This file is indexed.

/usr/share/go-1.8/src/fmt/scan.go is in golang-1.8-src 1.8.3-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package fmt

import (
	"errors"
	"io"
	"math"
	"os"
	"reflect"
	"strconv"
	"sync"
	"unicode/utf8"
)

// ScanState represents the scanner state passed to custom scanners.
// Scanners may do rune-at-a-time scanning or ask the ScanState
// to discover the next space-delimited token.
type ScanState interface {
	// ReadRune reads the next rune (Unicode code point) from the input.
	// If invoked during Scanln, Fscanln, or Sscanln, ReadRune() will
	// return EOF after returning the first '\n' or when reading beyond
	// the specified width.
	ReadRune() (r rune, size int, err error)
	// UnreadRune causes the next call to ReadRune to return the same rune.
	UnreadRune() error
	// SkipSpace skips space in the input. Newlines are treated appropriately
	// for the operation being performed; see the package documentation
	// for more information.
	SkipSpace()
	// Token skips space in the input if skipSpace is true, then returns the
	// run of Unicode code points c satisfying f(c).  If f is nil,
	// !unicode.IsSpace(c) is used; that is, the token will hold non-space
	// characters. Newlines are treated appropriately for the operation being
	// performed; see the package documentation for more information.
	// The returned slice points to shared data that may be overwritten
	// by the next call to Token, a call to a Scan function using the ScanState
	// as input, or when the calling Scan method returns.
	Token(skipSpace bool, f func(rune) bool) (token []byte, err error)
	// Width returns the value of the width option and whether it has been set.
	// The unit is Unicode code points.
	Width() (wid int, ok bool)
	// Because ReadRune is implemented by the interface, Read should never be
	// called by the scanning routines and a valid implementation of
	// ScanState may choose always to return an error from Read.
	Read(buf []byte) (n int, err error)
}

// Scanner is implemented by any value that has a Scan method, which scans
// the input for the representation of a value and stores the result in the
// receiver, which must be a pointer to be useful. The Scan method is called
// for any argument to Scan, Scanf, or Scanln that implements it.
type Scanner interface {
	Scan(state ScanState, verb rune) error
}

// Scan scans text read from standard input, storing successive
// space-separated values into successive arguments. Newlines count
// as space. It returns the number of items successfully scanned.
// If that is less than the number of arguments, err will report why.
func Scan(a ...interface{}) (n int, err error) {
	return Fscan(os.Stdin, a...)
}

// Scanln is similar to Scan, but stops scanning at a newline and
// after the final item there must be a newline or EOF.
func Scanln(a ...interface{}) (n int, err error) {
	return Fscanln(os.Stdin, a...)
}

// Scanf scans text read from standard input, storing successive
// space-separated values into successive arguments as determined by
// the format. It returns the number of items successfully scanned.
// If that is less than the number of arguments, err will report why.
// Newlines in the input must match newlines in the format.
// The one exception: the verb %c always scans the next rune in the
// input, even if it is a space (or tab etc.) or newline.
func Scanf(format string, a ...interface{}) (n int, err error) {
	return Fscanf(os.Stdin, format, a...)
}

type stringReader string

func (r *stringReader) Read(b []byte) (n int, err error) {
	n = copy(b, *r)
	*r = (*r)[n:]
	if n == 0 {
		err = io.EOF
	}
	return
}

// Sscan scans the argument string, storing successive space-separated
// values into successive arguments. Newlines count as space. It
// returns the number of items successfully scanned. If that is less
// than the number of arguments, err will report why.
func Sscan(str string, a ...interface{}) (n int, err error) {
	return Fscan((*stringReader)(&str), a...)
}

// Sscanln is similar to Sscan, but stops scanning at a newline and
// after the final item there must be a newline or EOF.
func Sscanln(str string, a ...interface{}) (n int, err error) {
	return Fscanln((*stringReader)(&str), a...)
}

// Sscanf scans the argument string, storing successive space-separated
// values into successive arguments as determined by the format. It
// returns the number of items successfully parsed.
// Newlines in the input must match newlines in the format.
func Sscanf(str string, format string, a ...interface{}) (n int, err error) {
	return Fscanf((*stringReader)(&str), format, a...)
}

// Fscan scans text read from r, storing successive space-separated
// values into successive arguments. Newlines count as space. It
// returns the number of items successfully scanned. If that is less
// than the number of arguments, err will report why.
func Fscan(r io.Reader, a ...interface{}) (n int, err error) {
	s, old := newScanState(r, true, false)
	n, err = s.doScan(a)
	s.free(old)
	return
}

