This file is indexed.

/usr/share/go-1.8/test/chan/powser1.go is in golang-1.8-src 1.8.3-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
// run

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Test concurrency primitives: power series.

// Power series package
// A power series is a channel, along which flow rational
// coefficients.  A denominator of zero signifies the end.
// Original code in Newsqueak by Doug McIlroy.
// See Squinting at Power Series by Doug McIlroy,
//   http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf

package main

import "os"

type rat struct  {
	num, den  int64	// numerator, denominator
}

func (u rat) pr() {
	if u.den==1 {
		print(u.num)
	} else {
		print(u.num, "/", u.den)
	}
	print(" ")
}

func (u rat) eq(c rat) bool {
	return u.num == c.num && u.den == c.den
}

type dch struct {
	req chan  int
	dat chan  rat
	nam int
}

type dch2 [2] *dch

var chnames string
var chnameserial int
var seqno int

func mkdch() *dch {
	c := chnameserial % len(chnames)
	chnameserial++
	d := new(dch)
	d.req = make(chan int)
	d.dat = make(chan rat)
	d.nam = c
	return d
}

func mkdch2() *dch2 {
	d2 := new(dch2)
	d2[0] = mkdch()
	d2[1] = mkdch()
	return d2
}

// split reads a single demand channel and replicates its
// output onto two, which may be read at different rates.
// A process is created at first demand for a rat and dies
// after the rat has been sent to both outputs.

// When multiple generations of split exist, the newest
// will service requests on one channel, which is
// always renamed to be out[0]; the oldest will service
// requests on the other channel, out[1].  All generations but the
// newest hold queued data that has already been sent to
// out[0].  When data has finally been sent to out[1],
// a signal on the release-wait channel tells the next newer
// generation to begin servicing out[1].

func dosplit(in *dch, out *dch2, wait chan int ) {
	both := false	// do not service both channels

	select {
	case <-out[0].req:
		
	case <-wait:
		both = true
		select {
		case <-out[0].req:
			
		case <-out[1].req:
			out[0], out[1] = out[1], out[0]
		}
	}

	seqno++
	in.req <- seqno
	release := make(chan  int)
	go dosplit(in, out, release)
	dat := <-in.dat
	out[0].dat <- dat
	if !both {
		<-wait
	}
	<-out[1].req
	out[1].dat <- dat
	release <- 0
}

func split(in *dch, out *dch2) {
	release := make(chan int)
	go dosplit(in, out, release)
	release <- 0
}

func put(dat rat, out *dch) {
	<-out.req
	out.dat <- dat
}

func get(in *dch) rat {
	seqno++
	in.req <- seqno
	return <-in.dat
}

// Get one rat from each of n demand channels

func getn(in []*dch) []rat {
	n := len(in)
	if n != 2 { panic("bad n in getn") }
	req := new([2] chan int)
	dat := new([2] chan rat)
	out := make([]rat, 2)
	var i int
	var it rat
	for i=0; i<n; i++ {
		req[i] = in[i].req
		dat[i] = nil
	}
	for n=2*n; n>0; n-- {
		seqno++

		select {
		case req[0] <- seqno:
			dat[0] = in[0].dat
			req[0] = nil
		case req[1] <- seqno:
			dat[1] = in[1].dat
			req[1] = nil
		case it = <-dat[0]:
			out[0] = it
			dat[0] = nil
		case it = <-dat[1]:
			out[1] = it
			dat[1] = nil
		}
	}
	return out
}

// Get one rat from each of 2 demand channels

func get2(in0 *dch, in1 *dch) []rat {
	return getn([]*dch{in0, in1})
}

func copy(in *dch, out *dch) {
	for {
		<-out.req
		out.dat <- get(in)
	}
}

func repeat(dat rat, out *dch) {
	for {
		put(dat, out)
	}
}

type PS *dch	// power series
type PS2 *[2] PS // pair of power series

var Ones PS
var Twos PS

func mkPS() *dch {
	return mkdch()
}

func mkPS2() *dch2 {
	return mkdch2()
}

// Conventions
// Upper-case for power series.
// Lower-case for rationals.
// Input variables: U,V,...
// Output variables: ...,Y,Z

