This file is indexed.

/usr/include/agg2/agg_curves.h is in libagg-dev 1:2.4-r127+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
// Copyright (C) 2005 Tony Juricic (tonygeek@yahoo.com)
//
// Permission to copy, use, modify, sell and distribute this software 
// is granted provided this copyright notice appears in all copies. 
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
//          mcseemagg@yahoo.com
//          http://www.antigrain.com
//----------------------------------------------------------------------------

#ifndef AGG_CURVES_INCLUDED
#define AGG_CURVES_INCLUDED

#include "agg_array.h"

namespace agg
{

    // See Implementation agg_curves.cpp

    //--------------------------------------------curve_approximation_method_e
    enum curve_approximation_method_e
    {
        curve_inc,
        curve_div
    };
    
    //--------------------------------------------------------------curve3_inc
    class curve3_inc
    {
    public:
        curve3_inc() :
          m_num_steps(0), m_step(0), m_scale(1.0) { }

        curve3_inc(double x1, double y1, 
                   double x2, double y2, 
                   double x3, double y3) :
            m_num_steps(0), m_step(0), m_scale(1.0) 
        { 
            init(x1, y1, x2, y2, x3, y3);
        }

        void reset() { m_num_steps = 0; m_step = -1; }
        void init(double x1, double y1, 
                  double x2, double y2, 
                  double x3, double y3);

        void approximation_method(curve_approximation_method_e) {}
        curve_approximation_method_e approximation_method() const { return curve_inc; }

        void approximation_scale(double s);
        double approximation_scale() const;

        void angle_tolerance(double) {}
        double angle_tolerance() const { return 0.0; }

        void cusp_limit(double) {}
        double cusp_limit() const { return 0.0; }

        void     rewind(unsigned path_id);
        unsigned vertex(double* x, double* y);

    private:
        int      m_num_steps;
        int      m_step;
        double   m_scale;
        double   m_start_x; 
        double   m_start_y;
        double   m_end_x; 
        double   m_end_y;
        double   m_fx; 
        double   m_fy;
        double   m_dfx; 
        double   m_dfy;
        double   m_ddfx; 
        double   m_ddfy;
        double   m_saved_fx; 
        double   m_saved_fy;
        double   m_saved_dfx; 
        double   m_saved_dfy;
    };





    //-------------------------------------------------------------curve3_div
    class curve3_div
    {
    public:
        curve3_div() : 
            m_approximation_scale(1.0),
            m_angle_tolerance(0.0),
            m_count(0)
        {}

        curve3_div(double x1, double y1, 
                   double x2, double y2, 
                   double x3, double y3) :
            m_approximation_scale(1.0),
            m_angle_tolerance(0.0),
            m_count(0)
        { 
            init(x1, y1, x2, y2, x3, y3);
        }

        void reset() { m_points.remove_all(); m_count = 0; }
        void init(double x1, double y1, 
                  double x2, double y2, 
                  double x3, double y3);

        void approximation_method(curve_approximation_method_e) {}
        curve_approximation_method_e approximation_method() const { return curve_div; }

        void approximation_scale(double s) { m_approximation_scale = s; }
        double approximation_scale() const { return m_approximation_scale;  }

        void angle_tolerance(double a) { m_angle_tolerance = a; }
        double angle_tolerance() const { return m_angle_tolerance;  }

        void cusp_limit(double) {}
        double cusp_limit() const { return 0.0; }

        void rewind(unsigned)
        {
            m_count = 0;
        }

        unsigned vertex(double* x, double* y)
        {
            if(m_count >= m_points.size()) return path_cmd_stop;
            const point_d& p = m_points[m_count++];
            *x = p.x;
            *y = p.y;
            return (m_count == 1) ? path_cmd_move_to : path_cmd_line_to;
        }

    private:
        void bezier(double x1, double y1, 
                    double x2, double y2, 
                    double x3, double y3);
        void recursive_bezier(double x1, double y1, 
                              double x2, double y2, 
                              double x3, double y3,
                              unsigned level);

        double               m_approximation_scale;
        double               m_distance_tolerance_square;
        double               m_angle_tolerance;
        unsigned             m_count;
        pod_bvector<point_d> m_points;
    };







