This file is indexed.

/usr/include/aff4/data_store.h is in libaff4-dev 0.24.post1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
/*
Copyright 2014 Google Inc. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.  You may obtain a copy of the
License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.  See the License for the
specific language governing permissions and limitations under the License.
*/

#ifndef  SRC_DATA_STORE_H_
#define  SRC_DATA_STORE_H_
#include "aff4_config.h"

#include "aff4_base.h"
#include <glog/logging.h>

#include <unordered_map>
#include <unordered_set>
#include <string>
#include <memory>
#include <fstream>
#include "aff4_utils.h"
#include <string.h>
#include "rdf.h"

using std::string;
using std::unordered_map;
using std::unordered_set;

// Forward declerations for basic AFF4 types.
class AFF4Object;
class AFF4Stream;
class AFF4Volume;
class DataStore;

// AFF4_Attributes are a collection of RDFValue objects, keyed by attributes.
typedef unordered_map<string, unique_ptr<RDFValue> > AFF4_Attributes;

struct AFF4ObjectCacheEntry {
 public:
  string key;
  AFF4Object *object = NULL;
  int use_count = 0;
  bool flush_failed = false;

  AFF4ObjectCacheEntry *next, *prev;

  AFF4ObjectCacheEntry() {
    next = prev = this;
  }

  AFF4ObjectCacheEntry(string key, AFF4Object *object):
      key(key), object(object) {
    next = prev = this;
  }

  void unlink() {
    next->prev = prev;
    prev->next = next;
    next = prev = this;
  }

  void append(AFF4ObjectCacheEntry *entry) {
    // The entry must not exist on the list already.
    CHECK_EQ(entry->next, entry->prev) <<
        "Appending an element alredy in the list";

    entry->next = next;
    next->prev = entry;

    entry->prev = this;
    next = entry;
  }

  ~AFF4ObjectCacheEntry() {
    unlink();

    // We can not call Flush on destruction because Flushing an object might try
    // to access another object in the cache, which we can not guarantee is not
    // already destroyed. Therefore we destroy the cache in two passes - first
    // we call Flush on all objects, then we destroy all objects without calling
    // their Flush methods.
    if (object) {
      delete object;
    }
  }
};

/**
 * This is the AFF4 object cache. We maintain an LRU cache of AFF4 objects so we
 * do not need to recreate them all the time.
 *
 * @param max_items
 */
class AFF4ObjectCache {
  friend DataStore;

 protected:
  AFF4ObjectCacheEntry lru_list;

  // When objects are returned from Get() they are placed on this map. This
  // ensures that they can not be deleted while in use. When objects are
  // returned to the cache with Return() they are placed in the normal lru.
  unordered_map<string, AFF4ObjectCacheEntry *> in_use;
  unordered_map<string, AFF4ObjectCacheEntry *> lru_map;
  size_t max_items = 10;

  /**
   *   Trim the size of the cache if needed.
   *
   * @return STATUS_OK if flushing objects is successful. Objects which can not
   * be flushed are not removed from the cache.
   */
  AFF4Status Trim_();

 public:
  bool trimming_disabled = false;

  AFF4ObjectCache() {}

  explicit AFF4ObjectCache(int max_items):
      max_items(max_items) {}

  virtual ~AFF4ObjectCache() {Flush();}

  /**
   * Remove all objects from the cache.
   *
   * @return
   */
  AFF4Status Flush();

  /**
   * Store a new object in the cache. The cache will own it from now on.
   *
   * @param urn
   * @param object
   */
  AFF4Status Put(AFF4Object *object, bool in_use = false);

  /**
   * Get an AFF4 object from the cache. The cache will always own the object,
   * only the reference is passed. The object is marked as in use in the cache
   * and will not be deleted until it returned with the Return() method. Callers
   * may not maintain external references or delete the object themselves.
   *
   * @param urn
   *
   * @return
   */
  AFF4Object *Get(const URN urn);

  /**
   * Objects are returned to the cache by calling this method. If the object is
   * not in the cache yet, we call Put() automatically. After this function
   * returns, references to object are no longer valid. This function is
   * normally called automatically from AFF4ScopedPtr and therefore we cant
   * provide a meaningful return value.
   *
   * @param object
   */
  void Return(AFF4Object *object);


