This file is indexed.

/usr/lib/ocaml/batteries/batBigarray.mli is in libbatteries-ocaml-dev 2.6.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
# 1 "src/batBigarray.mliv"
(*
 * BatBigarray - additional and modified functions for big arrays.
 * Copyright (C) 2000 Michel Serrano
 *               2000 Xavier Leroy
 *               2008 David Teller, LIFO, Universite d'Orleans
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version,
 * with the special exception on linking described in file LICENSE.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *)

(** Additional and modified functions for big arrays.
*)

(** Large, multi-dimensional, numerical arrays.

    This module implements multi-dimensional arrays of integers and
    floating-point numbers, thereafter referred to as ``big arrays''.
    The implementation allows efficient sharing of large numerical
    arrays between OCaml code and C or Fortran numerical libraries.

    Concerning the naming conventions, users of this module are encouraged
    to do [open Bigarray] in their source, then refer to array types and
    operations via short dot notation, e.g. [Array1.t] or [Array2.sub].

    Big arrays support all the OCaml ad-hoc polymorphic operations:
    - comparisons ([=], [<>], [<=], etc, as well as {!Pervasives.compare});
    - hashing (module [Hash]);
    - and structured input-output ({!Pervasives.output_value}
     and {!Pervasives.input_value}, as well as the functions from the
     {!Marshal} module).


    This module replaces Stdlib's
    {{:http://caml.inria.fr/pub/docs/manual-ocaml/libref/Bigarray.html}Bigarray}
    module.

    @author Michel Serrano (Base library)
    @author Xavier Leroy (Base library)
    @author David Teller
*)

(** {6 Element kinds} *)

(** Big arrays can contain elements of the following kinds:
    - IEEE single precision (32 bits) floating-point numbers
    ({!Bigarray.float32_elt}),
    - IEEE double precision (64 bits) floating-point numbers
    ({!Bigarray.float64_elt}),
    - IEEE single precision (2 * 32 bits) floating-point complex numbers
    ({!Bigarray.complex32_elt}),
    - IEEE double precision (2 * 64 bits) floating-point complex numbers
    ({!Bigarray.complex64_elt}),
    - 8-bit integers (signed or unsigned)
    ({!Bigarray.int8_signed_elt} or {!Bigarray.int8_unsigned_elt}),
    - 16-bit integers (signed or unsigned)
    ({!Bigarray.int16_signed_elt} or {!Bigarray.int16_unsigned_elt}),
    - OCaml integers (signed, 31 bits on 32-bit architectures,
    63 bits on 64-bit architectures) ({!Bigarray.int_elt}),
    - 32-bit signed integer ({!Bigarray.int32_elt}),
    - 64-bit signed integers ({!Bigarray.int64_elt}),
    - platform-native signed integers (32 bits on 32-bit architectures,
    64 bits on 64-bit architectures) ({!Bigarray.nativeint_elt}).

    Each element kind is represented at the type level by one
    of the abstract types defined below.
*)

(* The V>=4.2 lines are not necessary for typing,
   but they are necessary for the compatibility test in batteries_compattest.ml
   which are of the form:
     module _ = (BatBigarray : module type of Bigarray)
   because of the somewhat strange interpretation of strengthening in (module type of),
   we need to explicitly equate each type with its constructor *)
type float32_elt = Bigarray.float32_elt
 = Float32_elt
type float64_elt = Bigarray.float64_elt
 = Float64_elt
type complex32_elt = Bigarray.complex32_elt
 = Complex32_elt
type complex64_elt = Bigarray.complex64_elt
 = Complex64_elt
type int8_signed_elt = Bigarray.int8_signed_elt
 = Int8_signed_elt
type int8_unsigned_elt = Bigarray.int8_unsigned_elt
 = Int8_unsigned_elt
type int16_signed_elt = Bigarray.int16_signed_elt
 = Int16_signed_elt
type int16_unsigned_elt = Bigarray.int16_unsigned_elt
 = Int16_unsigned_elt
type int_elt = Bigarray.int_elt
 = Int_elt
type int32_elt = Bigarray.int32_elt
 = Int32_elt
type int64_elt = Bigarray.int64_elt
 = Int64_elt
type nativeint_elt = Bigarray.nativeint_elt
 = Nativeint_elt

type ('a, 'b) kind = ('a,'b) Bigarray.kind
           = Float32 : (float, float32_elt) kind
           | Float64 : (float, float64_elt) kind
           | Int8_signed : (int, int8_signed_elt) kind
           | Int8_unsigned : (int, int8_unsigned_elt) kind
           | Int16_signed : (int, int16_signed_elt) kind
           | Int16_unsigned : (int, int16_unsigned_elt) kind
           | Int32 : (int32, int32_elt) kind
           | Int64 : (int64, int64_elt) kind
           | Int : (int, int_elt) kind
           | Nativeint : (nativeint, nativeint_elt) kind
           | Complex32 : (Complex.t, complex32_elt) kind
           | Complex64 : (Complex.t, complex64_elt) kind
           | Char : (char, int8_unsigned_elt) kind (**)
(** To each element kind is associated an OCaml type, which is
    the type of OCaml values that can be stored in the big array
    or read back from it.  This type is not necessarily the same
    as the type of the array elements proper: for instance,
    a big array whose elements are of kind [float32_elt] contains
    32-bit single precision floats, but reading or writing one of
    its elements from OCaml uses the OCaml type [float], which is
    64-bit double precision floats.

# 135 "src/batBigarray.mliv"
# 136 "src/batBigarray.mliv"
# 137 "src/batBigarray.mliv"
# 138 "src/batBigarray.mliv"
# 139 "src/batBigarray.mliv"
# 140 "src/batBigarray.mliv"
   The GADT type [('a, 'b) kind] captures this association
   of an OCaml type ['a] for values read or written in the big array,
   and of an element kind ['b] which represents the actual contents
   of the big array. Its constructors list all possible associations
   of OCaml types with element kinds, and are re-exported below for
   backward-compatibility reasons.

