/usr/include/hphp/hhbbc/interp-internal.h is in hhvm-dev 3.21.0+dfsg-2ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 | /*
+----------------------------------------------------------------------+
| HipHop for PHP |
+----------------------------------------------------------------------+
| Copyright (c) 2010-present Facebook, Inc. (http://www.facebook.com) |
+----------------------------------------------------------------------+
| This source file is subject to version 3.01 of the PHP license, |
| that is bundled with this package in the file LICENSE, and is |
| available through the world-wide-web at the following url: |
| http://www.php.net/license/3_01.txt |
| If you did not receive a copy of the PHP license and are unable to |
| obtain it through the world-wide-web, please send a note to |
| license@php.net so we can mail you a copy immediately. |
+----------------------------------------------------------------------+
*/
#ifndef incl_HPHP_INTERP_INTERNAL_H_
#define incl_HPHP_INTERP_INTERNAL_H_
#include <algorithm>
#include <folly/Optional.h>
#include "hphp/runtime/base/type-string.h"
#include "hphp/hhbbc/interp-state.h"
#include "hphp/hhbbc/interp.h"
#include "hphp/hhbbc/representation.h"
#include "hphp/hhbbc/type-system.h"
#include "hphp/hhbbc/func-util.h"
namespace HPHP { namespace HHBBC {
//////////////////////////////////////////////////////////////////////
TRACE_SET_MOD(hhbbc);
const StaticString s_assert("assert");
const StaticString s_set_frame_metadata("HH\\set_frame_metadata");
//////////////////////////////////////////////////////////////////////
/*
* Interpreter Step State.
*
* This struct gives interpreter functions access to shared state. It's not in
* interp-state.h because it's part of the internal implementation of
* interpreter routines. The publicized state as results of interpretation are
* in that header and interp.h.
*/
struct ISS {
explicit ISS(Interp& bag,
StepFlags& flags,
PropagateFn propagate)
: index(bag.index)
, ctx(bag.ctx)
, collect(bag.collect)
, blk(*bag.blk)
, state(bag.state)
, flags(flags)
, propagate(propagate)
{}
const Index& index;
const Context ctx;
CollectedInfo& collect;
const php::Block& blk;
State& state;
StepFlags& flags;
PropagateFn propagate;
};
void impl_vec(ISS& env, bool reduce, std::vector<Bytecode>&& bcs);
//////////////////////////////////////////////////////////////////////
namespace interp_step {
/*
* An interp_step::in(ISS&, const bc::op&) function exists for every
* bytecode. Most are defined in interp.cpp, but some (like FCallBuiltin and
* member instructions) are defined elsewhere.
*/
#define O(opcode, ...) void in(ISS&, const bc::opcode&);
OPCODES
#undef O
}
namespace {
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-function"
#endif
/*
* impl(...)
*
* Utility for chaining one bytecode implementation to a series of a few
* others. Use reduce() if you also want to enable strength reduction
* (i.e. the bytecode can be replaced by some other bytecode as an
* optimization).
*
* The chained-to bytecodes should not take branches. For impl, the
* canConstProp flag will only be set if it was set for all the
* bytecodes.
*/
template<class... Ts>
void impl(ISS& env, Ts&&... ts) {
impl_vec(env, false, { std::forward<Ts>(ts)... });
}
/*
* Reduce means that (given some situation in the execution state),
* a given bytecode could be replaced by some other bytecode
* sequence. Ensure that if you call reduce(), it is before any
* state-affecting operations (like popC()).
*
* If env.collect.propagate_constants is set, the reduced bytecodes
* will have been constant-propagated, and the canConstProp flag will
* be clear; otherwise canConstProp will be set as for impl.