// Fscanln is similar to Fscan, but stops scanning at a newline and
// after the final item there must be a newline or EOF.
func Fscanln(r io.Reader, a ...interface{}) (n int, err error) {
	s, old := newScanState(r, false, true)
	n, err = s.doScan(a)
	s.free(old)
	return
}

// Fscanf scans text read from r, storing successive space-separated
// values into successive arguments as determined by the format. It
// returns the number of items successfully parsed.
// Newlines in the input must match newlines in the format.
func Fscanf(r io.Reader, format string, a ...interface{}) (n int, err error) {
	s, old := newScanState(r, false, false)
	n, err = s.doScanf(format, a)
	s.free(old)
	return
}

// scanError represents an error generated by the scanning software.
// It's used as a unique signature to identify such errors when recovering.
type scanError struct {
	err error
}

const eof = -1

// ss is the internal implementation of ScanState.
type ss struct {
	rs    io.RuneScanner // where to read input
	buf   buffer         // token accumulator
	count int            // runes consumed so far.
	atEOF bool           // already read EOF
	ssave
}

// ssave holds the parts of ss that need to be
// saved and restored on recursive scans.
type ssave struct {
	validSave bool // is or was a part of an actual ss.
	nlIsEnd   bool // whether newline terminates scan
	nlIsSpace bool // whether newline counts as white space
	argLimit  int  // max value of ss.count for this arg; argLimit <= limit
	limit     int  // max value of ss.count.
	maxWid    int  // width of this arg.
}

// The Read method is only in ScanState so that ScanState
// satisfies io.Reader. It will never be called when used as
// intended, so there is no need to make it actually work.
func (s *ss) Read(buf []byte) (n int, err error) {
	return 0, errors.New("ScanState's Read should not be called. Use ReadRune")
}

func (s *ss) ReadRune() (r rune, size int, err error) {
	if s.atEOF || s.count >= s.argLimit {
		err = io.EOF
		return
	}

	r, size, err = s.rs.ReadRune()
	if err == nil {
		s.count++
		if s.nlIsEnd && r == '\n' {
			s.atEOF = true
		}
	} else if err == io.EOF {
		s.atEOF = true
	}
	return
}

func (s *ss) Width() (wid int, ok bool) {
	if s.maxWid == hugeWid {
		return 0, false
	}
	return s.maxWid, true
}

// The public method returns an error; this private one panics.
// If getRune reaches EOF, the return value is EOF (-1).
func (s *ss) getRune() (r rune) {
	r, _, err := s.ReadRune()
	if err != nil {
		if err == io.EOF {
			return eof
		}
		s.error(err)
	}
	return
}

// mustReadRune turns io.EOF into a panic(io.ErrUnexpectedEOF).
// It is called in cases such as string scanning where an EOF is a
// syntax error.
func (s *ss) mustReadRune() (r rune) {
	r = s.getRune()
	if r == eof {
		s.error(io.ErrUnexpectedEOF)
	}
	return
}

func (s *ss) UnreadRune() error {
	s.rs.UnreadRune()
	s.atEOF = false
	s.count--
	return nil
}

func (s *ss) error(err error) {
	panic(scanError{err})
}

func (s *ss) errorString(err string) {
	panic(scanError{errors.New(err)})
}

func (s *ss) Token(skipSpace bool, f func(rune) bool) (tok []byte, err error) {
	defer func() {
		if e := recover(); e != nil {
			if se, ok := e.(scanError); ok {
				err = se.err
			} else {
				panic(e)
			}
		}
	}()
	if f == nil {
		f = notSpace
	}
	s.buf = s.buf[:0]
	tok = s.token(skipSpace, f)
	return
}

// space is a copy of the unicode.White_Space ranges,
// to avoid depending on package unicode.
var space = [][2]uint16{
	{0x0009, 0x000d},
	{0x0020, 0x0020},
	{0x0085, 0x0085},
	{0x00a0, 0x00a0},
	{0x1680, 0x1680},
	{0x2000, 0x200a},
	{0x2028, 0x2029},
	{0x202f, 0x202f},
	{0x205f, 0x205f},
	{0x3000, 0x3000},
}

func isSpace(r rune) bool {
	if r >= 1<<16 {
		return false
	}
	rx := uint16(r)
	for _, rng := range space {
		if rx < rng[0] {
			return false
		}
		if rx <= rng[1] {
			return true
		}
	}
	return false
}

