This file is indexed.

/usr/include/ASL/num/aslTimeContinuations.h is in libasl-dev 0.1.7-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*
 * Advanced Simulation Library <http://asl.org.il>
 * 
 * Copyright 2015 Avtech Scientific <http://avtechscientific.com>
 *
 *
 * This file is part of Advanced Simulation Library (ASL).
 *
 * ASL is free software: you can redistribute it and/or modify it
 * under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, version 3 of the License.
 *
 * ASL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with ASL. If not, see <http://www.gnu.org/licenses/>.
 *
 */


#ifndef ASLTIMECONTINUATIONS_H
#define ASLTIMECONTINUATIONS_H

#include "aslNumMethod.h"
#include <acl/aclMath/aclVectorOfElementsDef.h>

namespace acl
{
	class Kernel;
}

namespace asl
{
	class VectorTemplate;
	template <typename V> class DataWithGhostNodes;
	typedef DataWithGhostNodes<acl::VectorOfElementsData> DataWithGhostNodesACLData;
	typedef std::shared_ptr<DataWithGhostNodesACLData> SPDataWithGhostNodesACLData;
	class AbstractDataWithGhostNodes;
	typedef std::shared_ptr<AbstractDataWithGhostNodes> SPAbstractDataWithGhostNodes;

	/// Numerical method that generates temporal extrapolation of the data, Abstract class.
	/**
		 \ingroup NumMethods

	*/
	class TimeContinuations: public NumMethod
	{
		public:
			typedef SPDataWithGhostNodesACLData Data;
		protected:	
			acl::VectorOfElementsData inData;
			double factor;
			unsigned int nStorages;			
			TimeContinuations(Data inD, double factor);
			TimeContinuations(acl::VectorOfElementsData & inD, double factor);
		public:			
			void addData(Data inD);
			void addData(acl::VectorOfElementsData & inD);
			virtual void execute()=0;
			virtual void init()=0;
			/// makes reset of the contiuation (storage) cicle 
			void reset();
	};

	
	/// Numerical method that generates temporal extrapolation of the data with Lagrangian polynoms 
	/**
		 \ingroup NumMethods

		 The method computes Lagrange polinomial extrapolation of order \f$k\f$ in time. \p factor 
		 defines extrapolation length:
		 \f[ u(t+dt*factor) = \sum_{i=0}^n y_i  l_i \f]
		 where 
		 \f[ l_i(x) = \prod_{j=0, j\neq i}^k \frac{x-x_j}{x_i-x_j}\f]
		 The first avalible point has \f$ t_0 = -k$. The last avalible point has \f$ t_k = 0$.
	*/
	class TimeContinPLagrange: public TimeContinuations
	{
		private:	
			acl::VectorOfElements storedData;
			std::vector<std::shared_ptr<acl::Kernel>> kernels;
			unsigned int order;
			std::vector<double> coefs; 

		public:			
			TimeContinPLagrange(Data inD, double f, unsigned int order);
			TimeContinPLagrange(acl::VectorOfElementsData & inD, double f, unsigned int order);
			virtual void execute();
			virtual void init();
	};

	typedef std::shared_ptr<TimeContinPLagrange> SPTimeContinPLagrange;

	/// Numerical method that generates temporal extrapolation of the data with Lagrangian polynoms of fractional argument  
	/**
		 \ingroup NumMethods

		 The method computes Lagrange polinomial extrapolation of order \f$k\f$ in time. 
		 The time is taken in the form \f$ (t+t_s)^{-1}\f$. \p factor  
		 defines extrapolation length. \f$ t_s\f$ is defined as: 
	     \f[ t_s = 2 k+ factor \f]
		 The interpolation polinoms are nothing else but the Lagrange one with
		 \f$ x \f$ defined as \f$ x=(t+t_s)^{-1} \f$
		 \f[ u(t+dt*factor) = \sum_{i=0}^n y_i  l_i \f]
		 where 
		 \f[ l_i(x) = \prod_{j=0, j\neq i}^k \frac{x-x_j}{x_i-x_j}\f]

		 The first avalible point has \f$ t_0 = -k$. The last avalible point has \f$ t_k = 0$. 
		 
	*/	
	class TimeContinPLagrangeFraction: public TimeContinuations
	{
		public:
			typedef SPDataWithGhostNodesACLData Data;
			typedef SPAbstractDataWithGhostNodes Field;
		private:	
			acl::VectorOfElements storedData;
			std::vector<std::shared_ptr<acl::Kernel>> kernels;
			unsigned int order;
			double offset;
			std::vector<double> coefs; 

		public:			
			TimeContinPLagrangeFraction(Data inD, double f, unsigned int order);
			TimeContinPLagrangeFraction(acl::VectorOfElementsData & inD, 
			                            double f, unsigned int order);
			void execute();
			virtual void init();
	};

	typedef std::shared_ptr<TimeContinPLagrangeFraction> SPTimeContinPLagrangeFraction;
	
	
} // asl
#endif // ASLTIMECONTINUATIONS_H