/usr/share/go-1.8/src/runtime/mstats.go is in golang-1.8-src 1.8.3-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 | // Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Memory statistics
package runtime
import (
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
// Statistics.
// If you edit this structure, also edit type MemStats below.
// Their layouts must match exactly.
//
// For detailed descriptions see the documentation for MemStats.
// Fields that differ from MemStats are further documented here.
//
// Many of these fields are updated on the fly, while others are only
// updated when updatememstats is called.
type mstats struct {
// General statistics.
alloc uint64 // bytes allocated and not yet freed
total_alloc uint64 // bytes allocated (even if freed)
sys uint64 // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
nlookup uint64 // number of pointer lookups
nmalloc uint64 // number of mallocs
nfree uint64 // number of frees
// Statistics about malloc heap.
// Protected by mheap.lock
//
// In mstats, heap_sys and heap_inuse includes stack memory,
// while in MemStats stack memory is separated out from the
// heap stats.
heap_alloc uint64 // bytes allocated and not yet freed (same as alloc above)
heap_sys uint64 // virtual address space obtained from system
heap_idle uint64 // bytes in idle spans
heap_inuse uint64 // bytes in non-idle spans
heap_released uint64 // bytes released to the os
heap_objects uint64 // total number of allocated objects
// TODO(austin): heap_released is both useless and inaccurate
// in its current form. It's useless because, from the user's
// and OS's perspectives, there's no difference between a page
// that has not yet been faulted in and a page that has been
// released back to the OS. We could fix this by considering
// newly mapped spans to be "released". It's inaccurate
// because when we split a large span for allocation, we
// "unrelease" all pages in the large span and not just the
// ones we split off for use. This is trickier to fix because
// we currently don't know which pages of a span we've
// released. We could fix it by separating "free" and
// "released" spans, but then we have to allocate from runs of
// free and released spans.
// Statistics about allocation of low-level fixed-size structures.
// Protected by FixAlloc locks.
stacks_inuse uint64 // this number is included in heap_inuse above; differs from MemStats.StackInuse
stacks_sys uint64 // only counts newosproc0 stack in mstats; differs from MemStats.StackSys
mspan_inuse uint64 // mspan structures
mspan_sys uint64
mcache_inuse uint64 // mcache structures
mcache_sys uint64
buckhash_sys uint64 // profiling bucket hash table
gc_sys uint64
other_sys uint64
// Statistics about garbage collector.
// Protected by mheap or stopping the world during GC.
next_gc uint64 // goal heap_live for when next GC ends; ^0 if disabled
last_gc uint64 // last gc (in absolute time)
pause_total_ns uint64
pause_ns [256]uint64 // circular buffer of recent gc pause lengths
pause_end [256]uint64 // circular buffer of recent gc end times (nanoseconds since 1970)
numgc uint32
numforcedgc uint32 // number of user-forced GCs
gc_cpu_fraction float64 // fraction of CPU time used by GC
enablegc bool
debuggc bool
// Statistics about allocation size classes.
by_size [_NumSizeClasses]struct {
size uint32
nmalloc uint64
nfree uint64
}
// Statistics below here are not exported to MemStats directly.
tinyallocs uint64 // number of tiny allocations that didn't cause actual allocation; not exported to go directly
// gc_trigger is the heap size that triggers marking.
//
// When heap_live ≥ gc_trigger, the mark phase will start.
// This is also the heap size by which proportional sweeping
// must be complete.
gc_trigger uint64
// heap_live is the number of bytes considered live by the GC.
// That is: retained by the most recent GC plus allocated
// since then. heap_live <= heap_alloc, since heap_alloc
// includes unmarked objects that have not yet been swept (and
// hence goes up as we allocate and down as we sweep) while
// heap_live excludes these objects (and hence only goes up
// between GCs).
//
// This is updated atomically without locking. To reduce
// contention, this is updated only when obtaining a span from
// an mcentral and at this point it counts all of the
// unallocated slots in that span (which will be allocated
// before that mcache obtains another span from that
// mcentral). Hence, it slightly overestimates the "true" live
// heap size. It's better to overestimate than to
// underestimate because 1) this triggers the GC earlier than
// necessary rather than potentially too late and 2) this
// leads to a conservative GC rate rather than a GC rate that
// is potentially too low.
//
// Whenever this is updated, call traceHeapAlloc() and
// gcController.revise().
heap_live uint64
// heap_scan is the number of bytes of "scannable" heap. This
// is the live heap (as counted by heap_live), but omitting
// no-scan objects and no-scan tails of objects.
