define TARGET_CPU_VXE_P(opts) \
	(opts->x_s390_arch_flags & PF_VXE)

#define TARGET_HARD_FLOAT_P(opts) (!TARGET_SOFT_FLOAT_P(opts))

/* These flags indicate that the generated code should run on a cpu
   providing the respective hardware facility when run in
   z/Architecture mode.  */

#define TARGET_LONG_DISPLACEMENT \
	(TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
#define TARGET_LONG_DISPLACEMENT_P(opts) \
	(TARGET_ZARCH_P (opts->x_target_flags) \
	 && TARGET_CPU_LONG_DISPLACEMENT_P (opts))
#define TARGET_EXTIMM \
	(TARGET_ZARCH && TARGET_CPU_EXTIMM)
#define TARGET_EXTIMM_P(opts) \
	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_EXTIMM_P (opts))
#define TARGET_DFP \
	(TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
#define TARGET_DFP_P(opts) \
	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_DFP_P (opts) \
	 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
#define TARGET_Z10 \
	(TARGET_ZARCH && TARGET_CPU_Z10)
#define TARGET_Z10_P(opts) \
	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z10_P (opts))
#define TARGET_Z196 \
	(TARGET_ZARCH && TARGET_CPU_Z196)
#define TARGET_Z196_P(opts) \
	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z196_P (opts))
#define TARGET_ZEC12 \
	(TARGET_ZARCH && TARGET_CPU_ZEC12)
#define TARGET_ZEC12_P(opts) \
	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ZEC12_P (opts))
#define TARGET_HTM (TARGET_OPT_HTM)
#define TARGET_HTM_P(opts) (TARGET_OPT_HTM_P (opts->x_target_flags))
#define TARGET_Z13 \
	(TARGET_ZARCH && TARGET_CPU_Z13)
#define TARGET_Z13_P(opts) \
	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z13_P (opts))
#define TARGET_VX \
	(TARGET_ZARCH && TARGET_CPU_VX && TARGET_OPT_VX && TARGET_HARD_FLOAT)
#define TARGET_VX_P(opts) \
	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_VX_P (opts) \
	 && TARGET_OPT_VX_P (opts->x_target_flags) \
	 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
#define TARGET_ARCH12 (TARGET_ZARCH && TARGET_CPU_ARCH12)
#define TARGET_ARCH12_P(opts)						\
	(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ARCH12_P (opts))
#define TARGET_VXE				\
	(TARGET_VX && TARGET_CPU_VXE)
#define TARGET_VXE_P(opts)						\
	(TARGET_VX_P (opts) && TARGET_CPU_VXE_P (opts))

#ifdef HAVE_AS_MACHINE_MACHINEMODE
#define S390_USE_TARGET_ATTRIBUTE 1
#else
#define S390_USE_TARGET_ATTRIBUTE 0
#endif

#ifdef HAVE_AS_ARCHITECTURE_MODIFIERS
#define S390_USE_ARCHITECTURE_MODIFIERS 1
#else
#define S390_USE_ARCHITECTURE_MODIFIERS 0
#endif

#if S390_USE_TARGET_ATTRIBUTE
/* For switching between functions with different target attributes.  */
#define SWITCHABLE_TARGET 1
#endif

#define TARGET_SUPPORTS_WIDE_INT 1

/* Use the ABI introduced with IBM z13:
   - pass vector arguments <= 16 bytes in VRs
   - align *all* vector types to 8 bytes  */
#define TARGET_VX_ABI TARGET_VX

#define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)

/* Run-time target specification.  */

/* Defaults for option flags defined only on some subtargets.  */
#ifndef TARGET_TPF_PROFILING
#define TARGET_TPF_PROFILING 0
#endif

/* This will be overridden by OS headers.  */
#define TARGET_TPF 0

/* Target CPU builtins.  */
#define TARGET_CPU_CPP_BUILTINS() s390_cpu_cpp_builtins (pfile)

/* Target CPU builtins for D.  */
#define TARGET_CPU_D_BUILTINS()				\
  do							\
    {							\
      if (TARGET_64BIT)					\
        builtin_define ("S390X");			\
      else						\
        builtin_define ("S390");			\
							\
      if(TARGET_SOFT_FLOAT)				\
        builtin_define ("D_SoftFloat");			\
      else if(TARGET_HARD_FLOAT)			\
        builtin_define ("D_HardFloat");			\
    }							\
  while (0)

#ifdef DEFAULT_TARGET_64BIT
#define TARGET_DEFAULT     (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP	\
                            | MASK_OPT_HTM | MASK_OPT_VX)
#else
#define TARGET_DEFAULT             0
#endif

/* Support for configure-time defaults.  */
#define OPTION_DEFAULT_SPECS 					\
  { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" },			\
  { "arch", "%{!march=*:-march=%(VALUE)}" },			\
  { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }

#ifdef __s390__
extern const char *s390_host_detect_local_cpu (int argc, const char **argv);
# define EXTRA_SPEC_FUNCTIONS \
  { "local_cpu_detect", s390_host_detect_local_cpu },

#define MARCH_MTUNE_NATIVE_SPECS				\
  "%{mtune=native:%<mtune=native %:local_cpu_detect(tune)} "	\
  "%{march=native:%<march=native"				\
  " %:local_cpu_detect(arch %{mesa|mzarch:mesa_mzarch})}"
#else
# define MARCH_MTUNE_NATIVE_SPECS ""
#endif

#ifdef DEFAULT_TARGET_64BIT
#define S390_TARGET_BITS_STRING "64"
#else
#define S390_TARGET_BITS_STRING "31"
#endif

