/usr/include/ASL/math/aslTemplates.h is in libasl-dev 0.1.7-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 | /*
* Advanced Simulation Library <http://asl.org.il>
*
* Copyright 2015 Avtech Scientific <http://avtechscientific.com>
*
*
* This file is part of Advanced Simulation Library (ASL).
*
* ASL is free software: you can redistribute it and/or modify it
* under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, version 3 of the License.
*
* ASL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with ASL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef ASLTEMPLATES_H
#define ASLTEMPLATES_H
#include "aslVectors.h"
//#include "aslSVectors.h"
namespace asl {
/**
\defgroup Templates Vector Templates
*/
/**
\defgroup TemplatesNN Vector Templates: Nearest Neighbours
\ingroup Templates
*/
/**
\defgroup TemplatesNNP Vector Templates: Nearest Neighbours Plus
\ingroup Templates
*/
/**
\defgroup TemplatesEC Vector Templates: Elementary Cells
\ingroup Templates
*/
/**
\defgroup TemplatesNN0 Vector Templates: Nearest Neighbours without center
\ingroup Templates
*/
/**
\defgroup TemplatesNNP0 Vector Templates: Nearest Neighbours Plus without center
\ingroup Templates
*/
/// list of implemented names of VectorTemplate
enum VTName
{
VTN_D1Q2EC,
VTN_D2Q4EC,
VTN_D3Q8EC,
VTN_D1Q3,
VTN_D2Q5,
VTN_D2Q9,
VTN_D3Q7,
VTN_D3Q15,
VTN_D3Q19,
VTN_D3Q27,
VTN_D1Q1UV,
VTN_D2Q2UV,
VTN_D3Q3UV,
VTN_D1Q2,
VTN_D2Q4,
VTN_D3Q6,
VTN_D2Q8,
VTN_D3Q14,
VTN_D3Q18
};
/// Defines set of vectros with several properties \ingroup Templates
class VectorTemplate
{
private:
void buildInvertVectorList();
public:
std::vector<AVec<int> > vectors;
std::vector<double> laplasCoefs;
std::vector<double> gradientCoefs;
std::vector<double> quasiparticlesCoefs;
std::vector<unsigned int> invertVectors;
double dIdJLapCoef;
std::vector<std::vector<double>> dxCoefs;
std::vector<std::vector<std::vector<double>>> dIdJCoefs;
VectorTemplate(int n, AVec<int>* vec);
VectorTemplate(int n, AVec<int>* vec, double* lc, double* gc);
inline unsigned int numberOfDimentions() const;
inline AVec<int> getInverVector(unsigned int i);
};
inline unsigned int nD(const VectorTemplate & vt);
///An elementary cell in 1D space
/**
\ingroup TemplatesEC
This template defines an elementary cell: vectors and interpolation law
\image html t2ec.png "1D elementary cell"
*/
const VectorTemplate & d1q2ec();
///An elementary cell in 2D space
/**
\ingroup TemplatesEC
This template defines an elementary cell: vectors and interpolation law
\image html t4ec.png "2D elementary cell"
*/
const VectorTemplate & d2q4ec();
///An elementary cell in 3D space
/**
\ingroup TemplatesEC
This template defines an elementary cell: vectors and interpolation law
\image html t8ec.png "3D elementary cell"
*/
const VectorTemplate & d3q8ec();
///Vector template
/**
\ingroup TemplatesNN
\image html t3.png
*/
const VectorTemplate & d1q3();
///Vector template
/**
\ingroup TemplatesNN
\image html t5.png
*/
const VectorTemplate & d2q5();
///Vector template
/**
\ingroup TemplatesNNP
\image html t9.png
*/
const VectorTemplate & d2q9();
///Vector template
/**
\ingroup TemplatesNN
\image html t7.png
*/
const VectorTemplate & d3q7();
///Vector template
/**
\ingroup TemplatesNNP
\image html t15.png
*/
const VectorTemplate & d3q15();
