/usr/include/BALL/DOCKING/COMMON/poseClustering.h is in libball1.4-dev 1.4.3~beta1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 | // -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#ifndef BALL_DOCKING_POSECLUSTERING_H
#define BALL_DOCKING_POSECLUSTERING_H
#ifndef BALL_DATATYPE_OPTIONS_H
# include <BALL/DATATYPE/options.h>
#endif
#ifndef BALL_DOCKING_COMMON_CONFORMATIONSET_H
# include <BALL/DOCKING/COMMON/conformationSet.h>
#endif
#ifndef BALL_MOLMEC_COMMON_SNAPSHOT_H
# include <BALL/MOLMEC/COMMON/snapShot.h>
#endif
#ifndef BALL_STRUCTURE_ATOMBIJECTION_H
# include <BALL/STRUCTURE/atomBijection.h>
#endif
#ifndef BALL_KERNEL_SYSTEM_H
# include <BALL/KERNEL/system.h>
#endif
#ifndef BALL_DATATYPE_STRING_H
# include <BALL/DATATYPE/string.h>
#endif
#ifndef BALL_MATHS_VECTOR3_H
# include <BALL/MATHS/vector3.h>
#endif
#ifndef BALL_MATHS_MATRIX44_H
# include <BALL/MATHS/matrix44.h>
#endif
#include <Eigen/Core>
#include <boost/shared_ptr.hpp>
#include <boost/variant.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <set>
#include <iostream>
#ifdef BALL_HAS_TBB
# include <tbb/parallel_reduce.h>
# include <tbb/blocked_range.h>
#endif
//#define POSECLUSTERING_DEBUG 1
#undef POSECLUSTERING_DEBUG
namespace BALL
{
/** Pose Clustering
\ingroup DockingMiscellaneous
*/
/** \brief Computation of clusters of docking poses.
This class computes clusters of docking poses given as a
conformation set using a complete linkage algorithm.
The class assumes the following setup
- a pairwise rigid protein-protein docking
- all receptor-ligand poses have already been mapped onto each other
such that the "receptors" are kept fixed
- the given pose set only contains the "ligands"
We offer several algorithms via the option CLUSTER_METHOD:
- TRIVIAL_COMPLETE_LINKAGE: a naive implementation, that guarantees an optimal final partition.
- CLINK_DEFAYS as described in
D. Defays: An efficient algorithm for a complete link method.
The Computer Journal. 20, 4, British Computer Society, 1977, p. 364-366.
Please note that this implementation does not guarantee to find the best final clustering!
- NEAREST_NEIGHBOR_CHAIN_WARD as described in
Murtagh, Fionn (1983): "A survey of recent advances in hierarchical clustering algorithms",
The Computer Journal 26 (4): 354–359
Note that this algorithm computes a full clustering.
- SLINK_SIBSON as described in
R. Sibson: SLINK: an optimally efficient algorithm for the single-link cluster method.
The Computer Journal. 16, 1, British Computer Society, 1973, p. 30-34
The scope of the scoring (the atoms to be considered) can be defined via the option RMSD_LEVEL_OF_DETAIL.
If the option is set to PROPERTY_BASED_ATOM_BIJECTION, arbitrary sets of atoms, e.g. binding pockets,
can be used by assigning property named "ATOMBIJECTION_RMSD_SELECTION" to the respective atoms in the
reference system.
See also BALL::Expression.
The minimal rmsd or ward distance between the final clusters can be defined via option DISTANCE_THRESHOLD.
In order to relate RMSD and ward distance, we use sqrt(ward_dist / number_of_selected_atoms)
for threshold extraction.
The nearest neighbor chain ward clustering in principle computes a full clustering.
Option DISTANCE_THRESHOLD gives a ward distance that is automatically used to extract clusters.
Further extractions with different thresholds are possible.
The complete linkage algorithms guarantee a minimal cluster distance (max RMSD between all pairs
of two clusters), specified with option DISTANCE_THRESHOLD.
The initial poses can be given as ConformationSet or as transformation file, i.e. translation and
rotation of each pose.
Depending on this choice, the option RMSD_TYPE has to be set to SNAPSHOT_RMSD or RIGID_RMSD.
If RMSD_TYPE is set to CENTER_OF_MASS_DISTANCE, the option RMSD_LEVEL_OF_DETAIL will be ignored.
By setting the option RUN_PARALLEL to true, the user can request parallel execution. This will be performed
if the execution environment is enabled (BALL_HAS_TBB), and if the algorithm supports it.
