/usr/share/go-1.8/src/runtime/symtab.go is in golang-1.8-src 1.8.3-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 | // Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
// Frames may be used to get function/file/line information for a
// slice of PC values returned by Callers.
type Frames struct {
callers []uintptr
// If previous caller in iteration was a panic, then
// ci.callers[0] is the address of the faulting instruction
// instead of the return address of the call.
wasPanic bool
// Frames to return for subsequent calls to the Next method.
// Used for non-Go frames.
frames *[]Frame
}
// Frame is the information returned by Frames for each call frame.
type Frame struct {
// Program counter for this frame; multiple frames may have
// the same PC value.
PC uintptr
// Func for this frame; may be nil for non-Go code or fully
// inlined functions.
Func *Func
// Function name, file name, and line number for this call frame.
// May be the empty string or zero if not known.
// If Func is not nil then Function == Func.Name().
Function string
File string
Line int
// Entry point for the function; may be zero if not known.
// If Func is not nil then Entry == Func.Entry().
Entry uintptr
}
// CallersFrames takes a slice of PC values returned by Callers and
// prepares to return function/file/line information.
// Do not change the slice until you are done with the Frames.
func CallersFrames(callers []uintptr) *Frames {
return &Frames{callers: callers}
}
// Next returns frame information for the next caller.
// If more is false, there are no more callers (the Frame value is valid).
func (ci *Frames) Next() (frame Frame, more bool) {
if ci.frames != nil {
// We have saved up frames to return.
f := (*ci.frames)[0]
if len(*ci.frames) == 1 {
ci.frames = nil
} else {
*ci.frames = (*ci.frames)[1:]
}
return f, ci.frames != nil || len(ci.callers) > 0
}
if len(ci.callers) == 0 {
ci.wasPanic = false
return Frame{}, false
}
pc := ci.callers[0]
ci.callers = ci.callers[1:]
more = len(ci.callers) > 0
f := FuncForPC(pc)
if f == nil {
ci.wasPanic = false
if cgoSymbolizer != nil {
return ci.cgoNext(pc, more)
}
return Frame{}, more
}
entry := f.Entry()
xpc := pc
if xpc > entry && !ci.wasPanic {
xpc--
}
file, line := f.FileLine(xpc)
function := f.Name()
ci.wasPanic = entry == sigpanicPC
frame = Frame{
PC: xpc,
Func: f,
Function: function,
File: file,
Line: line,
Entry: entry,
}
return frame, more
}
// cgoNext returns frame information for pc, known to be a non-Go function,
// using the cgoSymbolizer hook.
func (ci *Frames) cgoNext(pc uintptr, more bool) (Frame, bool) {
arg := cgoSymbolizerArg{pc: pc}
callCgoSymbolizer(&arg)
if arg.file == nil && arg.funcName == nil {
// No useful information from symbolizer.
return Frame{}, more
}
var frames []Frame
for {
frames = append(frames, Frame{
PC: pc,
Func: nil,
Function: gostring(arg.funcName),
File: gostring(arg.file),
Line: int(arg.lineno),
Entry: arg.entry,
})
if arg.more == 0 {
break
}
callCgoSymbolizer(&arg)
}
// No more frames for this PC. Tell the symbolizer we are done.
// We don't try to maintain a single cgoSymbolizerArg for the
// whole use of Frames, because there would be no good way to tell
// the symbolizer when we are done.
arg.pc = 0
callCgoSymbolizer(&arg)
if len(frames) == 1 {
// Return a single frame.
return frames[0], more
}
// Return the first frame we saw and store the rest to be
// returned by later calls to Next.
rf := frames[0]
frames = frames[1:]
ci.frames = new([]Frame)
*ci.frames = frames
return rf, true
}
// NOTE: Func does not expose the actual unexported fields, because we return *Func
// values to users, and we want to keep them from being able to overwrite the data
// with (say) *f = Func{}.
// All code operating on a *Func must call raw to get the *_func instead.
