/usr/share/go-1.8/src/runtime/stack.go is in golang-1.8-src 1.8.3-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 | // Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
/*
Stack layout parameters.
Included both by runtime (compiled via 6c) and linkers (compiled via gcc).
The per-goroutine g->stackguard is set to point StackGuard bytes
above the bottom of the stack. Each function compares its stack
pointer against g->stackguard to check for overflow. To cut one
instruction from the check sequence for functions with tiny frames,
the stack is allowed to protrude StackSmall bytes below the stack
guard. Functions with large frames don't bother with the check and
always call morestack. The sequences are (for amd64, others are
similar):
guard = g->stackguard
frame = function's stack frame size
argsize = size of function arguments (call + return)
stack frame size <= StackSmall:
CMPQ guard, SP
JHI 3(PC)
MOVQ m->morearg, $(argsize << 32)
CALL morestack(SB)
stack frame size > StackSmall but < StackBig
LEAQ (frame-StackSmall)(SP), R0
CMPQ guard, R0
JHI 3(PC)
MOVQ m->morearg, $(argsize << 32)
CALL morestack(SB)
stack frame size >= StackBig:
MOVQ m->morearg, $((argsize << 32) | frame)
CALL morestack(SB)
The bottom StackGuard - StackSmall bytes are important: there has
to be enough room to execute functions that refuse to check for
stack overflow, either because they need to be adjacent to the
actual caller's frame (deferproc) or because they handle the imminent
stack overflow (morestack).
For example, deferproc might call malloc, which does one of the
above checks (without allocating a full frame), which might trigger
a call to morestack. This sequence needs to fit in the bottom
section of the stack. On amd64, morestack's frame is 40 bytes, and
deferproc's frame is 56 bytes. That fits well within the
StackGuard - StackSmall bytes at the bottom.
The linkers explore all possible call traces involving non-splitting
functions to make sure that this limit cannot be violated.
*/
const (
// StackSystem is a number of additional bytes to add
// to each stack below the usual guard area for OS-specific
// purposes like signal handling. Used on Windows, Plan 9,
// and Darwin/ARM because they do not use a separate stack.
_StackSystem = sys.GoosWindows*512*sys.PtrSize + sys.GoosPlan9*512 + sys.GoosDarwin*sys.GoarchArm*1024
// The minimum size of stack used by Go code
_StackMin = 2048
// The minimum stack size to allocate.
// The hackery here rounds FixedStack0 up to a power of 2.
_FixedStack0 = _StackMin + _StackSystem
_FixedStack1 = _FixedStack0 - 1
_FixedStack2 = _FixedStack1 | (_FixedStack1 >> 1)
_FixedStack3 = _FixedStack2 | (_FixedStack2 >> 2)
_FixedStack4 = _FixedStack3 | (_FixedStack3 >> 4)
_FixedStack5 = _FixedStack4 | (_FixedStack4 >> 8)
_FixedStack6 = _FixedStack5 | (_FixedStack5 >> 16)
_FixedStack = _FixedStack6 + 1
// Functions that need frames bigger than this use an extra
// instruction to do the stack split check, to avoid overflow
// in case SP - framesize wraps below zero.
// This value can be no bigger than the size of the unmapped
// space at zero.
_StackBig = 4096
// The stack guard is a pointer this many bytes above the
// bottom of the stack.
_StackGuard = 880*sys.StackGuardMultiplier + _StackSystem
// After a stack split check the SP is allowed to be this
// many bytes below the stack guard. This saves an instruction
// in the checking sequence for tiny frames.
_StackSmall = 128
// The maximum number of bytes that a chain of NOSPLIT
// functions can use.
_StackLimit = _StackGuard - _StackSystem - _StackSmall
)
// Goroutine preemption request.
// Stored into g->stackguard0 to cause split stack check failure.
// Must be greater than any real sp.
// 0xfffffade in hex.
const (
_StackPreempt = uintptrMask & -1314
_StackFork = uintptrMask & -1234
)
const (
// stackDebug == 0: no logging
// == 1: logging of per-stack operations
// == 2: logging of per-frame operations
// == 3: logging of per-word updates
// == 4: logging of per-word reads
stackDebug = 0
stackFromSystem = 0 // allocate stacks from system memory instead of the heap
stackFaultOnFree = 0 // old stacks are mapped noaccess to detect use after free
stackPoisonCopy = 0 // fill stack that should not be accessed with garbage, to detect bad dereferences during copy
stackCache = 1
// check the BP links during traceback.
debugCheckBP = false
)
const (
uintptrMask = 1<<(8*sys.PtrSize) - 1
// Goroutine preemption request.
// Stored into g->stackguard0 to cause split stack check failure.
// Must be greater than any real sp.
// 0xfffffade in hex.
stackPreempt = uintptrMask & -1314
// Thread is forking.
// Stored into g->stackguard0 to cause split stack check failure.
// Must be greater than any real sp.
stackFork = uintptrMask & -1234
)
// Global pool of spans that have free stacks.
// Stacks are assigned an order according to size.
// order = log_2(size/FixedStack)
// There is a free list for each order.