*/
class BALL_EXPORT PoseClustering
{
public:
/** @name Constant Definitions
*/
//@{
/// Option names
struct BALL_EXPORT Option
{
/** the clustering method
*/
static const String CLUSTER_METHOD;
/** the threshold for minimal required cluster distance
*/
static const String DISTANCE_THRESHOLD;
/** the level of detail when computing the RMSD
*/
static const String RMSD_LEVEL_OF_DETAIL;
/** the computation type of the cluster distance meassure
*/
static const String RMSD_TYPE;
/** flag for requesting parallel execution
*/
static const String RUN_PARALLEL;
};
/// Default values for options
struct BALL_EXPORT Default
{
static const Index CLUSTER_METHOD;
static const float DISTANCE_THRESHOLD;
static const Index RMSD_LEVEL_OF_DETAIL;
static const Index RMSD_TYPE;
static const bool RUN_PARALLEL;
static const bool USE_CENTER_OF_MASS_PRECLINK;
};
enum BALL_EXPORT RMSDType
{
SNAPSHOT_RMSD,
RIGID_RMSD,
CENTER_OF_MASS_DISTANCE
};
enum BALL_EXPORT RMSDLevelOfDetail
{
C_ALPHA, //=0
HEAVY_ATOMS,
BACKBONE,
ALL_ATOMS,
PROPERTY_BASED_ATOM_BIJECTION
};
enum BALL_EXPORT ClusterMethod
{
TRIVIAL_COMPLETE_LINKAGE,
SLINK_SIBSON,
CLINK_DEFAYS,
NEAREST_NEIGHBOR_CHAIN_WARD,
CLINK_ALTHAUS
};
class BALL_EXPORT RigidTransformation
{
public:
RigidTransformation() {};
RigidTransformation(Eigen::Vector3f const& new_trans, Eigen::Matrix3f const& new_rot)
: translation(new_trans),
rotation(new_rot)
{}
Eigen::Vector3f translation;
Eigen::Matrix3f rotation;
};
/** Data type for the poses.
* A pose can either be a rigid transformation (translation + rotation), or
* a SnapShot.
*/
class BALL_EXPORT PosePointer
{
public:
PosePointer(RigidTransformation const* new_trafo, SnapShot const* new_snap = 0)
: trafo(new_trafo),
snap(new_snap)
{ }
PosePointer(SnapShot const* new_snap)
: trafo(0),
snap(new_snap)
{ }
RigidTransformation const* trafo;
SnapShot const* snap;
};
class BALL_EXPORT ClusterProperties
{
public:
ClusterProperties();
ClusterProperties(const ClusterProperties&);
ClusterProperties& operator=(const ClusterProperties&);
#ifdef BALL_HAS_RVALUE_REFERENCES
ClusterProperties(ClusterProperties&&) noexcept;
ClusterProperties& operator=(ClusterProperties&&) noexcept;
#endif
/** Serialization method
*/
template <class Archive>
void serialize(Archive& ar, const unsigned int version);
/** The poses contained in this cluster.
*/
std::set<Index> poses;
/** The number of poses contained in this cluster.
*/
Size size;
/** The center of the cluster.
* Depending on the type of transformations we allow,
* this is either stored as a rigid transformation or
* as the 3N-dimensional vector given by the atom
* coordinates. The special case of using only the center
* of mass is achieved by setting the rotation matrix to
* identity.
*/
boost::variant<Eigen::VectorXf, RigidTransformation> center;
/** The value at which this cluster is merged with its sibling.
*/
float merged_at;
#ifdef POSECLUSTERING_DEBUG
/** The cluster_idx assigend by last call of method extractClustersForThreshold
*/
float current_cluster_id;
#endif
};
typedef boost::adjacency_list<boost::vecS,
boost::vecS,
boost::directedS,
ClusterProperties,
boost::no_property,
unsigned int> ClusterTree;
typedef ClusterTree::vertex_descriptor ClusterTreeNode;
BALL_CREATE(PoseClustering);
/** Constructors and Destructor */
//@{
/// Default constructor.
PoseClustering();
/// Detailed constructor.
/// (TODO: really pass a pointer here?)
PoseClustering(ConformationSet* poses, float rmsd);
/// PoseClustering for a given set of rigid transformations of a base structure
PoseClustering(System const& base_system, String transformation_file_name);
///
virtual ~PoseClustering();
//@}
/** @name operation methods */
//@{
/** start method.