// notSpace is the default scanning function used in Token.
func notSpace(r rune) bool {
	return !isSpace(r)
}

// SkipSpace provides Scan methods the ability to skip space and newline
// characters in keeping with the current scanning mode set by format strings
// and Scan/Scanln.
func (s *ss) SkipSpace() {
	s.skipSpace(false)
}

// readRune is a structure to enable reading UTF-8 encoded code points
// from an io.Reader. It is used if the Reader given to the scanner does
// not already implement io.RuneScanner.
type readRune struct {
	reader   io.Reader
	buf      [utf8.UTFMax]byte // used only inside ReadRune
	pending  int               // number of bytes in pendBuf; only >0 for bad UTF-8
	pendBuf  [utf8.UTFMax]byte // bytes left over
	peekRune rune              // if >=0 next rune; when <0 is ^(previous Rune)
}

// readByte returns the next byte from the input, which may be
// left over from a previous read if the UTF-8 was ill-formed.
func (r *readRune) readByte() (b byte, err error) {
	if r.pending > 0 {
		b = r.pendBuf[0]
		copy(r.pendBuf[0:], r.pendBuf[1:])
		r.pending--
		return
	}
	n, err := io.ReadFull(r.reader, r.pendBuf[:1])
	if n != 1 {
		return 0, err
	}
	return r.pendBuf[0], err
}

// ReadRune returns the next UTF-8 encoded code point from the
// io.Reader inside r.
func (r *readRune) ReadRune() (rr rune, size int, err error) {
	if r.peekRune >= 0 {
		rr = r.peekRune
		r.peekRune = ^r.peekRune
		size = utf8.RuneLen(rr)
		return
	}
	r.buf[0], err = r.readByte()
	if err != nil {
		return
	}
	if r.buf[0] < utf8.RuneSelf { // fast check for common ASCII case
		rr = rune(r.buf[0])
		size = 1 // Known to be 1.
		// Flip the bits of the rune so it's available to UnreadRune.
		r.peekRune = ^rr
		return
	}
	var n int
	for n = 1; !utf8.FullRune(r.buf[:n]); n++ {
		r.buf[n], err = r.readByte()
		if err != nil {
			if err == io.EOF {
				err = nil
				break
			}
			return
		}
	}
	rr, size = utf8.DecodeRune(r.buf[:n])
	if size < n { // an error, save the bytes for the next read
		copy(r.pendBuf[r.pending:], r.buf[size:n])
		r.pending += n - size
	}
	// Flip the bits of the rune so it's available to UnreadRune.
	r.peekRune = ^rr
	return
}

func (r *readRune) UnreadRune() error {
	if r.peekRune >= 0 {
		return errors.New("fmt: scanning called UnreadRune with no rune available")
	}
	// Reverse bit flip of previously read rune to obtain valid >=0 state.
	r.peekRune = ^r.peekRune
	return nil
}

var ssFree = sync.Pool{
	New: func() interface{} { return new(ss) },
}

// newScanState allocates a new ss struct or grab a cached one.
func newScanState(r io.Reader, nlIsSpace, nlIsEnd bool) (s *ss, old ssave) {
	s = ssFree.Get().(*ss)
	if rs, ok := r.(io.RuneScanner); ok {
		s.rs = rs
	} else {
		s.rs = &readRune{reader: r, peekRune: -1}
	}
	s.nlIsSpace = nlIsSpace
	s.nlIsEnd = nlIsEnd
	s.atEOF = false
	s.limit = hugeWid
	s.argLimit = hugeWid
	s.maxWid = hugeWid
	s.validSave = true
	s.count = 0
	return
}

// free saves used ss structs in ssFree; avoid an allocation per invocation.
func (s *ss) free(old ssave) {
	// If it was used recursively, just restore the old state.
	if old.validSave {
		s.ssave = old
		return
	}
	// Don't hold on to ss structs with large buffers.
	if cap(s.buf) > 1024 {
		return
	}
	s.buf = s.buf[:0]
	s.rs = nil
	ssFree.Put(s)
}

// skipSpace skips spaces and maybe newlines.
func (s *ss) skipSpace(stopAtNewline bool) {
	for {
		r := s.getRune()
		if r == eof {
			return
		}
		if r == '\r' && s.peek("\n") {
			continue
		}
		if r == '\n' {
			if stopAtNewline {
				break
			}
			if s.nlIsSpace {
				continue
			}
			s.errorString("unexpected newline")
			return
		}
		if !isSpace(r) {
			s.UnreadRune()
			break
		}
	}
}