// A Func represents a Go function in the running binary.
type Func struct {
opaque struct{} // unexported field to disallow conversions
}
func (f *Func) raw() *_func {
return (*_func)(unsafe.Pointer(f))
}
// funcdata.h
const (
_PCDATA_StackMapIndex = 0
_FUNCDATA_ArgsPointerMaps = 0
_FUNCDATA_LocalsPointerMaps = 1
_ArgsSizeUnknown = -0x80000000
)
// moduledata records information about the layout of the executable
// image. It is written by the linker. Any changes here must be
// matched changes to the code in cmd/internal/ld/symtab.go:symtab.
// moduledata is stored in read-only memory; none of the pointers here
// are visible to the garbage collector.
type moduledata struct {
pclntable []byte
ftab []functab
filetab []uint32
findfunctab uintptr
minpc, maxpc uintptr
text, etext uintptr
noptrdata, enoptrdata uintptr
data, edata uintptr
bss, ebss uintptr
noptrbss, enoptrbss uintptr
end, gcdata, gcbss uintptr
types, etypes uintptr
textsectmap []textsect
typelinks []int32 // offsets from types
itablinks []*itab
ptab []ptabEntry
pluginpath string
pkghashes []modulehash
modulename string
modulehashes []modulehash
gcdatamask, gcbssmask bitvector
typemap map[typeOff]*_type // offset to *_rtype in previous module
next *moduledata
}
// A modulehash is used to compare the ABI of a new module or a
// package in a new module with the loaded program.
//
// For each shared library a module links against, the linker creates an entry in the
// moduledata.modulehashes slice containing the name of the module, the abi hash seen
// at link time and a pointer to the runtime abi hash. These are checked in
// moduledataverify1 below.
//
// For each loaded plugin, the the pkghashes slice has a modulehash of the
// newly loaded package that can be used to check the plugin's version of
// a package against any previously loaded version of the package.
// This is done in plugin.lastmoduleinit.
type modulehash struct {
modulename string
linktimehash string
runtimehash *string
}
// pinnedTypemaps are the map[typeOff]*_type from the moduledata objects.
//
// These typemap objects are allocated at run time on the heap, but the
// only direct reference to them is in the moduledata, created by the
// linker and marked SNOPTRDATA so it is ignored by the GC.
//
// To make sure the map isn't collected, we keep a second reference here.
var pinnedTypemaps []map[typeOff]*_type
var firstmoduledata moduledata // linker symbol
var lastmoduledatap *moduledata // linker symbol
var modulesSlice unsafe.Pointer // see activeModules
// activeModules returns a slice of active modules.
//
// A module is active once its gcdatamask and gcbssmask have been
// assembled and it is usable by the GC.
func activeModules() []*moduledata {
p := (*[]*moduledata)(atomic.Loadp(unsafe.Pointer(&modulesSlice)))
if p == nil {
return nil
}
return *p
}
// modulesinit creates the active modules slice out of all loaded modules.
//
// When a module is first loaded by the dynamic linker, an .init_array
// function (written by cmd/link) is invoked to call addmoduledata,
// appending to the module to the linked list that starts with
// firstmoduledata.
//
// There are two times this can happen in the lifecycle of a Go
// program. First, if compiled with -linkshared, a number of modules
// built with -buildmode=shared can be loaded at program initialization.
// Second, a Go program can load a module while running that was built
// with -buildmode=plugin.
//
// After loading, this function is called which initializes the
// moduledata so it is usable by the GC and creates a new activeModules
// list.
//
// Only one goroutine may call modulesinit at a time.
func modulesinit() {
modules := new([]*moduledata)
for md := &firstmoduledata; md != nil; md = md.next {
*modules = append(*modules, md)
if md.gcdatamask == (bitvector{}) {
md.gcdatamask = progToPointerMask((*byte)(unsafe.Pointer(md.gcdata)), md.edata-md.data)
md.gcbssmask = progToPointerMask((*byte)(unsafe.Pointer(md.gcbss)), md.ebss-md.bss)
}
}
// Modules appear in the moduledata linked list in the order they are
// loaded by the dynamic loader, with one exception: the
// firstmoduledata itself the module that contains the runtime. This
// is not always the first module (when using -buildmode=shared, it
// is typically libstd.so, the second module). The order matters for
// typelinksinit, so we swap the first module with whatever module
// contains the main function.
