This file is indexed.

/usr/include/benchmark/benchmark.h is in libbenchmark-dev 1.3.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Support for registering benchmarks for functions.

/* Example usage:
// Define a function that executes the code to be measured a
// specified number of times:
static void BM_StringCreation(benchmark::State& state) {
  for (auto _ : state)
    std::string empty_string;
}

// Register the function as a benchmark
BENCHMARK(BM_StringCreation);

// Define another benchmark
static void BM_StringCopy(benchmark::State& state) {
  std::string x = "hello";
  for (auto _ : state)
    std::string copy(x);
}
BENCHMARK(BM_StringCopy);

// Augment the main() program to invoke benchmarks if specified
// via the --benchmarks command line flag.  E.g.,
//       my_unittest --benchmark_filter=all
//       my_unittest --benchmark_filter=BM_StringCreation
//       my_unittest --benchmark_filter=String
//       my_unittest --benchmark_filter='Copy|Creation'
int main(int argc, char** argv) {
  benchmark::Initialize(&argc, argv);
  benchmark::RunSpecifiedBenchmarks();
  return 0;
}

// Sometimes a family of microbenchmarks can be implemented with
// just one routine that takes an extra argument to specify which
// one of the family of benchmarks to run.  For example, the following
// code defines a family of microbenchmarks for measuring the speed
// of memcpy() calls of different lengths:

static void BM_memcpy(benchmark::State& state) {
  char* src = new char[state.range(0)]; char* dst = new char[state.range(0)];
  memset(src, 'x', state.range(0));
  for (auto _ : state)
    memcpy(dst, src, state.range(0));
  state.SetBytesProcessed(int64_t(state.iterations()) *
                          int64_t(state.range(0)));
  delete[] src; delete[] dst;
}
BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);

// The preceding code is quite repetitive, and can be replaced with the
// following short-hand.  The following invocation will pick a few
// appropriate arguments in the specified range and will generate a
// microbenchmark for each such argument.
BENCHMARK(BM_memcpy)->Range(8, 8<<10);

// You might have a microbenchmark that depends on two inputs.  For
// example, the following code defines a family of microbenchmarks for
// measuring the speed of set insertion.
static void BM_SetInsert(benchmark::State& state) {
  set<int> data;
  for (auto _ : state) {
    state.PauseTiming();
    data = ConstructRandomSet(state.range(0));
    state.ResumeTiming();
    for (int j = 0; j < state.range(1); ++j)
      data.insert(RandomNumber());
  }
}
BENCHMARK(BM_SetInsert)
   ->Args({1<<10, 128})
   ->Args({2<<10, 128})
   ->Args({4<<10, 128})
   ->Args({8<<10, 128})
   ->Args({1<<10, 512})
   ->Args({2<<10, 512})
   ->Args({4<<10, 512})
   ->Args({8<<10, 512});

// The preceding code is quite repetitive, and can be replaced with
// the following short-hand.  The following macro will pick a few
// appropriate arguments in the product of the two specified ranges
// and will generate a microbenchmark for each such pair.
BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});

// For more complex patterns of inputs, passing a custom function
// to Apply allows programmatic specification of an
// arbitrary set of arguments to run the microbenchmark on.
// The following example enumerates a dense range on
// one parameter, and a sparse range on the second.
static void CustomArguments(benchmark::internal::Benchmark* b) {
  for (int i = 0; i <= 10; ++i)
    for (int j = 32; j <= 1024*1024; j *= 8)
      b->Args({i, j});
}
BENCHMARK(BM_SetInsert)->Apply(CustomArguments);

// Templated microbenchmarks work the same way:
// Produce then consume 'size' messages 'iters' times
// Measures throughput in the absence of multiprogramming.
template <class Q> int BM_Sequential(benchmark::State& state) {
  Q q;
  typename Q::value_type v;
  for (auto _ : state) {
    for (int i = state.range(0); i--; )
      q.push(v);
    for (int e = state.range(0); e--; )
      q.Wait(&v);
  }
  // actually messages, not bytes:
  state.SetBytesProcessed(
      static_cast<int64_t>(state.iterations())*state.range(0));
}
BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);

Use `Benchmark::MinTime(double t)` to set the minimum time used to run the
benchmark. This option overrides the `benchmark_min_time` flag.

void BM_test(benchmark::State& state) {
 ... body ...
}
BENCHMARK(BM_test)->MinTime(2.0); // Run for at least 2 seconds.

In a multithreaded test, it is guaranteed that none of the threads will start
until all have reached the loop start, and all will have finished before any
thread exits the loop body. As such, any global setup or teardown you want to
do can be wrapped in a check against the thread index:

static void BM_MultiThreaded(benchmark::State& state) {
  if (state.thread_index == 0) {
    // Setup code here.
  }
  for (auto _ : state) {
    // Run the test as normal.
  }
  if (state.thread_index == 0) {
    // Teardown code here.
  }
}
BENCHMARK(BM_MultiThreaded)->Threads(4);


If a benchmark runs a few milliseconds it may be hard to visually compare the
measured times, since the output data is given in nanoseconds per default. In
order to manually set the time unit, you can specify it manually:

BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
*/

#ifndef BENCHMARK_BENCHMARK_H_
#define BENCHMARK_BENCHMARK_H_


// The _MSVC_LANG check should detect Visual Studio 2015 Update 3 and newer.
#if __cplusplus >= 201103L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201103L)
#define BENCHMARK_HAS_CXX11
#endif

#include <stdint.h>

#include <cassert>
#include <cstddef>
#include <iosfwd>
#include <string>
#include <vector>
#include <map>
#include <set>

#if defined(BENCHMARK_HAS_CXX11)
#include <type_traits>
#include <initializer_list>
#include <utility>
#endif

#if defined(_MSC_VER)
#include <intrin.h> // for _ReadWriteBarrier
#endif

#ifndef BENCHMARK_HAS_CXX11
#define BENCHMARK_DISALLOW_COPY_AND_ASSIGN(TypeName) \
  TypeName(const TypeName&);                         \
  TypeName& operator=(const TypeName&)
#else
#define BENCHMARK_DISALLOW_COPY_AND_ASSIGN(TypeName) \
  TypeName(const TypeName&) = delete;                \
  TypeName& operator=(const TypeName&) = delete
#endif