// token returns the next space-delimited string from the input. It
// skips white space. For Scanln, it stops at newlines. For Scan,
// newlines are treated as spaces.
func (s *ss) token(skipSpace bool, f func(rune) bool) []byte {
	if skipSpace {
		s.skipSpace(false)
	}
	// read until white space or newline
	for {
		r := s.getRune()
		if r == eof {
			break
		}
		if !f(r) {
			s.UnreadRune()
			break
		}
		s.buf.WriteRune(r)
	}
	return s.buf
}

var complexError = errors.New("syntax error scanning complex number")
var boolError = errors.New("syntax error scanning boolean")

func indexRune(s string, r rune) int {
	for i, c := range s {
		if c == r {
			return i
		}
	}
	return -1
}

// consume reads the next rune in the input and reports whether it is in the ok string.
// If accept is true, it puts the character into the input token.
func (s *ss) consume(ok string, accept bool) bool {
	r := s.getRune()
	if r == eof {
		return false
	}
	if indexRune(ok, r) >= 0 {
		if accept {
			s.buf.WriteRune(r)
		}
		return true
	}
	if r != eof && accept {
		s.UnreadRune()
	}
	return false
}

// peek reports whether the next character is in the ok string, without consuming it.
func (s *ss) peek(ok string) bool {
	r := s.getRune()
	if r != eof {
		s.UnreadRune()
	}
	return indexRune(ok, r) >= 0
}

func (s *ss) notEOF() {
	// Guarantee there is data to be read.
	if r := s.getRune(); r == eof {
		panic(io.EOF)
	}
	s.UnreadRune()
}

// accept checks the next rune in the input. If it's a byte (sic) in the string, it puts it in the
// buffer and returns true. Otherwise it return false.
func (s *ss) accept(ok string) bool {
	return s.consume(ok, true)
}

// okVerb verifies that the verb is present in the list, setting s.err appropriately if not.
func (s *ss) okVerb(verb rune, okVerbs, typ string) bool {
	for _, v := range okVerbs {
		if v == verb {
			return true
		}
	}
	s.errorString("bad verb '%" + string(verb) + "' for " + typ)
	return false
}

// scanBool returns the value of the boolean represented by the next token.
func (s *ss) scanBool(verb rune) bool {
	s.skipSpace(false)
	s.notEOF()
	if !s.okVerb(verb, "tv", "boolean") {
		return false
	}
	// Syntax-checking a boolean is annoying. We're not fastidious about case.
	switch s.getRune() {
	case '0':
		return false
	case '1':
		return true
	case 't', 'T':
		if s.accept("rR") && (!s.accept("uU") || !s.accept("eE")) {
			s.error(boolError)
		}
		return true
	case 'f', 'F':
		if s.accept("aA") && (!s.accept("lL") || !s.accept("sS") || !s.accept("eE")) {
			s.error(boolError)
		}
		return false
	}
	return false
}

// Numerical elements
const (
	binaryDigits      = "01"
	octalDigits       = "01234567"
	decimalDigits     = "0123456789"
	hexadecimalDigits = "0123456789aAbBcCdDeEfF"
	sign              = "+-"
	period            = "."
	exponent          = "eEp"
)

// getBase returns the numeric base represented by the verb and its digit string.
func (s *ss) getBase(verb rune) (base int, digits string) {
	s.okVerb(verb, "bdoUxXv", "integer") // sets s.err
	base = 10
	digits = decimalDigits
	switch verb {
	case 'b':
		base = 2
		digits = binaryDigits
	case 'o':
		base = 8
		digits = octalDigits
	case 'x', 'X', 'U':
		base = 16
		digits = hexadecimalDigits
	}
	return
}

// scanNumber returns the numerical string with specified digits starting here.
func (s *ss) scanNumber(digits string, haveDigits bool) string {
	if !haveDigits {
		s.notEOF()
		if !s.accept(digits) {
			s.errorString("expected integer")
		}
	}
	for s.accept(digits) {
	}
	return string(s.buf)
}

// scanRune returns the next rune value in the input.
func (s *ss) scanRune(bitSize int) int64 {
	s.notEOF()
	r := int64(s.getRune())
	n := uint(bitSize)
	x := (r << (64 - n)) >> (64 - n)
	if x != r {
		s.errorString("overflow on character value " + string(r))
	}
	return r
}

