/usr/lib/ocaml/batteries/batFloat.mli is in libbatteries-ocaml-dev 2.6.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 | (*
* BatFloat - Extended floats
* Copyright (C) 2007 Bluestorm <bluestorm dot dylc on-the-server gmail dot com>
* 2009 David Rajchenbach-Teller, LIFO, Universite d'Orleans
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version,
* with the special exception on linking described in file LICENSE.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
(**Operations on floating-point numbers.
OCaml's floating-point numbers follow the IEEE 754 standard, using
double precision (64 bits) numbers. Floating-point operations never
raise an exception on overflow, underflow, division by zero,
etc. Instead, special IEEE numbers are returned as appropriate,
such as [infinity] for [1.0 /. 0.0], [neg_infinity] for [-1.0 /. 0.0], and
[nan] (``not a number'') for [0.0 /. 0.0]. These special numbers then
propagate through floating-point computations as expected: for
instance, [1.0 /. infinity] is [0.0], and any operation with [nan] as
argument returns [nan] as result.
For more precision, see
{{:http://en.wikipedia.org/wiki/IEEE_754}The Wikipedia entry on
standard IEEE 754}.
@author Gabriel Scherer
@author David Teller
@author Edgar Friendly
@documents Float
*)
type t = float
(**The type of floating-point numbers.
Floating-point numbers are the default representation of
real numbers by OCaml. *)
(**
{6 Usual operations}
*)
val zero : float
(** Floating number zero. This is the same thing as [0.]*)
val one : float
(** Floating number one. This is the same thing as [1.]*)
external neg : float -> float = "%negfloat"
(** Returns the negation of the input, i.e. (fun x -> ~-. x) *)
val succ : float -> float
(** Add [1.] to a floating number. Note that, as per IEEE 754,
if [x] is a large enough float number, [succ x] might be
equal to [x], due to rounding.*)
val pred : float -> float
(** Substract [1.] from a floating number. Note that, as per
IEEE 754, if [x] is a large enough float number, [pred x]
might be equal to [x], due to rounding.*)
external abs : float -> float = "%absfloat"
(** The absolute value of a floating point number.*)
val add : float -> float -> float
val sub : float -> float -> float
val mul : float -> float -> float
val div : float -> float -> float
external modulo : float -> float -> float = "caml_fmod_float" "fmod" "float"
external pow : float -> float -> float = "caml_power_float" "pow" "float"
val min_num : float
val max_num : float
val compare : float -> float -> int
val equal : float -> float -> bool
val ord : float -> float -> BatOrd.order
external of_int : int -> float = "%floatofint"
external to_int : float -> int = "%intoffloat"
external of_float : float -> float = "%identity"
external to_float : float -> float = "%identity"
val of_string : string -> float
val to_string : float -> string
external ( + ) : t -> t -> t = "%addfloat"
external ( - ) : t -> t -> t = "%subfloat"
external ( * ) : t -> t -> t = "%mulfloat"
external ( / ) : t -> t -> t = "%divfloat"
external ( ** ) : t -> t -> t = "caml_power_float" "pow" "float"
val min : float -> float -> float
val max : float -> float -> float
(* Available only in `Compare` submodule
val ( <> ) : t -> t -> bool
val ( >= ) : t -> t -> bool
val ( <= ) : t -> t -> bool
val ( > ) : t -> t -> bool
val ( < ) : t -> t -> bool
val ( = ) : t -> t -> bool
*)
val ( -- ): t -> t -> t BatEnum.t
val ( --- ): t -> t -> t BatEnum.t
val operations : t BatNumber.numeric
(**
{6 Operations specific to floating-point numbers}
*)
external sqrt : float -> float = "caml_sqrt_float" "sqrt" "float"
(** Square root. *)
external exp : float -> float = "caml_exp_float" "exp" "float"
(** Exponential. *)
external log : float -> float = "caml_log_float" "log" "float"
(** Natural logarithm. *)
external log10 : float -> float = "caml_log10_float" "log10" "float"
(** Base 10 logarithm. *)
external cos : float -> float = "caml_cos_float" "cos" "float"
(** See {!atan2}. *)
external sin : float -> float = "caml_sin_float" "sin" "float"
(** See {!atan2}. *)
external tan : float -> float = "caml_tan_float" "tan" "float"
(** See {!atan2}. *)
external acos : float -> float = "caml_acos_float" "acos" "float"
(** See {!atan2}. *)
external asin : float -> float = "caml_asin_float" "asin" "float"
(** See {!atan2}. *)
external atan : float -> float = "caml_atan_float" "atan" "float"
(** See {!atan2}. *)
external atan2 : float -> float -> float = "caml_atan2_float" "atan2" "float"
(** The usual trigonometric functions. *)
external cosh : float -> float = "caml_cosh_float" "cosh" "float"
(** See {!tanh}. *)
external sinh : float -> float = "caml_sinh_float" "sinh" "float"
(** See {!tanh}. *)
external tanh : float -> float = "caml_tanh_float" "tanh" "float"
(** The usual hyperbolic trigonometric functions. *)
external ceil : float -> float = "caml_ceil_float" "ceil" "float"
(** See {!floor}. *)
external floor : float -> float = "caml_floor_float" "floor" "float"
(** Round the given float to an integer value.