// TODO: one lock per order?
var stackpool [_NumStackOrders]mSpanList
var stackpoolmu mutex
// Global pool of large stack spans.
var stackLarge struct {
lock mutex
free [_MHeapMap_Bits]mSpanList // free lists by log_2(s.npages)
}
func stackinit() {
if _StackCacheSize&_PageMask != 0 {
throw("cache size must be a multiple of page size")
}
for i := range stackpool {
stackpool[i].init()
}
for i := range stackLarge.free {
stackLarge.free[i].init()
}
}
// stacklog2 returns ⌊log_2(n)⌋.
func stacklog2(n uintptr) int {
log2 := 0
for n > 1 {
n >>= 1
log2++
}
return log2
}
// Allocates a stack from the free pool. Must be called with
// stackpoolmu held.
func stackpoolalloc(order uint8) gclinkptr {
list := &stackpool[order]
s := list.first
if s == nil {
// no free stacks. Allocate another span worth.
s = mheap_.allocStack(_StackCacheSize >> _PageShift)
if s == nil {
throw("out of memory")
}
if s.allocCount != 0 {
throw("bad allocCount")
}
if s.stackfreelist.ptr() != nil {
throw("bad stackfreelist")
}
for i := uintptr(0); i < _StackCacheSize; i += _FixedStack << order {
x := gclinkptr(s.base() + i)
x.ptr().next = s.stackfreelist
s.stackfreelist = x
}
list.insert(s)
}
x := s.stackfreelist
if x.ptr() == nil {
throw("span has no free stacks")
}
s.stackfreelist = x.ptr().next
s.allocCount++
if s.stackfreelist.ptr() == nil {
// all stacks in s are allocated.
list.remove(s)
}
return x
}
// Adds stack x to the free pool. Must be called with stackpoolmu held.
func stackpoolfree(x gclinkptr, order uint8) {
s := mheap_.lookup(unsafe.Pointer(x))
if s.state != _MSpanStack {
throw("freeing stack not in a stack span")
}
if s.stackfreelist.ptr() == nil {
// s will now have a free stack
stackpool[order].insert(s)
}
x.ptr().next = s.stackfreelist
s.stackfreelist = x
s.allocCount--
if gcphase == _GCoff && s.allocCount == 0 {
// Span is completely free. Return it to the heap
// immediately if we're sweeping.
//
// If GC is active, we delay the free until the end of
// GC to avoid the following type of situation:
//
// 1) GC starts, scans a SudoG but does not yet mark the SudoG.elem pointer
// 2) The stack that pointer points to is copied
// 3) The old stack is freed
// 4) The containing span is marked free
// 5) GC attempts to mark the SudoG.elem pointer. The
// marking fails because the pointer looks like a
// pointer into a free span.
//
// By not freeing, we prevent step #4 until GC is done.
stackpool[order].remove(s)
s.stackfreelist = 0
mheap_.freeStack(s)
}
}
// stackcacherefill/stackcacherelease implement a global pool of stack segments.
// The pool is required to prevent unlimited growth of per-thread caches.
//
//go:systemstack
func stackcacherefill(c *mcache, order uint8) {
if stackDebug >= 1 {
print("stackcacherefill order=", order, "\n")
}
// Grab some stacks from the global cache.
// Grab half of the allowed capacity (to prevent thrashing).
var list gclinkptr
var size uintptr
lock(&stackpoolmu)
for size < _StackCacheSize/2 {
x := stackpoolalloc(order)
x.ptr().next = list
list = x
size += _FixedStack << order
}
unlock(&stackpoolmu)
c.stackcache[order].list = list
c.stackcache[order].size = size
}
//go:systemstack
func stackcacherelease(c *mcache, order uint8) {
if stackDebug >= 1 {
print("stackcacherelease order=", order, "\n")
}
x := c.stackcache[order].list
size := c.stackcache[order].size
lock(&stackpoolmu)
for size > _StackCacheSize/2 {
y := x.ptr().next
stackpoolfree(x, order)
x = y
size -= _FixedStack << order
}
unlock(&stackpoolmu)
c.stackcache[order].list = x
c.stackcache[order].size = size
}
//go:systemstack
func stackcache_clear(c *mcache) {
if stackDebug >= 1 {
print("stackcache clear\n")
}
lock(&stackpoolmu)
for order := uint8(0); order < _NumStackOrders; order++ {
x := c.stackcache[order].list
for x.ptr() != nil {
y := x.ptr().next
stackpoolfree(x, order)
x = y
}
c.stackcache[order].list = 0
c.stackcache[order].size = 0
}
unlock(&stackpoolmu)
}
// stackalloc allocates an n byte stack.
//
// stackalloc must run on the system stack because it uses per-P
// resources and must not split the stack.
//
//go:systemstack
func stackalloc(n uint32) (stack, []stkbar) {
// Stackalloc must be called on scheduler stack, so that we
// never try to grow the stack during the code that stackalloc runs.
