/usr/include/BALL/MATHS/vector2.h is in libball1.4-dev 1.4.3~beta1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 | // -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#ifndef BALL_MATHS_VECTOR2_H
#define BALL_MATHS_VECTOR2_H
#ifndef BALL_CONCEPT_PERSISTENCEMANAGER_H
# include <BALL/CONCEPT/persistenceManager.h>
#endif
#ifndef BALL_COMMON_EXCEPTION_H
# include <BALL/COMMON/exception.h>
#endif
#ifndef BALL_MATHS_COMMON_H
# include <BALL/MATHS/common.h>
#endif
namespace BALL
{
/** \defgroup Vector2 Two-dimensional vectors.
Representation of points and vectors in two-dimensional space:
class \link TVector2 TVector2 \endlink and class \link Vector2 Vector2 \endlink .
\ingroup Primitives
*/
//@{
template <typename T>
class TVector2;
/** @name Global binary operator functions for two dimensional vectors.
*/
//@{
/** Multiply a vector with a scalar. The symmetric case is a member of the
vector class.
*/
template <typename T>
BALL_INLINE
TVector2<T> operator * (const T& scalar, const TVector2<T>& vector);
/** Input stream.
*/
template <typename T>
std::istream& operator >> (std::istream& s, TVector2<T>& vector);
/* Output stream.
*/
template <typename T>
std::ostream& operator << (std::ostream& s, const TVector2<T>& vector);
//@}
/** Generic Two-Dimensional Vector.
*/
template <typename T>
class TVector2
: public PersistentObject
{
public:
BALL_CREATE(TVector2<T>)
/** @name Constructors and Destructors
*/
//@{
/** Default constructor.
This method creates a new TVector2 object. The two components
are initialized to <tt>(T)0</tt>.
*/
TVector2();
/** Scalar constructor.
Create a new vector with all components set
to the same <tt>value</tt>.
@param value the value of all components
*/
explicit TVector2(const T& value);
/** Detailed constructor.
Create a new TVector2 object from two variables of type <tt>T</tt>.
@param vx assigned to <tt>x</tt>
@param vy assigned to <tt>y</tt>
*/
TVector2(const T& vx, const T& vy);
/** Copy constructor.
Create a new TVector2 object from another.
@param vector the TVector2 object to be copied
*/
TVector2(const TVector2& vector);
/** Array constructor.
This constructor creates a TVector3 object from the first
two elements pointed to by <tt>ptr</tt>.
@param ptr the array to construct from
@exception NullPointer if <tt>ptr == 0</tt>
*/
TVector2(const T* ptr);
/** Destructor.
Destructs the TVector2 object. As there are no dynamic
data structures, nothing happens.
*/
virtual ~TVector2();
/** Clear method
The values are set to 0.
*/
virtual void clear();
//@}
/** @name Persistence
*/
//@{
/** Persistent writing.
Writes a TVector2 object to a persistent stream.
@param pm the persistence manager
*/
virtual void persistentWrite(PersistenceManager& pm,
const char* name = 0) const;
/** Persistent reading.
Reads a TVector2 object from a persistent stream.
@param pm the persistence manager
@exception Exception::GeneralException
*/
virtual void persistentRead(PersistenceManager& pm);
//@}
/** @name Assignment
*/
//@{
/** Assign from a scalar.
Assign <tt>value</tt> to the two vector components.
@param value the new value of the components
*/
void set(const T& value);
/** Assign the vector components.
@param vx the new x component
@param vy the new y component
*/
void set(const T& vx, const T& vy);
/** Assign from another TVector2.
@param vector the TVector2 object to assign from
*/
void set(const TVector2& vector);
/** Assignment operator.
Assign the vector components from another vector.
@param v the vector to assign from
**/
TVector2& operator = (const TVector2& v);
/** Assignment operator.
Assign a constant value to the two vector components.
@param value the constant to assign to x, y
**/
TVector2& operator = (const T& value);
/** Array assignment operator.
Assigns the first two elements of an array to the vector components.
@param ptr the array
@exception NullPointer if <tt>ptr == 0</tt>
*/
TVector2& operator = (const T* ptr);
/** Return the length of the vector.
The length of the vector is calculated as
\f$\sqrt{x^2 + y^2}\f$.
@return T, the vector length
*/
T getLength() const;
/** Return the squared length of the vector.
This method avoids the square root needed in getLength,
so this method is preferred if possible.