// Integer gcd; needed for rational arithmetic

func gcd (u, v int64) int64 {
	if u < 0 { return gcd(-u, v) }
	if u == 0 { return v }
	return gcd(v%u, u)
}

// Make a rational from two ints and from one int

func i2tor(u, v int64) rat {
	g := gcd(u,v)
	var r rat
	if v > 0 {
		r.num = u/g
		r.den = v/g
	} else {
		r.num = -u/g
		r.den = -v/g
	}
	return r
}

func itor(u int64) rat {
	return i2tor(u, 1)
}

var zero rat
var one rat


// End mark and end test

var finis rat

func end(u rat) int64 {
	if u.den==0 { return 1 }
	return 0
}

// Operations on rationals

func add(u, v rat) rat {
	g := gcd(u.den,v.den)
	return  i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g))
}

func mul(u, v rat) rat {
	g1 := gcd(u.num,v.den)
	g2 := gcd(u.den,v.num)
	var r rat
	r.num = (u.num/g1)*(v.num/g2)
	r.den = (u.den/g2)*(v.den/g1)
	return r
}

func neg(u rat) rat {
	return i2tor(-u.num, u.den)
}

func sub(u, v rat) rat {
	return add(u, neg(v))
}

func inv(u rat) rat {	// invert a rat
	if u.num == 0 { panic("zero divide in inv") }
	return i2tor(u.den, u.num)
}

// print eval in floating point of PS at x=c to n terms
func evaln(c rat, U PS, n int) {
	xn := float64(1)
	x := float64(c.num)/float64(c.den)
	val := float64(0)
	for i:=0; i<n; i++ {
		u := get(U)
		if end(u) != 0 {
			break
		}
		val = val + x * float64(u.num)/float64(u.den)
		xn = xn*x
	}
	print(val, "\n")
}

// Print n terms of a power series
func printn(U PS, n int) {
	done := false
	for ; !done && n>0; n-- {
		u := get(U)
		if end(u) != 0 {
			done = true
		} else {
			u.pr()
		}
	}
	print(("\n"))
}

// Evaluate n terms of power series U at x=c
func eval(c rat, U PS, n int) rat {
	if n==0 { return zero }
	y := get(U)
	if end(y) != 0 { return zero }
	return add(y,mul(c,eval(c,U,n-1)))
}

// Power-series constructors return channels on which power
// series flow.  They start an encapsulated generator that
// puts the terms of the series on the channel.

// Make a pair of power series identical to a given power series

func Split(U PS) *dch2 {
	UU := mkdch2()
	go split(U,UU)
	return UU
}

// Add two power series
func Add(U, V PS) PS {
	Z := mkPS()
	go func() {
		var uv []rat
		for {
			<-Z.req
			uv = get2(U,V)
			switch end(uv[0])+2*end(uv[1]) {
			case 0:
				Z.dat <- add(uv[0], uv[1])
			case 1:
				Z.dat <- uv[1]
				copy(V,Z)
			case 2:
				Z.dat <- uv[0]
				copy(U,Z)
			case 3:
				Z.dat <- finis
			}
		}
	}()
	return Z
}

// Multiply a power series by a constant
func Cmul(c rat,U PS) PS {
	Z := mkPS()
	go func() {
		done := false
		for !done {
			<-Z.req
			u := get(U)
			if end(u) != 0 {
				done = true
			} else {
				Z.dat <- mul(c,u)
			}
		}
		Z.dat <- finis
	}()
	return Z
}

// Subtract

func Sub(U, V PS) PS {
	return Add(U, Cmul(neg(one), V))
}

// Multiply a power series by the monomial x^n

func Monmul(U PS, n int) PS {
	Z := mkPS()
	go func() {
		for ; n>0; n-- { put(zero,Z) }
		copy(U,Z)
	}()
	return Z
}

// Multiply by x

func Xmul(U PS) PS {
	return Monmul(U,1)
}

func Rep(c rat) PS {
	Z := mkPS()
	go repeat(c,Z)
	return Z
}

// Monomial c*x^n

func Mon(c rat, n int) PS {
	Z:=mkPS()
	go func() {
		if(c.num!=0) {
			for ; n>0; n=n-1 { put(zero,Z) }
			put(c,Z)
		}
		put(finis,Z)
	}()
	return Z
}

func Shift(c rat, U PS) PS {
	Z := mkPS()
	go func() {
		put(c,Z)
		copy(U,Z)
	}()
	return Z
}

// simple pole at 1: 1/(1-x) = 1 1 1 1 1 ...

