This file is indexed.

/usr/lib/ocaml/batteries/batArray.mli is in libbatteries-ocaml-dev 2.6.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
# 1 "src/batArray.mliv"
(*
 * BatArray - additional and modified functions for arrays.
 * Copyright (C) 1996 Xavier Leroy
 *               2005 Richard W.M. Jones (rich @ annexia.org)
 *               2009 David Rajchenbach-Teller, LIFO, Universite d'Orleans
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version,
 * with the special exception on linking described in file LICENSE.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *)

(** {6 Array operations}

    Arrays are mutable data structures with a fixed size, which
    support fast access and modification, and are used pervasively in
    imperative computing. While arrays are completely supported in
    OCaml, it is often a good idea to investigate persistent
    alternatives, such as lists or hash maps.

    This module replaces Stdlib's
    {{:http://caml.inria.fr/pub/docs/manual-ocaml/libref/Array.html}Array}
    module.

    A variant of arrays, arrays with capabilities, is provided in
    module {!BatArray.Cap}. This notion of capabilities permit the
    transformation of a mutable array into a read-only or a write-only
    arrays, without loss of speed and with the possibility of
    distributing different capabilities to different expressions.

    @author Xavier Leroy
    @author Richard W.M. Jones
    @author David Teller

*)

type 'a t = 'a array (** The type of arrays. *)

include BatEnum.Enumerable with type 'a enumerable = 'a t
include BatInterfaces.Mappable with type 'a mappable = 'a t

external length : 'a array -> int = "%array_length"
(** Return the length (number of elements) of the given array. *)

external get : 'a array -> int -> 'a = "%array_safe_get"
(** [Array.get a n] returns the element number [n] of array [a].
    The first element has number 0.
    The last element has number [Array.length a - 1].
    You can also write [a.(n)] instead of [Array.get a n].

    @raise Invalid_argument
    if [n] is outside the range 0 to [(Array.length a - 1)]. *)

external set : 'a array -> int -> 'a -> unit = "%array_safe_set"
(** [Array.set a n x] modifies array [a] in place, replacing
    element number [n] with [x].
    You can also write [a.(n) <- x] instead of [Array.set a n x].

    @raise Invalid_argument
    if [n] is outside the range 0 to [Array.length a - 1]. *)

external make : int -> 'a -> 'a array = "caml_make_vect"
(** [Array.make n x] returns a fresh array of length [n],
    initialized with [x].
    All the elements of this new array are initially
    physically equal to [x] (in the sense of the [==] predicate).
    Consequently, if [x] is mutable, it is shared among all elements
    of the array, and modifying [x] through one of the array entries
    will modify all other entries at the same time.

    @raise Invalid_argument if [n < 0] or [n > Sys.max_array_length].
    If the value of [x] is a floating-point number, then the maximum
    size is only [Sys.max_array_length / 2].*)

# 86 "src/batArray.mliv"
# 87 "src/batArray.mliv"

# 89 "src/batArray.mliv"
# 90 "src/batArray.mliv"

external create_float: int -> float array = "caml_make_float_vect"
val make_float: int -> float array
(** [Array.make_float n] returns a fresh float array of length [n],
   with uninitialized data.

   @since 2.3.0
*)

external create : int -> 'a -> 'a array = "caml_make_vect"
(** @deprecated [Array.create] is an alias for {!Array.make}. *)

val init : int -> (int -> 'a) -> 'a array
(** [Array.init n f] returns a fresh array of length [n],
    with element number [i] initialized to the result of [f i].
    In other terms, [Array.init n f] tabulates the results of [f]
    applied to the integers [0] to [n-1].

    @raise Invalid_argument if [n < 0] or [n > Sys.max_array_length].
    If the return type of [f] is [float], then the maximum
    size is only [Sys.max_array_length / 2].*)

val make_matrix : int -> int -> 'a -> 'a array array
(** [Array.make_matrix dimx dimy e] returns a two-dimensional array
    (an array of arrays) with first dimension [dimx] and
    second dimension [dimy]. All the elements of this new matrix
    are initially physically equal to [e].
    The element ([x,y]) of a matrix [m] is accessed
    with the notation [m.(x).(y)].