///Vector template
/**
\ingroup TemplatesNNP
\image html t19.png
*/
const VectorTemplate & d3q19();
///Vector template
/**
\ingroup TemplatesNNP
\image html t27.png
*/
const VectorTemplate & d3q27();
///An unit vector in 1D space
/**
\ingroup TemplatesNNP
This template defines a unit vector
*/
const VectorTemplate & d1q1uv();
///An elementary cell in 2D space
/**
\ingroup Templates
This template defines unit vectors
*/
const VectorTemplate & d2q2uv();
///An elementary cell in 3D space
/**
\ingroup Templates
This template defines unit vectors
*/
const VectorTemplate & d3q3uv();
///Vector template
/**
\ingroup TemplatesNN0
\image html t2.png
*/
const VectorTemplate & d1q2();
///Vector template
/**
\ingroup TemplatesNN0
\image html t4.png
*/
const VectorTemplate & d2q4();
///Vector template
/**
\ingroup TemplatesNN0
\image html t6.png
*/
const VectorTemplate & d3q6();
///Vector template
/**
\ingroup TemplatesNNP0
*/
const VectorTemplate & d2q8();
///Vector template
/**
\ingroup TemplatesNNP0
*/
const VectorTemplate & d3q14();
///Vector template
/**
\ingroup TemplatesNNP0
*/
const VectorTemplate & d3q18();
/// returns template corresponding to nearest neighbours \ingroup Templates
/** asl::d1q3, asl::d2q5, asl::d3q7
*/
inline const VectorTemplate* nearestNeigboursVT(unsigned int dimNumber);
/// returns template corresponding to nearest neighbours without central point
/**
\ingroup Templates
asl::d1q2, asl::d2q4, asl::d3q6
*/
inline const VectorTemplate* nearestNeigboursVT0(unsigned int dimNumber);
/// returns template corresponding to nearest neighbours plus \ingroup Templates
/** asl::d1q3, asl::d2q9, asl::d3q15
*/
inline const VectorTemplate* nearestNeigboursPVT(unsigned int dimNumber);
/// returns template corresponding to all neighbours
/**
\ingroup Templates
asl::d1q3, asl::d2q9, asl::d3q27
*/
inline const VectorTemplate* allNeigboursVT(unsigned int dimNumber);
/// returns template corresponding to an elementary cell
/**
\ingroup Templates
asl::d1q2ec, asl::d2q4ec, asl::d3q8ec
*/
inline const VectorTemplate* elementaryCellVT(unsigned int dimNumber);
// ----------------------------- Implementation -------------------------
inline unsigned int VectorTemplate::numberOfDimentions() const
{
return vectors[0].getSize();
}
inline unsigned int nD(const VectorTemplate & vt)
{
return vt.numberOfDimentions();
}
inline const VectorTemplate* nearestNeigboursVT(unsigned int dimNumber)
{
static const VectorTemplate* vt[3]={&d1q3(),&d2q5(),&d3q7()};
return vt[dimNumber-1];
}
inline const VectorTemplate* nearestNeigboursPVT(unsigned int dimNumber)
{
static const VectorTemplate* vt[3]={&d1q3(),&d2q9(),&d3q15()};
return vt[dimNumber-1];
}
inline const VectorTemplate* allNeigboursVT(unsigned int dimNumber)
{
static const VectorTemplate* vt[3]={&d1q3(),&d2q9(),&d3q27()};
return vt[dimNumber-1];
}
inline const VectorTemplate* elementaryCellVT(unsigned int dimNumber)
{
static const VectorTemplate* vt[3]={&d1q2ec(),&d2q4ec(),&d3q8ec()};
return vt[dimNumber-1];
}
inline AVec<int> VectorTemplate::getInverVector(unsigned int i)
{
return vectors[invertVectors[i]];
}
/*
///The templates for the numerical schemas
namespace templ {
/// An abstract class for description of point templates for differential operators etc.