   Using a generalized algebraic datatype (GADT) here allows to write
   well-typed polymorphic functions whose return type depend on the
   argument type, such as:
{[
  let zero : type a b. (a, b) kind -> a = function
    | Float32 -> 0.0 | Complex32 -> Complex.zero
    | Float64 -> 0.0 | Complex64 -> Complex.zero
    | Int8_signed -> 0 | Int8_unsigned -> 0
    | Int16_signed -> 0 | Int16_unsigned -> 0
    | Int32 -> 0l | Int64 -> 0L
    | Int -> 0 | Nativeint -> 0n
    | Char -> '\000'
]}
*)


val float32 : (float, float32_elt) kind
(** See {!Bigarray.char}. *)

val float64 : (float, float64_elt) kind
(** See {!Bigarray.char}. *)

val complex32 : (Complex.t, complex32_elt) kind
(** See {!Bigarray.char}. *)

val complex64 : (Complex.t, complex64_elt) kind
(** See {!Bigarray.char}. *)

val int8_signed : (int, int8_signed_elt) kind
(** See {!Bigarray.char}. *)

val int8_unsigned : (int, int8_unsigned_elt) kind
(** See {!Bigarray.char}. *)

val int16_signed : (int, int16_signed_elt) kind
(** See {!Bigarray.char}. *)

val int16_unsigned : (int, int16_unsigned_elt) kind
(** See {!Bigarray.char}. *)

val int : (int, int_elt) kind
(** See {!Bigarray.char}. *)

val int32 : (int32, int32_elt) kind
(** See {!Bigarray.char}. *)

val int64 : (int64, int64_elt) kind
(** See {!Bigarray.char}. *)

val nativeint : (nativeint, nativeint_elt) kind
(** See {!Bigarray.char}. *)

val char : (char, int8_unsigned_elt) kind
(** As shown by the types of the values above,
    big arrays of kind [float32_elt] and [float64_elt] are
    accessed using the OCaml type [float].  Big arrays of complex kinds
    [complex32_elt], [complex64_elt] are accessed with the OCaml type
    {!Complex.t}.  Big arrays of
    integer kinds are accessed using the smallest OCaml integer
    type large enough to represent the array elements:
    [int] for 8- and 16-bit integer bigarrays, as well as OCaml-integer
    bigarrays; [int32] for 32-bit integer bigarrays; [int64]
    for 64-bit integer bigarrays; and [nativeint] for
    platform-native integer bigarrays.  Finally, big arrays of
    kind [int8_unsigned_elt] can also be accessed as arrays of
    characters instead of arrays of small integers, by using
    the kind value [char] instead of [int8_unsigned]. *)

val kind_size_in_bytes : ('a, 'b) kind -> int
(** [kind_size_in_bytes k] is the number of bytes used to store
   an element of type [k].

   @since 2.5.0 *)

(** {6 Array layouts} *)

type c_layout = Bigarray.c_layout
 = C_layout_typ (**)
(** See {!Bigarray.fortran_layout}.*)

type fortran_layout = Bigarray.fortran_layout
 = Fortran_layout_typ (**)
(** To facilitate interoperability with existing C and Fortran code,
    this library supports two different memory layouts for big arrays,
    one compatible with the C conventions,
    the other compatible with the Fortran conventions.

    In the C-style layout, array indices start at 0, and
    multi-dimensional arrays are laid out in row-major format.
    That is, for a two-dimensional array, all elements of
    row 0 are contiguous in memory, followed by all elements of
    row 1, etc.  In other terms, the array elements at [(x,y)]
    and [(x, y+1)] are adjacent in memory.

    In the Fortran-style layout, array indices start at 1, and
    multi-dimensional arrays are laid out in column-major format.
    That is, for a two-dimensional array, all elements of
    column 0 are contiguous in memory, followed by all elements of
    column 1, etc.  In other terms, the array elements at [(x,y)]
    and [(x+1, y)] are adjacent in memory.

    Each layout style is identified at the type level by the
    abstract types {!Bigarray.c_layout} and [fortran_layout] respectively. *)

type 'a layout = 'a Bigarray.layout
           = C_layout : c_layout layout
           | Fortran_layout : fortran_layout layout (**)
(** The type ['a layout] represents one of the two supported
    memory layouts: C-style if ['a] is {!Bigarray.c_layout}, Fortran-style
    if ['a] is {!Bigarray.fortran_layout}. *)


(** {7 Supported layouts}

    The abstract values [c_layout] and [fortran_layout] represent
    the two supported layouts at the level of values.
*)

val c_layout : c_layout layout
val fortran_layout : fortran_layout layout




(**Generic arrays (of arbitrarily many dimensions) *)
module Genarray :
sig
  type ('a, 'b, 'c) t = ('a, 'b, 'c) Bigarray.Genarray.t
  (** The type [Genarray.t] is the type of big arrays with variable
      numbers of dimensions.  Any number of dimensions between 1 and 16
      is supported.

      The three type parameters to [Genarray.t] identify the array element
      kind and layout, as follows:
      - the first parameter, ['a], is the OCaml type for accessing array
      elements ([float], [int], [int32], [int64], [nativeint]);
      - the second parameter, ['b], is the actual kind of array elements
      ([float32_elt], [float64_elt], [int8_signed_elt], [int8_unsigned_elt],
      etc);
      - the third parameter, ['c], identifies the array layout
      ([c_layout] or [fortran_layout]).