// scanBasePrefix reports whether the integer begins with a 0 or 0x,
// and returns the base, digit string, and whether a zero was found.
// It is called only if the verb is %v.
func (s *ss) scanBasePrefix() (base int, digits string, found bool) {
	if !s.peek("0") {
		return 10, decimalDigits, false
	}
	s.accept("0")
	found = true // We've put a digit into the token buffer.
	// Special cases for '0' && '0x'
	base, digits = 8, octalDigits
	if s.peek("xX") {
		s.consume("xX", false)
		base, digits = 16, hexadecimalDigits
	}
	return
}

// scanInt returns the value of the integer represented by the next
// token, checking for overflow. Any error is stored in s.err.
func (s *ss) scanInt(verb rune, bitSize int) int64 {
	if verb == 'c' {
		return s.scanRune(bitSize)
	}
	s.skipSpace(false)
	s.notEOF()
	base, digits := s.getBase(verb)
	haveDigits := false
	if verb == 'U' {
		if !s.consume("U", false) || !s.consume("+", false) {
			s.errorString("bad unicode format ")
		}
	} else {
		s.accept(sign) // If there's a sign, it will be left in the token buffer.
		if verb == 'v' {
			base, digits, haveDigits = s.scanBasePrefix()
		}
	}
	tok := s.scanNumber(digits, haveDigits)
	i, err := strconv.ParseInt(tok, base, 64)
	if err != nil {
		s.error(err)
	}
	n := uint(bitSize)
	x := (i << (64 - n)) >> (64 - n)
	if x != i {
		s.errorString("integer overflow on token " + tok)
	}
	return i
}

// scanUint returns the value of the unsigned integer represented
// by the next token, checking for overflow. Any error is stored in s.err.
func (s *ss) scanUint(verb rune, bitSize int) uint64 {
	if verb == 'c' {
		return uint64(s.scanRune(bitSize))
	}
	s.skipSpace(false)
	s.notEOF()
	base, digits := s.getBase(verb)
	haveDigits := false
	if verb == 'U' {
		if !s.consume("U", false) || !s.consume("+", false) {
			s.errorString("bad unicode format ")
		}
	} else if verb == 'v' {
		base, digits, haveDigits = s.scanBasePrefix()
	}
	tok := s.scanNumber(digits, haveDigits)
	i, err := strconv.ParseUint(tok, base, 64)
	if err != nil {
		s.error(err)
	}
	n := uint(bitSize)
	x := (i << (64 - n)) >> (64 - n)
	if x != i {
		s.errorString("unsigned integer overflow on token " + tok)
	}
	return i
}

// floatToken returns the floating-point number starting here, no longer than swid
// if the width is specified. It's not rigorous about syntax because it doesn't check that
// we have at least some digits, but Atof will do that.
func (s *ss) floatToken() string {
	s.buf = s.buf[:0]
	// NaN?
	if s.accept("nN") && s.accept("aA") && s.accept("nN") {
		return string(s.buf)
	}
	// leading sign?
	s.accept(sign)
	// Inf?
	if s.accept("iI") && s.accept("nN") && s.accept("fF") {
		return string(s.buf)
	}
	// digits?
	for s.accept(decimalDigits) {
	}
	// decimal point?
	if s.accept(period) {
		// fraction?
		for s.accept(decimalDigits) {
		}
	}
	// exponent?
	if s.accept(exponent) {
		// leading sign?
		s.accept(sign)
		// digits?
		for s.accept(decimalDigits) {
		}
	}
	return string(s.buf)
}

// complexTokens returns the real and imaginary parts of the complex number starting here.
// The number might be parenthesized and has the format (N+Ni) where N is a floating-point
// number and there are no spaces within.
func (s *ss) complexTokens() (real, imag string) {
	// TODO: accept N and Ni independently?
	parens := s.accept("(")
	real = s.floatToken()
	s.buf = s.buf[:0]
	// Must now have a sign.
	if !s.accept("+-") {
		s.error(complexError)
	}
	// Sign is now in buffer
	imagSign := string(s.buf)
	imag = s.floatToken()
	if !s.accept("i") {
		s.error(complexError)
	}
	if parens && !s.accept(")") {
		s.error(complexError)
	}
	return real, imagSign + imag
}