*/
void reduce(ISS& env, std::vector<Bytecode>&& bcs) {
impl_vec(env, true, std::move(bcs));
}
template<class... Bytecodes>
void reduce(ISS& env, Bytecodes&&... hhbc) {
reduce(env, { std::forward<Bytecodes>(hhbc)... });
}
void nothrow(ISS& env) {
FTRACE(2, " nothrow\n");
env.flags.wasPEI = false;
}
void unreachable(ISS& env) {
FTRACE(2, " unreachable\n");
env.state.unreachable = true;
}
void constprop(ISS& env) {
FTRACE(2, " constprop\n");
env.flags.canConstProp = true;
}
void jmp_nofallthrough(ISS& env) {
env.flags.jmpFlag = StepFlags::JmpFlags::Taken;
}
void jmp_nevertaken(ISS& env) {
env.flags.jmpFlag = StepFlags::JmpFlags::Fallthrough;
}
void readUnknownLocals(ISS& env) { env.flags.mayReadLocalSet.set(); }
void readAllLocals(ISS& env) { env.flags.mayReadLocalSet.set(); }
void modifyLocalStatic(ISS& env, LocalId id, const Type& t) {
auto modifyOne = [&] (LocalId lid) {
if (is_volatile_local(env.ctx.func, lid)) return;
if (env.state.localStaticBindings.size() <= lid) return;
if (env.state.localStaticBindings[lid] == LocalStaticBinding::None) return;
if (t.subtypeOf(TUninit) && !t.subtypeOf(TBottom)) {
// Uninit means we are unbinding.
env.state.localStaticBindings[lid] = id == NoLocalId ?
LocalStaticBinding::None : LocalStaticBinding::Maybe;
return;
}
if (lid >= env.collect.localStaticTypes.size()) {
env.collect.localStaticTypes.resize(lid + 1, TBottom);
}
env.collect.localStaticTypes[lid] = t.subtypeOf(TCell) ?
union_of(std::move(env.collect.localStaticTypes[lid]), t) :
TGen;
};
if (id != NoLocalId) {
return modifyOne(id);
}
for (LocalId i = 0; i < env.state.localStaticBindings.size(); i++) {
modifyOne(i);
}
}
void maybeBindLocalStatic(ISS& env, LocalId id) {
if (is_volatile_local(env.ctx.func, id)) return;
if (env.state.localStaticBindings.size() <= id) return;
if (env.state.localStaticBindings[id] != LocalStaticBinding::None) return;
env.state.localStaticBindings[id] = LocalStaticBinding::Maybe;
return;
}
void unbindLocalStatic(ISS& env, LocalId id) {
modifyLocalStatic(env, id, TUninit);
}
void bindLocalStatic(ISS& env, LocalId id, const Type& t) {
if (is_volatile_local(env.ctx.func, id)) return;
if (env.state.localStaticBindings.size() <= id) {
env.state.localStaticBindings.resize(id + 1);
}
env.state.localStaticBindings[id] = LocalStaticBinding::Bound;
modifyLocalStatic(env, id, t);
}
void killLocals(ISS& env) {
FTRACE(2, " killLocals\n");
readUnknownLocals(env);
modifyLocalStatic(env, NoLocalId, TGen);
for (auto& l : env.state.locals) l = TGen;
for (auto& e : env.state.stack) e.equivLocal = NoLocalId;
env.state.equivLocals.clear();
}
void doRet(ISS& env, Type t) {
readAllLocals(env);
assert(env.state.stack.empty());
env.flags.returned = t;
}
void mayUseVV(ISS& env) {
env.collect.mayUseVV = true;
}
void specialFunctionEffects(ISS& env, const res::Func& func) {
if (func.name()->isame(s_set_frame_metadata.get())) {
/*
* HH\set_frame_metadata can write to the caller's frame, but does not
* require a VV.
*/
readUnknownLocals(env);
killLocals(env);
return;
}
if (func.name()->isame(s_assert.get())) {
/*
* Assert is somewhat special. In the most general case, it can read and
* write to the caller's frame (and is marked as such). The first parameter,
* if a string, will be evaled and can have arbitrary effects. Luckily this
* is forbidden in RepoAuthoritative mode, so we can ignore that here. If
* the assert fails, it may execute an arbitrary pre-registered callback
* which still might try to write to the assert caller's frame. This can't
* happen if calling such frame accessing functions dynamically is
* forbidden.
*/
if (options.DisallowDynamicVarEnvFuncs) return;
}
/*
* Skip-frame functions won't write or read to the caller's frame, but they
* might dynamically call a function which can. So, skip-frame functions kill
* our locals unless they can't call such functions.