      For instance, [(float, float32_elt, fortran_layout) Genarray.t]
      is the type of generic big arrays containing 32-bit floats
      in Fortran layout; reads and writes in this array use the
      OCaml type [float]. *)

  external create: ('a, 'b) kind -> 'c layout -> int array -> ('a, 'b, 'c) t
    = "caml_ba_create"
  (** [Genarray.create kind layout dimensions] returns a new big array
      whose element kind is determined by the parameter [kind] (one of
      [float32], [float64], [int8_signed], etc) and whose layout is
      determined by the parameter [layout] (one of [c_layout] or
      [fortran_layout]).  The [dimensions] parameter is an array of
      integers that indicate the size of the big array in each dimension.
      The length of [dimensions] determines the number of dimensions
      of the bigarray.

      For instance, [Genarray.create int32 c_layout [|4;6;8|]]
      returns a fresh big array of 32-bit integers, in C layout,
      having three dimensions, the three dimensions being 4, 6 and 8
      respectively.

      Big arrays returned by [Genarray.create] are not initialized:
      the initial values of array elements is unspecified.

      @raise Invalid_argument if the number of dimensions
      is not in the range 1 to 16 inclusive, or if one of the dimensions
      is negative. *)

  external num_dims: ('a, 'b, 'c) t -> int = "caml_ba_num_dims"
  (** Return the number of dimensions of the given big array. *)

  val dims : ('a, 'b, 'c) t -> int array
  (** [Genarray.dims a] returns all dimensions of the big array [a],
    as an array of integers of length [Genarray.num_dims a]. *)

  external nth_dim: ('a, 'b, 'c) t -> int -> int = "caml_ba_dim"
  (** [Genarray.nth_dim a n] returns the [n]-th dimension of the
    big array [a].  The first dimension corresponds to [n = 0];
    the second dimension corresponds to [n = 1]; the last dimension,
    to [n = Genarray.num_dims a - 1].
    @raise Invalid_argument if [n] is less than 0 or greater or equal than
    [Genarray.num_dims a]. *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given big array. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given big array. *)

  external change_layout: ('a, 'b, 'c) t -> 'd layout -> ('a, 'b, 'd) t
      = "caml_ba_change_layout"
  (** [Genarray.change_layout a layout] returns a bigarray with the
      specified [layout], sharing the data with [a] (and hence having
      the same dimensions as [a]). No copying of elements is involved: the
      new array and the original array share the same storage space.
      The dimensions are reversed, such that [get v [| a; b |]] in
      C layout becomes [get v [| b+1; a+1 |]] in Fortran layout.

      @since 2.5.3 and OCaml 4.04.0
  *)

  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is the number of elements in [a] multiplied
    by [a]'s {!kind_size_in_bytes}.

   @since 2.5.0 *)

  external get: ('a, 'b, 'c) t -> int array -> 'a = "caml_ba_get_generic"
  (** Read an element of a generic big array.
    [Genarray.get a [|i1; ...; iN|]] returns the element of [a]
    whose coordinates are [i1] in the first dimension, [i2] in
    the second dimension, ..., [iN] in the [N]-th dimension.

    If [a] has C layout, the coordinates must be greater or equal than 0
    and strictly less than the corresponding dimensions of [a].
    If [a] has Fortran layout, the coordinates must be greater or equal
    than 1 and less or equal than the corresponding dimensions of [a].
    @raise Invalid_argument if the array [a] does not have exactly [N]
    dimensions, or if the coordinates are outside the array bounds.

    If [N > 3], alternate syntax is provided: you can write
    [a.{i1, i2, ..., iN}] instead of [Genarray.get a [|i1; ...; iN|]].
    (The syntax [a.{...}] with one, two or three coordinates is
    reserved for accessing one-, two- and three-dimensional arrays
    as described below.) *)

  external set: ('a, 'b, 'c) t -> int array -> 'a -> unit
    = "caml_ba_set_generic"
  (** Assign an element of a generic big array.
    [Genarray.set a [|i1; ...; iN|] v] stores the value [v] in the
    element of [a] whose coordinates are [i1] in the first dimension,
    [i2] in the second dimension, ..., [iN] in the [N]-th dimension.

    The array [a] must have exactly [N] dimensions, and all coordinates
    must lie inside the array bounds, as described for [Genarray.get];
    @raise Invalid_argument otherwise.

    If [N > 3], alternate syntax is provided: you can write
    [a.{i1, i2, ..., iN} <- v] instead of
    [Genarray.set a [|i1; ...; iN|] v].
    (The syntax [a.{...} <- v] with one, two or three coordinates is
    reserved for updating one-, two- and three-dimensional arrays
    as described below.) *)

  external sub_left: ('a, 'b, c_layout) t -> int -> int -> ('a, 'b, c_layout) t
    = "caml_ba_sub"
  (** Extract a sub-array of the given big array by restricting the
    first (left-most) dimension.  [Genarray.sub_left a ofs len]
    returns a big array with the same number of dimensions as [a],
    and the same dimensions as [a], except the first dimension,
    which corresponds to the interval [[ofs ... ofs + len - 1]]
    of the first dimension of [a].  No copying of elements is
    involved: the sub-array and the original array share the same
    storage space.  In other terms, the element at coordinates
    [[|i1; ...; iN|]] of the sub-array is identical to the
    element at coordinates [[|i1+ofs; ...; iN|]] of the original
    array [a].

    [Genarray.sub_left] applies only to big arrays in C layout.
    @raise Invalid_argument if [ofs] and [len] do not designate
    a valid sub-array of [a], that is, if [ofs < 0], or [len < 0],
    or [ofs + len > Genarray.nth_dim a 0]. *)

  external sub_right:
    ('a, 'b, fortran_layout) t -> int -> int -> ('a, 'b, fortran_layout) t
    = "caml_ba_sub"
  (** Extract a sub-array of the given big array by restricting the
    last (right-most) dimension.  [Genarray.sub_right a ofs len]
    returns a big array with the same number of dimensions as [a],
    and the same dimensions as [a], except the last dimension,
    which corresponds to the interval [[ofs ... ofs + len - 1]]
    of the last dimension of [a].  No copying of elements is
    involved: the sub-array and the original array share the same
    storage space.  In other terms, the element at coordinates
    [[|i1; ...; iN|]] of the sub-array is identical to the
    element at coordinates [[|i1; ...; iN+ofs|]] of the original
    array [a].

