/usr/include/avogadro/camera.h is in libavogadro-dev 1.2.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | /**********************************************************************
Camera - Class for representing the view.
Copyright (c) 2007-2008 Benoit Jacob
Copyright (c) 2007 Donald Ephraim Curtis
Copyright (c) 2007 Carsten Niehaus
Copyright (c) 2007-2008 Marcus D. Hanwell
Copyright (c) 2007-2009 Geoff Hutchison
Copyright (C) 2011 David C. Lonie
This file is part of the Avogadro molecular editor project.
For more information, see <http://avogadro.cc/>
Avogadro is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Avogadro is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
**********************************************************************/
#ifndef CAMERA_H
#define CAMERA_H
#include "config.h"
#include <avogadro/global.h>
#include <Eigen/Geometry>
#include <QPoint>
namespace Avogadro {
class GLWidget;
/**
* @class Camera camera.h <avogadro/camera.h>
* @brief Representation of the camera looking at the molecule.
* @author Benoit Jacob
*
* This class represents a camera looking at the molecule loaded
* in a GLWidget. It stores the parameters describing the camera and
* a pointer to the parent GLWidget. It uses this to retrieve information
* about the molecule being looked at, automatically setting up the OpenGL
* projection matrix to ensure that the molecule will not be clipped. It also
* provides a method to initialize a nice default viewpoint of the molecule.
* In order to setup the OpenGL matrices before rendering the molecule, do the
* following:
* @code
// setup the OpenGL projection matrix using the camera
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
camera.applyPerspective();
// setup the OpenGL modelview matrix using the camera
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
camera.applyModelview();
* @endcode
* The reason why Camera class does not provide a single method to do all of this
* is that in some cases you don't want to. For instance, when doing OpenGL selection,
* you want to call gluPickMatrix() right before Camera::applyPerspective().
*/
class CameraPrivate;
class A_EXPORT Camera
{
protected:
friend class GLWidget;
/** Sets which GLWidget owns this camera.
* @sa parent() */
void setParent(const GLWidget *glwidget);
public:
/** The constructor.
* @param parent the GLWidget parent of this camera instance.
* @param angleOfViewY the vertical viewing angle in degrees.
* @sa setParent(), setAngleOfViewY() */
explicit Camera(const GLWidget *parent = 0, double angleOfViewY = 40.0);
/** The destructor. */
virtual ~Camera();
/**
* The copy constructor - it is useful to be able to copy the Camera.
*/
Camera(const Camera *camera);
/** @return a pointer to the parent GLWidget.
* @sa setParent() */
const GLWidget *parent() const;
/** Sets the vertical viewing angle.
* @param angleOfViewY the new vertical viewing angle in degrees.
* @sa angleOfViewY() */
void setAngleOfViewY(double angleOfViewY);
/** @return the vertical viewing angle in degrees.
* @sa setAngleOfViewY() */
double angleOfViewY() const;
/** Sets 4x4 "modelview" matrix representing the camera orientation and position.
* @param matrix the matrix to copy from
* @sa Eigen::Projective3d & modelview(), applyModelview() */
void setModelview(const Eigen::Projective3d &matrix);
/** @return a constant reference to the 4x4 "modelview" matrix representing
* the camera orientation and position
* @sa setModelview(), Eigen::Projective3d & modelview() */
const Eigen::Projective3d & modelview() const;
/** @return a non-constant reference to the 4x4 "modelview" matrix representing
* the camera orientation and position
* @sa setModelview(), const Eigen::Projective3d & modelview() const */
Eigen::Projective3d & modelview();
/** Calls gluPerspective() or glOrtho() with parameters automatically chosen
* for rendering the GLWidget's molecule with this camera. Should be called
* only in GL_PROJECTION matrix mode. Example code is given
* in the class's comment.
* @deprecated Use applyProjection instead.
* @sa applyModelview(), initializeViewPoint()
*/
void applyPerspective() const;
/** Calls gluPerspective() or glOrtho() with parameters automatically chosen
* for rendering the GLWidget's molecule with this camera. Should be called
* only in GL_PROJECTION matrix mode. Example code is given
* in the class's comment.
* @sa applyModelview(), initializeViewPoint()
*/
void applyProjection() const;
/** Calls glMultMatrix() with the camera's "modelview" matrix. Should be called
* only in GL_MODELVIEW matrix mode. Example code is given
* in the class's comment.