    @raise Invalid_argument if [dimx] or [dimy] is negative or
    greater than [Sys.max_array_length].
    If the value of [e] is a floating-point number, then the maximum
    size is only [Sys.max_array_length / 2]. *)

val create_matrix : int -> int -> 'a -> 'a array array
(** @deprecated [Array.create_matrix] is an alias for {!Array.make_matrix}. *)

val append : 'a array -> 'a array -> 'a array
(** [Array.append v1 v2] returns a fresh array containing the
    concatenation of the arrays [v1] and [v2]. *)

val concat : 'a array list -> 'a array
(** Same as [Array.append], but concatenates a list of arrays. *)

val sub : 'a array -> int -> int -> 'a array
(** [Array.sub a start len] returns a fresh array of length [len],
    containing the elements number [start] to [start + len - 1]
    of array [a].

    @raise Invalid_argument if [start] and [len] do not
    designate a valid subarray of [a]; that is, if
    [start < 0], or [len < 0], or [start + len > Array.length a]. *)

val copy : 'a array -> 'a array
(** [Array.copy a] returns a copy of [a], that is, a fresh array
    containing the same elements as [a]. *)

val fill : 'a array -> int -> int -> 'a -> unit
(** [Array.fill a ofs len x] modifies the array [a] in place,
    storing [x] in elements number [ofs] to [ofs + len - 1].

    @raise Invalid_argument if [ofs] and [len] do not
    designate a valid subarray of [a]. *)

val blit : 'a array -> int -> 'a array -> int -> int -> unit
(** [Array.blit v1 o1 v2 o2 len] copies [len] elements
    from array [v1], starting at element number [o1], to array [v2],
    starting at element number [o2]. It works correctly even if
    [v1] and [v2] are the same array, and the source and
    destination chunks overlap.

    @raise Invalid_argument if [o1] and [len] do not
    designate a valid subarray of [v1], or if [o2] and [len] do not
    designate a valid subarray of [v2]. *)

val to_list : 'a array -> 'a list
(** [Array.to_list a] returns the list of all the elements of [a]. *)

val of_list : 'a list -> 'a array
(** [Array.of_list l] returns a fresh array containing the elements
    of [l]. *)

val max : 'a array -> 'a
(** [max a] returns the largest value in [a] as judged by
    [Pervasives.compare]

    @raise Invalid_argument on empty input *)

val min : 'a array -> 'a
(** [min a] returns the smallest value in [a] as judged by
    [Pervasives.compare]

    @raise Invalid_argument on empty input *)

val sum : int array -> int
(** [sum l] returns the sum of the integers of [l] *)

val fsum : float array -> float
(** [fsum l] returns the sum of the floats of [l] *)

val kahan_sum : float array -> float
(** [kahan_sum l] returns a numerically-accurate
    sum of the floats of [l].

    You should consider using Kahan summation when you really care
    about very small differences in the result, while the result or
    one of the intermediate sums can be very large (which usually
    results in loss of precision of floating-point addition).

    The worst-case rounding error is constant, instead of growing with
    (the square root of) the length of the input array as with {!
    fsum}. On the other hand, processing each element requires four
    floating-point operations instead of one. See
    {{: https://en.wikipedia.org/wiki/Kahan_summation_algorithm }
    the wikipedia article} on Kahan summation for more details.

    @since 2.2.0
*)

val avg : int array -> float
(** [avg l] returns the average of [l]

    @since 2.1
 *)

val favg : float array -> float
(** [favg l] returns the average of [l]

    @since 2.1
*)

val left : 'a array -> int -> 'a array
(**[left r len] returns the array containing the [len] first
   characters of [r]. If [r] contains less than [len] characters, it
   returns [r].

   Examples:
   [Array.left [|0;1;2;3;4;5;6|] 4 = [|0;1;2;3|]]
   [Array.left [|1;2;3|] 0 = [||]]
   [Array.left [|1;2;3|] 10 = [|1;2;3|]]
*)

val right : 'a array -> int -> 'a array
(**[left r len] returns the array containing the [len] last characters of [r].
   If [r] contains less than [len] characters, it returns [r].

