This file is indexed.

/usr/include/d/bio/bam/pileup.d is in libbiod-dev 0.1.0-5build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
/*
    This file is part of BioD.
    Copyright (C) 2012-2016    Artem Tarasov <lomereiter@gmail.com>

    Permission is hereby granted, free of charge, to any person obtaining a
    copy of this software and associated documentation files (the "Software"),
    to deal in the Software without restriction, including without limitation
    the rights to use, copy, modify, merge, publish, distribute, sublicense,
    and/or sell copies of the Software, and to permit persons to whom the
    Software is furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
    DEALINGS IN THE SOFTWARE.

*/
/// $(P This module is used for iterating over columns of alignment.)
/// $(P The function makePileup is called on
/// a range of coordinate-sorted reads mapped to the same reference.
/// It returns an input range of columns.)
/// $(P This returned range can then be iterated with $(D foreach).
/// First column is located at the same position on the reference,
/// as the first base of the first read.
/// $(BR)
/// Each $(D popFront) operation advances current position on the
/// reference. The default behaviour is to exclude sites with zero coverage
/// from the iteration.)
/// $(P Each column keeps set of reads that overlap corresponding position
/// on the reference.
/// If reads contain MD tags, and makePileup was asked
/// to use them, reference base at the column is also available.)
/// $(BR)
/// Each read preserves all standard read properties
/// but also keeps column-related information, namely
/// <ul>
///     $(LI number of bases consumed from the read sequence so far)
///     $(LI current CIGAR operation and offset in it)
///     $(LI all CIGAR operations before and after current one)</ul>
/// $(BR)
/// It is clear from the above that current CIGAR operation cannot be an insertion.
/// The following are suggested ways to check for them:
/// <ul>
///     $(LI $(D cigar_after.length > 0 &&
///              cigar_operation_offset == cigar_operation.length - 1 &&
///              cigar_after[0].type == 'I'))
///     $(LI $(D cigar_before.length > 0 &&
///              cigar_operation_offset == 0 &&
///              cigar_before[$ - 1].type == 'I'))</ul>
/// $(BR)
/// Example:
/// ---------------------------------------------------------
/// import bio.bam.reader, bio.bam.pileup, std.stdio, std.algorithm : count;
/// void main() {
///     auto bam = new BamReader("file.bam");       // assume single reference and MD tags
///     auto pileup = bam.reads().makePileup(useMD);
///     foreach (column; pileup) {
///         auto matches = column.bases.count(column.reference_base);
///         if (matches < column.coverage * 2 / 3)
///             writeln(column.position);           // print positions of possible mismatches
///     }
/// }
/// ---------------------------------------------------------
module bio.bam.pileup;

import bio.bam.read;
import bio.bam.md.reconstruct;
import bio.bam.splitter;

import std.algorithm;
import std.range;
import std.random;
import std.traits;
import std.conv;
import std.array;
import std.exception;

/// Represents a read aligned to a column
struct PileupRead(Read=bio.bam.read.EagerBamRead) {

    Read read; ///
    alias read this;
    private alias read _read;

    /// Current CIGAR operation. One of 'M', '=', 'X', 'D', 'N.
    /// Use $(D cigar_after)/$(D cigar_before) to determine insertions.
    bio.bam.read.CigarOperation cigar_operation() @property const {
        return _cur_op;
    }

    /// Number of bases consumed from the current CIGAR operation.
    uint cigar_operation_offset() @property const {
        return _cur_op_offset;
    }

    /// CIGAR operations after the current operation
    const(bio.bam.read.CigarOperation)[] cigar_after() @property const {
        return _read.cigar[_cur_op_index + 1 .. $];
    }

    /// CIGAR operations before the current operation
    const(bio.bam.read.CigarOperation)[] cigar_before() @property const {
        return _read.cigar[0 .. _cur_op_index];
    }

    /// If current CIGAR operation is one of 'M', '=', or 'X', returns read base
    /// at the current column. Otherwise, returns '-'.
    char current_base() @property const {
        assert(_query_offset <= _read.sequence_length);
        if (_cur_op.is_query_consuming && _cur_op.is_reference_consuming) {
            return _read.sequence[_query_offset];
        } else {
            return '-';
        }
    }