// Doing so would cause a deadlock (issue 1547).
thisg := getg()
if thisg != thisg.m.g0 {
throw("stackalloc not on scheduler stack")
}
if n&(n-1) != 0 {
throw("stack size not a power of 2")
}
if stackDebug >= 1 {
print("stackalloc ", n, "\n")
}
// Compute the size of stack barrier array.
maxstkbar := gcMaxStackBarriers(int(n))
nstkbar := unsafe.Sizeof(stkbar{}) * uintptr(maxstkbar)
var stkbarSlice slice
if debug.efence != 0 || stackFromSystem != 0 {
v := sysAlloc(round(uintptr(n), _PageSize), &memstats.stacks_sys)
if v == nil {
throw("out of memory (stackalloc)")
}
top := uintptr(n) - nstkbar
if maxstkbar != 0 {
stkbarSlice = slice{add(v, top), 0, maxstkbar}
}
return stack{uintptr(v), uintptr(v) + top}, *(*[]stkbar)(unsafe.Pointer(&stkbarSlice))
}
// Small stacks are allocated with a fixed-size free-list allocator.
// If we need a stack of a bigger size, we fall back on allocating
// a dedicated span.
var v unsafe.Pointer
if stackCache != 0 && n < _FixedStack<<_NumStackOrders && n < _StackCacheSize {
order := uint8(0)
n2 := n
for n2 > _FixedStack {
order++
n2 >>= 1
}
var x gclinkptr
c := thisg.m.mcache
if c == nil || thisg.m.preemptoff != "" || thisg.m.helpgc != 0 {
// c == nil can happen in the guts of exitsyscall or
// procresize. Just get a stack from the global pool.
// Also don't touch stackcache during gc
// as it's flushed concurrently.
lock(&stackpoolmu)
x = stackpoolalloc(order)
unlock(&stackpoolmu)
} else {
x = c.stackcache[order].list
if x.ptr() == nil {
stackcacherefill(c, order)
x = c.stackcache[order].list
}
c.stackcache[order].list = x.ptr().next
c.stackcache[order].size -= uintptr(n)
}
v = unsafe.Pointer(x)
} else {
var s *mspan
npage := uintptr(n) >> _PageShift
log2npage := stacklog2(npage)
// Try to get a stack from the large stack cache.
lock(&stackLarge.lock)
if !stackLarge.free[log2npage].isEmpty() {
s = stackLarge.free[log2npage].first
stackLarge.free[log2npage].remove(s)
}
unlock(&stackLarge.lock)
if s == nil {
// Allocate a new stack from the heap.
s = mheap_.allocStack(npage)
if s == nil {
throw("out of memory")
}
}
v = unsafe.Pointer(s.base())
}
if raceenabled {
racemalloc(v, uintptr(n))
}
if msanenabled {
msanmalloc(v, uintptr(n))
}
if stackDebug >= 1 {
print(" allocated ", v, "\n")
}
top := uintptr(n) - nstkbar
if maxstkbar != 0 {
stkbarSlice = slice{add(v, top), 0, maxstkbar}
}
return stack{uintptr(v), uintptr(v) + top}, *(*[]stkbar)(unsafe.Pointer(&stkbarSlice))
}
// stackfree frees an n byte stack allocation at stk.
//
// stackfree must run on the system stack because it uses per-P
// resources and must not split the stack.
//
//go:systemstack
func stackfree(stk stack, n uintptr) {
gp := getg()
v := unsafe.Pointer(stk.lo)
if n&(n-1) != 0 {
throw("stack not a power of 2")
}
if stk.lo+n < stk.hi {
throw("bad stack size")
}
if stackDebug >= 1 {
println("stackfree", v, n)
memclrNoHeapPointers(v, n) // for testing, clobber stack data
}
if debug.efence != 0 || stackFromSystem != 0 {
if debug.efence != 0 || stackFaultOnFree != 0 {
sysFault(v, n)
} else {
sysFree(v, n, &memstats.stacks_sys)
}
return
}
if msanenabled {
msanfree(v, n)
}
if stackCache != 0 && n < _FixedStack<<_NumStackOrders && n < _StackCacheSize {
order := uint8(0)
n2 := n
for n2 > _FixedStack {
order++
n2 >>= 1
}
x := gclinkptr(v)
c := gp.m.mcache
if c == nil || gp.m.preemptoff != "" || gp.m.helpgc != 0 {
lock(&stackpoolmu)
stackpoolfree(x, order)
unlock(&stackpoolmu)
} else {
if c.stackcache[order].size >= _StackCacheSize {
stackcacherelease(c, order)
}
x.ptr().next = c.stackcache[order].list
c.stackcache[order].list = x
c.stackcache[order].size += n
}
} else {
s := mheap_.lookup(v)
if s.state != _MSpanStack {
println(hex(s.base()), v)
throw("bad span state")
}
if gcphase == _GCoff {
// Free the stack immediately if we're
// sweeping.
mheap_.freeStack(s)
} else {
// If the GC is running, we can't return a
// stack span to the heap because it could be
// reused as a heap span, and this state
// change would race with GC. Add it to the
// large stack cache instead.