   Example: [Array.right [|1;2;3;4;5;6|] 4 = [|3;4;5;6|]]
*)

val head : 'a array -> int -> 'a array
(**as {!left}*)

val tail : 'a array -> int -> 'a array
(**[tail r pos] returns the array containing all but the [pos] first characters of [r]

   Example: [Array.tail [|1;2;3;4;5;6|] 4 = [|5;6|]]
*)

val iter : ('a -> unit) -> 'a array -> unit
(** [Array.iter f a] applies function [f] in turn to all
    the elements of [a].  It is equivalent to
    [f a.(0); f a.(1); ...; f a.(Array.length a - 1); ()]. *)

val map : ('a -> 'b) -> 'a array -> 'b array
(** [Array.map f a] applies function [f] to all the elements of [a],
    and builds an array with the results returned by [f]:
    [[| f a.(0); f a.(1); ...; f a.(Array.length a - 1) |]]. *)

val iteri : (int -> 'a -> unit) -> 'a array -> unit
(** Same as {!Array.iter}, but the
    function is applied to the index of the element as first argument,
    and the element itself as second argument. *)

val mapi : (int -> 'a -> 'b) -> 'a array -> 'b array
(** Same as {!Array.map}, but the
    function is applied to the index of the element as first argument,
    and the element itself as second argument. *)

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b array -> 'a
(** [Array.fold_left f x a] computes
    [f (... (f (f x a.(0)) a.(1)) ...) a.(n-1)],
    where [n] is the length of the array [a]. *)

val fold_right : ('b -> 'a -> 'a) -> 'b array -> 'a -> 'a
(** [Array.fold_right f a x] computes
    [f a.(0) (f a.(1) ( ... (f a.(n-1) x) ...))],
    where [n] is the length of the array [a]. *)

val modify : ('a -> 'a) -> 'a array -> unit
(** [modify f a] replaces every element [x] of [a] with [f x]. *)

val modifyi : (int -> 'a -> 'a) -> 'a array -> unit
(** Same as {!modify}, but the function is applied to the index of
    the element as the first argument, and the element itself as
    the second argument. *)

val fold_lefti : ('a -> int -> 'b -> 'a) -> 'a -> 'b array -> 'a
(** As [fold_left], but with the index of the element as additional argument *)

val fold_righti : (int -> 'b -> 'a -> 'a) -> 'b array -> 'a -> 'a
(** As [fold_right], but with the index of the element as additional argument *)

val reduce : ('a -> 'a -> 'a) -> 'a array -> 'a
(** [Array.reduce f a] is [fold_left f a.(0) [|a.(1); ..; a.(n-1)|]].  This
    is useful for merging a group of things that have no
    reasonable default value to return if the group is empty.

    @raise Invalid_argument on empty arrays. *)

val singleton : 'a -> 'a array
(** Create an array consisting of exactly one element.

    @since 2.1
*)


(** {6 Sorting} *)


val sort : ('a -> 'a -> int) -> 'a array -> unit
(** Sort an array in increasing order according to a comparison
    function.  The comparison function must return 0 if its arguments
    compare as equal, a positive integer if the first is greater,
    and a negative integer if the first is smaller (see below for a
    complete specification).  For example, {!Pervasives.compare} is
    a suitable comparison function, provided there are no floating-point
    NaN values in the data.  After calling [Array.sort], the
    array is sorted in place in increasing order.
    [Array.sort] is guaranteed to run in constant heap space
    and (at most) logarithmic stack space.

    The current implementation uses Heap Sort.  It runs in constant
    stack space.

    Specification of the comparison function:
    Let [a] be the array and [cmp] the comparison function.  The following
    must be true for all x, y, z in a :
    -   [cmp x y] > 0 if and only if [cmp y x] < 0
    -   if [cmp x y] >= 0 and [cmp y z] >= 0 then [cmp x z] >= 0

    When [Array.sort] returns, [a] contains the same elements as before,
    reordered in such a way that for all i and j valid indices of [a] :
    -   [cmp a.(i) a.(j)] >= 0 if and only if i >= j
*)

val stable_sort : ('a -> 'a -> int) -> 'a array -> unit
(** Same as {!Array.sort}, but the sorting algorithm is stable (i.e.
    elements that compare equal are kept in their original order) and
    not guaranteed to run in constant heap space.

    The current implementation uses Merge Sort. It uses [n/2]
    words of heap space, where [n] is the length of the array.
    It is usually faster than the current implementation of {!Array.sort}.
*)

val fast_sort : ('a -> 'a -> int) -> 'a array -> unit
(** Same as {!Array.sort} or {!Array.stable_sort}, whichever is faster
    on typical input.
*)

val decorate_stable_sort : ('a -> 'b) -> 'a array -> 'a array
(** [decorate_stable_sort f a] returns a sorted copy of [a] such that if [f
    x < f y] then [x] is earlier in the result than [y].  This
    function is useful when [f] is expensive, as it only computes [f
    x] once for each element in the array.  See
    {{:http://en.wikipedia.org/wiki/Schwartzian_transform}Schwartzian
    Transform}.