    /// If current CIGAR operation is one of 'M', '=', or 'X', returns
    /// Phred-scaled read base quality at the current column.
    /// Otherwise, returns 255.
    ubyte current_base_quality() @property const {
        assert(_query_offset <= _read.sequence_length);
        if (_cur_op.is_query_consuming && _cur_op.is_reference_consuming) {
            return _read.base_qualities[_query_offset];
        } else {
            return 255;
        }
    }

    /// Returns number of bases consumed from the read sequence.
    /// $(BR)
    /// More concisely,
    /// $(UL
    ///     $(LI if current CIGAR operation is 'M', '=', or 'X',
    ///       index of current read base in the read sequence)
    ///     $(LI if current CIGAR operation is 'D' or 'N',
    ///       index of read base after the deletion)
    /// )
    /// (in both cases indices are 0-based)
    int query_offset() @property const {
        assert(_query_offset <= _read.sequence_length);
        return _query_offset;
    }

    /// Returns duplicate
    PileupRead dup() @property {
        PileupRead r = void;
        r._read = _read; // logically const, thus no .dup here
        r._cur_op_index = _cur_op_index;
        r._cur_op = _cur_op;
        r._cur_op_offset = _cur_op_offset;
        r._query_offset = _query_offset;
        return r;
    }

    private {
        // index of current CIGAR operation in _read.cigar
        uint _cur_op_index;

        // current CIGAR operation
        CigarOperation _cur_op;

        // number of bases consumed from the current CIGAR operation
        uint _cur_op_offset;

        // number of bases consumed from the read sequence
        uint _query_offset;

        this(Read read) {
            _read = read;

            // find first M/=/X/D operation
            auto cigar = _read.cigar;
            for (_cur_op_index = 0; _cur_op_index < cigar.length; ++_cur_op_index) {
                _cur_op = cigar[_cur_op_index];
                if (_cur_op.is_reference_consuming) {
                    if (_cur_op.type != 'N') {
                        break;
                    }
                } else if (_cur_op.is_query_consuming) {
                    _query_offset += _cur_op.length; // skip S and I operations
                }
            }

            assertCigarIndexIsValid();
        }

        // move one base to the right on the reference
        void incrementPosition() {
            ++_cur_op_offset;

            // if current CIGAR operation is D or N, query offset is untouched
            if (_cur_op.is_query_consuming) {
                ++_query_offset;
            }

            if (_cur_op_offset >= _cur_op.length) {

                _cur_op_offset = 0; // reset CIGAR operation offset

                auto cigar = _read.cigar;
                // get next reference-consuming CIGAR operation (M/=/X/D/N)
                for (++_cur_op_index; _cur_op_index < cigar.length; ++_cur_op_index) {
                    _cur_op = cigar[_cur_op_index];
                    if (_cur_op.is_reference_consuming) {
                        break;
                    }

                    if (_cur_op.is_query_consuming) {
                        _query_offset += _cur_op.length;
                    }
                }

                assertCigarIndexIsValid();
            }
        }

        void assertCigarIndexIsValid() {
            assert(_cur_op_index < _read.cigar.length, "Invalid read " ~ _read.name
                                                       ~ " - CIGAR " ~ _read.cigarString()
                                                       ~ ", sequence " ~ to!string(_read.sequence));
        }
    }
}

static assert(isBamRead!(PileupRead!BamRead));
//static assert(isBamRead!(PileupRead!(EagerBamRead!BamRead)));

/// Represents a single pileup column
struct PileupColumn(R) {
    private {
        ulong _position;
        int _ref_id = -1;
        R _reads;
        size_t _n_starting_here;
    }

    /// Reference base. 'N' if not available.
    char reference_base() @property const {
        return _reference_base;
    }

    private char _reference_base = 'N';

    /// Coverage at this position (equals to number of reads)
    size_t coverage() const @property {
        return _reads.length;
    }

    /// Returns reference ID (-1 if unmapped)
    int ref_id() const @property {
        return _ref_id;
    }

    /// Position on the reference
    ulong position() const @property {
        return _position;
    }

    /// Reads overlapping the position, sorted by coordinate
    auto reads() @property {
        return assumeSorted!compareCoordinates(_reads[]);
    }