    [Genarray.sub_right] applies only to big arrays in Fortran layout.
    @raise Invalid_argument if [ofs] and [len] do not designate
    a valid sub-array of [a], that is, if [ofs < 1], or [len < 0],
    or [ofs + len > Genarray.nth_dim a (Genarray.num_dims a - 1)]. *)

  external slice_left:
    ('a, 'b, c_layout) t -> int array -> ('a, 'b, c_layout) t
    = "caml_ba_slice"
  (** Extract a sub-array of lower dimension from the given big array
    by fixing one or several of the first (left-most) coordinates.
    [Genarray.slice_left a [|i1; ... ; iM|]] returns the ``slice''
    of [a] obtained by setting the first [M] coordinates to
    [i1], ..., [iM].  If [a] has [N] dimensions, the slice has
    dimension [N - M], and the element at coordinates
    [[|j1; ...; j(N-M)|]] in the slice is identical to the element
    at coordinates [[|i1; ...; iM; j1; ...; j(N-M)|]] in the original
    array [a].  No copying of elements is involved: the slice and
    the original array share the same storage space.

    [Genarray.slice_left] applies only to big arrays in C layout.
    @raise Invalid_argument if [M >= N], or if [[|i1; ... ; iM|]]
    is outside the bounds of [a]. *)

  external slice_right:
    ('a, 'b, fortran_layout) t -> int array -> ('a, 'b, fortran_layout) t
    = "caml_ba_slice"
  (** Extract a sub-array of lower dimension from the given big array
    by fixing one or several of the last (right-most) coordinates.
    [Genarray.slice_right a [|i1; ... ; iM|]] returns the ``slice''
    of [a] obtained by setting the last [M] coordinates to
    [i1], ..., [iM].  If [a] has [N] dimensions, the slice has
    dimension [N - M], and the element at coordinates
    [[|j1; ...; j(N-M)|]] in the slice is identical to the element
    at coordinates [[|j1; ...; j(N-M); i1; ...; iM|]] in the original
    array [a].  No copying of elements is involved: the slice and
    the original array share the same storage space.

    [Genarray.slice_right] applies only to big arrays in Fortran layout.
    @raise Invalid_argument if [M >= N], or if [[|i1; ... ; iM|]]
    is outside the bounds of [a]. *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit
    = "caml_ba_blit"
  (** Copy all elements of a big array in another big array.
    [Genarray.blit src dst] copies all elements of [src] into
    [dst].  Both arrays [src] and [dst] must have the same number of
    dimensions and equal dimensions.  Copying a sub-array of [src]
    to a sub-array of [dst] can be achieved by applying [Genarray.blit]
    to sub-array or slices of [src] and [dst]. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Set all elements of a big array to a given value.
    [Genarray.fill a v] stores the value [v] in all elements of
    the big array [a].  Setting only some elements of [a] to [v]
    can be achieved by applying [Genarray.fill] to a sub-array
    or a slice of [a]. *)

  val map_file:
    Unix.file_descr -> ?pos:int64 -> ('a, 'b) kind -> 'c layout ->
    bool -> int array -> ('a, 'b, 'c) t
  (** Memory mapping of a file as a big array.
    [Genarray.map_file fd kind layout shared dims]
    returns a big array of kind [kind], layout [layout],
    and dimensions as specified in [dims].  The data contained in
    this big array are the contents of the file referred to by
    the file descriptor [fd] (as opened previously with
    [Unix.openfile], for example).  The optional [pos] parameter
    is the byte offset in the file of the data being mapped;
    it default to 0 (map from the beginning of the file).

    If [shared] is [true], all modifications performed on the array
    are reflected in the file.  This requires that [fd] be opened
    with write permissions.  If [shared] is [false], modifications
    performed on the array are done in memory only, using
    copy-on-write of the modified pages; the underlying file is not
    affected.

    [Genarray.map_file] is much more efficient than reading
    the whole file in a big array, modifying that big array,
    and writing it afterwards.

    To adjust automatically the dimensions of the big array to
    the actual size of the file, the major dimension (that is,
    the first dimension for an array with C layout, and the last
    dimension for an array with Fortran layout) can be given as
    [-1].  [Genarray.map_file] then determines the major dimension
    from the size of the file.  The file must contain an integral
    number of sub-arrays as determined by the non-major dimensions,
    @raise Failure otherwise.

    If all dimensions of the big array are given, the file size is
    matched against the size of the big array.  If the file is larger
    than the big array, only the initial portion of the file is
    mapped to the big array.  If the file is smaller than the big
    array, the file is automatically grown to the size of the big array.
    This requires write permissions on [fd]. *)

  val iter : ('a -> unit) -> ('a, 'b, 'c) t -> unit
  (** [iter f a] applies function [f] in turn to all
    the elements of [a].  *)

  val iteri : ((int, [`Read]) BatArray.Cap.t -> 'a -> unit) -> ('a, 'b, 'c) t -> unit
  (** Same as {!iter}, but the function is applied to the index of
      the element as the first argument, and the element itself as
      the second argument. *)

  val modify : ('a -> 'a) -> ('a, 'b, 'c) t -> unit
  (** [modify f a] changes each element [x] in [a] to [f x]
      in-place. *)

  val modifyi : ((int, [`Read]) BatArray.Cap.t -> 'a -> 'a) -> ('a, 'b, 'c) t -> unit
  (** Same as {!modify}, but the function is applied to the index of
      the coordinates as the first argument, and the element itself
      as the second argument. *)