// Convert array of coefficients, constant term first
// to a (finite) power series

/*
func Poly(a []rat) PS {
	Z:=mkPS()
	begin func(a []rat, Z PS) {
		j:=0
		done:=0
		for j=len(a); !done&&j>0; j=j-1)
			if(a[j-1].num!=0) done=1
		i:=0
		for(; i<j; i=i+1) put(a[i],Z)
		put(finis,Z)
	}()
	return Z
}
*/

// Multiply. The algorithm is
//	let U = u + x*UU
//	let V = v + x*VV
//	then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV

func Mul(U, V PS) PS {
	Z:=mkPS()
	go func() {
		<-Z.req
		uv := get2(U,V)
		if end(uv[0])!=0 || end(uv[1]) != 0 {
			Z.dat <- finis
		} else {
			Z.dat <- mul(uv[0],uv[1])
			UU := Split(U)
			VV := Split(V)
			W := Add(Cmul(uv[0],VV[0]),Cmul(uv[1],UU[0]))
			<-Z.req
			Z.dat <- get(W)
			copy(Add(W,Mul(UU[1],VV[1])),Z)
		}
	}()
	return Z
}

// Differentiate

func Diff(U PS) PS {
	Z:=mkPS()
	go func() {
		<-Z.req
		u := get(U)
		if end(u) == 0 {
			done:=false
			for i:=1; !done; i++ {
				u = get(U)
				if end(u) != 0 {
					done = true
				} else {
					Z.dat <- mul(itor(int64(i)),u)
					<-Z.req
				}
			}
		}
		Z.dat <- finis
	}()
	return Z
}

// Integrate, with const of integration
func Integ(c rat,U PS) PS {
	Z:=mkPS()
	go func() {
		put(c,Z)
		done:=false
		for i:=1; !done; i++ {
			<-Z.req
			u := get(U)
			if end(u) != 0 { done= true }
			Z.dat <- mul(i2tor(1,int64(i)),u)
		}
		Z.dat <- finis
	}()
	return Z
}

// Binomial theorem (1+x)^c

func Binom(c rat) PS {
	Z:=mkPS()
	go func() {
		n := 1
		t := itor(1)
		for c.num!=0 {
			put(t,Z)
			t = mul(mul(t,c),i2tor(1,int64(n)))
			c = sub(c,one)
			n++
		}
		put(finis,Z)
	}()
	return Z
}

// Reciprocal of a power series
//	let U = u + x*UU
//	let Z = z + x*ZZ
//	(u+x*UU)*(z+x*ZZ) = 1
//	z = 1/u
//	u*ZZ + z*UU +x*UU*ZZ = 0
//	ZZ = -UU*(z+x*ZZ)/u

func Recip(U PS) PS {
	Z:=mkPS()
	go func() {
		ZZ:=mkPS2()
		<-Z.req
		z := inv(get(U))
		Z.dat <- z
		split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ)
		copy(ZZ[1],Z)
	}()
	return Z
}

// Exponential of a power series with constant term 0
// (nonzero constant term would make nonrational coefficients)
// bug: the constant term is simply ignored
//	Z = exp(U)
//	DZ = Z*DU
//	integrate to get Z

func Exp(U PS) PS {
	ZZ := mkPS2()
	split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ)
	return ZZ[1]
}

// Substitute V for x in U, where the leading term of V is zero
//	let U = u + x*UU
//	let V = v + x*VV
//	then S(U,V) = u + VV*S(V,UU)
// bug: a nonzero constant term is ignored

func Subst(U, V PS) PS {
	Z:= mkPS()
	go func() {
		VV := Split(V)
		<-Z.req
		u := get(U)
		Z.dat <- u
		if end(u) == 0 {
			if end(get(VV[0])) != 0 {
				put(finis,Z)
			} else {
				copy(Mul(VV[0],Subst(U,VV[1])),Z)
			}
		}
	}()
	return Z
}