    It is unnecessary to have an additional comparison function as
    argument, as the builtin [Pervasives.compare] is used to compare
    the ['b] values.  This is deemed sufficient. *)

val decorate_fast_sort : ('a -> 'b) -> 'a array -> 'a array
(** As {!Array.decorate_stable_sort}, but uses fast_sort internally. *)

val bsearch : 'a BatOrd.ord -> 'a array -> 'a ->
  [ `All_lower | `All_bigger | `Just_after of int | `Empty | `At of int ]
(** [bsearch cmp arr x] finds the index of the object [x] in the array [arr],
    provided [arr] is {b sorted} using [cmp]. If the array is not sorted,
    the result is not specified (may raise Invalid_argument).

    Complexity: O(log n) where n is the length of the array
    (dichotomic search).

    @return
    - [`At i] if [cmp arr.(i) x = 0] (for some i)
    - [`All_lower] if all elements of [arr] are lower than [x]
    - [`All_bigger] if all elements of [arr] are bigger than [x]
    - [`Just_after i] if [arr.(i) < x < arr.(i+1)]
    - [`Empty] if the array is empty

    @raise Invalid_argument if the array is found to be unsorted w.r.t [cmp]
    @since 2.2.0 *)

(**{6 Operations on two arrays}*)

val iter2 : ('a -> 'b -> unit) -> 'a array -> 'b array -> unit
(** [Array.iter2 f [|a0; a1; ...; an|] [|b0; b1; ...; bn|]]
    performs calls [f a0 b0; f a1 b1; ...; f an bn] in that order.

    @raise Invalid_argument if the two arrays have different lengths. *)

val iter2i : (int -> 'a -> 'b -> unit) -> 'a array -> 'b array -> unit
(** [Array.iter2i f [|a0; a1; ...; an|] [|b0; b1; ...; bn|]]
    performs calls [f 0 a0 b0; f 1 a1 b1; ...; f n an bn] in that
    order.

    @raise Invalid_argument if the two arrays have different
    lengths. *)

val for_all2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> bool
(** As {!Array.for_all} but on two arrays.

    @raise Invalid_argument if the two arrays have different lengths.*)


val exists2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> bool
(** As {!Array.exists} but on two arrays.

    @raise Invalid_argument if the two arrays have different lengths. *)

val map2 : ('a -> 'b -> 'c) -> 'a array -> 'b array -> 'c array
(** As {!Array.map} but on two arrays.

    @raise Invalid_argument if the two arrays have different lengths. *)

val cartesian_product : 'a array -> 'b array -> ('a * 'b) array
(** Cartesian product of the two arrays.
    @since 2.2.0 *)

(**{6 Predicates}*)

val for_all : ('a -> bool) -> 'a array -> bool
(** [for_all p [|a0; a1; ...; an|]] checks if all elements of the
    array satisfy the predicate [p].  That is, it returns [ (p a0)
    && (p a1) && ... && (p an)]. *)

val exists : ('a -> bool) -> 'a array -> bool
(** [exists p [|a0; a1; ...; an|]] checks if at least one element of
    the array satisfies the predicate [p].  That is, it returns [(p
    a0) || (p a1) || ... || (p an)]. *)

val find : ('a -> bool) -> 'a array -> 'a
(** [find p a] returns the first element of array [a] that
    satisfies the predicate [p].

    @raise Not_found if there is no value that satisfies [p] in
    the array [a]. *)

val mem : 'a -> 'a array -> bool
(** [mem m a] is true if and only if [m] is equal to an element of [a]. *)

val memq : 'a -> 'a array -> bool
(** Same as {!Array.mem} but uses physical equality instead of
    structural equality to compare array elements.  *)

val findi : ('a -> bool) -> 'a array -> int
(** [findi p a] returns the index of the first element of array [a]
    that satisfies the predicate [p].
    @raise Not_found if there is no value that satisfies [p] in the
    array [a].  *)

val filter : ('a -> bool) -> 'a array -> 'a array
(** [filter p a] returns all the elements of the array [a]
    that satisfy the predicate [p].  The order of the elements
    in the input array is preserved.  *)

val filteri : (int -> 'a -> bool) -> 'a array -> 'a array
(** As [filter] but with the index passed to the predicate. *)

val filter_map : ('a -> 'b option) -> 'a array -> 'b array
(** [filter_map f e] returns an array consisting of all elements
    [x] such that [f y] returns [Some x] , where [y] is an element
    of [e]. *)

val find_all : ('a -> bool) -> 'a array -> 'a array
(** [find_all] is another name for {!Array.filter}. *)

val partition : ('a -> bool) -> 'a array -> 'a array * 'a array
(** [partition p a] returns a pair of arrays [(a1, a2)], where
    [a1] is the array of all the elements of [a] that
    satisfy the predicate [p], and [a2] is the array of all the
    elements of [a] that do not satisfy [p].
    The order of the elements in the input array is preserved. *)