@return T, \f$x^2 + y^2\f$
*/
T getSquareLength() const;
/** Normalize the vector.
The vector is scaled with its length:
\f$\{x|y|z\} *= \sqrt{x^2 + y^2}\f$.
@return T, a reference to the normalized vector
@exception DivisionByZero if the length of the vector is 0
*/
TVector2& normalize();
/** Negate the vector.
Negate the two components of the vector
@return T, a reference to {\em *this} vector
*/
TVector2& negate();
/** Return a vector with all components 0.
*/
static const TVector2& getZero();
/** Return a vector with all components 1.
@return: TVector4(1, 1, 1, 1)
*/
static const TVector2& getUnit();
/** Mutable array-like access to the components.
@exception Exception::IndexOverflow if <tt>index > 1</tt>
*/
T& operator [] (Position position);
/** Constant array-like access to the components.
@exception Exception::IndexOverflow if <tt>index > 1</tt>
*/
const T& operator [] (Position position) const;
//@}
/** @name Arithmetic operators
*/
//@{
/** Positive sign.
*/
const TVector2& operator + () const;
/** Negative sign.
*/
TVector2 operator - () const;
/** Addition.
*/
TVector2 operator + (const TVector2& b) const;
/** Subtraction.
*/
TVector2 operator - (const TVector2& b) const;
/** Add a vector to this vector.
Add the components of <tt>vector</tt> to this vector.
@param vector the vector to add
@return TVector2&, {\em *this}
*/
TVector2& operator += (const TVector2& vector);
/** Subtract a vector from this vector.
@param vector the vector to subtract
@return TVector2&, {\em *this}
*/
TVector2& operator -= (const TVector2& vector);
/** Scalar product.
Return <tt>TVector2(x * scalar, y * scalar)</tt>.
The symmetric case is a global function.
@param scalar, the scalar to multiply by
@return TVector2, the scalar product of this vector and <tt>scalar</tt>
*/
TVector2 operator * (const T& scalar) const;
/** Multiply by a scalar.
Multiply all components of the vector by a <tt>scalar</tt> value.
@param scalar the to multiply by
@return TVector2&, {\em *this}
*/
TVector2& operator *= (const T& scalar);
/** Fraction of a vector.
Return <tt>TVector2(x / lambda, y / lambda)</tt>.
@param lambda the scalar value to divide by
@return TVector2&
@exception Exception::DivisionByZero if <tt>lambda == (T)0</tt>
*/
TVector2 operator / (const T& lambda) const;
/** Divide a vector by a scalar.
@param lambda the scalar value to divide by
@return TVector2&, {\em *this}
@exception Exception::DivisionByZero if <tt>lambda == (T)0</tt>
*/
TVector2& operator /= (const T& lambda);
/** Dot product.
Return the dot product of this vector and <tt>vector</tt>.
*/
T operator * (const TVector2& vector) const;
//@}
/** @name Geometric properties
*/
//@{
/** Return the distance to another vector.
*/
T getDistance(const TVector2& vector) const;
/** Return the squared distance to another vector.
*/
T getSquareDistance(const TVector2& vector) const;
//@}
/** @name Predicates
*/
//@{
/** Equality operator.
The function Maths::isEqual is used to compare the values.
\link Maths::isEqual Maths::isEqual \endlink
@return bool, <b>true</b> if all two vector components are equal, <b>false</b> otherwise
*/
bool operator == (const TVector2& vector) const;
/** Inequality operator.
The function Maths::isEqual is used to compare the values.
\link Maths::isEqual Maths::isEqual \endlink
@return bool, <b>true</b> if the two vectors differ in at least one component, <b>false</b> otherwise
*/
bool operator != (const TVector2& vector) const;
/** Zero predicate.
The function Maths::isZero is used to compare the values with zero.
\link Maths::isZero Maths::isZero \endlink
*/
bool isZero() const;
/** Orthogonality predicate.
*/
bool isOrthogonalTo(TVector2& vector) const;
//@}
/** @name Debugging and Diagnostics
*/
//@{
/** Internal state dump.
Dump the current internal state of {\em *this} to
the output ostream <b> s </b> with dumping depth <b> depth </b>.
@param s - output stream where to output the internal state of {\em *this}
@param depth - the dumping depth
*/
void dump(std::ostream& s = std::cout, Size depth = 0) const;
/** Test if instance is valid.
Always returns true.