*/
bool compute();
//@}
/** @name Access methods
*/
//@{
/// sets the poses to be clustered, the conformation set's reference system will the base system
void setConformationSet(ConformationSet* new_set, bool precompute_atombijection = false);
/** Set a vector of PosePointers to be clustered
* Poses (RigidTransformations or SnapShots) can live outside of this class and will not be
* destroyed.
*/
void setBaseSystemAndPoses(System const& base_system, std::vector<PosePointer> const& poses);
/// reads the poses given as transformations from a file and update the covariance matrix
/// Note: the given system will be taken as reference, e.g. all transformations
// will be applied upon the current conformation
void setBaseSystemAndTransformations(System const& base_system, String transformation_file_name);
/// returns the poses to be clustered as ConformationSet
const ConformationSet* getConformationSet() const {return current_set_;}
/// returns the poses to be clustered as ConformationSet
ConformationSet* getConformationSet() {return current_set_;}
/// returns the poses as rigid transformations
const std::vector<RigidTransformation> & getRigidTransformations() const {return transformations_;}
/// returns the centers of mass-vector (non-empty only for CENTER_OF_MASS_DISTANCE)
std::vector<Vector3> & getCentersOfMass() {return com_;}
/// returns the centers of mass-vector, const version (non-empty only for CENTER_OF_MASS_DISTANCE)
std::vector<Vector3> const & getCentersOfMass() const {return com_;}
/// returns the reference pose
const System& getSystem() const;
/// returns the reference pose
System& getSystem();
/// returns the number of poses
Size getNumberOfPoses() const {return poses_.size();}
/// returns the number of clusters found
Size getNumberOfClusters() const {return clusters_.size();}
/// returns indices of all poses assigned to cluster i
/// Note: enumeration starts with 0
const std::set<Index>& getCluster(Index i) const;
/// returns indices of all poses assigned to cluster i
/// Note: enumeration starts with 0
std::set<Index>& getCluster(Index i);
/// returns the size of cluster i
Size getClusterSize(Index i) const;
/// returns the score of cluster i
float getClusterScore(Index i) const;
/// returns the score between two poses given as systems
float getScore(const System sys_a, const System sys_b, Options options) const;
/// returns a reference to the cached AtomBijection
AtomBijection& getAtomBijection() {return atom_bijection_;}
/// returns a const reference to the cached AtomBijection
AtomBijection const& getAtomBijection() const {return atom_bijection_;}
/// apply a transformation to a given system
void applyTransformation2System(Index i, System& target_system);
/// convert the poses to SnapShots
void convertTransformations2Snaphots();
/// convert the poses to rigid transformations
void convertSnaphots2Transformations();
/// returns the complete linkage RMSD of cluster i
float computeCompleteLinkageRMSD(Index i, Options options, bool initialize = true);
/// returns the complete linkage RMSD of a pose set
//float computeCompleteLinkageRMSD(boost::shared_ptr<ConformationSet> cluster, Option options) const;
/// returns the pose i as system
boost::shared_ptr<System> getPose(Index i) const;
/// returns poses as PosePointer
std::vector<PosePointer> const& getPoses() const {return poses_;}
/// returns the "central cluster" conformation of cluster i as system
boost::shared_ptr<System> getClusterRepresentative(Index i);
/// returns the index of the cluster representative
Index findClusterRepresentative(Index i);
/// returns cluster i as ConformationSet
boost::shared_ptr<ConformationSet> getClusterConformationSet(Index i);
/// returns a ConformationSet containing one structure per cluster
boost::shared_ptr<ConformationSet> getReducedConformationSet();
/** Refine a given clustering.
* This function can be used to refine a precomputed clustering further. An important
* use case would be to pre-cluster using an efficient rmsd implementation (e.g., center
* of mass or rigid rmsd), and then refine the resulting clusters with the general (i.e.,
* snapshot based) rmsd.
*
* NOTE: This function requires that clusters have already been computed. In the case of
* a full hierarchical clustering, extractClustersForThreshold or extractNBestClusters
* must have been called previously.
*
* @param refined_options The parameters for the refinment step.