  /**
   * Remove the object from the cache.
   *
   * @param urn
   *
   * @return STATUS_OK if Flushing the object worked. If there is an error the
   * object can not be removed from the cache.
   */
  AFF4Status Remove(AFF4Object *object);

  void Dump();
};


/**
 * AFF4 objects returned from a resolver remain owned by the resolver. When the
 * caller no longer uses them, they will be returned to the resolver. This
 * scoped ptr retains the ownership of the object. When the AFF4ScopedPtr goes
 * out of scope the object will be returned to the resolver.
 *
 * @param p: An AFF4 object
 * @param resolver: A reference to the resolver. Note that this resolver is
 *   assumed to outlive the AFF4ScopedPtr itself.
 */
template<typename AFF4ObjectType>
class AFF4ScopedPtr {
 protected:
  AFF4ObjectType *ptr_;
  DataStore *resolver_;

 public:
  AFF4ScopedPtr(): ptr_(0) {}
  explicit AFF4ScopedPtr(AFF4ObjectType *p, DataStore *resolver):
      ptr_(p), resolver_(resolver) {
    CHECK(resolver != NULL);
  }

  ~AFF4ScopedPtr() {
    // When we destruct we return the underlying pointer to the DataStore.
    if (ptr_) {
      ptr_->Return();
    }
  }

  template<class AFF4ObjectOtherType>
  AFF4ScopedPtr<AFF4ObjectOtherType> cast() {
    return AFF4ScopedPtr<AFF4ObjectOtherType>(release(), resolver_);
  }

  AFF4ObjectType *operator->() const {
    CHECK(ptr_ != NULL);
    return ptr_;
  }

  bool operator!(void)  {
    return ptr_ ? false : true;
  }

  AFF4ObjectType& operator*()  {
    return *ptr_;
  }

  AFF4ObjectType *get() const {
    return ptr_;
  }

  AFF4ObjectType *release() {
    AFF4ObjectType* ret = ptr_;
    ptr_ = NULL;
    return ret;
  }

  void reset(AFF4ObjectType *p) {
    ptr_ = p;
  }

  AFF4ScopedPtr(AFF4ScopedPtr&& other) {
    ptr_ = other.release();
    resolver_ = other.resolver_;
  }

  AFF4ScopedPtr(const AFF4ScopedPtr& other) = delete;
  void operator=(const AFF4ScopedPtr& other) = delete;
};


/**
 * @file   data_store.h
 * @author scudette <scudette@google.com>
 * @date   Fri Jan 23 12:11:05 2015
 *
 * @brief This file defines the AFF4 data store abstraction.
 *
 * AFF4 relies on the data store to maintain relational information about the
 * AFF4 universe. This relation information is used to reconstruct objects which
 * have been previously stored in this data store.
 *
 * Note: In this implementation the data store caches all AFF4 objects which
 * have been produced and flushes them when the DataStore::Flush() method is
 * called. The Flush() method is also called during object destruction.

 * This essentially defines a transaction, for example, to open an AFF4 Zip
 * volume, add a new image to it and close it:

~~~~~~~~~~~~~{.c}
  // This essentially starts a transaction in the Volume
  unique_ptr<DataStore> resolver(new MemoryDataStore());

  // This will open and reparse the zip file, populating the resolver.
  AFF4ScopedPtr<AFF4Volume> zip = ZipFile::NewZipFile(resolver.get(), "file.zip");

  // This creates a new image with URN "image.dd" inside the zip file's URN.
  AFF4ScopedPtr<AFF4Image> image = AFF4Image::NewAFF4Image(
       resolver.get(), "image.dd", zip->urn);

  // Write something on the image.
  image->sprintf("Hello world!");

  // This will flush all images, close the zip file etc. This method is also
  // automatically called when the resolver is destructed so it is unnecessary
  // here.
  resolver->Flush();
~~~~~~~~~~~~~

 */

/** The abstract data store.