@return bool <b>true</b>
*/
bool isValid() const;
//@}
/** @name Vector components
For easier access, the two components of the vector
are public members.
*/
//@{
/** x component of the vector
*/
T x;
/** y component of the vector
*/
T y;
//@}
private:
};
//@}
template <typename T>
TVector2<T>::TVector2()
: PersistentObject(),
x(0),
y(0)
{
}
template <typename T>
TVector2<T>::TVector2(const T& value)
: PersistentObject(),
x(value),
y(value)
{
}
template <typename T>
TVector2<T>::TVector2(const T& vx, const T& vy)
: PersistentObject(),
x(vx),
y(vy)
{
}
template <typename T>
TVector2<T>::TVector2(const TVector2& vector)
: PersistentObject(),
x(vector.x),
y(vector.y)
{
}
template <typename T>
TVector2<T>::~TVector2()
{
}
template <typename T>
BALL_INLINE
TVector2<T>::TVector2(const T* ptr)
{
if (ptr == 0)
{
throw Exception::NullPointer(__FILE__, __LINE__);
}
x = *ptr++;
y = *ptr;
}
template <typename T>
void TVector2<T>::clear()
{
x = y = (T)0;
}
template <typename T>
void TVector2<T>::persistentWrite(PersistenceManager& pm, const char* name) const
{
pm.writeObjectHeader(this, name);
pm.writePrimitive(x, "x");
pm.writePrimitive(y, "y");
pm.writeObjectTrailer(name);
}
template <typename T>
void TVector2<T>::persistentRead(PersistenceManager& pm)
{
pm.readPrimitive(x, "x");
pm.readPrimitive(y, "y");
}
template <typename T>
BALL_INLINE
void TVector2<T>::set(const T& value)
{
x = value;
y = value;
}
template <typename T>
BALL_INLINE
void TVector2<T>::set(const T& vx, const T& vy)
{
x = vx;
y = vy;
}
template <typename T>
BALL_INLINE
void TVector2<T>::set(const TVector2<T>& vector)
{
x = vector.x;
y = vector.y;
}
template <typename T>
BALL_INLINE
TVector2<T>& TVector2<T>::operator = (const TVector2<T>& vector)
{
x = vector.x;
y = vector.y;
return *this;
}
template <typename T>
BALL_INLINE
TVector2<T>& TVector2<T>::operator = (const T* ptr)
{
if (ptr == 0)
{
throw Exception::NullPointer(__FILE__, __LINE__);
}
x = *ptr++;;
y = *ptr;;
return *this;
}
template <typename T>
BALL_INLINE
TVector2<T>& TVector2<T>::operator = (const T& value)
{
x = value;
y = value;
return *this;
}
template <typename T>
BALL_INLINE
T TVector2<T>::getLength() const
{
return (T)sqrt(x * x + y * y);
}
template <typename T>
BALL_INLINE
T TVector2<T>::getSquareLength() const
{
return (T)(x * x + y * y);
}
template <typename T>
TVector2<T>& TVector2<T>::normalize()
{
T len = (T)sqrt(x * x + y * y);
if (Maths::isZero(len))
{
throw Exception::DivisionByZero(__FILE__, __LINE__);
}
x /= len;
y /= len;
return *this;
}
template <typename T>
TVector2<T>& TVector2<T>::negate()
{
x *= -1;
y *= -1;
return *this;
}
template <typename T>
BALL_INLINE
const TVector2<T>& TVector2<T>::getZero()
{
static TVector2<T> null_vector(0, 0);
return null_vector;
}
template <typename T>
BALL_INLINE
const TVector2<T>& TVector2<T>::getUnit()
{
static TVector2<T> unit_vector(1, 1);
return unit_vector;
}
template <typename T>
BALL_INLINE
T& TVector2<T>::operator [] (Position position)
{
if (position > 1)
{
throw Exception::IndexOverflow(__FILE__, __LINE__);
}
switch (position)
{
case 0: return x;
case 1:
default:
return y;
}
}
template <typename T>
BALL_INLINE
const T& TVector2<T>::operator [] (Position position) const
{
if (position > 1)
{
throw Exception::IndexOverflow(__FILE__, __LINE__);
}
switch (position)
{
case 0: return x;
case 1:
default:
return y;
}
}
template <typename T>
BALL_INLINE
const TVector2<T>& TVector2<T>::operator + () const