#if defined(__GNUC__)
#define BENCHMARK_UNUSED __attribute__((unused))
#define BENCHMARK_ALWAYS_INLINE __attribute__((always_inline))
#define BENCHMARK_NOEXCEPT noexcept
#define BENCHMARK_NOEXCEPT_OP(x) noexcept(x)
#elif defined(_MSC_VER) && !defined(__clang__)
#define BENCHMARK_UNUSED
#define BENCHMARK_ALWAYS_INLINE __forceinline
#if _MSC_VER >= 1900
#define BENCHMARK_NOEXCEPT noexcept
#define BENCHMARK_NOEXCEPT_OP(x) noexcept(x)
#else
#define BENCHMARK_NOEXCEPT
#define BENCHMARK_NOEXCEPT_OP(x)
#endif
#define __func__ __FUNCTION__
#else
#define BENCHMARK_UNUSED
#define BENCHMARK_ALWAYS_INLINE
#define BENCHMARK_NOEXCEPT
#define BENCHMARK_NOEXCEPT_OP(x)
#endif

#define BENCHMARK_INTERNAL_TOSTRING2(x) #x
#define BENCHMARK_INTERNAL_TOSTRING(x) BENCHMARK_INTERNAL_TOSTRING2(x)

#if defined(__GNUC__)
#define BENCHMARK_BUILTIN_EXPECT(x, y) __builtin_expect(x, y)
#define BENCHMARK_DEPRECATED_MSG(msg) __attribute__((deprecated(msg)))
#else
#define BENCHMARK_BUILTIN_EXPECT(x, y) x
#define BENCHMARK_DEPRECATED_MSG(msg)
#define BENCHMARK_WARNING_MSG(msg) __pragma(message(__FILE__ "(" BENCHMARK_INTERNAL_TOSTRING(__LINE__) ") : warning note: " msg))
#endif

#if defined(__GNUC__) && !defined(__clang__)
#define BENCHMARK_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#endif

namespace benchmark {
class BenchmarkReporter;

void Initialize(int* argc, char** argv);

// Report to stdout all arguments in 'argv' as unrecognized except the first.
// Returns true there is at least on unrecognized argument (i.e. 'argc' > 1).
bool ReportUnrecognizedArguments(int argc, char** argv);

// Generate a list of benchmarks matching the specified --benchmark_filter flag
// and if --benchmark_list_tests is specified return after printing the name
// of each matching benchmark. Otherwise run each matching benchmark and
// report the results.
//
// The second and third overload use the specified 'console_reporter' and
//  'file_reporter' respectively. 'file_reporter' will write to the file
//  specified
//   by '--benchmark_output'. If '--benchmark_output' is not given the
//  'file_reporter' is ignored.
//
// RETURNS: The number of matching benchmarks.
size_t RunSpecifiedBenchmarks();
size_t RunSpecifiedBenchmarks(BenchmarkReporter* console_reporter);
size_t RunSpecifiedBenchmarks(BenchmarkReporter* console_reporter,
                              BenchmarkReporter* file_reporter);

// If this routine is called, peak memory allocation past this point in the
// benchmark is reported at the end of the benchmark report line. (It is
// computed by running the benchmark once with a single iteration and a memory
// tracer.)
// TODO(dominic)
// void MemoryUsage();

namespace internal {
class Benchmark;
class BenchmarkImp;
class BenchmarkFamilies;

void UseCharPointer(char const volatile*);

// Take ownership of the pointer and register the benchmark. Return the
// registered benchmark.
Benchmark* RegisterBenchmarkInternal(Benchmark*);

// Ensure that the standard streams are properly initialized in every TU.
int InitializeStreams();
BENCHMARK_UNUSED static int stream_init_anchor = InitializeStreams();

}  // namespace internal


#if (!defined(__GNUC__) && !defined(__clang__)) || defined(__pnacl__) || \
    defined(EMSCRIPTN)
# define BENCHMARK_HAS_NO_INLINE_ASSEMBLY
#endif


// The DoNotOptimize(...) function can be used to prevent a value or
// expression from being optimized away by the compiler. This function is
// intended to add little to no overhead.
// See: https://youtu.be/nXaxk27zwlk?t=2441
#ifndef BENCHMARK_HAS_NO_INLINE_ASSEMBLY
template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
  // Clang doesn't like the 'X' constraint on `value` and certain GCC versions
  // don't like the 'g' constraint. Attempt to placate them both.
#if defined(__clang__)
  asm volatile("" : : "g"(value) : "memory");
#else
  asm volatile("" : : "i,r,m"(value) : "memory");
#endif
}
// Force the compiler to flush pending writes to global memory. Acts as an
// effective read/write barrier
inline BENCHMARK_ALWAYS_INLINE void ClobberMemory() {
  asm volatile("" : : : "memory");
}
#elif defined(_MSC_VER)
template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
  internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
  _ReadWriteBarrier();
}

inline BENCHMARK_ALWAYS_INLINE void ClobberMemory() {
  _ReadWriteBarrier();
}
#else
template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
  internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
}
// FIXME Add ClobberMemory() for non-gnu and non-msvc compilers
#endif



// This class is used for user-defined counters.
class Counter {
public:

  enum Flags {
    kDefaults   = 0,
    // Mark the counter as a rate. It will be presented divided
    // by the duration of the benchmark.
    kIsRate     = 1,
    // Mark the counter as a thread-average quantity. It will be
    // presented divided by the number of threads.
    kAvgThreads = 2,
    // Mark the counter as a thread-average rate. See above.
    kAvgThreadsRate = kIsRate|kAvgThreads
  };

  double value;
  Flags  flags;

  BENCHMARK_ALWAYS_INLINE
  Counter(double v = 0., Flags f = kDefaults) : value(v), flags(f) {}