* @sa applyPerspective(), initializeViewPoint()
*/
void applyModelview() const;
/** Sets up the camera so that it gives a nice view of the molecule loaded in the
* parent GLWidget. Typically you would call this method right after loading a molecule.
* @sa applyPerspective(), applyModelview()
*/
void initializeViewPoint();
/** Returns the distance between @a point and the camera. For instance, to determine the
* distance between a molecule's center and the camera, do:
* @code
double d = camera.distance( molecule.center() );
* @endcode
*/
double distance(const Eigen::Vector3d & point) const;
/** Multiply the camera's "modelview" matrix on the right by the translation of the given
* vector. As the translation is applied on the right, the vector is understood in
* the molecule's coordinate system. Use this method if you want to give the impression
* that the molecule is moving while the camera remains fixed. This is the equivalent of
* the OpenGL function glTranslate().
* @param vector the translation vector
* @sa pretranslate(), translationVector()*/
void translate(const Eigen::Vector3d &vector);
/** Multiply the camera's "modelview" matrix on the left by the translation of given
* vector. Because the translation is applied on the left, the vector is understood in
* the coordinate system obtained by applying the camera's matrix to the molecule's
* coordinate system. Use this method if you want to give the impression that the camera
* is moving while the molecule remains fixed.
* @warning This is NOT the equivalent of the OpenGL function glTranslate().
* @param vector the translation vector
* @sa translate(), translationVector()*/
void pretranslate(const Eigen::Vector3d &vector);
/** Multiply the camera's "modelview" matrix on the right by the rotation of the given
* angle and axis. As the rotation is applied on the right, the axis vector is
* understood in the molecule's coordinate system. Use this method if you want to give
* the impression that the molecule is rotating while the camera remains fixed. This is the
* equivalent of the OpenGL function glRotate(), except that here the angle is expressed
* in radians, not in degrees.
*
* After the rotation is multiplied, a normalization is performed to ensure that the
* camera matrix remains sane.
*
* @param angle the rotation angle in radians
* @param axis a unit vector around which to rotate. This MUST be a unit vector, i.e.
* axis.norm() must be close to 1.
* @sa prerotate()*/
void rotate(const double &angle, const Eigen::Vector3d &axis);
/** Multiply the camera's "modelview" matrix on the left by the rotation of the given
* angle and axis. Because the rotation is applied on the left, the axis vector is
* understood in the the coordinate system obtained by applying the camera's matrix to
* the molecule's coordinate system. Use this method if you want to give
* the impression that the camera is rotating while the molecule remains fixed.
*
* After the rotation is multiplied, a normalization is performed to ensure that the
* camera matrix remains sane.
*
* @warning This is NOT the equivalent of the OpenGL function glRotate().
* @param angle the rotation angle in radians
* @param axis a unit vector around which to rotate. This MUST be a unit vector, i.e.
* axis.norm() must be close to 1.
* @sa prerotate()*/
void prerotate(const double &angle, const Eigen::Vector3d &axis);
/** For perspective projections, multiply the camera's "modelview"
* matrix by a scaling coefficient. It affects the linear part of the
* camera's "modelview" matrix only.
*
* For orthographic projections, this affects the width and height of
* the projection, scaling the eye coordinates isotropically.
*
* Use this method if you want to give the impression that the camera
* is zooming in or out.
*
* @param coefficient the scaling coefficient
*/
void scale(double coefficient);
/**
* Performs an unprojection from window coordinates to space coordinates.
* @param v The vector to unproject, expressed in window coordinates.
* Thus v.x() and v.y() are the x and y coords of the pixel to unproject.
* v.z() represents it's "z-distance". If you don't know what value to
* put in v.z(), see the other unProject(const QPoint&) method.
* @return vector of the unprojected space coordinates
*
* @sa unProject(const QPoint&), project()
*/
Eigen::Vector3d unProject(const Eigen::Vector3d& v) const;
/**
* Performs an unprojection from window coordinates to space coordinates,
* into the plane passing through a given reference point and parallel to the screen.
* Thus the returned vector is a point of that plane. The rationale is that
* when unprojecting 2D window coords to 3D space coords, there are a priori
* infinitely many solutions, and one has to be choose. This is equivalent to
* choosing a plane parallel to the screen.