/* Defaulting rules.  */
#define DRIVER_SELF_SPECS					\
  MARCH_MTUNE_NATIVE_SPECS,					\
  "%{!m31:%{!m64:-m" S390_TARGET_BITS_STRING "}}",		\
  "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}",		\
  "%{!march=*:-march=z900}"

/* Constants needed to control the TEST DATA CLASS (TDC) instruction.  */
#define S390_TDC_POSITIVE_ZERO                     (1 << 11)
#define S390_TDC_NEGATIVE_ZERO                     (1 << 10)
#define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER    (1 << 9)
#define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER    (1 << 8)
#define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER  (1 << 7)
#define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER  (1 << 6)
#define S390_TDC_POSITIVE_INFINITY                 (1 << 5)
#define S390_TDC_NEGATIVE_INFINITY                 (1 << 4)
#define S390_TDC_POSITIVE_QUIET_NAN                (1 << 3)
#define S390_TDC_NEGATIVE_QUIET_NAN                (1 << 2)
#define S390_TDC_POSITIVE_SIGNALING_NAN            (1 << 1)
#define S390_TDC_NEGATIVE_SIGNALING_NAN            (1 << 0)

/* The following values are different for DFP.  */
#define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
#define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
#define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER   (1 << 7)
#define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER   (1 << 6)

/* For signbit, the BFP-DFP-difference makes no difference. */
#define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
                          | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
                          | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
                          | S390_TDC_NEGATIVE_INFINITY \
                          | S390_TDC_NEGATIVE_QUIET_NAN \
			  | S390_TDC_NEGATIVE_SIGNALING_NAN )

#define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
			  | S390_TDC_NEGATIVE_INFINITY )

/* Target machine storage layout.  */

/* Everything is big-endian.  */
#define BITS_BIG_ENDIAN 1
#define BYTES_BIG_ENDIAN 1
#define WORDS_BIG_ENDIAN 1

#define STACK_SIZE_MODE (Pmode)

/* Vector arguments are left-justified when placed on the stack during
   parameter passing.  */
#define FUNCTION_ARG_PADDING(MODE, TYPE)			\
  (s390_function_arg_vector ((MODE), (TYPE))			\
   ? upward							\
   : DEFAULT_FUNCTION_ARG_PADDING ((MODE), (TYPE)))

#ifndef IN_LIBGCC2

/* Width of a word, in units (bytes).  */
  #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)

/* Width of a pointer.  To be used instead of UNITS_PER_WORD in
   ABI-relevant contexts.  This always matches
   GET_MODE_SIZE (Pmode).  */
  #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
  #define MIN_UNITS_PER_WORD 4
  #define MAX_BITS_PER_WORD 64
#else

  /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
     the library should export TImode functions or not.  Thus, we have
     to redefine UNITS_PER_WORD depending on __s390x__ for libgcc.  */
  #ifdef __s390x__
    #define UNITS_PER_WORD 8
  #else
    #define UNITS_PER_WORD 4
  #endif
#endif

/* Width of a pointer, in bits.  */
#define POINTER_SIZE (TARGET_64BIT ? 64 : 32)

/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)

/* Boundary (in *bits*) on which stack pointer should be aligned.  */
#define STACK_BOUNDARY 64

/* Allocation boundary (in *bits*) for the code of a function.  */
#define FUNCTION_BOUNDARY 64

/* There is no point aligning anything to a rounder boundary than this.  */
#define BIGGEST_ALIGNMENT 64

/* Alignment of field after `int : 0' in a structure.  */
#define EMPTY_FIELD_BOUNDARY 32

/* Alignment on even addresses for LARL instruction.  */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)

/* Alignment is not required by the hardware.  */
#define STRICT_ALIGNMENT 0

/* Mode of stack savearea.
   FUNCTION is VOIDmode because calling convention maintains SP.
   BLOCK needs Pmode for SP.
   NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
#define STACK_SAVEAREA_MODE(LEVEL)					\
  ((LEVEL) == SAVE_FUNCTION ? VOIDmode					\
   : (LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)


/* Type layout.  */

/* Sizes in bits of the source language data types.  */
#define SHORT_TYPE_SIZE 16
#define INT_TYPE_SIZE 32
#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)

/* Work around target_flags dependency in ada/targtyps.c.  */
#define WIDEST_HARDWARE_FP_SIZE 64

/* We use "unsigned char" as default.  */
#define DEFAULT_SIGNED_CHAR 0


/* Register usage.  */

/* We have 16 general purpose registers (registers 0-15),
   and 16 floating point registers (registers 16-31).
   (On non-IEEE machines, we have only 4 fp registers.)

   Amongst the general purpose registers, some are used
   for specific purposes:
   GPR 11: Hard frame pointer (if needed)
   GPR 12: Global offset table pointer (if needed)
   GPR 13: Literal pool base register
   GPR 14: Return address register
   GPR 15: Stack pointer

   Registers 32-35 are 'fake' hard registers that do not
   correspond to actual hardware:
   Reg 32: Argument pointer
   Reg 33: Condition code
   Reg 34: Frame pointer
   Reg 35: Return address pointer

   Registers 36 and 37 are mapped to access registers
   0 and 1, used to implement thread-local storage.