// convertFloat converts the string to a float64value.
func (s *ss) convertFloat(str string, n int) float64 {
	if p := indexRune(str, 'p'); p >= 0 {
		// Atof doesn't handle power-of-2 exponents,
		// but they're easy to evaluate.
		f, err := strconv.ParseFloat(str[:p], n)
		if err != nil {
			// Put full string into error.
			if e, ok := err.(*strconv.NumError); ok {
				e.Num = str
			}
			s.error(err)
		}
		m, err := strconv.Atoi(str[p+1:])
		if err != nil {
			// Put full string into error.
			if e, ok := err.(*strconv.NumError); ok {
				e.Num = str
			}
			s.error(err)
		}
		return math.Ldexp(f, m)
	}
	f, err := strconv.ParseFloat(str, n)
	if err != nil {
		s.error(err)
	}
	return f
}

// convertComplex converts the next token to a complex128 value.
// The atof argument is a type-specific reader for the underlying type.
// If we're reading complex64, atof will parse float32s and convert them
// to float64's to avoid reproducing this code for each complex type.
func (s *ss) scanComplex(verb rune, n int) complex128 {
	if !s.okVerb(verb, floatVerbs, "complex") {
		return 0
	}
	s.skipSpace(false)
	s.notEOF()
	sreal, simag := s.complexTokens()
	real := s.convertFloat(sreal, n/2)
	imag := s.convertFloat(simag, n/2)
	return complex(real, imag)
}

// convertString returns the string represented by the next input characters.
// The format of the input is determined by the verb.
func (s *ss) convertString(verb rune) (str string) {
	if !s.okVerb(verb, "svqxX", "string") {
		return ""
	}
	s.skipSpace(false)
	s.notEOF()
	switch verb {
	case 'q':
		str = s.quotedString()
	case 'x', 'X':
		str = s.hexString()
	default:
		str = string(s.token(true, notSpace)) // %s and %v just return the next word
	}
	return
}

// quotedString returns the double- or back-quoted string represented by the next input characters.
func (s *ss) quotedString() string {
	s.notEOF()
	quote := s.getRune()
	switch quote {
	case '`':
		// Back-quoted: Anything goes until EOF or back quote.
		for {
			r := s.mustReadRune()
			if r == quote {
				break
			}
			s.buf.WriteRune(r)
		}
		return string(s.buf)
	case '"':
		// Double-quoted: Include the quotes and let strconv.Unquote do the backslash escapes.
		s.buf.WriteByte('"')
		for {
			r := s.mustReadRune()
			s.buf.WriteRune(r)
			if r == '\\' {
				// In a legal backslash escape, no matter how long, only the character
				// immediately after the escape can itself be a backslash or quote.
				// Thus we only need to protect the first character after the backslash.
				s.buf.WriteRune(s.mustReadRune())
			} else if r == '"' {
				break
			}
		}
		result, err := strconv.Unquote(string(s.buf))
		if err != nil {
			s.error(err)
		}
		return result
	default:
		s.errorString("expected quoted string")
	}
	return ""
}

// hexDigit returns the value of the hexadecimal digit.
func hexDigit(d rune) (int, bool) {
	digit := int(d)
	switch digit {
	case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
		return digit - '0', true
	case 'a', 'b', 'c', 'd', 'e', 'f':
		return 10 + digit - 'a', true
	case 'A', 'B', 'C', 'D', 'E', 'F':
		return 10 + digit - 'A', true
	}
	return -1, false
}

// hexByte returns the next hex-encoded (two-character) byte from the input.
// It returns ok==false if the next bytes in the input do not encode a hex byte.
// If the first byte is hex and the second is not, processing stops.
func (s *ss) hexByte() (b byte, ok bool) {
	rune1 := s.getRune()
	if rune1 == eof {
		return
	}
	value1, ok := hexDigit(rune1)
	if !ok {
		s.UnreadRune()
		return
	}
	value2, ok := hexDigit(s.mustReadRune())
	if !ok {
		s.errorString("illegal hex digit")
		return
	}
	return byte(value1<<4 | value2), true
}

// hexString returns the space-delimited hexpair-encoded string.
func (s *ss) hexString() string {
	s.notEOF()
	for {
		b, ok := s.hexByte()
		if !ok {
			break
		}
		s.buf.WriteByte(b)
	}
	if len(s.buf) == 0 {
		s.errorString("no hex data for %x string")
		return ""
	}
	return string(s.buf)
}

const (
	floatVerbs = "beEfFgGv"

	hugeWid = 1 << 30

	intBits     = 32 << (^uint(0) >> 63)
	uintptrBits = 32 << (^uintptr(0) >> 63)
)