    Data stores know how to serialize RDF statements of the type:

    subject predicate value

    Where both subject and predicate are a URN into the AFF4 space, and value is
    a serialized RDFValue.
*/
class DataStore {
  friend class AFF4Object;

 protected:
  /**
   * Returns the AFF4 object to the cache.
   *
   *
   * @param object
   */
  void Return(AFF4Object *object) {
    LOG(INFO) << "Returning: " << object->urn.SerializeToString();
    ObjectCache.Return(object);
  }

  /**
   * An object cache for objects created via the AFF4FactoryOpen()
   * interface. Note that the cache owns all objects at all times.
   *
   */
  AFF4ObjectCache ObjectCache;

  /// These types will not be dumped * to turtle files.
  unordered_map<string, unordered_set<string>> suppressed_rdftypes;

 public:
  DataStore();
  virtual ~DataStore();

  /// You can add new namespaces here for turtle serialization.
  vector<std::pair<string, string>> namespaces;

  template<typename T>
  AFF4ScopedPtr<T> CachePut(AFF4Object *object) {
    ObjectCache.Put(object, true);
    return AFF4ScopedPtr<T>(dynamic_cast<T *>(object), this);
  }

  template<typename T>
  AFF4ScopedPtr<T> CacheGet(const URN urn) {
    AFF4Object *object = ObjectCache.Get(urn);
    return AFF4ScopedPtr<T>(dynamic_cast<T *>(object), this);
  }

  virtual void Set(const URN &urn, const URN &attribute,
                   RDFValue *value) = 0;

  virtual AFF4Status Get(const URN &urn, const URN &attribute,
                         RDFValue &value) = 0;

  virtual void Set(const URN &urn, const URN &attribute,
                   unique_ptr<RDFValue> value) = 0;

  virtual AFF4Status DeleteSubject(const URN &urn) = 0;

  virtual vector<URN> SelectSubjectsByPrefix(const URN &prefix) = 0;

#ifdef AFF4_HAS_LIBYAML_CPP
  // Dump ourselves to a yaml file.
  virtual AFF4Status DumpToYaml(AFF4Stream &output,
                                bool verbose = false) = 0;

  virtual AFF4Status LoadFromYaml(AFF4Stream &output) = 0;
#endif

  virtual AFF4Status DumpToTurtle(AFF4Stream &output, URN base,
                                  bool verbose = false) = 0;

  virtual AFF4Status LoadFromTurtle(AFF4Stream &output) = 0;

  /**
   * Clear all data.
   *
   *
   * @return Status
   */
  virtual AFF4Status Clear() = 0;


  /**
   * Flush all objects cached in the data store.
   *
   *
   * @return Status.
   */
  virtual AFF4Status Flush() = 0;

  /**
   * Prints out the contents of the resolver to STDOUT. Used for debugging.
   *
   */
  void Dump(bool verbose = true);

  /**
     This is the main entry point into the AFF4 library. Callers use this factory
     method to instantiate an AFF4Object of a particular type based on its
     URN. The factory is passed a resolver which contains the AFF4 RDF metadata
     about the subset of the AFF4 universe we are dealing with.

     The object returned is of the type specified in the resolver (or its base
     type). Callers to the factory must declare their expected types in the template
     arg. If the object is not of the required type, the factory will not
     instantiate it.

     Note that all objects instantiated by the factory are owned by the factory at
     all times. Callers just receive a reference to the object. This allows the
     resolver to maintain a cache of objects and reuse them. Typically, therefore,
     callers may not hold the returned objects for long periods of time. Instead,
     callers should record the URN and use it to retrieve the object in future.

     When the resolver is destroyed, the objects cached by it are flushed. Therefore
     callers may use the lifetime of the resolver as a transaction for created AFF4
     objects.