[floor f] returns the greatest integer value less than or
equal to [f].
[ceil f] returns the least integer value greater than or
equal to [f]. *)
val round : float -> float
(** [round x] rounds [x] to the nearest integral floating-point
(the nearest of [floor x] and [ceil x]). In case the fraction
of x is exactly 0.5, we round away from 0. : [round 1.5] is
[2.] but [round (-3.5)] is [-4.]. *)
val round_to_int : float -> int
(** [round_to_int x] is [int_of_float (round x)].
@since 2.0 *)
val round_to_string : ?digits:int -> float -> string
(** [round_to_string ~digits:d x] will return a string
representation of [x] -- in base 10 -- rounded to [d] digits
after the decimal point. By default, [digits] is [0], we round
to the nearest integer.
@raise Invalid_argument if the ~digits argument is negative.
This is strictly a convenience function for simple end-user
printing and you should not rely on its behavior. One possible
implementation is to rely on C `sprintf` internally, which
means:
- no guarantee is given on the round-at-half behavior; it may
not be consistent with [round] or [round_to_int]
- [round_to_string ~digits:0 3.] may return "3" instead of
"3." as [string_of_float] would
- no guarantee is given on the behavior for abusively high
number of digits precision; for example [round_to_string
~digits:max_int x] may return the empty string.
@since 2.0 *)
(** [root x n] calculates the nth root of x.
@raise Invalid_argument if n is negative or if the result would
be imaginary *)
val root: float -> int -> float
(** @return True if the sign bit of [x] is set. This usually indicates thet [x] is negative. @since 2.0*)
val signbit: float -> bool
(** [copysign x y] returns a copy of [x] with the same sign as [y]. @since 2.0*)
val copysign: float -> float -> float
val is_nan : float -> bool
(** [is_nan f] returns [true] if [f] is [nan], [false] otherwise.*)
val is_special : float -> bool
(** [is_special f] returns [true] if [f] is [nan] or [+/- infinity],
[false] otherwise.
@since 2.0 *)
val is_finite : float -> bool
(** [is_finite f] returns [true] if [f] is not [nan] or [+/- infinity],
[false] otherwise.
