/usr/lib/ocaml/batteries/batArray.mli is in libbatteries-ocaml-dev 2.6.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 | # 1 "src/batArray.mliv"
(*
* BatArray - additional and modified functions for arrays.
* Copyright (C) 1996 Xavier Leroy
* 2005 Richard W.M. Jones (rich @ annexia.org)
* 2009 David Rajchenbach-Teller, LIFO, Universite d'Orleans
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version,
* with the special exception on linking described in file LICENSE.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
(** {6 Array operations}
Arrays are mutable data structures with a fixed size, which
support fast access and modification, and are used pervasively in
imperative computing. While arrays are completely supported in
OCaml, it is often a good idea to investigate persistent
alternatives, such as lists or hash maps.
This module replaces Stdlib's
{{:http://caml.inria.fr/pub/docs/manual-ocaml/libref/Array.html}Array}
module.
A variant of arrays, arrays with capabilities, is provided in
module {!BatArray.Cap}. This notion of capabilities permit the
transformation of a mutable array into a read-only or a write-only
arrays, without loss of speed and with the possibility of
distributing different capabilities to different expressions.
@author Xavier Leroy
@author Richard W.M. Jones
@author David Teller
*)
type 'a t = 'a array (** The type of arrays. *)
include BatEnum.Enumerable with type 'a enumerable = 'a t
include BatInterfaces.Mappable with type 'a mappable = 'a t
external length : 'a array -> int = "%array_length"
(** Return the length (number of elements) of the given array. *)
external get : 'a array -> int -> 'a = "%array_safe_get"
(** [Array.get a n] returns the element number [n] of array [a].
The first element has number 0.
The last element has number [Array.length a - 1].
You can also write [a.(n)] instead of [Array.get a n].
@raise Invalid_argument
if [n] is outside the range 0 to [(Array.length a - 1)]. *)
external set : 'a array -> int -> 'a -> unit = "%array_safe_set"
(** [Array.set a n x] modifies array [a] in place, replacing
element number [n] with [x].
You can also write [a.(n) <- x] instead of [Array.set a n x].
@raise Invalid_argument
if [n] is outside the range 0 to [Array.length a - 1]. *)
external make : int -> 'a -> 'a array = "caml_make_vect"
(** [Array.make n x] returns a fresh array of length [n],
initialized with [x].
All the elements of this new array are initially
physically equal to [x] (in the sense of the [==] predicate).
Consequently, if [x] is mutable, it is shared among all elements
of the array, and modifying [x] through one of the array entries
will modify all other entries at the same time.
@raise Invalid_argument if [n < 0] or [n > Sys.max_array_length].
If the value of [x] is a floating-point number, then the maximum
size is only [Sys.max_array_length / 2].*)
# 86 "src/batArray.mliv"
# 87 "src/batArray.mliv"
# 89 "src/batArray.mliv"
# 90 "src/batArray.mliv"
external create_float: int -> float array = "caml_make_float_vect"
val make_float: int -> float array
(** [Array.make_float n] returns a fresh float array of length [n],
with uninitialized data.
@since 2.3.0
*)
external create : int -> 'a -> 'a array = "caml_make_vect"
(** @deprecated [Array.create] is an alias for {!Array.make}. *)
val init : int -> (int -> 'a) -> 'a array
(** [Array.init n f] returns a fresh array of length [n],
with element number [i] initialized to the result of [f i].
In other terms, [Array.init n f] tabulates the results of [f]
applied to the integers [0] to [n-1].
@raise Invalid_argument if [n < 0] or [n > Sys.max_array_length].
If the return type of [f] is [float], then the maximum
size is only [Sys.max_array_length / 2].*)
val make_matrix : int -> int -> 'a -> 'a array array
(** [Array.make_matrix dimx dimy e] returns a two-dimensional array
(an array of arrays) with first dimension [dimx] and
second dimension [dimy]. All the elements of this new matrix
are initially physically equal to [e].
The element ([x,y]) of a matrix [m] is accessed
with the notation [m.(x).(y)].
@raise Invalid_argument if [dimx] or [dimy] is negative or
greater than [Sys.max_array_length].