  val enum : ('a, 'b, 'c) t -> 'a BatEnum.t
  (** [enum e] returns an enumeration on the elements of [e].
    The order of enumeration is unspecified.*)

  val map :
    ('a -> 'b) ->
    ('b, 'c) Bigarray.kind -> ('a, 'd, 'e) t -> ('b, 'c, 'e) t
  (** [map f kind a] applies function [f] to all the elements of [a],
      and builds a {!Bigarray.t} of kind [kind] with the results
      returned by [f]. *)

  val mapi :
    ((int, [`Read]) BatArray.Cap.t -> 'a -> 'b) ->
    ('b, 'c) Bigarray.kind -> ('a, 'd, 'e) t -> ('b, 'c, 'e) t
    (** Same as {!map}, but the function is applied to the index of the
        coordinates as the first argument, and the element itself as the
        second argument. *)


end

(** {6 One-dimensional arrays} *)

(** One-dimensional arrays. The [Array1] structure provides operations
    similar to those of
    {!Bigarray.Genarray}, but specialized to the case of one-dimensional arrays.
    (The [Array2] and [Array3] structures below provide operations
    specialized for two- and three-dimensional arrays.)
    Statically knowing the number of dimensions of the array allows
    faster operations, and more precise static type-checking. *)
module Array1 : sig
  type ('a, 'b, 'c) t = ('a, 'b, 'c) Bigarray.Array1. t
  (** The type of one-dimensional big arrays whose elements have
      OCaml type ['a], representation kind ['b], and memory layout ['c]. *)

  val create: ('a, 'b) kind -> 'c layout -> int -> ('a, 'b, 'c) t
  (** [Array1.create kind layout dim] returns a new bigarray of
      one dimension, whose size is [dim].  [kind] and [layout]
      determine the array element kind and the array layout
      as described for [Genarray.create]. *)

# 584 "src/batBigarray.mliv"
  external dim: ('a, 'b, 'c) t -> int = "%caml_ba_dim_1"
  (** Return the size (dimension) of the given one-dimensional
      big array. *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given big array. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given big array. *)

  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is the number of elements in [a] multiplied
    by [a]'s {!kind_size_in_bytes}.

   @since 2.5.0 *)

  external get: ('a, 'b, 'c) t -> int -> 'a = "%caml_ba_ref_1"
  (** [Array1.get a x], or alternatively [a.{x}],
      returns the element of [a] at index [x].
      [x] must be greater or equal than [0] and strictly less than
      [Array1.dim a] if [a] has C layout.  If [a] has Fortran layout,
      [x] must be greater or equal than [1] and less or equal than
      [Array1.dim a].
      @raise Invalid_argument otherwise. *)

  external set: ('a, 'b, 'c) t -> int -> 'a -> unit = "%caml_ba_set_1"
  (** [Array1.set a x v], also written [a.{x} <- v],
      stores the value [v] at index [x] in [a].
      [x] must be inside the bounds of [a] as described in
      {!Bigarray.Array1.get};
      @raise Invalid_argument otherwise. *)

  external sub: ('a, 'b, 'c) t -> int -> int -> ('a, 'b, 'c) t
    = "caml_ba_sub"
  (** Extract a sub-array of the given one-dimensional big array.
      See [Genarray.sub_left] for more details. *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit
    = "caml_ba_blit"
  (** Copy the first big array to the second big array.
      See [Genarray.blit] for more details. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Fill the given big array with the given value.
      See [Genarray.fill] for more details. *)

  val of_array: ('a, 'b) kind -> 'c layout -> 'a array -> ('a, 'b, 'c) t
  (** Build a one-dimensional big array initialized from the
      given array.  *)

  val map_file: Unix.file_descr -> ?pos:int64 -> ('a, 'b) kind -> 'c layout ->
    bool -> int -> ('a, 'b, 'c) t
  (** Memory mapping of a file as a one-dimensional big array.
      See {!Bigarray.Genarray.map_file} for more details. *)

  val enum : ('a, 'b, 'c) t -> 'a BatEnum.t
  (** [Array1.enum e] returns an enumeration on the elements of [e].
      Contrarily to the multi-dimensional case, order of elements is
      specified: elements are in sequential order, from smaller to
      larger indices. *)

  val of_enum : ('a, 'b) kind -> 'c layout -> 'a BatEnum.t -> ('a, 'b, 'c) t
  (** [Array1.of_enum kind layout enum] returns a new one-dimensional
      big array of kind [kind] and layout [layout], with elements taken
      from the enumeration [enum] in order.

      @since 2.1
  *)

  val map :
    ('a -> 'b) ->
    ('b, 'c) Bigarray.kind -> ('a, 'd, 'e) t -> ('b, 'c, 'e) t
  (** [Array1.map f a] applies function [f] to all the elements of [a],
      and builds a {!Bigarray.Array1.t} with the results returned by [f]. *)

  val mapi :
    (int -> 'a -> 'b) ->
    ('b, 'c) Bigarray.kind -> ('a, 'd, 'e) t -> ('b, 'c, 'e) t
  (** Same as {!Bigarray.Array1.map}, but the
    function is applied to the index of the element as the first argument,
    and the element itself as the second argument. *)

  val modify : ('a -> 'a) -> ('a, 'b, 'c) t -> unit
  (** [modify f a] changes each element [x] in [a] to [f x]
      in-place. *)

  val modifyi : (int -> 'a -> 'a) -> ('a, 'b, 'c) t -> unit
  (** Same as {!Bigarray.Array1.modify}, but the function is applied
      to the index of the element as the first argument, and the
      element itself as the second argument. *)

  val to_array : ('a, 'b, 'c) t -> 'a array
  (** Build a one-dimensional array initialized from the
    given big array.  *)