   Reg 38-53: Vector registers v16-v31  */

#define FIRST_PSEUDO_REGISTER 54

/* Standard register usage.  */
#define GENERAL_REGNO_P(N)	((int)(N) >= 0 && (N) < 16)
#define ADDR_REGNO_P(N)		((N) >= 1 && (N) < 16)
#define FP_REGNO_P(N)		((N) >= 16 && (N) < 32)
#define CC_REGNO_P(N)		((N) == 33)
#define FRAME_REGNO_P(N)	((N) == 32 || (N) == 34 || (N) == 35)
#define ACCESS_REGNO_P(N)	((N) == 36 || (N) == 37)
#define VECTOR_NOFP_REGNO_P(N)  ((N) >= 38 && (N) <= 53)
#define VECTOR_REGNO_P(N)       (FP_REGNO_P (N) || VECTOR_NOFP_REGNO_P (N))

#define GENERAL_REG_P(X)	(REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
#define ADDR_REG_P(X)		(REG_P (X) && ADDR_REGNO_P (REGNO (X)))
#define FP_REG_P(X)		(REG_P (X) && FP_REGNO_P (REGNO (X)))
#define CC_REG_P(X)		(REG_P (X) && CC_REGNO_P (REGNO (X)))
#define FRAME_REG_P(X)		(REG_P (X) && FRAME_REGNO_P (REGNO (X)))
#define ACCESS_REG_P(X)		(REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
#define VECTOR_NOFP_REG_P(X)    (REG_P (X) && VECTOR_NOFP_REGNO_P (REGNO (X)))
#define VECTOR_REG_P(X)         (REG_P (X) && VECTOR_REGNO_P (REGNO (X)))

/* Set up fixed registers and calling convention:

   GPRs 0-5 are always call-clobbered,
   GPRs 6-15 are always call-saved.
   GPR 12 is fixed if used as GOT pointer.
   GPR 13 is always fixed (as literal pool pointer).
   GPR 14 is always fixed on S/390 machines (as return address).
   GPR 15 is always fixed (as stack pointer).
   The 'fake' hard registers are call-clobbered and fixed.
   The access registers are call-saved and fixed.

   On 31-bit, FPRs 18-19 are call-clobbered;
   on 64-bit, FPRs 24-31 are call-clobbered.
   The remaining FPRs are call-saved.

   All non-FP vector registers are call-clobbered v16-v31.  */

#define FIXED_REGISTERS				\
{ 0, 0, 0, 0, 					\
  0, 0, 0, 0, 					\
  0, 0, 0, 0, 					\
  0, 1, 1, 1,					\
  0, 0, 0, 0, 					\
  0, 0, 0, 0, 					\
  0, 0, 0, 0, 					\
  0, 0, 0, 0, 					\
  1, 1, 1, 1,					\
  1, 1,						\
  0, 0, 0, 0, 					\
  0, 0, 0, 0, 					\
  0, 0, 0, 0, 					\
  0, 0, 0, 0 }

#define CALL_USED_REGISTERS			\
{ 1, 1, 1, 1, 					\
  1, 1, 0, 0, 					\
  0, 0, 0, 0, 					\
  0, 1, 1, 1,					\
  1, 1, 1, 1, 					\
  1, 1, 1, 1, 					\
  1, 1, 1, 1, 					\
  1, 1, 1, 1, 					\
  1, 1, 1, 1,					\
  1, 1,					        \
  1, 1, 1, 1, 					\
  1, 1, 1, 1,					\
  1, 1, 1, 1, 					\
  1, 1, 1, 1 }

#define CALL_REALLY_USED_REGISTERS		\
{ 1, 1, 1, 1, 	/* r0 - r15 */			\
  1, 1, 0, 0, 					\
  0, 0, 0, 0, 					\
  0, 0, 0, 0,					\
  1, 1, 1, 1, 	/* f0 (16) - f15 (31) */	\
  1, 1, 1, 1, 					\
  1, 1, 1, 1, 					\
  1, 1, 1, 1, 					\
  1, 1, 1, 1,	/* arg, cc, fp, ret addr */	\
  0, 0,		/* a0 (36), a1 (37) */	        \
  1, 1, 1, 1, 	/* v16 (38) - v23 (45) */	\
  1, 1, 1, 1,					\
  1, 1, 1, 1, 	/* v24 (46) - v31 (53) */	\
  1, 1, 1, 1 }

/* Preferred register allocation order.  */
#define REG_ALLOC_ORDER							\
  {  1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13,			\
     16, 17, 18, 19, 20, 21, 22, 23,					\
     24, 25, 26, 27, 28, 29, 30, 31,					\
     38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 	\
     15, 32, 33, 34, 35, 36, 37 }


/* Fitting values into registers.  */

/* Integer modes <= word size fit into any GPR.
   Integer modes > word size fit into successive GPRs, starting with
   an even-numbered register.
   SImode and DImode fit into FPRs as well.

   Floating point modes <= word size fit into any FPR or GPR.
   Floating point modes > word size (i.e. DFmode on 32-bit) fit
   into any FPR, or an even-odd GPR pair.
   TFmode fits only into an even-odd FPR pair.

   Complex floating point modes fit either into two FPRs, or into
   successive GPRs (again starting with an even number).
   TCmode fits only into two successive even-odd FPR pairs.