(** {6 Array transformations} *)

val rev : 'a array -> 'a array
(** Array reversal.*)

val rev_in_place : 'a array -> unit
(** In-place array reversal.  The array argument is updated. *)

(** {6 Conversions} *)

val enum : 'a array -> 'a BatEnum.t
(** Returns an enumeration of the elements of an array.
    Behavior of the enumeration is undefined if the contents of the array changes afterwards.*)

val of_enum : 'a BatEnum.t -> 'a array
(** Build an array from an enumeration. *)

val backwards : 'a array -> 'a BatEnum.t
(** Returns an enumeration of the elements of an array, from last to first. *)

val of_backwards : 'a BatEnum.t -> 'a array
(** Build an array from an enumeration, with the first element of
    the enumeration as the last element of the array and vice
    versa. *)

(** {6 Utilities} *)

val range : 'a array -> int BatEnum.t
(** [range a] returns an enumeration of all valid indexes into the given
    array.  For example, [range [|2;4;6;8|] = 0--3].*)

val insert : 'a array -> 'a -> int -> 'a array
(** [insert xs x i] returns a copy of [xs] except the value [x] is
    inserted in position [i] (and all later indices are shifted to the
    right). *)

(** {6 Boilerplate code}*)

val print : ?first:string -> ?last:string -> ?sep:string ->
  ('a, 'b) BatIO.printer -> ('a t, 'b) BatIO.printer
(** Print the contents of an array, with [~first] preceeding the first
    item (default: "\[|"), [~last] following the last item (default:
    "|\]") and [~sep] separating items (default: "; ").  A printing
    function must be provided to print the items in the array.

    Example: IO.to_string (Array.print Int.print) [|2;4;66|] = "[|2; 4; 66|]"
*)

val compare : 'a BatOrd.comp -> 'a array BatOrd.comp
(** [compare c] generates the lexicographical order on arrays induced
    by [c]. That is, given a comparison function for the elements of
    an array, this will return a comparison function for arrays of
    that type.  *)

val ord : 'a BatOrd.ord -> 'a array BatOrd.ord
(** Hoist an element comparison function to compare arrays of those
    elements, with shorter arrays less than longer ones, and
    lexicographically for arrays of the same size.  This is a
    different ordering than [compare], but is often faster. *)

val shuffle : ?state:Random.State.t -> 'a array -> unit
(** [shuffle ~state:rs a] randomly shuffles in place the elements of [a].
    The optional random state [rs] allows to control the random
    numbers being used during shuffling (for reproducibility).

    Shuffling is implemented using the Fisher-Yates
    algorithm and works in O(n), where n is the number
    of elements of [a].

    @since 2.6.0
*)

val equal : 'a BatOrd.eq -> 'a array BatOrd.eq
(** Hoist a equality test for elements to arrays.  Arrays are only
    equal if their lengths are the same and corresponding elements
    test equal. *)

(** {6 Override modules}*)

(** The following modules replace functions defined in {!Array} with
    functions behaving slightly differently but having the same
    name. This is by design: the functions are meant to override the
    corresponding functions of {!Array}.
*)

(** Operations on {!Array} without exceptions.*)
module Exceptionless : sig

  val find : ('a -> bool) -> 'a t -> 'a option
  (** [find p a] returns [Some x], where [x] is the first element of
    array [a] that satisfies the predicate [p], or [None] if there
    is no such element.*)

  val findi : ('a -> bool) -> 'a t -> int option
    (** [findi p a] returns [Some n], where [n] is the index of the
        first element of array [a] that satisfies the predicate [p],
        or [None] if there is no such element.*)
end

(** Operations on {!Array} with labels.

