/usr/lib/python3/dist-packages/libcpychecker/absinterp.py is in gcc-python3-plugin 0.15-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 | # Copyright 2011, 2012 David Malcolm <dmalcolm@redhat.com>
# Copyright 2011, 2012 Red Hat, Inc.
#
# This is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see
# <http://www.gnu.org/licenses/>.
import gcc
import gccutils
import re
import sys
from six import StringIO, integer_types
from gccutils import get_src_for_loc, get_nonnull_arguments, check_isinstance
from gccutils.graph.stmtgraph import StmtGraph, StmtNode
from collections import OrderedDict
from libcpychecker.utils import log, logging_enabled
from libcpychecker.types import *
from libcpychecker.diagnostics import location_as_json, type_as_json
debug_comparisons = 0
numeric_types = integer_types + (float, )
# I found myself regularly getting State and Transition instances confused. To
# ameliorate that, here are some naming conventions and abbreviations:
#
# Within method names:
# "mktrans_" means "make a Transition"
# "mkstate_" means "make a State"
#
# Within variable names
# the prefix "t_" means a Transition
# the prefix "s_" means a State
# the prefix "v_" means an AbstractValue
# the prefix "r_" means a Region
# the prefix "f_" means a Facet
# Valid 'opname' parameters to eval_comparison hooks:
opnames = frozenset(['eq', 'ge', 'gt', 'le', 'lt'])
def raw_comparison(a, opname, b):
assert opname in opnames
if opname == 'eq':
return a == b
elif opname == 'ge':
return a >= b
elif opname == 'gt':
return a > b
elif opname == 'le':
return a <= b
elif opname == 'lt':
return a < b
else:
raise ValueError()
def flip_opname(opname):
"""
Given:
A op B
get the op' for:
B op' A
that has the same results
"""
assert opname in opnames
if opname == 'eq':
return 'eq' # symmetric
elif opname == 'ge':
return 'le'
elif opname == 'gt':
return 'lt'
elif opname == 'le':
return 'ge'
elif opname == 'lt':
return 'gt'
else:
raise ValueError()
if debug_comparisons:
debug_indent = 0
# Decorator for adding debug tracking to the various comparison operators
def dump_comparison(f):
def impl_fn(self, *args):
global debug_indent
print('%s%s.%s:' % (' ' * debug_indent, self.__class__.__name__, f.__name__))
for arg in [self] + list(args):
print(' %s%s' % (' ' * debug_indent, arg))
debug_indent += 1
r = f(self, *args)
debug_indent -= 1
print('%sreturned: %s' % (' ' * debug_indent, r))
return r
return impl_fn
def debug_comparison(msg):
print('%s%s' % (' ' * debug_indent, msg))
else:
# empty decorator
def dump_comparison(f):
return f
########################################################################
class FnMeta(object):
"""
Metadata describing an API function
"""
__slots__ = ('name', # the name of the function
'docurl', # URL of the API documentation, on docs.python.org
'declared_in', # name of the header file in which this is declared
'prototype', # fragment of C giving the prototype (for documentation purposes)
'defined_in', # where is this function defined (in CPython)
'notes', # fragment of text, giving notes on the function
)
def __init__(self, **kwargs):
for key in self.__slots__:
setattr(self, key, None)
for key, value in kwargs.items():
setattr(self, key, value)
def desc_when_call_returns_value(self, valuedesc):
"""
Generate descriptive text for a Transition involving a call to this
function that returns some value (described in string form)
e.g. "when PyTuple_Size() returns ob_size"
"""
return 'when %s() returns %s' % (self.name, valuedesc)
def desc_when_call_succeeds(self):
"""
Generate descriptive text for a Transition involving a call to this
function that succeeds.
e.g. "when PyTuple_SetItem() succeeds"
"""
return 'when %s() succeeds' % self.name
def desc_when_call_fails(self, why=None):
"""
Generate descriptive text for a Transition involving a call to this
function that fails, optionally with a textual description of the
kind of failure
e.g. "when PyTuple_SetItem() fails (index out of range)"
"""
if why:
return 'when %s() fails (%s)' % (self.name, why)
else:
return 'when %s() fails' % self.name
def desc_special(self, event):
"""
Generate descriptive text for a Transition involving a call to this
function that does somthing unusual
e.g. "when PyString_Concat() does nothing due to NULL *lhs"
"""
return 'when %s() %s' % (self.name, event)
############################################################################
# Various kinds of r-value:
############################################################################
class AbstractValue(object):
"""
Base class, representing some subset of possible values out of the full
set of values that this r-value could hold.
"""
__slots__ = ('gcctype', 'loc', 'fromsplit')
def __init__(self, gcctype, loc):
if gcctype:
check_isinstance(gcctype, gcc.Type)
if loc:
check_isinstance(loc, gcc.Location)
self.gcctype = gcctype
self.loc = loc
def __str__(self):
if self.gcctype:
result = '%s' % self.gcctype
else:
result = 'unknown type'
if self.loc:
result += ' from %s' % self.loc
return result
def __repr__(self):
return ('%s(gcctype=%r, loc=%r)'
% (self.__class__.__name__, str(self.gcctype), self.loc))
def as_json(self, state):
result = dict(kind=self.__class__.__name__,
gcctype=type_as_json(self.gcctype),
value_comes_from=location_as_json(self.loc))
# Get extra per-class JSON fields:
result.update(self.json_fields(state))
return result
def json_fields(self, state):
# Hook for getting extra per-class fields for JSON serialization
# Empty for the base class
return dict()
def is_null_ptr(self):
"""
Is this AbstractValue *definitely* a NULL pointer?
"""
# Overridden by ConcreteValue
return False
def get_transitions_for_function_call(self, state, stmt):
"""
For use for handling function pointers. Return a list of Transition
instances giving the outcome of calling this function ptr value
"""
check_isinstance(state, State)
check_isinstance(stmt, gcc.GimpleCall)
returntype = stmt.fn.type.dereference.type
from libcpychecker.refcounts import type_is_pyobjptr_subclass
if type_is_pyobjptr_subclass(returntype):
log('Invocation of function pointer returning PyObject * (or subclass)')
# Assume that all such functions either:
# - return a new reference, or
# - return NULL and set an exception (e.g. MemoryError)
return state.cpython.make_transitions_for_new_ref_or_fail(stmt,
None,
'new ref from call through function pointer')
return state.apply_fncall_side_effects(
[state.mktrans_assignment(stmt.lhs,
UnknownValue.make(returntype, stmt.loc),
'calling %s' % self)],
stmt)
def eval_unary_op(self, exprcode, gcctype, loc):
if exprcode == gcc.ConvertExpr:
raise NotImplementedError("Don't know how to cope with type conversion of: %r (%s) at %s to type %s"
% (self, self, loc, gcctype))
else:
raise NotImplementedError("Don't know how to cope with exprcode: %r (%s) on %s at %s"
% (exprcode, exprcode, self, loc))
def eval_binop(self, exprcode, rhs, rhsdesc, gcctype, loc):
raise NotImplementedError
@dump_comparison
def eval_comparison(self, opname, rhs, rhsdesc):
"""
opname is a string in opnames
Return a boolean, or None (meaning we don't know)
"""
raise NotImplementedError("eval_comparison for %s (%s)" % (self, opname))
def extract_from_parent(self, region, gcctype, loc):
"""
Called on a parent when inheriting a value from it for a child region,
for example, when a whole struct has "UnknownValue", we can extract
a particular field, giving an UnknownValue of the appropriate type
"""
raise NotImplementedError('%s.extract_from_parent(%s, %s, %s)'
% (self.__class__.__name__, region, gcctype, loc))
def as_string_constant(self):
"""
If this is a pointer to a string constant, return the underlying
string, otherwise return None
"""
if isinstance(self, PointerToRegion):
if isinstance(self.region, RegionForStringConstant):
return self.region.text
# We could be dealing with e.g. char *ptr = "hello world";
# where "hello world" is a 'char[12]', and thus ptr has been
# assigned a char* pointing to '"hello world"[0]'
if isinstance(self.region, ArrayElementRegion):
if isinstance(self.region.parent, RegionForStringConstant):
return self.region.parent.text[self.region.index:]
# Otherwise, not a string constant, return None
def union(self, v_other):
check_isinstance(v_other, AbstractValue)
raise NotImplementedError('%s.union(%s, %s)'
% (self.__class__.__name__, v_other))
class EmptySet(AbstractValue):
"""
The empty set: there are no possible values for this variable (yet).
"""
def union(self, v_other):
check_isinstance(v_other, AbstractValue)
return v_other
class UnknownValue(AbstractValue):
"""
A value that we know nothing about: it could be any of the possible values
"""
@classmethod
def make(cls, gcctype, loc):
"""
For some types, we may be able to supply more information
"""
if gcctype:
check_isinstance(gcctype, gcc.Type)
if loc:
check_isinstance(loc, gcc.Location)
if gcctype:
if isinstance(gcctype, gcc.IntegerType):
# Supply range limits for integer types, from the type itself:
return WithinRange(gcctype, loc,
gcctype.min_value.constant,
gcctype.max_value.constant)
return UnknownValue(gcctype, loc)
def __str__(self):
if self.gcctype:
return 'unknown %s from %s' % (self.gcctype, self.loc)
else:
if self.loc:
return 'unknown value from %s' % self.loc
else:
return 'unknown value'
def __repr__(self):
return 'UnknownValue(gcctype=%r, loc=%r)' % (self.gcctype, self.loc)
def eval_unary_op(self, exprcode, gcctype, loc):
return UnknownValue.make(gcctype, loc)
def eval_binop(self, exprcode, rhs, rhsdesc, gcctype, loc):
return UnknownValue.make(gcctype, loc)
@dump_comparison
def eval_comparison(self, opname, rhs, rhsdesc):
if opname == 'eq':
# If it's the *same* value, it's equal to itself:
if self is rhs:
return True
return None
def extract_from_parent(self, region, gcctype, loc):
return UnknownValue.make(gcctype, loc)
def union(self, v_other):
check_isinstance(v_other, AbstractValue)
return self
def eval_binop(exprcode, a, b, rhsvalue):
"""
Evaluate a gcc exprcode on a pair of Python values (as opposed to
AbstractValue instances)
"""
log('eval_binop(%s, %s, %s)', exprcode, a, b)
assert isinstance(a, numeric_types)
assert isinstance(b, numeric_types)
assert isinstance(rhsvalue, AbstractValue)
def inner():
if exprcode == gcc.PlusExpr:
return a + b
elif exprcode == gcc.MinusExpr:
return a - b
elif exprcode == gcc.MultExpr:
return a * b
elif exprcode == gcc.TruncDivExpr:
return a // b
elif exprcode == gcc.ExactDivExpr:
return a / b
elif exprcode == gcc.TruncModExpr:
return a % b
elif exprcode == gcc.MaxExpr:
return max(a, b)
elif exprcode == gcc.MinExpr:
return min(a, b)
elif exprcode == gcc.BitIorExpr:
return a | b
elif exprcode == gcc.BitAndExpr:
return a & b
elif exprcode == gcc.BitXorExpr:
return a ^ b
elif exprcode == gcc.LshiftExpr:
return a << b
elif exprcode == gcc.RshiftExpr:
return a >> b
elif exprcode == gcc.TruthAndExpr:
return a and b
elif exprcode == gcc.TruthOrExpr:
return a or b
# (an implicit return of None means "did not know how to handle this
# expression")
try:
result = inner()
except (ArithmeticError, ValueError):
err = sys.exc_info()[1]
isdefinite = not hasattr(rhsvalue, 'fromsplit')
raise PredictedArithmeticError(err, rhsvalue, isdefinite)
log('result: %s', result)
assert isinstance(result, numeric_types)
return result
class ConcreteValue(AbstractValue):
"""
A known, specific value (e.g. 0)
"""
__slots__ = ('value', )
def __init__(self, gcctype, loc, value):
check_isinstance(gcctype, gcc.Type)
if loc:
check_isinstance(loc, gcc.Location)
check_isinstance(value, numeric_types)
self.gcctype = gcctype
self.loc = loc
self.value = value
@classmethod
def from_int(self, value):
return ConcreteValue(gcc.Type.int(), None, value)
def __ne__(self, other):
if isinstance(other, ConcreteValue):
return self.value != other.value
return NotImplemented
def __str__(self):
if self.loc:
return ('(%s)%s from %s'
% (self.gcctype, value_to_str(self.value), self.loc))
else:
return ('(%s)%s'
% (self.gcctype, value_to_str(self.value)))
def __repr__(self):
return ('ConcreteValue(gcctype=%r, loc=%r, value=%s)'
% (str(self.gcctype), self.loc, value_to_str(self.value)))
def json_fields(self, state):
return dict(value=self.value)
def is_null_ptr(self):
if isinstance(self.gcctype, gcc.PointerType):
return self.value == 0
def get_transitions_for_function_call(self, state, stmt):
check_isinstance(state, State)
check_isinstance(stmt, gcc.GimpleCall)
class CallOfNullFunctionPtr(PredictedError):
def __init__(self, stmt, value):
check_isinstance(stmt, gcc.Gimple)
check_isinstance(value, AbstractValue)
self.stmt = stmt
self.value = value
def __str__(self):
return ('call of NULL function pointer at %s: %s'
% (self.stmt.loc, self.value))
if self.is_null_ptr():
raise CallOfNullFunctionPtr(stmt, self)
return AbstractValue.get_transitions_for_function_call(self, state, stmt)
def eval_unary_op(self, exprcode, gcctype, loc):
if exprcode == gcc.AbsExpr:
return ConcreteValue(gcctype, loc, abs(self.value))
elif exprcode == gcc.BitNotExpr:
# FIXME: bitwise-complement, with the correct width
# self.gcctype.precision
return ConcreteValue(gcctype, loc, ~self.value)
elif exprcode == gcc.NegateExpr:
return ConcreteValue(gcctype, loc, -self.value)
elif exprcode == gcc.ConvertExpr:
# Is this value expressible within the new type?
# If not, we might lose information
if isinstance(self.gcctype, gcc.IntegerType) \
and isinstance(gcctype, gcc.IntegerType):
if (self.value >= gcctype.min_value.constant
and self.value <= gcctype.max_value.constant):
# The old range will convert OK to the new type:
return ConcreteValue(gcctype, loc, self.value)
# We might lose information e.g. truncation; be pessimistic for now:
return UnknownValue.make(gcctype, loc)
elif exprcode == gcc.FixTruncExpr:
return ConcreteValue(gcctype, loc, int(self.value))
elif exprcode == gcc.FloatExpr:
return ConcreteValue(gcctype, loc, float(self.value))
else:
raise NotImplementedError("Don't know how to cope with exprcode: %r (%s) on %s at %s"
% (exprcode, exprcode, self, loc))
def eval_binop(self, exprcode, rhs, rhsdesc, gcctype, loc):
if isinstance(rhs, ConcreteValue):
newvalue = eval_binop(exprcode, self.value, rhs.value, rhs)
if newvalue is not None:
return ConcreteValue(gcctype, loc, newvalue)
return UnknownValue.make(gcctype, loc)
@dump_comparison
def eval_comparison(self, opname, rhs, rhsdesc):
log('ConcreteValue.eval_comparison(%s, %s%s)', self, opname, rhs)
if isinstance(rhs, ConcreteValue):
return raw_comparison(self.value, opname, rhs.value)
elif isinstance(rhs, WithinRange):
# Specialcase for equality:
if opname == 'eq':
if not rhs.contains(self.value):
return False
# Split into 2 or 3 parts:
ranges = []
if rhs.minvalue < self.value:
# subrange that's <
ranges.append(WithinRange.make(rhs.gcctype,
rhs.loc,
rhs.minvalue,
self.value-1))
ranges.append(WithinRange.make(rhs.gcctype,
rhs.loc,
self.value))
if self.value < rhs.maxvalue:
# subrange that's >
ranges.append(WithinRange.make(rhs.gcctype,
rhs.loc,
self.value+1,
rhs.maxvalue))
rhs.raise_split(rhsdesc, *ranges)
# For everything else (inequalities), consider ranges:
self_vs_min = raw_comparison(self.value, opname, rhs.minvalue)
self_vs_max = raw_comparison(self.value, opname, rhs.maxvalue)
if self_vs_min == self_vs_max:
return self_vs_min
else:
# Prepare a split, autogenerating the appropriate
# boundaries:
class RangeOfComparison:
"""
A range over which the comparison against the ConcreteValue
has a constant value
"""
__slots__ = ('rng', 'result')
def __init__(self, rng, result):
check_isinstance(rng, (ConcreteValue, WithinRange))
check_isinstance(result, (bool, None))
self.rng = rng
self.result = result
def __repr__(self):
return ('RangeOfComparison(%r, %r)'
% (self.rng, self.result))
# Where are the boundary values?
raw_boundaries = sorted(list(set([self.value - 1,
self.value,
self.value + 1,
rhs.minvalue,
rhs.maxvalue])))
# Filter them to be within the existing range:
raw_boundaries = [v
for v in raw_boundaries
if rhs.contains(v)]
if debug_comparisons:
debug_comparison([value_to_str(v) for v in raw_boundaries])
# Calculate a minimal list of RangeOfComparison instances
# Within each one, the comparison against the ConcreteValue has
# a consistent result:
ranges = []
num_boundary_ranges = len(raw_boundaries)
if debug_comparisons:
debug_comparison('num_boundary_ranges: %r' % num_boundary_ranges)
for i in range(num_boundary_ranges):
minvalue = raw_boundaries[i]
if minvalue < rhs.gcctype.min_value.constant:
minvalue = rhs.gcctype.min_value.constant
if i < num_boundary_ranges - 1:
# Extend up to but not including the next range:
maxvalue = raw_boundaries[i + 1] - 1
else:
# Final range: use full range:
maxvalue = rhs.maxvalue
if maxvalue > rhs.gcctype.max_value.constant:
maxvalue = rhs.gcctype.max_value.constant
if debug_comparisons:
debug_comparison('%i [%s..%s]'
% (i,
value_to_str(minvalue),
value_to_str(maxvalue)))
check_isinstance(minvalue, numeric_types)
check_isinstance(maxvalue, numeric_types)
# Only "proper" ranges:
if minvalue <= maxvalue:
self_vs_min = raw_comparison(self.value, opname, minvalue)
self_vs_max = raw_comparison(self.value, opname, maxvalue)
# All ranges should have identical value when compared
# against the concrete value:
assert self_vs_min == self_vs_max
if debug_comparisons:
debug_comparison(' [%s..%s] %s %s ?: %s'
% (value_to_str(minvalue),
value_to_str(maxvalue),
opname, self.value,
self_vs_min))
if ranges and ranges[-1].result == self_vs_min:
# These ranges are adjacent and have the same result;
# merge them:
oldrange = ranges[-1].rng
if isinstance(oldrange, ConcreteValue):
newrange = WithinRange(oldrange.gcctype,
oldrange.loc,
oldrange.value,
maxvalue)
else:
check_isinstance(oldrange, WithinRange)
newrange = WithinRange(oldrange.gcctype,
oldrange.loc,
oldrange.minvalue,
maxvalue)
ranges[-1].rng = newrange
else:
# We have a range with a different value:
roc = RangeOfComparison(WithinRange.make(rhs.gcctype, rhs.loc,
minvalue, maxvalue),
self_vs_min)
ranges.append(roc)
if debug_comparisons:
from pprint import pprint
pprint(ranges)
rhs.raise_split(rhsdesc, *[roc.rng for roc in ranges])
return None
def extract_from_parent(self, region, gcctype, loc):
return ConcreteValue(gcctype, loc, self.value)
def union(self, v_other):
check_isinstance(v_other, AbstractValue)
if isinstance(v_other, ConcreteValue):
if self.value == v_other.value:
return self
return WithinRange.make(self.gcctype, self.loc,
self.value, v_other.value)
if isinstance(v_other, WithinRange):
return WithinRange.make(self.gcctype, self.loc,
*(self.value, v_other.minvalue, v_other.maxvalue))
raise NotImplementedError('%s.union(%s)'
% (self.__class__.__name__, v_other))
def value_to_str(value):
"""
Display large integers/longs in hexadecimal, since it's easier
to decipher
-0x8000000000000000
than
-9223372036854775808
"""
check_isinstance(value, numeric_types)
if isinstance(value, integer_types):
if abs(value) > 0x100000:
return hex(value)
return str(value)
class WithinRange(AbstractValue):
"""
A value known to be within a given range e.g. -3 <= val <= +4
"""
__slots__ = ('minvalue', 'maxvalue', )
def __init__(self, gcctype, loc, *values):
"""
The constructor can take one or more values; the resulting set
is the minimal range covering all of the input values,
For example,
WithinRange(gcctype, loc, 7, 4, -4, -2)
will give the range -2 <= val < 7
"""
check_isinstance(gcctype, gcc.Type)
if loc:
check_isinstance(loc, gcc.Location)
assert len(values) >= 1
for value in values:
check_isinstance(value, numeric_types)
self.gcctype = gcctype
self.loc = loc
self.minvalue = min(values)
self.maxvalue = max(values)
# Clamp to be within the type's expressible range:
if self.minvalue < gcctype.min_value.constant:
self.minvalue = gcctype.min_value.constant
if self.maxvalue > gcctype.max_value.constant:
self.maxvalue = gcctype.max_value.constant
@classmethod
def make(cls, gcctype, loc, *values):
"""
Generate a WithinRange instance, unless the range uniqely identifies
a value, in which case generate a ConcreteValue instance
"""
minvalue = min(values)
maxvalue = max(values)
if minvalue == maxvalue:
return ConcreteValue(gcctype, loc, minvalue)
else:
return WithinRange(gcctype, loc, minvalue, maxvalue)
@classmethod
def ge_zero(cls, gcctype, loc):
"""
Make a WithinRange for the given type, assuming a value >= 0, up to
the maximum value representable by the type
"""
return WithinRange(gcctype, loc, 0, gcctype.max_value.constant)
def __str__(self):
if self.loc:
return ('(%s)val [%s <= val <= %s] from %s'
% (self.gcctype, value_to_str(self.minvalue),
value_to_str(self.maxvalue), self.loc))
else:
return ('(%s)val [%s <= val <= %s]'
% (self.gcctype, value_to_str(self.minvalue),
value_to_str(self.maxvalue)))
def __repr__(self):
return ('WithinRange(gcctype=%r, loc=%r, minvalue=%s, maxvalue=%s)'
% (str(self.gcctype), self.loc, value_to_str(self.minvalue),
value_to_str(self.maxvalue)))
def json_fields(self, state):
return dict(minvalue=self.minvalue,
maxvalue=self.maxvalue)
def eval_unary_op(self, exprcode, gcctype, loc):
if exprcode == gcc.AbsExpr:
values = [abs(val)
for val in (self.minvalue, self.maxvalue)]
return WithinRange.make(gcctype, loc, min(values), max(values))
elif exprcode == gcc.BitNotExpr:
return UnknownValue.make(gcctype, loc)
elif exprcode == gcc.NegateExpr:
return WithinRange.make(gcctype, loc, -self.maxvalue, -self.minvalue)
elif exprcode == gcc.ConvertExpr:
# Is the whole of this range fully expressible within the new type?
# If not, we might lose information
if isinstance(self.gcctype, gcc.IntegerType) \
and isinstance(gcctype, gcc.IntegerType):
if (self.minvalue >= gcctype.min_value.constant
and self.maxvalue <= gcctype.max_value.constant):
# The old range will convert OK to the new type:
return WithinRange.make(gcctype, loc,
self.minvalue, self.maxvalue)
# We might lose information e.g. truncation; be pessimistic for now:
return UnknownValue.make(gcctype, loc)
elif exprcode == gcc.FloatExpr:
return UnknownValue.make(gcctype, loc)
else:
raise NotImplementedError("Don't know how to cope with exprcode: %r (%s) on %s at %s"
% (exprcode, exprcode, self, loc))
def eval_binop(self, exprcode, rhs, rhsdesc, gcctype, loc):
if isinstance(rhs, ConcreteValue):
values = [eval_binop(exprcode, val, rhs.value, rhs)
for val in (self.minvalue, self.maxvalue)]
return WithinRange.make(gcctype, loc, min(values), max(values))
elif isinstance(rhs, WithinRange):
# Assume that the operations are "concave" in that the resulting
# range is within that found by trying all four corners:
# Avoid division by zero:
# (see https://fedorahosted.org/gcc-python-plugin/ticket/25 )
if exprcode == gcc.TruncDivExpr or exprcode == gcc.TruncModExpr:
if rhs.minvalue == 0 and rhs.maxvalue > 0:
zero_range = WithinRange.make(rhs.gcctype, rhs.loc, 0)
gt_zero_range = WithinRange.make(rhs.gcctype, rhs.loc,
1, rhs.maxvalue)
rhs.raise_split(rhsdesc, zero_range, gt_zero_range)
# Avoid negative shifts:
# (see https://fedorahosted.org/gcc-python-plugin/ticket/14 )
if exprcode == gcc.LshiftExpr or exprcode == gcc.RshiftExpr:
if rhs.minvalue < 0 and rhs.maxvalue >= 0:
neg_range = WithinRange.make(rhs.gcctype, rhs.loc,
rhs.minvalue, -1)
ge_zero_range = WithinRange.make(rhs.gcctype, rhs.loc,
0, rhs.maxvalue)
rhs.raise_split(rhsdesc, neg_range, ge_zero_range)
values = (eval_binop(exprcode, self.minvalue, rhs.minvalue, rhs),
eval_binop(exprcode, self.minvalue, rhs.maxvalue, rhs),
eval_binop(exprcode, self.maxvalue, rhs.minvalue, rhs),
eval_binop(exprcode, self.maxvalue, rhs.maxvalue, rhs))
return WithinRange.make(gcctype, loc,
min(values),
max(values))
return UnknownValue.make(gcctype, loc)
def contains(self, rawvalue):
check_isinstance(rawvalue, numeric_types)
return self.minvalue <= rawvalue and rawvalue <= self.maxvalue
@dump_comparison
def eval_comparison(self, opname, rhs, rhsdesc):
log('WithinRange.eval_comparison(%s, %s%s)', self, opname, rhs)
# If it's the *same* value, it's equal to itself:
if opname == 'eq':
if self is rhs:
return True
if isinstance(rhs, WithinRange):
# They can only be equal if there's an overlap:
if self.contains(rhs.minvalue) or self.contains(rhs.maxvalue):
# Maybe equal:
return None
else:
# No overlap: definitely non-equal:
return False
if isinstance(rhs, ConcreteValue):
# to implement WithinRange op ConcreteValue, use:
# ConcreteValue flip(op) WithinRange
return rhs.eval_comparison(flip_opname(opname), self, None)
return None
def raise_split(self, valuedesc, *new_ranges):
"""
Raise a SplitValue exception to subdivide this range into subranges
"""
descriptions = []
if valuedesc is None:
valuedesc = 'value'
for r in new_ranges:
if isinstance(r, WithinRange):
descriptions.append('when considering range: %s <= %s <= %s' %
(value_to_str(r.minvalue),
valuedesc,
value_to_str(r.maxvalue)))
elif isinstance(r, ConcreteValue):
descriptions.append('when considering %s == %s' % (valuedesc, r))
else:
raise TypeError('unrecognized type: %r' % r)
raise SplitValue(self, new_ranges, descriptions)
def raise_as_concrete(self, loc, value, desc):
"""
Raise a SplitValue exception to reinterpret this range as a specific
ConcreteValue from now on.