  (**{6 Unsafe operations}

     In case of doubt, don't use them.*)

  external unsafe_get: ('a, 'b, 'c) t -> int -> 'a = "%caml_ba_unsafe_ref_1"
  (** Like {!Bigarray.Array1.get}, but bounds checking is not always performed.
      Use with caution and only when the program logic guarantees that
      the access is within bounds. *)

  external unsafe_set: ('a, 'b, 'c) t -> int -> 'a -> unit
    = "%caml_ba_unsafe_set_1"
    (** Like {!Bigarray.Array1.set}, but bounds checking is not always performed.
        Use with caution and only when the program logic guarantees that
        the access is within bounds. *)


end


(** {6 Two-dimensional arrays} *)

(** Two-dimensional arrays. The [Array2] structure provides operations
    similar to those of {!Bigarray.Genarray}, but specialized to the
    case of two-dimensional arrays. *)
module Array2 :
sig
  type ('a, 'b, 'c) t = ('a, 'b, 'c) Bigarray.Array2. t
  (** The type of two-dimensional big arrays whose elements have
      OCaml type ['a], representation kind ['b], and memory layout ['c]. *)

  val create: ('a, 'b) kind ->  'c layout -> int -> int -> ('a, 'b, 'c) t
  (** [Array2.create kind layout dim1 dim2] returns a new bigarray of
      two dimension, whose size is [dim1] in the first dimension
      and [dim2] in the second dimension.  [kind] and [layout]
      determine the array element kind and the array layout
      as described for {!Bigarray.Genarray.create}. *)

# 718 "src/batBigarray.mliv"
  external dim1: ('a, 'b, 'c) t -> int = "%caml_ba_dim_1"
  (** Return the first dimension of the given two-dimensional big array. *)

# 722 "src/batBigarray.mliv"
  external dim2: ('a, 'b, 'c) t -> int = "%caml_ba_dim_2"
  (** Return the second dimension of the given two-dimensional big array. *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given big array. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given big array. *)

  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is the number of elements in [a] multiplied
    by [a]'s {!kind_size_in_bytes}.

   @since 2.5.0 *)

  external get: ('a, 'b, 'c) t -> int -> int -> 'a = "%caml_ba_ref_2"
  (** [Array2.get a x y], also written [a.{x,y}],
      returns the element of [a] at coordinates ([x], [y]).
      [x] and [y] must be within the bounds
      of [a], as described for {!Bigarray.Genarray.get};
      @raise Invalid_argument otherwise. *)

  external set: ('a, 'b, 'c) t -> int -> int -> 'a -> unit = "%caml_ba_set_2"
  (** [Array2.set a x y v], or alternatively [a.{x,y} <- v],
      stores the value [v] at coordinates ([x], [y]) in [a].
      [x] and [y] must be within the bounds of [a],
      as described for {!Bigarray.Genarray.set};
      @raise Invalid_argument otherwise. *)

  external sub_left: ('a, 'b, c_layout) t -> int -> int -> ('a, 'b, c_layout) t
    = "caml_ba_sub"
  (** Extract a two-dimensional sub-array of the given two-dimensional
      big array by restricting the first dimension.
      See {!Bigarray.Genarray.sub_left} for more details.
      [Array2.sub_left] applies only to arrays with C layout. *)

  external sub_right:
    ('a, 'b, fortran_layout) t -> int -> int -> ('a, 'b, fortran_layout) t
    = "caml_ba_sub"
  (** Extract a two-dimensional sub-array of the given two-dimensional
      big array by restricting the second dimension.
      See {!Bigarray.Genarray.sub_right} for more details.
      [Array2.sub_right] applies only to arrays with Fortran layout. *)

  val slice_left: ('a, 'b, c_layout) t -> int -> ('a, 'b, c_layout) Array1.t
  (** Extract a row (one-dimensional slice) of the given two-dimensional
      big array.  The integer parameter is the index of the row to
      extract.  See {!Bigarray.Genarray.slice_left} for more details.
      [Array2.slice_left] applies only to arrays with C layout. *)

  val slice_right:
    ('a, 'b, fortran_layout) t -> int -> ('a, 'b, fortran_layout) Array1.t
  (** Extract a column (one-dimensional slice) of the given
      two-dimensional big array.  The integer parameter is the
      index of the column to extract.  See {!Bigarray.Genarray.slice_right}
      for more details.  [Array2.slice_right] applies only to arrays
      with Fortran layout. *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit
    = "caml_ba_blit"
  (** Copy the first big array to the second big array.
      See {!Bigarray.Genarray.blit} for more details. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Fill the given big array with the given value.
      See {!Bigarray.Genarray.fill} for more details. *)

  val of_array: ('a, 'b) kind -> 'c layout -> 'a array array -> ('a, 'b, 'c) t
  (** Build a two-dimensional big array initialized from the
      given array of arrays.  *)

  val map_file: Unix.file_descr -> ?pos:int64 -> ('a, 'b) kind -> 'c layout ->
    bool -> int -> int -> ('a, 'b, 'c) t
  (** Memory mapping of a file as a two-dimensional big array.
      See {!Bigarray.Genarray.map_file} for more details. *)


  val enum : ('a, 'b, 'c) t -> 'a BatEnum.t
  (** [enum e] returns an enumeration on the elements of [e].
    The order of enumeration is unspecified.*)

  val map :
    ('a -> 'b) ->
    ('b, 'c) Bigarray.kind -> ('a, 'd, 'e) t -> ('b, 'c, 'e) t
  (** [Array2.map f a] applies function [f] to all the elements of [a],
      and builds a {!Bigarray.Array2.t} with the results returned by [f]. *)

  val mapij :
    (int -> int -> 'a -> 'b) ->
    ('b, 'c) Bigarray.kind -> ('a, 'd, 'e) t -> ('b, 'c, 'e) t
  (** Same as {!Bigarray.Array2.map}, but the
      function is applied to the index of the element as the first two
      arguments, and the element itself as the third argument. *)

  val modify : ('a -> 'a) -> ('a, 'b, 'c) t -> unit
  (** [modify f a] changes each element [x] in [a] to [f x]
      in-place. *)

  val modifyij : (int -> int -> 'a -> 'a) -> ('a, 'b, 'c) t -> unit
  (** Same as {!Bigarray.Array2.modify}, but the function is applied
      to the index of the element as the first two arguments, and the
      element itself as the third argument. *)

  val to_array : ('a, 'b, 'c) t -> 'a array array
  (** Build a two-dimensional array initialized from the
      given big array.  *)