  BENCHMARK_ALWAYS_INLINE operator double const& () const { return value; }
  BENCHMARK_ALWAYS_INLINE operator double      & ()       { return value; }

};

// This is the container for the user-defined counters.
typedef std::map<std::string, Counter> UserCounters;


// TimeUnit is passed to a benchmark in order to specify the order of magnitude
// for the measured time.
enum TimeUnit { kNanosecond, kMicrosecond, kMillisecond };

// BigO is passed to a benchmark in order to specify the asymptotic
// computational
// complexity for the benchmark. In case oAuto is selected, complexity will be
// calculated automatically to the best fit.
enum BigO { oNone, o1, oN, oNSquared, oNCubed, oLogN, oNLogN, oAuto, oLambda };

// BigOFunc is passed to a benchmark in order to specify the asymptotic
// computational complexity for the benchmark.
typedef double(BigOFunc)(int);

// StatisticsFunc is passed to a benchmark in order to compute some descriptive
// statistics over all the measurements of some type
typedef double(StatisticsFunc)(const std::vector<double>&);

struct Statistics {
  std::string name_;
  StatisticsFunc* compute_;

  Statistics(std::string name, StatisticsFunc* compute)
    : name_(name), compute_(compute) {}
};

namespace internal {
class ThreadTimer;
class ThreadManager;

enum ReportMode
#if defined(BENCHMARK_HAS_CXX11)
  : unsigned
#else
#endif
  {
  RM_Unspecified,  // The mode has not been manually specified
  RM_Default,      // The mode is user-specified as default.
  RM_ReportAggregatesOnly
};
}  // namespace internal

// State is passed to a running Benchmark and contains state for the
// benchmark to use.
class State {
 public:
  struct StateIterator;
  friend struct StateIterator;

  // Returns iterators used to run each iteration of a benchmark using a
  // C++11 ranged-based for loop. These functions should not be called directly.
  //
  // REQUIRES: The benchmark has not started running yet. Neither begin nor end
  // have been called previously.
  //
  // NOTE: KeepRunning may not be used after calling either of these functions.
  BENCHMARK_ALWAYS_INLINE StateIterator begin();
  BENCHMARK_ALWAYS_INLINE StateIterator end();

  // Returns true if the benchmark should continue through another iteration.
  // NOTE: A benchmark may not return from the test until KeepRunning() has
  // returned false.
  bool KeepRunning() {
    if (BENCHMARK_BUILTIN_EXPECT(!started_, false)) {
      StartKeepRunning();
    }
    bool const res = --total_iterations_;
    if (BENCHMARK_BUILTIN_EXPECT(!res, false)) {
      FinishKeepRunning();
    }
    return res;
  }

  // REQUIRES: timer is running and 'SkipWithError(...)' has not been called
  //           by the current thread.
  // Stop the benchmark timer.  If not called, the timer will be
  // automatically stopped after the last iteration of the benchmark loop.
  //
  // For threaded benchmarks the PauseTiming() function only pauses the timing
  // for the current thread.
  //
  // NOTE: The "real time" measurement is per-thread. If different threads
  // report different measurements the largest one is reported.
  //
  // NOTE: PauseTiming()/ResumeTiming() are relatively
  // heavyweight, and so their use should generally be avoided
  // within each benchmark iteration, if possible.
  void PauseTiming();

  // REQUIRES: timer is not running and 'SkipWithError(...)' has not been called
  //           by the current thread.
  // Start the benchmark timer.  The timer is NOT running on entrance to the
  // benchmark function. It begins running after control flow enters the
  // benchmark loop.
  //
  // NOTE: PauseTiming()/ResumeTiming() are relatively
  // heavyweight, and so their use should generally be avoided
  // within each benchmark iteration, if possible.
  void ResumeTiming();

  // REQUIRES: 'SkipWithError(...)' has not been called previously by the
  //            current thread.
  // Report the benchmark as resulting in an error with the specified 'msg'.
  // After this call the user may explicitly 'return' from the benchmark.
  //
  // If the ranged-for style of benchmark loop is used, the user must explicitly
  // break from the loop, otherwise all future iterations will be run.
  // If the 'KeepRunning()' loop is used the current thread will automatically
  // exit the loop at the end of the current iteration.
  //
  // For threaded benchmarks only the current thread stops executing and future
  // calls to `KeepRunning()` will block until all threads have completed
  // the `KeepRunning()` loop. If multiple threads report an error only the
  // first error message is used.
  //
  // NOTE: Calling 'SkipWithError(...)' does not cause the benchmark to exit
  // the current scope immediately. If the function is called from within
  // the 'KeepRunning()' loop the current iteration will finish. It is the users
  // responsibility to exit the scope as needed.
  void SkipWithError(const char* msg);

  // REQUIRES: called exactly once per iteration of the benchmarking loop.
  // Set the manually measured time for this benchmark iteration, which
  // is used instead of automatically measured time if UseManualTime() was
  // specified.
  //
  // For threaded benchmarks the final value will be set to the largest
  // reported values.
  void SetIterationTime(double seconds);

  // Set the number of bytes processed by the current benchmark
  // execution.  This routine is typically called once at the end of a
  // throughput oriented benchmark.  If this routine is called with a
  // value > 0, the report is printed in MB/sec instead of nanoseconds
  // per iteration.
  //
  // REQUIRES: a benchmark has exited its benchmarking loop.
  BENCHMARK_ALWAYS_INLINE
  void SetBytesProcessed(size_t bytes) { bytes_processed_ = bytes; }

  BENCHMARK_ALWAYS_INLINE
  size_t bytes_processed() const { return bytes_processed_; }

  // If this routine is called with complexity_n > 0 and complexity report is
  // requested for the
  // family benchmark, then current benchmark will be part of the computation
  // and complexity_n will
  // represent the length of N.
  BENCHMARK_ALWAYS_INLINE
  void SetComplexityN(int complexity_n) { complexity_n_ = complexity_n; }