@since 2.0 *)
(** {6 Constants} *)
(** Special float constants. It may not be safe to compare
directly with these, as they have multiple internal
representations. Instead use the [is_special], [is_nan],
etc. tests *)
val infinity : float
(** Positive infinity. *)
val neg_infinity : float
(** Negative infinity. *)
val nan : float
(** A special floating-point value denoting the result of an
undefined operation such as [0.0 /. 0.0]. Stands for ``not
a number''. Any floating-point operation with [nan] as
argument returns [nan] as result. As for floating-point
comparisons, [=], [<], [<=], [>] and [>=] return [false] and
[<>] returns [true] if one or both of their arguments is
[nan]. *)
(** Numeric constants *)
(** The smallest positive float [x] such that [1.0 +. x <> 1.0]. *)
val epsilon : float
(** Euler? ... Euler? ... Euler? @since 2.0*)
val e: float
(** [Math.log2 e] @since 2.0 *)
val log2e: float
(** [log10 e] @since 2.0 *)
val log10e: float
(** [log 2] @since 2.0 *)
val ln2: float
(** [log 10] @since 2.0 *)
val ln10: float
(** The constant pi (3.14159...) *)
val pi : float
(** [pi /. 2.] @since 2.0 *)
val pi2: float
(** [pi /. 4.] @since 2.0 *)
val pi4: float
(** [1. /. pi] @since 2.0 *)
val invpi: float
(** [2. /. pi] @since 2.0 *)
val invpi2: float
(** [2. *. sqrt pi] @since 2.0 *)
val sqrtpi2: float
(** [sqrt 2.] @since 2.0 *)
val sqrt2: float
(** [1. /. sqrt 2.] @since 2.0 *)
val invsqrt2: float
(** {6 Operations on the internal representation of floating-point
numbers}*)
external frexp : float -> float * int = "caml_frexp_float"
(** [frexp f] returns the pair of the significant and the exponent
of [f]. When [f] is zero, the significant [x] and the
exponent [n] of [f] are equal to zero. When [f] is non-zero,
they are defined by [f = x *. 2 ** n] and [0.5 <= x < 1.0]. *)
external ldexp : float -> int -> float = "caml_ldexp_float"
(** [ldexp x n] returns [x *. 2 ** n]. *)
external modf : float -> float * float = "caml_modf_float"
(** [modf f] returns the pair of the fractional and integral
part of [f]. *)
(** Classes of floating point numbers*)
type fpkind =
Pervasives.fpclass =
| FP_normal (** Normal number, none of the below *)
| FP_subnormal (** Number very close to 0.0, has reduced precision *)
| FP_zero (** Number is 0.0 or -0.0 *)
| FP_infinite (** Number is positive or negative infinity *)
| FP_nan (** Not a number: result of an undefined operation *)
(** The five classes of floating-point numbers, as determined by
the {!classify} function. *)
external classify : float -> fpkind = "caml_classify_float"
(** Return the class of the given floating-point number:
normal, subnormal, zero, infinite, or not a number. *)
val approx_equal : ?epsilon:float -> float -> float -> bool
(** Test whether two floats are approximately equal (i.e. within
epsilon of each other). [epsilon] defaults to 1e-5. *)
(** {6 Submodules grouping all infix operators} *)
module Infix : sig
include BatNumber.Infix with type bat__infix_t = t
val (=~) : ?epsilon:float -> float -> float -> bool
(** Approximate comparison of two floats, as [approx_equal].
[epsilon] defaults to 1e-5. *)
end
module Compare : BatNumber.Compare with type bat__compare_t = t
include (BatNumber.RefOps with type bat__refops_t = t)
(** {6 Boilerplate code}*)
(** {7 Printing}*)
val print: (t, _) BatIO.printer
(**Operations on floating-point numbers, with exceptions raised in
case of error.
The operations implemented in this module are the same as the operations
implemented in module {!Float}, with the exception that no operation returns
[nan], [infinity] or [neg_infinity]. In case of overflow, instead of returning
[infinity] or [neg_infinity], operations raise exception {!Number.Overflow}.
In case of [nan], operations raise exception {!Number.NaN}.
OCaml's floating-point numbers follow the IEEE 754 standard, using
double precision (64 bits) numbers. Floating-point operations never
raise an exception on overflow, underflow, division by zero,
etc. Instead, special IEEE numbers are returned as appropriate,
such as [infinity] for [1.0 /. 0.0], [neg_infinity] for [-1.0 /. 0.0], and
[nan] (``not a number'') for [0.0 /. 0.0]. These special numbers then
propagate through floating-point computations as expected: for
instance, [1.0 /. infinity] is [0.0], and any operation with [nan] as
argument returns [nan] as result.
For more precision, see
{{:http://en.wikipedia.org/wiki/IEEE_754}The Wikipedia entry on
standard IEEE 754}.
@author David Teller
@documents Safe_float
*)
module Safe_float :
sig
type t = float
(**The type of floating-point numbers.