*/
if (func.mightWriteCallerFrame() ||
(!options.DisallowDynamicVarEnvFuncs && func.mightBeSkipFrame())) {
readUnknownLocals(env);
killLocals(env);
mayUseVV(env);
return;
}
if (func.mightReadCallerFrame()) {
readUnknownLocals(env);
mayUseVV(env);
return;
}
}
void specialFunctionEffects(ISS& env, ActRec ar) {
switch (ar.kind) {
case FPIKind::Unknown:
// fallthrough
case FPIKind::Func:
if (!ar.func) {
if (!options.DisallowDynamicVarEnvFuncs) {
readUnknownLocals(env);
killLocals(env);
mayUseVV(env);
}
return;
}
case FPIKind::Builtin:
specialFunctionEffects(env, *ar.func);
if (ar.fallbackFunc) specialFunctionEffects(env, *ar.fallbackFunc);
break;
case FPIKind::Ctor:
case FPIKind::ObjMeth:
case FPIKind::ClsMeth:
case FPIKind::ObjInvoke:
case FPIKind::CallableArr:
/*
* Methods cannot read or write to the caller's frame, but they can be
* skip-frame (if they're a builtin). So, its possible they'll dynamically
* call a function which reads or writes to the caller's frame. If we don't
* forbid this, we have to be pessimistic. Imagine something like
* Vector::map calling assert.
*/
if (!options.DisallowDynamicVarEnvFuncs &&
(!ar.func || ar.func->mightBeSkipFrame())) {
readUnknownLocals(env);
killLocals(env);
mayUseVV(env);
}
break;
}
}
//////////////////////////////////////////////////////////////////////
// eval stack
Type popT(ISS& env) {
assert(!env.state.stack.empty());
auto const ret = std::move(env.state.stack.back().type);
FTRACE(2, " pop: {}\n", show(ret));
assert(ret.subtypeOf(TGen));
env.state.stack.pop_back();
return ret;
}
Type popC(ISS& env) {
auto const v = popT(env);
assert(v.subtypeOf(TInitCell));
return v;
}
Type popV(ISS& env) {
auto const v = popT(env);
assert(v.subtypeOf(TRef));
return v;
}
Type popU(ISS& env) {
auto const v = popT(env);
assert(v.subtypeOf(TUninit));
return v;
}
Type popCU(ISS& env) {
auto const v = popT(env);
assert(v.subtypeOf(TCell));
return v;
}
Type popR(ISS& env) { return popT(env); }
Type popF(ISS& env) { return popT(env); }
Type popCV(ISS& env) { return popT(env); }
void discard(ISS& env, int n) {
for (auto i = 0; i < n; ++i) {
popT(env);
}
}
Type& topT(ISS& env, uint32_t idx = 0) {
assert(idx < env.state.stack.size());
return env.state.stack[env.state.stack.size() - idx - 1].type;
}
Type& topC(ISS& env, uint32_t i = 0) {
assert(topT(env, i).subtypeOf(TInitCell));
return topT(env, i);
}
Type& topR(ISS& env, uint32_t i = 0) { return topT(env, i); }
Type& topV(ISS& env, uint32_t i = 0) {
assert(topT(env, i).subtypeOf(TRef));
return topT(env, i);
}
void push(ISS& env, Type t, LocalId l = NoLocalId) {
FTRACE(2, " push: {}\n", show(t));
always_assert(l == NoLocalId || !is_volatile_local(env.ctx.func, l));
env.state.stack.push_back(StackElem {std::move(t), l});
}
//////////////////////////////////////////////////////////////////////
// fpi
void fpiPush(ISS& env, ActRec ar) {
FTRACE(2, " fpi+: {}\n", show(ar));
env.state.fpiStack.push_back(ar);
}
ActRec fpiPop(ISS& env) {
assert(!env.state.fpiStack.empty());
auto const ret = env.state.fpiStack.back();
FTRACE(2, " fpi-: {}\n", show(ret));
env.state.fpiStack.pop_back();
return ret;
}
ActRec fpiTop(ISS& env) {
assert(!env.state.fpiStack.empty());
return env.state.fpiStack.back();
}
PrepKind prepKind(ISS& env, uint32_t paramId) {
auto ar = fpiTop(env);
if (ar.func && !ar.fallbackFunc) {
auto ret = env.index.lookup_param_prep(env.ctx, *ar.func, paramId);
assert(ar.kind != FPIKind::Builtin || ret != PrepKind::Unknown);
return ret;
}
assert(ar.kind != FPIKind::Builtin);
return PrepKind::Unknown;
}
//////////////////////////////////////////////////////////////////////
// locals
void useLocalStatic(ISS& env, LocalId l) {
assert(env.collect.localStaticTypes.size() > l);
if (!env.flags.usedLocalStatics) {
env.flags.usedLocalStatics = std::make_shared<std::map<LocalId,Type>>();
}
// Ignore the return value, since we only want the first type used,
// as that will be the narrowest.