  BENCHMARK_ALWAYS_INLINE
  int complexity_length_n() { return complexity_n_; }

  // If this routine is called with items > 0, then an items/s
  // label is printed on the benchmark report line for the currently
  // executing benchmark. It is typically called at the end of a processing
  // benchmark where a processing items/second output is desired.
  //
  // REQUIRES: a benchmark has exited its benchmarking loop.
  BENCHMARK_ALWAYS_INLINE
  void SetItemsProcessed(size_t items) { items_processed_ = items; }

  BENCHMARK_ALWAYS_INLINE
  size_t items_processed() const { return items_processed_; }

  // If this routine is called, the specified label is printed at the
  // end of the benchmark report line for the currently executing
  // benchmark.  Example:
  //  static void BM_Compress(benchmark::State& state) {
  //    ...
  //    double compress = input_size / output_size;
  //    state.SetLabel(StringPrintf("compress:%.1f%%", 100.0*compression));
  //  }
  // Produces output that looks like:
  //  BM_Compress   50         50   14115038  compress:27.3%
  //
  // REQUIRES: a benchmark has exited its benchmarking loop.
  void SetLabel(const char* label);

  void BENCHMARK_ALWAYS_INLINE SetLabel(const std::string& str) {
    this->SetLabel(str.c_str());
  }

  // Range arguments for this run. CHECKs if the argument has been set.
  BENCHMARK_ALWAYS_INLINE
  int range(std::size_t pos = 0) const {
    assert(range_.size() > pos);
    return range_[pos];
  }

  BENCHMARK_DEPRECATED_MSG("use 'range(0)' instead")
  int range_x() const { return range(0); }

  BENCHMARK_DEPRECATED_MSG("use 'range(1)' instead")
  int range_y() const { return range(1); }

  BENCHMARK_ALWAYS_INLINE
  size_t iterations() const { return (max_iterations - total_iterations_) + 1; }

 private:
  bool started_;
  bool finished_;
  size_t total_iterations_;

  std::vector<int> range_;

  size_t bytes_processed_;
  size_t items_processed_;

  int complexity_n_;

  bool error_occurred_;

 public:
  // Container for user-defined counters.
  UserCounters counters;
  // Index of the executing thread. Values from [0, threads).
  const int thread_index;
  // Number of threads concurrently executing the benchmark.
  const int threads;
  const size_t max_iterations;

  // TODO(EricWF) make me private
  State(size_t max_iters, const std::vector<int>& ranges, int thread_i,
        int n_threads, internal::ThreadTimer* timer,
        internal::ThreadManager* manager);

 private:
  void StartKeepRunning();
  void FinishKeepRunning();
  internal::ThreadTimer* timer_;
  internal::ThreadManager* manager_;
  BENCHMARK_DISALLOW_COPY_AND_ASSIGN(State);
};

struct State::StateIterator {
  struct BENCHMARK_UNUSED Value {};
  typedef std::forward_iterator_tag iterator_category;
  typedef Value value_type;
  typedef Value reference;
  typedef Value pointer;

 private:
  friend class State;
  BENCHMARK_ALWAYS_INLINE
  StateIterator() : cached_(0), parent_() {}

  BENCHMARK_ALWAYS_INLINE
  explicit StateIterator(State* st)
      : cached_(st->error_occurred_ ? 0 : st->max_iterations), parent_(st) {}

 public:
  BENCHMARK_ALWAYS_INLINE
  Value operator*() const { return Value(); }

  BENCHMARK_ALWAYS_INLINE
  StateIterator& operator++() {
    assert(cached_ > 0);
    --cached_;
    return *this;
  }

  BENCHMARK_ALWAYS_INLINE
  bool operator!=(StateIterator const&) const {
    if (BENCHMARK_BUILTIN_EXPECT(cached_ != 0, true)) return true;
    parent_->FinishKeepRunning();
    return false;
  }

 private:
  size_t cached_;
  State* const parent_;
};

BENCHMARK_ALWAYS_INLINE inline State::StateIterator State::begin() {
  return StateIterator(this);
}
BENCHMARK_ALWAYS_INLINE inline State::StateIterator State::end() {
  StartKeepRunning();
  return StateIterator();
}

namespace internal {

typedef void(Function)(State&);

// ------------------------------------------------------
// Benchmark registration object.  The BENCHMARK() macro expands
// into an internal::Benchmark* object.  Various methods can
// be called on this object to change the properties of the benchmark.
// Each method returns "this" so that multiple method calls can
// chained into one expression.
class Benchmark {
 public:
  virtual ~Benchmark();

  // Note: the following methods all return "this" so that multiple
  // method calls can be chained together in one expression.

  // Run this benchmark once with "x" as the extra argument passed
  // to the function.
  // REQUIRES: The function passed to the constructor must accept an arg1.
  Benchmark* Arg(int x);

  // Run this benchmark with the given time unit for the generated output report
  Benchmark* Unit(TimeUnit unit);

  // Run this benchmark once for a number of values picked from the
  // range [start..limit].  (start and limit are always picked.)
  // REQUIRES: The function passed to the constructor must accept an arg1.
  Benchmark* Range(int start, int limit);

  // Run this benchmark once for all values in the range [start..limit] with
  // specific step
  // REQUIRES: The function passed to the constructor must accept an arg1.
  Benchmark* DenseRange(int start, int limit, int step = 1);

  // Run this benchmark once with "args" as the extra arguments passed
  // to the function.
  // REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
  Benchmark* Args(const std::vector<int>& args);

  // Equivalent to Args({x, y})
  // NOTE: This is a legacy C++03 interface provided for compatibility only.
  //   New code should use 'Args'.
  Benchmark* ArgPair(int x, int y) {
    std::vector<int> args;
    args.push_back(x);
    args.push_back(y);
    return Args(args);
  }

  // Run this benchmark once for a number of values picked from the
  // ranges [start..limit].  (starts and limits are always picked.)
  // REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
  Benchmark* Ranges(const std::vector<std::pair<int, int> >& ranges);

  // Equivalent to ArgNames({name})
  Benchmark* ArgName(const std::string& name);