    /// Reads that have leftmost mapped position at this column
    auto reads_starting_here() @property {
        return _reads[$ - _n_starting_here .. $];
    }

    /// Shortcut for map!(read => read.current_base)(reads)
    auto bases() @property {
        return map!"a.current_base"(reads);
    }

    /// Shortcut for map!(read => read.current_base_quality)(reads)
    auto base_qualities() @property {
        return map!"a.current_base_quality"(reads);
    }

    /// Shortcut for map!(read => read.mapping_quality)(reads)
    auto read_qualities() @property {
        return map!"a.mapping_quality"(reads);
    }
}

/**
 * The class for iterating reference bases together with reads overlapping them.
 */
class PileupRange(R, alias TColumn=PileupColumn) {
    alias Unqual!(ElementType!R) Raw;
    alias EagerBamRead!Raw Eager;
    alias PileupRead!Eager Read;
    alias Read[] ReadArray;
    alias TColumn!ReadArray Column;

    private {
        R _reads;
        Column _column;
        Appender!ReadArray _read_buf;
        bool _skip_zero_coverage;
    }

    protected {
        // This is extracted into a method not only to reduce duplication
        // (not so much of it), but to allow to override it!
        // For that reason it is not marked as final. Overhead of virtual
        // function is negligible compared to computations in EagerBamRead
        // constructor together with inserting new element into appender.
        void add(ref Raw read) {
            _read_buf.put(PileupRead!Eager(Eager(read)));
        }
    }

    /**
     * Create new pileup iterator from a range of reads.
     */
    this(R reads, bool skip_zero_coverage) {
        _reads = reads;
        _read_buf = appender!ReadArray();
        _skip_zero_coverage = skip_zero_coverage;

        if (!_reads.empty) {
            initNewReference(); // C++ programmers, don't worry! Virtual tables in D
                                // are populated before constructor body is executed.
        }
    }

    /// Returns PileupColumn struct corresponding to the current position.
    ref Column front() @property {
        return _column;
    }

    /// Whether all reads have been processed.
    bool empty() @property {
        return _reads.empty && _read_buf.data.empty;
    }

    /// Move to next position on the reference.
    void popFront() {
        auto pos = ++_column._position;

        size_t survived = 0;
        auto data = _read_buf.data;

        for (size_t i = 0; i < data.length; ++i) {
            if (data[i].end_position > pos) {
                if (survived < i)
                {
                    data[survived] = data[i];
                }
                ++survived;
            }
        }

        for (size_t i = 0; i < survived; ++i) {
            data[i].incrementPosition();
        }
                                      // unless range is empty, this value is
        _read_buf.shrinkTo(survived);

        _column._n_starting_here = 0; // updated either in initNewReference()
                                      // or in the loop below

        if (!_reads.empty) {
            if (_reads.front.ref_id != _column._ref_id &&
                survived == 0) // processed all reads aligned to the previous reference
            {
                initNewReference();
            } else {
                size_t n = 0;
                while (!_reads.empty &&
                        _reads.front.position == pos &&
                        _reads.front.ref_id == _column._ref_id)
                {
                    auto read = _reads.front;
                    add(read);
                    _reads.popFront();
                    ++n;
                }
                _column._n_starting_here = n;

                // handle option of skipping sites with zero coverage
                if (survived == 0 && n == 0 && _skip_zero_coverage) {
                    // the name might be misleading but it does the trick
                    initNewReference();
                }
            }
        }

        _column._reads = _read_buf.data;
    }

    protected void initNewReference() {
        auto read = _reads.front;

        _column._position = read.position;
        _column._ref_id = read.ref_id;
        uint n = 1;
        add(read);

        _reads.popFront();

        while (!_reads.empty) {
            read = _reads.front;
            if (read.ref_id == _column.ref_id &&
                read.position == _column._position)
            {
                add(read);
                ++n;
                _reads.popFront();
            } else {
                break;
            }
        }

        _column._n_starting_here = n;
        _column._reads = _read_buf.data;
    }
}

/// Abstract pileup structure. S is type of column range.
struct AbstractPileup(R, S) {
    private R reads_;
    R reads() @property {
        return reads_;
    }

