This file is indexed.

/usr/include/BALL/MATHS/rombergIntegrator.h is in libball1.4-dev 1.4.3~beta1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: rombergIntegrator.h,v 1.12 2003/08/26 08:04:22 oliver Exp $
//

#ifndef BALL_MATHS_ROMBERGINTEGRATOR_H
#define BALL_MATHS_ROMBERGINTEGRATOR_H

#ifndef BALL_MATHS_NUMERICALINTERGRATOR_H
# include <BALL/MATHS/numericalIntegrator.h>
#endif

namespace BALL
{
	/** A numerical integration of a BALL-Function using a Romberg integration scheme. 
	\ingroup FunctionClasses
	*/
	template <typename Function, typename DataType>
	class RombergIntegrator: public NumericalIntegrator<Function, DataType>
	{
		public:

		BALL_CREATE(RombergIntegrator)

		/// @name Constructors and destructor.
		//@{

		/// Default constructor
		RombergIntegrator(float epsilon=1E-5, Size nsteps=1000);
	
		/// Copy constructor
		RombergIntegrator(const RombergIntegrator& romint);

		/// Destructor
		~RombergIntegrator();

		//@}
		/// @name Assignment
		//@{

		/// Assignment operator
		const RombergIntegrator& operator = (const RombergIntegrator& romint);
		
		/// Clear method
		virtual void clear();

		/// Set the upper bound for the error we want to allow
		void setEpsilon(float eps);

		/// Set the maximum number of steps we want to use in computation
		void setMaxNumSteps(Size mns);

		//@}
		/// @name Predicates
		//@{
		
		/// Equality operator
		bool operator == (const RombergIntegrator& romint) const;

		//@}
		/// @name Accessors
		//@{
		
		/** Integrate the function numerically.
		 		@param from lower limit of the integration
				@param to upper limit of the integration
			  @return the value of the integral
		*/
		DataType integrate(DataType from, DataType to);
		

		/** Integrate the function numerically using a simple trapezoid integration.
		 		This function is intended as a helper function for the computation of
				the romberg integration, but it can be used as a regular integrator as
				well, if speed is more important than reliability.
				@param h gives the width of each step
				@param from lower limit of the integration
				@param to upper limit of the integration
				@return the value of the integral
		*/
		DataType trapezoid(DataType h, DataType from, DataType to);
		
		//@}
		
		protected:

		float epsilon_;
		Size maxNumSteps_;
		vector<DataType> result_;
	};

	template<typename Function, typename DataType>
	BALL_INLINE
	RombergIntegrator<Function, DataType>::RombergIntegrator(float eps, Size nsteps): NumericalIntegrator<Function, DataType>(), epsilon_(eps), maxNumSteps_(nsteps)
	{
		result_.reserve(maxNumSteps_ / 10);
	}

	template<typename Function, typename DataType>
	BALL_INLINE
	RombergIntegrator<Function, DataType>::RombergIntegrator(const RombergIntegrator<Function, DataType>& romint):NumericalIntegrator<Function, DataType>(romint)
	{
	}

	template<typename Function, typename DataType>
	BALL_INLINE
	RombergIntegrator<Function, DataType>::~RombergIntegrator()
	{
	}

	template<typename Function, typename DataType>
	BALL_INLINE
	const RombergIntegrator<Function, DataType>&
	RombergIntegrator<Function, DataType>::operator =
	(const RombergIntegrator<Function, DataType>& romint)
	{
		function_ = romint.function_;
		maxNumSteps_ = romint.maxNumSteps_;
		epsilon_ = romint.epsilon_;
		result_ = romint.result_;
		return *this;
	}

	template<typename Function, typename DataType>
	BALL_INLINE
	void RombergIntegrator<Function, DataType>::clear()	
	{
		// Problem: function_.clear() might not exist... function_.clear();
	}

	template<typename Function, typename DataType>
	BALL_INLINE
	void RombergIntegrator<Function, DataType>::setEpsilon(float eps)
	{
		epsilon_ = eps;
	}

	template<typename Function, typename DataType>
	BALL_INLINE
	void RombergIntegrator<Function, DataType>::setMaxNumSteps(Size nsteps)
	{
		maxNumSteps_ = nsteps;
		result_.reserve(maxNumSteps_ / 10); // we hope that we do not need more than 1/10 - th of the allowed operations
	}
	
	template<typename Function, typename DataType>
	BALL_INLINE
	bool RombergIntegrator<Function, DataType>::operator ==
	(const RombergIntegrator<Function, DataType> &romint) const
		
	{
		return ((function_ == romint.function_)
				&& (epsilon_  == romint.epsilon_ )
				&& (maxNumSteps_ == romint.maxNumSteps_)
				&& (result_      == romint.result_     ));
	}

	template<typename Function, typename DataType>
	BALL_INLINE
	DataType RombergIntegrator<Function, DataType>::trapezoid(DataType h, DataType from, DataType to)
	{
		DataType sum=0;
		DataType helper = (to - from);
		int count;
		
		Size nsteps = (Size) (sqrt((helper*helper)/(h*h)));
		for (count=1; count<nsteps-1; count++)
		{
			sum +=function_(from+(count*h));
		}

		sum+=function_(from)+function_(to);
		sum*=h;

		return sum;
	}


	template<typename Function, typename DataType>
	BALL_INLINE
	DataType RombergIntegrator<Function, DataType>::integrate
	(DataType from, DataType to)
	{
		float h = 1.;
  		result_.push_back(trapezoid(h, from, to)); // this is the zeroth approximation
		
		int i=1;
		int j=0;
		int count = 0;
		DataType dev;

		do 
		{
			result_.push_back(trapezoid(h/((float) i+1), from, to));
		
			for (j=1; j <= i; j++) 
			{
				result_.push_back(result_[(i*(i+1))/2 + (j-1)] + 1. / (pow(4, j) - 1) * (result_[(i*(i+1))/2 + j-1 - result_[((i-1)*i)/2+j-1]));
				count++;
			};
			i++;
			dev = result_[((i-2)*(i-1))/2+(i-2)] - result_[((i-1)*(i))/2+(i-1)];
		} while ( (sqrt(dev*dev) > epsilon_) && (count < maxNumSteps_));

		return (result_[((i-1)*(i))/2 + (i-1)]);
	}
} // namespace BALL
	
#endif // BALL_MATHS_ROMBERGINTEGRATOR_H