  // Set the argument names to display in the benchmark name. If not called,
  // only argument values will be shown.
  Benchmark* ArgNames(const std::vector<std::string>& names);

  // Equivalent to Ranges({{lo1, hi1}, {lo2, hi2}}).
  // NOTE: This is a legacy C++03 interface provided for compatibility only.
  //   New code should use 'Ranges'.
  Benchmark* RangePair(int lo1, int hi1, int lo2, int hi2) {
    std::vector<std::pair<int, int> > ranges;
    ranges.push_back(std::make_pair(lo1, hi1));
    ranges.push_back(std::make_pair(lo2, hi2));
    return Ranges(ranges);
  }

  // Pass this benchmark object to *func, which can customize
  // the benchmark by calling various methods like Arg, Args,
  // Threads, etc.
  Benchmark* Apply(void (*func)(Benchmark* benchmark));

  // Set the range multiplier for non-dense range. If not called, the range
  // multiplier kRangeMultiplier will be used.
  Benchmark* RangeMultiplier(int multiplier);

  // Set the minimum amount of time to use when running this benchmark. This
  // option overrides the `benchmark_min_time` flag.
  // REQUIRES: `t > 0` and `Iterations` has not been called on this benchmark.
  Benchmark* MinTime(double t);

  // Specify the amount of iterations that should be run by this benchmark.
  // REQUIRES: 'n > 0' and `MinTime` has not been called on this benchmark.
  //
  // NOTE: This function should only be used when *exact* iteration control is
  //   needed and never to control or limit how long a benchmark runs, where
  // `--benchmark_min_time=N` or `MinTime(...)` should be used instead.
  Benchmark* Iterations(size_t n);

  // Specify the amount of times to repeat this benchmark. This option overrides
  // the `benchmark_repetitions` flag.
  // REQUIRES: `n > 0`
  Benchmark* Repetitions(int n);

  // Specify if each repetition of the benchmark should be reported separately
  // or if only the final statistics should be reported. If the benchmark
  // is not repeated then the single result is always reported.
  Benchmark* ReportAggregatesOnly(bool value = true);

  // If a particular benchmark is I/O bound, runs multiple threads internally or
  // if for some reason CPU timings are not representative, call this method. If
  // called, the elapsed time will be used to control how many iterations are
  // run, and in the printing of items/second or MB/seconds values.  If not
  // called, the cpu time used by the benchmark will be used.
  Benchmark* UseRealTime();

  // If a benchmark must measure time manually (e.g. if GPU execution time is
  // being
  // measured), call this method. If called, each benchmark iteration should
  // call
  // SetIterationTime(seconds) to report the measured time, which will be used
  // to control how many iterations are run, and in the printing of items/second
  // or MB/second values.
  Benchmark* UseManualTime();

  // Set the asymptotic computational complexity for the benchmark. If called
  // the asymptotic computational complexity will be shown on the output.
  Benchmark* Complexity(BigO complexity = benchmark::oAuto);

  // Set the asymptotic computational complexity for the benchmark. If called
  // the asymptotic computational complexity will be shown on the output.
  Benchmark* Complexity(BigOFunc* complexity);

  // Add this statistics to be computed over all the values of benchmark run
  Benchmark* ComputeStatistics(std::string name, StatisticsFunc* statistics);

  // Support for running multiple copies of the same benchmark concurrently
  // in multiple threads.  This may be useful when measuring the scaling
  // of some piece of code.

  // Run one instance of this benchmark concurrently in t threads.
  Benchmark* Threads(int t);

  // Pick a set of values T from [min_threads,max_threads].
  // min_threads and max_threads are always included in T.  Run this
  // benchmark once for each value in T.  The benchmark run for a
  // particular value t consists of t threads running the benchmark
  // function concurrently.  For example, consider:
  //    BENCHMARK(Foo)->ThreadRange(1,16);
  // This will run the following benchmarks:
  //    Foo in 1 thread
  //    Foo in 2 threads
  //    Foo in 4 threads
  //    Foo in 8 threads
  //    Foo in 16 threads
  Benchmark* ThreadRange(int min_threads, int max_threads);

  // For each value n in the range, run this benchmark once using n threads.
  // min_threads and max_threads are always included in the range.
  // stride specifies the increment. E.g. DenseThreadRange(1, 8, 3) starts
  // a benchmark with 1, 4, 7 and 8 threads.
  Benchmark* DenseThreadRange(int min_threads, int max_threads, int stride = 1);

  // Equivalent to ThreadRange(NumCPUs(), NumCPUs())
  Benchmark* ThreadPerCpu();

  virtual void Run(State& state) = 0;

  // Used inside the benchmark implementation
  struct Instance;

 protected:
  explicit Benchmark(const char* name);
  Benchmark(Benchmark const&);
  void SetName(const char* name);

  int ArgsCnt() const;

  static void AddRange(std::vector<int>* dst, int lo, int hi, int mult);

 private:
  friend class BenchmarkFamilies;

  std::string name_;
  ReportMode report_mode_;
  std::vector<std::string> arg_names_;   // Args for all benchmark runs
  std::vector<std::vector<int> > args_;  // Args for all benchmark runs
  TimeUnit time_unit_;
  int range_multiplier_;
  double min_time_;
  size_t iterations_;
  int repetitions_;
  bool use_real_time_;
  bool use_manual_time_;
  BigO complexity_;
  BigOFunc* complexity_lambda_;
  std::vector<Statistics> statistics_;
  std::vector<int> thread_counts_;

  Benchmark& operator=(Benchmark const&);
};

}  // namespace internal

// Create and register a benchmark with the specified 'name' that invokes
// the specified functor 'fn'.
//
// RETURNS: A pointer to the registered benchmark.
internal::Benchmark* RegisterBenchmark(const char* name,
                                       internal::Function* fn);

#if defined(BENCHMARK_HAS_CXX11)
template <class Lambda>
internal::Benchmark* RegisterBenchmark(const char* name, Lambda&& fn);
#endif