// scanOne scans a single value, deriving the scanner from the type of the argument.
func (s *ss) scanOne(verb rune, arg interface{}) {
	s.buf = s.buf[:0]
	var err error
	// If the parameter has its own Scan method, use that.
	if v, ok := arg.(Scanner); ok {
		err = v.Scan(s, verb)
		if err != nil {
			if err == io.EOF {
				err = io.ErrUnexpectedEOF
			}
			s.error(err)
		}
		return
	}

	switch v := arg.(type) {
	case *bool:
		*v = s.scanBool(verb)
	case *complex64:
		*v = complex64(s.scanComplex(verb, 64))
	case *complex128:
		*v = s.scanComplex(verb, 128)
	case *int:
		*v = int(s.scanInt(verb, intBits))
	case *int8:
		*v = int8(s.scanInt(verb, 8))
	case *int16:
		*v = int16(s.scanInt(verb, 16))
	case *int32:
		*v = int32(s.scanInt(verb, 32))
	case *int64:
		*v = s.scanInt(verb, 64)
	case *uint:
		*v = uint(s.scanUint(verb, intBits))
	case *uint8:
		*v = uint8(s.scanUint(verb, 8))
	case *uint16:
		*v = uint16(s.scanUint(verb, 16))
	case *uint32:
		*v = uint32(s.scanUint(verb, 32))
	case *uint64:
		*v = s.scanUint(verb, 64)
	case *uintptr:
		*v = uintptr(s.scanUint(verb, uintptrBits))
	// Floats are tricky because you want to scan in the precision of the result, not
	// scan in high precision and convert, in order to preserve the correct error condition.
	case *float32:
		if s.okVerb(verb, floatVerbs, "float32") {
			s.skipSpace(false)
			s.notEOF()
			*v = float32(s.convertFloat(s.floatToken(), 32))
		}
	case *float64:
		if s.okVerb(verb, floatVerbs, "float64") {
			s.skipSpace(false)
			s.notEOF()
			*v = s.convertFloat(s.floatToken(), 64)
		}
	case *string:
		*v = s.convertString(verb)
	case *[]byte:
		// We scan to string and convert so we get a copy of the data.
		// If we scanned to bytes, the slice would point at the buffer.
		*v = []byte(s.convertString(verb))
	default:
		val := reflect.ValueOf(v)
		ptr := val
		if ptr.Kind() != reflect.Ptr {
			s.errorString("type not a pointer: " + val.Type().String())
			return
		}
		switch v := ptr.Elem(); v.Kind() {
		case reflect.Bool:
			v.SetBool(s.scanBool(verb))
		case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
			v.SetInt(s.scanInt(verb, v.Type().Bits()))
		case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
			v.SetUint(s.scanUint(verb, v.Type().Bits()))
		case reflect.String:
			v.SetString(s.convertString(verb))
		case reflect.Slice:
			// For now, can only handle (renamed) []byte.
			typ := v.Type()
			if typ.Elem().Kind() != reflect.Uint8 {
				s.errorString("can't scan type: " + val.Type().String())
			}
			str := s.convertString(verb)
			v.Set(reflect.MakeSlice(typ, len(str), len(str)))
			for i := 0; i < len(str); i++ {
				v.Index(i).SetUint(uint64(str[i]))
			}
		case reflect.Float32, reflect.Float64:
			s.skipSpace(false)
			s.notEOF()
			v.SetFloat(s.convertFloat(s.floatToken(), v.Type().Bits()))
		case reflect.Complex64, reflect.Complex128:
			v.SetComplex(s.scanComplex(verb, v.Type().Bits()))
		default:
			s.errorString("can't scan type: " + val.Type().String())
		}
	}
}

// errorHandler turns local panics into error returns.
func errorHandler(errp *error) {
	if e := recover(); e != nil {
		if se, ok := e.(scanError); ok { // catch local error
			*errp = se.err
		} else if eof, ok := e.(error); ok && eof == io.EOF { // out of input
			*errp = eof
		} else {
			panic(e)
		}
	}
}

