/usr/share/go-1.8/src/math/log1p.go is in golang-1.8-src 1.8.3-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | // Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// double log1p(double x)
//
// Method :
// 1. Argument Reduction: find k and f such that
// 1+x = 2**k * (1+f),
// where sqrt(2)/2 < 1+f < sqrt(2) .
//
// Note. If k=0, then f=x is exact. However, if k!=0, then f
// may not be representable exactly. In that case, a correction
// term is need. Let u=1+x rounded. Let c = (1+x)-u, then
// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
// and add back the correction term c/u.
// (Note: when x > 2**53, one can simply return log(x))
//
// 2. Approximation of log1p(f).
// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
// = 2s + s*R
// We use a special Reme algorithm on [0,0.1716] to generate
// a polynomial of degree 14 to approximate R The maximum error
// of this polynomial approximation is bounded by 2**-58.45. In
// other words,
// 2 4 6 8 10 12 14
// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
// (the values of Lp1 to Lp7 are listed in the program)
// and
// | 2 14 | -58.45
// | Lp1*s +...+Lp7*s - R(z) | <= 2
// | |
// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
// In order to guarantee error in log below 1ulp, we compute log
// by
// log1p(f) = f - (hfsq - s*(hfsq+R)).
//
// 3. Finally, log1p(x) = k*ln2 + log1p(f).
// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
// Here ln2 is split into two floating point number:
// ln2_hi + ln2_lo,
// where n*ln2_hi is always exact for |n| < 2000.
//
// Special cases:
// log1p(x) is NaN with signal if x < -1 (including -INF) ;
// log1p(+INF) is +INF; log1p(-1) is -INF with signal;
// log1p(NaN) is that NaN with no signal.
//
// Accuracy:
// according to an error analysis, the error is always less than
// 1 ulp (unit in the last place).
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
//
// Note: Assuming log() return accurate answer, the following
// algorithm can be used to compute log1p(x) to within a few ULP:
//
// u = 1+x;
// if(u==1.0) return x ; else
// return log(u)*(x/(u-1.0));
//
// See HP-15C Advanced Functions Handbook, p.193.
// Log1p returns the natural logarithm of 1 plus its argument x.
// It is more accurate than Log(1 + x) when x is near zero.
//
// Special cases are:
// Log1p(+Inf) = +Inf
// Log1p(±0) = ±0
// Log1p(-1) = -Inf
// Log1p(x < -1) = NaN
// Log1p(NaN) = NaN
func Log1p(x float64) float64
func log1p(x float64) float64 {
const (
Sqrt2M1 = 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34
Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866
Small = 1.0 / (1 << 29) // 2**-29 = 0x3e20000000000000
Tiny = 1.0 / (1 << 54) // 2**-54
Two53 = 1 << 53 // 2**53
Ln2Hi = 6.93147180369123816490e-01 // 3fe62e42fee00000
Ln2Lo = 1.90821492927058770002e-10 // 3dea39ef35793c76
Lp1 = 6.666666666666735130e-01 // 3FE5555555555593
Lp2 = 3.999999999940941908e-01 // 3FD999999997FA04
Lp3 = 2.857142874366239149e-01 // 3FD2492494229359
Lp4 = 2.222219843214978396e-01 // 3FCC71C51D8E78AF
Lp5 = 1.818357216161805012e-01 // 3FC7466496CB03DE
Lp6 = 1.531383769920937332e-01 // 3FC39A09D078C69F
Lp7 = 1.479819860511658591e-01 // 3FC2F112DF3E5244
)
// special cases
switch {
case x < -1 || IsNaN(x): // includes -Inf
return NaN()
case x == -1:
return Inf(-1)
case IsInf(x, 1):
return Inf(1)
}
absx := x
if absx < 0 {
absx = -absx
}
var f float64
var iu uint64
k := 1
if absx < Sqrt2M1 { // |x| < Sqrt(2)-1
if absx < Small { // |x| < 2**-29
if absx < Tiny { // |x| < 2**-54
return x
}
return x - x*x*0.5
}
if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x
// (Sqrt(2)/2-1) < x < (Sqrt(2)-1)
k = 0
f = x
iu = 1
}
}
var c float64
if k != 0 {
var u float64
if absx < Two53 { // 1<<53
u = 1.0 + x
iu = Float64bits(u)
k = int((iu >> 52) - 1023)
if k > 0 {
c = 1.0 - (u - x)
} else {
c = x - (u - 1.0) // correction term
c /= u
}
} else {
u = x
iu = Float64bits(u)
k = int((iu >> 52) - 1023)
c = 0
}
iu &= 0x000fffffffffffff
if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)
u = Float64frombits(iu | 0x3ff0000000000000) // normalize u
} else {
k++
u = Float64frombits(iu | 0x3fe0000000000000) // normalize u/2
iu = (0x0010000000000000 - iu) >> 2
}
f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2)
}
hfsq := 0.5 * f * f
var s, R, z float64
if iu == 0 { // |f| < 2**-20
if f == 0 {
if k == 0 {
return 0
}
c += float64(k) * Ln2Lo
return float64(k)*Ln2Hi + c
}
R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division
if k == 0 {
return f - R
}
return float64(k)*Ln2Hi - ((R - (float64(k)*Ln2Lo + c)) - f)
}
s = f / (2.0 + f)
z = s * s
R = z * (Lp1 + z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))))
if k == 0 {
return f - (hfsq - s*(hfsq+R))
}
return float64(k)*Ln2Hi - ((hfsq - (s*(hfsq+R) + (float64(k)*Ln2Lo + c))) - f)
}
|