// Remove all registered benchmarks. All pointers to previously registered
// benchmarks are invalidated.
void ClearRegisteredBenchmarks();

namespace internal {
// The class used to hold all Benchmarks created from static function.
// (ie those created using the BENCHMARK(...) macros.
class FunctionBenchmark : public Benchmark {
 public:
  FunctionBenchmark(const char* name, Function* func)
      : Benchmark(name), func_(func) {}

  virtual void Run(State& st);

 private:
  Function* func_;
};

#ifdef BENCHMARK_HAS_CXX11
template <class Lambda>
class LambdaBenchmark : public Benchmark {
 public:
  virtual void Run(State& st) { lambda_(st); }

 private:
  template <class OLambda>
  LambdaBenchmark(const char* name, OLambda&& lam)
      : Benchmark(name), lambda_(std::forward<OLambda>(lam)) {}

  LambdaBenchmark(LambdaBenchmark const&) = delete;

 private:
  template <class Lam>
  friend Benchmark* ::benchmark::RegisterBenchmark(const char*, Lam&&);

  Lambda lambda_;
};
#endif

}  // namespace internal

inline internal::Benchmark* RegisterBenchmark(const char* name,
                                              internal::Function* fn) {
  return internal::RegisterBenchmarkInternal(
      ::new internal::FunctionBenchmark(name, fn));
}

#ifdef BENCHMARK_HAS_CXX11
template <class Lambda>
internal::Benchmark* RegisterBenchmark(const char* name, Lambda&& fn) {
  using BenchType =
      internal::LambdaBenchmark<typename std::decay<Lambda>::type>;
  return internal::RegisterBenchmarkInternal(
      ::new BenchType(name, std::forward<Lambda>(fn)));
}
#endif

#if defined(BENCHMARK_HAS_CXX11) && \
    (!defined(BENCHMARK_GCC_VERSION) || BENCHMARK_GCC_VERSION >= 409)
template <class Lambda, class... Args>
internal::Benchmark* RegisterBenchmark(const char* name, Lambda&& fn,
                                       Args&&... args) {
  return benchmark::RegisterBenchmark(
      name, [=](benchmark::State& st) { fn(st, args...); });
}
#else
#define BENCHMARK_HAS_NO_VARIADIC_REGISTER_BENCHMARK
#endif

// The base class for all fixture tests.
class Fixture : public internal::Benchmark {
 public:
  Fixture() : internal::Benchmark("") {}

  virtual void Run(State& st) {
    this->SetUp(st);
    this->BenchmarkCase(st);
    this->TearDown(st);
  }

  // These will be deprecated ...
  virtual void SetUp(const State&) {}
  virtual void TearDown(const State&) {}
  // ... In favor of these.
  virtual void SetUp(State& st) { SetUp(const_cast<const State&>(st)); }
  virtual void TearDown(State& st) { TearDown(const_cast<const State&>(st)); }

 protected:
  virtual void BenchmarkCase(State&) = 0;
};

}  // namespace benchmark

// ------------------------------------------------------
// Macro to register benchmarks

// Check that __COUNTER__ is defined and that __COUNTER__ increases by 1
// every time it is expanded. X + 1 == X + 0 is used in case X is defined to be
// empty. If X is empty the expression becomes (+1 == +0).
#if defined(__COUNTER__) && (__COUNTER__ + 1 == __COUNTER__ + 0)
#define BENCHMARK_PRIVATE_UNIQUE_ID __COUNTER__
#else
#define BENCHMARK_PRIVATE_UNIQUE_ID __LINE__
#endif

// Helpers for generating unique variable names
#define BENCHMARK_PRIVATE_NAME(n) \
  BENCHMARK_PRIVATE_CONCAT(_benchmark_, BENCHMARK_PRIVATE_UNIQUE_ID, n)
#define BENCHMARK_PRIVATE_CONCAT(a, b, c) BENCHMARK_PRIVATE_CONCAT2(a, b, c)
#define BENCHMARK_PRIVATE_CONCAT2(a, b, c) a##b##c

#define BENCHMARK_PRIVATE_DECLARE(n)                                 \
  static ::benchmark::internal::Benchmark* BENCHMARK_PRIVATE_NAME(n) \
      BENCHMARK_UNUSED

#define BENCHMARK(n)                                     \
  BENCHMARK_PRIVATE_DECLARE(n) =                         \
      (::benchmark::internal::RegisterBenchmarkInternal( \
          new ::benchmark::internal::FunctionBenchmark(#n, n)))

// Old-style macros
#define BENCHMARK_WITH_ARG(n, a) BENCHMARK(n)->Arg((a))
#define BENCHMARK_WITH_ARG2(n, a1, a2) BENCHMARK(n)->Args({(a1), (a2)})
#define BENCHMARK_WITH_UNIT(n, t) BENCHMARK(n)->Unit((t))
#define BENCHMARK_RANGE(n, lo, hi) BENCHMARK(n)->Range((lo), (hi))
#define BENCHMARK_RANGE2(n, l1, h1, l2, h2) \
  BENCHMARK(n)->RangePair({{(l1), (h1)}, {(l2), (h2)}})

#ifdef BENCHMARK_HAS_CXX11

// Register a benchmark which invokes the function specified by `func`
// with the additional arguments specified by `...`.
//
// For example:
//
// template <class ...ExtraArgs>`
// void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
//  [...]
//}
// /* Registers a benchmark named "BM_takes_args/int_string_test` */
// BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
#define BENCHMARK_CAPTURE(func, test_case_name, ...)     \
  BENCHMARK_PRIVATE_DECLARE(func) =                      \
      (::benchmark::internal::RegisterBenchmarkInternal( \
          new ::benchmark::internal::FunctionBenchmark(  \
              #func "/" #test_case_name,                 \
              [](::benchmark::State& st) { func(st, __VA_ARGS__); })))