This is slightly abusing the SplitValue mechanism, as it's just one
new value, but it should at least add the descriptive text into the
trace.
"""
if loc:
check_isinstance(loc, gcc.Location)
check_isinstance(value, numeric_types)
check_isinstance(desc, str)
v_new = ConcreteValue(self.gcctype, loc,
value)
raise SplitValue(self, [v_new], [desc])
def extract_from_parent(self, region, gcctype, loc):
return WithinRange.make(gcctype, self.loc, self.minvalue, self.maxvalue)
def union(self, v_other):
check_isinstance(v_other, AbstractValue)
if isinstance(v_other, ConcreteValue):
return WithinRange.make(self.gcctype, self.loc,
*(self.minvalue, self.maxvalue, v_other.value))
if isinstance(v_other, WithinRange):
return WithinRange.make(self.gcctype, self.loc,
*(self.minvalue, self.maxvalue,
v_other.minvalue, v_other.maxvalue))
raise NotImplementedError('%s.union(%s)'
% (self.__class__.__name__, v_other))
class PointerToRegion(AbstractValue):
"""A non-NULL pointer value, pointing at a specific Region"""
__slots__ = ('region', )
def __init__(self, gcctype, loc, region):
AbstractValue.__init__(self, gcctype, loc)
check_isinstance(region, Region)
self.region = region
def __str__(self):
if self.loc:
return '(%s)&%r from %s' % (self.gcctype, self.region, self.loc)
else:
return '(%s)&%r' % (self.gcctype, self.region)
def __repr__(self):
return 'PointerToRegion(gcctype=%r, loc=%r, region=%r)' % (str(self.gcctype), self.loc, self.region)
def json_fields(self, state):
return dict(target=self.region.as_json())
def eval_comparison(self, opname, rhs, rhsdesc):
log('PointerToRegion.eval_comparison:(%s, %s%s)', self, opname, rhs)
if opname == 'eq':
if isinstance(rhs, ConcreteValue) and rhs.value == 0:
log('ptr to region vs 0: %s is definitely not equal to %s', self, rhs)
return False
if isinstance(rhs, PointerToRegion):
log('comparing regions: %s %s', self, rhs)
return self.region == rhs.region
# We don't know:
return None
def eval_unary_op(self, exprcode, gcctype, loc):
if exprcode == gcc.ConvertExpr:
# Casting of this non-NULL pointer to another type:
return UnknownValue.make(gcctype, loc)
# Defer to base class:
AbstractValue.eval_unary_op(self, exprcode, gcctype, loc)
class DeallocatedMemory(AbstractValue):
"""
A 'poisoned' r-value: this memory has been deallocated, so the r-value
is meaningless.
"""
def __str__(self):
if self.loc:
return 'memory deallocated at %s' % self.loc
else:
return 'deallocated memory'
def extract_from_parent(self, region, gcctype, loc):
return DeallocatedMemory(gcctype, self.loc)
class UninitializedData(AbstractValue):
"""
A 'poisoned' r-value: this memory has not yet been written to, so the
r-value is meaningless.
"""
def __str__(self):
if self.loc:
return 'uninitialized data at %s' % self.loc
else:
return 'uninitialized data'
def get_transitions_for_function_call(self, state, stmt):
check_isinstance(state, State)
check_isinstance(stmt, gcc.GimpleCall)
class CallOfUninitializedFunctionPtr(PredictedError):
def __init__(self, stmt, value):
check_isinstance(stmt, gcc.Gimple)
check_isinstance(value, AbstractValue)
self.stmt = stmt
self.value = value
def __str__(self):
return ('call of uninitialized function pointer at %s: %s'
% (self.stmt.loc, self.value))
raise CallOfUninitializedFunctionPtr(stmt, self)
def extract_from_parent(self, region, gcctype, loc):
return UninitializedData(gcctype, self.loc)
def make_null_ptr(gcctype, loc):
return ConcreteValue(gcctype, loc, 0)
############################################################################
# Various kinds of predicted error:
############################################################################
class PredictedError(Exception):
pass
class InvalidlyNullParameter(PredictedError):
# Use this when we can predict that a function is called with NULL as an
# argument for an argument that must not be NULL
def __init__(self, fnname, paramidx, nullvalue):
self.fnname = fnname
self.paramidx = paramidx # starts at 1
self.nullvalue = nullvalue
def __str__(self):
return ('%s can be called with NULL as parameter %i; %s'
% (self.fnname, self.paramidx, self.nullvalue))
class PredictedValueError(PredictedError):
def __init__(self, state, expr, value, isdefinite):
check_isinstance(state, State)
check_isinstance(expr, gcc.Tree)
check_isinstance(value, AbstractValue)
self.state = state
self.expr = expr
self.value = value
self.isdefinite = isdefinite
class PredictedArithmeticError(PredictedError):
def __init__(self, err, rhsvalue, isdefinite):
check_isinstance(err, (ArithmeticError, ValueError))
self.err = err
self.rhsvalue = rhsvalue
self.isdefinite = isdefinite
def __str__(self):
if self.isdefinite:
return '%s with right-hand-side %s' % (self.err, self.rhsvalue)
else:
return 'possible %s with right-hand-side %s' % (self.err, self.rhsvalue)
class UsageOfUninitializedData(PredictedValueError):
def __init__(self, state, expr, value, desc):
check_isinstance(state, State)
check_isinstance(expr, gcc.Tree)
check_isinstance(value, AbstractValue)
PredictedValueError.__init__(self, state, expr, value, True)
check_isinstance(desc, str)
self.desc = desc
def __str__(self):
return ('%s at %s'
% (self.desc, self.state.stmtnode.get_stmt().loc))
class NullPtrDereference(PredictedValueError):
def __init__(self, state, expr, ptr, isdefinite):
check_isinstance(state, State)
check_isinstance(expr, gcc.Tree)
check_isinstance(expr, (gcc.ComponentRef, gcc.MemRef))
PredictedValueError.__init__(self, state, expr, ptr, isdefinite)
def __str__(self):
if self.isdefinite:
return ('dereferencing NULL (%s) at %s'
% (self.expr, self.state.stmtnode.get_stmt().loc))
else:
return ('possibly dereferencing NULL (%s) at %s'
% (self.expr, self.state.stmtnode.get_stmt().loc))
class NullPtrArgument(PredictedValueError):
def __init__(self, state, stmt, idx, ptr, isdefinite, why):
check_isinstance(state, State)
check_isinstance(stmt, gcc.Gimple)
check_isinstance(idx, int)
check_isinstance(ptr, AbstractValue)
if why is not None:
check_isinstance(why, str)
PredictedValueError.__init__(self, state, stmt.args[idx], ptr, isdefinite)
self.stmt = stmt
self.idx = idx
# this is a 0-based index; it is changed to a 1-based index when
# printed
self.why = why
def __str__(self):
if self.isdefinite:
return ('calling %s with NULL as argument %i (%s) at %s'
% (self.stmt.fn,
self.idx + 1,
self.expr,
self.state.stmtnode.get_stmt().loc))
else:
return ('possibly calling %s with NULL as argument %i (%s) at %s'
% (self.stmt.fn,
self.idx + 1,
self.expr,
self.state.stmtnode.get_stmt().loc))
class ReadFromDeallocatedMemory(PredictedError):
def __init__(self, stmt, value):
check_isinstance(stmt, gcc.Gimple)
check_isinstance(value, DeallocatedMemory)
self.stmt = stmt
self.value = value
def __str__(self):
return ('reading from deallocated memory at %s: %s'
% (self.stmt.loc, self.value))
class PassingPointerToDeallocatedMemory(PredictedError):
def __init__(self, argidx, fnname, stmt, value):
check_isinstance(stmt, gcc.Gimple)
check_isinstance(value, DeallocatedMemory)
self.argidx = argidx
self.fnname = fnname
self.stmt = stmt
self.value = value
def __str__(self):
return ('passing pointer to deallocated memory as argument %i of %s at %s: %s'
% (self.argidx + 1, self.fnname, self.stmt.loc, self.value))
def describe_stmt(stmt):
if isinstance(stmt, gcc.GimpleCall):
if isinstance(stmt.fn.operand, gcc.FunctionDecl):
fnname = stmt.fn.operand.name
return 'call to %s at line %i' % (fnname, stmt.loc.line)
else:
return str(stmt.loc)
class Region(object):
__slots__ = ('name', 'parent', 'children', 'fields', )
def __init__(self, name, parent):
self.name = name
self.parent = parent
self.children = []
self.fields = {}
if parent:
parent.children.append(self)
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, self.name)
def as_json(self):
m = re.match(r"region for gcc.ParmDecl\('(\S+)'\)\.(\S+)", self.name)
if m:
return '%s->%s' % (m.group(1), m.group(2))
return self.name
def is_on_stack(self):
if isinstance(self, RegionOnStack):
return True
if self.parent:
return self.parent.is_on_stack()
return False
class RegionForGlobal(Region):
"""
Represents the area of memory (e.g. in .data or .bss section)
used to store a particular globa
"""
__slots__ = ('vardecl', )
def __init__(self, vardecl):
check_isinstance(vardecl, (gcc.VarDecl, gcc.FunctionDecl))
Region.__init__(self, vardecl.name, None)
self.vardecl = vardecl
def __repr__(self):
return 'RegionForGlobal(%r)' % self.vardecl
def as_json(self):
return str(self.vardecl)
class RegionOnStack(Region):
def __repr__(self):
return 'RegionOnStack(%r)' % self.name
def __str__(self):
return '%s on stack' % self.name
class RegionForLocal(RegionOnStack):
__slots__ = ('vardecl', )
def __init__(self, vardecl, stack):
RegionOnStack.__init__(self, 'region for %r' % vardecl, stack)
self.vardecl = vardecl
def as_json(self):
return str(self.vardecl)
class RegionForStaticLocal(RegionForGlobal):
# "static" locals work more like globals. In particular, they're not on
# the stack
pass
class RegionOnHeap(Region):
"""
Represents an area of memory allocated on the heap
"""
__slots__ = ('alloc_stmt', )
def __init__(self, name, alloc_stmt):
check_isinstance(alloc_stmt, gcc.Gimple)
Region.__init__(self, name, None)
self.alloc_stmt = alloc_stmt
def __repr__(self):
return 'RegionOnHeap(%r, %r)' % (self.name, self.alloc_stmt.loc)
def __str__(self):
return '%s allocated at %s' % (self.name, self.alloc_stmt.loc)
class RegionForStringConstant(Region):
"""
Represents an area of memory used for string constants
typically allocated in the .data segment
"""
__slots__ = ('text', )
def __init__(self, text):
Region.__init__(self, text, None)
self.text = text
def as_json(self):
return str(repr(self.text))
class ArrayElementRegion(Region):
__slots__ = ('index', )
def __init__(self, name, parent, index):
Region.__init__(self, name, parent)
self.index = index
class MissingValue(Exception):
"""
The value tracking system couldn't figure out any information about the
given region
"""
def __init__(self, region):
self.region = region
def __str__(self):
return 'Missing value for %s' % self.region
class SplitValue(Exception):
"""
We encountered an value (e.g. UnknownValue), but we'd like to know more
about it.