   Condition code modes fit only into the CC register.  */

/* Because all registers in a class have the same size HARD_REGNO_NREGS
   is equivalent to CLASS_MAX_NREGS.  */
#define HARD_REGNO_NREGS(REGNO, MODE)                           \
  s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE))

#define HARD_REGNO_MODE_OK(REGNO, MODE)         \
  s390_hard_regno_mode_ok ((REGNO), (MODE))

#define HARD_REGNO_RENAME_OK(FROM, TO)          \
  s390_hard_regno_rename_ok ((FROM), (TO))

#define MODES_TIEABLE_P(MODE1, MODE2)		\
   (((MODE1) == SFmode || (MODE1) == DFmode)	\
   == ((MODE2) == SFmode || (MODE2) == DFmode))

/* When generating code that runs in z/Architecture mode,
   but conforms to the 31-bit ABI, GPRs can hold 8 bytes;
   the ABI guarantees only that the lower 4 bytes are
   saved across calls, however.  */
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)			\
  ((!TARGET_64BIT && TARGET_ZARCH					\
    && GET_MODE_SIZE (MODE) > 4						\
    && (((REGNO) >= 6 && (REGNO) <= 15) || (REGNO) == 32))		\
   || (TARGET_VX							\
       && GET_MODE_SIZE (MODE) > 8					\
       && (((TARGET_64BIT && (REGNO) >= 24 && (REGNO) <= 31))		\
	   || (!TARGET_64BIT && ((REGNO) == 18 || (REGNO) == 19)))))

/* Maximum number of registers to represent a value of mode MODE
   in a register of class CLASS.  */
#define CLASS_MAX_NREGS(CLASS, MODE)   					\
  s390_class_max_nregs ((CLASS), (MODE))

#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		        \
  s390_cannot_change_mode_class ((FROM), (TO), (CLASS))

/* We can reverse a CC mode safely if we know whether it comes from a
   floating point compare or not.  With the vector modes it is encoded
   as part of the mode.
   FIXME: It might make sense to do this for other cc modes as well.  */
#define REVERSIBLE_CC_MODE(MODE)				\
  ((MODE) == CCVIALLmode || (MODE) == CCVIANYmode		\
   || (MODE) == CCVFALLmode || (MODE) == CCVFANYmode)

/* Given a condition code and a mode, return the inverse condition.  */
#define REVERSE_CONDITION(CODE, MODE) s390_reverse_condition (MODE, CODE)


/* Register classes.  */

/* We use the following register classes:
   GENERAL_REGS     All general purpose registers
   ADDR_REGS        All general purpose registers except %r0
                    (These registers can be used in address generation)
   FP_REGS          All floating point registers
   CC_REGS          The condition code register
   ACCESS_REGS      The access registers

   GENERAL_FP_REGS  Union of GENERAL_REGS and FP_REGS
   ADDR_FP_REGS     Union of ADDR_REGS and FP_REGS
   GENERAL_CC_REGS  Union of GENERAL_REGS and CC_REGS
   ADDR_CC_REGS     Union of ADDR_REGS and CC_REGS

   NO_REGS          No registers
   ALL_REGS         All registers

   Note that the 'fake' frame pointer and argument pointer registers
   are included amongst the address registers here.  */

enum reg_class
{
  NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
  ADDR_CC_REGS, GENERAL_CC_REGS,
  FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
  VEC_REGS, ADDR_VEC_REGS, GENERAL_VEC_REGS,
  ALL_REGS, LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES

#define REG_CLASS_NAMES							\
{ "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS",	\
  "ADDR_CC_REGS", "GENERAL_CC_REGS",					\
  "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS",				\
  "VEC_REGS", "ADDR_VEC_REGS", "GENERAL_VEC_REGS",			\
  "ALL_REGS" }

/* Class -> register mapping.  */
#define REG_CLASS_CONTENTS				\
{							\
  { 0x00000000, 0x00000000 },	/* NO_REGS */		\
  { 0x00000000, 0x00000002 },	/* CC_REGS */		\
  { 0x0000fffe, 0x0000000d },	/* ADDR_REGS */		\
  { 0x0000ffff, 0x0000000d },	/* GENERAL_REGS */	\
  { 0x00000000, 0x00000030 },	/* ACCESS_REGS */	\
  { 0x0000fffe, 0x0000000f },	/* ADDR_CC_REGS */	\
  { 0x0000ffff, 0x0000000f },	/* GENERAL_CC_REGS */	\
  { 0xffff0000, 0x00000000 },	/* FP_REGS */		\
  { 0xfffffffe, 0x0000000d },	/* ADDR_FP_REGS */	\
  { 0xffffffff, 0x0000000d },	/* GENERAL_FP_REGS */	\
  { 0xffff0000, 0x003fffc0 },	/* VEC_REGS */		\
  { 0xfffffffe, 0x003fffcd },	/* ADDR_VEC_REGS */	\
  { 0xffffffff, 0x003fffcd },	/* GENERAL_VEC_REGS */	\
  { 0xffffffff, 0x003fffff },	/* ALL_REGS */		\
}

/* In some case register allocation order is not enough for IRA to
   generate a good code.  The following macro (if defined) increases
   cost of REGNO for a pseudo approximately by pseudo usage frequency
   multiplied by the macro value.

   We avoid usage of BASE_REGNUM by nonzero macro value because the
   reload can decide not to use the hard register because some
   constant was forced to be in memory.  */
#define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno)	\
  ((regno) != BASE_REGNUM ? 0.0 : 0.5)

/* Register -> class mapping.  */
extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])

/* ADDR_REGS can be used as base or index register.  */
#define INDEX_REG_CLASS ADDR_REGS
#define BASE_REG_CLASS ADDR_REGS

/* Check whether REGNO is a hard register of the suitable class
   or a pseudo register currently allocated to one such.  */
#define REGNO_OK_FOR_INDEX_P(REGNO)					\
    (((REGNO) < FIRST_PSEUDO_REGISTER 					\
      && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) 			\
     || ADDR_REGNO_P (reg_renumber[REGNO]))
#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)


/* We need secondary memory to move data between GPRs and FPRs.

   - With DFP the ldgr lgdr instructions are available.  Due to the
     different alignment we cannot use them for SFmode.  For 31 bit a
     64 bit value in GPR would be a register pair so here we still
     need to go via memory.