env.flags.usedLocalStatics->emplace(l, env.collect.localStaticTypes[l]);
}
void mayReadLocal(ISS& env, uint32_t id) {
if (id < env.flags.mayReadLocalSet.size()) {
env.flags.mayReadLocalSet.set(id);
}
}
// Find a local which is equivalent to the given local
LocalId findLocEquiv(ISS& env, LocalId l) {
if (l >= env.state.equivLocals.size()) return NoLocalId;
assert(env.state.equivLocals[l] == NoLocalId ||
!is_volatile_local(env.ctx.func, l));
return env.state.equivLocals[l];
}
// Determine whether two locals are equivalent
bool locsAreEquiv(ISS& env, LocalId l1, LocalId l2) {
if (l1 >= env.state.equivLocals.size() ||
l2 >= env.state.equivLocals.size() ||
env.state.equivLocals[l1] == NoLocalId ||
env.state.equivLocals[l2] == NoLocalId) {
return false;
}
auto l = l1;
while ((l = env.state.equivLocals[l]) != l1) {
if (l == l2) return true;
}
return false;
}
void killLocEquiv(State& state, LocalId l) {
if (l >= state.equivLocals.size()) return;
if (state.equivLocals[l] == NoLocalId) return;
auto loc = l;
do {
loc = state.equivLocals[loc];
} while (state.equivLocals[loc] != l);
assert(loc != l);
if (state.equivLocals[l] == loc) {
state.equivLocals[loc] = NoLocalId;
} else {
state.equivLocals[loc] = state.equivLocals[l];
}
state.equivLocals[l] = NoLocalId;
}
void killLocEquiv(ISS& env, LocalId l) {
killLocEquiv(env.state, l);
}
void killAllLocEquiv(ISS& env) {
env.state.equivLocals.clear();
}
// Add from to to's equivalency set.
void addLocEquiv(ISS& env,
LocalId from,
LocalId to) {
always_assert(!is_volatile_local(env.ctx.func, from));
always_assert(!is_volatile_local(env.ctx.func, to));
always_assert(from != to && findLocEquiv(env, from) == NoLocalId);
auto m = std::max(to, from);
if (env.state.equivLocals.size() <= m) {
env.state.equivLocals.resize(m + 1, NoLocalId);
}
if (env.state.equivLocals[to] == NoLocalId) {
env.state.equivLocals[from] = to;
env.state.equivLocals[to] = from;
} else {
env.state.equivLocals[from] = env.state.equivLocals[to];
env.state.equivLocals[to] = from;
}
}
// Obtain a local which is equivalent to the given stack value
LocalId topStkEquiv(ISS& env, uint32_t idx = 0) {
assert(idx < env.state.stack.size());
return env.state.stack[env.state.stack.size() - idx - 1].equivLocal;
}
// Kill all equivalencies involving the given local to stack values
void killStkEquiv(ISS& env, LocalId l) {
for (auto& e : env.state.stack) {
if (e.equivLocal == l) e.equivLocal = NoLocalId;
}
}
void killAllStkEquiv(ISS& env) {
for (auto& e : env.state.stack) e.equivLocal = NoLocalId;
}
Type locRaw(ISS& env, LocalId l) {
mayReadLocal(env, l);
auto ret = env.state.locals[l];
if (is_volatile_local(env.ctx.func, l)) {
always_assert_flog(ret == TGen, "volatile local was not TGen");
}
return ret;
}
void setLocRaw(ISS& env, LocalId l, Type t) {
mayReadLocal(env, l);
killLocEquiv(env, l);
killStkEquiv(env, l);
if (is_volatile_local(env.ctx.func, l)) {
auto current = env.state.locals[l];
always_assert_flog(current == TGen, "volatile local was not TGen");
return;
}
modifyLocalStatic(env, l, t);
env.state.locals[l] = std::move(t);
}
folly::Optional<Type> staticLocType(ISS& env, LocalId l, const Type& super) {
mayReadLocal(env, l);
if (env.state.localStaticBindings.size() > l &&
env.state.localStaticBindings[l] == LocalStaticBinding::Bound) {
assert(env.collect.localStaticTypes.size() > l);
auto t = env.collect.localStaticTypes[l];
if (t.subtypeOf(super)) {
useLocalStatic(env, l);
if (t.subtypeOf(TBottom)) t = TInitNull;
return std::move(t);
}
}
return folly::none;
}
// Read a local type in the sense of CGetL. (TUninits turn into
// TInitNull, and potentially reffy types return the "inner" type,
// which is always a subtype of InitCell.)