    //-------------------------------------------------------------curve4_points
    struct curve4_points
    {
        double cp[8];
        curve4_points() {}
        curve4_points(double x1, double y1,
                      double x2, double y2,
                      double x3, double y3,
                      double x4, double y4)
        {
            cp[0] = x1; cp[1] = y1; cp[2] = x2; cp[3] = y2;
            cp[4] = x3; cp[5] = y3; cp[6] = x4; cp[7] = y4;
        }
        void init(double x1, double y1,
                  double x2, double y2,
                  double x3, double y3,
                  double x4, double y4)
        {
            cp[0] = x1; cp[1] = y1; cp[2] = x2; cp[3] = y2;
            cp[4] = x3; cp[5] = y3; cp[6] = x4; cp[7] = y4;
        }
        double  operator [] (unsigned i) const { return cp[i]; }
        double& operator [] (unsigned i)       { return cp[i]; }
    };



    //-------------------------------------------------------------curve4_inc
    class curve4_inc
    {
    public:
        curve4_inc() :
            m_num_steps(0), m_step(0), m_scale(1.0) { }

        curve4_inc(double x1, double y1, 
                   double x2, double y2, 
                   double x3, double y3,
                   double x4, double y4) :
            m_num_steps(0), m_step(0), m_scale(1.0) 
        { 
            init(x1, y1, x2, y2, x3, y3, x4, y4);
        }

        curve4_inc(const curve4_points& cp) :
            m_num_steps(0), m_step(0), m_scale(1.0) 
        { 
            init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
        }

        void reset() { m_num_steps = 0; m_step = -1; }
        void init(double x1, double y1, 
                  double x2, double y2, 
                  double x3, double y3,
                  double x4, double y4);

        void init(const curve4_points& cp)
        {
            init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
        }

        void approximation_method(curve_approximation_method_e) {}
        curve_approximation_method_e approximation_method() const { return curve_inc; }

        void approximation_scale(double s);
        double approximation_scale() const;

        void angle_tolerance(double) {}
        double angle_tolerance() const { return 0.0; }

        void cusp_limit(double) {}
        double cusp_limit() const { return 0.0; }

        void     rewind(unsigned path_id);
        unsigned vertex(double* x, double* y);

    private:
        int      m_num_steps;
        int      m_step;
        double   m_scale;
        double   m_start_x; 
        double   m_start_y;
        double   m_end_x; 
        double   m_end_y;
        double   m_fx; 
        double   m_fy;
        double   m_dfx; 
        double   m_dfy;
        double   m_ddfx; 
        double   m_ddfy;
        double   m_dddfx; 
        double   m_dddfy;
        double   m_saved_fx; 
        double   m_saved_fy;
        double   m_saved_dfx; 
        double   m_saved_dfy;
        double   m_saved_ddfx; 
        double   m_saved_ddfy;
    };



    //-------------------------------------------------------catrom_to_bezier
    inline curve4_points catrom_to_bezier(double x1, double y1, 
                                          double x2, double y2, 
                                          double x3, double y3,
                                          double x4, double y4)
    {
        // Trans. matrix Catmull-Rom to Bezier
        //
        //  0       1       0       0
        //  -1/6    1       1/6     0
        //  0       1/6     1       -1/6
        //  0       0       1       0
        //
        return curve4_points(
            x2,
            y2,
            (-x1 + 6*x2 + x3) / 6,
            (-y1 + 6*y2 + y3) / 6,
            ( x2 + 6*x3 - x4) / 6,
            ( y2 + 6*y3 - y4) / 6,
            x3,
            y3);
    }


    //-----------------------------------------------------------------------
    inline curve4_points
    catrom_to_bezier(const curve4_points& cp)
    {
        return catrom_to_bezier(cp[0], cp[1], cp[2], cp[3], 
                                cp[4], cp[5], cp[6], cp[7]);
    }



    //-----------------------------------------------------ubspline_to_bezier
    inline curve4_points ubspline_to_bezier(double x1, double y1, 
                                            double x2, double y2, 
                                            double x3, double y3,
                                            double x4, double y4)
    {
        // Trans. matrix Uniform BSpline to Bezier
        //
        //  1/6     4/6     1/6     0
        //  0       4/6     2/6     0
        //  0       2/6     4/6     0
        //  0       1/6     4/6     1/6
        //
        return curve4_points(
            (x1 + 4*x2 + x3) / 6,
            (y1 + 4*y2 + y3) / 6,
            (4*x2 + 2*x3) / 6,
            (4*y2 + 2*y3) / 6,
            (2*x2 + 4*x3) / 6,
            (2*y2 + 4*y3) / 6,
            (x2 + 4*x3 + x4) / 6,
            (y2 + 4*y3 + y4) / 6);
    }