    S columns;
    /// Pileup columns
    alias columns this;

    private {
        ulong _start_position;
        ulong _end_position;
        int _ref_id;
    }

    /// $(D start_from) parameter provided to a pileup function
    ulong start_position() @property const {
        return _start_position;
    }

    /// $(D end_at) parameter provided to a pileup function
    ulong end_position() @property const {
        return _end_position;
    }

    /// Reference ID of all reads in this pileup.
    int ref_id() @property const {
        return _ref_id;
    }
}

struct TakeUntil(alias pred, Range, Sentinel) if (isInputRange!Range)
{
    private Range _input;
    private Sentinel _sentinel;
    bool _done;

    this(Range input, Sentinel sentinel) {
        _input = input; _sentinel = sentinel; _done = _input.empty || predSatisfied();
    }

    @property bool empty() { return _done; }
    @property auto ref front() { return _input.front; }
    private bool predSatisfied() { return startsWith!pred(_input, _sentinel); }
    void popFront() { _input.popFront(); _done = _input.empty || predSatisfied(); }
}

auto takeUntil(alias pred, Range, Sentinel)(Range range, Sentinel sentinel) {
    return TakeUntil!(pred, Range, Sentinel)(range, sentinel);
}

auto pileupInstance(alias P, R)(R reads, ulong start_from, ulong end_at, bool skip_zero_coverage) {
    auto rs = filter!"a.basesCovered() > 0"(reads);
    while (!rs.empty) {
        auto r = rs.front;
        if (r.position + r.basesCovered() < start_from) {
            rs.popFront();
        } else {
            break;
        }
    }
    int ref_id = -1;
    if (!rs.empty) {
        ref_id = rs.front.ref_id;
    }
    auto sameref_rs = takeUntil!"a.ref_id != b"(rs, ref_id);
    alias typeof(sameref_rs) ReadRange;
    PileupRange!ReadRange columns = new P!ReadRange(sameref_rs, skip_zero_coverage);
    while (!columns.empty) {
        auto c = columns.front;
        if (c.position < start_from) {
            columns.popFront();
        } else {
            break;
        }
    }
    auto chopped = takeUntil!"a.position >= b"(columns, end_at);
    return AbstractPileup!(R, typeof(chopped))(reads, chopped, start_from, end_at, ref_id);
}

auto pileupColumns(R)(R reads, bool use_md_tag=false, bool skip_zero_coverage=true) {
    auto rs = filter!"a.basesCovered() > 0"(reads);
    alias typeof(rs) ReadRange;
    PileupRange!ReadRange columns;
    if (use_md_tag) {
        columns = new PileupRangeUsingMdTag!ReadRange(rs, skip_zero_coverage);
    } else {
        columns = new PileupRange!ReadRange(rs, skip_zero_coverage);
    }
    return columns;
}

/// Tracks current reference base
final static class PileupRangeUsingMdTag(R) :
    PileupRange!(R, PileupColumn)
{
    // The code is similar to that in reconstruct.d but here we can't make
    // an assumption about any particular read having non-zero length on reference.

    // current chunk of reference
    private alias typeof(_column._reads[].front) Read;
    private ReturnType!(dna!Read) _chunk;

    // end position of the current chunk on reference (assuming half-open interval)
    private uint _chunk_end_position;

    // next read from which we will extract reference chunk
    //
    // More precisely,
    // _next_chunk_provider = argmax (read => read.end_position)
    //                 {reads overlapping current column}
    private Read _next_chunk_provider;

    private bool _has_next_chunk_provider = false;

    // coverage at the previous location
    private ulong _prev_coverage;

    // we also track current reference ID
    private int _curr_ref_id = -1;

    ///
    this(R reads, bool skip_zero_coverage) {
        super(reads, skip_zero_coverage);
    }

    alias Unqual!(ElementType!R) Raw;

    //  Checks length of the newly added read and tracks the read which
    //  end position on the reference is the largest.
    //
    //  When reconstructed reference chunk will become empty, next one will be
    //  constructed from that read. This algorithm allows to minimize the number
    //  of reads for which MD tag will be decoded.
    protected override void add(ref Raw read) {
        // the behaviour depends on whether a new contig starts here or not
        bool had_zero_coverage = _prev_coverage == 0;

        super.add(read);