//
// Whenever this is updated, call gcController.revise().
heap_scan uint64
// heap_marked is the number of bytes marked by the previous
// GC. After mark termination, heap_live == heap_marked, but
// unlike heap_live, heap_marked does not change until the
// next mark termination.
heap_marked uint64
}
var memstats mstats
// A MemStats records statistics about the memory allocator.
type MemStats struct {
// General statistics.
// Alloc is bytes of allocated heap objects.
//
// This is the same as HeapAlloc (see below).
Alloc uint64
// TotalAlloc is cumulative bytes allocated for heap objects.
//
// TotalAlloc increases as heap objects are allocated, but
// unlike Alloc and HeapAlloc, it does not decrease when
// objects are freed.
TotalAlloc uint64
// Sys is the total bytes of memory obtained from the OS.
//
// Sys is the sum of the XSys fields below. Sys measures the
// virtual address space reserved by the Go runtime for the
// heap, stacks, and other internal data structures. It's
// likely that not all of the virtual address space is backed
// by physical memory at any given moment, though in general
// it all was at some point.
Sys uint64
// Lookups is the number of pointer lookups performed by the
// runtime.
//
// This is primarily useful for debugging runtime internals.
Lookups uint64
// Mallocs is the cumulative count of heap objects allocated.
// The number of live objects is Mallocs - Frees.
Mallocs uint64
// Frees is the cumulative count of heap objects freed.
Frees uint64
// Heap memory statistics.
//
// Interpreting the heap statistics requires some knowledge of
// how Go organizes memory. Go divides the virtual address
// space of the heap into "spans", which are contiguous
// regions of memory 8K or larger. A span may be in one of
// three states:
//
// An "idle" span contains no objects or other data. The
// physical memory backing an idle span can be released back
// to the OS (but the virtual address space never is), or it
// can be converted into an "in use" or "stack" span.
//
// An "in use" span contains at least one heap object and may
// have free space available to allocate more heap objects.
//
// A "stack" span is used for goroutine stacks. Stack spans
// are not considered part of the heap. A span can change
// between heap and stack memory; it is never used for both
// simultaneously.
// HeapAlloc is bytes of allocated heap objects.
//
// "Allocated" heap objects include all reachable objects, as
// well as unreachable objects that the garbage collector has
// not yet freed. Specifically, HeapAlloc increases as heap
// objects are allocated and decreases as the heap is swept
// and unreachable objects are freed. Sweeping occurs
// incrementally between GC cycles, so these two processes
// occur simultaneously, and as a result HeapAlloc tends to
// change smoothly (in contrast with the sawtooth that is
// typical of stop-the-world garbage collectors).
HeapAlloc uint64
// HeapSys is bytes of heap memory obtained from the OS.
//
// HeapSys measures the amount of virtual address space
// reserved for the heap. This includes virtual address space
// that has been reserved but not yet used, which consumes no
// physical memory, but tends to be small, as well as virtual
// address space for which the physical memory has been
// returned to the OS after it became unused (see HeapReleased
// for a measure of the latter).
//
// HeapSys estimates the largest size the heap has had.
HeapSys uint64
// HeapIdle is bytes in idle (unused) spans.
//
// Idle spans have no objects in them. These spans could be
// (and may already have been) returned to the OS, or they can
// be reused for heap allocations, or they can be reused as
// stack memory.
//
// HeapIdle minus HeapReleased estimates the amount of memory
// that could be returned to the OS, but is being retained by
// the runtime so it can grow the heap without requesting more
// memory from the OS. If this difference is significantly
// larger than the heap size, it indicates there was a recent
// transient spike in live heap size.
HeapIdle uint64
// HeapInuse is bytes in in-use spans.
//
// In-use spans have at least one object in them. These spans
// can only be used for other objects of roughly the same
// size.
//
// HeapInuse minus HeapAlloc esimates the amount of memory
// that has been dedicated to particular size classes, but is
// not currently being used. This is an upper bound on
// fragmentation, but in general this memory can be reused
// efficiently.
HeapInuse uint64
// HeapReleased is bytes of physical memory returned to the OS.
//
// This counts heap memory from idle spans that was returned
// to the OS and has not yet been reacquired for the heap.
HeapReleased uint64
// HeapObjects is the number of allocated heap objects.
//
// Like HeapAlloc, this increases as objects are allocated and
// decreases as the heap is swept and unreachable objects are
// freed.
HeapObjects uint64
// Stack memory statistics.