If the value of [e] is a floating-point number, then the maximum
size is only [Sys.max_array_length / 2]. *)
val create_matrix : int -> int -> 'a -> 'a array array
(** @deprecated [Array.create_matrix] is an alias for {!Array.make_matrix}. *)
val append : 'a array -> 'a array -> 'a array
(** [Array.append v1 v2] returns a fresh array containing the
concatenation of the arrays [v1] and [v2]. *)
val concat : 'a array list -> 'a array
(** Same as [Array.append], but concatenates a list of arrays. *)
val sub : 'a array -> int -> int -> 'a array
(** [Array.sub a start len] returns a fresh array of length [len],
containing the elements number [start] to [start + len - 1]
of array [a].
@raise Invalid_argument if [start] and [len] do not
designate a valid subarray of [a]; that is, if
[start < 0], or [len < 0], or [start + len > Array.length a]. *)
val copy : 'a array -> 'a array
(** [Array.copy a] returns a copy of [a], that is, a fresh array
containing the same elements as [a]. *)
val fill : 'a array -> int -> int -> 'a -> unit
(** [Array.fill a ofs len x] modifies the array [a] in place,
storing [x] in elements number [ofs] to [ofs + len - 1].
@raise Invalid_argument if [ofs] and [len] do not
designate a valid subarray of [a]. *)
val blit : 'a array -> int -> 'a array -> int -> int -> unit
(** [Array.blit v1 o1 v2 o2 len] copies [len] elements
from array [v1], starting at element number [o1], to array [v2],
starting at element number [o2]. It works correctly even if
[v1] and [v2] are the same array, and the source and
destination chunks overlap.
@raise Invalid_argument if [o1] and [len] do not
designate a valid subarray of [v1], or if [o2] and [len] do not
designate a valid subarray of [v2]. *)
val to_list : 'a array -> 'a list
(** [Array.to_list a] returns the list of all the elements of [a]. *)
val of_list : 'a list -> 'a array
(** [Array.of_list l] returns a fresh array containing the elements
of [l]. *)
val max : 'a array -> 'a
(** [max a] returns the largest value in [a] as judged by
[Pervasives.compare]
@raise Invalid_argument on empty input *)
val min : 'a array -> 'a
(** [min a] returns the smallest value in [a] as judged by
[Pervasives.compare]
@raise Invalid_argument on empty input *)
val sum : int array -> int
(** [sum l] returns the sum of the integers of [l] *)
val fsum : float array -> float
(** [fsum l] returns the sum of the floats of [l] *)
val kahan_sum : float array -> float
(** [kahan_sum l] returns a numerically-accurate
sum of the floats of [l].
You should consider using Kahan summation when you really care
about very small differences in the result, while the result or
one of the intermediate sums can be very large (which usually
results in loss of precision of floating-point addition).
The worst-case rounding error is constant, instead of growing with
(the square root of) the length of the input array as with {!
fsum}. On the other hand, processing each element requires four
floating-point operations instead of one. See
{{: https://en.wikipedia.org/wiki/Kahan_summation_algorithm }
the wikipedia article} on Kahan summation for more details.
@since 2.2.0
*)
val avg : int array -> float
(** [avg l] returns the average of [l]
@since 2.1
*)
val favg : float array -> float
(** [favg l] returns the average of [l]
@since 2.1
*)
val left : 'a array -> int -> 'a array
(**[left r len] returns the array containing the [len] first
characters of [r]. If [r] contains less than [len] characters, it
returns [r].
Examples:
[Array.left [|0;1;2;3;4;5;6|] 4 = [|0;1;2;3|]]
[Array.left [|1;2;3|] 0 = [||]]
[Array.left [|1;2;3|] 10 = [|1;2;3|]]
*)
val right : 'a array -> int -> 'a array
(**[left r len] returns the array containing the [len] last characters of [r].
If [r] contains less than [len] characters, it returns [r].