Type locAsCell(ISS& env, LocalId l) {
if (auto s = staticLocType(env, l, TInitCell)) {
return std::move(*s);
}
auto t = locRaw(env, l);
return !t.subtypeOf(TCell) ? TInitCell :
t.subtypeOf(TUninit) ? TInitNull :
remove_uninit(std::move(t));
}
// Read a local type, dereferencing refs, but without converting
// potential TUninits to TInitNull.
Type derefLoc(ISS& env, LocalId l) {
if (auto s = staticLocType(env, l, TCell)) {
return std::move(*s);
}
auto v = locRaw(env, l);
if (v.subtypeOf(TCell)) return v;
return v.couldBe(TUninit) ? TCell : TInitCell;
}
bool locCouldBeUninit(ISS& env, LocalId l) {
return locRaw(env, l).couldBe(TUninit);
}
bool locCouldBeRef(ISS& env, LocalId l) {
return locRaw(env, l).couldBe(TRef);
}
/*
* Update the known type of a local, based on assertions
* (VerifyParamType; or IsType/JmpCC), rather than an actual
* modification to the local.
*/
void refineLoc(ISS& env, LocalId l, Type t) {
auto v = locRaw(env, l);
if (is_volatile_local(env.ctx.func, l)) {
always_assert_flog(v == TGen, "volatile local was not TGen");
return;
}
if (v.subtypeOf(TCell)) env.state.locals[l] = std::move(t);
}
/*
* Set a local type in the sense of tvSet. If the local is boxed or
* not known to be not boxed, we can't change the type. May be used
* to set locals to types that include Uninit.
*/
void setLoc(ISS& env, LocalId l, Type t) {
killLocEquiv(env, l);
killStkEquiv(env, l);
modifyLocalStatic(env, l, t);
refineLoc(env, l, std::move(t));
}
LocalId findLocal(ISS& env, SString name) {
for (auto& l : env.ctx.func->locals) {
if (l.name->same(name)) {
mayReadLocal(env, l.id);
return l.id;
}
}
return NoLocalId;
}
// Force non-ref locals to TCell. Used when something modifies an
// unknown local's value, without changing reffiness.
void loseNonRefLocalTypes(ISS& env) {
readUnknownLocals(env);
FTRACE(2, " loseNonRefLocalTypes\n");
for (auto& l : env.state.locals) {
if (l.subtypeOf(TCell)) l = TCell;
}
killAllLocEquiv(env);
killAllStkEquiv(env);
modifyLocalStatic(env, NoLocalId, TCell);
}
void boxUnknownLocal(ISS& env) {
readUnknownLocals(env);
FTRACE(2, " boxUnknownLocal\n");
for (auto& l : env.state.locals) {
if (!l.subtypeOf(TRef)) l = TGen;
}
killAllLocEquiv(env);
killAllStkEquiv(env);
// Don't update the local statics here; this is called both for
// boxing and binding, and the effects on local statics are
// different.
}
void unsetUnknownLocal(ISS& env) {
readUnknownLocals(env);
FTRACE(2, " unsetUnknownLocal\n");
for (auto& l : env.state.locals) l |= TUninit;
killAllLocEquiv(env);
killAllStkEquiv(env);
unbindLocalStatic(env, NoLocalId);
}
//////////////////////////////////////////////////////////////////////
// class-ref slots
// Read the specified class-ref slot without discarding the stored value.
const Type& peekClsRefSlot(ISS& env, ClsRefSlotId slot) {
assert(slot >= 0);
always_assert_flog(env.state.clsRefSlots[slot].subtypeOf(TCls),
"class-ref slot contained non-TCls");
return env.state.clsRefSlots[slot];
}
// Read the specified class-ref slot and discard the stored value.