class GrigTemplate{
public:
unsigned const int nDimentions;
unsigned const int nPoints;
virtual vector<int> & getVector(unsigned int i)=0;
protected:
GridTemplate(unsigned int nD, unsigned int nP);
}
*/
/**
This template defines an elementary cell: vectors and interpolation law
\image html t2ec.png "1D elementary cell"
\image latex t2ec.png "1D elementary cell" width=8cm
*/
/* class d1q2ec {
public:
static const int ND=1;
static const int NV=2;
typedef Vec<ND,int> DV;
public:
inline static const DV & l(int i) {
static const DV lat[NV] = {DV(0),DV(1)};
return lat[i];
}
///The interpolation procedure
template <typename T>
inline static const T interpol(const Vec<NV,T> &d, const Vec<ND,lFl> &e) {
return d.x()*(1.-e.x())+d.y()*e.x();
}
};
*/
///An elementary cell in 2D space
/**
This template defines an elementary cell: vectors and interpolation law
\image html t4ec.png "2D elementary cell"
\image latex t4ec.png "2D elementary cell" width=8cm
*/
/* class d2q4ec {
public:
static const int ND=2;
static const int NV=4;
typedef Vec<ND,int> DV;
inline static const DV & l(int i) {
static const DV lat[NV] = {DV(0,0),DV(1,0),DV(0,1),DV(1,1)};
return lat[i];
}
///The interpolation procedure
template <typename T>
inline static const T interpol(const Vec<NV,T> &d, const Vec<ND,lFl> &e) {
return d[0]*(1.-e.x())*(1.-e.y())+d[1]*e.x()*(1.-e.y())+
d[2]*(1.-e.x())*e.y() +d[3]*e.x()*e.y();
}
};
*/
///An elementary cell in 2D space
/**
This template defines an elementary cell: vectors and interpolation law
\image html t8ec.png "3D elementary cell"
\image latex t8ec.png "3D elementary cell" width=8cm
*/
/* class d3q8ec {
public:
static const int ND=3;
static const int NV=8;
typedef Vec<ND,int> DV;
inline static const DV & l(int i) {
static const DV lat[NV] = {
DV(0,0,0),DV(1,0,0),DV(0,1,0),DV(1,1,0),
DV(0,0,1),DV(1,0,1),DV(0,1,1),DV(1,1,1)
};
return lat[i];
}
///The interpolation procedure
template <typename T>
inline static const T interpol(const Vec<NV,T> &d, const Vec<ND,lFl> &e) {
return d[0]*(1.-e.x())*(1.-e.y())*(1.-e.z())
+d[1]* e.x()* (1.-e.y())*(1.-e.z())
+d[2]*(1.-e.x())* e.y()* (1.-e.z())
+d[3]* e.x()* e.y()* (1.-e.z())
+d[4]*(1.-e.x())*(1.-e.y())* e.z()
+d[5]* e.x()* (1.-e.y())* e.z()
+d[6]*(1.-e.x())* e.y()* e.z()
+d[7]* e.x()* e.y()* e.z();
}
};
*/
///d2q9 vectorspace
/**
The operators are defined on the correspoNDing templates:
\image html t9.png "9-point templates"
\image latex t9.png "9-point templates" width=8cm
*/
/* class d2q9 {
public:
static const int ND=2;
static const int NV=9;
typedef Vec<ND,int> DV;
// private:
static const lFl w1=4./9.,w2=1./9.,w3=1./36., as2i=3.;
static inline const DV & l(int i) {
static const DV lat[NV] = {
DV(0,0),DV(1,0),DV(0,1), DV(-1,0),DV(0,-1),
DV(1,1),DV(-1,1),DV(-1,-1),DV(1,-1)
};
return lat[i];
}
///number of the vector wich has oposite derection