// Monomial Substition: U(c x^n)
// Each Ui is multiplied by c^i and followed by n-1 zeros

func MonSubst(U PS, c0 rat, n int) PS {
	Z:= mkPS()
	go func() {
		c := one
		for {
			<-Z.req
			u := get(U)
			Z.dat <- mul(u, c)
			c = mul(c, c0)
			if end(u) != 0 {
				Z.dat <- finis
				break
			}
			for i := 1; i < n; i++ {
				<-Z.req
				Z.dat <- zero
			}
		}
	}()
	return Z
}


func Init() {
	chnameserial = -1
	seqno = 0
	chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
	zero = itor(0)
	one = itor(1)
	finis = i2tor(1,0)
	Ones = Rep(one)
	Twos = Rep(itor(2))
}

func check(U PS, c rat, count int, str string) {
	for i := 0; i < count; i++ {
		r := get(U)
		if !r.eq(c) {
			print("got: ")
			r.pr()
			print("should get ")
			c.pr()
			print("\n")
			panic(str)
		}
	}
}

const N=10
func checka(U PS, a []rat, str string) {
	for i := 0; i < N; i++ {
		check(U, a[i], 1, str)
	}
}

func main() {
	Init()
	if len(os.Args) > 1 {  // print
		print("Ones: "); printn(Ones, 10)
		print("Twos: "); printn(Twos, 10)
		print("Add: "); printn(Add(Ones, Twos), 10)
		print("Diff: "); printn(Diff(Ones), 10)
		print("Integ: "); printn(Integ(zero, Ones), 10)
		print("CMul: "); printn(Cmul(neg(one), Ones), 10)
		print("Sub: "); printn(Sub(Ones, Twos), 10)
		print("Mul: "); printn(Mul(Ones, Ones), 10)
		print("Exp: "); printn(Exp(Ones), 15)
		print("MonSubst: "); printn(MonSubst(Ones, neg(one), 2), 10)
		print("ATan: "); printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
	} else {  // test
		check(Ones, one, 5, "Ones")
		check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones")  // 1 1 1 1 1
		check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3
		a := make([]rat, N)
		d := Diff(Ones)
		for i:=0; i < N; i++ {
			a[i] = itor(int64(i+1))
		}
		checka(d, a, "Diff")  // 1 2 3 4 5
		in := Integ(zero, Ones)
		a[0] = zero  // integration constant
		for i:=1; i < N; i++ {
			a[i] = i2tor(1, int64(i))
		}
		checka(in, a, "Integ")  // 0 1 1/2 1/3 1/4 1/5
		check(Cmul(neg(one), Twos), itor(-2), 10, "CMul")  // -1 -1 -1 -1 -1
		check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos")  // -1 -1 -1 -1 -1
		m := Mul(Ones, Ones)
		for i:=0; i < N; i++ {
			a[i] = itor(int64(i+1))
		}
		checka(m, a, "Mul")  // 1 2 3 4 5
		e := Exp(Ones)
		a[0] = itor(1)
		a[1] = itor(1)
		a[2] = i2tor(3,2)
		a[3] = i2tor(13,6)
		a[4] = i2tor(73,24)
		a[5] = i2tor(167,40)
		a[6] = i2tor(4051,720)
		a[7] = i2tor(37633,5040)
		a[8] = i2tor(43817,4480)
		a[9] = i2tor(4596553,362880)
		checka(e, a, "Exp")  // 1 1 3/2 13/6 73/24
		at := Integ(zero, MonSubst(Ones, neg(one), 2))
		for c, i := 1, 0; i < N; i++ {
			if i%2 == 0 {
				a[i] = zero
			} else {
				a[i] = i2tor(int64(c), int64(i))
				c *= -1
			}
		}
		checka(at, a, "ATan")  // 0 -1 0 -1/3 0 -1/5
/*
		t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
		a[0] = zero
		a[1] = itor(1)
		a[2] = zero
		a[3] = i2tor(1,3)
		a[4] = zero
		a[5] = i2tor(2,15)
		a[6] = zero
		a[7] = i2tor(17,315)
		a[8] = zero
		a[9] = i2tor(62,2835)
		checka(t, a, "Tan")  // 0 1 0 1/3 0 2/15
*/
	}
}