log2npage := stacklog2(s.npages)
lock(&stackLarge.lock)
stackLarge.free[log2npage].insert(s)
unlock(&stackLarge.lock)
}
}
}
var maxstacksize uintptr = 1 << 20 // enough until runtime.main sets it for real
var ptrnames = []string{
0: "scalar",
1: "ptr",
}
// Stack frame layout
//
// (x86)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// | return address |
// +------------------+
// | caller's BP (*) | (*) if framepointer_enabled && varp < sp
// +------------------+ <- frame->varp
// | locals |
// +------------------+
// | args to callee |
// +------------------+ <- frame->sp
//
// (arm)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// | caller's retaddr |
// +------------------+ <- frame->varp
// | locals |
// +------------------+
// | args to callee |
// +------------------+
// | return address |
// +------------------+ <- frame->sp
type adjustinfo struct {
old stack
delta uintptr // ptr distance from old to new stack (newbase - oldbase)
cache pcvalueCache
// sghi is the highest sudog.elem on the stack.
sghi uintptr
}
// Adjustpointer checks whether *vpp is in the old stack described by adjinfo.
// If so, it rewrites *vpp to point into the new stack.
func adjustpointer(adjinfo *adjustinfo, vpp unsafe.Pointer) {
pp := (*uintptr)(vpp)
p := *pp
if stackDebug >= 4 {
print(" ", pp, ":", hex(p), "\n")
}
if adjinfo.old.lo <= p && p < adjinfo.old.hi {
*pp = p + adjinfo.delta
if stackDebug >= 3 {
print(" adjust ptr ", pp, ":", hex(p), " -> ", hex(*pp), "\n")
}
}
}
// Information from the compiler about the layout of stack frames.
type bitvector struct {
n int32 // # of bits
bytedata *uint8
}
type gobitvector struct {
n uintptr
bytedata []uint8
}
func gobv(bv bitvector) gobitvector {
return gobitvector{
uintptr(bv.n),
(*[1 << 30]byte)(unsafe.Pointer(bv.bytedata))[:(bv.n+7)/8],
}
}
func ptrbit(bv *gobitvector, i uintptr) uint8 {
return (bv.bytedata[i/8] >> (i % 8)) & 1
}
// bv describes the memory starting at address scanp.
// Adjust any pointers contained therein.
func adjustpointers(scanp unsafe.Pointer, cbv *bitvector, adjinfo *adjustinfo, f *_func) {
bv := gobv(*cbv)
minp := adjinfo.old.lo
maxp := adjinfo.old.hi
delta := adjinfo.delta
num := bv.n
// If this frame might contain channel receive slots, use CAS
// to adjust pointers. If the slot hasn't been received into
// yet, it may contain stack pointers and a concurrent send
// could race with adjusting those pointers. (The sent value
// itself can never contain stack pointers.)
useCAS := uintptr(scanp) < adjinfo.sghi
for i := uintptr(0); i < num; i++ {
if stackDebug >= 4 {
print(" ", add(scanp, i*sys.PtrSize), ":", ptrnames[ptrbit(&bv, i)], ":", hex(*(*uintptr)(add(scanp, i*sys.PtrSize))), " # ", i, " ", bv.bytedata[i/8], "\n")
}
if ptrbit(&bv, i) == 1 {
pp := (*uintptr)(add(scanp, i*sys.PtrSize))
retry:
p := *pp
if f != nil && 0 < p && p < minLegalPointer && debug.invalidptr != 0 {
// Looks like a junk value in a pointer slot.
// Live analysis wrong?
getg().m.traceback = 2
print("runtime: bad pointer in frame ", funcname(f), " at ", pp, ": ", hex(p), "\n")
throw("invalid pointer found on stack")
}
if minp <= p && p < maxp {
if stackDebug >= 3 {
print("adjust ptr ", hex(p), " ", funcname(f), "\n")
}
if useCAS {
ppu := (*unsafe.Pointer)(unsafe.Pointer(pp))
if !atomic.Casp1(ppu, unsafe.Pointer(p), unsafe.Pointer(p+delta)) {
goto retry
}
} else {
*pp = p + delta
}
}
}
}
}
// Note: the argument/return area is adjusted by the callee.
func adjustframe(frame *stkframe, arg unsafe.Pointer) bool {
adjinfo := (*adjustinfo)(arg)
targetpc := frame.continpc
if targetpc == 0 {
// Frame is dead.
return true
}
f := frame.fn
if stackDebug >= 2 {
print(" adjusting ", funcname(f), " frame=[", hex(frame.sp), ",", hex(frame.fp), "] pc=", hex(frame.pc), " continpc=", hex(frame.continpc), "\n")
}
if f.entry == systemstack_switchPC {
// A special routine at the bottom of stack of a goroutine that does an systemstack call.