  (**{6 Unsafe operations}

     In case of doubt, don't use them.*)

  external unsafe_get: ('a, 'b, 'c) t -> int -> int -> 'a
    = "%caml_ba_unsafe_ref_2"
  (** Like {!Bigarray.Array2.get}, but bounds checking is not always
      performed. *)

  external unsafe_set: ('a, 'b, 'c) t -> int -> int -> 'a -> unit
    = "%caml_ba_unsafe_set_2"
    (** Like {!Bigarray.Array2.set}, but bounds checking is not always
        performed. *)


end

(** {6 Three-dimensional arrays} *)

(** Three-dimensional arrays. The [Array3] structure provides operations
    similar to those of {!Bigarray.Genarray}, but specialized to the case
    of three-dimensional arrays. *)
module Array3 :
sig
  type ('a, 'b, 'c) t = ('a, 'b, 'c) Bigarray.Array3. t
  (** The type of three-dimensional big arrays whose elements have
      OCaml type ['a], representation kind ['b], and memory layout ['c]. *)

  val create: ('a, 'b) kind -> 'c layout -> int -> int -> int -> ('a, 'b, 'c) t
  (** [Array3.create kind layout dim1 dim2 dim3] returns a new bigarray of
      three dimension, whose size is [dim1] in the first dimension,
      [dim2] in the second dimension, and [dim3] in the third.
      [kind] and [layout] determine the array element kind and
      the array layout as described for {!Bigarray.Genarray.create}. *)

# 865 "src/batBigarray.mliv"
  external dim1: ('a, 'b, 'c) t -> int = "%caml_ba_dim_1"
  (** Return the first dimension of the given three-dimensional big array. *)

# 869 "src/batBigarray.mliv"
  external dim2: ('a, 'b, 'c) t -> int = "%caml_ba_dim_2"
  (** Return the second dimension of the given three-dimensional big array. *)

# 873 "src/batBigarray.mliv"
  external dim3: ('a, 'b, 'c) t -> int = "%caml_ba_dim_3"
  (** Return the third dimension of the given three-dimensional big array. *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given big array. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given big array. *)

  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is the number of elements in [a] multiplied
    by [a]'s {!kind_size_in_bytes}.

   @since 2.5.0 *)

  external get: ('a, 'b, 'c) t -> int -> int -> int -> 'a = "%caml_ba_ref_3"
  (** [Array3.get a x y z], also written [a.{x,y,z}],
      returns the element of [a] at coordinates ([x], [y], [z]).
      [x], [y] and [z] must be within the bounds of [a],
      as described for {!Bigarray.Genarray.get};
      @raise Invalid_argument otherwise. *)

  external set: ('a, 'b, 'c) t -> int -> int -> int -> 'a -> unit
    = "%caml_ba_set_3"
  (** [Array3.set a x y v], or alternatively [a.{x,y,z} <- v],
      stores the value [v] at coordinates ([x], [y], [z]) in [a].
      [x], [y] and [z] must be within the bounds of [a],
      as described for {!Bigarray.Genarray.set};
      @raise Invalid_argument otherwise. *)

  external sub_left: ('a, 'b, c_layout) t -> int -> int -> ('a, 'b, c_layout) t
    = "caml_ba_sub"
  (** Extract a three-dimensional sub-array of the given
      three-dimensional big array by restricting the first dimension.
      See {!Bigarray.Genarray.sub_left} for more details.  [Array3.sub_left]
      applies only to arrays with C layout. *)

  external sub_right:
    ('a, 'b, fortran_layout) t -> int -> int -> ('a, 'b, fortran_layout) t
    = "caml_ba_sub"
  (** Extract a three-dimensional sub-array of the given
      three-dimensional big array by restricting the second dimension.
      See {!Bigarray.Genarray.sub_right} for more details.  [Array3.sub_right]
      applies only to arrays with Fortran layout. *)

  val slice_left_1:
    ('a, 'b, c_layout) t -> int -> int -> ('a, 'b, c_layout) Array1.t
  (** Extract a one-dimensional slice of the given three-dimensional
      big array by fixing the first two coordinates.
      The integer parameters are the coordinates of the slice to
      extract.  See {!Bigarray.Genarray.slice_left} for more details.
      [Array3.slice_left_1] applies only to arrays with C layout. *)

  val slice_right_1:
    ('a, 'b, fortran_layout) t ->
    int -> int -> ('a, 'b, fortran_layout) Array1.t
  (** Extract a one-dimensional slice of the given three-dimensional
      big array by fixing the last two coordinates.
      The integer parameters are the coordinates of the slice to
      extract.  See {!Bigarray.Genarray.slice_right} for more details.
      [Array3.slice_right_1] applies only to arrays with Fortran
      layout. *)

  val slice_left_2: ('a, 'b, c_layout) t -> int -> ('a, 'b, c_layout) Array2.t
  (** Extract a  two-dimensional slice of the given three-dimensional
      big array by fixing the first coordinate.
      The integer parameter is the first coordinate of the slice to
      extract.  See {!Bigarray.Genarray.slice_left} for more details.
      [Array3.slice_left_2] applies only to arrays with C layout. *)