Floating-point numbers are the default representation of
real numbers by OCaml. *)
(**
{6 Usual operations}
*)
val zero : float
(** Floating number zero. This is the same thing as [0.]*)
val one : float
(** Floating number one. This is the same thing as [1.]*)
val neg : float -> float
val succ : float -> float
(** Add [1.] to a floating number. Note that, as per IEEE 754,
if [x] is a large enough float number, [succ x] might be
equal to [x], due to rounding.*)
val pred : float -> float
(** Substract [1.] from a floating number. Note that, as per
IEEE 754, if [x] is a large enough float number, [pred x]
might be equal to [x], due to rounding.*)
val abs : float -> float
(** The absolute value of a floating point number.*)
val add : float -> float -> float
val sub : float -> float -> float
val mul : float -> float -> float
val div : float -> float -> float
val modulo : float -> float -> float
val pow : float -> float -> float
val min_num : float
val max_num : float
val compare : float -> float -> int
val of_int : int -> float
val to_int : float -> int
external of_float : float -> float = "%identity"
external to_float : float -> float = "%identity"
val of_string : string -> float
val to_string : float -> string
val ( + ) : t -> t -> t
val ( - ) : t -> t -> t
val ( * ) : t -> t -> t
val ( / ) : t -> t -> t
val ( ** ) : t -> t -> t
(* Available only in `Compare` submodule
val ( <> ) : t -> t -> bool
val ( >= ) : t -> t -> bool
val ( <= ) : t -> t -> bool
val ( > ) : t -> t -> bool
val ( < ) : t -> t -> bool
val ( = ) : t -> t -> bool
*)
val operations : t BatNumber.numeric
(**
{6 Operations specific to floating-point numbers}
*)
val exp : float -> float
(** Exponential. *)
val log : float -> float
(** Natural logarithm. *)
val log10 : float -> float
(** Base 10 logarithm. *)
val cos : float -> float
(** See {!atan2}. *)
val sin : float -> float
(** See {!atan2}. *)
val tan : float -> float
(** See {!atan2}. *)
val acos : float -> float
(** See {!atan2}. *)
val asin : float -> float
(** See {!atan2}. *)
val atan : float -> float
(** See {!atan2}. *)
val atan2 : float -> float -> float
(** The usual trigonometric functions. *)
val cosh : float -> float
(** See {!tanh}. *)
val sinh : float -> float
(** See {!tanh}. *)
val tanh : float -> float
(** The usual hyperbolic trigonometric functions. *)
val ceil : float -> float
(** See {!floor}. *)
val floor : float -> float
(** Round the given float to an integer value.
[floor f] returns the greatest integer value less than or
equal to [f].
[ceil f] returns the least integer value greater than or
equal to [f]. *)
val infinity : float
(** Positive infinity. *)
val neg_infinity : float
(** Negative infinity. *)
val nan : float
(** A special floating-point value denoting the result of an
undefined operation such as [0.0 /. 0.0]. Stands for
``not a number''. Any floating-point operation with [nan] as
argument returns [nan] as result. As for floating-point comparisons,
[=], [<], [<=], [>] and [>=] return [false] and [<>] returns [true]
if one or both of their arguments is [nan]. *)
val is_nan : float -> bool
(** [is_nan f] returns [true] if [f] is [nan], [false] otherwise.*)
val epsilon : float
(** The smallest positive float [x] such that [1.0 +. x <> 1.0]. *)
val pi : float
(** The constant pi (3.14159...) *)
(** {6 Operations on the internal representation of floating-point numbers}*)
val frexp : float -> float * int
(** [frexp f] returns the pair of the significant
and the exponent of [f]. When [f] is zero, the
significant [x] and the exponent [n] of [f] are equal to
zero. When [f] is non-zero, they are defined by
[f = x *. 2 ** n] and [0.5 <= x < 1.0]. *)
val ldexp : float -> int -> float
(** [ldexp x n] returns [x *. 2 ** n]. *)
val modf : float -> float * float
(** [modf f] returns the pair of the fractional and integral
part of [f]. *)
(** Classes of floating point numbers*)
type fpkind = Pervasives.fpclass =
FP_normal (** Normal number, none of the below *)
| FP_subnormal (** Number very close to 0.0, has reduced precision *)
| FP_zero (** Number is 0.0 or -0.0 *)
| FP_infinite (** Number is positive or negative infinity *)
| FP_nan (** Not a number: result of an undefined operation *)
(** The five classes of floating-point numbers, as determined by
the {!classify} function. *)
external classify : float -> fpkind = "caml_classify_float"
(** Return the class of the given floating-point number:
normal, subnormal, zero, infinite, or not a number. *)
(** {6 Boilerplate code}*)
(** {7 Printing}*)
val print: 'a BatInnerIO.output -> t -> unit
end
|