//
// Stacks are not considered part of the heap, but the runtime
// can reuse a span of heap memory for stack memory, and
// vice-versa.
// StackInuse is bytes in stack spans.
//
// In-use stack spans have at least one stack in them. These
// spans can only be used for other stacks of the same size.
//
// There is no StackIdle because unused stack spans are
// returned to the heap (and hence counted toward HeapIdle).
StackInuse uint64
// StackSys is bytes of stack memory obtained from the OS.
//
// StackSys is StackInuse, plus any memory obtained directly
// from the OS for OS thread stacks (which should be minimal).
StackSys uint64
// Off-heap memory statistics.
//
// The following statistics measure runtime-internal
// structures that are not allocated from heap memory (usually
// because they are part of implementing the heap). Unlike
// heap or stack memory, any memory allocated to these
// structures is dedicated to these structures.
//
// These are primarily useful for debugging runtime memory
// overheads.
// MSpanInuse is bytes of allocated mspan structures.
MSpanInuse uint64
// MSpanSys is bytes of memory obtained from the OS for mspan
// structures.
MSpanSys uint64
// MCacheInuse is bytes of allocated mcache structures.
MCacheInuse uint64
// MCacheSys is bytes of memory obtained from the OS for
// mcache structures.
MCacheSys uint64
// BuckHashSys is bytes of memory in profiling bucket hash tables.
BuckHashSys uint64
// GCSys is bytes of memory in garbage collection metadata.
GCSys uint64
// OtherSys is bytes of memory in miscellaneous off-heap
// runtime allocations.
OtherSys uint64
// Garbage collector statistics.
// NextGC is the target heap size of the next GC cycle.
//
// The garbage collector's goal is to keep HeapAlloc ≤ NextGC.
// At the end of each GC cycle, the target for the next cycle
// is computed based on the amount of reachable data and the
// value of GOGC.
NextGC uint64
// LastGC is the time the last garbage collection finished, as
// nanoseconds since 1970 (the UNIX epoch).
LastGC uint64
// PauseTotalNs is the cumulative nanoseconds in GC
// stop-the-world pauses since the program started.
//
// During a stop-the-world pause, all goroutines are paused
// and only the garbage collector can run.
PauseTotalNs uint64
// PauseNs is a circular buffer of recent GC stop-the-world
// pause times in nanoseconds.
//
// The most recent pause is at PauseNs[(NumGC+255)%256]. In
// general, PauseNs[N%256] records the time paused in the most
// recent N%256th GC cycle. There may be multiple pauses per
// GC cycle; this is the sum of all pauses during a cycle.
PauseNs [256]uint64
// PauseEnd is a circular buffer of recent GC pause end times,
// as nanoseconds since 1970 (the UNIX epoch).
//
// This buffer is filled the same way as PauseNs. There may be
// multiple pauses per GC cycle; this records the end of the
// last pause in a cycle.
PauseEnd [256]uint64
// NumGC is the number of completed GC cycles.
NumGC uint32
// NumForcedGC is the number of GC cycles that were forced by
// the application calling the GC function.
NumForcedGC uint32
// GCCPUFraction is the fraction of this program's available
// CPU time used by the GC since the program started.
//
// GCCPUFraction is expressed as a number between 0 and 1,
// where 0 means GC has consumed none of this program's CPU. A
// program's available CPU time is defined as the integral of
// GOMAXPROCS since the program started. That is, if
// GOMAXPROCS is 2 and a program has been running for 10
// seconds, its "available CPU" is 20 seconds. GCCPUFraction
// does not include CPU time used for write barrier activity.
//
// This is the same as the fraction of CPU reported by
// GODEBUG=gctrace=1.
GCCPUFraction float64
// EnableGC indicates that GC is enabled. It is always true,
// even if GOGC=off.
EnableGC bool
// DebugGC is currently unused.
DebugGC bool
// BySize reports per-size class allocation statistics.
//
// BySize[N] gives statistics for allocations of size S where
// BySize[N-1].Size < S ≤ BySize[N].Size.
//
// This does not report allocations larger than BySize[60].Size.
BySize [61]struct {
// Size is the maximum byte size of an object in this
// size class.
Size uint32
// Mallocs is the cumulative count of heap objects
// allocated in this size class. The cumulative bytes
// of allocation is Size*Mallocs. The number of live
// objects in this size class is Mallocs - Frees.
Mallocs uint64
// Frees is the cumulative count of heap objects freed
// in this size class.