#endif  // BENCHMARK_HAS_CXX11

// This will register a benchmark for a templatized function.  For example:
//
// template<int arg>
// void BM_Foo(int iters);
//
// BENCHMARK_TEMPLATE(BM_Foo, 1);
//
// will register BM_Foo<1> as a benchmark.
#define BENCHMARK_TEMPLATE1(n, a)                        \
  BENCHMARK_PRIVATE_DECLARE(n) =                         \
      (::benchmark::internal::RegisterBenchmarkInternal( \
          new ::benchmark::internal::FunctionBenchmark(#n "<" #a ">", n<a>)))

#define BENCHMARK_TEMPLATE2(n, a, b)                                         \
  BENCHMARK_PRIVATE_DECLARE(n) =                                             \
      (::benchmark::internal::RegisterBenchmarkInternal(                     \
          new ::benchmark::internal::FunctionBenchmark(#n "<" #a "," #b ">", \
                                                       n<a, b>)))

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_TEMPLATE(n, ...)                       \
  BENCHMARK_PRIVATE_DECLARE(n) =                         \
      (::benchmark::internal::RegisterBenchmarkInternal( \
          new ::benchmark::internal::FunctionBenchmark(  \
              #n "<" #__VA_ARGS__ ">", n<__VA_ARGS__>)))
#else
#define BENCHMARK_TEMPLATE(n, a) BENCHMARK_TEMPLATE1(n, a)
#endif

#define BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method)        \
  class BaseClass##_##Method##_Benchmark : public BaseClass { \
   public:                                                    \
    BaseClass##_##Method##_Benchmark() : BaseClass() {        \
      this->SetName(#BaseClass "/" #Method);                  \
    }                                                         \
                                                              \
   protected:                                                 \
    virtual void BenchmarkCase(::benchmark::State&);          \
  };

#define BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(BaseClass, Method, a) \
  class BaseClass##_##Method##_Benchmark : public BaseClass<a> {    \
   public:                                                          \
    BaseClass##_##Method##_Benchmark() : BaseClass<a>() {           \
      this->SetName(#BaseClass"<" #a ">/" #Method);                 \
    }                                                               \
                                                                    \
   protected:                                                       \
    virtual void BenchmarkCase(::benchmark::State&);                \
  };

#define BENCHMARK_TEMPLATE2_PRIVATE_DECLARE_F(BaseClass, Method, a, b) \
  class BaseClass##_##Method##_Benchmark : public BaseClass<a, b> {    \
   public:                                                             \
    BaseClass##_##Method##_Benchmark() : BaseClass<a, b>() {           \
      this->SetName(#BaseClass"<" #a "," #b ">/" #Method);             \
    }                                                                  \
                                                                       \
   protected:                                                          \
    virtual void BenchmarkCase(::benchmark::State&);                   \
  };

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(BaseClass, Method, ...)       \
  class BaseClass##_##Method##_Benchmark : public BaseClass<__VA_ARGS__> { \
   public:                                                                 \
    BaseClass##_##Method##_Benchmark() : BaseClass<__VA_ARGS__>() {        \
      this->SetName(#BaseClass"<" #__VA_ARGS__ ">/" #Method);              \
    }                                                                      \
                                                                           \
   protected:                                                              \
    virtual void BenchmarkCase(::benchmark::State&);                       \
  };
#else
#define BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(n, a) BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(n, a)
#endif

#define BENCHMARK_DEFINE_F(BaseClass, Method)    \
  BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase

#define BENCHMARK_TEMPLATE1_DEFINE_F(BaseClass, Method, a)    \
  BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(BaseClass, Method, a) \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase

#define BENCHMARK_TEMPLATE2_DEFINE_F(BaseClass, Method, a, b)    \
  BENCHMARK_TEMPLATE2_PRIVATE_DECLARE_F(BaseClass, Method, a, b) \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_TEMPLATE_DEFINE_F(BaseClass, Method, ...)            \
  BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(BaseClass, Method, __VA_ARGS__) \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase
#else
#define BENCHMARK_TEMPLATE_DEFINE_F(BaseClass, Method, a) BENCHMARK_TEMPLATE1_DEFINE_F(BaseClass, Method, a)
#endif

#define BENCHMARK_REGISTER_F(BaseClass, Method) \
  BENCHMARK_PRIVATE_REGISTER_F(BaseClass##_##Method##_Benchmark)

#define BENCHMARK_PRIVATE_REGISTER_F(TestName) \
  BENCHMARK_PRIVATE_DECLARE(TestName) =        \
      (::benchmark::internal::RegisterBenchmarkInternal(new TestName()))

// This macro will define and register a benchmark within a fixture class.
#define BENCHMARK_F(BaseClass, Method)           \
  BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
  BENCHMARK_REGISTER_F(BaseClass, Method);       \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase

#define BENCHMARK_TEMPLATE1_F(BaseClass, Method, a)           \
  BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(BaseClass, Method, a) \
  BENCHMARK_REGISTER_F(BaseClass, Method);                    \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase

#define BENCHMARK_TEMPLATE2_F(BaseClass, Method, a, b)           \
  BENCHMARK_TEMPLATE2_PRIVATE_DECLARE_F(BaseClass, Method, a, b) \
  BENCHMARK_REGISTER_F(BaseClass, Method);                       \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_TEMPLATE_F(BaseClass, Method, ...)           \
  BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(BaseClass, Method, __VA_ARGS__) \
  BENCHMARK_REGISTER_F(BaseClass, Method);                     \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase
#else
#define BENCHMARK_TEMPLATE_F(BaseClass, Method, a) BENCHMARK_TEMPLATE1_F(BaseClass, Method, a)
#endif

// Helper macro to create a main routine in a test that runs the benchmarks
#define BENCHMARK_MAIN()                   \
  int main(int argc, char** argv) {        \
    ::benchmark::Initialize(&argc, argv);  \
    if (::benchmark::ReportUnrecognizedArguments(argc, argv)) return 1; \
    ::benchmark::RunSpecifiedBenchmarks(); \
  }


// ------------------------------------------------------
// Benchmark Reporters

namespace benchmark {

// Interface for custom benchmark result printers.
// By default, benchmark reports are printed to stdout. However an application
// can control the destination of the reports by calling
// RunSpecifiedBenchmarks and passing it a custom reporter object.
// The reporter object must implement the following interface.
class BenchmarkReporter {
 public:
  struct Context {
    int num_cpus;
    double mhz_per_cpu;
    bool cpu_scaling_enabled;