// We will allow it to be copied even though we don't
// have full GC info for it (because it is written in asm).
return true
}
if targetpc != f.entry {
targetpc--
}
pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc, &adjinfo.cache)
if pcdata == -1 {
pcdata = 0 // in prologue
}
// Adjust local variables if stack frame has been allocated.
size := frame.varp - frame.sp
var minsize uintptr
switch sys.ArchFamily {
case sys.ARM64:
minsize = sys.SpAlign
default:
minsize = sys.MinFrameSize
}
if size > minsize {
var bv bitvector
stackmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
if stackmap == nil || stackmap.n <= 0 {
print("runtime: frame ", funcname(f), " untyped locals ", hex(frame.varp-size), "+", hex(size), "\n")
throw("missing stackmap")
}
// Locals bitmap information, scan just the pointers in locals.
if pcdata < 0 || pcdata >= stackmap.n {
// don't know where we are
print("runtime: pcdata is ", pcdata, " and ", stackmap.n, " locals stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
throw("bad symbol table")
}
bv = stackmapdata(stackmap, pcdata)
size = uintptr(bv.n) * sys.PtrSize
if stackDebug >= 3 {
print(" locals ", pcdata, "/", stackmap.n, " ", size/sys.PtrSize, " words ", bv.bytedata, "\n")
}
adjustpointers(unsafe.Pointer(frame.varp-size), &bv, adjinfo, f)
}
// Adjust saved base pointer if there is one.
if sys.ArchFamily == sys.AMD64 && frame.argp-frame.varp == 2*sys.RegSize {
if !framepointer_enabled {
print("runtime: found space for saved base pointer, but no framepointer experiment\n")
print("argp=", hex(frame.argp), " varp=", hex(frame.varp), "\n")
throw("bad frame layout")
}
if stackDebug >= 3 {
print(" saved bp\n")
}
if debugCheckBP {
// Frame pointers should always point to the next higher frame on
// the Go stack (or be nil, for the top frame on the stack).
bp := *(*uintptr)(unsafe.Pointer(frame.varp))
if bp != 0 && (bp < adjinfo.old.lo || bp >= adjinfo.old.hi) {
println("runtime: found invalid frame pointer")
print("bp=", hex(bp), " min=", hex(adjinfo.old.lo), " max=", hex(adjinfo.old.hi), "\n")
throw("bad frame pointer")
}
}
adjustpointer(adjinfo, unsafe.Pointer(frame.varp))
}
// Adjust arguments.
if frame.arglen > 0 {
var bv bitvector
if frame.argmap != nil {
bv = *frame.argmap
} else {
stackmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
if stackmap == nil || stackmap.n <= 0 {
print("runtime: frame ", funcname(f), " untyped args ", frame.argp, "+", frame.arglen, "\n")
throw("missing stackmap")
}
if pcdata < 0 || pcdata >= stackmap.n {
// don't know where we are
print("runtime: pcdata is ", pcdata, " and ", stackmap.n, " args stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
throw("bad symbol table")
}
bv = stackmapdata(stackmap, pcdata)
}
if stackDebug >= 3 {
print(" args\n")
}
adjustpointers(unsafe.Pointer(frame.argp), &bv, adjinfo, nil)
}
return true
}
func adjustctxt(gp *g, adjinfo *adjustinfo) {
adjustpointer(adjinfo, unsafe.Pointer(&gp.sched.ctxt))
if !framepointer_enabled {
return
}
if debugCheckBP {
bp := gp.sched.bp
if bp != 0 && (bp < adjinfo.old.lo || bp >= adjinfo.old.hi) {
println("runtime: found invalid top frame pointer")
print("bp=", hex(bp), " min=", hex(adjinfo.old.lo), " max=", hex(adjinfo.old.hi), "\n")
throw("bad top frame pointer")
}
}
adjustpointer(adjinfo, unsafe.Pointer(&gp.sched.bp))
}
func adjustdefers(gp *g, adjinfo *adjustinfo) {
// Adjust defer argument blocks the same way we adjust active stack frames.
tracebackdefers(gp, adjustframe, noescape(unsafe.Pointer(adjinfo)))
// Adjust pointers in the Defer structs.
// Defer structs themselves are never on the stack.
for d := gp._defer; d != nil; d = d.link {
adjustpointer(adjinfo, unsafe.Pointer(&d.fn))
adjustpointer(adjinfo, unsafe.Pointer(&d.sp))
adjustpointer(adjinfo, unsafe.Pointer(&d._panic))
}
}
func adjustpanics(gp *g, adjinfo *adjustinfo) {
// Panics are on stack and already adjusted.
// Update pointer to head of list in G.
adjustpointer(adjinfo, unsafe.Pointer(&gp._panic))
}
func adjustsudogs(gp *g, adjinfo *adjustinfo) {
// the data elements pointed to by a SudoG structure
// might be in the stack.
for s := gp.waiting; s != nil; s = s.waitlink {
adjustpointer(adjinfo, unsafe.Pointer(&s.elem))
adjustpointer(adjinfo, unsafe.Pointer(&s.selectdone))
}
}
func adjuststkbar(gp *g, adjinfo *adjustinfo) {
for i := int(gp.stkbarPos); i < len(gp.stkbar); i++ {
adjustpointer(adjinfo, unsafe.Pointer(&gp.stkbar[i].savedLRPtr))
}
}
func fillstack(stk stack, b byte) {
for p := stk.lo; p < stk.hi; p++ {
*(*byte)(unsafe.Pointer(p)) = b
}
}
func findsghi(gp *g, stk stack) uintptr {
var sghi uintptr
for sg := gp.waiting; sg != nil; sg = sg.waitlink {
p := uintptr(sg.elem) + uintptr(sg.c.elemsize)
if stk.lo <= p && p < stk.hi && p > sghi {
sghi = p
}
p = uintptr(unsafe.Pointer(sg.selectdone)) + unsafe.Sizeof(sg.selectdone)
if stk.lo <= p && p < stk.hi && p > sghi {
sghi = p
}
}
return sghi
}
// syncadjustsudogs adjusts gp's sudogs and copies the part of gp's
// stack they refer to while synchronizing with concurrent channel
// operations. It returns the number of bytes of stack copied.