Example: [Array.right [|1;2;3;4;5;6|] 4 = [|3;4;5;6|]]
*)
val head : 'a array -> int -> 'a array
(**as {!left}*)
val tail : 'a array -> int -> 'a array
(**[tail r pos] returns the array containing all but the [pos] first characters of [r]
Example: [Array.tail [|1;2;3;4;5;6|] 4 = [|5;6|]]
*)
val iter : ('a -> unit) -> 'a array -> unit
(** [Array.iter f a] applies function [f] in turn to all
the elements of [a]. It is equivalent to
[f a.(0); f a.(1); ...; f a.(Array.length a - 1); ()]. *)
val map : ('a -> 'b) -> 'a array -> 'b array
(** [Array.map f a] applies function [f] to all the elements of [a],
and builds an array with the results returned by [f]:
[[| f a.(0); f a.(1); ...; f a.(Array.length a - 1) |]]. *)
val iteri : (int -> 'a -> unit) -> 'a array -> unit
(** Same as {!Array.iter}, but the
function is applied to the index of the element as first argument,
and the element itself as second argument. *)
val mapi : (int -> 'a -> 'b) -> 'a array -> 'b array
(** Same as {!Array.map}, but the
function is applied to the index of the element as first argument,
and the element itself as second argument. *)
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b array -> 'a
(** [Array.fold_left f x a] computes
[f (... (f (f x a.(0)) a.(1)) ...) a.(n-1)],
where [n] is the length of the array [a]. *)
val fold_right : ('b -> 'a -> 'a) -> 'b array -> 'a -> 'a
(** [Array.fold_right f a x] computes
[f a.(0) (f a.(1) ( ... (f a.(n-1) x) ...))],
where [n] is the length of the array [a]. *)
val modify : ('a -> 'a) -> 'a array -> unit
(** [modify f a] replaces every element [x] of [a] with [f x]. *)
val modifyi : (int -> 'a -> 'a) -> 'a array -> unit
(** Same as {!modify}, but the function is applied to the index of
the element as the first argument, and the element itself as
the second argument. *)
val fold_lefti : ('a -> int -> 'b -> 'a) -> 'a -> 'b array -> 'a
(** As [fold_left], but with the index of the element as additional argument *)
val fold_righti : (int -> 'b -> 'a -> 'a) -> 'b array -> 'a -> 'a
(** As [fold_right], but with the index of the element as additional argument *)
val reduce : ('a -> 'a -> 'a) -> 'a array -> 'a
(** [Array.reduce f a] is [fold_left f a.(0) [|a.(1); ..; a.(n-1)|]]. This
is useful for merging a group of things that have no
reasonable default value to return if the group is empty.
@raise Invalid_argument on empty arrays. *)
val singleton : 'a -> 'a array
(** Create an array consisting of exactly one element.
@since 2.1
*)
(** {6 Sorting} *)
val sort : ('a -> 'a -> int) -> 'a array -> unit
(** Sort an array in increasing order according to a comparison
function. The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see below for a
complete specification). For example, {!Pervasives.compare} is
a suitable comparison function, provided there are no floating-point
NaN values in the data. After calling [Array.sort], the
array is sorted in place in increasing order.
[Array.sort] is guaranteed to run in constant heap space
and (at most) logarithmic stack space.
The current implementation uses Heap Sort. It runs in constant
stack space.
Specification of the comparison function:
Let [a] be the array and [cmp] the comparison function. The following
must be true for all x, y, z in a :
- [cmp x y] > 0 if and only if [cmp y x] < 0
- if [cmp x y] >= 0 and [cmp y z] >= 0 then [cmp x z] >= 0
When [Array.sort] returns, [a] contains the same elements as before,
reordered in such a way that for all i and j valid indices of [a] :
- [cmp a.(i) a.(j)] >= 0 if and only if i >= j
*)
val stable_sort : ('a -> 'a -> int) -> 'a array -> unit
(** Same as {!Array.sort}, but the sorting algorithm is stable (i.e.
elements that compare equal are kept in their original order) and
not guaranteed to run in constant heap space.
The current implementation uses Merge Sort. It uses [n/2]
words of heap space, where [n] is the length of the array.
It is usually faster than the current implementation of {!Array.sort}.
*)
val fast_sort : ('a -> 'a -> int) -> 'a array -> unit
(** Same as {!Array.sort} or {!Array.stable_sort}, whichever is faster
on typical input.
*)
val decorate_stable_sort : ('a -> 'b) -> 'a array -> 'a array
(** [decorate_stable_sort f a] returns a sorted copy of [a] such that if [f
x < f y] then [x] is earlier in the result than [y]. This
function is useful when [f] is expensive, as it only computes [f
x] once for each element in the array. See
{{:http://en.wikipedia.org/wiki/Schwartzian_transform}Schwartzian
Transform}.
