This file is indexed.

/usr/include/BALL/QSAR/classificationModel.h is in libball1.4-dev 1.4.3~beta1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// 

#ifndef BALL_QSAR_CLASSIFICATIONMODEL_H
#define BALL_QSAR_CLASSIFICATIONMODEL_H

#ifndef BALL_QSAR_MODEL_H
#include <BALL/QSAR/Model.h>
#endif

#ifndef BALL_QSAR_CLASSIFICATIONVALIDATION_H
#include <BALL/QSAR/classificationValidation.h>
#endif

#ifndef BALL_QSAR_EXCEPTION_H
#include <BALL/QSAR/exception.h>
#endif


namespace BALL
{
	namespace QSAR
	{
		class BALL_EXPORT ClassificationModel
			: public Model
		{
			public:
				/** @name Constructors and Destructors
				 */
				//@{
				/** constructur,
				@param q QSAR-wrapper object, from which the data for this model should be taken */
				ClassificationModel(const QSARData& q);
				
				~ClassificationModel();

				virtual void operator=(ClassificationModel& m);
				//@}
				
				
				/** @name Attributes
				 */
				//@{
				/** a ClassificationValidation object, that is used to validate this model and that will contain the results of the validations */
				ClassificationValidation* validation;
				
				std::vector<int> getClassLabels();
				//@}
				
				
			protected:
	
				/** @name Accessors
				 */
				//@{
				/** read all different class labels from matrix Y into ClassificationModel.labels */
				void readLabels();
				
				/** the number of substances in each class of the training data */
				std::vector<int> no_substances_;
				//@}
				
				/** @name Input and Output. The following methods can be used to implement the functions saveToFile() and readFromFile() in final classes derived from this base-class 
				 */
				//@{
				void readClassInformationFromFile(std::ifstream& input, int no_classes);
				void saveClassInformationToFile(std::ofstream& out);
				//@}
				
				
				
				/** @name Feature discretization function
				 */
				//@{
				/** Interface function-definition for discretization of features.\n
				Thus, various functions that do the actual discretization can be created as members of ClassificationModel, allowing switching of the discretization technique by only (re-)setting this function-pointer.
				@param bins the number of discrete values to be created for each features 
				@param discretization_information a Eigen::MatrixXd into which the information about the applied discretization should be saved (into one column per feature). \n
				This Eigen::MatrixXd can later be used to discretize test data according to the discretization of the training data. */
				void (ClassificationModel::* discretizeFeatures)(unsigned int bins, Eigen::MatrixXd& discretization_information);
				
				/** Discretizes test data according to the given discretization of the training data.
				@param discretization_information the discretization according to which the current descriptor_matrix should be discretized. */
				void (ClassificationModel::* discretizeTestDataFeatures)(Eigen::VectorXd& compound, unsigned int bins, const Eigen::MatrixXd& discretization_information);
				
				
				/** discretizes each feature in such a way that each created bin has an equal range of values */
				void equalSpaceDiscretization(unsigned int bins, Eigen::MatrixXd& discretization_information);
				
				void equalSpaceDiscretizationTestData(Eigen::VectorXd& compound, unsigned int bins, const Eigen::MatrixXd& discretization_information);
				
				
				//@}
				
	
				/** @name Attributes
				 */
				//@{
				/** labels for the different classes */
				std::vector<int> labels_;
				//@}
				
				friend class ClassificationValidation;
				
				
				
		};
	}
}

#endif // CLASSIFICATION