Backtrack the analysis, splitting it into multiple possible worlds
with alternate abstract values for said value
"""
def __init__(self, value, altvalues, descriptions):
self.value = value
self.altvalues = altvalues
self.descriptions = descriptions
def __str__(self):
return ('Splitting:\n%r\ninto\n%s'
% (self.value,
'\n'.join([repr(alt) for alt in self.altvalues])))
def split(self, state):
log('creating states for split of %s into %s', self.value, self.altvalues)
result = []
for altvalue, desc in zip(self.altvalues, self.descriptions):
log(' creating state for split where %s is %s', self.value, altvalue)
altvalue.fromsplit = True
newstate = state.copy()
newstate.fromsplit = True
for r in newstate.value_for_region:
# Replace instances of the value itself:
if newstate.value_for_region[r] is self.value:
log(' replacing value for region %s with %s', r, altvalue)
newstate.value_for_region[r] = altvalue
result.append(Transition(state,
newstate,
desc))
return result
class Facet(object):
"""
A facet of state, relating to a particular API (e.g. libc, cpython, etc)
Each facet knows which State instance it relates to, and knows how to
copy itself to a new State.
Potentially it can also supply "impl_" methods, which implement named
functions within the API, describing all possible transitions from the
current state to new states (e.g. success, failure, etc), creating
appropriate new States with appropriate new Facet subclass instances.
"""
__slots__ = ('state', )
def __init__(self, state):
check_isinstance(state, State)
self.state = state
def copy(self, newstate):
# Concrete subclasses should implement this.
raise NotImplementedError
class State(object):
"""
A Location with memory state, and zero or more additional "facets" of
state, one per API that we care about.
'facets' is a dict, mapping attribute names to Facet subclass.
For example, it might be:
{'cpython': CPython,
'libc': Libc,
'glib': GLib}
indicating that we expect all State instances to have a s.cpython field,
with a CPython instance, and a s.libc field (a Libc instance), etc.
Every State "knows" what all its facets are, and each Facet has a "state"
attribute recording which State instance it is part of.
For example, a CPython facet can keep track of the thread-local exception
status, and a Libc facet can keep track of file-descriptors, malloc
buffers, etc.
Hopefully this will allow checking of additional APIs to be slotted into
the checker, whilst keeping each API's special-case rules isolated.
"""
# We can't use the __slots__ optimization here, as we're adding additional
# per-facet attributes
def __init__(self, stmtgraph, stmtnode, lastgccloc,
facets, region_for_var=None, value_for_region=None,
return_rvalue=None, has_returned=False, not_returning=False):
check_isinstance(stmtgraph, StmtGraph)
check_isinstance(stmtnode, StmtNode)
check_isinstance(facets, dict)
self.stmtgraph = stmtgraph
self.fun = stmtgraph.fun
self.stmtnode = stmtnode
self.lastgccloc = lastgccloc
self.facets = facets
# Mapping from VarDecl.name to Region:
if region_for_var:
check_isinstance(region_for_var, OrderedDict)
self.region_for_var = region_for_var
else:
self.region_for_var = OrderedDict()
# Mapping from Region to AbstractValue:
if value_for_region:
check_isinstance(value_for_region, OrderedDict)
self.value_for_region = value_for_region
else:
self.value_for_region = OrderedDict()
self.return_rvalue = return_rvalue
self.has_returned = has_returned
self.not_returning = not_returning
def __str__(self):
return ('loc: %s region_for_var:%s value_for_region:%s'
% (self.stmtnode,
self.region_for_var,
self.value_for_region))
def __repr__(self):
return ('loc: %r region_for_var:%r value_for_region:%r'
% (self.stmtnode,
self.region_for_var,
self.value_for_region))
def as_str_table(self):
# Generate a string, displaying the data in tabular form:
from gccutils import Table
t = Table(['Expression', 'Region', 'Value'])
for k in self.region_for_var:
region = self.region_for_var[k]
value = self.value_for_region.get(region, None)
t.add_row((k, region, value),)
s = StringIO()
t.write(s)
return s.getvalue()
def as_json(self, desc):
variables = OrderedDict()
for k in self.region_for_var:
region = self.region_for_var[k]
value = self.value_for_region.get(region, None)
if value:
variables[region.as_json()] = value.as_json(self)
result = dict(location=location_as_json(self.stmtnode.get_gcc_loc()),
message=desc,
variables=variables)
return result
def log(self, logger):
if not logging_enabled:
return
# Display data in tabular form:
logger('%s', self.as_str_table())
#logger('extra: %s' % (self._extra(), ), indent)
# FIXME: derived class/extra:
#self.resources.log(logger, indent)
logger('loc: %s', self.stmtnode)
if self.stmtnode.get_stmt():
logger('%s', self.stmtnode.get_stmt().loc)
def copy(self):
s_new = State(self.stmtgraph,
self.stmtnode,
self.lastgccloc,
self.facets,
self.region_for_var.copy(),
self.value_for_region.copy(),
self.return_rvalue,
self.has_returned,
self.not_returning)
# Make a copy of each facet into the new state:
for key in self.facets:
facetcls = self.facets[key]
f_old = getattr(self, key)
f_new = f_old.copy(s_new)
setattr(s_new, key, f_new)
return s_new
def verify(self):
"""
Perform self-tests to ensure sanity of this State
"""
for k in self.value_for_region:
check_isinstance(k, Region)
if not isinstance(self.value_for_region[k], AbstractValue):
raise TypeError('value for region %r is not an AbstractValue: %r'
% (k, self.value_for_region[k]))
def eval_lvalue(self, expr, loc):
"""
Return the Region for the given expression
"""
log('eval_lvalue: %r %s', expr, expr)
if loc:
check_isinstance(loc, gcc.Location)
if isinstance(expr, gcc.SsaName):
region = self.var_region(expr.var)
check_isinstance(region, Region)
return region
if isinstance(expr, (gcc.VarDecl, gcc.ParmDecl, gcc.ResultDecl, gcc.FunctionDecl)):
region = self.var_region(expr)
check_isinstance(region, Region)
return region
elif isinstance(expr, gcc.ArrayRef):
region = self.element_region(expr, loc)
check_isinstance(region, Region)
return region
elif isinstance(expr, gcc.ComponentRef):
check_isinstance(expr.field, gcc.FieldDecl)
return self.get_field_region(expr, loc)
elif isinstance(expr, gcc.StringCst):
region = self.string_constant_region(expr, loc)
check_isinstance(region, Region)
return region
elif isinstance(expr, gcc.MemRef):
# Write through a pointer:
dest_ptr = self.eval_rvalue(expr.operand, loc)
log('dest_ptr: %r', dest_ptr)
self.raise_any_null_ptr_deref(expr, dest_ptr)
if isinstance(dest_ptr, UnknownValue):
# Split into null/non-null pointers:
self.raise_split_value(dest_ptr)
check_isinstance(dest_ptr, PointerToRegion)
dest_region = dest_ptr.region
log('dest_region: %r', dest_region)
return dest_region
raise NotImplementedError('eval_lvalue: %r %s' % (expr, expr))
def eval_rvalue(self, expr, loc):
"""
Return the value for the given expression, as an AbstractValue
FIXME: also as a Region?
"""
log('eval_rvalue: %r %s', expr, expr)
if loc:
check_isinstance(loc, gcc.Location)
if isinstance(expr, AbstractValue):
return expr
if isinstance(expr, Region):
return expr
if isinstance(expr, gcc.IntegerCst):
return ConcreteValue(expr.type, loc, expr.constant)
if isinstance(expr, gcc.RealCst):
return ConcreteValue(expr.type, loc, expr.constant)
if isinstance(expr, gcc.StringCst):
return AbstractValue(expr.type, loc)
if isinstance(expr, gcc.SsaName):
region = self.var_region(expr.var)
check_isinstance(region, Region)
value = self.get_store(region, expr.type, loc)
check_isinstance(value, AbstractValue)
return value
if isinstance(expr, (gcc.VarDecl, gcc.ParmDecl, gcc.ResultDecl)):
region = self.var_region(expr)
check_isinstance(region, Region)
value = self.get_store(region, expr.type, loc)
check_isinstance(value, AbstractValue)
return value
#return UnknownValue.make(expr.type, str(expr))
if isinstance(expr, gcc.ComponentRef):
#check_isinstance(expr.field, gcc.FieldDecl)
region = self.get_field_region(expr, loc)#.target, expr.field.name)
check_isinstance(region, Region)
log('got field region for %s: %r', expr, region)
try:
value = self.get_store(region, expr.type, loc)
log('got value: %r', value)
except MissingValue:
value = UnknownValue.make(expr.type, loc)
log('no value; using: %r', value)
check_isinstance(value, AbstractValue)
return value
if isinstance(expr, gcc.AddrExpr):
log('expr.operand: %r', expr.operand)
lvalue = self.eval_lvalue(expr.operand, loc)
check_isinstance(lvalue, Region)
if isinstance(expr.operand.type, gcc.ArrayType):
index0_lvalue = self._array_region(lvalue, 0)
return PointerToRegion(expr.type, loc, index0_lvalue)
else:
return PointerToRegion(expr.type, loc, lvalue)
if isinstance(expr, gcc.ArrayRef):
log('expr.array: %r', expr.array)
log('expr.index: %r', expr.index)
lvalue = self.eval_lvalue(expr, loc)
check_isinstance(lvalue, Region)
rvalue = self.get_store(lvalue, expr.type, loc)
check_isinstance(rvalue, AbstractValue)
return rvalue
if isinstance(expr, gcc.MemRef):
log('expr.operand: %r', expr.operand)
opvalue = self.eval_rvalue(expr.operand, loc)
check_isinstance(opvalue, AbstractValue)
log('opvalue: %r', opvalue)
self.raise_any_null_ptr_deref(expr, opvalue)
if isinstance(opvalue, UnknownValue):
# Split into null/non-null pointers:
self.raise_split_value(opvalue)
check_isinstance(opvalue, PointerToRegion) # FIXME
rvalue = self.get_store(opvalue.region, expr.type, loc)
check_isinstance(rvalue, AbstractValue)
return rvalue
if isinstance(expr, gcc.BitFieldRef):
# e.g. in 'D.2694 = BIT_FIELD_REF <*foo, 8, 0>;'
# for now, pessimistically assume nothing:
return UnknownValue.make(expr.type, loc)
raise NotImplementedError('eval_rvalue: %r %s' % (expr, expr))
return UnknownValue.make(expr.type, loc) # FIXME
def assign(self, lhs, rhs, loc):
log('assign(%r, %r)', lhs, rhs)
log('assign(%s, %s)', lhs, rhs)
if loc:
check_isinstance(loc, gcc.Location)
dest_region = self.eval_lvalue(lhs, loc)
log('dest_region: %s %r', dest_region, dest_region)
value = self.eval_rvalue(rhs, loc)
log('value: %s %r', value, value)
check_isinstance(value, AbstractValue)
check_isinstance(dest_region, Region)
self.value_for_region[dest_region] = value
def var_region(self, var):
check_isinstance(var, (gcc.VarDecl, gcc.ParmDecl, gcc.ResultDecl, gcc.FunctionDecl))
if var not in self.region_for_var:
# Presumably a reference to a global variable:
log('adding region for global var: %r', var)
region = RegionForGlobal(var)
# it is its own region:
self.region_for_var[var] = region
# Initialize the refcount of global PyObject instances
# e.g. _Py_NoneStruct to 0 i.e. we don't own any references to them
if str(var.type) == 'struct PyObject':
from libcpychecker.refcounts import RefcountValue
ob_refcnt = self.make_field_region(region, 'ob_refcnt') # FIXME: this should be a memref and fieldref
self.value_for_region[ob_refcnt] = RefcountValue.borrowed_ref(None, region)
return self.region_for_var[var]
def element_region(self, ar, loc):
log('element_region: %s', ar)
check_isinstance(ar, gcc.ArrayRef)
if loc:
check_isinstance(loc, gcc.Location)
log(' ar.array: %r', ar.array)
log(' ar.index: %r', ar.index)
parent = self.eval_lvalue(ar.array, loc)
check_isinstance(parent, Region)
log(' parent: %r', parent)
index = self.eval_rvalue(ar.index, loc)
check_isinstance(index, AbstractValue)
log(' index: %r', index)
if isinstance(index, ConcreteValue):
index = index.value
return self._array_region(parent, index)
def pointer_plus_region(self, stmt):