func syncadjustsudogs(gp *g, used uintptr, adjinfo *adjustinfo) uintptr {
if gp.waiting == nil {
return 0
}
// Lock channels to prevent concurrent send/receive.
// It's important that we *only* do this for async
// copystack; otherwise, gp may be in the middle of
// putting itself on wait queues and this would
// self-deadlock.
var lastc *hchan
for sg := gp.waiting; sg != nil; sg = sg.waitlink {
if sg.c != lastc {
lock(&sg.c.lock)
}
lastc = sg.c
}
// Adjust sudogs.
adjustsudogs(gp, adjinfo)
// Copy the part of the stack the sudogs point in to
// while holding the lock to prevent races on
// send/receive slots.
var sgsize uintptr
if adjinfo.sghi != 0 {
oldBot := adjinfo.old.hi - used
newBot := oldBot + adjinfo.delta
sgsize = adjinfo.sghi - oldBot
memmove(unsafe.Pointer(newBot), unsafe.Pointer(oldBot), sgsize)
}
// Unlock channels.
lastc = nil
for sg := gp.waiting; sg != nil; sg = sg.waitlink {
if sg.c != lastc {
unlock(&sg.c.lock)
}
lastc = sg.c
}
return sgsize
}
// Copies gp's stack to a new stack of a different size.
// Caller must have changed gp status to Gcopystack.
//
// If sync is true, this is a self-triggered stack growth and, in
// particular, no other G may be writing to gp's stack (e.g., via a
// channel operation). If sync is false, copystack protects against
// concurrent channel operations.
func copystack(gp *g, newsize uintptr, sync bool) {
if gp.syscallsp != 0 {
throw("stack growth not allowed in system call")
}
old := gp.stack
if old.lo == 0 {
throw("nil stackbase")
}
used := old.hi - gp.sched.sp
// allocate new stack
new, newstkbar := stackalloc(uint32(newsize))
if stackPoisonCopy != 0 {
fillstack(new, 0xfd)
}
if stackDebug >= 1 {
print("copystack gp=", gp, " [", hex(old.lo), " ", hex(old.hi-used), " ", hex(old.hi), "]/", gp.stackAlloc, " -> [", hex(new.lo), " ", hex(new.hi-used), " ", hex(new.hi), "]/", newsize, "\n")
}
// Compute adjustment.
var adjinfo adjustinfo
adjinfo.old = old
adjinfo.delta = new.hi - old.hi
// Adjust sudogs, synchronizing with channel ops if necessary.
ncopy := used
if sync {
adjustsudogs(gp, &adjinfo)
} else {
// sudogs can point in to the stack. During concurrent
// shrinking, these areas may be written to. Find the
// highest such pointer so we can handle everything
// there and below carefully. (This shouldn't be far
// from the bottom of the stack, so there's little
// cost in handling everything below it carefully.)
adjinfo.sghi = findsghi(gp, old)
// Synchronize with channel ops and copy the part of
// the stack they may interact with.
ncopy -= syncadjustsudogs(gp, used, &adjinfo)
}
// Copy the stack (or the rest of it) to the new location
memmove(unsafe.Pointer(new.hi-ncopy), unsafe.Pointer(old.hi-ncopy), ncopy)
// Disallow sigprof scans of this stack and block if there's
// one in progress.
gcLockStackBarriers(gp)
// Adjust remaining structures that have pointers into stacks.
// We have to do most of these before we traceback the new
// stack because gentraceback uses them.
adjustctxt(gp, &adjinfo)
adjustdefers(gp, &adjinfo)
adjustpanics(gp, &adjinfo)
adjuststkbar(gp, &adjinfo)
if adjinfo.sghi != 0 {
adjinfo.sghi += adjinfo.delta
}
// copy old stack barriers to new stack barrier array
newstkbar = newstkbar[:len(gp.stkbar)]
copy(newstkbar, gp.stkbar)
// Swap out old stack for new one
gp.stack = new
gp.stackguard0 = new.lo + _StackGuard // NOTE: might clobber a preempt request
gp.sched.sp = new.hi - used
oldsize := gp.stackAlloc
gp.stackAlloc = newsize
gp.stkbar = newstkbar
gp.stktopsp += adjinfo.delta
// Adjust pointers in the new stack.
gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, adjustframe, noescape(unsafe.Pointer(&adjinfo)), 0)
gcUnlockStackBarriers(gp)
// free old stack
if stackPoisonCopy != 0 {
fillstack(old, 0xfc)
}
stackfree(old, oldsize)
}
// round x up to a power of 2.
func round2(x int32) int32 {
s := uint(0)
for 1<<s < x {
s++
}
return 1 << s
}
// Called from runtime·morestack when more stack is needed.