   - With z13 we can do the SF/SImode moves with vlgvf.  Due to the
     overlapping of FPRs and VRs we still disallow TF/TD modes to be
     in full VRs so as before also on z13 we do these moves via
     memory.

     FIXME: Should we try splitting it into two vlgvg's/vlvg's instead?  */
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
  (((reg_classes_intersect_p ((CLASS1), VEC_REGS)			\
     && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))		\
    || (reg_classes_intersect_p ((CLASS1), GENERAL_REGS)		\
	&& reg_classes_intersect_p ((CLASS2), VEC_REGS)))		\
   && (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8)	\
   && (!TARGET_VX || (SCALAR_FLOAT_MODE_P (MODE)			\
			  && GET_MODE_SIZE (MODE) > 8)))

/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
   because the movsi and movsf patterns don't handle r/f moves.  */
#define SECONDARY_MEMORY_NEEDED_MODE(MODE)		\
 (GET_MODE_BITSIZE (MODE) < 32				\
  ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)	\
  : (MODE))


/* Stack layout and calling conventions.  */

/* Our stack grows from higher to lower addresses.  However, local variables
   are accessed by positive offsets, and function arguments are stored at
   increasing addresses.  */
#define STACK_GROWS_DOWNWARD 1
#define FRAME_GROWS_DOWNWARD 1
/* #undef ARGS_GROW_DOWNWARD */

/* The basic stack layout looks like this: the stack pointer points
   to the register save area for called functions.  Above that area
   is the location to place outgoing arguments.  Above those follow
   dynamic allocations (alloca), and finally the local variables.  */

/* Offset from stack-pointer to first location of outgoing args.  */
#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)

/* Offset within stack frame to start allocating local variables at.  */
#define STARTING_FRAME_OFFSET 0

/* Offset from the stack pointer register to an item dynamically
   allocated on the stack, e.g., by `alloca'.  */
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
  (STACK_POINTER_OFFSET + crtl->outgoing_args_size)

/* Offset of first parameter from the argument pointer register value.
   We have a fake argument pointer register that points directly to
   the argument area.  */
#define FIRST_PARM_OFFSET(FNDECL) 0

/* Defining this macro makes __builtin_frame_address(0) and
   __builtin_return_address(0) work with -fomit-frame-pointer.  */
#define INITIAL_FRAME_ADDRESS_RTX                                             \
  (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))

/* The return address of the current frame is retrieved
   from the initial value of register RETURN_REGNUM.
   For frames farther back, we use the stack slot where
   the corresponding RETURN_REGNUM register was saved.  */
#define DYNAMIC_CHAIN_ADDRESS(FRAME)                                          \
  (TARGET_PACKED_STACK ?                                                      \
   plus_constant (Pmode, (FRAME),					      \
		  STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))

/* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
   builtin_frame_address.  Otherwise arg pointer -
   STACK_POINTER_OFFSET would be returned for
   __builtin_frame_address(0) what might result in an address pointing
   somewhere into the middle of the local variables since the packed
   stack layout generally does not need all the bytes in the register
   save area.  */
#define FRAME_ADDR_RTX(FRAME)			\
  DYNAMIC_CHAIN_ADDRESS ((FRAME))

#define RETURN_ADDR_RTX(COUNT, FRAME)					      \
  s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))

/* In 31-bit mode, we need to mask off the high bit of return addresses.  */
#define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))


/* Exception handling.  */

/* Describe calling conventions for DWARF-2 exception handling.  */
#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, RETURN_REGNUM)
#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
#define DWARF_FRAME_RETURN_COLUMN  14

/* Describe how we implement __builtin_eh_return.  */
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
#define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)

/* Select a format to encode pointers in exception handling data.  */
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)			    \
  (flag_pic								    \
    ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
   : DW_EH_PE_absptr)

/* Register save slot alignment.  */
#define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)

/* Let the assembler generate debug line info.  */
#define DWARF2_ASM_LINE_DEBUG_INFO 1

/* Define the dwarf register mapping.
   v16-v31 -> 68-83
   rX      -> X      otherwise  */
#define DBX_REGISTER_NUMBER(regno)				\
  (((regno) >= 38 && (regno) <= 53) ? (regno) + 30 : (regno))

/* Frame registers.  */

#define STACK_POINTER_REGNUM 15
#define FRAME_POINTER_REGNUM 34
#define HARD_FRAME_POINTER_REGNUM 11
#define ARG_POINTER_REGNUM 32
#define RETURN_ADDRESS_POINTER_REGNUM 35

/* The static chain must be call-clobbered, but not used for
   function argument passing.  As register 1 is clobbered by
   the trampoline code, we only have one option.  */
#define STATIC_CHAIN_REGNUM 0

/* Number of hardware registers that go into the DWARF-2 unwind info.
   To avoid ABI incompatibility, this number must not change even as
   'fake' hard registers are added or removed.  */
#define DWARF_FRAME_REGISTERS 34


/* Frame pointer and argument pointer elimination.  */

#define ELIMINABLE_REGS						\
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },		\
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },		\
 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },			\
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },		\
 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM },	\
 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },	\
 { BASE_REGNUM, BASE_REGNUM }}

#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
  (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))


/* Stack arguments.  */

/* We need current_function_outgoing_args to be valid.  */
#define ACCUMULATE_OUTGOING_ARGS 1


/* Register arguments.  */

typedef struct s390_arg_structure
{
  int gprs;			/* gpr so far */
  int fprs;			/* fpr so far */
  int vrs;                      /* vr so far */
}
CUMULATIVE_ARGS;

#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
  ((CUM).gprs=0, (CUM).fprs=0, (CUM).vrs=0)