# Cope with treating pointers as arrays.
# The constant appears to be in bytes, rather than as units of the type
log('pointer_add_region')
assert stmt.exprcode == gcc.PointerPlusExpr
rhs = stmt.rhs
a = self.eval_rvalue(rhs[0], stmt.loc)
b = self.eval_rvalue(rhs[1], stmt.loc)
log('a: %r', a)
log('b: %r', b)
if isinstance(a, PointerToRegion) and isinstance(b, ConcreteValue):
parent = a.region
log('%s', rhs[0].type)
log('%s', rhs[0].type.dereference)
t = rhs[0].type.dereference
if isinstance(t, gcc.VoidType):
index = b.value
else:
sizeof = t.sizeof
log('%s', sizeof)
index = b.value // sizeof
# Offset of zero? just reuse the existing pointer's region:
if index == 0:
return a.region
# Are we offsetting within an array?
if isinstance(parent, ArrayElementRegion):
return self._array_region(parent.parent, parent.index + index)
return self._array_region(parent, index)
else:
raise NotImplementedError("Don't know how to cope with pointer addition of\n %r\nand\n %rat %s"
% (a, b, stmt.loc))
def _array_region(self, parent, index):
# Used by element_region, and pointer_add_region
log('_array_region(%s, %s)', parent, index)
check_isinstance(parent, Region)
check_isinstance(index, (integer_types, UnknownValue, ConcreteValue, WithinRange))
if isinstance(index, ConcreteValue):
index = index.value
if index in parent.fields:
log('reusing')
return parent.fields[index]
log('not reusing')
region = ArrayElementRegion('%s[%s]' % (parent.name, index), parent, index)
parent.fields[index] = region
# it is its own region:
self.region_for_var[region] = region
return region
def get_field_region(self, cr, loc): #target, field):
check_isinstance(cr, gcc.ComponentRef)
if loc:
check_isinstance(loc, gcc.Location)
#cr.debug()
log('target: %r %s ', cr.target, cr.target)
log('field: %r', cr.field)
if isinstance(cr.target, gcc.MemRef):
ptr = self.eval_rvalue(cr.target.operand, loc) # FIXME
log('ptr: %r', ptr)
self.raise_any_null_ptr_deref(cr, ptr)
if isinstance(ptr, UnknownValue):
# It could be NULL; it could be non-NULL
# Split the analysis
# Non-NULL pointer:
log('splitting %s into non-NULL/NULL pointers', cr)
self.raise_split_value(ptr)
check_isinstance(ptr, PointerToRegion)
return self.make_field_region(ptr.region, cr.field.name)
target_region = self.eval_lvalue(cr.target, loc)
return self.make_field_region(target_region, cr.field.name)
def string_constant_region(self, expr, loc):
log('string_constant_region: %s', expr)
check_isinstance(expr, gcc.StringCst)
if loc:
check_isinstance(loc, gcc.Location)
region = RegionForStringConstant(expr.constant)
return region
def get_store(self, region, gcctype, loc):
if gcctype:
check_isinstance(gcctype, gcc.Type)
if loc:
check_isinstance(loc, gcc.Location)
try:
val = self._get_store_recursive(region, gcctype, loc)
return val
except MissingValue:
# The first time we look up the value of a global, assign it a new
# "unknown" value:
if isinstance(region, RegionForGlobal):
newval = UnknownValue.make(region.vardecl.type, region.vardecl.location)
log('setting up %s for %s', newval, region.vardecl)
self.value_for_region[region] = newval
return newval
# OK: no value known:
return UnknownValue.make(gcctype, loc)
def summarize_array(self, r_array, v_range, gcctype, loc):
"""
Determine if the region r_array is fully populated with values
in the range of indices covered by v_range
If it is, return a representative value
"""
check_isinstance(r_array, Region)
check_isinstance(v_range, WithinRange)
v_result = EmptySet(gcctype, loc)
# (This loop should rapidly fail when the range is large and/or outside
# the bounds of the array)
for index in range(v_range.minvalue,
v_range.maxvalue + 1):
# print 'index: %i' % index
if index not in r_array.fields:
# We have an uninitialized element:
return None
r_at_index = r_array.fields[index]
# print 'r_at_index: %s' % r_at_index
check_isinstance(r_at_index, Region)
v_at_index = self.value_for_region[r_at_index]
# print 'v_at_index: %s' % v_at_index
check_isinstance(v_at_index, AbstractValue)
v_result = v_result.union(v_at_index)
# print 'v_result: %s' % v_result
# Every subregion within the given range is initialized:
return v_result
def _get_store_recursive(self, region, gcctype, loc):
check_isinstance(region, Region)
log('_get_store_recursive(%s, %s, %s)', region, gcctype, loc)
if region in self.value_for_region:
return self.value_for_region[region]
# Not found; try default value from parent region:
if region.parent:
try:
parent_value = self._get_store_recursive(region.parent, gcctype, loc)
# If we're looking up within an array on the stack that has
# been fully initialized, then the default value from the
# parent is UninitializedData(), but every actual value that
# could be looked up is some sane value. If we're indexing
# to an unknown location, don't falsely say it's unitialized:
if isinstance(parent_value, UninitializedData):
if isinstance(region, ArrayElementRegion):
if isinstance(region.index, WithinRange):
v_lookup = self.summarize_array(region.parent,
region.index,
gcctype, loc)
if v_lookup:
return v_lookup
return parent_value.extract_from_parent(region, gcctype, loc)
except MissingValue:
raise MissingValue(region)
raise MissingValue(region)
def make_heap_region(self, name, stmt):
region = RegionOnHeap(name, stmt)
# it is its own region:
self.region_for_var[region] = region
return region
def make_field_region(self, target, field):
check_isinstance(target, Region)
if field:
# (field can be None for C++ destructors)
check_isinstance(field, str)
log('make_field_region(%r, %r)', target, field)
if field in target.fields:
log('reusing')
return target.fields[field]
log('not reusing')
region = Region('%s.%s' % (target.name, field), target)
target.fields[field] = region
# it is its own region:
self.region_for_var[region] = region
return region
def get_value_of_field_by_varname(self, varname, field):
# Lookup varname.field
# For use in writing selftests
log('get_value_of_field_by_varname(%r, %r)', varname, field)
check_isinstance(varname, str)
check_isinstance(field, str)
for k in self.region_for_var:
if isinstance(k, gcc.VarDecl):
if k.name == varname:
region = self.region_for_var[k]
region = self.make_field_region(region, field)
value = self.value_for_region.get(region, None)
return value
def get_value_of_field_by_region(self, region, field):
"""
Lookup region->field, getting its AbstractValue, if any, or None
For use in writing selftests and diagnostics, as it has no
side-effects.
You may want to use read_field_by_name() instead
"""
log('get_value_of_field_by_region(%r, %r)', region, field)
check_isinstance(region, Region)
check_isinstance(field, str)
if field in region.fields:
field_region = region.fields[field]
return self.value_for_region.get(field_region, None)
return None
def read_field_by_name(self, stmt, gcctype, region, fieldname):
"""
Lookup region->field, getting its AbstractValue.
If the field doesn't have a value yet, if will be set to a new
UnknownValue so that subsequent reads of the field receive the
*same* unknown value
"""
log('read_field_by_name(%r, %r)', region, fieldname)
check_isinstance(stmt, gcc.Gimple)
if gcctype:
check_isinstance(gcctype, gcc.Type)
check_isinstance(region, Region)
check_isinstance(fieldname, str)
v_field = self.get_value_of_field_by_region(region,
fieldname)
if v_field is None:
v_field = UnknownValue.make(gcctype, stmt.loc)
r_field = self.make_field_region(region,
fieldname)
self.value_for_region[r_field] = v_field
return v_field
def set_field_by_name(self, r_struct, fieldname, v_field):
r_field = self.make_field_region(r_struct, fieldname)
self.value_for_region[r_field] = v_field
def dereference(self, expr, v_ptr, loc):
check_isinstance(v_ptr, AbstractValue)
if isinstance(v_ptr, UnknownValue):
self.raise_split_value(v_ptr, loc)
self.raise_any_null_ptr_deref(expr, v_ptr)
check_isinstance(v_ptr, PointerToRegion)
if v_ptr.region not in self.value_for_region:
# Add a new UnknownValue:
if v_ptr.gcctype:
gcctype = v_ptr.gcctype.dereference
else:
gcctype = None
self.value_for_region[v_ptr.region] = UnknownValue.make(gcctype, loc)
return self.value_for_region[v_ptr.region]
def init_for_function(self, fun):
log('State.init_for_function(%r)', fun)
self.fun = fun
root_region = Region('root', None)
stack = RegionOnStack('stack for %s' % fun.decl.name, root_region)
nonnull_args = get_nonnull_arguments(fun.decl.type)
for idx, parm in enumerate(fun.decl.arguments):
def parm_is_this():
if idx == 0 and parm.is_artificial and parm.name == 'this':
return True
region = RegionForLocal(parm, stack)
self.region_for_var[parm] = region
if idx in nonnull_args or parm_is_this() \
or isinstance(parm.type, gcc.ReferenceType):
# Make a non-NULL ptr:
other = Region('region-for-arg-%r' % parm, None)
self.region_for_var[other] = other
self.value_for_region[region] = PointerToRegion(parm.type, parm.location, other)
else:
self.value_for_region[region] = UnknownValue.make(parm.type, parm.location)
for local in fun.local_decls:
if local.static:
# Statically-allocated locals are zero-initialized before the
# function is called for the first time, and then preserve
# state between function calls
region = RegionForStaticLocal(local)
# For now, don't try to track all possible values a static var
# can take; simply treat it as an UnknownValue
v_local = UnknownValue.make(local.type, fun.start)
else:
region = RegionForLocal(local, stack)
v_local = UninitializedData(local.type, fun.start)
self.region_for_var[local] = region
self.value_for_region[region] = v_local
# Region for the gcc.ResultDecl, if any:
if fun.decl.result:
result = fun.decl.result
region = RegionForLocal(result, stack)
self.region_for_var[result] = region
self.value_for_region[region] = UninitializedData(result.type, fun.start)
self.verify()
def mktrans_assignment(self, lhs, rhs, desc):
"""
Return a Transition to a state at the next location, with the RHS
assigned to the LHS, if LHS is not None
"""
log('mktrans_assignment(%r, %r, %r)', lhs, rhs, desc)
if desc:
check_isinstance(desc, str)
new = self.use_next_stmt_node()
if lhs:
new.assign(lhs, rhs, self.stmtnode.get_gcc_loc())
return Transition(self, new, desc)
def update_stmt_node(self, new_stmt_node):
new = self.copy()
new.stmtnode = new_stmt_node
if new.stmtnode.stmt and new.stmtnode.stmt.loc:
new.lastgccloc = new.stmtnode.stmt.loc
else:
new.lastgccloc = self.lastgccloc
return new
def use_next_stmt_node(self):
def next_stmt_node(stmtnode):
if len(stmtnode.succs) != 1:
raise ValueError('len(stmtnode.succs) == %i at %s'
% (len(stmtnode.succs), stmtnode))
edge = list(stmtnode.succs)[0]
assert edge.srcnode == stmtnode
assert edge.dstnode != stmtnode
return edge.dstnode
new_stmt_node = next_stmt_node(self.stmtnode)
return self.update_stmt_node(new_stmt_node)
def get_gcc_loc_or_none(self):
# Return the gcc.Location for this state, which could be None
stmt = self.stmtnode.get_stmt()
if stmt:
return stmt.loc
def get_gcc_loc(self, fun):
# Return a non-None gcc.Location for this state
# Some statements have None for their location, but gcc.error() etc
# don't allow this. Use the end of the function for this case.
stmt = self.stmtnode.get_stmt()
if stmt:
log('%s' % self.stmtnode.get_stmt().loc)
# grrr... not all statements have a non-NULL location
gccloc = self.stmtnode.get_stmt().loc
if gccloc is None:
assert self.lastgccloc
return self.lastgccloc
return gccloc
else:
return fun.end
def raise_any_null_ptr_deref(self, expr, ptr):
check_isinstance(expr, gcc.Tree)
check_isinstance(ptr, AbstractValue)
if isinstance(ptr, UninitializedData):
raise UsageOfUninitializedData(self, expr, ptr,
'dereferencing uninitialized pointer (%s)' % expr)
if ptr.is_null_ptr():