    This module overrides a number of functions of {!Array} by
    functions in which some arguments require labels. These labels are
    there to improve readability and safety and to let you change the
    order of arguments to functions. In every case, the behavior of the
    function is identical to that of the corresponding function of {!Array}.
*)
module Labels : sig
  val init :  int -> f:(int -> 'a) -> 'a array
  val create: int -> init:'a -> 'a array
  val make_matrix :   dimx:int -> dimy:int -> 'a -> 'a array array
  val create_matrix : dimx:int -> dimy:int -> 'a -> 'a array array
  val sub :  'a array -> pos:int -> len:int -> 'a array
  val fill : 'a array -> pos:int -> len:int -> 'a -> unit
  val blit : src:'a array -> src_pos:int -> dst:'a array ->
    dst_pos:int -> len:int -> unit
  val iter :       f:('a -> unit) -> 'a array -> unit
  val map :        f:('a -> 'b) -> 'a array -> 'b array
  val iteri :      f:(int -> 'a -> unit) -> 'a array -> unit
  val mapi :       f:(int -> 'a -> 'b) -> 'a array -> 'b array
  val modify :     f:('a -> 'a) -> 'a array -> unit
  val modifyi :    f:(int -> 'a -> 'a) -> 'a array -> unit
  val fold_left :  f:('a -> 'b -> 'a) -> init:'a -> 'b array -> 'a
  val fold_right : f:('b -> 'a -> 'a) -> 'b array -> init:'a -> 'a
  val sort :        cmp:('a -> 'a -> int) -> 'a array -> unit
  val stable_sort : cmp:('a -> 'a -> int) -> 'a array -> unit
  val fast_sort :   cmp:('a -> 'a -> int) -> 'a array -> unit
  val iter2:      f:('a -> 'b -> unit) -> 'a t -> 'b t -> unit
  val exists:     f:('a -> bool) -> 'a t -> bool
  val for_all:    f:('a -> bool) -> 'a t -> bool
  val iter2i:     f:( int -> 'a -> 'b -> unit) -> 'a t -> 'b t -> unit
  val find:       f:('a -> bool) -> 'a t -> 'a
  val findi:      f:('a -> bool) -> 'a t -> int
  val map:        f:('a -> 'b) -> 'a t -> 'b t
  val mapi:       f:(int -> 'a -> 'b) -> 'a t -> 'b t
  val filter:     f:('a -> bool) -> 'a t -> 'a t
  val filter_map: f:('a -> 'b option) -> 'a t -> 'b t
  module LExceptionless : sig
    val find:       f:('a -> bool) -> 'a t -> 'a option
    val findi:      f:('a -> bool) -> 'a t -> int option
  end
end


(** {5 Capabilities for arrays.}

    This modules provides the same set of features as {!Array}, but
    with the added twist that arrays can be made read-only or
    write-only.  Read-only arrays may then be safely shared and
    distributed.

    There is no loss of performance involved.
*)
module Cap :
sig
  (**
     Only the capability-specific functions are documented here.
     See the complete [Array] module for the documentation of other functions.
  *)

  type ('a, 'b) t constraint 'b = [< `Read | `Write]
  (**The type of arrays with capabilities.
     An [('a, [`Read | `Write])] array behaves as a regular ['a array],
     while a [('a, [`Read]) array] only has read-only capabilities
     and a [('a, [`Write]) array] only has write-only capabilities.*)

  (**{6 Base operations}*)

  external length : ('a, [> ]) t -> int = "%array_length"
  external get : ('a, [> `Read]) t -> int -> 'a = "%array_safe_get"
  external set : ('a, [> `Write]) t -> int -> 'a -> unit = "%array_safe_set"

  (**{6 Constructors}*)

  external make : int -> 'a -> ('a, _) t = "caml_make_vect"
  external create : int -> 'a -> ('a, _) t = "caml_make_vect"

# 654 "src/batArray.mliv"
  external make_float : int -> (float, _) t = "caml_make_float_vect"
(** [Array.make_float n] returns a fresh float array of length [n],
    with uninitialized data.

    @since 2.3.0 and OCaml 4.2.0
 *)

  external of_array  : 'a array -> ('a, _ ) t = "%identity"
  (** Adopt a regular array as a capability array, allowing
    to decrease capabilities if necessary.

    This operation involves no copying. In other words, in
    [let cap = of_array a in ...], any modification in [a]
    will also have effect on [cap] and reciprocally.*)

  external to_array  : ('a, [`Read | `Write]) t -> 'a array = "%identity"
  (** Return a capability array as an array.