    //-----------------------------------------------------------------------
    inline curve4_points 
    ubspline_to_bezier(const curve4_points& cp)
    {
        return ubspline_to_bezier(cp[0], cp[1], cp[2], cp[3], 
                                  cp[4], cp[5], cp[6], cp[7]);
    }




    //------------------------------------------------------hermite_to_bezier
    inline curve4_points hermite_to_bezier(double x1, double y1, 
                                           double x2, double y2, 
                                           double x3, double y3,
                                           double x4, double y4)
    {
        // Trans. matrix Hermite to Bezier
        //
        //  1       0       0       0
        //  1       0       1/3     0
        //  0       1       0       -1/3
        //  0       1       0       0
        //
        return curve4_points(
            x1,
            y1,
            (3*x1 + x3) / 3,
            (3*y1 + y3) / 3,
            (3*x2 - x4) / 3,
            (3*y2 - y4) / 3,
            x2,
            y2);
    }



    //-----------------------------------------------------------------------
    inline curve4_points 
    hermite_to_bezier(const curve4_points& cp)
    {
        return hermite_to_bezier(cp[0], cp[1], cp[2], cp[3], 
                                 cp[4], cp[5], cp[6], cp[7]);
    }


    //-------------------------------------------------------------curve4_div
    class curve4_div
    {
    public:
        curve4_div() : 
            m_approximation_scale(1.0),
            m_angle_tolerance(0.0),
            m_cusp_limit(0.0),
            m_count(0)
        {}

        curve4_div(double x1, double y1, 
                   double x2, double y2, 
                   double x3, double y3,
                   double x4, double y4) :
            m_approximation_scale(1.0),
            m_angle_tolerance(0.0),
            m_cusp_limit(0.0),
            m_count(0)
        { 
            init(x1, y1, x2, y2, x3, y3, x4, y4);
        }

        curve4_div(const curve4_points& cp) :
            m_approximation_scale(1.0),
            m_angle_tolerance(0.0),
            m_count(0)
        { 
            init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
        }

        void reset() { m_points.remove_all(); m_count = 0; }
        void init(double x1, double y1, 
                  double x2, double y2, 
                  double x3, double y3,
                  double x4, double y4);

        void init(const curve4_points& cp)
        {
            init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
        }

        void approximation_method(curve_approximation_method_e) {}

        curve_approximation_method_e approximation_method() const 
        { 
            return curve_div; 
        }

        void approximation_scale(double s) { m_approximation_scale = s; }
        double approximation_scale() const { return m_approximation_scale;  }

        void angle_tolerance(double a) { m_angle_tolerance = a; }
        double angle_tolerance() const { return m_angle_tolerance;  }

        void cusp_limit(double v) 
        { 
            m_cusp_limit = (v == 0.0) ? 0.0 : pi - v; 
        }

        double cusp_limit() const 
        { 
            return (m_cusp_limit == 0.0) ? 0.0 : pi - m_cusp_limit; 
        }

        void rewind(unsigned)
        {
            m_count = 0;
        }

        unsigned vertex(double* x, double* y)
        {
            if(m_count >= m_points.size()) return path_cmd_stop;
            const point_d& p = m_points[m_count++];
            *x = p.x;
            *y = p.y;
            return (m_count == 1) ? path_cmd_move_to : path_cmd_line_to;
        }

    private:
        void bezier(double x1, double y1, 
                    double x2, double y2, 
                    double x3, double y3, 
                    double x4, double y4);

        void recursive_bezier(double x1, double y1, 
                              double x2, double y2, 
                              double x3, double y3, 
                              double x4, double y4,
                              unsigned level);

        double               m_approximation_scale;
        double               m_distance_tolerance_square;
        double               m_angle_tolerance;
        double               m_cusp_limit;
        unsigned             m_count;
        pod_bvector<point_d> m_points;
    };