# Read through NULL
# If we earlier split the analysis into NULL/non-NULL
# cases, then we're only considering the possibility
# that this pointer was NULL; we don't know for sure
# that it was.
isdefinite = not hasattr(ptr, 'fromsplit')
raise NullPtrDereference(self, expr, ptr, isdefinite)
def raise_any_null_ptr_func_arg(self, stmt, idx, ptr, why=None):
# idx is the 0-based index of the argument
check_isinstance(stmt, gcc.Gimple)
check_isinstance(idx, int)
check_isinstance(ptr, AbstractValue)
if why:
check_isinstance(why, str)
if isinstance(ptr, UnknownValue):
self.raise_split_value(ptr, stmt.loc)
if ptr.is_null_ptr():
# NULL argument to a function that requires non-NULL
# If we earlier split the analysis into NULL/non-NULL
# cases, then we're only considering the possibility
# that this pointer was NULL; we don't know for sure
# that it was.
isdefinite = not hasattr(ptr, 'fromsplit')
raise NullPtrArgument(self, stmt, idx, ptr, isdefinite, why)
def raise_split_value(self, ptr_rvalue, loc=None):
"""
Raise a SplitValue exception on the given rvalue, so that we can
backtrack and split the current state into a version with an explicit
NULL value and a version with a non-NULL value
FIXME: we should split into multiple non-NULL values, covering the
various aliasing possibilities
"""
check_isinstance(ptr_rvalue, AbstractValue)
check_isinstance(ptr_rvalue, UnknownValue)
check_isinstance(ptr_rvalue.gcctype, gcc.PointerType)
global region_id
region = Region('heap-region-%i' % region_id, None)
region_id += 1
self.region_for_var[region] = region
non_null_ptr = PointerToRegion(ptr_rvalue.gcctype, loc, region)
null_ptr = ConcreteValue(ptr_rvalue.gcctype, loc, 0)
raise SplitValue(ptr_rvalue,
[non_null_ptr, null_ptr],
[("when treating %s as non-NULL" % ptr_rvalue),
("when treating %s as NULL" % ptr_rvalue)])
def deallocate_region(self, stmt, region):
# Mark the region as deallocated
# Since regions are shared with other states, we have to set this up
# for this state by assigning it with a special "DeallocatedMemory"
# value
# Clear the value for any fields within the region:
for k, v in region.fields.items():
if v in self.value_for_region:
del self.value_for_region[v]
# Set the default value for the whole region to be "DeallocatedMemory"
self.region_for_var[region] = region
self.value_for_region[region] = DeallocatedMemory(None, stmt.loc)
def get_transitions(self):
# Return a list of Transition instances, based on input State
stmt = self.stmtnode.get_stmt()
if stmt:
return self._get_transitions_for_stmt(stmt)
else:
result = []
for succedge in sorted(self.stmtnode.succs):
newstate = self.copy()
newstate.stmtnode = succedge.dstnode
result.append(Transition(self, newstate, ''))
log('result: %s', result)
return result
def _get_transitions_for_stmt(self, stmt):
log('_get_transitions_for_stmt: %r %s', stmt, stmt)
log('dir(stmt): %s', dir(stmt))
if stmt.loc:
gcc.set_location(stmt.loc)
if isinstance(stmt, gcc.GimpleCall):
return self._get_transitions_for_GimpleCall(stmt)
elif isinstance(stmt, (gcc.GimpleDebug, gcc.GimpleLabel,
gcc.GimplePredict, gcc.GimpleNop)):
return [Transition(self,
self.use_next_stmt_node(),
None)]
elif isinstance(stmt, gcc.GimpleCond):
return self._get_transitions_for_GimpleCond(stmt)
elif isinstance(stmt, gcc.GimpleReturn):
return self._get_transitions_for_GimpleReturn(stmt)
elif isinstance(stmt, gcc.GimpleAssign):
return self._get_transitions_for_GimpleAssign(stmt)
elif isinstance(stmt, gcc.GimpleSwitch):
return self._get_transitions_for_GimpleSwitch(stmt)
elif isinstance(stmt, gcc.GimpleAsm):
return self._get_transitions_for_GimpleAsm(stmt)
else:
raise NotImplementedError("Don't know how to cope with %r (%s) at %s"
% (stmt, stmt, stmt.loc))
def mkstate_nop(self, stmt):
"""
Clone this state (at a function call), updating the location, for
functions with "void" return type
"""
newstate = self.use_next_stmt_node()
return newstate
def mkstate_return_of(self, stmt, v_return):
"""
Clone this state (at a function call), updating the location, and
setting the result of the call to the given AbstractValue
"""
check_isinstance(v_return, AbstractValue)
newstate = self.use_next_stmt_node()
if stmt.lhs:
newstate.assign(stmt.lhs,
v_return,
stmt.loc)
return newstate
def mkstate_concrete_return_of(self, stmt, value):
"""
Clone this state (at a function call), updating the location, and
setting the result of the call to the given concrete value
"""
check_isinstance(value, numeric_types)
newstate = self.use_next_stmt_node()
if stmt.lhs:
newstate.assign(stmt.lhs,
ConcreteValue(stmt.lhs.type, stmt.loc, value),
stmt.loc)
return newstate
def mktrans_nop(self, stmt, fnname):
"""
Make a Transition for handling a function call that has no "visible"
effect within our simulation (beyond advancing to the next location).
[We might subsequently modify the destination state, though]
"""
newstate = self.use_next_stmt_node()
return Transition(self, newstate, 'calling %s()' % fnname)
def mktrans_not_returning(self, desc):
# The function being called does not return e.g. "exit(0);"
# Transition to a special noreturn state:
s_new = self.copy()
s_new.not_returning = True
return Transition(self, s_new, desc)
def mktrans_from_fncall_state(self, stmt, state, partialdesc, has_siblings):
"""
Given a function call here, convert a State instance into a Transition
instance, marking it.
"""
check_isinstance(stmt, gcc.GimpleCall)
check_isinstance(state, State)
check_isinstance(partialdesc, str)
fnname = stmt.fn.operand.name
if has_siblings:
desc = 'when %s() %s' % (fnname, partialdesc)
else:
desc = '%s() %s' % (fnname, partialdesc)
return Transition(self, state, desc)
def make_transitions_for_fncall(self, stmt, fnmeta, s_success, s_failure):
"""
Given a function call, convert a pair of State instances into a pair
of Transition instances, marking one as a successful call, the other
as a failed call.
"""
check_isinstance(stmt, gcc.GimpleCall)
if fnmeta:
check_isinstance(fnmeta, FnMeta)
check_isinstance(s_success, State)
check_isinstance(s_failure, State)
if fnmeta:
return [Transition(self, s_success, fnmeta.desc_when_call_succeeds()),
Transition(self, s_failure, fnmeta.desc_when_call_fails())]
else:
return [Transition(self, s_success, 'when call succeeds'),
Transition(self, s_failure, 'when call fails')]
def eval_stmt_args(self, stmt):
check_isinstance(stmt, gcc.GimpleCall)
return [self.eval_rvalue(arg, stmt.loc)
for arg in stmt.args]
def _get_transitions_for_GimpleCall(self, stmt):
log('stmt.lhs: %s %r', stmt.lhs, stmt.lhs)
log('stmt.fn: %s %r', stmt.fn, stmt.fn)
log('dir(stmt.fn): %s', dir(stmt.fn))
if hasattr(stmt.fn, 'operand'):
log('stmt.fn.operand: %s', stmt.fn.operand)
returntype = stmt.fn.type.dereference.type
log('returntype: %s', returntype)
if stmt.noreturn:
# The function being called does not return e.g. "exit(0);"
# Transition to a special noreturn state:
return [self.mktrans_not_returning('not returning from %s'
% stmt.fn)]
if isinstance(stmt.fn, (gcc.VarDecl, gcc.ParmDecl, gcc.SsaName)):
# Calling through a function pointer:
val = self.eval_rvalue(stmt.fn, stmt.loc)
log('val: %s', val)
check_isinstance(val, AbstractValue)
return val.get_transitions_for_function_call(self, stmt)
# Evaluate the arguments:
args = self.eval_stmt_args(stmt)
# Check for uninitialized and deallocated data:
for i, arg in enumerate(args):
if isinstance(arg, UninitializedData):
raise UsageOfUninitializedData(self, stmt.args[i],
arg,
'passing uninitialized data (%s) as argument %i to function' % (stmt.args[i], i + 1))
if isinstance(arg, PointerToRegion):
rvalue = self.value_for_region.get(arg.region, None)
if isinstance(rvalue, DeallocatedMemory):
raise PassingPointerToDeallocatedMemory(i, 'function', stmt, rvalue)
if isinstance(stmt.fn.operand, gcc.FunctionDecl):
log('dir(stmt.fn.operand): %s', dir(stmt.fn.operand))
log('stmt.fn.operand.name: %r', stmt.fn.operand.name)
fnname = stmt.fn.operand.name
# Hand off to impl_* methods of facets, where these methods exist
# In each case, the method should have the form:
# def impl_foo(self, stmt, v_arg0, v_arg1, *args):
# for a C function named "foo" i.e. it takes "self", plus the
# gcc.GimpleCall statement, followed by the AbstractValue instances
# for the evaluated arguments (which for some functions will
# involve varargs, like above).
# They should return a list of Transition instances.
methname = 'impl_%s' % fnname
for key in self.facets:
facet = getattr(self, key)
if hasattr(facet, methname):
meth = getattr(facet, 'impl_%s' % fnname)
# Call the facet's method:
return meth(stmt, *args)
#from libcpychecker.c_stdio import c_stdio_functions, handle_c_stdio_function
#if fnname in c_stdio_functions:
# return handle_c_stdio_function(self, fnname, stmt)
if 0:
# For extending coverage of the Python API:
# Detect and complain about Python API entrypoints that
# weren't explicitly handled
if fnname.startswith('_Py') or fnname.startswith('Py'):
raise NotImplementedError('not yet implemented: %s' % fnname)
# Unknown function returning (PyObject*):
from libcpychecker.refcounts import type_is_pyobjptr_subclass
if type_is_pyobjptr_subclass(stmt.fn.operand.type.type):
log('Invocation of unknown function returning PyObject * (or subclass): %r' % fnname)
fnmeta = FnMeta(name=fnname)
# Assume that all such functions either:
# - return a new reference, or
# - return NULL and set an exception (e.g. MemoryError)
from libcpychecker.attributes import fnnames_returning_borrowed_refs
if fnname in fnnames_returning_borrowed_refs:
# The function being called was marked as returning a
# borrowed ref, rather than a new ref:
return self.apply_fncall_side_effects(
self.cpython.make_transitions_for_borrowed_ref_or_fail(stmt,
fnmeta),
stmt)
return self.apply_fncall_side_effects(
self.cpython.make_transitions_for_new_ref_or_fail(stmt,
fnmeta,
'new ref from (unknown) %s' % fnname),
stmt)
# GCC builtins:
if fnname == '__builtin_expect':
# http://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
# The return value of:
# __builtin_expect(long exp, long c)
# is "exp" (the 0-th argument):
return [self.mktrans_assignment(stmt.lhs, stmt.args[0], None)]
# Unknown function of other type:
log('Invocation of unknown function: %r', fnname)
return self.apply_fncall_side_effects(
[self.mktrans_assignment(stmt.lhs,
UnknownValue.make(returntype, stmt.loc),
None)],
stmt)
log('stmt.args: %s %r', stmt.args, stmt.args)
for i, arg in enumerate(stmt.args):
log('args[%i]: %s %r', i, arg, arg)
def get_function_name(self, stmt):
"""
Try to get the function name for a gcc.GimpleCall statement as a
string, or None if we're unable to determine it.
For a simple function invocation this is easy, but if we're
calling through a function pointer we may or may not know.
"""
check_isinstance(stmt, gcc.GimpleCall)
v_fn = self.eval_rvalue(stmt.fn, stmt.loc)
if isinstance(v_fn, PointerToRegion):
if isinstance(v_fn.region, RegionForGlobal):
if isinstance(v_fn.region.vardecl, gcc.FunctionDecl):
return v_fn.region.vardecl.name
# Unable to determine it:
return None
def apply_fncall_side_effects(self, transitions, stmt):
"""
Given a list of Transition instances for a call to a function with
unknown side-effects, modify all of the destination states.