    // The number of chars in the longest benchmark name.
    size_t name_field_width;
  };

  struct Run {
    Run()
        : error_occurred(false),
          iterations(1),
          time_unit(kNanosecond),
          real_accumulated_time(0),
          cpu_accumulated_time(0),
          bytes_per_second(0),
          items_per_second(0),
          max_heapbytes_used(0),
          complexity(oNone),
          complexity_lambda(),
          complexity_n(0),
          report_big_o(false),
          report_rms(false),
          counters() {}

    std::string benchmark_name;
    std::string report_label;  // Empty if not set by benchmark.
    bool error_occurred;
    std::string error_message;

    int64_t iterations;
    TimeUnit time_unit;
    double real_accumulated_time;
    double cpu_accumulated_time;

    // Return a value representing the real time per iteration in the unit
    // specified by 'time_unit'.
    // NOTE: If 'iterations' is zero the returned value represents the
    // accumulated time.
    double GetAdjustedRealTime() const;

    // Return a value representing the cpu time per iteration in the unit
    // specified by 'time_unit'.
    // NOTE: If 'iterations' is zero the returned value represents the
    // accumulated time.
    double GetAdjustedCPUTime() const;

    // Zero if not set by benchmark.
    double bytes_per_second;
    double items_per_second;

    // This is set to 0.0 if memory tracing is not enabled.
    double max_heapbytes_used;

    // Keep track of arguments to compute asymptotic complexity
    BigO complexity;
    BigOFunc* complexity_lambda;
    int complexity_n;

    // what statistics to compute from the measurements
    const std::vector<Statistics>* statistics;

    // Inform print function whether the current run is a complexity report
    bool report_big_o;
    bool report_rms;

    UserCounters counters;
  };

  // Construct a BenchmarkReporter with the output stream set to 'std::cout'
  // and the error stream set to 'std::cerr'
  BenchmarkReporter();

  // Called once for every suite of benchmarks run.
  // The parameter "context" contains information that the
  // reporter may wish to use when generating its report, for example the
  // platform under which the benchmarks are running. The benchmark run is
  // never started if this function returns false, allowing the reporter
  // to skip runs based on the context information.
  virtual bool ReportContext(const Context& context) = 0;

  // Called once for each group of benchmark runs, gives information about
  // cpu-time and heap memory usage during the benchmark run. If the group
  // of runs contained more than two entries then 'report' contains additional
  // elements representing the mean and standard deviation of those runs.
  // Additionally if this group of runs was the last in a family of benchmarks
  // 'reports' contains additional entries representing the asymptotic
  // complexity and RMS of that benchmark family.
  virtual void ReportRuns(const std::vector<Run>& report) = 0;

  // Called once and only once after ever group of benchmarks is run and
  // reported.
  virtual void Finalize() {}

  // REQUIRES: The object referenced by 'out' is valid for the lifetime
  // of the reporter.
  void SetOutputStream(std::ostream* out) {
    assert(out);
    output_stream_ = out;
  }

  // REQUIRES: The object referenced by 'err' is valid for the lifetime
  // of the reporter.
  void SetErrorStream(std::ostream* err) {
    assert(err);
    error_stream_ = err;
  }

  std::ostream& GetOutputStream() const { return *output_stream_; }

  std::ostream& GetErrorStream() const { return *error_stream_; }

  virtual ~BenchmarkReporter();

  // Write a human readable string to 'out' representing the specified
  // 'context'.
  // REQUIRES: 'out' is non-null.
  static void PrintBasicContext(std::ostream* out, Context const& context);

 private:
  std::ostream* output_stream_;
  std::ostream* error_stream_;
};

// Simple reporter that outputs benchmark data to the console. This is the
// default reporter used by RunSpecifiedBenchmarks().
class ConsoleReporter : public BenchmarkReporter {
public:
  enum OutputOptions {
    OO_None = 0,
    OO_Color = 1,
    OO_Tabular = 2,
    OO_ColorTabular = OO_Color|OO_Tabular,
    OO_Defaults = OO_ColorTabular
  };
  explicit ConsoleReporter(OutputOptions opts_ = OO_Defaults)
      : output_options_(opts_), name_field_width_(0),
        prev_counters_(), printed_header_(false) {}

  virtual bool ReportContext(const Context& context);
  virtual void ReportRuns(const std::vector<Run>& reports);

 protected:
  virtual void PrintRunData(const Run& report);
  virtual void PrintHeader(const Run& report);

  OutputOptions output_options_;
  size_t name_field_width_;
  UserCounters prev_counters_;
  bool printed_header_;
};

class JSONReporter : public BenchmarkReporter {
 public:
  JSONReporter() : first_report_(true) {}
  virtual bool ReportContext(const Context& context);
  virtual void ReportRuns(const std::vector<Run>& reports);
  virtual void Finalize();

 private:
  void PrintRunData(const Run& report);

  bool first_report_;
};

class CSVReporter : public BenchmarkReporter {
 public:
  CSVReporter() : printed_header_(false) {}
  virtual bool ReportContext(const Context& context);
  virtual void ReportRuns(const std::vector<Run>& reports);

 private:
  void PrintRunData(const Run& report);

  bool printed_header_;
  std::set< std::string > user_counter_names_;
};

inline const char* GetTimeUnitString(TimeUnit unit) {
  switch (unit) {
    case kMillisecond:
      return "ms";
    case kMicrosecond:
      return "us";
    case kNanosecond:
    default:
      return "ns";
  }
}

inline double GetTimeUnitMultiplier(TimeUnit unit) {
  switch (unit) {
    case kMillisecond:
      return 1e3;
    case kMicrosecond:
      return 1e6;
    case kNanosecond:
    default:
      return 1e9;
  }
}

} // namespace benchmark

#endif  // BENCHMARK_BENCHMARK_H_