    This operation requires both read and write permissions
    on the capability array and involves no copying. In other
    words, in [let a = of_array cap in ...], any modification
    in [a] will also have effect on [cap] and reciprocally.*)

  external read_only :  ('a, [>`Read])  t -> ('a, [`Read])  t = "%identity"
  (** Drop to read-only permissions.

    This operation involves no copying.*)

  external write_only : ('a, [>`Write]) t -> ('a, [`Write]) t = "%identity"
  (** Drop to write-only permissions.

    This operation involves no copying.*)

  val init : int -> (int -> 'a) -> ('a, _) t
  val make_matrix : int -> int -> 'a -> (('a, _)t, _) t
  val create_matrix : int -> int -> 'a ->  (('a, _)t, _) t

  (** {6 Iterators}*)

  val iter : ('a -> unit) -> ('a, [> `Read]) t -> unit
  val map : ('a -> 'b) -> ('a, [>`Read]) t -> ('b, _) t
  val iteri : (int -> 'a -> unit) -> ('a, [> `Read]) t -> unit
  val mapi : (int -> 'a -> 'b) -> ('a, [> `Read]) t -> ('b, _) t
  val modify : ('a -> 'a) -> ('a, [`Read | `Write]) t -> unit
  val modifyi : (int -> 'a -> 'a) -> ('a, [`Read | `Write]) t -> unit
  val fold_left : ('a -> 'b -> 'a) -> 'a -> ('b, [> `Read]) t -> 'a
  val fold_right : ('b -> 'a -> 'a) -> ('b, [> `Read]) t -> 'a -> 'a

  (**{6 Operations on two arrays}*)

  val iter2 : ('a -> 'b -> unit) -> ('a, [> `Read]) t -> ('b, [> `Read]) t -> unit
  val iter2i : (int -> 'a -> 'b -> unit) -> ('a, [> `Read]) t -> ('b, [> `Read]) t -> unit

  (**{6 Predicates}*)

  val for_all : ('a -> bool) -> ('a, [> `Read]) t -> bool
  val exists : ('a -> bool) -> ('a, [> `Read]) t -> bool
  val find : ('a -> bool) -> ('a, [> `Read]) t -> 'a
  val mem : 'a -> ('a, [> `Read]) t -> bool
  val memq : 'a -> ('a, [> `Read]) t -> bool
  val findi : ('a -> bool) -> ('a, [> `Read]) t -> int
  val filter : ('a -> bool) -> ('a, [> `Read]) t -> ('a, _) t
  val filter_map : ('a -> 'b option) -> ('a, [> `Read]) t -> ('b, _) t
  val find_all : ('a -> bool) -> ('a, [> `Read]) t -> ('a, _) t
  val partition : ('a -> bool) -> ('a, [> `Read]) t -> ('a, _) t * ('a, _)t

  (** {6 Array transformations} *)

  val rev : ('a, [> `Read]) t -> ('a, _) t
  val rev_in_place : ('a, [`Read | `Write]) t -> unit
  val append : ('a, [> `Read]) t ->  ('a, [> `Read]) t -> ('a, _) t
  val concat : ('a, [> `Read]) t list -> ('a, _) t
  val sub : ('a, [> `Read]) t -> int -> int -> ('a, _) t
  val copy : ('a, [> `Read]) t -> 'a array
  val fill : ('a, [> `Write]) t -> int -> int -> 'a -> unit
  val blit : ('a, [> `Read]) t -> int -> ('a, [>`Write]) t -> int -> int -> unit

  (** {6 Conversions} *)

  val enum : ('a, [> `Read]) t -> 'a BatEnum.t
  val of_enum : 'a BatEnum.t -> ('a, _) t
  val backwards : ('a, [> `Read]) t -> 'a BatEnum.t
  val of_backwards : 'a BatEnum.t -> ('a, _) t
  val to_list : ('a, [> `Read]) t -> 'a list
  val of_list : 'a list -> ('a, _) t

  (** {6 Utilities} *)

  val sort : ('a -> 'a -> int) -> ('a, [> `Read | `Write]) t -> unit
  val stable_sort : ('a -> 'a -> int) -> ('a, [ `Read | `Write]) t -> unit
  val fast_sort : ('a -> 'a -> int) -> ('a, [`Read | `Write]) t -> unit

  (** {6 Boilerplate code}*)

  val print : ?first:string -> ?last:string -> ?sep:string -> ('a BatIO.output -> 'b -> unit) ->  'a BatIO.output -> ('b, [>`Read]) t -> unit

  val compare : 'a BatOrd.comp -> ('a, [> `Read]) t BatOrd.comp
  val ord : 'a BatOrd.ord -> ('a, [> `Read]) t BatOrd.ord
  val equal : 'a BatOrd.eq -> ('a, [> `Read]) t BatOrd.eq