        // get wrapped read
        auto _read = _read_buf.data.back;

        // if we've just moved to another reference sequence, do the setup
        if (_read.ref_id != _curr_ref_id) {
            _curr_ref_id = _read.ref_id;

            _has_next_chunk_provider = true;
            _next_chunk_provider = _read;
            return;
        }

        // two subsequent next_chunk_providers must overlap
        // unless (!) there was a region with zero coverage in-between
        if (_read.position > _chunk_end_position && !had_zero_coverage) {
            return;
        }

        // compare with previous candidate and replace if this one is better
        if (_read.end_position > _chunk_end_position) {
            if (!_has_next_chunk_provider) {
                _has_next_chunk_provider = true;
                _next_chunk_provider = _read;
            } else if (_read.end_position > _next_chunk_provider.end_position) {
                _next_chunk_provider = _read;
            }
        }
    }

    protected override void initNewReference() {
        _prev_coverage = 0;
        super.initNewReference();
        if (_has_next_chunk_provider) {
            // prepare first chunk
            _chunk = dna(_next_chunk_provider);
            _chunk_end_position = _next_chunk_provider.end_position;
            _has_next_chunk_provider = false;
            _column._reference_base = _chunk.front;
            _chunk.popFront();
        } else {
            _column._reference_base = 'N';
        }
    }

    ///
    override void popFront() {
        if (!_chunk.empty) {
            // update current reference base
            _column._reference_base = _chunk.front;

            _chunk.popFront();
        } else {
            _column._reference_base = 'N';
        }

        // update _prev_coverage
        _prev_coverage = _column.coverage;

        // the order is important - maybe we will obtain new next_chunk_provider
        // during this call to popFront()
        super.popFront();

        // If we have consumed the whole current chunk,
        // we need to obtain the next one if it's possible.
        if (_chunk.empty && _has_next_chunk_provider) {
            _chunk = dna(_next_chunk_provider);

            debug {
            /*  import std.stdio;
                writeln();
                writeln("position: ", _next_chunk_provider.position);
                writeln("next chunk: ", to!string(_chunk));
                */
            }

            _chunk_end_position = _next_chunk_provider.end_position;

            _has_next_chunk_provider = false;

            _chunk.popFrontN(cast(size_t)(_column.position - _next_chunk_provider.position));

            _column._reference_base = _chunk.front;
            _chunk.popFront();
        }
    }
}

/// Creates a pileup range from a range of reads.
/// Note that all reads must be aligned to the same reference.
///
/// See $(D PileupColumn) documentation for description of range elements.
/// Note also that you can't use $(D std.array.array()) function on pileup
/// because it won't make deep copies of underlying data structure.
/// (One might argue that in this case it would be better to use opApply,
/// but typically one would use $(D std.algorithm.map) on pileup columns
/// to obtain some numeric characteristics.)
///
/// Params:
///     use_md_tag =  if true, use MD tag together with CIGAR
///                   to recover reference bases
///
///     start_from =  position from which to start
///
///     end_at     =  position before which to stop
///
/// $(BR)
/// That is, the range of positions is half-open interval
/// $(BR)
/// [max(start_from, first mapped read start position),
/// $(BR)
///  min(end_at, last mapped end position among all reads))
///
///     skip_zero_coverage = if true, skip sites with zero coverage
///
auto makePileup(R)(R reads,
                   bool use_md_tag=false,
                   ulong start_from=0,
                   ulong end_at=ulong.max,
                   bool skip_zero_coverage=true)
{
    if (use_md_tag) {
        return pileupInstance!PileupRangeUsingMdTag(reads, start_from, end_at, skip_zero_coverage);
    } else {
        return pileupInstance!PileupRange(reads, start_from, end_at, skip_zero_coverage);
    }
}

/// Allows to express the intention clearer.
enum useMD = true;

unittest {
    import std.algorithm;
    import std.range;
    import std.array;