//
// See Issue #18729.
mainText := funcPC(main_main)
for i, md := range *modules {
if md.text <= mainText && mainText <= md.etext {
(*modules)[0] = md
(*modules)[i] = &firstmoduledata
break
}
}
atomicstorep(unsafe.Pointer(&modulesSlice), unsafe.Pointer(modules))
}
type functab struct {
entry uintptr
funcoff uintptr
}
// Mapping information for secondary text sections
type textsect struct {
vaddr uintptr // prelinked section vaddr
length uintptr // section length
baseaddr uintptr // relocated section address
}
const minfunc = 16 // minimum function size
const pcbucketsize = 256 * minfunc // size of bucket in the pc->func lookup table
// findfunctab is an array of these structures.
// Each bucket represents 4096 bytes of the text segment.
// Each subbucket represents 256 bytes of the text segment.
// To find a function given a pc, locate the bucket and subbucket for
// that pc. Add together the idx and subbucket value to obtain a
// function index. Then scan the functab array starting at that
// index to find the target function.
// This table uses 20 bytes for every 4096 bytes of code, or ~0.5% overhead.
type findfuncbucket struct {
idx uint32
subbuckets [16]byte
}
func moduledataverify() {
for datap := &firstmoduledata; datap != nil; datap = datap.next {
moduledataverify1(datap)
}
}
const debugPcln = false
func moduledataverify1(datap *moduledata) {
// See golang.org/s/go12symtab for header: 0xfffffffb,
// two zero bytes, a byte giving the PC quantum,
// and a byte giving the pointer width in bytes.
pcln := *(**[8]byte)(unsafe.Pointer(&datap.pclntable))
pcln32 := *(**[2]uint32)(unsafe.Pointer(&datap.pclntable))
if pcln32[0] != 0xfffffffb || pcln[4] != 0 || pcln[5] != 0 || pcln[6] != sys.PCQuantum || pcln[7] != sys.PtrSize {
println("runtime: function symbol table header:", hex(pcln32[0]), hex(pcln[4]), hex(pcln[5]), hex(pcln[6]), hex(pcln[7]))
throw("invalid function symbol table\n")
}
// ftab is lookup table for function by program counter.
nftab := len(datap.ftab) - 1
var pcCache pcvalueCache
for i := 0; i < nftab; i++ {
// NOTE: ftab[nftab].entry is legal; it is the address beyond the final function.
if datap.ftab[i].entry > datap.ftab[i+1].entry {
f1 := (*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i].funcoff]))
f2 := (*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i+1].funcoff]))
f2name := "end"
if i+1 < nftab {
f2name = funcname(f2)
}
println("function symbol table not sorted by program counter:", hex(datap.ftab[i].entry), funcname(f1), ">", hex(datap.ftab[i+1].entry), f2name)
for j := 0; j <= i; j++ {
print("\t", hex(datap.ftab[j].entry), " ", funcname((*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[j].funcoff]))), "\n")
}
throw("invalid runtime symbol table")
}
if debugPcln || nftab-i < 5 {
// Check a PC near but not at the very end.
// The very end might be just padding that is not covered by the tables.
// No architecture rounds function entries to more than 16 bytes,
// but if one came along we'd need to subtract more here.
// But don't use the next PC if it corresponds to a foreign object chunk
// (no pcln table, f2.pcln == 0). That chunk might have an alignment
// more than 16 bytes.
f := (*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i].funcoff]))
end := f.entry
if i+1 < nftab {
f2 := (*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i+1].funcoff]))
if f2.pcln != 0 {
end = f2.entry - 16
if end < f.entry {
end = f.entry
}
}
}
pcvalue(f, f.pcfile, end, &pcCache, true)
pcvalue(f, f.pcln, end, &pcCache, true)
pcvalue(f, f.pcsp, end, &pcCache, true)
}
}
if datap.minpc != datap.ftab[0].entry ||
datap.maxpc != datap.ftab[nftab].entry {
throw("minpc or maxpc invalid")
}
for _, modulehash := range datap.modulehashes {
if modulehash.linktimehash != *modulehash.runtimehash {
println("abi mismatch detected between", datap.modulename, "and", modulehash.modulename)
throw("abi mismatch")
}
}
}
// FuncForPC returns a *Func describing the function that contains the
// given program counter address, or else nil.
func FuncForPC(pc uintptr) *Func {
return (*Func)(unsafe.Pointer(findfunc(pc)))
}
// Name returns the name of the function.
func (f *Func) Name() string {
return funcname(f.raw())
}
// Entry returns the entry address of the function.
func (f *Func) Entry() uintptr {
return f.raw().entry
}
// FileLine returns the file name and line number of the
// source code corresponding to the program counter pc.