// Allocate larger stack and relocate to new stack.
// Stack growth is multiplicative, for constant amortized cost.
//
// g->atomicstatus will be Grunning or Gscanrunning upon entry.
// If the GC is trying to stop this g then it will set preemptscan to true.
//
// ctxt is the value of the context register on morestack. newstack
// will write it to g.sched.ctxt.
func newstack(ctxt unsafe.Pointer) {
thisg := getg()
// TODO: double check all gp. shouldn't be getg().
if thisg.m.morebuf.g.ptr().stackguard0 == stackFork {
throw("stack growth after fork")
}
if thisg.m.morebuf.g.ptr() != thisg.m.curg {
print("runtime: newstack called from g=", hex(thisg.m.morebuf.g), "\n"+"\tm=", thisg.m, " m->curg=", thisg.m.curg, " m->g0=", thisg.m.g0, " m->gsignal=", thisg.m.gsignal, "\n")
morebuf := thisg.m.morebuf
traceback(morebuf.pc, morebuf.sp, morebuf.lr, morebuf.g.ptr())
throw("runtime: wrong goroutine in newstack")
}
gp := thisg.m.curg
// Write ctxt to gp.sched. We do this here instead of in
// morestack so it has the necessary write barrier.
gp.sched.ctxt = ctxt
if thisg.m.curg.throwsplit {
// Update syscallsp, syscallpc in case traceback uses them.
morebuf := thisg.m.morebuf
gp.syscallsp = morebuf.sp
gp.syscallpc = morebuf.pc
print("runtime: newstack sp=", hex(gp.sched.sp), " stack=[", hex(gp.stack.lo), ", ", hex(gp.stack.hi), "]\n",
"\tmorebuf={pc:", hex(morebuf.pc), " sp:", hex(morebuf.sp), " lr:", hex(morebuf.lr), "}\n",
"\tsched={pc:", hex(gp.sched.pc), " sp:", hex(gp.sched.sp), " lr:", hex(gp.sched.lr), " ctxt:", gp.sched.ctxt, "}\n")
traceback(morebuf.pc, morebuf.sp, morebuf.lr, gp)
throw("runtime: stack split at bad time")
}
morebuf := thisg.m.morebuf
thisg.m.morebuf.pc = 0
thisg.m.morebuf.lr = 0
thisg.m.morebuf.sp = 0
thisg.m.morebuf.g = 0
// NOTE: stackguard0 may change underfoot, if another thread
// is about to try to preempt gp. Read it just once and use that same
// value now and below.
preempt := atomic.Loaduintptr(&gp.stackguard0) == stackPreempt
// Be conservative about where we preempt.
// We are interested in preempting user Go code, not runtime code.
// If we're holding locks, mallocing, or preemption is disabled, don't
// preempt.
// This check is very early in newstack so that even the status change
// from Grunning to Gwaiting and back doesn't happen in this case.
// That status change by itself can be viewed as a small preemption,
// because the GC might change Gwaiting to Gscanwaiting, and then
// this goroutine has to wait for the GC to finish before continuing.
// If the GC is in some way dependent on this goroutine (for example,
// it needs a lock held by the goroutine), that small preemption turns
// into a real deadlock.
if preempt {
if thisg.m.locks != 0 || thisg.m.mallocing != 0 || thisg.m.preemptoff != "" || thisg.m.p.ptr().status != _Prunning {
// Let the goroutine keep running for now.
// gp->preempt is set, so it will be preempted next time.
gp.stackguard0 = gp.stack.lo + _StackGuard
gogo(&gp.sched) // never return
}
}
if gp.stack.lo == 0 {
throw("missing stack in newstack")
}
sp := gp.sched.sp
if sys.ArchFamily == sys.AMD64 || sys.ArchFamily == sys.I386 {
// The call to morestack cost a word.
sp -= sys.PtrSize
}
if stackDebug >= 1 || sp < gp.stack.lo {
print("runtime: newstack sp=", hex(sp), " stack=[", hex(gp.stack.lo), ", ", hex(gp.stack.hi), "]\n",
"\tmorebuf={pc:", hex(morebuf.pc), " sp:", hex(morebuf.sp), " lr:", hex(morebuf.lr), "}\n",
"\tsched={pc:", hex(gp.sched.pc), " sp:", hex(gp.sched.sp), " lr:", hex(gp.sched.lr), " ctxt:", gp.sched.ctxt, "}\n")
}
if sp < gp.stack.lo {
print("runtime: gp=", gp, ", gp->status=", hex(readgstatus(gp)), "\n ")
print("runtime: split stack overflow: ", hex(sp), " < ", hex(gp.stack.lo), "\n")
throw("runtime: split stack overflow")
}
if preempt {
if gp == thisg.m.g0 {
throw("runtime: preempt g0")
}
if thisg.m.p == 0 && thisg.m.locks == 0 {
throw("runtime: g is running but p is not")
}
// Synchronize with scang.
casgstatus(gp, _Grunning, _Gwaiting)
if gp.preemptscan {
for !castogscanstatus(gp, _Gwaiting, _Gscanwaiting) {
// Likely to be racing with the GC as
// it sees a _Gwaiting and does the
// stack scan. If so, gcworkdone will
// be set and gcphasework will simply
// return.