    // the set of reads below was taken from 1000 Genomes BAM file
    // NA20828.mapped.ILLUMINA.bwa.TSI.low_coverage.20101123.bam
    // (region 20:1127810-1127819)
    auto readnames = array(iota(10).map!(i => "r" ~ to!string(i))());

    auto sequences = ["ATTATGGACATTGTTTCCGTTATCATCATCATCATCATCATCATCATTATCATC",
                      "GACATTGTTTCCGTTATCATCATCATCATCATCATCATCATCATCATCATCATC",
                      "ATTGTTTCCGTTATCATCATCATCATCATCATCATCATCATCATCATCATCACC",
                      "TGTTTCCGTTATCATCATCATCATCATCATCATCATCATCATCATCATCACCAC",
                      "TCCGTTATCATCATCATCATCATCATCATCATCATCATCATCATCACCACCACC",
                      "GTTATCATCATCATCATCATCATCATCATCATCATCATCATCATCGTCACCCTG",
                      "TCATCATCATCATAATCATCATCATCATCATCATCATCGTCACCCTGTGTTGAG",
                      "TCATCATCATCGTCACCCTGTGTTGAGGACAGAAGTAATTTCCCTTTCTTGGCT",
                      "TCATCATCATCATCACCACCACCACCCTGTGTTGAGGACAGAAGTAATATCCCT",
                      "CACCACCACCCTGTGTTGAGGACAGAAGTAATTTCCCTTTCTTGGCTGGTCACC"];

// multiple sequence alignment:
//                                                            ***
// ATTATGGACATTGTTTCCGTTATCATCATCATCATCATCATCATCATTATCATC
//       GACATTGTTTCCGTTATCATCATCATCATCATCATCATCATCATCATCATCAT---C
//          ATTGTTTCCGTTATCATCATCATCATCATCATCATCATCATCATCATCATCACC
//            TGTTTCCGTTATCATCATCATCATCATCATCATCATCATCATCATCAT---CACCAC
//                TCCGTTATCATCATCATCATCATCATCATCATCATCATCATCAT---CACCACCACC
//                   GTTATCATCATCATCATCATCATCATCATCATCATCATCAT---CATCGTCACCCTG
//                            ATCATCATCATAATCATCATCATCATCATCAT---CATCGTCACCCTGTGTTGAG
//                                      TCATCATCATCGTCAC------------------CCTGTGTTGAGGACAGAAGTAATTTCCCTTTCTTGGCT
//                                               TCATCATCATCATCACCACCACCACCCTGTGTTGAGGACAGAAGTAATATCCCT
//                                                            ---CACCACCACCCTGTGTTGAGGACAGAAGTAATTTCCCTTTCTTGGCTGGTCACC
//   *         *         *         *         *         *            *         *        *         *
//  760       770       780       790       800       810          820       830      840       850

    auto cigars = [[CigarOperation(54, 'M')],
                   [CigarOperation(54, 'M')],
                   [CigarOperation(50, 'M'), CigarOperation(3, 'I'), CigarOperation(1, 'M')],
                   [CigarOperation(54, 'M')],
                   [CigarOperation(54, 'M')],
                   [CigarOperation(54, 'M')],
                   [CigarOperation(2, 'S'), CigarOperation(52, 'M')],
                   [CigarOperation(16, 'M'), CigarOperation(15, 'D'), CigarOperation(38, 'M')],
                   [CigarOperation(13, 'M'), CigarOperation(3, 'I'), CigarOperation(38, 'M')],
                   [CigarOperation(54, 'M')]];

    auto positions = [758, 764, 767, 769, 773, 776, 785, 795, 804, 817];

    auto md_tags = ["47C6", "54", "51", "50T3", "46T7", "45A0C7", "11C24A0C14",
                    "11A3T0^CATCATCATCACCAC38", "15T29T5", "2T45T5"];

    BamRead[] reads = new BamRead[10];

    foreach (i; iota(10)) {
        reads[i] = BamRead(readnames[i], sequences[i], cigars[i]);
        reads[i].position = positions[i];
        reads[i].ref_id = 0;
        reads[i]["MD"] = md_tags[i];
    }

    auto first_read_position = reads.front.position;
    auto reference = to!string(dna(reads));

    import std.stdio;
    writeln("Testing pileup (low-level aspects)...");

    auto pileup = makePileup(reads, true, 796, 849, false);
    auto pileup2 = makePileup(reads, true, 0, ulong.max, false);
    assert(pileup.front.position == 796);
    assert(pileup.start_position == 796);
    assert(pileup.end_position == 849);

    while (pileup2.front.position != 796) {
        pileup2.popFront();
    }

    while (!pileup.empty) {
        auto column = pileup.front;
        auto column2 = pileup2.front;
        assert(column.coverage == column2.coverage);
        pileup2.popFront();