// doScan does the real work for scanning without a format string.
func (s *ss) doScan(a []interface{}) (numProcessed int, err error) {
	defer errorHandler(&err)
	for _, arg := range a {
		s.scanOne('v', arg)
		numProcessed++
	}
	// Check for newline (or EOF) if required (Scanln etc.).
	if s.nlIsEnd {
		for {
			r := s.getRune()
			if r == '\n' || r == eof {
				break
			}
			if !isSpace(r) {
				s.errorString("expected newline")
				break
			}
		}
	}
	return
}

// advance determines whether the next characters in the input match
// those of the format. It returns the number of bytes (sic) consumed
// in the format. All runs of space characters in either input or
// format behave as a single space. Newlines are special, though:
// newlines in the format must match those in the input and vice versa.
// This routine also handles the %% case. If the return value is zero,
// either format starts with a % (with no following %) or the input
// is empty. If it is negative, the input did not match the string.
func (s *ss) advance(format string) (i int) {
	for i < len(format) {
		fmtc, w := utf8.DecodeRuneInString(format[i:])

		// Space processing.
		// In the rest of this comment "space" means spaces other than newline.
		// Newline in the format matches input of zero or more spaces and then newline or end-of-input.
		// Spaces in the format before the newline are collapsed into the newline.
		// Spaces in the format after the newline match zero or more spaces after the corresponding input newline.
		// Other spaces in the format match input of one or more spaces or end-of-input.
		if isSpace(fmtc) {
			newlines := 0
			trailingSpace := false
			for isSpace(fmtc) && i < len(format) {
				if fmtc == '\n' {
					newlines++
					trailingSpace = false
				} else {
					trailingSpace = true
				}
				i += w
				fmtc, w = utf8.DecodeRuneInString(format[i:])
			}
			for j := 0; j < newlines; j++ {
				inputc := s.getRune()
				for isSpace(inputc) && inputc != '\n' {
					inputc = s.getRune()
				}
				if inputc != '\n' && inputc != eof {
					s.errorString("newline in format does not match input")
				}
			}
			if trailingSpace {
				inputc := s.getRune()
				if newlines == 0 {
					// If the trailing space stood alone (did not follow a newline),
					// it must find at least one space to consume.
					if !isSpace(inputc) && inputc != eof {
						s.errorString("expected space in input to match format")
					}
					if inputc == '\n' {
						s.errorString("newline in input does not match format")
					}
				}
				for isSpace(inputc) && inputc != '\n' {
					inputc = s.getRune()
				}
				if inputc != eof {
					s.UnreadRune()
				}
			}
			continue
		}

		// Verbs.
		if fmtc == '%' {
			// % at end of string is an error.
			if i+w == len(format) {
				s.errorString("missing verb: % at end of format string")
			}
			// %% acts like a real percent
			nextc, _ := utf8.DecodeRuneInString(format[i+w:]) // will not match % if string is empty
			if nextc != '%' {
				return
			}
			i += w // skip the first %
		}

		// Literals.
		inputc := s.mustReadRune()
		if fmtc != inputc {
			s.UnreadRune()
			return -1
		}
		i += w
	}
	return
}

// doScanf does the real work when scanning with a format string.
// At the moment, it handles only pointers to basic types.
func (s *ss) doScanf(format string, a []interface{}) (numProcessed int, err error) {
	defer errorHandler(&err)
	end := len(format) - 1
	// We process one item per non-trivial format
	for i := 0; i <= end; {
		w := s.advance(format[i:])
		if w > 0 {
			i += w
			continue
		}
		// Either we failed to advance, we have a percent character, or we ran out of input.
		if format[i] != '%' {
			// Can't advance format. Why not?
			if w < 0 {
				s.errorString("input does not match format")
			}
			// Otherwise at EOF; "too many operands" error handled below
			break
		}
		i++ // % is one byte

		// do we have 20 (width)?
		var widPresent bool
		s.maxWid, widPresent, i = parsenum(format, i, end)
		if !widPresent {
			s.maxWid = hugeWid
		}

		c, w := utf8.DecodeRuneInString(format[i:])
		i += w

		if c != 'c' {
			s.SkipSpace()
		}
		s.argLimit = s.limit
		if f := s.count + s.maxWid; f < s.argLimit {
			s.argLimit = f
		}

		if numProcessed >= len(a) { // out of operands
			s.errorString("too few operands for format '%" + format[i-w:] + "'")
			break
		}
		arg := a[numProcessed]

		s.scanOne(c, arg)
		numProcessed++
		s.argLimit = s.limit
	}
	if numProcessed < len(a) {
		s.errorString("too many operands")
	}
	return
}