#define FIRST_VEC_ARG_REGNO 46
#define LAST_VEC_ARG_REGNO 53

/* Arguments can be placed in general registers 2 to 6, or in floating
   point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
   bit.  */
#define FUNCTION_ARG_REGNO_P(N)						\
  (((N) >=2 && (N) < 7) || (N) == 16 || (N) == 17			\
   || (TARGET_64BIT && ((N) == 18 || (N) == 19))			\
   || (TARGET_VX && ((N) >= FIRST_VEC_ARG_REGNO && (N) <= LAST_VEC_ARG_REGNO)))


/* Only gpr 2, fpr 0, and v24 are ever used as return registers.  */
#define FUNCTION_VALUE_REGNO_P(N)		\
  ((N) == 2 || (N) == 16			\
   || (TARGET_VX && (N) == FIRST_VEC_ARG_REGNO))


/* Function entry and exit.  */

/* When returning from a function, the stack pointer does not matter.  */
#define EXIT_IGNORE_STACK       1


/* Profiling.  */

#define FUNCTION_PROFILER(FILE, LABELNO) 			\
  s390_function_profiler ((FILE), ((LABELNO)))

#define PROFILE_BEFORE_PROLOGUE 1


/* Trampolines for nested functions.  */

#define TRAMPOLINE_SIZE		(TARGET_64BIT ? 32 : 16)
#define TRAMPOLINE_ALIGNMENT	BITS_PER_WORD

/* Addressing modes, and classification of registers for them.  */

/* Recognize any constant value that is a valid address.  */
#define CONSTANT_ADDRESS_P(X) 0

/* Maximum number of registers that can appear in a valid memory address.  */
#define MAX_REGS_PER_ADDRESS 2

/* This definition replaces the formerly used 'm' constraint with a
   different constraint letter in order to avoid changing semantics of
   the 'm' constraint when accepting new address formats in
   TARGET_LEGITIMATE_ADDRESS_P.  The constraint letter defined here
   must not be used in insn definitions or inline assemblies.  */
#define TARGET_MEM_CONSTRAINT 'e'

/* Try a machine-dependent way of reloading an illegitimate address
   operand.  If we find one, push the reload and jump to WIN.  This
   macro is used in only one place: `find_reloads_address' in reload.c.  */
#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN)	\
  do {									\
    rtx new_rtx = legitimize_reload_address ((AD), (MODE),		\
					     (OPNUM), (int)(TYPE));	\
    if (new_rtx)							\
      {									\
	(AD) = new_rtx;							\
	goto WIN;							\
      }									\
  } while (0)

/* Helper macro for s390.c and s390.md to check for symbolic constants.  */
#define SYMBOLIC_CONST(X)						\
  (GET_CODE (X) == SYMBOL_REF						\
   || GET_CODE (X) == LABEL_REF						\
   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))

#define TLS_SYMBOLIC_CONST(X)						\
  ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X))		\
   || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))


/* Condition codes.  */

/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
   return the mode to be used for the comparison.  */
#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))

/* Relative costs of operations.  */

/* A C expression for the cost of a branch instruction.  A value of 1
   is the default; other values are interpreted relative to that.  */
#define BRANCH_COST(speed_p, predictable_p) s390_branch_cost

/* Nonzero if access to memory by bytes is slow and undesirable.  */
#define SLOW_BYTE_ACCESS 1

/* An integer expression for the size in bits of the largest integer machine
   mode that should actually be used.  We allow pairs of registers.  */
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)

/* The maximum number of bytes that a single instruction can move quickly
   between memory and registers or between two memory locations.  */
#define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
#define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
#define MAX_MOVE_MAX 16

/* Don't perform CSE on function addresses.  */
#define NO_FUNCTION_CSE 1

/* This value is used in tree-sra to decide whether it might benefical
   to split a struct move into several word-size moves.  For S/390
   only small values make sense here since struct moves are relatively
   cheap thanks to mvc so the small default value chosen for archs
   with memmove patterns should be ok.  But this value is multiplied
   in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
   here to compensate for that factor since mvc costs exactly the same
   on 31 and 64 bit.  */
#define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)


/* Sections.  */

/* Output before read-only data.  */
#define TEXT_SECTION_ASM_OP ".text"

/* Output before writable (initialized) data.  */
#define DATA_SECTION_ASM_OP ".data"

/* Output before writable (uninitialized) data.  */
#define BSS_SECTION_ASM_OP ".bss"

/* S/390 constant pool breaks the devices in crtstuff.c to control section
   in where code resides.  We have to write it as asm code.  */
#ifndef __s390x__
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
    asm (SECTION_OP "\n\
	bras\t%r2,1f\n\
0:	.long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
1:	l\t%r3,0(%r2)\n\
	bas\t%r14,0(%r3,%r2)\n\
	.previous");
#endif


/* Position independent code.  */

#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)

#define LEGITIMATE_PIC_OPERAND_P(X)  legitimate_pic_operand_p (X)


/* Assembler file format.  */

/* Character to start a comment.  */
#define ASM_COMMENT_START "#"

/* Declare an uninitialized external linkage data object.  */
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)		\
  asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))

/* Globalizing directive for a label.  */
#define GLOBAL_ASM_OP ".globl "

/* Advance the location counter to a multiple of 2**LOG bytes.  */
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
  if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))

/* Advance the location counter by SIZE bytes.  */
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
  fprintf ((FILE), "\t.set\t.,.+" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))

/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h.  */
#define LOCAL_LABEL_PREFIX "."