static inline int io(int i) {
static const int inv[NV] = {0,3,4,1,2,7,8,5,6};
return inv[i];
}
static inline lFl s(const Vec<NV> &p) {
return (w1*p[0]+w2*(p[1]+p[2]+p[3]+p[4])+w3*(p[5]+p[6]+p[7]+p[8]));
}
static inline lFl s(Vec<NV> &p, const lFl &val) {
return (p[0] =p[1] =p[2] =p[3] =p[4] =p[5] =p[6] =p[7] =p[8] =val);
}
static inline const Vec<ND> v(const Vec<NV> &p) {
return Vec<2>(w2*(p[1]-p[3])+w3*(p[5]-p[6]-p[7]+p[8]),
w2*(p[2]-p[4])+w3*(p[5]+p[6]-p[7]-p[8]));
}
static inline const Vec<ND> v(Vec<NV> &p, const Vec<ND> &val) {
const lFl p0(s(p));
for (int i(0); i < NV; ++i)
p[i] =p0+val*Vec<ND>(l(i))*as2i;
return val;
}
///coefficient of the lapplace operator
static inline lFl lc(int i) {
static const lFl c[NV] = {-10./3.,2./3.,2./3.,2./3.,2./3.,1./6.,1./6.,1./6.,1./6.};
return c[i];
}
};
*/
///d2q5 vectorspace
/**
The operators are defined on the correspoNDing templates:
\image html t5.png "5-point templates"
\image latex t5.png "5-point templates" width=8cm
*/
/* class d2q5 {
public:
static const int ND=2;
static const int NV=5;
typedef Vec<ND,int> DV;
inline static const DV & l(int i) {
static const DV lat[NV] = {DV(0,0),DV(1,0),DV(0,1),DV(-1,0), DV(0,-1)};
return lat[i];
}
///number of the vector wich has oposite derection
inline static int io(int i) {
static const int inv[NV] = {0,3,4,1,2};
return inv[i];
}
///coefficient of the lapplace operator
static inline lFl lc(int i) {
static const lFl c[NV] = {-4.,1.,1.,1.,1.};
return c[i];
}
};
*/
///d2q4 vectorspace
/**
The operators are defined on the corresponding templates:
\image html t4.png "4-point templates"
\image latex t4.png "4-point templates" width=8cm
*/
/* class d2q4 {
public:
static const int ND=2;
static const int NV=4;
typedef Vec<ND,int> DV;
static const lFl w1=1./NV, as2i=ND;
inline static const DV & l(int i) {
static const DV lat[NV] = {DV(1,0),DV(0,1),DV(-1,0), DV(0,-1)};
return lat[i];
}
///number of the vector wich has oposite derection
inline static int io(int i) {
static const int inv[NV] = {2,3,0,1};
return inv[i];
}
static inline lFl s(const Vec<NV> &p) {return (w1*(p[0]+p[1]+p[2]+p[3]));}
static inline lFl s(Vec<NV> &p, const lFl &val) {return (p[0] =p[1] =p[2] =p[3] =val);}
static inline const Vec<ND> v(const Vec<NV> &p) {
return Vec<ND>(w1*(p[0]-p[2]),w1*(p[1]-p[3]));
}
static inline const Vec<ND> v(Vec<NV> &p, const Vec<ND> &val) {
const lFl p0(s(p));
for (int i(0); i < NV; ++i)p[i] =p0+val*Vec<ND>(l(i))*as2i;
return val;
}
};
*/
///d3q7 vectorspace
/**
\image html t7.png "7-point templates"
\image latex t7.png "7-point templates" width=8cm
*/
/* class d3q7 {
public:
static const int ND=3;
static const int NV=7;
typedef Vec<ND,int> DV;
inline static const DV l(int i) {
static const DV lat[NV] = {DV(SV()[I2T<0>()]),DV(SV()[I2T<1>()]),DV(SV()[I2T<2>()]),