Specifically: any pointer arguments to the function are modified in
the destination states to be an UnknownValue, given that the function
could have written an arbitrary r-value back into the input
"""
check_isinstance(transitions, list)
check_isinstance(stmt, gcc.GimpleCall)
args = self.eval_stmt_args(stmt)
fnname = self.get_function_name(stmt)
# cpython: handle functions marked as stealing references to their
# arguments:
from libcpychecker.attributes import stolen_refs_by_fnname
if fnname in stolen_refs_by_fnname:
for t_iter in transitions:
check_isinstance(t_iter, Transition)
for argindex in stolen_refs_by_fnname[stmt.fn.operand.name]:
v_arg = args[argindex-1]
if isinstance(v_arg, PointerToRegion):
t_iter.dest.cpython.steal_reference(v_arg, stmt.loc)
# cpython: handle functions that have been marked as setting the
# exception state:
from libcpychecker.attributes import fnnames_setting_exception
if fnname in fnnames_setting_exception:
for t_iter in transitions:
# Mark the global exception state (with an arbitrary
# error):
t_iter.dest.cpython.set_exception('PyExc_MemoryError',
stmt.loc)
# cpython: handle functions that have been marked as setting the
# exception state when they return a negative value:
from libcpychecker.attributes import fnnames_setting_exception_on_negative_result
if fnname in fnnames_setting_exception_on_negative_result:
def handle_negative_return(t_iter):
check_isinstance(t_iter, Transition)
check_isinstance(t_iter.src, State)
check_isinstance(stmt, gcc.GimpleCall)
if stmt.lhs:
v_returnval = t_iter.dest.eval_rvalue(stmt.lhs, stmt.loc)
# This could raise a SplitValue exception:
# the split value affects State instances that are already
# within the trace, whereas we're splitting on a new value
# that only exists within a new State.
# Hence we have to do this within
# process_splittable_transitions
# so that we can split the new state:
eqzero = v_returnval.eval_comparison(
'lt',
ConcreteValue.from_int(0),
None)
if eqzero is True:
# Mark the global exception state (with an arbitrary
# error):
t_iter.dest.cpython.set_exception('PyExc_MemoryError',
stmt.loc)
transitions = process_splittable_transitions(transitions,
handle_negative_return)
for t_iter in transitions:
check_isinstance(t_iter, Transition)
for v_arg in args:
if isinstance(v_arg, PointerToRegion):
v_newval = UnknownValue.make(v_arg.gcctype, stmt.loc)
t_iter.dest.value_for_region[v_arg.region] = v_newval
return transitions
def _get_transitions_for_GimpleCond(self, stmt):
def make_transition_for_true(stmt, has_siblings):
e = true_edge(self.stmtnode)
assert e
nextstate = self.update_stmt_node(e.dstnode)
nextstate.prior_bool = True
if has_siblings:
desc = 'when taking True path'
else:
desc = 'taking True path'
return Transition(self, nextstate, desc)
def make_transition_for_false(stmt, has_siblings):
e = false_edge(self.stmtnode)
assert e
nextstate = self.update_stmt_node(e.dstnode)
nextstate.prior_bool = False
if has_siblings:
desc = 'when taking False path'
else:
desc = 'taking False path'
return Transition(self, nextstate, desc)
log('stmt.exprcode: %s', stmt.exprcode)
log('stmt.exprtype: %s', stmt.exprtype)
log('stmt.lhs: %r %s', stmt.lhs, stmt.lhs)
log('stmt.rhs: %r %s', stmt.rhs, stmt.rhs)
boolval = self.eval_condition(stmt, stmt.lhs, stmt.exprcode, stmt.rhs)
if boolval is True:
log('taking True edge')
nextstate = make_transition_for_true(stmt, False)
return [nextstate]
elif boolval is False:
log('taking False edge')
nextstate = make_transition_for_false(stmt, False)
return [nextstate]
else:
check_isinstance(boolval, UnknownValue)
# We don't have enough information; both branches are possible:
return [make_transition_for_true(stmt, True),
make_transition_for_false(stmt, True)]
def eval_condition(self, stmt, expr_lhs, exprcode, expr_rhs):
"""
Evaluate a comparison, returning one of True, False, or None
"""
log('eval_condition: %s %s %s ', expr_lhs, exprcode, expr_rhs)
check_isinstance(expr_lhs, gcc.Tree)
check_isinstance(exprcode, type) # it's a type, rather than an instance
check_isinstance(expr_rhs, gcc.Tree)
lhs = self.eval_rvalue(expr_lhs, stmt.loc)
rhs = self.eval_rvalue(expr_rhs, stmt.loc)
check_isinstance(lhs, AbstractValue)
check_isinstance(rhs, AbstractValue)
# Detect usage of uninitialized data:
if isinstance(lhs, UninitializedData):
raise UsageOfUninitializedData(self, expr_lhs, lhs,
'comparison against uninitialized data (%s)' % expr_lhs)
if isinstance(rhs, UninitializedData):
raise UsageOfUninitializedData(self, expr_rhs, rhs,
'comparison against uninitialized data (%s)' % expr_rhs)
if exprcode == gcc.EqExpr:
result = lhs.eval_comparison('eq', rhs, expr_rhs)
if result is not None:
return result
elif exprcode == gcc.NeExpr:
result = lhs.eval_comparison('eq', rhs, expr_rhs)
if result is not None:
return not result
elif exprcode == gcc.LtExpr:
result = lhs.eval_comparison('lt', rhs, expr_rhs)
if result is not None:
return result
elif exprcode == gcc.LeExpr:
result = lhs.eval_comparison('le', rhs, expr_rhs)
if result is not None:
return result
elif exprcode == gcc.GeExpr:
result = lhs.eval_comparison('ge', rhs, expr_rhs)
if result is not None:
return result
elif exprcode == gcc.GtExpr:
result = lhs.eval_comparison('gt', rhs, expr_rhs)
if result is not None:
return result
# Specialcasing: comparison of unknown ptr with NULL:
if (isinstance(expr_lhs, gcc.VarDecl)
and isinstance(expr_rhs, gcc.IntegerCst)
and isinstance(expr_lhs.type, gcc.PointerType)):
# Split the ptr variable immediately into NULL and non-NULL
# versions, so that we can evaluate the true and false branch with
# explicitly data
log('splitting %s into non-NULL/NULL pointers', expr_lhs)
self.raise_split_value(lhs, stmt.loc)
log('unable to compare %r with %r', lhs, rhs)
#raise NotImplementedError("Don't know how to do %s comparison of %s with %s"
# % (exprcode, lhs, rhs))
return UnknownValue(stmt.lhs.type, stmt.loc)
def eval_binop_args(self, stmt):
rhs = stmt.rhs
a = self.eval_rvalue(rhs[0], stmt.loc)
b = self.eval_rvalue(rhs[1], stmt.loc)
log('a: %r', a)
log('b: %r', b)
return a, b
def eval_rhs(self, stmt):
log('eval_rhs(%s): %s', stmt, stmt.rhs)
rhs = stmt.rhs
# Handle arithmetic and boolean expressions:
if stmt.exprcode in (gcc.PlusExpr, gcc.MinusExpr, gcc.MultExpr, gcc.TruncDivExpr,
gcc.TruncModExpr,
gcc.RdivExpr, gcc.ExactDivExpr,
gcc.MaxExpr, gcc.MinExpr,
gcc.BitIorExpr, gcc.BitAndExpr, gcc.BitXorExpr,
gcc.LshiftExpr, gcc.RshiftExpr,
gcc.TruthAndExpr, gcc.TruthOrExpr
):
a, b = self.eval_binop_args(stmt)
if isinstance(a, UninitializedData):
raise UsageOfUninitializedData(self, stmt.rhs[0], a,
'usage of uninitialized data (%s) on left-hand side of %s'
% (stmt.rhs[0], stmt.exprcode.get_symbol()))
if isinstance(b, UninitializedData):
raise UsageOfUninitializedData(self, stmt.rhs[1], b,
'usage of uninitialized data (%s) on right-hand side of %s'
% (stmt.rhs[0], stmt.exprcode.get_symbol()))
try:
c = a.eval_binop(stmt.exprcode, b, rhs[1], stmt.lhs.type, stmt.loc)
check_isinstance(c, AbstractValue)
return c
except NotImplementedError:
return UnknownValue.make(stmt.lhs.type, stmt.loc)
elif stmt.exprcode == gcc.ComponentRef:
return self.eval_rvalue(rhs[0], stmt.loc)
elif stmt.exprcode == gcc.VarDecl:
return self.eval_rvalue(rhs[0], stmt.loc)
elif stmt.exprcode == gcc.ParmDecl:
return self.eval_rvalue(rhs[0], stmt.loc)
elif stmt.exprcode == gcc.IntegerCst:
return self.eval_rvalue(rhs[0], stmt.loc)
elif stmt.exprcode == gcc.RealCst:
return self.eval_rvalue(rhs[0], stmt.loc)
elif stmt.exprcode == gcc.StringCst:
return self.eval_rvalue(rhs[0], stmt.loc)
elif stmt.exprcode == gcc.AddrExpr:
return self.eval_rvalue(rhs[0], stmt.loc)
elif stmt.exprcode == gcc.NopExpr:
return self.eval_rvalue(rhs[0], stmt.loc)
elif stmt.exprcode == gcc.ArrayRef:
return self.eval_rvalue(rhs[0], stmt.loc)
elif stmt.exprcode == gcc.MemRef:
return self.eval_rvalue(rhs[0], stmt.loc)
elif stmt.exprcode == gcc.PointerPlusExpr:
try:
region = self.pointer_plus_region(stmt)
return PointerToRegion(stmt.lhs.type, stmt.loc, region)
except NotImplementedError:
return UnknownValue.make(stmt.lhs.type, stmt.loc)
elif stmt.exprcode in (gcc.EqExpr, gcc.NeExpr, gcc.LtExpr,
gcc.LeExpr, gcc.GeExpr, gcc.GtExpr):
# Comparisons
result = self.eval_condition(stmt, rhs[0], stmt.exprcode, rhs[1])
if result is not None:
return ConcreteValue(stmt.lhs.type, stmt.loc,
1 if result else 0)
else:
return UnknownValue.make(stmt.lhs.type, stmt.loc)
# Unary expressions:
elif stmt.exprcode in (gcc.AbsExpr, gcc.BitNotExpr, gcc.ConvertExpr,
gcc.NegateExpr, gcc.FixTruncExpr, gcc.FloatExpr):
v_rhs = self.eval_rvalue(stmt.rhs[0], stmt.loc)
return v_rhs.eval_unary_op(stmt.exprcode, stmt.lhs.type, stmt.loc)
elif stmt.exprcode == gcc.BitFieldRef:
return self.eval_rvalue(rhs[0], stmt.loc)
elif stmt.exprcode == gcc.Constructor:
# Default value for whole array becomes 0:
return ConcreteValue(stmt.lhs.type,
stmt.loc, 0)
else:
raise NotImplementedError("Don't know how to cope with exprcode: %r (%s) at %s"
% (stmt.exprcode, stmt.exprcode, stmt.loc))
def _get_transitions_for_GimpleAssign(self, stmt):
log('stmt.lhs: %r %s', stmt.lhs, stmt.lhs)
log('stmt.rhs: %r %s', stmt.rhs, stmt.rhs)
log('stmt: %r %s', stmt, stmt)
log('stmt.exprcode: %r', stmt.exprcode)
value = self.eval_rhs(stmt)
log('value from eval_rhs: %r', value)
check_isinstance(value, AbstractValue)
if isinstance(value, DeallocatedMemory):
raise ReadFromDeallocatedMemory(stmt, value)
nextstate = self.use_next_stmt_node()
return [self.mktrans_assignment(stmt.lhs,
value,
None)]
def _get_transitions_for_GimpleReturn(self, stmt):
#log('stmt.lhs: %r %s', stmt.lhs, stmt.lhs)
#log('stmt.rhs: %r %s', stmt.rhs, stmt.rhs)
log('stmt: %r %s', stmt, stmt)
log('stmt.retval: %r', stmt.retval)
nextstate = self.copy()
if stmt.retval:
rvalue = self.eval_rvalue(stmt.retval, stmt.loc)
log('rvalue from eval_rvalue: %r', rvalue)
nextstate.return_rvalue = rvalue
nextstate.has_returned = True
return [Transition(self, nextstate, 'returning')]
def _get_transitions_for_GimpleSwitch(self, stmt):
def get_labels_for_rvalue(self, stmt, rvalue):
# Gather all possible labels for the given rvalue
result = []
for label in stmt.labels:
# FIXME: for now, treat all labels as possible:
result.append(label)
return result
log('stmt.indexvar: %r', stmt.indexvar)
log('stmt.labels: %r', stmt.labels)
indexval = self.eval_rvalue(stmt.indexvar, stmt.loc)
log('indexval: %r', indexval)
labels = get_labels_for_rvalue(self, stmt, indexval)
log('labels: %r', labels)
result = []
for label in labels:
newstate = self.copy()
bb = self.stmtgraph.fun.cfg.get_block_for_label(label.target)
newstate.stmtnode = self.stmtgraph.entry_of_bb[bb]
if label.low:
check_isinstance(label.low, gcc.IntegerCst)
if label.high:
check_isinstance(label.high, gcc.IntegerCst)
desc = 'when following cases %i...%i' % (label.low.constant, label.high.constant)
else:
desc = 'when following case %i' % label.low.constant
else:
desc = 'when following default'
result.append(Transition(self,
newstate,
desc))
return result
def _get_transitions_for_GimpleAsm(self, stmt):
log('stmt: %r %s', stmt, stmt)
if stmt.string == '':
# Empty fragment of inline assembler:
s_next = self.use_next_stmt_node()
return [Transition(self, s_next, None)]
raise NotImplementedError('Unable to handle inline assembler: %s'
% stmt.string)
def get_persistent_refs_for_region(self, dst_region):
# Locate all regions containing pointers that point at the given region
# that are either on the heap or are globals (not locals)
check_isinstance(dst_region, Region)
result = []
for src_region in self.get_all_refs_for_region(dst_region):
if src_region.is_on_stack():
continue
result.append(src_region)
return result
def get_all_refs_for_region(self, dst_region):
# Locate all regions containing pointers that point at the given region
check_isinstance(dst_region, Region)
result = []
for src_region in self.value_for_region:
v = self.value_for_region[src_region]
if isinstance(v, PointerToRegion):
if v.region == dst_region:
result.append(src_region)
return result
region_id = 0
class Transition(object):
__slots__ = ('src', # State
'dest', # State
'desc', # str
)
def __init__(self, src, dest, desc):
check_isinstance(src, State)
check_isinstance(dest, State)
if desc:
check_isinstance(desc, str)
self.src = src
self.dest = dest
self.desc = desc
def __repr__(self):
return 'Transition(%r, %r)' % (self.dest, self.desc)
def log(self, logger):
logger('desc: %r' % self.desc)
logger('dest:')
self.dest.log(logger)
class Trace(object):
__slots__ = ('states', 'transitions', 'err', 'paths_taken')
"""A sequence of States and Transitions"""
def __init__(self):
self.states = []
self.transitions = []
self.err = None
# A list of (src gcc.StmtNode, dest gcc.StmtNode) pairs
self.paths_taken = []
def add(self, transition):
check_isinstance(transition, Transition)
self.states.append(transition.dest)
self.transitions.append(transition)
if transition.src.stmtnode.bb != transition.dest.stmtnode.bb:
self.paths_taken.append( (transition.src.stmtnode.bb,
transition.dest.stmtnode.bb) )
return self
def add_error(self, err):
self.err = err
def copy(self):
t = Trace()
t.states = self.states[:]
t.transitions = self.transitions[:]
t.err = self.err # FIXME: should this be a copy?