It is unnecessary to have an additional comparison function as
argument, as the builtin [Pervasives.compare] is used to compare
the ['b] values. This is deemed sufficient. *)
val decorate_fast_sort : ('a -> 'b) -> 'a array -> 'a array
(** As {!Array.decorate_stable_sort}, but uses fast_sort internally. *)
val bsearch : 'a BatOrd.ord -> 'a array -> 'a ->
[ `All_lower | `All_bigger | `Just_after of int | `Empty | `At of int ]
(** [bsearch cmp arr x] finds the index of the object [x] in the array [arr],
provided [arr] is {b sorted} using [cmp]. If the array is not sorted,
the result is not specified (may raise Invalid_argument).
Complexity: O(log n) where n is the length of the array
(dichotomic search).
@return
- [`At i] if [cmp arr.(i) x = 0] (for some i)
- [`All_lower] if all elements of [arr] are lower than [x]
- [`All_bigger] if all elements of [arr] are bigger than [x]
- [`Just_after i] if [arr.(i) < x < arr.(i+1)]
- [`Empty] if the array is empty
@raise Invalid_argument if the array is found to be unsorted w.r.t [cmp]
@since 2.2.0 *)
(**{6 Operations on two arrays}*)
val iter2 : ('a -> 'b -> unit) -> 'a array -> 'b array -> unit
(** [Array.iter2 f [|a0; a1; ...; an|] [|b0; b1; ...; bn|]]
performs calls [f a0 b0; f a1 b1; ...; f an bn] in that order.
@raise Invalid_argument if the two arrays have different lengths. *)
val iter2i : (int -> 'a -> 'b -> unit) -> 'a array -> 'b array -> unit
(** [Array.iter2i f [|a0; a1; ...; an|] [|b0; b1; ...; bn|]]
performs calls [f 0 a0 b0; f 1 a1 b1; ...; f n an bn] in that
order.
@raise Invalid_argument if the two arrays have different
lengths. *)
val for_all2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> bool
(** As {!Array.for_all} but on two arrays.
@raise Invalid_argument if the two arrays have different lengths.*)
val exists2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> bool
(** As {!Array.exists} but on two arrays.
@raise Invalid_argument if the two arrays have different lengths. *)
val map2 : ('a -> 'b -> 'c) -> 'a array -> 'b array -> 'c array
(** As {!Array.map} but on two arrays.
@raise Invalid_argument if the two arrays have different lengths. *)
val cartesian_product : 'a array -> 'b array -> ('a * 'b) array
(** Cartesian product of the two arrays.
@since 2.2.0 *)
(**{6 Predicates}*)
val for_all : ('a -> bool) -> 'a array -> bool
(** [for_all p [|a0; a1; ...; an|]] checks if all elements of the
array satisfy the predicate [p]. That is, it returns [ (p a0)
&& (p a1) && ... && (p an)]. *)
val exists : ('a -> bool) -> 'a array -> bool
(** [exists p [|a0; a1; ...; an|]] checks if at least one element of
the array satisfies the predicate [p]. That is, it returns [(p
a0) || (p a1) || ... || (p an)]. *)
val find : ('a -> bool) -> 'a array -> 'a
(** [find p a] returns the first element of array [a] that
satisfies the predicate [p].
@raise Not_found if there is no value that satisfies [p] in
the array [a]. *)
val mem : 'a -> 'a array -> bool
(** [mem m a] is true if and only if [m] is equal to an element of [a]. *)
val memq : 'a -> 'a array -> bool
(** Same as {!Array.mem} but uses physical equality instead of
structural equality to compare array elements. *)
val findi : ('a -> bool) -> 'a array -> int
(** [findi p a] returns the index of the first element of array [a]
that satisfies the predicate [p].