#define LABEL_ALIGN(LABEL) \
  s390_label_align ((LABEL))

/* How to refer to registers in assembler output.  This sequence is
   indexed by compiler's hard-register-number (see above).  */
#define REGISTER_NAMES							\
  { "%r0",  "%r1",  "%r2",  "%r3",  "%r4",  "%r5",  "%r6",  "%r7",	\
    "%r8",  "%r9",  "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",	\
    "%f0",  "%f2",  "%f4",  "%f6",  "%f1",  "%f3",  "%f5",  "%f7",	\
    "%f8",  "%f10", "%f12", "%f14", "%f9",  "%f11", "%f13", "%f15",	\
    "%ap",  "%cc",  "%fp",  "%rp",  "%a0",  "%a1",			\
    "%v16", "%v18", "%v20", "%v22", "%v17", "%v19", "%v21", "%v23",	\
    "%v24", "%v26", "%v28", "%v30", "%v25", "%v27", "%v29", "%v31"	\
  }

#define ADDITIONAL_REGISTER_NAMES					\
  { { "v0", 16 }, { "v2",  17 }, { "v4",  18 }, { "v6",  19 },		\
    { "v1", 20 }, { "v3",  21 }, { "v5",  22 }, { "v7",  23 },          \
    { "v8", 24 }, { "v10", 25 }, { "v12", 26 }, { "v14", 27 },          \
    { "v9", 28 }, { "v11", 29 }, { "v13", 30 }, { "v15", 31 } };

/* Print operand X (an rtx) in assembler syntax to file FILE.  */
#define PRINT_OPERAND(FILE, X, CODE) print_operand ((FILE), (X), (CODE))
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address ((FILE), (ADDR))

/* Output an element of a case-vector that is absolute.  */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)				\
do {									\
  char buf[32];								\
  fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE));		\
  ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE));			\
  assemble_name ((FILE), buf);						\
  fputc ('\n', (FILE));							\
} while (0)

/* Output an element of a case-vector that is relative.  */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)		\
do {									\
  char buf[32];								\
  fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE));		\
  ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE));			\
  assemble_name ((FILE), buf);						\
  fputc ('-', (FILE));							\
  ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL));			\
  assemble_name ((FILE), buf);						\
  fputc ('\n', (FILE));							\
} while (0)

/* Mark the return register as used by the epilogue so that we can
   use it in unadorned (return) and (simple_return) instructions.  */
#define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM)

#undef ASM_OUTPUT_FUNCTION_LABEL
#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL)		\
  s390_asm_output_function_label ((FILE), (NAME), (DECL))

#if S390_USE_TARGET_ATTRIBUTE
/* Hook to output .machine and .machinemode at start of function.  */
#undef ASM_OUTPUT_FUNCTION_PREFIX
#define ASM_OUTPUT_FUNCTION_PREFIX s390_asm_output_function_prefix

/* Hook to output .machine and .machinemode at end of function.  */
#undef ASM_DECLARE_FUNCTION_SIZE
#define ASM_DECLARE_FUNCTION_SIZE s390_asm_declare_function_size
#endif

/* Miscellaneous parameters.  */

/* Specify the machine mode that this machine uses for the index in the
   tablejump instruction.  */
#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)

/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
   is done just by pretending it is already truncated.  */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC)  1

/* Specify the machine mode that pointers have.
   After generation of rtl, the compiler makes no further distinction
   between pointers and any other objects of this machine mode.  */
#define Pmode ((machine_mode) (TARGET_64BIT ? DImode : SImode))

/* This is -1 for "pointer mode" extend.  See ptr_extend in s390.md.  */
#define POINTERS_EXTEND_UNSIGNED -1

/* A function address in a call instruction is a byte address (for
   indexing purposes) so give the MEM rtx a byte's mode.  */
#define FUNCTION_MODE QImode

/* Specify the value which is used when clz operand is zero.  */
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)

/* Machine-specific symbol_ref flags.  */
#define SYMBOL_FLAG_ALIGN_SHIFT	  SYMBOL_FLAG_MACH_DEP_SHIFT
#define SYMBOL_FLAG_ALIGN_MASK    \
  ((SYMBOL_FLAG_MACH_DEP << 0) | (SYMBOL_FLAG_MACH_DEP << 1))

#define SYMBOL_FLAG_SET_ALIGN(X, A) \
    (SYMBOL_REF_FLAGS (X) = (SYMBOL_REF_FLAGS (X) & ~SYMBOL_FLAG_ALIGN_MASK) \
     | (A << SYMBOL_FLAG_ALIGN_SHIFT))

#define SYMBOL_FLAG_GET_ALIGN(X) \
    ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN_MASK) >> SYMBOL_FLAG_ALIGN_SHIFT)

/* Helpers to access symbol_ref flags.  They are used in
   check_symref_alignment() and larl_operand to detect if the
   available alignment matches the required one.  We do not use
   a positive check like _ALIGN2 because in that case we would have
   to annotate every symbol_ref.  However, we only want to touch
   the symbol_refs that can be misaligned and assume that the others
   are correctly aligned.  Hence, if a symbol_ref does not have
   a _NOTALIGN flag it is supposed to be correctly aligned.  */
#define SYMBOL_FLAG_SET_NOTALIGN2(X) SYMBOL_FLAG_SET_ALIGN((X), 1)
#define SYMBOL_FLAG_SET_NOTALIGN4(X) SYMBOL_FLAG_SET_ALIGN((X), 2)
#define SYMBOL_FLAG_SET_NOTALIGN8(X) SYMBOL_FLAG_SET_ALIGN((X), 3)

#define SYMBOL_FLAG_NOTALIGN2_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 1)
#define SYMBOL_FLAG_NOTALIGN4_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 2	\
				    || SYMBOL_FLAG_GET_ALIGN(X) == 1)
#define SYMBOL_FLAG_NOTALIGN8_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 3	\
				    || SYMBOL_FLAG_GET_ALIGN(X) == 2	\
				    || SYMBOL_FLAG_GET_ALIGN(X) == 1)