        // check that DNA is built correctly from MD tags and CIGAR
        assert(column.reference_base == reference[cast(size_t)(column.position - first_read_position)]);

        switch (column.position) {
            case 796:
                assert(equal(column.bases, "CCCCCCAC"));
                pileup.popFront();
                break;
            case 805:
                assert(equal(column.bases, "TCCCCCCCC"));
                pileup.popFront();
                break;
            case 806:
                assert(equal(column.bases, "AAAAAAAGA"));
                pileup.popFront();
                break;
            case 810:
                // last read is not yet fetched by pileup engine
                assert(column.reads[column.coverage - 2].cigar_after.front.type == 'D');
                pileup.popFront();
                break;
            case 817:
                assert(column.reads[column.coverage - 2].cigar_before.back.type == 'I');
                pileup.popFront();
                break;
            case 821:
                assert(column.reads[column.coverage - 3].cigar_operation.type == 'D');
                assert(equal(column.bases, "AAGG-AA"));
                pileup.popFront();
                break;
            case 826:
                assert(equal(column.bases, "CCCCCC"));
                pileup.popFront();
                break;
            case 849:
                assert(equal(column.bases, "TAT"));
                pileup.popFront();
                assert(pileup.empty);
                break;
            default:
                pileup.popFront();
                break;
        }
    }

    // another set of reads, the same file, region 20:12360032-12360050
    // test the case when reference has some places with zero coverage

    reads = [BamRead("r1", "CCCACATAGAAAGCTTGCTGTTTCTCTGTGGGAAGTTTTAACTTAGGTCAGCTT",
                       [CigarOperation(54, 'M')]),
             BamRead("r2", "TAGAAAGCTTGCTGTTTCTCTGTGGGAAGTTTTAACTTAGGTTAGCTTCATCTA",
                       [CigarOperation(54, 'M')]),
             BamRead("r3", "TTTTTCTTTCTTTCTTTGAAGAAGGCAGATTCCTGGTCCTGCCACTCAAATTTT",
                       [CigarOperation(54, 'M')]),
             BamRead("r4", "TTTCTTTCTTTCTTTGAAGAAGGCAGATTCCTGGTCCTGCCACTCAAATTTTCA",
                       [CigarOperation(54, 'M')])];

    reads[0].position = 979;
    reads[0]["MD"] = "54";
    reads[0].ref_id = 0;

    reads[1].position = 985;
    reads[1]["MD"] = "42C7C3";
    reads[1].ref_id = 0;

    reads[2].position = 1046;
    reads[2]["MD"] = "54";
    reads[2].ref_id = 0;

    reads[3].position = 1048;
    reads[3]["MD"] = "54";
    reads[3].ref_id = 0;

    assert(equal(dna(reads),
                 map!(c => c.reference_base)(makePileup(reads, true, 0, ulong.max, false))));
}

struct PileupChunkRange(C) {
    private C _chunks;
    private ElementType!C _prev_chunk;
    private ElementType!C _current_chunk;
    private bool _empty;
    private ulong _beg = 0;
    private bool _use_md_tag;
    private ulong _start_from;
    private ulong _end_at;
    private int _chunk_right_end;

    private int computeRightEnd(ref ElementType!C chunk) {
        return chunk.map!(r => r.position + r.basesCovered()).reduce!max;
    }

    this(C chunks, bool use_md_tag, ulong start_from, ulong end_at) {
        _chunks = chunks;
        _use_md_tag = use_md_tag;
        _start_from = start_from;
        _end_at = end_at;
        while (true) {
            if (_chunks.empty) {
                _empty = true;
            } else {
                _current_chunk = _chunks.front;
                _chunks.popFront();

                if (_current_chunk[0].ref_id < 0) continue;

