/usr/include/BALL/QSAR/kernel.h is in libball1.4-dev 1.4.3~beta1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | // -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//
#ifndef BALL_QSAR_KERNEL_H
#define BALL_QSAR_KERNEL_H
#ifndef BALL_QSAR_LINEARMODEL_H
#include <BALL/QSAR/linearModel.h>
#endif
#ifndef BALL_QSAR_MODEL_H
#include <BALL/QSAR/Model.h>
#endif
#ifndef BALL_QSAR_EXCEPTION_H
#include <BALL/QSAR/exception.h>
#endif
#ifndef BALL_QSAR_REGRESSIONMODEL_H
#include <BALL/QSAR/regressionModel.h>
#endif
#include <cmath>
#include <sstream>
namespace BALL
{
namespace QSAR
{
class BALL_EXPORT Kernel
{
public:
/** @name Constructors and Destructors
*/
//@{
Kernel(Model* m, int k_type, double p1, double p2=-1);
Kernel(Model* m, String f, String g);
Kernel(Model* m, Eigen::VectorXd& w);
/** constructor for weighted distance kernel.
@param column no of column of LinearModel.training_result that is to be used as weights vector */
Kernel(Model* m, const LinearModel& lm, int column);
~Kernel();
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
//@}
/** @name Accessors
*/
//@{
/** calculates pairwise distances between all substances in Eigen::MatrixXd input and saves them to Eigen::MatrixXd output.\n
If Kernel.weights is not empty, function Kernel.calculateWeightedDistanceMatrix() is used \n
Else if: Kernel.f=="" and Kernel.g="", the distance between two substances a and b is calculated as \f$ \sum_{i=1}^m (input_{ai} * input_{bi})^p \f$, with m=\#descriptors \n
Else: distance is calculated as \f$ g(\sum_{i=1}^m f(input_{ai}, input_{bi})) \f$*/
void calculateKernelMatrix(Eigen::MatrixXd& input, Eigen::MatrixXd& output);
/** calculates pairwise distance between all substances of m1 and m2 and saves them to Eigen::MatrixXd output. \n
If Kernel.weights is not empty, function Kernel.calculateWeightedDistanceMatrix() is used \n
Esle if: Kernel.f=="" and Kernel.g="", the distance between two substances a and b is calculated as \f$ \sum_{i=1}^m (m1_{ai} * m2_{bi})^p \f$, with m=\#descriptors \n
Else: distance is calculated as \f$ g(\sum_{i=1}^m f(m1_{ai}, m2_{bi})) \f$*/
void calculateKernelMatrix(Eigen::MatrixXd& K, Eigen::MatrixXd& m1, Eigen::MatrixXd& m2, Eigen::MatrixXd& output);
/** transforms test data 'input' into the kernel-saves and saves it to matrix 'output' */
void calculateKernelVector(Eigen::MatrixXd& K,Eigen::VectorXd& m1, Eigen::MatrixXd& m2, Eigen::RowVectorXd& output);
/** grid search for the best kernel parameters.\n
Grid search is done locally around the current kernel parameter value(s).
@param opt if ==1, Model.optitimizeParameters() is used in each step of grid search, optimizing the parameter of the *Model* in addition to those of the kernel.
@param step_width the size of each step to be made
@param steps the number of steps for grid search
@param recursions number of recursions of grid search; in each recursion the step width is decreased by factor of 10 and searching is done in 20 steps around the values of the best kernel parameters determined in last recursion */
void gridSearch(double step_width, int steps, int recursions, int k, bool opt=0);
//@}
/** @name Attributes
*/
//@{
/** specifies which kind of kernel is chosen:\n
1 = polynomial kernel \n
2 = radial basis function kernel \n
3 = sigmoid kernel \n
4 = individual kernel-function \n
5 = weighted distance kernel */
int type;
/** parameters for kernel functions set by the user */
double par1, par2;
/** Equation for distance function for calculation of kernel matrix.\n
Distance of two substances a and b is calculated as \f$ dist(a,b)= g(\sum_{i=1}^m f(x1,x2)) \f$, with m=\#descriptors \n
Use "x1" and "x2" in the String, e.g. "x1*x2" */
String equation1;
/** Equation for distance function for calculation of kernel matrix.\n
Distance of two substances a and b is calculated as \f$ dist(a,b)= g(\sum_{i=1}^m f(x1,x2)) \f$, with m=\#descriptors \n
g determines what is to be done with the calculated "sum" over all elements (use "sum" in String); e.g. "sum^0.5" => euclidean distance if f=="x1*x2" */
String equation2;
//@}
protected:
/** @name Accessors
*/
//@{
void gridSearch(double step_width, int steps, bool first_rec, int k, double par1_start, double par2_start, bool opt);
/** calculates pairwise distances between all substances in Eigen::MatrixXd input, weighted by the contribution of every descriptor (as encoded in Kernel.weights), and saves them to Eigen::MatrixXd output.\n
Distance between two substances a and b is calculated as \f$ \sum_{i=1}^m w_i * (input_{ai}- input_{bi})^2 \f$, with m=\#descriptors */
void calculateWeightedKernelMatrix(Eigen::MatrixXd& input, Eigen::MatrixXd& output);
/** calculates pairwise distances between all substances of m1 and m2, weighted by the contribution of every descriptor (as encoded in Kernel.weights), and saves them to Eigen::MatrixXd output.\n
Distance between two substances a and b is calculated as \f$ \sum_{i=1}^m w_i * (m1_{ai}- m2_{bi})^2 \f$, with m=\#descriptors */
void calculateWeightedKernelMatrix(Eigen::MatrixXd& m1, Eigen::MatrixXd& m2, Eigen::MatrixXd& output);
void calculateKernelMatrix1(Eigen::MatrixXd& input, Eigen::MatrixXd& output);
void calculateKernelMatrix2(Eigen::MatrixXd& input, Eigen::MatrixXd& output);
void calculateKernelMatrix3(Eigen::MatrixXd& input, Eigen::MatrixXd& output);
void calculateKernelMatrix4(Eigen::MatrixXd& input, Eigen::MatrixXd& output);
void calculateKernelMatrix1(Eigen::MatrixXd& m1, Eigen::MatrixXd& m2, Eigen::MatrixXd& output);
void calculateKernelMatrix2(Eigen::MatrixXd& m1, Eigen::MatrixXd& m2, Eigen::MatrixXd& output);
void calculateKernelMatrix3(Eigen::MatrixXd& m1, Eigen::MatrixXd& m2, Eigen::MatrixXd& output);
void calculateKernelMatrix4(Eigen::MatrixXd& m1, Eigen::MatrixXd& m2, Eigen::MatrixXd& output);
//@}
/** @name Attributes
*/
//@{
/** pointer to the model which uses this kernel */
Model* model_;
Eigen::VectorXd weights_;
//@}
friend class FeatureSelection;
};
}
}
#endif // KERNEL
|