DV(SV()[I2T<3>()]),DV(SV()[I2T<4>()]),DV(SV()[I2T<5>()]),
DV(SV()[I2T<6>()])};
return lat[i];
}
///number of the vector wich has oposite derection
inline static int io(int i) {
static const int inv[NV] = {0,4,5,6,1,2,3};
return inv[i];
}
///coefficient of the lapplace operator
static inline lFl lc(int i) {
static const lFl c[NV] = {-6.,1.,1.,1.,1.,1.,1.};
return c[i];
}
};
*/
///d3q6 vectorspace
/**
\image html t6.png "6-point templates"
\image latex t6.png "6-point templates" width=8cm
*/
/* class d3q6 {
public:
static const int ND=3;
static const int NV=6;
typedef Vec<ND,int> DV;
static const lFl w1=1./NV, as2i=ND;
inline static const DV & l(int i) {
static const DV lat[NV] = {
DV(1,0,0), DV(0,1,0),DV(0,0,1),
DV(-1,0,0), DV(0,-1,0),DV(0,0,-1)
};
return lat[i];
}
///number of the vector wich has oposite derection
inline static int io(int i) {
static const int inv[NV] = {3,4,5,0,1,2};
return inv[i];
}
static inline lFl s(const Vec<NV> &p) {return (w1*(p[0]+p[1]+p[2]+p[3]+p[4]+p[5]));}
static inline lFl s(Vec<NV> &p, const lFl &val) {
return (p[0] =p[1] =p[2] =p[3] =p[4] =p[5] =val);
}
static inline const Vec<ND> v(const Vec<NV> &p) {
return Vec<ND>(w1*(p[0]-p[3]),w1*(p[1]-p[4]),w1*(p[2]-p[5]));
}
static inline const Vec<ND> v(Vec<NV> &p, const Vec<ND> &val) {
const lFl p0(s(p));
for (int i(0); i < NV; ++i)p[i] =p0+val*Vec<ND>(l(i))*as2i;
return val;
}
};
*/
///d3q19 vectorspace
/**
\image html t19.png "19-point templates"
\image latex t19.png "19-point templates" width=8cm
*/
/* class d3q19 {
public:
static const int ND=3;
static const int NV=19;
typedef Vec<ND,int> DV;
static const lFl w1=1./3.,w2=1./18.,w3=1./36., as2i=3.;
inline static const DV & l(int i) {
static const DV lat[NV] = {
DV(0,0,0), DV(1,0,0), DV(0,1,0),
DV(0,0,1), DV(-1,0,0), DV(0,-1,0),
DV(0,0,-1), DV(1,1,0), DV(1,-1,0),
DV(-1,-1,0), DV(-1,1,0), DV(0,1,1),
DV(0,1,-1), DV(0,-1,-1), DV(0,-1,1),
DV(1,0,1), DV(1,0,-1), DV(-1,0,-1),
DV(-1,0,1)
};
return lat[i];
}
///numbers of the vector wich has oposite derection
inline static int io(int i) {
static const int inv[NV] = {0,4,5,6,1,2,3,9,10,7,8,13,14,11,12,17,18,15,16};
return inv[i];
}
static inline lFl s(const Vec<NV> &p) {
return (w1*p[0]+w2*(p[1]+p[2]+p[3]+p[4]+p[5]+p[6])
+w3*(p[7]+p[8]+p[9]+p[10]+p[11]+p[12]+p[13]+p[14]+p[15]+p[16]+p[17]+p[18]));
}
static inline lFl s(Vec<NV> &p, const lFl &val) {p=val; return val;}
static inline const Vec<ND> v(const Vec<NV> &p) {
return
Vec<ND>(w2*(p[1]-p[4])+w3*( p[7] +p[8]- p[9]-p[10]+p[15]+p[16]-p[17]-p[18]),
w2*(p[2]-p[5])+w3*( p[7] -p[8]- p[9]+p[10]+p[11]+p[12]-p[13]-p[14]),
w2*(p[3]-p[6])+w3*(p[11]-p[12]-p[13]+p[14]+p[15]-p[16]-p[17]+p[18]));
}
static inline const Vec<ND> v(Vec<NV> &p, const Vec<ND> &val) {
const lFl p0(s(p));
for (int i(0); i < NV; ++i)p[i] =p0+val*Vec<ND>(l(i))*as2i;
return val;
}
///coefficient of the lapplace operator