@raise Not_found if there is no value that satisfies [p] in the
array [a]. *)
val filter : ('a -> bool) -> 'a array -> 'a array
(** [filter p a] returns all the elements of the array [a]
that satisfy the predicate [p]. The order of the elements
in the input array is preserved. *)
val filteri : (int -> 'a -> bool) -> 'a array -> 'a array
(** As [filter] but with the index passed to the predicate. *)
val filter_map : ('a -> 'b option) -> 'a array -> 'b array
(** [filter_map f e] returns an array consisting of all elements
[x] such that [f y] returns [Some x] , where [y] is an element
of [e]. *)
val find_all : ('a -> bool) -> 'a array -> 'a array
(** [find_all] is another name for {!Array.filter}. *)
val partition : ('a -> bool) -> 'a array -> 'a array * 'a array
(** [partition p a] returns a pair of arrays [(a1, a2)], where
[a1] is the array of all the elements of [a] that
satisfy the predicate [p], and [a2] is the array of all the
elements of [a] that do not satisfy [p].
The order of the elements in the input array is preserved. *)
(** {6 Array transformations} *)
val rev : 'a array -> 'a array
(** Array reversal.*)
val rev_in_place : 'a array -> unit
(** In-place array reversal. The array argument is updated. *)
(** {6 Conversions} *)
val enum : 'a array -> 'a BatEnum.t
(** Returns an enumeration of the elements of an array.
Behavior of the enumeration is undefined if the contents of the array changes afterwards.*)
val of_enum : 'a BatEnum.t -> 'a array
(** Build an array from an enumeration. *)
val backwards : 'a array -> 'a BatEnum.t
(** Returns an enumeration of the elements of an array, from last to first. *)
val of_backwards : 'a BatEnum.t -> 'a array
(** Build an array from an enumeration, with the first element of
the enumeration as the last element of the array and vice
versa. *)
(** {6 Utilities} *)
val range : 'a array -> int BatEnum.t
(** [range a] returns an enumeration of all valid indexes into the given
array. For example, [range [|2;4;6;8|] = 0--3].*)
val insert : 'a array -> 'a -> int -> 'a array
(** [insert xs x i] returns a copy of [xs] except the value [x] is
inserted in position [i] (and all later indices are shifted to the
right). *)
(** {6 Boilerplate code}*)
val print : ?first:string -> ?last:string -> ?sep:string ->
('a, 'b) BatIO.printer -> ('a t, 'b) BatIO.printer
(** Print the contents of an array, with [~first] preceeding the first
item (default: "\[|"), [~last] following the last item (default:
"|\]") and [~sep] separating items (default: "; "). A printing
function must be provided to print the items in the array.
Example: IO.to_string (Array.print Int.print) [|2;4;66|] = "[|2; 4; 66|]"
*)
val compare : 'a BatOrd.comp -> 'a array BatOrd.comp
(** [compare c] generates the lexicographical order on arrays induced
by [c]. That is, given a comparison function for the elements of
an array, this will return a comparison function for arrays of
that type. *)
val ord : 'a BatOrd.ord -> 'a array BatOrd.ord
(** Hoist an element comparison function to compare arrays of those
elements, with shorter arrays less than longer ones, and
lexicographically for arrays of the same size. This is a
different ordering than [compare], but is often faster. *)
val shuffle : ?state:Random.State.t -> 'a array -> unit
(** [shuffle ~state:rs a] randomly shuffles in place the elements of [a].
The optional random state [rs] allows to control the random
numbers being used during shuffling (for reproducibility).
Shuffling is implemented using the Fisher-Yates
algorithm and works in O(n), where n is the number
of elements of [a].
@since 2.6.0
*)
val equal : 'a BatOrd.eq -> 'a array BatOrd.eq
(** Hoist a equality test for elements to arrays. Arrays are only
equal if their lengths are the same and corresponding elements
test equal. *)
(** {6 Override modules}*)
(** The following modules replace functions defined in {!Array} with
functions behaving slightly differently but having the same
name. This is by design: the functions are meant to override the
corresponding functions of {!Array}.
*)
(** Operations on {!Array} without exceptions.*)
module Exceptionless : sig
val find : ('a -> bool) -> 'a t -> 'a option
(** [find p a] returns [Some x], where [x] is the first element of
array [a] that satisfies the predicate [p], or [None] if there
is no such element.*)
val findi : ('a -> bool) -> 'a t -> int option
(** [findi p a] returns [Some n], where [n] is the index of the
first element of array [a] that satisfies the predicate [p],
or [None] if there is no such element.*)
end
(** Operations on {!Array} with labels.
This module overrides a number of functions of {!Array} by
functions in which some arguments require labels. These labels are
there to improve readability and safety and to let you change the
order of arguments to functions. In every case, the behavior of the
function is identical to that of the corresponding function of {!Array}.