     The following is an example of how to create an AFF4Image instance and write to
     it:

     ~~~~~~~~~~~{.c}
     void test_ZipFileCreate() {
     unique_ptr<DataStore> resolver(new MemoryDataStore());
     AFF4ScopedPtr<AFF4Stream> file = resolver->AFF4FactoryOpen<AFF4Stream>(
       "test.zip");

     // The backing file is given to the zip.
     AFF4ScopedPtr<AFF4Volume> zip = ZipFile::NewZipFile(resolver.get(), file->urn);

     AFF4ScopedPtr<AFF4Stream> segment = zip->CreateMember("Foobar.txt");
     segment->Write("I am a segment!");
     };
     ~~~~~~~~~~~

     * @param resolver: The resolver to use.
     * @param urn: The URN to instantiate.
     *
     * @return A instance of T or NULL if an object of this type is not known at the
     *         specified URN. Note that callers do not own the object and must not
     *         hold persistent references to it.
     */
  template<typename T>
  AFF4ScopedPtr<T> AFF4FactoryOpen(const URN &urn) {
    // It is in the cache, just return it.
    AFF4Object *cached_obj = ObjectCache.Get(urn);
    if (cached_obj) {
      LOG(INFO) << "AFF4FactoryOpen (cached): " <<
          cached_obj->urn.SerializeToString();

      cached_obj->Prepare();
      return AFF4ScopedPtr<T>(dynamic_cast<T *>(cached_obj), this);
    }

    URN type_urn;
    unique_ptr<AFF4Object> obj;

    const uri_components components = urn.Parse();

    // Check if there is a resolver triple for it.
    if (Get(urn, AFF4_TYPE, type_urn) == STATUS_OK) {
      obj = GetAFF4ClassFactory()->CreateInstance(type_urn.value, this, &urn);
    }

    // Try to instantiate the handler based on the URN scheme alone.
    if (!obj) {
      obj = GetAFF4ClassFactory()->CreateInstance(
          components.scheme, this, &urn);
    }

    // Failed to find the object.
    if (!obj)
      return AFF4ScopedPtr<T>();

    // Have the object load and initialize itself.
    obj->urn = urn;
    if (obj->LoadFromURN() != STATUS_OK) {
      LOG(WARNING) << "Failed to load " << urn.value << " as " <<
          type_urn.value;

      return AFF4ScopedPtr<T>();
    }

    // Cache the object for next time.
    T *result = dynamic_cast<T *>(obj.get());

    // Store the object in the cache but place it immediate in the in_use list.
    ObjectCache.Put(obj.release(), true);

    LOG(INFO) << "AFF4FactoryOpen (new instance): " <<
        result->urn.SerializeToString();

    result->Prepare();
    return AFF4ScopedPtr<T>(result, this);
  }

  // Closing an object means to flush it and remove it from the cache so it no
  // longer exists in memory.
  template<typename T>
  AFF4Status Close(AFF4ScopedPtr<T> &object){
    URN tmp_urn = object->urn;
    AFF4Status res = ObjectCache.Remove(object.release());
    LOG(INFO) << "Closing object " << tmp_urn.value << " " << res << "\n";

    return res;
  }
};


/** A purely in memory data store.

    This data store can be initialized and persisted into a Yaml file.
*/
class MemoryDataStore: public DataStore {
 private:
  // Store a collection of AFF4_Attributes at each URN.
  unordered_map<string, AFF4_Attributes> store;

 public:
  virtual ~MemoryDataStore();

  /**
   * Set the RDFValue in the data store. Note that the data store will retain
   * ownership of the value, and therefore callers may not use it after this
   * call.
   *
   * @param urn: The subject to set the attribute for.
   * @param attribute: The attribute to set.
   * @param value: The value.
   */
  virtual void Set(const URN &urn, const URN &attribute, RDFValue *value);
  virtual void Set(const URN &urn, const URN &attribute,
                   unique_ptr<RDFValue> value);

  AFF4Status Get(const URN &urn, const URN &attribute, RDFValue &value);

  virtual AFF4Status DeleteSubject(const URN &urn);

  virtual vector<URN> SelectSubjectsByPrefix(const URN &prefix);

#ifdef AFF4_HAS_LIBYAML_CPP
  virtual AFF4Status DumpToYaml(AFF4Stream &output,
                                bool verbose = false);
  virtual AFF4Status LoadFromYaml(AFF4Stream &output);
#endif

  virtual AFF4Status DumpToTurtle(AFF4Stream &output, URN base,
                                  bool verbose = false);

  virtual AFF4Status LoadFromTurtle(AFF4Stream &output);

  virtual AFF4Status Clear();
  virtual AFF4Status Flush();
};

#endif  //  SRC_DATA_STORE_H_