Frees uint64
}
}
// Size of the trailing by_size array differs between mstats and MemStats,
// and all data after by_size is local to runtime, not exported.
// NumSizeClasses was changed, but we cannot change MemStats because of backward compatibility.
// sizeof_C_MStats is the size of the prefix of mstats that
// corresponds to MemStats. It should match Sizeof(MemStats{}).
var sizeof_C_MStats = unsafe.Offsetof(memstats.by_size) + 61*unsafe.Sizeof(memstats.by_size[0])
func init() {
var memStats MemStats
if sizeof_C_MStats != unsafe.Sizeof(memStats) {
println(sizeof_C_MStats, unsafe.Sizeof(memStats))
throw("MStats vs MemStatsType size mismatch")
}
if unsafe.Offsetof(memstats.heap_live)%8 != 0 {
println(unsafe.Offsetof(memstats.heap_live))
throw("memstats.heap_live not aligned to 8 bytes")
}
}
// ReadMemStats populates m with memory allocator statistics.
//
// The returned memory allocator statistics are up to date as of the
// call to ReadMemStats. This is in contrast with a heap profile,
// which is a snapshot as of the most recently completed garbage
// collection cycle.
func ReadMemStats(m *MemStats) {
stopTheWorld("read mem stats")
systemstack(func() {
readmemstats_m(m)
})
startTheWorld()
}
func readmemstats_m(stats *MemStats) {
updatememstats(nil)
// The size of the trailing by_size array differs between
// mstats and MemStats. NumSizeClasses was changed, but we
// cannot change MemStats because of backward compatibility.
memmove(unsafe.Pointer(stats), unsafe.Pointer(&memstats), sizeof_C_MStats)
// Stack numbers are part of the heap numbers, separate those out for user consumption
stats.StackSys += stats.StackInuse
stats.HeapInuse -= stats.StackInuse
stats.HeapSys -= stats.StackInuse
}
//go:linkname readGCStats runtime/debug.readGCStats
func readGCStats(pauses *[]uint64) {
systemstack(func() {
readGCStats_m(pauses)
})
}
func readGCStats_m(pauses *[]uint64) {
p := *pauses
// Calling code in runtime/debug should make the slice large enough.
if cap(p) < len(memstats.pause_ns)+3 {
throw("short slice passed to readGCStats")
}
// Pass back: pauses, pause ends, last gc (absolute time), number of gc, total pause ns.
lock(&mheap_.lock)
n := memstats.numgc
if n > uint32(len(memstats.pause_ns)) {
n = uint32(len(memstats.pause_ns))
}
// The pause buffer is circular. The most recent pause is at
// pause_ns[(numgc-1)%len(pause_ns)], and then backward
// from there to go back farther in time. We deliver the times
// most recent first (in p[0]).
p = p[:cap(p)]
for i := uint32(0); i < n; i++ {
j := (memstats.numgc - 1 - i) % uint32(len(memstats.pause_ns))
p[i] = memstats.pause_ns[j]
p[n+i] = memstats.pause_end[j]
}
p[n+n] = memstats.last_gc
p[n+n+1] = uint64(memstats.numgc)
p[n+n+2] = memstats.pause_total_ns
unlock(&mheap_.lock)
*pauses = p[:n+n+3]
}
//go:nowritebarrier
func updatememstats(stats *gcstats) {
if stats != nil {
*stats = gcstats{}
}
for mp := allm; mp != nil; mp = mp.alllink {
if stats != nil {
src := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(&mp.gcstats))
dst := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(stats))
for i, v := range src {
dst[i] += v
}
mp.gcstats = gcstats{}
}
}
memstats.mcache_inuse = uint64(mheap_.cachealloc.inuse)
memstats.mspan_inuse = uint64(mheap_.spanalloc.inuse)
memstats.sys = memstats.heap_sys + memstats.stacks_sys + memstats.mspan_sys +
memstats.mcache_sys + memstats.buckhash_sys + memstats.gc_sys + memstats.other_sys
// Calculate memory allocator stats.
// During program execution we only count number of frees and amount of freed memory.
// Current number of alive object in the heap and amount of alive heap memory
// are calculated by scanning all spans.
// Total number of mallocs is calculated as number of frees plus number of alive objects.