}
if !gp.gcscandone {
// gcw is safe because we're on the
// system stack.
gcw := &gp.m.p.ptr().gcw
scanstack(gp, gcw)
if gcBlackenPromptly {
gcw.dispose()
}
gp.gcscandone = true
}
gp.preemptscan = false
gp.preempt = false
casfrom_Gscanstatus(gp, _Gscanwaiting, _Gwaiting)
// This clears gcscanvalid.
casgstatus(gp, _Gwaiting, _Grunning)
gp.stackguard0 = gp.stack.lo + _StackGuard
gogo(&gp.sched) // never return
}
// Act like goroutine called runtime.Gosched.
casgstatus(gp, _Gwaiting, _Grunning)
gopreempt_m(gp) // never return
}
// Allocate a bigger segment and move the stack.
oldsize := int(gp.stackAlloc)
newsize := oldsize * 2
if uintptr(newsize) > maxstacksize {
print("runtime: goroutine stack exceeds ", maxstacksize, "-byte limit\n")
throw("stack overflow")
}
// The goroutine must be executing in order to call newstack,
// so it must be Grunning (or Gscanrunning).
casgstatus(gp, _Grunning, _Gcopystack)
// The concurrent GC will not scan the stack while we are doing the copy since
// the gp is in a Gcopystack status.
copystack(gp, uintptr(newsize), true)
if stackDebug >= 1 {
print("stack grow done\n")
}
casgstatus(gp, _Gcopystack, _Grunning)
gogo(&gp.sched)
}
//go:nosplit
func nilfunc() {
*(*uint8)(nil) = 0
}
// adjust Gobuf as if it executed a call to fn
// and then did an immediate gosave.
func gostartcallfn(gobuf *gobuf, fv *funcval) {
var fn unsafe.Pointer
if fv != nil {
fn = unsafe.Pointer(fv.fn)
} else {
fn = unsafe.Pointer(funcPC(nilfunc))
}
gostartcall(gobuf, fn, unsafe.Pointer(fv))
}
// Maybe shrink the stack being used by gp.
// Called at garbage collection time.
// gp must be stopped, but the world need not be.
func shrinkstack(gp *g) {
gstatus := readgstatus(gp)
if gstatus&^_Gscan == _Gdead {
if gp.stack.lo != 0 {
// Free whole stack - it will get reallocated
// if G is used again.
stackfree(gp.stack, gp.stackAlloc)
gp.stack.lo = 0
gp.stack.hi = 0
gp.stkbar = nil
gp.stkbarPos = 0
}
return
}
if gp.stack.lo == 0 {
throw("missing stack in shrinkstack")
}
if gstatus&_Gscan == 0 {
throw("bad status in shrinkstack")
}
if debug.gcshrinkstackoff > 0 {
return
}
if gp.startpc == gcBgMarkWorkerPC {
// We're not allowed to shrink the gcBgMarkWorker
// stack (see gcBgMarkWorker for explanation).
return
}
oldsize := gp.stackAlloc
newsize := oldsize / 2
// Don't shrink the allocation below the minimum-sized stack
// allocation.
if newsize < _FixedStack {
return
}
// Compute how much of the stack is currently in use and only
// shrink the stack if gp is using less than a quarter of its
// current stack. The currently used stack includes everything
// down to the SP plus the stack guard space that ensures
// there's room for nosplit functions.
avail := gp.stack.hi - gp.stack.lo
if used := gp.stack.hi - gp.sched.sp + _StackLimit; used >= avail/4 {
return
}
// We can't copy the stack if we're in a syscall.
// The syscall might have pointers into the stack.
if gp.syscallsp != 0 {
return
}
if sys.GoosWindows != 0 && gp.m != nil && gp.m.libcallsp != 0 {
return
}
if stackDebug > 0 {
print("shrinking stack ", oldsize, "->", newsize, "\n")
}
copystack(gp, newsize, false)
}
// freeStackSpans frees unused stack spans at the end of GC.
func freeStackSpans() {
lock(&stackpoolmu)
// Scan stack pools for empty stack spans.
for order := range stackpool {
list := &stackpool[order]
for s := list.first; s != nil; {
next := s.next
if s.allocCount == 0 {
list.remove(s)
s.stackfreelist = 0
mheap_.freeStack(s)
}
s = next
}
}
unlock(&stackpoolmu)
// Free large stack spans.
lock(&stackLarge.lock)
for i := range stackLarge.free {
for s := stackLarge.free[i].first; s != nil; {
next := s.next
stackLarge.free[i].remove(s)
mheap_.freeStack(s)
s = next
}
}
unlock(&stackLarge.lock)
}
//go:nosplit
func morestackc() {
systemstack(func() {
throw("attempt to execute C code on Go stack")
})
}
|