This file is indexed.

/usr/share/go-1.8/src/runtime/mgcsweepbuf.go is in golang-1.8-src 1.8.3-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

// A gcSweepBuf is a set of *mspans.
//
// gcSweepBuf is safe for concurrent push operations *or* concurrent
// pop operations, but not both simultaneously.
type gcSweepBuf struct {
	// A gcSweepBuf is a two-level data structure consisting of a
	// growable spine that points to fixed-sized blocks. The spine
	// can be accessed without locks, but adding a block or
	// growing it requires taking the spine lock.
	//
	// Because each mspan covers at least 8K of heap and takes at
	// most 8 bytes in the gcSweepBuf, the growth of the spine is
	// quite limited.
	//
	// The spine and all blocks are allocated off-heap, which
	// allows this to be used in the memory manager and avoids the
	// need for write barriers on all of these. We never release
	// this memory because there could be concurrent lock-free
	// access and we're likely to reuse it anyway. (In principle,
	// we could do this during STW.)

	spineLock mutex
	spine     unsafe.Pointer // *[N]*gcSweepBlock, accessed atomically
	spineLen  uintptr        // Spine array length, accessed atomically
	spineCap  uintptr        // Spine array cap, accessed under lock

	// index is the first unused slot in the logical concatenation
	// of all blocks. It is accessed atomically.
	index uint32
}

const (
	gcSweepBlockEntries    = 512 // 4KB on 64-bit
	gcSweepBufInitSpineCap = 256 // Enough for 1GB heap on 64-bit
)

type gcSweepBlock struct {
	spans [gcSweepBlockEntries]*mspan
}

// push adds span s to buffer b. push is safe to call concurrently
// with other push operations, but NOT to call concurrently with pop.
func (b *gcSweepBuf) push(s *mspan) {
	// Obtain our slot.
	cursor := uintptr(atomic.Xadd(&b.index, +1) - 1)
	top, bottom := cursor/gcSweepBlockEntries, cursor%gcSweepBlockEntries

	// Do we need to add a block?
	spineLen := atomic.Loaduintptr(&b.spineLen)
	var block *gcSweepBlock
retry:
	if top < spineLen {
		spine := atomic.Loadp(unsafe.Pointer(&b.spine))
		blockp := add(spine, sys.PtrSize*top)
		block = (*gcSweepBlock)(atomic.Loadp(blockp))
	} else {
		// Add a new block to the spine, potentially growing
		// the spine.
		lock(&b.spineLock)
		// spineLen cannot change until we release the lock,
		// but may have changed while we were waiting.
		spineLen = atomic.Loaduintptr(&b.spineLen)
		if top < spineLen {
			unlock(&b.spineLock)
			goto retry
		}

		if spineLen == b.spineCap {
			// Grow the spine.
			newCap := b.spineCap * 2
			if newCap == 0 {
				newCap = gcSweepBufInitSpineCap
			}
			newSpine := persistentalloc(newCap*sys.PtrSize, sys.CacheLineSize, &memstats.gc_sys)
			if b.spineCap != 0 {
				// Blocks are allocated off-heap, so
				// no write barriers.
				memmove(newSpine, b.spine, b.spineCap*sys.PtrSize)
			}
			// Spine is allocated off-heap, so no write barrier.
			atomic.StorepNoWB(unsafe.Pointer(&b.spine), newSpine)
			b.spineCap = newCap
			// We can't immediately free the old spine
			// since a concurrent push with a lower index
			// could still be reading from it. We let it
			// leak because even a 1TB heap would waste
			// less than 2MB of memory on old spines. If
			// this is a problem, we could free old spines
			// during STW.
		}

		// Allocate a new block and add it to the spine.
		block = (*gcSweepBlock)(persistentalloc(unsafe.Sizeof(gcSweepBlock{}), sys.CacheLineSize, &memstats.gc_sys))
		blockp := add(b.spine, sys.PtrSize*top)
		// Blocks are allocated off-heap, so no write barrier.
		atomic.StorepNoWB(blockp, unsafe.Pointer(block))
		atomic.Storeuintptr(&b.spineLen, spineLen+1)
		unlock(&b.spineLock)
	}

	// We have a block. Insert the span.
	block.spans[bottom] = s
}

// pop removes and returns a span from buffer b, or nil if b is empty.
// pop is safe to call concurrently with other pop operations, but NOT
// to call concurrently with push.
func (b *gcSweepBuf) pop() *mspan {
	cursor := atomic.Xadd(&b.index, -1)
	if int32(cursor) < 0 {
		atomic.Xadd(&b.index, +1)
		return nil
	}

	// There are no concurrent spine or block modifications during
	// pop, so we can omit the atomics.
	top, bottom := cursor/gcSweepBlockEntries, cursor%gcSweepBlockEntries
	blockp := (**gcSweepBlock)(add(b.spine, sys.PtrSize*uintptr(top)))
	block := *blockp
	s := block.spans[bottom]
	// Clear the pointer for block(i).
	block.spans[bottom] = nil
	return s
}

// numBlocks returns the number of blocks in buffer b. numBlocks is
// safe to call concurrently with any other operation. Spans that have
// been pushed prior to the call to numBlocks are guaranteed to appear
// in some block in the range [0, numBlocks()), assuming there are no
// intervening pops. Spans that are pushed after the call may also
// appear in these blocks.
func (b *gcSweepBuf) numBlocks() int {
	return int((atomic.Load(&b.index) + gcSweepBlockEntries - 1) / gcSweepBlockEntries)
}

// block returns the spans in the i'th block of buffer b. block is
// safe to call concurrently with push.
func (b *gcSweepBuf) block(i int) []*mspan {
	// Perform bounds check before loading spine address since
	// push ensures the allocated length is at least spineLen.
	if i < 0 || uintptr(i) >= atomic.Loaduintptr(&b.spineLen) {
		throw("block index out of range")
	}

	// Get block i.
	spine := atomic.Loadp(unsafe.Pointer(&b.spine))
	blockp := add(spine, sys.PtrSize*uintptr(i))
	block := (*gcSweepBlock)(atomic.Loadp(blockp))

	// Slice the block if necessary.
	cursor := uintptr(atomic.Load(&b.index))
	top, bottom := cursor/gcSweepBlockEntries, cursor%gcSweepBlockEntries
	var spans []*mspan
	if uintptr(i) < top {
		spans = block.spans[:]
	} else {
		spans = block.spans[:bottom]
	}

	// push may have reserved a slot but not filled it yet, so
	// trim away unused entries.
	for len(spans) > 0 && spans[len(spans)-1] == nil {
		spans = spans[:len(spans)-1]
	}
	return spans
}