  val slice_right_2:
    ('a, 'b, fortran_layout) t -> int -> ('a, 'b, fortran_layout) Array2.t
  (** Extract a two-dimensional slice of the given
      three-dimensional big array by fixing the last coordinate.
      The integer parameter is the coordinate of the slice
      to extract.  See {!Bigarray.Genarray.slice_right} for more details.
      [Array3.slice_right_2] applies only to arrays with Fortran
      layout. *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit
    = "caml_ba_blit"
  (** Copy the first big array to the second big array.
      See {!Bigarray.Genarray.blit} for more details. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Fill the given big array with the given value.
      See {!Bigarray.Genarray.fill} for more details. *)

  val of_array:
    ('a, 'b) kind -> 'c layout -> 'a array array array -> ('a, 'b, 'c) t
  (** Build a three-dimensional big array initialized from the
      given array of arrays of arrays.  *)

  val map_file: Unix.file_descr -> ?pos:int64 -> ('a, 'b) kind -> 'c layout ->
    bool -> int -> int -> int -> ('a, 'b, 'c) t
  (** Memory mapping of a file as a three-dimensional big array.
      See {!Bigarray.Genarray.map_file} for more details. *)

  val enum : ('a, 'b, 'c) t -> 'a BatEnum.t
  (** [enum e] returns an enumeration on the elements of [e].
    The order of enumeration is unspecified.*)

  val map :
    ('a -> 'b) ->
    ('b, 'c) Bigarray.kind -> ('a, 'd, 'e) t -> ('b, 'c, 'e) t
  (** [Array3.map f a] applies function [f] to all the elements of [a],
      and builds a {!Bigarray.Array3.t} with the results returned by [f]. *)

  val mapijk :
    (int -> int -> int -> 'a -> 'b) ->
    ('b, 'c) Bigarray.kind -> ('a, 'd, 'e) t -> ('b, 'c, 'e) t
  (** Same as {!Bigarray.Array3.map}, but the
      function is applied to the index of the element as the first three
      arguments, and the element itself as the fourth argument. *)

  val modify : ('a -> 'a) -> ('a, 'b, 'c) t -> unit
  (** [modify f a] changes each element [x] in [a] to [f x]
      in-place. *)

  val modifyijk : (int -> int -> int -> 'a -> 'a) -> ('a, 'b, 'c) t -> unit
  (** Same as {!Bigarray.Array3.modify}, but the function is applied
      to the index of the coordinates as the first three arguments, and the
      element itself as the fourth argument. *)

  val to_array : ('a, 'b, 'c) t -> 'a array array array
  (** Build a three-dimensional array initialized from the
      given big array.  *)

  (**{6 Unsafe operations}

     In case of doubt, don't use them.*)

  external unsafe_get: ('a, 'b, 'c) t -> int -> int -> int -> 'a
    = "%caml_ba_unsafe_ref_3"
  (** Like {!Bigarray.Array3.get}, but bounds checking is not always
      performed. *)

  external unsafe_set: ('a, 'b, 'c) t -> int -> int -> int -> 'a -> unit
    = "%caml_ba_unsafe_set_3"
    (** Like {!Bigarray.Array3.set}, but bounds checking is not always
        performed. *)


end

(** {6 Coercions between generic big arrays and fixed-dimension big arrays} *)

external genarray_of_array1 :
  ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.t = "%identity"
(** Return the generic big array corresponding to the given one-dimensional
    big array. *)

external genarray_of_array2 :
  ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.t = "%identity"
(** Return the generic big array corresponding to the given two-dimensional
    big array. *)

external genarray_of_array3 :
  ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.t = "%identity"
(** Return the generic big array corresponding to the given three-dimensional
    big array. *)

val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.t
(** Return the one-dimensional big array corresponding to the given
    generic big array.  @raise Invalid_argument if the generic big array
    does not have exactly one dimension. *)

val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.t
(** Return the two-dimensional big array corresponding to the given
    generic big array.  @raise Invalid_argument if the generic big array
    does not have exactly two dimensions. *)

val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.t
(** Return the three-dimensional big array corresponding to the given
    generic big array.  @raise Invalid_argument if the generic big array
    does not have exactly three dimensions. *)


(** {6 Re-shaping big arrays} *)

val reshape : ('a, 'b, 'c) Genarray.t -> int array -> ('a, 'b, 'c) Genarray.t
(** [reshape b [|d1;...;dN|]] converts the big array [b] to a
    [N]-dimensional array of dimensions [d1]...[dN].  The returned
    array and the original array [b] share their data
    and have the same layout.  For instance, assuming that [b]
    is a one-dimensional array of dimension 12, [reshape b [|3;4|]]
    returns a two-dimensional array [b'] of dimensions 3 and 4.
    If [b] has C layout, the element [(x,y)] of [b'] corresponds
    to the element [x * 3 + y] of [b].  If [b] has Fortran layout,
    the element [(x,y)] of [b'] corresponds to the element
    [x + (y - 1) * 4] of [b].
    The returned big array must have exactly the same number of
    elements as the original big array [b].  That is, the product
    of the dimensions of [b] must be equal to [i1 * ... * iN].
    @raise Invalid_argument otherwise. *)

val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.t
(** Specialized version of {!Bigarray.reshape} for reshaping to
    one-dimensional arrays. *)

val reshape_2 : ('a, 'b, 'c) Genarray.t -> int -> int -> ('a, 'b, 'c) Array2.t
(** Specialized version of {!Bigarray.reshape} for reshaping to
    two-dimensional arrays. *)

val reshape_3 :
  ('a, 'b, 'c) Genarray.t -> int -> int -> int -> ('a, 'b, 'c) Array3.t
    (** Specialized version of {!Bigarray.reshape} for reshaping to
        three-dimensional arrays. *)