Type takeClsRefSlot(ISS& env, ClsRefSlotId slot) {
assert(slot >= 0);
auto ret = std::move(env.state.clsRefSlots[slot]);
FTRACE(2, " read class-ref: {} -> {}\n", slot, show(ret));
always_assert_flog(ret.subtypeOf(TCls), "class-ref slot contained non-TCls");
env.state.clsRefSlots[slot] = TCls;
return ret;
}
void putClsRefSlot(ISS& env, ClsRefSlotId slot, Type ty) {
assert(slot >= 0);
always_assert_flog(ty.subtypeOf(TCls),
"attempted to set class-ref slot to non-TCls");
FTRACE(2, " write class-ref: {} -> {}\n", slot, show(ty));
env.state.clsRefSlots[slot] = std::move(ty);
}
//////////////////////////////////////////////////////////////////////
// iterators
void setIter(ISS& env, IterId iter, Iter iterState) {
env.state.iters[iter] = std::move(iterState);
}
void freeIter(ISS& env, IterId iter) {
env.state.iters[iter] = UnknownIter {};
}
//////////////////////////////////////////////////////////////////////
// $this
void setThisAvailable(ISS& env) {
FTRACE(2, " setThisAvailable\n");
env.state.thisAvailable = true;
}
bool thisAvailable(ISS& env) { return env.state.thisAvailable; }
// Returns the type $this would have if it's not null. Generally
// you have to check thisIsAvailable() before assuming it can't be
// null.
folly::Optional<Type> thisType(ISS& env) {
if (!env.ctx.cls) return folly::none;
return subObj(env.index.resolve_class(env.ctx.cls));
}
folly::Optional<Type> selfCls(ISS& env) {
if (auto rcls = env.index.selfCls(env.ctx)) return subCls(*rcls);
return folly::none;
}
folly::Optional<Type> selfClsExact(ISS& env) {
if (auto rcls = env.index.selfCls(env.ctx)) return clsExact(*rcls);
return folly::none;
}
folly::Optional<Type> parentClsExact(ISS& env) {
if (auto rcls = env.index.parentCls(env.ctx)) return clsExact(*rcls);
return folly::none;
}
//////////////////////////////////////////////////////////////////////
// properties on $this
/*
* Note: we are only tracking control-flow insensitive types for
* object properties, because it can be pretty rough to try to track
* all cases that could re-enter the VM, run arbitrary code, and
* potentially change the type of a property.
*
* Because of this, the various "setter" functions for thisProps
* here actually just union the new type into what we already had.
*/
Type* thisPropRaw(ISS& env, SString name) {
auto& privateProperties = env.collect.props.privateProperties();
auto const it = privateProperties.find(name);
if (it != end(privateProperties)) {
return &it->second;
}
return nullptr;
}
bool isTrackedThisProp(ISS& env, SString name) {
return thisPropRaw(env, name);
}
void killThisProps(ISS& env) {
FTRACE(2, " killThisProps\n");
for (auto& kv : env.collect.props.privateProperties()) {
kv.second = TGen;
}
}
/*
* This function returns a type that includes all the possible types
* that could result from reading a property $this->name.
*
* Note that this may include types that the property itself cannot
* actually contain, due to the effects of a possible __get function.
*/
folly::Optional<Type> thisPropAsCell(ISS& env, SString name) {
auto const t = thisPropRaw(env, name);
if (!t) return folly::none;
if (t->couldBe(TUninit)) {
auto const rthis = thisType(env);
if (!rthis || dobj_of(*rthis).cls.couldHaveMagicGet()) {
return TInitCell;
}
}
return !t->subtypeOf(TCell) ? TInitCell :
t->subtypeOf(TUninit) ? TInitNull :
remove_uninit(*t);
}
/*
* Merge a type into the track property types on $this, in the sense
* of tvSet (i.e. setting the inner type on possible refs).