// The result will not be accurate if pc is not a program
// counter within f.
func (f *Func) FileLine(pc uintptr) (file string, line int) {
// Pass strict=false here, because anyone can call this function,
// and they might just be wrong about targetpc belonging to f.
file, line32 := funcline1(f.raw(), pc, false)
return file, int(line32)
}
func findmoduledatap(pc uintptr) *moduledata {
for datap := &firstmoduledata; datap != nil; datap = datap.next {
if datap.minpc <= pc && pc < datap.maxpc {
return datap
}
}
return nil
}
func findfunc(pc uintptr) *_func {
datap := findmoduledatap(pc)
if datap == nil {
return nil
}
const nsub = uintptr(len(findfuncbucket{}.subbuckets))
x := pc - datap.minpc
b := x / pcbucketsize
i := x % pcbucketsize / (pcbucketsize / nsub)
ffb := (*findfuncbucket)(add(unsafe.Pointer(datap.findfunctab), b*unsafe.Sizeof(findfuncbucket{})))
idx := ffb.idx + uint32(ffb.subbuckets[i])
// If the idx is beyond the end of the ftab, set it to the end of the table and search backward.
// This situation can occur if multiple text sections are generated to handle large text sections
// and the linker has inserted jump tables between them.
if idx >= uint32(len(datap.ftab)) {
idx = uint32(len(datap.ftab) - 1)
}
if pc < datap.ftab[idx].entry {
// With multiple text sections, the idx might reference a function address that
// is higher than the pc being searched, so search backward until the matching address is found.
for datap.ftab[idx].entry > pc && idx > 0 {
idx--
}
if idx == 0 {
throw("findfunc: bad findfunctab entry idx")
}
} else {
// linear search to find func with pc >= entry.
for datap.ftab[idx+1].entry <= pc {
idx++
}
}
return (*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[idx].funcoff]))
}
type pcvalueCache struct {
entries [16]pcvalueCacheEnt
}
type pcvalueCacheEnt struct {
// targetpc and off together are the key of this cache entry.
targetpc uintptr
off int32
// val is the value of this cached pcvalue entry.
val int32
}
func pcvalue(f *_func, off int32, targetpc uintptr, cache *pcvalueCache, strict bool) int32 {
if off == 0 {
return -1
}
// Check the cache. This speeds up walks of deep stacks, which
// tend to have the same recursive functions over and over.
//
// This cache is small enough that full associativity is
// cheaper than doing the hashing for a less associative
// cache.
if cache != nil {
for _, ent := range cache.entries {
// We check off first because we're more
// likely to have multiple entries with
// different offsets for the same targetpc
// than the other way around, so we'll usually
// fail in the first clause.
if ent.off == off && ent.targetpc == targetpc {
return ent.val
}
}
}
datap := findmoduledatap(f.entry) // inefficient
if datap == nil {
if strict && panicking == 0 {
print("runtime: no module data for ", hex(f.entry), "\n")
throw("no module data")
}
return -1
}
p := datap.pclntable[off:]
pc := f.entry
val := int32(-1)
for {
var ok bool
p, ok = step(p, &pc, &val, pc == f.entry)
if !ok {
break
}
if targetpc < pc {
// Replace a random entry in the cache. Random
// replacement prevents a performance cliff if
// a recursive stack's cycle is slightly
// larger than the cache.
if cache != nil {
ci := fastrand() % uint32(len(cache.entries))
cache.entries[ci] = pcvalueCacheEnt{
targetpc: targetpc,
off: off,
val: val,
}
}
return val
}
}
// If there was a table, it should have covered all program counters.