*)
module Labels : sig
val init : int -> f:(int -> 'a) -> 'a array
val create: int -> init:'a -> 'a array
val make_matrix : dimx:int -> dimy:int -> 'a -> 'a array array
val create_matrix : dimx:int -> dimy:int -> 'a -> 'a array array
val sub : 'a array -> pos:int -> len:int -> 'a array
val fill : 'a array -> pos:int -> len:int -> 'a -> unit
val blit : src:'a array -> src_pos:int -> dst:'a array ->
dst_pos:int -> len:int -> unit
val iter : f:('a -> unit) -> 'a array -> unit
val map : f:('a -> 'b) -> 'a array -> 'b array
val iteri : f:(int -> 'a -> unit) -> 'a array -> unit
val mapi : f:(int -> 'a -> 'b) -> 'a array -> 'b array
val modify : f:('a -> 'a) -> 'a array -> unit
val modifyi : f:(int -> 'a -> 'a) -> 'a array -> unit
val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b array -> 'a
val fold_right : f:('b -> 'a -> 'a) -> 'b array -> init:'a -> 'a
val sort : cmp:('a -> 'a -> int) -> 'a array -> unit
val stable_sort : cmp:('a -> 'a -> int) -> 'a array -> unit
val fast_sort : cmp:('a -> 'a -> int) -> 'a array -> unit
val iter2: f:('a -> 'b -> unit) -> 'a t -> 'b t -> unit
val exists: f:('a -> bool) -> 'a t -> bool
val for_all: f:('a -> bool) -> 'a t -> bool
val iter2i: f:( int -> 'a -> 'b -> unit) -> 'a t -> 'b t -> unit
val find: f:('a -> bool) -> 'a t -> 'a
val findi: f:('a -> bool) -> 'a t -> int
val map: f:('a -> 'b) -> 'a t -> 'b t
val mapi: f:(int -> 'a -> 'b) -> 'a t -> 'b t
val filter: f:('a -> bool) -> 'a t -> 'a t
val filter_map: f:('a -> 'b option) -> 'a t -> 'b t
module LExceptionless : sig
val find: f:('a -> bool) -> 'a t -> 'a option
val findi: f:('a -> bool) -> 'a t -> int option
end
end
(** {5 Capabilities for arrays.}
This modules provides the same set of features as {!Array}, but
with the added twist that arrays can be made read-only or
write-only. Read-only arrays may then be safely shared and
distributed.
There is no loss of performance involved.
*)
module Cap :
sig
(**
Only the capability-specific functions are documented here.
See the complete [Array] module for the documentation of other functions.
*)
type ('a, 'b) t constraint 'b = [< `Read | `Write]
(**The type of arrays with capabilities.
An [('a, [`Read | `Write])] array behaves as a regular ['a array],
while a [('a, [`Read]) array] only has read-only capabilities
and a [('a, [`Write]) array] only has write-only capabilities.*)
(**{6 Base operations}*)
external length : ('a, [> ]) t -> int = "%array_length"
external get : ('a, [> `Read]) t -> int -> 'a = "%array_safe_get"
external set : ('a, [> `Write]) t -> int -> 'a -> unit = "%array_safe_set"
(**{6 Constructors}*)
external make : int -> 'a -> ('a, _) t = "caml_make_vect"
external create : int -> 'a -> ('a, _) t = "caml_make_vect"
# 654 "src/batArray.mliv"
external make_float : int -> (float, _) t = "caml_make_float_vect"
(** [Array.make_float n] returns a fresh float array of length [n],
with uninitialized data.
@since 2.3.0 and OCaml 4.2.0
*)
external of_array : 'a array -> ('a, _ ) t = "%identity"
(** Adopt a regular array as a capability array, allowing
to decrease capabilities if necessary.
This operation involves no copying. In other words, in
[let cap = of_array a in ...], any modification in [a]
will also have effect on [cap] and reciprocally.*)
external to_array : ('a, [`Read | `Write]) t -> 'a array = "%identity"
(** Return a capability array as an array.
This operation requires both read and write permissions
on the capability array and involves no copying. In other
words, in [let a = of_array cap in ...], any modification
in [a] will also have effect on [cap] and reciprocally.*)
external read_only : ('a, [>`Read]) t -> ('a, [`Read]) t = "%identity"
(** Drop to read-only permissions.