    //-----------------------------------------------------------------curve3
    class curve3
    {
    public:
        curve3() : m_approximation_method(curve_div) {}
        curve3(double x1, double y1, 
               double x2, double y2, 
               double x3, double y3) :
            m_approximation_method(curve_div)
        { 
            init(x1, y1, x2, y2, x3, y3);
        }

        void reset() 
        { 
            m_curve_inc.reset();
            m_curve_div.reset();
        }

        void init(double x1, double y1, 
                  double x2, double y2, 
                  double x3, double y3)
        {
            if(m_approximation_method == curve_inc) 
            {
                m_curve_inc.init(x1, y1, x2, y2, x3, y3);
            }
            else
            {
                m_curve_div.init(x1, y1, x2, y2, x3, y3);
            }
        }

        void approximation_method(curve_approximation_method_e v) 
        { 
            m_approximation_method = v; 
        }

        curve_approximation_method_e approximation_method() const 
        { 
            return m_approximation_method; 
        }

        void approximation_scale(double s) 
        { 
            m_curve_inc.approximation_scale(s);
            m_curve_div.approximation_scale(s);
        }

        double approximation_scale() const 
        { 
            return m_curve_inc.approximation_scale(); 
        }

        void angle_tolerance(double a) 
        { 
            m_curve_div.angle_tolerance(a); 
        }

        double angle_tolerance() const 
        { 
            return m_curve_div.angle_tolerance(); 
        }

        void cusp_limit(double v) 
        { 
            m_curve_div.cusp_limit(v); 
        }

        double cusp_limit() const 
        { 
            return m_curve_div.cusp_limit();  
        }

        void rewind(unsigned path_id)
        {
            if(m_approximation_method == curve_inc) 
            {
                m_curve_inc.rewind(path_id);
            }
            else
            {
                m_curve_div.rewind(path_id);
            }
        }

        unsigned vertex(double* x, double* y)
        {
            if(m_approximation_method == curve_inc) 
            {
                return m_curve_inc.vertex(x, y);
            }
            return m_curve_div.vertex(x, y);
        }

    private:
        curve3_inc m_curve_inc;
        curve3_div m_curve_div;
        curve_approximation_method_e m_approximation_method;
    };





    //-----------------------------------------------------------------curve4
    class curve4
    {
    public:
        curve4() : m_approximation_method(curve_div) {}
        curve4(double x1, double y1, 
               double x2, double y2, 
               double x3, double y3,
               double x4, double y4) : 
            m_approximation_method(curve_div)
        { 
            init(x1, y1, x2, y2, x3, y3, x4, y4);
        }

        curve4(const curve4_points& cp) :
            m_approximation_method(curve_div)
        { 
            init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
        }

        void reset() 
        { 
            m_curve_inc.reset();
            m_curve_div.reset();
        }

        void init(double x1, double y1, 
                  double x2, double y2, 
                  double x3, double y3,
                  double x4, double y4)
        {
            if(m_approximation_method == curve_inc) 
            {
                m_curve_inc.init(x1, y1, x2, y2, x3, y3, x4, y4);
            }
            else
            {
                m_curve_div.init(x1, y1, x2, y2, x3, y3, x4, y4);
            }
        }

        void init(const curve4_points& cp)
        {
            init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]);
        }

        void approximation_method(curve_approximation_method_e v) 
        { 
            m_approximation_method = v; 
        }

        curve_approximation_method_e approximation_method() const 
        { 
            return m_approximation_method; 
        }

        void approximation_scale(double s) 
        { 
            m_curve_inc.approximation_scale(s);
            m_curve_div.approximation_scale(s);
        }
        double approximation_scale() const { return m_curve_inc.approximation_scale(); }

        void angle_tolerance(double v) 
        { 
            m_curve_div.angle_tolerance(v); 
        }

        double angle_tolerance() const 
        { 
            return m_curve_div.angle_tolerance();  
        }

        void cusp_limit(double v) 
        { 
            m_curve_div.cusp_limit(v); 
        }

        double cusp_limit() const 
        { 
            return m_curve_div.cusp_limit();  
        }

        void rewind(unsigned path_id)
        {
            if(m_approximation_method == curve_inc) 
            {
                m_curve_inc.rewind(path_id);
            }
            else
            {
                m_curve_div.rewind(path_id);
            }
        }

        unsigned vertex(double* x, double* y)
        {
            if(m_approximation_method == curve_inc) 
            {
                return m_curve_inc.vertex(x, y);
            }
            return m_curve_div.vertex(x, y);
        }

    private:
        curve4_inc m_curve_inc;
        curve4_div m_curve_div;
        curve_approximation_method_e m_approximation_method;
    };




}

#endif