  (** {6 Override modules}*)

  (** Operations on {!BatArray.Cap} without exceptions.*)
  module Exceptionless : sig
    val find : ('a -> bool) -> ('a, [> `Read]) t -> 'a option
    val findi : ('a -> bool) -> ('a, [> `Read]) t -> int option
  end

  (** Operations on {!BatArray.Cap} with labels. *)
  module Labels : sig
    val init : int -> f:(int -> 'a) -> ('a, _) t
    val make: int -> init:'a -> ('a, _) t
    val create: int -> init:'a -> ('a, _) t
    val make_matrix : dimx:int -> dimy:int -> 'a -> (('a, _)t, _) t
    val create_matrix : dimx:int -> dimy:int -> 'a -> (('a, _)t, _) t
    val sub : ('a, [> `Read]) t -> pos:int -> len:int -> ('a, _) t
    val fill : ('a, [> `Write]) t -> pos:int -> len:int -> 'a -> unit
    val blit : src:('a, [> `Read]) t -> src_pos:int -> dst:('a, [>`Write]) t ->
      dst_pos:int -> len:int -> unit
    val iter : f:('a -> unit) -> ('a, [> `Read]) t -> unit
    val map : f:('a -> 'b) -> ('a, [>`Read]) t -> ('b, _) t
    val iteri : f:(int -> 'a -> unit) -> ('a, [> `Read]) t -> unit
    val mapi : f:(int -> 'a -> 'b) -> ('a, [> `Read]) t -> ('b, _) t
    val modify : f:('a -> 'a) -> ('a, [`Read | `Write]) t -> unit
    val modifyi : f:(int -> 'a -> 'a) -> ('a, [`Read | `Write]) t -> unit
    val fold_left : f:('a -> 'b -> 'a) -> init:'a ->  ('b, [> `Read]) t -> 'a
    val fold_right : f:('b -> 'a -> 'a) -> ('b, [> `Read]) t -> init:'a -> 'a
    val sort : cmp:('a -> 'a -> int) -> ('a, [> `Read | `Write]) t -> unit
    val stable_sort : cmp:('a -> 'a -> int) -> ('a, [ `Read | `Write]) t -> unit
    val fast_sort : cmp:('a -> 'a -> int) -> ('a, [`Read | `Write]) t -> unit
    val iter2:      f:('a -> 'b -> unit) -> ('a, [> `Read]) t -> ('b, [> `Read]) t -> unit
    val iter2i:     f:( int -> 'a -> 'b -> unit) -> ('a, [> `Read]) t -> ('b, [> `Read]) t -> unit
    val exists:     f:('a -> bool) -> ('a, [> `Read]) t -> bool
    val for_all:    f:('a -> bool) -> ('a, [> `Read]) t -> bool
    val find:       f:('a -> bool) -> ('a, [> `Read]) t -> 'a
    val map:        f:('a -> 'b) -> ('a, [>`Read]) t -> ('b, _) t
    val mapi:       f:(int -> 'a -> 'b) -> ('a, [>`Read]) t -> ('b, _) t
    val filter:     f:('a -> bool) -> ('a, [>`Read]) t -> ('a, _) t
    val filter_map: f:('a -> 'b option) -> ('a, [>`Read]) t -> ('b, _) t
  end
  (**/**)
  (** {6 Undocumented functions} *)

  external unsafe_get : ('a, [> `Read]) t -> int -> 'a = "%array_unsafe_get"
  external unsafe_set : ('a, [> `Write])t -> int -> 'a -> unit = "%array_unsafe_set"

  (**/**)
end

module Incubator : sig
  module Eq (T : BatOrd.Eq) : sig
    type t = T.t array
    val eq : T.t array BatOrd.eq
  end

  module Ord (T : BatOrd.Ord) : sig
    type t = T.t array
    val ord : T.t array BatOrd.ord
  end
end


(**/**)
(** {6 Undocumented functions} *)

(* for tests *)
val is_sorted_by : ('a -> 'b) -> 'a array -> bool

(* The following is for system use only. Do not call directly. *)

external unsafe_get : 'a array -> int -> 'a = "%array_unsafe_get"
external unsafe_set : 'a array -> int -> 'a -> unit = "%array_unsafe_set"

(**/**)