static inline lFl lc(int i) {
static const lFl c[NV] = {-4.,
1./3.,1./3.,1./3.,1./3.,1./3.,1./3.,
1./6.,1./6.,1./6.,1./6.,1./6.,1./6.,
1./6.,1./6.,1./6.,1./6.,1./6.,1./6.};
return c[i];
}
};
*/
///d3q15 vectorspace
/**
\image html t15.png "15-point templates"
\image latex t15.png "15-point templates" width=8cm
*/
/* class d3q15 {
public:
static const int ND=3;
static const int NV=15;
typedef Vec<ND,int> DV;
static const lFl w1=2./9.,w2=1./9.,w3=1./72., as2i=3.;
static inline const DV & l(int i) {
static const DV lat[NV] = {
DV(0,0,0), DV(1,0,0), DV(0,1,0),
DV(0,0,1), DV(-1,0,0), DV(0,-1,0),
DV(0,0,-1), DV(1,1,1), DV(1,1,-1),
DV(1,-1,1), DV(1,-1,-1), DV(-1,1,1),
DV(-1,1,-1), DV(-1,-1,1), DV(-1,-1,-1)
};
return lat[i];
}
///number of the vector wich has oposite derection
static inline int io(int i) {
static const int inv[NV] = {0,4,5,6,1,2,3,14,13,12,11,10,9,8,7};
return inv[i];
}
static inline lFl s(const Vec<NV> &p) {
return (w1*p[0]+w2*(p[1]+p[2]+p[3]+p[4]+p[5]+p[6])
+w3*(p[7]+p[8]+p[9]+p[10]+p[11]+p[12]+p[13]+p[14]));
}
static inline lFl s(Vec<NV> &p, const lFl &val) {p=val; return val;}
template <typename Td,typename SD>
static inline const Vec<ND> v(const Vec<NV,Td,SD> &p)
{
return
Vec<ND>(w2*(p[1]-p[4])+w3*(p[7]+p[8]+p[9]+p[10]-p[11]-p[12]-p[13]-p[14]),
w2*(p[2]-p[5])+w3*(p[7]+p[8]-p[9]-p[10]+p[11]+p[12]-p[13]-p[14]),
w2*(p[3]-p[6])+w3*(p[7]-p[8]+p[9]-p[10]+p[11]-p[12]+p[13]-p[14]));
}
static inline void v(Vec<NV> &p, const Vec<ND> &val) {
const lFl p0(s(p));
for (int i(0); i < NV; ++i)p[i] =p0+val*Vec<ND>(l(i))*as2i;
}
template <typename Ty>
static inline void v(Vec<NV,lFl,Ty> p, const Vec<ND> &val)
{
const lFl p0(s(p));
for (int i(0); i < NV; ++i)p[i] =p0+val*Vec<ND>(l(i))*as2i;
}
///coefficient of the lapplace operator
static inline lFl lc(int i) {
static const lFl c[NV] = {-14./3.,
2./3.,2./3.,2./3.,2./3.,2./3.,2./3.,
1./12.,1./12.,1./12.,1./12.,
1./12.,1./12.,1./12.,1./12.};
return c[i];
}
};
*/
///D3Q27 vectorspace
/**
\image html t27.png "27-point templates"
\image latex t27.png "27-point templates" width=8cm
*/
/* class d3q27 {
public:
static const int ND=3;
static const int NV=27;
typedef Vec<ND,int> DV;
inline static const DV & l(int i) {
static const DV lat[NV] = {
DV(0,0,0), DV(1,0,0), DV(0,1,0),
DV(0,0,1), DV(-1,0,0), DV(0,-1,0),
DV(0,0,-1), DV(1,1,0), DV(1,-1,0),
DV(-1,-1,0), DV(-1,1,0), DV(0,1,1),
DV(0,1,-1), DV(0,-1,-1), DV(0,-1,1),
DV(1,0,1), DV(1,0,-1), DV(-1,0,-1),
DV(-1,0,1), DV(1,1,1), DV(1,1,-1),
DV(1,-1,1), DV(1,-1,-1), DV(-1,1,1),
DV(-1,1,-1), DV(-1,-1,1), DV(-1,-1,-1)
};
return lat[i];
}
///number of the vector wich has oposite derection
inline static int io(int i) {
static const int inv[NV] = {0,
4,5,6,1,2,3,
9,10,7,8,13,14,11,12,17,18,15,16,
26,25,24,23,22,21,20,19};
return inv[i];
}
};
*/
///D1Q3 vectorspace
/**