*
*/
bool refineClustering(Options const& refined_options);
//@}
/** @name Public Attributes
*/
//@{
/// options
Options options;
/** reset the options to default values
*/
void setDefaultOptions();
//@}
/** @name rigid transformation methods */
//@{
/** Compute the root mean square deviation due to a rigid transformation of a point cloud (here, atoms)
* @param t_ab difference vector between the transformations to be compared
* @param M_ab difference of the rotation matrices between the transformations to be compared
* @param covariance_matrix the covariance matrix of the atom positions
*/
static float getRigidRMSD(Eigen::Vector3f const& t_ab, Eigen::Matrix3f const& M_ab, Eigen::Matrix3f const& covariance_matrix);
/** Compute the mean square deviation due to a rigid transformation of a point cloud (here, atoms)
* @param t_ab difference vector between the transformations to be compared
* @param M_ab difference of the rotation matrices between the transformations to be compared
* @param covariance_matrix the covariance matrix of the atom positions
*/
static float getSquaredRigidRMSD(Eigen::Vector3f const& t_ab, Eigen::Matrix3f const& M_ab, Eigen::Matrix3f const& covariance_matrix);
/** Compute the covariance matrix for the given system
*/
static Eigen::Matrix3f computeCovarianceMatrix(System const& system, Index rmsd_level_of_detail = C_ALPHA);
//@}
/** @name methods given a full clustering */
//@{
/** Extract clusters wrt a threshold if a complete clustering was performed
* Note: the Ward distance does not equal the rmsd.
* We use threshold = sqrt(ward_dist / number_of_selected_atoms).
* see NEAREST_NEIGHBOR_CHAIN_WARD
*/
std::vector<std::set<Index> > extractClustersForThreshold(float threshold, Size min_size = 0);
/** returns the first up to n clusters if previously a complete clustering was performed
* see NEAREST_NEIGHBOR_CHAIN_WARD
*/
std::vector<std::set<Index> > extractNBestClusters(Size n);
/** filters the current cluster set wrt to a minimal cluster size
* see NEAREST_NEIGHBOR_CHAIN_WARD
*/
std::vector<std::set<Index> > filterClusters(Size min_size = 1);
/** Export the cluster tree to boost::serialize format.
*/
void serializeWardClusterTree(std::ostream& out, bool binary = false);
/** Import the cluster tree from boost::serialize format.
*/
void deserializeWardClusterTree(std::istream& in, bool binary = false);
/** Export the cluster tree in graphviz format.
*/
void exportWardClusterTreeToGraphViz(std::ostream& out);
//@}
/// print the clusters as set of pose indices
/// Note: start counting with 0
void printClusters(std::ostream& out = std::cout) const;
/// print clusters of pose indices with RMSD between clusters
/// Note: start counting with 0
void printClusterScores(std::ostream& out = std::cout);
protected:
#ifdef BALL_HAS_TBB
/** A nested class used for parallel execution of the nearest neighbour chain algorithm.
*/
class ComputeNearestClusterTask_
{
public:
/// Default constructor.
ComputeNearestClusterTask_(PoseClustering* parent,
const std::vector<ClusterTreeNode>& active_clusters,
Position current_cluster,
Index rmsd_type);
/// Splitting constructor.
ComputeNearestClusterTask_(ComputeNearestClusterTask_& cnct, tbb::split);
/// Join two partial results
void join(ComputeNearestClusterTask_ const& cnct);
/// The minimum computation
void operator() (const tbb::blocked_range<size_t>& r);
/// Return the minimum index
Position getMinIndex() {return my_min_index_;}
/// Return the minimum value
float getMinValue() {return my_min_value_;}
protected:
// the PoseClustering instance that called us
PoseClustering* parent_;
// the array we work on
const std::vector<ClusterTreeNode>& active_clusters_;
// the cluster to compare to everything else
Position current_cluster_;
// the kind of rmsd computation desired
Index rmsd_type_;
// the minimum index in our own block
Position my_min_index_;
// the minimum value in our own block
float my_min_value_;
};
#endif
/** A nested class used for exporting cluster trees to graphviz format
*/
class ClusterTreeWriter_
{
public:
ClusterTreeWriter_(ClusterTree const* cluster_tree)
: cluster_tree_(cluster_tree)
{ }
void operator() (std::ostream& out, const ClusterTreeNode& v) const;
protected:
ClusterTree const* cluster_tree_;
};
/** A nested class for our cluster tree node priorization
*/
class ClusterTreeNodeComparator
{
public:
ClusterTreeNodeComparator(ClusterTree& cluster_tree)
: cluster_tree_(&cluster_tree)
{}
bool operator() (ClusterTreeNode const first, ClusterTreeNode const second) const
{
float first_value = (*cluster_tree_)[ first].merged_at;
float second_value = (*cluster_tree_)[second].merged_at;
return first_value < second_value;
}
protected:
ClusterTree* cluster_tree_;
};
// trivial complete linkage implementation
// with O(n^2) space request
bool trivialCompute_();
// space efficient (SLINK or CLINK) clustering
bool linearSpaceCompute_();
//
bool althausCompute_();
// implementation of a single linkage clustering as described in
// R. Sibson: SLINK: an optimally efficient algorithm for the single-link cluster method.