{
return *this;
}
template <typename T>
BALL_INLINE
TVector2<T> TVector2<T>::operator - () const
{
return TVector2<T>(-x, -y);
}
template <typename T>
BALL_INLINE
TVector2<T> TVector2<T>::operator + (const TVector2<T>& b) const
{
return TVector2<T>(x + b.x, y + b.y);
}
template <typename T>
BALL_INLINE
TVector2<T> TVector2<T>::operator - (const TVector2<T>& b) const
{
return TVector2<T>(x - b.x, y - b.y);
}
template <typename T>
BALL_INLINE
TVector2<T>& TVector2<T>::operator += (const TVector2<T>& vector)
{
x += vector.x;
y += vector.y;
return *this;
}
template <typename T>
BALL_INLINE
TVector2<T>& TVector2<T>::operator -= (const TVector2<T>& vector)
{
x -= vector.x;
y -= vector.y;
return *this;
}
template <typename T>
BALL_INLINE
TVector2<T> TVector2<T>::operator * (const T& scalar) const
{
return TVector2<T>(x * scalar, y * scalar);
}
template <typename T>
BALL_INLINE
TVector2<T>& TVector2<T>::operator *= (const T &scalar)
{
x *= scalar;
y *= scalar;
return *this;
}
template <typename T>
TVector2<T> TVector2<T>::operator / (const T& lambda) const
{
if (lambda == (T)0)
{
throw Exception::DivisionByZero(__FILE__, __LINE__);
}
return TVector2<T>(x / lambda, y / lambda);
}
template <typename T>
TVector2<T>& TVector2<T>::operator /= (const T& lambda)
{
if (lambda == (T)0)
{
throw Exception::DivisionByZero(__FILE__, __LINE__);
}
x /= lambda;
y /= lambda;
return *this;
}
template <typename T>
BALL_INLINE
T TVector2<T>::operator * (const TVector2<T>& vector) const
{
return (x * vector.x + y * vector.y);
}
template <typename T>
BALL_INLINE
T TVector2<T>::getDistance(const TVector2<T>& v) const
{
T dx = x - v.x;
T dy = y - v.y;
return (T)sqrt(dx * dx + dy * dy);
}
template <typename T>
BALL_INLINE
T TVector2<T>::getSquareDistance(const TVector2<T>& v) const
{
T dx = x - v.x;
T dy = y - v.y;
return (dx * dx + dy * dy);
}
template <typename T>
BALL_INLINE
bool TVector2<T>::operator == (const TVector2<T>& v) const
{
return (Maths::isEqual(x, v.x) && Maths::isEqual(y, v.y));
}
template <typename T>
BALL_INLINE
bool TVector2<T>::operator != (const TVector2<T>& v) const
{
return (Maths::isNotEqual(x, v.x) || Maths::isNotEqual(y, v.y));
}
template <typename T>
BALL_INLINE
bool TVector2<T>::isOrthogonalTo(TVector2<T>& v) const
{
return Maths::isZero((*this) * v);
}
template <typename T>
BALL_INLINE
bool TVector2<T>::isValid() const
{
return true;
}
template <typename T>
BALL_INLINE
bool TVector2<T>::isZero() const
{
return (Maths::isZero(x) && Maths::isZero(y));
}
template <typename T>
void TVector2<T>::dump(std::ostream& s, Size depth) const
{
BALL_DUMP_STREAM_PREFIX(s);
BALL_DUMP_HEADER(s, this, this);
BALL_DUMP_DEPTH(s, depth);
s << " (x = " << x << ", y = " << y << ")" << std::endl;
BALL_DUMP_STREAM_SUFFIX(s);
}
/** Default two-dimensional vector class.
This is the class used in BALL kernel to represent points, coordinates.
\ingroup Vector2
*/
typedef TVector2<float> Vector2;
template <typename T>
BALL_INLINE
TVector2<T> operator * (const T& scalar, const TVector2<T>& vector)
{
return TVector2<T>(scalar * vector.x, scalar * vector.y);
}
template <typename T>
std::istream& operator >> (std::istream& s, TVector2<T>& v)
{
char c;
s >> c >> v.x >> v.y >> c;
return s;
}
template <typename T>
std::ostream& operator << (std::ostream& s, const TVector2<T>& v)
{
s << "(" << v.x << ' ' << v.y << ')';
return s;
}
}// namespace BALL
#endif // BALL_MATHS_VECTOR2_H
|