This operation involves no copying.*)
external write_only : ('a, [>`Write]) t -> ('a, [`Write]) t = "%identity"
(** Drop to write-only permissions.
This operation involves no copying.*)
val init : int -> (int -> 'a) -> ('a, _) t
val make_matrix : int -> int -> 'a -> (('a, _)t, _) t
val create_matrix : int -> int -> 'a -> (('a, _)t, _) t
(** {6 Iterators}*)
val iter : ('a -> unit) -> ('a, [> `Read]) t -> unit
val map : ('a -> 'b) -> ('a, [>`Read]) t -> ('b, _) t
val iteri : (int -> 'a -> unit) -> ('a, [> `Read]) t -> unit
val mapi : (int -> 'a -> 'b) -> ('a, [> `Read]) t -> ('b, _) t
val modify : ('a -> 'a) -> ('a, [`Read | `Write]) t -> unit
val modifyi : (int -> 'a -> 'a) -> ('a, [`Read | `Write]) t -> unit
val fold_left : ('a -> 'b -> 'a) -> 'a -> ('b, [> `Read]) t -> 'a
val fold_right : ('b -> 'a -> 'a) -> ('b, [> `Read]) t -> 'a -> 'a
(**{6 Operations on two arrays}*)
val iter2 : ('a -> 'b -> unit) -> ('a, [> `Read]) t -> ('b, [> `Read]) t -> unit
val iter2i : (int -> 'a -> 'b -> unit) -> ('a, [> `Read]) t -> ('b, [> `Read]) t -> unit
(**{6 Predicates}*)
val for_all : ('a -> bool) -> ('a, [> `Read]) t -> bool
val exists : ('a -> bool) -> ('a, [> `Read]) t -> bool
val find : ('a -> bool) -> ('a, [> `Read]) t -> 'a
val mem : 'a -> ('a, [> `Read]) t -> bool
val memq : 'a -> ('a, [> `Read]) t -> bool
val findi : ('a -> bool) -> ('a, [> `Read]) t -> int
val filter : ('a -> bool) -> ('a, [> `Read]) t -> ('a, _) t
val filter_map : ('a -> 'b option) -> ('a, [> `Read]) t -> ('b, _) t
val find_all : ('a -> bool) -> ('a, [> `Read]) t -> ('a, _) t
val partition : ('a -> bool) -> ('a, [> `Read]) t -> ('a, _) t * ('a, _)t
(** {6 Array transformations} *)
val rev : ('a, [> `Read]) t -> ('a, _) t
val rev_in_place : ('a, [`Read | `Write]) t -> unit
val append : ('a, [> `Read]) t -> ('a, [> `Read]) t -> ('a, _) t
val concat : ('a, [> `Read]) t list -> ('a, _) t
val sub : ('a, [> `Read]) t -> int -> int -> ('a, _) t
val copy : ('a, [> `Read]) t -> 'a array
val fill : ('a, [> `Write]) t -> int -> int -> 'a -> unit
val blit : ('a, [> `Read]) t -> int -> ('a, [>`Write]) t -> int -> int -> unit
(** {6 Conversions} *)
val enum : ('a, [> `Read]) t -> 'a BatEnum.t
val of_enum : 'a BatEnum.t -> ('a, _) t
val backwards : ('a, [> `Read]) t -> 'a BatEnum.t
val of_backwards : 'a BatEnum.t -> ('a, _) t
val to_list : ('a, [> `Read]) t -> 'a list
val of_list : 'a list -> ('a, _) t
(** {6 Utilities} *)
val sort : ('a -> 'a -> int) -> ('a, [> `Read | `Write]) t -> unit
val stable_sort : ('a -> 'a -> int) -> ('a, [ `Read | `Write]) t -> unit
val fast_sort : ('a -> 'a -> int) -> ('a, [`Read | `Write]) t -> unit
(** {6 Boilerplate code}*)
val print : ?first:string -> ?last:string -> ?sep:string -> ('a BatIO.output -> 'b -> unit) -> 'a BatIO.output -> ('b, [>`Read]) t -> unit
val compare : 'a BatOrd.comp -> ('a, [> `Read]) t BatOrd.comp
val ord : 'a BatOrd.ord -> ('a, [> `Read]) t BatOrd.ord