                _beg = _current_chunk[0].position;
                if (_beg >= end_at) {
                    _empty = true;
                    break;
                }

                _chunk_right_end = computeRightEnd(_current_chunk);
                if (_chunk_right_end > start_from)
                    break;
            }
        }
    }

    bool empty() @property {
        return _empty;
    }

    auto front() @property {
        auto end_pos = _current_chunk[$-1].position;
        if (_chunks.empty || _chunks.front[0].ref_id != _current_chunk[$-1].ref_id)
            end_pos = _chunk_right_end;

        return makePileup(chain(_prev_chunk, _current_chunk),
                          _use_md_tag,
                          max(_beg, _start_from), min(end_pos, _end_at));
    }

    void popFront() {
        _prev_chunk = _current_chunk;

        while (true) {
            if (_chunks.empty) {
                _empty = true;
                return;
            }
            _current_chunk = _chunks.front;
            _chunks.popFront();

            if (_current_chunk[0].ref_id >= 0) break;
        }

        _chunk_right_end = computeRightEnd(_current_chunk);

        // if we changed reference, nullify prev_chunk
        if (_prev_chunk.length > 0 &&
            _prev_chunk[$ - 1].ref_id == _current_chunk[0].ref_id)
        {
            _beg = _prev_chunk[$-1].position;
        } else {
            _beg = _current_chunk[0].position;
            _prev_chunk.length = 0;
        }

        // keep only those reads in _prev_chunk that have overlap with the last one

        // 1) estimate read length
        enum sampleSize = 15;
        int[sampleSize] buf = void;
        int read_length = void;
        if (_prev_chunk.length <= sampleSize) {
            for (size_t k = 0; k < _prev_chunk.length; ++k) {
                buf[k] = _prev_chunk[k].sequence_length;
            }
            topN(buf[0.._prev_chunk.length], _prev_chunk.length / 2);
            read_length = buf[_prev_chunk.length / 2];
        } else {
            size_t i = 0;
            foreach (read; randomSample(_prev_chunk, sampleSize))
                buf[i++] = read.sequence_length;
            topN(buf[], sampleSize / 2);
            read_length = buf[sampleSize / 2];
            debug {
                import std.stdio;
                stderr.writeln("[pileupChunks] read_length=", read_length);
            }
        }

        // 2) do binary search for those reads that start from (_beg - 2 * read_length)
        //    (it's an experimental fact that almost none of reads consumes that much
        //     on a reference sequence)
        auto pos = _beg - 2 * read_length;
        long i = 0;
        long j = _prev_chunk.length - 1;
        // positions of _prev_chunk[0 .. i] are less than pos,
        // positions of _prev_chunk[j + 1 .. $] are more or equal to pos.

        while (i <= j) {
            auto m = cast(size_t)(i + j) / 2;
            assert(m < _prev_chunk.length);
            auto p = _prev_chunk[m].position;
            if (p >= pos) {
                j = m - 1;
            } else {
                i = m + 1;
            }
        }

        _prev_chunk = _prev_chunk[cast(size_t)i .. $];
    }
}

/// This function constructs range of non-overlapping consecutive pileups from a range of reads
/// so that these pileups can be processed in parallel.
///
/// It's allowed to pass ranges of sorted reads with different ref. IDs,
/// they won't get mixed in any chunk.
///
/// Params:
///   use_md_tag =   recover reference bases from MD tag and CIGAR
///
///   block_size =   approximate amount of memory that each pileup will consume,
///                  given in bytes. (Usually consumption will be a bit higher.)
///
///   start_from =   position of the first column of the first chunk
///
///   end_at     =   position after the last column of the last chunk
///
/// $(BR)
/// WARNING:     block size should be big enough so that every block will share
///              some reads only with adjacent blocks.
///              $(BR)
///              As such, it is not recommended to reduce the $(I block_size).
///              But there might be a need to increase it in case of very high coverage.
auto pileupChunks(R)(R reads, bool use_md_tag=false, size_t block_size=16_384_000,
                     ulong start_from=0, ulong end_at=ulong.max) {
    auto chunks = chunksConsumingLessThan(reads, block_size);
    return PileupChunkRange!(typeof(chunks))(chunks, use_md_tag, start_from, end_at);
}