// If not, something is wrong.
if panicking != 0 || !strict {
return -1
}
print("runtime: invalid pc-encoded table f=", funcname(f), " pc=", hex(pc), " targetpc=", hex(targetpc), " tab=", p, "\n")
p = datap.pclntable[off:]
pc = f.entry
val = -1
for {
var ok bool
p, ok = step(p, &pc, &val, pc == f.entry)
if !ok {
break
}
print("\tvalue=", val, " until pc=", hex(pc), "\n")
}
throw("invalid runtime symbol table")
return -1
}
func cfuncname(f *_func) *byte {
if f == nil || f.nameoff == 0 {
return nil
}
datap := findmoduledatap(f.entry) // inefficient
if datap == nil {
return nil
}
return &datap.pclntable[f.nameoff]
}
func funcname(f *_func) string {
return gostringnocopy(cfuncname(f))
}
func funcline1(f *_func, targetpc uintptr, strict bool) (file string, line int32) {
datap := findmoduledatap(f.entry) // inefficient
if datap == nil {
return "?", 0
}
fileno := int(pcvalue(f, f.pcfile, targetpc, nil, strict))
line = pcvalue(f, f.pcln, targetpc, nil, strict)
if fileno == -1 || line == -1 || fileno >= len(datap.filetab) {
// print("looking for ", hex(targetpc), " in ", funcname(f), " got file=", fileno, " line=", lineno, "\n")
return "?", 0
}
file = gostringnocopy(&datap.pclntable[datap.filetab[fileno]])
return
}
func funcline(f *_func, targetpc uintptr) (file string, line int32) {
return funcline1(f, targetpc, true)
}
func funcspdelta(f *_func, targetpc uintptr, cache *pcvalueCache) int32 {
x := pcvalue(f, f.pcsp, targetpc, cache, true)
if x&(sys.PtrSize-1) != 0 {
print("invalid spdelta ", funcname(f), " ", hex(f.entry), " ", hex(targetpc), " ", hex(f.pcsp), " ", x, "\n")
}
return x
}
func pcdatavalue(f *_func, table int32, targetpc uintptr, cache *pcvalueCache) int32 {
if table < 0 || table >= f.npcdata {
return -1
}
off := *(*int32)(add(unsafe.Pointer(&f.nfuncdata), unsafe.Sizeof(f.nfuncdata)+uintptr(table)*4))
return pcvalue(f, off, targetpc, cache, true)
}
func funcdata(f *_func, i int32) unsafe.Pointer {
if i < 0 || i >= f.nfuncdata {
return nil
}
p := add(unsafe.Pointer(&f.nfuncdata), unsafe.Sizeof(f.nfuncdata)+uintptr(f.npcdata)*4)
if sys.PtrSize == 8 && uintptr(p)&4 != 0 {
if uintptr(unsafe.Pointer(f))&4 != 0 {
println("runtime: misaligned func", f)
}
p = add(p, 4)
}
return *(*unsafe.Pointer)(add(p, uintptr(i)*sys.PtrSize))
}
// step advances to the next pc, value pair in the encoded table.
func step(p []byte, pc *uintptr, val *int32, first bool) (newp []byte, ok bool) {
p, uvdelta := readvarint(p)
if uvdelta == 0 && !first {
return nil, false
}
if uvdelta&1 != 0 {
uvdelta = ^(uvdelta >> 1)
} else {
uvdelta >>= 1
}
vdelta := int32(uvdelta)
p, pcdelta := readvarint(p)
*pc += uintptr(pcdelta * sys.PCQuantum)
*val += vdelta
return p, true
}
// readvarint reads a varint from p.
func readvarint(p []byte) (newp []byte, val uint32) {
var v, shift uint32
for {
b := p[0]
p = p[1:]
v |= (uint32(b) & 0x7F) << shift
if b&0x80 == 0 {
break
}
shift += 7
}
return p, v
}
type stackmap struct {
n int32 // number of bitmaps
nbit int32 // number of bits in each bitmap
bytedata [1]byte // bitmaps, each starting on a byte boundary
}
//go:nowritebarrier
func stackmapdata(stkmap *stackmap, n int32) bitvector {
if n < 0 || n >= stkmap.n {
throw("stackmapdata: index out of range")
}
return bitvector{stkmap.nbit, (*byte)(add(unsafe.Pointer(&stkmap.bytedata), uintptr(n*((stkmap.nbit+7)/8))))}
}
|