// The Computer Journal. 16, 1, British Computer Society, 1973, p. 30-34
void slinkInner_(int current_level);
// implementation of a complete linkage clustering as described in
// D. Defays: An efficient algorithm for a complete link method.
// The Computer Journal. 20, 4, British Computer Society, 1977, p. 364-366.
void clinkInner_(int current_level);
// implememtation of the nearest neighbor chain clustering algorithm
// as described in:
// Murtagh, Fionn (1983): "A survey of recent advances in hierarchical clustering algorithms",
// The Computer Journal 26 (4): 354–359
bool nearestNeighborChainCompute_();
void initWardDistance_(Index rmsd_type);
void updateWardDistance_(ClusterTreeNode parent, ClusterTreeNode i, ClusterTreeNode j, Index rmsd_type);
float computeWardDistance_(ClusterTreeNode i, ClusterTreeNode j, Index rmsd_type);
std::set<Index> collectClusterBelow_(ClusterTreeNode const& v);
// compute the center of masses
void computeCenterOfMasses_();
// precompute an atom bijection for faster access
void precomputeAtomBijection_();
// check the given atom wrt choice of option RMSD_LEVEL_OF_DETAIL
bool static isExcludedByLevelOfDetail_(Atom const* atom, Index rmsd_level_of_detail);
// distance between cluster i and cluster j
float getClusterRMSD_(Index i, Index j, Index rmsd_type);
// reads the poses given as transformations from a file
// Note: the previously given system will be taken
// as untransformed reference, e.g. all transformations
// will be applied upon the current conformation
bool readTransformationsFromFile_(String filename);
// compute the RMSD between two "poses"
float getRMSD_(Index i, Index j, Index rmsd_type);
// store pointers to the snapshots in the poses vector
void storeSnapShotReferences_();
//
void printCluster_(Index i, std::ostream& out = std::cout) const;
//
void printVariables_(int a, int b, double c, int d, double e, int current_level);
//
void clear_();
// only used by trivial clustering
Eigen::MatrixXd pairwise_scores_;
/// the ConformationSet we wish to cluster
ConformationSet* current_set_;
/// the clusters: sets of pose indices
std::vector< std::set<Index> > clusters_;
std::vector< Index > cluster_representatives_;
/// the scores of the clusters
std::vector< float > cluster_scores_;
/// the RMSD definition used for clustering
Index rmsd_level_of_detail_;
// ----- unified access to the poses, independent of their type
// (the poses are either stored in transformations_, or in current_set_)
std::vector<PosePointer> poses_;
// ----- data structure for transformation input (instead of snapshots)
std::vector<RigidTransformation> transformations_;
Eigen::Matrix3f covariance_matrix_;
// TODO: maybe use a const - ptr instead?
System base_system_;
// the reference state
SnapShot base_conformation_;
// flag indicating the use of transformation as input
bool has_rigid_transformations_;
// do we need to delete the conformation set, that was
// created by converting transformations to snapshots
bool delete_conformation_set_;
// ------ data structures for slink and clink
// stores the distance at which this indexed element has longer
// the largest index of its cluster
std::vector<double> lambda_;
// the index of the cluster representative at merge-time
// (element with largest index)
std::vector<int> pi_;
std::vector<double> mu_;
// ----- data structures for nearest neighbor chain ward
Size number_of_selected_atoms_;
// ----- data structure for CENTER_OF_GRAVITY_CLINK
// the geometric center of mass
std::vector<Vector3> com_;
// ----- general data structures
// We cache the atom bijection for faster
// RMSD computation; this is possible, since the system topology does
// not change
AtomBijection atom_bijection_;
// helper dummies to speed up snapshot application
System system_i_;
System system_j_;
/// The tree built during hierarchical clustering
ClusterTree cluster_tree_;
}; //class PoseClustering
} //namesspace BALL
#endif // BALL_DOCKING_POSECLUSTERING_H
|