t.paths_taken = self.paths_taken[:]
return t
def log(self, logger, name):
logger('%s:' % name)
for i, state in enumerate(self.states):
logger('%i:' % i)
state.log(logger)
if self.err:
logger(' Trace ended with error: %s' % self.err)
def get_last_stmt(self):
return self.states[-1].stmtnode.get_stmt()
def return_value(self):
return self.states[-1].return_rvalue
def has_looped(self):
"""
Is the tail transition a path we've followed before?
"""
endstate = self.states[-1]
if hasattr(endstate, 'fromsplit'):
# We have a state that was created from a SplitValue. It will have
# the same location as the state before it (before the split).
# Don't treat it as a loop:
return False
if endstate.not_returning:
# The handler not "exit" etc leads to a transition that has a
# repeated location:
return False
endtransition = self.transitions[-1]
if 0:
gcc.inform(endstate.get_gcc_loc(endstate.fun),
('paths_taken: %s'
% (self.paths_taken,)))
gcc.inform(endstate.get_gcc_loc(endstate.fun),
'src, loc: %s' % ((endtransition.src.loc, endtransition.dest.loc),))
# Is this a path we've followed before?
src_bb = endtransition.src.stmtnode.bb
dest_bb = endtransition.dest.stmtnode.bb
if src_bb != dest_bb:
if (src_bb, dest_bb) in self.paths_taken[0:-1]:
return True
def get_all_var_region_pairs(self):
"""
Get the set of all (LHS,region) pairs in region_for_var within all of
the states in this trace, without duplicates
"""
result = set()
for s_iter in self.states:
for var_iter, r_iter in s_iter.region_for_var.items():
pair = (var_iter, r_iter)
result.add(pair)
return result
def var_points_unambiguously_to(self, r_srcptr, r_dstptr):
"""
Does the source region (a pointer variable) always point to the
destination region (or be NULL, or uninitialized) throughout all of
the states in this trace?
"""
ever_had_value = False
#print('r_srcptr, r_dstptr: %r, %r' % (r_srcptr, r_dstptr))
for s_iter in self.states:
if r_srcptr not in s_iter.value_for_region:
continue
v_srcptr = s_iter.value_for_region[r_srcptr]
#print ('v_srcptr: %s' % v_srcptr)
# It doesn't matter if it's uninitialized, or NULL:
if isinstance(v_srcptr, UninitializedData):
continue
if v_srcptr.is_null_ptr():
continue
if isinstance(v_srcptr, PointerToRegion):
if v_srcptr.region == r_dstptr:
ever_had_value = True
continue
else:
# This variable is pointing at another region at
# this point within the trace:
return False
# Some kind of value we weren't expecting:
return False
# If we get here, there was no state in which the var pointed to
# anything else.
#
# If it ever pointed to the region in question, then it's a good way
# of referring to the region:
return ever_had_value
def get_description_for_region(self, r_in):
"""
Try to come up with a human-readable description of the input region
"""
check_isinstance(r_in, Region)
# If a local pointer variable has just the given region as a value (as
# well as its initial "uninitialized" or NULL states), then that's a
# good name for this region:
for var_iter, r_iter in self.get_all_var_region_pairs():
if self.var_points_unambiguously_to(r_iter, r_in):
if isinstance(r_iter, (RegionForLocal, RegionForGlobal)):
# Only do it for variables with names, not for temporaries:
if r_iter.vardecl.name:
return "'*%s'" % r_iter.vardecl.name
# Otherwise, just use the name of the region
return r_in.name
def true_edge(stmtnode):
for e in stmtnode.succs:
if e.true_value:
return e
def false_edge(stmtnode):
for e in stmtnode.succs:
if e.false_value:
return e
def process_splittable_transitions(transitions, callback):
"""
Apply a processing function to each Transition in transitions,
handling the case where a SplitValue exception is raised by
splitting the destination states.
Return a new list of Transition instances: which will be the
old Transition objects, potentially with additional Transition
instances if any have been split
"""
newtransitions = []
for t_iter in transitions:
try:
callback(t_iter)
newtransitions.append(t_iter)
except SplitValue:
err = sys.exc_info()[1]
splittransitions = err.split(t_iter.dest)
check_isinstance(splittransitions, list)
# Recurse:
newtransitions += process_splittable_transitions(splittransitions,
callback)
return newtransitions
class Resources:
# Resource tracking for a state
def __init__(self):
# Resources that we've acquired:
self._acquisitions = []
# Resources that we've released:
self._releases = []
def copy(self):
new = Resources()
new._acquisitions = self._acquisitions[:]
new._releases = self._releases[:]
return new
def acquire(self, resource):
self._acquisitions.append(resource)
def release(self, resource):
self._releases.append(resource)
def log(self, logger):
logger('resources:')
logger('acquisitions: %s' % self._acquisitions)
logger('releases: %s' % self._releases)
class TooComplicated(Exception):
"""
The function is too complicated for the checker to analyze.
We have a list of Trace instances, each of which is "complete" in the sense
that it fully captures one path through the function. However, we know
that the list itself is incomplete: it's not the full list of all
possible traces.
"""
def __init__(self, complete_traces):
check_isinstance(complete_traces, list)
self.complete_traces = complete_traces
class Limits:
"""
Resource limits, to avoid an analysis going out of control
"""
def __init__(self, maxtrans):
self.maxtrans = maxtrans
self.trans_seen = 0
def on_transition(self, transition, result):
"""
result is a list of all *complete* traces so far
"""
if 0:
print('%s -> %s'
% (transition.src.stmtnode, transition.dest.stmtnode))
self.trans_seen += 1
if self.trans_seen > self.maxtrans:
raise TooComplicated(result)
def iter_traces(stmtgraph, facets, prefix=None, limits=None, depth=0):
"""
Traverse the tree of traces of program state, returning a list
of Trace instances.
For now, don't include any traces that contain loops, as a primitive
way of ensuring termination of the analysis
This is recursive, setting up a depth-first traversal of the state tree.
If it's interrupted by a TooComplicated exception, we should at least
capture an incomplete list of paths down to some of the bottoms of the
tree.
"""
fun = stmtgraph.fun
log('iter_traces(%r, %r, %r)', fun, facets, prefix)
if prefix is None:
prefix = Trace()
curstate = State(stmtgraph,
stmtgraph.get_entry_nodes()[0],
None,
facets,
None, None, None)
#Resources())
curstate.init_for_function(fun)
for key in facets:
facet_cls = facets[key]
f_new = facet_cls(curstate, fun=fun)
setattr(curstate, key, f_new)
f_new.init_for_function(fun)
else:
check_isinstance(prefix, Trace)
curstate = prefix.states[-1]
if curstate.has_returned:
# This state has returned a value (and hence terminated):
return [prefix]
if curstate.not_returning:
# This state has called "exit" or similar, and thus this
# trace should terminate:
return [prefix]
# Stop interpreting when you see a loop, to ensure termination:
if prefix.has_looped():
log('loop detected; stopping iteration')
if 0:
gcc.inform(curstate.get_gcc_loc(fun),
'loop detected; stopping iteration')
# Don't return the prefix so far: it is not a complete trace
return []
# We need the prevstate in order to handle Phi nodes
if len(prefix.states) > 1:
prevstate = prefix.states[-2]
else:
prevstate = None
prefix.log(log, 'PREFIX')
log(' %s:%s', fun.decl.name, curstate.stmtnode)
try:
transitions = curstate.get_transitions()
check_isinstance(transitions, list)
except PredictedError:
# We're at a terminating state:
err = sys.exc_info()[1]
err.loc = prefix.get_last_stmt().loc
trace_with_err = prefix.copy()
trace_with_err.add_error(err)
trace_with_err.log(log, 'FINISHED TRACE WITH ERROR: %s' % err)
return [trace_with_err]
except SplitValue:
# Split the state up, splitting into parallel worlds with different
# values for the given value
# FIXME: this doesn't work; it thinks it's a loop :(
err = sys.exc_info()[1]
transitions = err.split(curstate)
check_isinstance(transitions, list)
log('transitions: %s', transitions)
if len(transitions) > 0:
result = []
for transition in transitions:
check_isinstance(transition, Transition)
transition.dest.verify()
# Potentially raise a TooComplicated exception:
if limits:
limits.on_transition(transition, result)
newprefix = prefix.copy().add(transition)
# Recurse
# This gives us a depth-first traversal of the state tree
try:
for trace in iter_traces(stmtgraph, facets, newprefix, limits,
depth + 1):
result.append(trace)
except TooComplicated:
err = sys.exc_info()[1]
traces = err.complete_traces
traces += result
raise TooComplicated(traces)
return result
else:
# We're at a terminating state:
prefix.log(log, 'FINISHED TRACE')
return [prefix]
class StateGraph:
"""
A graph of states, representing the various routes through a function,
tracking state.
For now, we give up when we encounter a loop, as an easy way to ensure
termination of the analysis
"""
def __init__(self, fun, logger, stateclass):
check_isinstance(fun, gcc.Function)
self.fun = fun
self.states = []
self.transitions = []
self.stateclass = stateclass
logger('StateGraph.__init__(%r)' % fun)
# Recursively gather states:
initial = stateclass(Location.get_block_start(fun.cfg.entry),
None, None, None,
Resources(),
ConcreteValue(get_PyObjectPtr(), fun.start, 0))
initial.init_for_function(fun)
self.states.append(initial)
self._gather_states(initial, logger)
def _gather_states(self, curstate, logger):
logger(' %s:%s' % (self.fun.decl.name, curstate.stmtnode))
try:
transitions = curstate.get_transitions()
#print transitions
check_isinstance(transitions, list)
except PredictedError:
# We're at a terminating state:
err = sys.exc_info()[1]
errstate = curstate.copy()
transition = Transition(curstate, errstate, str(err))
self.states.append(transition.dest)
self.transitions.append(transition)
return
logger('transitions:', 2)
for t in transitions:
t.log(logger, 3)
if len(transitions) > 0:
for transition in transitions:
# FIXME: what about loops???
check_isinstance(transition, Transition)
self.states.append(transition.dest)
self.transitions.append(transition)
if transition.dest.has_returned():
# This state has returned a value (and hence terminated)
continue
if transition.dest.not_returning():
# This state has called "exit" or similar, and thus this
# trace should terminate:
continue
# Recurse:
self._gather_states(transition.dest, logger)
else:
# We're at a terminating state:
logger('FINISHED TRACE')
def get_prev_state(self, state):
assert state in self.states
for t in self.transitions:
if t.dest == state:
return t.src
# Not found:
return None
def extra_text(msg, indent):
sys.stderr.write('%s%s\n' % (' ' * indent, msg))
|