*
* Note that all types we see that could go into an object property
* have to loosen_statics and loosen_values. This is because the
* object could be serialized and then deserialized, losing the
* static-ness of a string or array member, and we don't guarantee
* deserialization would preserve a constant value object property
* type.
*/
void mergeThisProp(ISS& env, SString name, Type type) {
auto const t = thisPropRaw(env, name);
if (!t) return;
*t |= loosen_statics(loosen_values(type));
}
/*
* Merge something into each this prop. Usually MapFn will be a
* predicate that returns TBottom when some condition doesn't hold.
*
* The types given to the map function are the raw tracked types
* (i.e. could be TRef or TUninit).
*/
template<class MapFn>
void mergeEachThisPropRaw(ISS& env, MapFn fn) {
for (auto& kv : env.collect.props.privateProperties()) {
mergeThisProp(env, kv.first, fn(kv.second));
}
}
void unsetThisProp(ISS& env, SString name) {
mergeThisProp(env, name, TUninit);
}
void unsetUnknownThisProp(ISS& env) {
for (auto& kv : env.collect.props.privateProperties()) {
mergeThisProp(env, kv.first, TUninit);
}
}
void boxThisProp(ISS& env, SString name) {
auto const t = thisPropRaw(env, name);
if (!t) return;
*t |= TRef;
}
/*
* Forces non-ref property types up to TCell. This is used when an
* operation affects an unknown property on $this, but can't change
* its reffiness. This could only do TInitCell, but we're just
* going to gradually get rid of the callsites of this.
*/
void loseNonRefThisPropTypes(ISS& env) {
FTRACE(2, " loseNonRefThisPropTypes\n");
for (auto& kv : env.collect.props.privateProperties()) {
if (kv.second.subtypeOf(TCell)) kv.second = TCell;
}
}
//////////////////////////////////////////////////////////////////////
// properties on self::
// Similar to $this properties above, we only track control-flow
// insensitive types for these.
Type* selfPropRaw(ISS& env, SString name) {
auto& privateStatics = env.collect.props.privateStatics();
auto it = privateStatics.find(name);
if (it != end(privateStatics)) {
return &it->second;
}
return nullptr;
}
void killSelfProps(ISS& env) {
FTRACE(2, " killSelfProps\n");
for (auto& kv : env.collect.props.privateStatics()) {
kv.second = TGen;
}
}
void killSelfProp(ISS& env, SString name) {
FTRACE(2, " killSelfProp {}\n", name->data());
if (auto t = selfPropRaw(env, name)) *t = TGen;
}
// TODO(#3684136): self::$foo can't actually ever be uninit. Right
// now uninits may find their way into here though.
folly::Optional<Type> selfPropAsCell(ISS& env, SString name) {
auto const t = selfPropRaw(env, name);
if (!t) return folly::none;
return !t->subtypeOf(TCell) ? TInitCell :
t->subtypeOf(TUninit) ? TInitNull :
remove_uninit(*t);
}
/*
* Merges a type into tracked static properties on self, in the
* sense of tvSet (i.e. setting the inner type on possible refs).
*/
void mergeSelfProp(ISS& env, SString name, Type type) {
auto const t = selfPropRaw(env, name);
if (!t) return;
*t |= type;
}
/*
* Similar to mergeEachThisPropRaw, but for self props.
*/
template<class MapFn>
void mergeEachSelfPropRaw(ISS& env, MapFn fn) {
for (auto& kv : env.collect.props.privateStatics()) {
mergeSelfProp(env, kv.first, fn(kv.second));
}
}
void boxSelfProp(ISS& env, SString name) {
mergeSelfProp(env, name, TRef);
}
/*
* Forces non-ref static properties up to TCell. This is used when
* an operation affects an unknown static property on self::, but
* can't change its reffiness.
*
* This could only do TInitCell because static properties can never
* be unset. We're just going to get rid of the callers of this
* function over a few more changes, though.
*/
void loseNonRefSelfPropTypes(ISS& env) {
FTRACE(2, " loseNonRefSelfPropTypes\n");
for (auto& kv : env.collect.props.privateStatics()) {
if (kv.second.subtypeOf(TInitCell)) kv.second = TCell;
}
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif
}
//////////////////////////////////////////////////////////////////////
}}
#endif
|