\image html t3.png "3-point templates"
\image latex t3.png "3-point templates" width=8cm
*/
/* class d1q3 {
public:
static const int ND=1; ///<number of dimensions
static const int NV=3; ///<nuber of directions
typedef Vec<ND,int> DV; ///< type of lattice vector
inline static const DV & l(int i) { /// Returns value of the lattice vector
static const DV lat[NV] = {DV(0),DV(1),DV(-1)};
return lat[i];
}
///number of the vector wich has oposite derection
inline static int io(int i) {
static const int inv[NV] = {0,2,1};
return inv[i];
}
};
*/
///D1Q2 vectorspace
/**
\image html t2.png "2-point templates"
\image latex t2.png "2-point templates" width=8cm
*/
/* class d1q2 {
public:
static const int ND=1; ///<number of dimensions
static const int NV=2; ///<nuber of directions
typedef Vec<1,int> DV; ///< type of lattice vector
inline static const DV & l(int i) { /// Returns value of the lattice vector
static const DV lat[NV] = {DV(1),DV(-1)};
return lat[i];
}
///number of the vector wich has oposite derection
inline static int io(int i) {
static const int inv[NV] = {1,0};
return inv[i];
}
};
///Reflected template vector \f$ lrf(f)_i=f_{\tilde i}, \f$ \f$ \vec a_{\tilde i}=-\vec a_i \f$
template <typename Tl> inline Vec<Tl::NV> lrv(const Vec<Tl::NV> &f_) {
Vec<Tl::NV> a;
for (int i(0); i < Tl::NV; ++i) {a[i] =f_[Tl::io(i)];}
return a;
}
template <typename Tl,int I> inline void _l1f_c(I2T<I>,Tl, const Vec<Tl::ND> &v_,Vec<Tl::NV> &a){
typedef typename Tl::SV SV;
a[I] =SV()[I2T<I>()]*v_; _l1f_c(I2T<I-1>(),Tl(),v_,a);
}
template <typename Tl> inline void _l1f_c(I2T<0>,Tl, const Vec<Tl::ND> &v_,Vec<Tl::NV> &a){
typedef typename Tl::SV SV;
a[0] =SV()[I2T<0>()]*v_;
}
///Creates template vector as scalar product with lattice vectors \f$ \vec a_i \vec v \f$
template <typename Tl> inline Vec<Tl::NV> l1f(const Vec<Tl::ND> &v_) {
typedef Vec<Tl::ND> TV;
Vec<Tl::NV> a;
// for (int i(0); i < Tl::NV; ++i) {a[i] =TV(Tl::l(i))*v_;}
_l1f_c(I2T<Tl::NV-1>(),Tl(),v_,a);
return a;
}
template <typename Tl,int I>
inline void _l2f_c(I2T<I>,Tl, const Vec<Tl::ND> &v1_, const Vec<Tl::ND> &v2_,Vec<Tl::NV> &a){
class Tl::SV q; a[I] =(q[I2T<I>()]*v1_)*(q[I2T<I>()]*v2_); _l2f_c(I2T<I-1>(),Tl(),v1_,v2_,a);
}
template <typename Tl>
inline void _l2f_c(I2T<0>,Tl, const Vec<Tl::ND> &v1_, const Vec<Tl::ND> &v2_,Vec<Tl::NV> &a){
class Tl::SV q; a[0] =(q[I2T<0>()]*v1_)*(q[I2T<0>()]*v2_);
}
///Creates template vector as 2 scalar products with lattice vectors \f$ (\vec a_i \vec v_1) (\vec a_i \vec v_2) \f$
template <typename Tl> inline Vec<Tl::NV> l2f(const Vec<Tl::ND> &v1_, const Vec<Tl::ND> &v2_) {
typedef Vec<Tl::ND> TV;
Vec<Tl::NV> a;
// for (int i(0); i < Tl::NV; ++i) {a[i] =(TV(Tl::l(i))*v1_)*(TV(Tl::l(i))*v2_);}
_l2f_c(I2T<Tl::NV-1>(),Tl(),v1_,v2_,a);
return a;
}
} // templ
*/
}// asl
#endif // TEMPL_H_INCLUDED
|