// Similarly, total amount of allocated memory is calculated as amount of freed memory
// plus amount of alive heap memory.
memstats.alloc = 0
memstats.total_alloc = 0
memstats.nmalloc = 0
memstats.nfree = 0
for i := 0; i < len(memstats.by_size); i++ {
memstats.by_size[i].nmalloc = 0
memstats.by_size[i].nfree = 0
}
// Flush MCache's to MCentral.
systemstack(flushallmcaches)
// Aggregate local stats.
cachestats()
// Scan all spans and count number of alive objects.
lock(&mheap_.lock)
for _, s := range mheap_.allspans {
if s.state != mSpanInUse {
continue
}
if s.sizeclass == 0 {
memstats.nmalloc++
memstats.alloc += uint64(s.elemsize)
} else {
memstats.nmalloc += uint64(s.allocCount)
memstats.by_size[s.sizeclass].nmalloc += uint64(s.allocCount)
memstats.alloc += uint64(s.allocCount) * uint64(s.elemsize)
}
}
unlock(&mheap_.lock)
// Aggregate by size class.
smallfree := uint64(0)
memstats.nfree = mheap_.nlargefree
for i := 0; i < len(memstats.by_size); i++ {
memstats.nfree += mheap_.nsmallfree[i]
memstats.by_size[i].nfree = mheap_.nsmallfree[i]
memstats.by_size[i].nmalloc += mheap_.nsmallfree[i]
smallfree += mheap_.nsmallfree[i] * uint64(class_to_size[i])
}
memstats.nfree += memstats.tinyallocs
memstats.nmalloc += memstats.nfree
// Calculate derived stats.
memstats.total_alloc = memstats.alloc + mheap_.largefree + smallfree
memstats.heap_alloc = memstats.alloc
memstats.heap_objects = memstats.nmalloc - memstats.nfree
}
//go:nowritebarrier
func cachestats() {
for i := 0; ; i++ {
p := allp[i]
if p == nil {
break
}
c := p.mcache
if c == nil {
continue
}
purgecachedstats(c)
}
}
// flushmcache flushes the mcache of allp[i].
//
// The world must be stopped.
//
//go:nowritebarrier
func flushmcache(i int) {
p := allp[i]
if p == nil {
return
}
c := p.mcache
if c == nil {
return
}
c.releaseAll()
stackcache_clear(c)
}
// flushallmcaches flushes the mcaches of all Ps.
//
// The world must be stopped.
//
//go:nowritebarrier
func flushallmcaches() {
for i := 0; i < int(gomaxprocs); i++ {
flushmcache(i)
}
}
//go:nosplit
func purgecachedstats(c *mcache) {
// Protected by either heap or GC lock.
h := &mheap_
memstats.heap_scan += uint64(c.local_scan)
c.local_scan = 0
memstats.tinyallocs += uint64(c.local_tinyallocs)
c.local_tinyallocs = 0
memstats.nlookup += uint64(c.local_nlookup)
c.local_nlookup = 0
h.largefree += uint64(c.local_largefree)
c.local_largefree = 0
h.nlargefree += uint64(c.local_nlargefree)
c.local_nlargefree = 0
for i := 0; i < len(c.local_nsmallfree); i++ {
h.nsmallfree[i] += uint64(c.local_nsmallfree[i])
c.local_nsmallfree[i] = 0
}
}
// Atomically increases a given *system* memory stat. We are counting on this
// stat never overflowing a uintptr, so this function must only be used for
// system memory stats.
//
// The current implementation for little endian architectures is based on
// xadduintptr(), which is less than ideal: xadd64() should really be used.
// Using xadduintptr() is a stop-gap solution until arm supports xadd64() that
// doesn't use locks. (Locks are a problem as they require a valid G, which
// restricts their useability.)
//
// A side-effect of using xadduintptr() is that we need to check for
// overflow errors.
//go:nosplit
func mSysStatInc(sysStat *uint64, n uintptr) {
if sys.BigEndian != 0 {
atomic.Xadd64(sysStat, int64(n))
return
}
if val := atomic.Xadduintptr((*uintptr)(unsafe.Pointer(sysStat)), n); val < n {
print("runtime: stat overflow: val ", val, ", n ", n, "\n")
exit(2)
}
}
// Atomically decreases a given *system* memory stat. Same comments as
// mSysStatInc apply.
//go:nosplit
func mSysStatDec(sysStat *uint64, n uintptr) {
if sys.BigEndian != 0 {
atomic.Xadd64(sysStat, -int64(n))
return
}
if val := atomic.Xadduintptr((*uintptr)(unsafe.Pointer(sysStat)), uintptr(-int64(n))); val+n < n {
print("runtime: stat underflow: val ", val, ", n ", n, "\n")
exit(2)
}
}
|