val equal : 'a BatOrd.eq -> ('a, [> `Read]) t BatOrd.eq
(** {6 Override modules}*)
(** Operations on {!BatArray.Cap} without exceptions.*)
module Exceptionless : sig
val find : ('a -> bool) -> ('a, [> `Read]) t -> 'a option
val findi : ('a -> bool) -> ('a, [> `Read]) t -> int option
end
(** Operations on {!BatArray.Cap} with labels. *)
module Labels : sig
val init : int -> f:(int -> 'a) -> ('a, _) t
val make: int -> init:'a -> ('a, _) t
val create: int -> init:'a -> ('a, _) t
val make_matrix : dimx:int -> dimy:int -> 'a -> (('a, _)t, _) t
val create_matrix : dimx:int -> dimy:int -> 'a -> (('a, _)t, _) t
val sub : ('a, [> `Read]) t -> pos:int -> len:int -> ('a, _) t
val fill : ('a, [> `Write]) t -> pos:int -> len:int -> 'a -> unit
val blit : src:('a, [> `Read]) t -> src_pos:int -> dst:('a, [>`Write]) t ->
dst_pos:int -> len:int -> unit
val iter : f:('a -> unit) -> ('a, [> `Read]) t -> unit
val map : f:('a -> 'b) -> ('a, [>`Read]) t -> ('b, _) t
val iteri : f:(int -> 'a -> unit) -> ('a, [> `Read]) t -> unit
val mapi : f:(int -> 'a -> 'b) -> ('a, [> `Read]) t -> ('b, _) t
val modify : f:('a -> 'a) -> ('a, [`Read | `Write]) t -> unit
val modifyi : f:(int -> 'a -> 'a) -> ('a, [`Read | `Write]) t -> unit
val fold_left : f:('a -> 'b -> 'a) -> init:'a -> ('b, [> `Read]) t -> 'a
val fold_right : f:('b -> 'a -> 'a) -> ('b, [> `Read]) t -> init:'a -> 'a
val sort : cmp:('a -> 'a -> int) -> ('a, [> `Read | `Write]) t -> unit
val stable_sort : cmp:('a -> 'a -> int) -> ('a, [ `Read | `Write]) t -> unit
val fast_sort : cmp:('a -> 'a -> int) -> ('a, [`Read | `Write]) t -> unit
val iter2: f:('a -> 'b -> unit) -> ('a, [> `Read]) t -> ('b, [> `Read]) t -> unit
val iter2i: f:( int -> 'a -> 'b -> unit) -> ('a, [> `Read]) t -> ('b, [> `Read]) t -> unit
val exists: f:('a -> bool) -> ('a, [> `Read]) t -> bool
val for_all: f:('a -> bool) -> ('a, [> `Read]) t -> bool
val find: f:('a -> bool) -> ('a, [> `Read]) t -> 'a
val map: f:('a -> 'b) -> ('a, [>`Read]) t -> ('b, _) t
val mapi: f:(int -> 'a -> 'b) -> ('a, [>`Read]) t -> ('b, _) t
val filter: f:('a -> bool) -> ('a, [>`Read]) t -> ('a, _) t
val filter_map: f:('a -> 'b option) -> ('a, [>`Read]) t -> ('b, _) t
end
(**/**)
(** {6 Undocumented functions} *)
external unsafe_get : ('a, [> `Read]) t -> int -> 'a = "%array_unsafe_get"
external unsafe_set : ('a, [> `Write])t -> int -> 'a -> unit = "%array_unsafe_set"
(**/**)
end
module Incubator : sig
module Eq (T : BatOrd.Eq) : sig
type t = T.t array
val eq : T.t array BatOrd.eq
end
module Ord (T : BatOrd.Ord) : sig
type t = T.t array
val ord : T.t array BatOrd.ord
end
end
(**/**)
(** {6 Undocumented functions} *)
(* for tests *)
val is_sorted_by : ('a -> 'b) -> 'a array -> bool
(* The following is for system use only. Do not call directly. *)
external unsafe_get : 'a array -> int -> 'a = "%array_unsafe_get"
external unsafe_set : 'a array -> int -> 'a -> unit = "%array_unsafe_set"
(**/**)
|