/* Check whether integer displacement is in range for a short displacement.  */
#define SHORT_DISP_IN_RANGE(d) ((d) >= 0 && (d) <= 4095)

/* Check whether integer displacement is in range.  */
#define DISP_IN_RANGE(d)				\
  (TARGET_LONG_DISPLACEMENT				\
   ? ((d) >= -524288 && (d) <= 524287)			\
   : SHORT_DISP_IN_RANGE(d))

/* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c.  */
#define READ_CAN_USE_WRITE_PREFETCH 1

extern const int processor_flags_table[];

/* The truth element value for vector comparisons.  Our instructions
   always generate -1 in that case.  */
#define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))

/* Target pragma.  */

/* resolve_overloaded_builtin can not be defined the normal way since
   it is defined in code which technically belongs to the
   front-end.  */
#define REGISTER_TARGET_PRAGMAS()		\
  do {						\
    s390_register_target_pragmas ();		\
  } while (0)

#ifndef USED_FOR_TARGET
/* The following structure is embedded in the machine
   specific part of struct function.  */

struct GTY (()) s390_frame_layout
{
  /* Offset within stack frame.  */
  HOST_WIDE_INT gprs_offset;
  HOST_WIDE_INT f0_offset;
  HOST_WIDE_INT f4_offset;
  HOST_WIDE_INT f8_offset;
  HOST_WIDE_INT backchain_offset;

  /* Number of first and last gpr where slots in the register
     save area are reserved for.  */
  int first_save_gpr_slot;
  int last_save_gpr_slot;

  /* Location (FP register number) where GPRs (r0-r15) should
     be saved to.
      0 - does not need to be saved at all
     -1 - stack slot  */
#define SAVE_SLOT_NONE   0
#define SAVE_SLOT_STACK -1
  signed char gpr_save_slots[16];

  /* Number of first and last gpr to be saved, restored.  */
  int first_save_gpr;
  int first_restore_gpr;
  int last_save_gpr;
  int last_restore_gpr;

  /* Bits standing for floating point registers. Set, if the
     respective register has to be saved. Starting with reg 16 (f0)
     at the rightmost bit.
     Bit 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
     fpr 15 13 11  9 14 12 10  8  7  5  3  1  6  4  2  0
     reg 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16  */
  unsigned int fpr_bitmap;

  /* Number of floating point registers f8-f15 which must be saved.  */
  int high_fprs;

  /* Set if return address needs to be saved.
     This flag is set by s390_return_addr_rtx if it could not use
     the initial value of r14 and therefore depends on r14 saved
     to the stack.  */
  bool save_return_addr_p;

  /* Size of stack frame.  */
  HOST_WIDE_INT frame_size;
};


/* Define the structure for the machine field in struct function.  */

struct GTY(()) machine_function
{
  struct s390_frame_layout frame_layout;

  /* Literal pool base register.  */
  rtx base_reg;

  /* True if we may need to perform branch splitting.  */
  bool split_branches_pending_p;

  bool has_landing_pad_p;

  /* True if the current function may contain a tbegin clobbering
     FPRs.  */
  bool tbegin_p;

  /* For -fsplit-stack support: A stack local which holds a pointer to
     the stack arguments for a function with a variable number of
     arguments.  This is set at the start of the function and is used
     to initialize the overflow_arg_area field of the va_list
     structure.  */
  rtx split_stack_varargs_pointer;

  enum indirect_branch indirect_branch_jump;
  enum indirect_branch indirect_branch_call;

  enum indirect_branch function_return_mem;
  enum indirect_branch function_return_reg;
};
#endif

#define TARGET_INDIRECT_BRANCH_NOBP_RET_OPTION				\
  (cfun->machine->function_return_reg != indirect_branch_keep		\
   || cfun->machine->function_return_mem != indirect_branch_keep)

#define TARGET_INDIRECT_BRANCH_NOBP_RET					\
  ((cfun->machine->function_return_reg != indirect_branch_keep		\
    && !s390_return_addr_from_memory ())				\
   || (cfun->machine->function_return_mem != indirect_branch_keep	\
       && s390_return_addr_from_memory ()))

#define TARGET_INDIRECT_BRANCH_NOBP_JUMP				\
  (cfun->machine->indirect_branch_jump != indirect_branch_keep)

#define TARGET_INDIRECT_BRANCH_NOBP_JUMP_THUNK				\
  (cfun->machine->indirect_branch_jump == indirect_branch_thunk		\
   || cfun->machine->indirect_branch_jump == indirect_branch_thunk_extern)

#define TARGET_INDIRECT_BRANCH_NOBP_JUMP_INLINE_THUNK			\
  (cfun->machine->indirect_branch_jump == indirect_branch_thunk_inline)

#define TARGET_INDIRECT_BRANCH_NOBP_CALL			\
  (cfun->machine->indirect_branch_call != indirect_branch_keep)

#ifndef TARGET_DEFAULT_INDIRECT_BRANCH_TABLE
#define TARGET_DEFAULT_INDIRECT_BRANCH_TABLE 0
#endif

#define TARGET_INDIRECT_BRANCH_THUNK_NAME_EXRL "__s390_indirect_jump_r%d"
#define TARGET_INDIRECT_BRANCH_THUNK_NAME_EX   "__s390_indirect_jump_r%duse_r%d"

#define TARGET_INDIRECT_BRANCH_TABLE s390_indirect_branch_table


#endif /* S390_H */