* @param p the point to unproject, expressed in window coordinates.
* @param ref the reference point, determining the plane into which to unproject.
* If you don't know what to put here, see the other
* unProject(const QPoint&) method.
* @return vector containing the unprojected space coordinates
*
* @sa unProject(const Eigen::Vector3d&), unProject(const QPoint&), project()
*/
Eigen::Vector3d unProject(const QPoint& p, const Eigen::Vector3d& ref) const;
/**
* Performs an unprojection from window coordinates to space coordinates,
* into the plane passing through the molecule's center and parallel to the screen.
* Thus the returned vector is a point belonging to that plane. This is equivalent to
* @code
unProject( p, center() );
* @endcode
* @param p the point to unproject, expressed in window coordinates.
* @return vector containing the unprojected space coordinates.
*
* @sa unProject(const Eigen::Vector3d&),
* unProject(const QPoint&, const Eigen::Vector3d&), project()
*/
Eigen::Vector3d unProject(const QPoint& p) const;
/**
* Performs a projection from space coordinates to window coordinates.
* @param v the vector to project, expressed in space coordinates.
* @return vector containing the projected screen coordinates.
*
* @sa unProject(const Eigen::Vector3d&), unProject(const QPoint&),
* unProject(const QPoint&, const Eigen::Vector3d&)
*/
Eigen::Vector3d project(const Eigen::Vector3d& v) const;
/**
* Returns a unit vector pointing toward the right, expressed in the
* scene's coordinate system. This is simply the
* unit vector that is mapped to (1,0,0) by the camera rotation.
*/
Eigen::Vector3d backTransformedXAxis() const;
/**
* Returns a unit vector pointing upward, expressed in the
* scene's coordinate system. This is simply the
* unit vector that is mapped to (0,1,0) by the camera rotation.
*/
Eigen::Vector3d backTransformedYAxis() const;
/**
* Returns a unit vector pointing toward the camera, expressed in the
* scene's coordinate system. This is simply the
* unit vector that is mapped to (0,0,1) by the camera rotation.
*/
Eigen::Vector3d backTransformedZAxis() const;
/**
* Returns a unit vector pointing in the x direction, expressed in the
* space coordinate system.
*/
Eigen::Vector3d transformedXAxis() const;
/**
* Returns a unit vector pointing in the y direction, expressed in the
* space coordinate system.
*/
Eigen::Vector3d transformedYAxis() const;
/**
* Returns a unit vector pointing in the z direction, expressed in the
* space coordinate system.
*/
Eigen::Vector3d transformedZAxis() const;
/**
* Obtain a normal vector and point defining the plane of the
* clipping plane nearest the camera.
*
* @param normal Overwritten with a normalized vector orthogonal
* to the plane. All planes have two normal vectors -- this
* vector is the one pointing into the viewing volume.
* @param point Overwritten with a point that lies within the
* plane. This is the point at (-1, -1, -1) in normalized device
* coordinates (i.e. the bottom left corner of the viewport).
* @return True if the clipping plane exists, false otherwise.
*/
bool nearClippingPlane(Eigen::Vector3d *normal, Eigen::Vector3d *point);
/** The linear component (ie the 3x3 topleft block) of the camera matrix must
* always be a rotation. But after several hundreds of operations on it,
* it can drift farther and farther away from being a rotation. This method
* normalizes the camera matrix so that the linear component is guaranteed to be
* a rotation. Concretely, it performs a Gram-Schmidt orthonormalization to
* transform the linear component into a nearby rotation.
*
* The bottom row must always have entries 0, 0, 0, 1. This function overwrites
* the bottom row with these values.
*/
void normalize();
/**
* Calculate the isotropic scaling coefficient of the camera's "modelview" matrix. It
* assumes the intial volume of the camera's "modelview" space (determinant of the
* camera's "modelview" matrix linear component) is equal to unity.
* @return scaling coefficient
*/
double scalingCoefficient();
private:
CameraPrivate * const d;
/**Given {x, y, z, w} returns {x, y, z} / w.
*
* @param v4 {x,y,z,x} vector
* @return {x/w, y/w, z/w} vector
*/
Eigen::Vector3d V4toV3DivW(const Eigen::Vector4d & v4) {
return v4.head<3>()/v4.w();
}
};
} // end namespace Avogadro
#endif // __CAMERA_H
|